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Abstract: 

Map-Matching algorithms are used to integrate positioning data with digital road network data so 

that vehicles can be placed on a road map. However, due to error associated with both positioning 

and map data, there can be a high degree of uncertainty associated with the map-matched locations. 

A quality indicator representing the level of confidence (integrity) in map-matched locations is 

essential for some Intelligent Transport System applications and could provide a warning to the user 

and provide a means of fast recovery from a failure. The objective of this paper is to determine an 

empirical method to derive the integrity of a map matched location for three previously developed 

algorithms. This is achieved by formulating a metric based on various error sources associated with 

the positioning data and the map data. The metric ranges from 0 to 100 where 0 indicates a very 

high level of uncertainty in the map-matched location and 100 indicates a very low level of 

uncertainty. The integrity method is then tested for the three map matching algorithms in the cases 

when the positioning data is from either a stand-alone global positioning system (GPS) or GPS 

integrated with deduced reckoning (DR) and for map data from three different scales (1:1250, 

1:2500, and 1:50000). The results suggest that the performance of the integrity method depends on 

the type of map matching algorithm and the quality of the digital map data. A valid integrity 

warning is achieved 98.2% of the time in the case of the fuzzy logic map matching algorithm with 

positioning data come from integrated GPS/DR and a digital map data with a scale of 1:2500.  
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1. INTRODUCTION 

 

Navigation systems play a key role in almost all functional areas of Intelligent Transport Systems 

(ITS) (Drane and Rizos, 1998). While a positioning system is never considered as a stand-alone 

component of an ITS service, it is generally integrated into a larger system that is much more 

complex, involving many different subsystems with a man-machine interface, sensors, computers, 

and communication. In general, two essential components used in the navigation module of an 

ITS are: (1) a device to determine the geometric position of the vehicle, and (2) a Geographic 

Information System (GIS) based digital road map for determining the spatial (physical) reference 

for the vehicle location. The most common geometric positioning devices used for land vehicle 

navigation are Deduced Reckoning (DR) motion sensors, global navigation satellite systems such 

as the Global Positioning System (GPS), and integrated navigation systems such as the 

integration of GPS and DR.  



 

                                                                                                                                           3 

 

GPS data may be augmented with DR sensor data with the use of an Extended Kalman Filter 

(EKF) to achieve the required availability in some areas (Zhao et al., 2003). This is known as an 

integrated navigation system (GPS/DR). DR readings are calibrated when GPS is available. If the 

GPS receiver suffers from signal masking or the quality of the position solution is not good, the 

calibrated DR readings are then used to determine the position of the vehicle.  

 

The digital road network map is the other necessary component of a navigation module.  Since 

land vehicles primarily travel on known road networks, the road map is used as a spatial reference 

for location. This assists drivers to relate their observed positions, obtained from the navigation 

system, with a physical location in the real-world and hence can guide them along a pre-

calculated route. However, the digital road map also contains errors arising mainly from the 

processes of creation and digitization of maps. The errors can be estimated using either the scale 

of the map or field experiments. 

 

System and sensor complementarity, such as the integration of GPS, DR and digital map data can 

be used to enhance the geometric positioning capability. A map matching algorithm can then be 

formulated to integrate the positioning data with the digital road network data. Map matching not 

only enables the physical location of the vehicle to be identified but also improves the positioning 

accuracy if a good digital map is available. If the vehicle position and the digital map are very 

accurate, the algorithm becomes very straightforward and simply snaps the positioning data to the 

nearest road. However, accurate positioning data and network data may not be available in the 

real world and hence map matching algorithms are essential.  

 

The general purpose of a map matching algorithm is to identify the correct road segment on 

which the vehicle is travelling and to determine the vehicle location on that segment. The 
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parameters used to select a precise road segment are mainly based on the proximity between the 

position fix and the road, the degree of correlation between the vehicle trajectory derived from the 

position fixes and the road centreline, and the topology of the road network. Orthogonal 

projection of the position fix onto the selected road segment is normally used to calculate the 

vehicle location on the segment. 

 

The complexity of the map matching algorithm necessarily depends on the nature of the 

application and the availability of data inputs. Therefore, various difficulty levels are associated 

with map matching algorithms. For example, map matching algorithms for a fixed bus-route are 

very simple because the bus is travelling on a known route. In this case, the purpose of the 

algorithm is to locate the bus on one of the road segments that builds up the bus route. In this 

way, the search domain to identify the correct road segment is significantly reduced. The most 

complex algorithm would be a general map matching algorithm that does not assume any prior 

knowledge or any other information regarding the expected location of the vehicle (Greenfeld, 

2002).   

 

The methodologies used in past research to develop map matching algorithms vary from a simple 

search technique (e.g., Kim et al., 1996; Bernstein and Kornhauser, 1996; White et al., 2000; 

Greenfeld, 2002) to a highly mathematical technique (e.g., Kim et al., 2000; Pyo et al., 2001; 

Najjar and Bonnifait, 2005; Yang et al., 2003, Syed and Cannon, 2004). Our previous work 

resulted in the development of three map matching algorithms. The first was based on a 

conventional topological approach (Quddus et al., 2003). The second was based on a probabilistic 

approach (Ochieng et al., 2004), and the third was based on a fuzzy logic concept (Quddus et al., 

2005). 
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Digital map data is usually based on a single-line-road-network representing the centreline of the 

road. Road attributes such as width, number of lanes, turn restrictions at junctions, and roadway 

classification (e.g., one-way or two-way road) normally do not exist in the map data. Therefore, 

the accuracy and uncertainty of digital road network data is a critical issue if the data is used for 

land vehicle navigation. One must be aware of the following concerns regarding the quality of 

road network data: 

 

• The features (e.g., roundabouts, junctions, medians, curves) of the real-world that 

have been omitted or simplified in the road map. This is usually known as topological 

error. 

• The accuracy of the classification (e.g., junction or roundabout) of those features 

• Timeliness of the data such as how recently the map was created 

• The displacement of a map feature (e.g., road centreline, specific junction) from its 

actual location in the road. This is generally known as geometric error.  

 

Both geometric and topological errors in the map data may introduce significant horizontal errors 

in land vehicle positioning and navigation (Noronha and Goodchild, 2000; NRC, 2002; Goodwin 

and Lau, 1993; Quddus et al., 2003, Ochieng et al., 2004). Therefore, there is always a level of 

uncertainty associated with map matching algorithms. Moreover, it is essential to measure the 

quality (level of confidence) of map matching and detect anomalies in map-matched locations. 

This can be achieved by calculating the “integrity”, which represents the level of trust that can be 

placed in the information provided by the map matching algorithm for each position.  Moreover, 

it is also necessary to evaluate the overall accuracy of map matching algorithms in order to 

estimate their performance. This can be attained by “validity” which is concerned with how well 

the map matching algorithms measure what they are intended to measure. “Validity” here refers 

to the overall performance characterisation of the algorithm; while “integrity” will clearly be 

required for each position fix in real-time. Quddus et al. (2004) describes a generic validation 

methodology for map matching algorithms.  
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Surprisingly very little research has been devoted to the “integrity” map matching.  Therefore, the 

objective of this paper is to establish a generic methodology to determine empirically the integrity 

of a map matching algorithm. The methodology is then applied to the three map matching 

algorithms developed by the authors (Quddus et al., 2003; Ochieng et al., 2004; and Quddus et 

al., 2005). Moreover, the type of navigation system and the quality of the digital map influence 

the performance of the map matching algorithms (Quddus et al., 2005). In order to quantify such 

effects, the integrity of each map matching algorithm is investigated using a number of different 

digital maps (map scales 1:1250; 1:2500, and 1:50000) and a variety of navigation systems (GPS 

and GPS/DR). The results are validated using high precision GPS carrier phase observables.  

 

This paper is organized as follows. First, a brief description on the selection of the map matching 

algorithms used to test the integrity method is presented. This is followed by a description of the 

integrity of a map matching algorithm including the definition, the influencing factors, and the 

derivation of a metric to quantify integrity. The next section describes the application of the 

metric to the map matching algorithms. The paper ends with conclusions and recommendations 

for further studies.  

 

2. MAP MATCHING ALGORITHMS 

 

The purpose of map matching algorithms is twofold: (1) to identify the correct link among the 

candidate links and (2) to determine the vehicle location on that link. Procedures for map 

matching vary from those using simple search techniques (Kim et al., 1996), to those using more 

advanced techniques such as fuzzy logic (Syed and Cannon, 2004, Quddus et al., 2005). 

Approaches for map matching algorithms found in the literature can be categorised into three 

groups: topological (White et al., 2000, Greenfeld et al., 2002, and Quddus et al., 2003) and , 
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probabilistic (Zhao, 1997, Meng et al., 2003, and Ochieng et al., 2004), and advanced (Najjar and 

Bonnifait, 2005, Pyo et al., 2001, Yang et al., 2003, Quddus et al., 2005). The performance of any 

map matching algorithm varies widely depending on the types of inputs and the technique used in 

the algorithm.  In order to test the integrity method (to be derived in the next section), the map 

matching algorithms need to be selected from each of the three groups. Therefore, three different 

map matching algorithms are used in this study. They are a conventional topological map 

matching algorithm, a probabilistic based map matching algorithm, and a fuzzy-logic based map 

matching algorithm. These algorithms were developed by the authors in earlier work and full 

details can be found in Quddus et al. (2003), Ochieng et al. (2004) and Quddus et al. (2005). 

However, a very brief overview of these algorithms is presented below.  

 

A conventional topological approach was used to develop a relatively simple map matching 

algorithm in Quddus et al. (2003). In this algorithm, the map matching process is initiated with 

node-matching to identify a correct link (among all the links connected with the closest node to 

the position fix).  Based on the various similarity criteria between the derived position fixes and 

the network topology, a weighting system is used to select the correct link.  The criteria used in 

the algorithm are the similarity in orientation, proximity of the point to the link and the position 

of the fix relative to the link (see Quddus et al., 2003 for details).  

 

A probabilistic map matching algorithm was then developed by the authors to overcome some of 

the limitations in the topological map matching algorithm (Ochieng et al., 2004). Instead of using 

the links connected to the closest node, the probabilistic map matching algorithm takes all links as 

candidate links that fall within an error ellipse around a position fix. An error ellipse is formed 

from the error variance-covariance matrix associated with the positioning system. The semi-major 

and semi-minor axes of the error ellipse are then increased to have a larger error ellipse that gives 

a higher level of confidence that the vehicle location is to be positioned on a link within the 
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boundary of the ellipse. This reduces the risk associated with residual outliers in the positioning 

data. Two distinct processes were developed for the identification of the correct link.  These are 

(a) the initial matching process (IMP) and (b) the subsequent matching process (SMP).  The 

function of the IMP is to identify a correct link for an initial position fix. Since the vehicle is 

expected to travel on this initial road segment for at least a few seconds, the subsequent position 

fixes are matched to that road segment.  Therefore, after successfully identifying a correct link for 

an initial GPS or GPS/DR fix, the SMP starts matching the subsequent position fixes.  In the 

SMP, the fixes are matched to the same road segment identified in the IMP if certain conditions 

are satisfied, such as if the distance travelled is short, the difference in heading between fixes is 

low, and the vehicle does not cross any junctions.  

 

In urban areas, the vehicle trajectory derived from the positioning system is quite different from 

the actual route due to inherent problems associated with GPS in urban canyons as well as 

imperfections of the map database generated from digitization. Therefore, the error ellipse, 

derived from the quality of the position fix, is normally larger and contains a number of links. 

This may cause difficulty in the map matching process to distinguish precisely on which 

particular link the vehicle is travelling. In such a case, a map matching algorithm may suggest 

that the vehicle is more likely to be on a link and less likely to be on other links.  This type of 

ambiguity needs to be resolved if relatively accurate location and navigation information is 

desired.  Therefore, methods suitable for dealing with qualitative terms such as likeliness are 

necessary in map matching algorithms for the selection of a correct link among a number of 

candidate links. Therefore, a map matching process was developed based on fuzzy logic, which 

allows a qualitative decision making process to be modelled (Quddus et al., 2005). The inputs to 

the proposed algorithm come either from GPS or GPS augmented with the DR sensors to provide 

continuous navigation. The basic characteristic of this map matching approach is to build various 

knowledge-based IF-THEN rules comprising the speed of the vehicle, the heading and historical 



 

                                                                                                                                           9 

trajectory of the vehicle, the connectivity and orientation of road links, and the contribution of 

satellite geometry to horizontal errors. Three distinct processes were developed for the 

identification of the correct link. They are (a) Initial map matching process, (b) Subsequent map 

matching process at a junction (SMP-junction), (c) Subsequent map matching process on a link 

(SMP-link). In all cases, a zero-order Sugeno Fuzzy Inference System (FIS) was used to identify 

the correct link.  

 

In all three algorithms, the physical location of the vehicle on the link is determined in two ways 

with the available data. One method is to use map data (i.e., link heading) and vehicle speed from 

the positioning sensors. If an initial position for the vehicle is known then the vehicle position 

(easting, mape , northing, mapn ) can be derived epoch-by-epoch from the link heading and speed 

information. The other method is to adopt the perpendicular projection of the GPS or GPS/DR fix 

on to the link that results in the easting ( gpse ) and northing ( gpsn ) coordinates.  Since both 

methods are associated with errors, an optimal estimation procedure (combining the two 

methods) is used to determine the final location of the vehicle on the road segment. The optimal 

easting ( ê ) and northing ( n̂ ) for a particular epoch are expressed as 
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where 2
mapσ  is the error covariance associated with map data, 2

,egpsσ  and 2
,ngpsσ  are the easting 

and northing components of the error covariance associated with the navigation sensor. These 

equations are only valid for errors with a Gaussian distribution and for which the easting and 
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northing components are not correlated. Quddus (2006) evaluates the same equations in the case 

of correlated error.  

 

  The error variance for the easting component is expressed as:  
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It is noticeable from equation (3) that the error variance, 2
eσ , is less than either 2

,emapσ  or 2
,egpsσ  

which is to say that the uncertainty in estimating the vehicle position is reduced by combining the 

two types of measurement methods. The error variance for the northing component ( 2
nσ ) can also 

be calculated from equation (3). 

 

There are similarities and differences among these three algorithms. For the identification of the 

correct link, these algorithms use different techniques e.g., topological, probabilistic, and fuzzy 

logic techniques. For the determination of the location of the vehicle on the correct link, these 

algorithms use the same optimal estimation technique. However, the percentage of accurate 

identification of links affects the determination of the vehicle location. Our previous work found 

that the fuzzy-logic algorithm generally gives the best map-matched position fix (Quddus et al., 

2005). 

 

3. DERIVATION OF INTEGRITY MEASURE 

 

To increase the level of confidence in the map-matched locations, the map matching algorithm 

should deliver a quality indicator for each position solution. A threshold for the quality indicator 
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can be established using a real input/output dataset. If the quality indicator exceeds a pre-defined 

threshold it can then be regarded as an incorrect position solution and the algorithm can then 

provide a warning to the driver not to depend on the information provided by the algorithm at that 

time. This concept is usually known as “integrity” in the navigation literature. The definition of 

“integrity”, the factors affecting it and the quantification of the “integrity” of a map matching 

algorithm are presented below.  

 

3.1 Integrity in the context of navigation systems 

 

Integrity is a measure of the trust that can be placed in the correctness of the information provided 

by the total system. Ochieng et al (2003) defined integrity in the context of aviation as “the ability 

of the navigation system to provide timely and valid warnings to users when the system must not 

be used for the intended operation or phase of flight. Specifically, a navigation system is required 

to deliver a warning (an alert) of any malfunction (as a result of a set of alert limit being 

exceeded) to users within a given period of time (time-to-alarm) with a given probability 

(integrity risk)”. Monitoring the integrity of a navigation system such as GPS is essential to 

ensure that the error in the navigation solution is within tolerable limits. Ideal integrity 

monitoring involves the detection, isolation and the removal of faulty measurement sources from 

the navigation solution. Various external and autonomous (receiver-based) integrity monitoring 

methods are available for GNSS. External monitoring of GNSS relies on a number of ground-

based stations, positioned at known locations (Fernow and Loh, 1994). In this method, individual 

satellites are monitored by comparing the measured pseudoranges with those computed from the 

coordinates of the satellites and within the monitoring stations. A fault is indicated when a 

measurement error exceeds a predefined threshold, and then a warning is sent to the users within 

the time-to-alarm. The Receiver Autonomous Integrity Monitoring (RAIM) method, on the other 

hand, is applied within the user receiver to allow it to autonomously establish system integrity 

(Ochieng et al., 2003). RAIM addresses two basic concerns: (1) the existence of an unreliable 

“bad” measurement, and (2) the identification of the affected satellite.  
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The overall objective of measuring integrity is to protect a system against excessive positioning 

error. Therefore, the integrity of a map matching algorithm must detect an event when the 

horizontal error goes beyond a certain threshold, within a specified level of confidence. It should 

also detect whether the map matching algorithm selects an incorrect link. The integrity can then 

be used to deliver a warning to the driver (just as it does in the case of RAIM) that the map-

matched location is not trustworthy for positioning or navigation. This is particularly important at 

a junction in dense areas where a number of candidate road segments fall within the error ellipse 

around the position fix. 

 

The integrity of a map matching algorithm can be defined as its ability to correctly identify a link 

and to accurately determine the vehicle location on the link for a particular epoch. In the 

quantification of integrity, therefore, emphasis must be given to how correctly a map matching 

algorithm identifies a link and how closely the algorithm estimates the vehicle location compared 

to the actual location. A high integrity map matching algorithm means that its location estimation 

capability can be trusted or believed. Therefore, a specific criterion is needed to judge whether 

the new map matching algorithms can be trusted. This section introduces a simple empirical way 

to determine “integrity”. 

 

3.2 Factors Affecting the Integrity of a Map Matching Algorithm 

 

The uncertainty (i.e., σe and σn) associated with a map-matched position as estimated by equation 

(3) can be used to derive the integrity of a map matching algorithm. A larger uncertainty usually 

indicates less confidence in the position solution and vice versa. Moreover, both the quality of the 

position fix obtained from the navigation sensors and the quality of the digital map may also 
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affect the integrity of a map matching algorithm. This involves the uncertainties associated with 

the raw GPS or GPS/DR measurements determined from the variance-covariance matrix, the bias 

introduced by the road centreline and the systematic error associated with the calculation of link 

heading due to errors in the map data. By taking into account these factors, a metric can be 

specified for measuring the quality (and level of confidence) of map matching and the detection 

of anomalies in map-matched locations.  

 

3.2.1 Integrity based on the uncertainty associated with the position solution 

 

Assume that P represents the vehicle position fix for a particular epoch and M denotes the 

corresponding map-matched location of the vehicle on the link AB (Figure 1). In this case link 

AB will have been selected as the correct link for the position fix P by a map matching algorithm. 

R refers to the true location of the vehicle for the same epoch.  

 

“place Fig. 1 about here” 

 

According to equation (3), the easting and northing components of uncertainties (i.e., σe and σn) 

associated with M can be given as 
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In which emap,σ  and nmap ,σ  are the standard deviation of the errors (easting and northing 

components respectively) associated with the map data and egps,σ  and ngps,σ  are the standard 

deviation of the errors (easting and northing components respectively) associated with the 

navigation sensors. Assuming that there is no correlation between the easting and northing 

components of the position solution, the uncertainty associated with the horizontal position at M 

is 

                                22
neor σσσ +==                                                                                      (6) 

 

Another common metric used to estimate the uncertainty associated with the horizontal position 

is the circular error probable (CEP) which is equivalent to 0.75*σ . The real (true) position of the 

vehicle, R, may not fall inside the circle of radius or  drawn at M as can be seen in Figure 1. 

Therefore, the value of σ may not always represent the uncertainty associated with the map-

matched position. The probability that the true position, R, is within a circle of radius σ is about 

63% (Kaplan, 1996). Moreover, a map matching algorithm essentially places the vehicle position 

fixes on the road centreline. This may introduce bias in the map-matched positions. Moreover, a 

map matching algorithm may identify a wrong link and hence the map-matched location may fail 

for the true position of the vehicle. 

 

Consequently, the confidence level associated with a map-matched position should be kσ  where 

k is a growth factor and k≥1. An empirical study was conducted to derive the value of k. The 

basic idea is to increase the radius or  so that the circle includes the real position, R. The 

minimum radius of a circle that includes R is denoted by fr . Therefore, the value of k can be 

given by 
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σ

fr
k =                                                                                   (7) 

 

The value of fr (i.e., kσ) can be used as the uncertainty or the level of confidence associated with 

the map-matched positions. A large value of kσ  may indicate a lower confidence level and vice 

versa.  

 

To implement the above concept, a series of map-matched positions with their corresponding true 

positions is needed. Therefore, the dataset described below (section 3.4.1) can be employed to 

derive a relationship between k and σ. Figure 2 shows the observed relationship between them. 

The fuzzy logic map matching algorithm is applied to the navigation data from GPS/DR and the 

map data from the map of scale 1:2500 to obtain the map-matched positions. The corresponding 

true positions of the vehicle are obtained from the GPS carrier-phase observables using the fixed 

solutions only1. This gives a total of 217 true positions of the vehicle. 

 

“place Fig. 2 about here” 

The growth factor can be as high as 16 as seen in Figure 2 meaning that the minimum radius of a 

circle which includes the real position of the vehicle is 16σ, implying that the map-matched 

position is far away from the true position and indicates the determination of an incorrect location 

or the wrong selection of a link. However, the higher values of k may not necessarily be due to 

the identification of wrong links by the map matching algorithm. The error introduced by the road 

centreline may also give a higher growth factor. Usually, a wider roadway (e.g., a motorway) 

produces a larger error and the results in Figure 2 indicate that the relationship between k and σ 

                                                 
1 The details of the processing of GPS carrier phase data can be found in Quddus et al. (2004) 
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for a motorway is different from that of a non-motorway. Therefore, two types of relationships 

can be modelled: one for roadways with more than 2-lanes (in each direction) and the other for all 

other roadways.  

 

Since the value of k is always non-negative, an additive model can be considered unsatisfactory 

as the model may predict negative values of k.  Therefore, a log-linear relationship between k and 

σ  is suggested: 

 

                                                        ttt Dk εβσθ ++=ln                                                           (8) 

 

where D=1 if the vehicle travels on a motorway and D=0 otherwise, θ  and β  are the parameters 

to be estimated, and ε  is an identically and independently distributed error term. The parameters 

are estimated using Ordinary Least Square (OLS) using 217 observations (see Table 1). The 

goodness-of-fit (adjusted R2) is found to be 0.80.  

“place Table 1 about here” 

Therefore, the growth factor (k) can be calculated from the following equations.  

 

For roadways with more than 2-lanes: 

)0706.03295.1exp(ˆ σ+=k                                                                            (9) 

For all other roadways: 

)0706.0exp(ˆ σ=k                                                                                     (10) 

Once σ  is estimated by the map matching algorithm, the corresponding value of k can then be 

calculated using either equation (9) in the case of the vehicle travelling on a roadway with more 
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than 2-lanes (in each direction) or equation (10) in the case of all other roadways. Then the 

corrected uncertainty (i.e, kσ ) associated with each map-matched position can easily be obtained. 

Figure 3 shows the estimated relationship between k and σ. The points surrounded by the ellipses 

are all incorrect map-matched positions associated with higher values of uncertainty. However, 

there are incorrect map-matched positions even when k is small. This suggests that other factors 

influencing the integrity of a map matching algorithm also need to be taken into account. 

 

“place Fig. 3 about here” 

 
3.2.2 Integrity based on the ability to identify the correct link 

 

The vehicle direction, θ , (i.e., heading relative to the north) for a particular position fix can be 

obtained from the outputs of the navigation sensors (GPS or GPS/DR). The road network data can 

also be used to acquire vehicle direction. This is because a map matching algorithm identifies a 

link for a position fix and therefore, the direction of the link, β , should be the direction of the 

travelling vehicle. The absolute difference between these two directions, (i.e., βθ − ) can be 

used to derive an integrity measure for a map matching algorithm in terms of link identification. 

For example, if a map matching algorithm identifies the correct link for a position fix, then 

βθ −  should be close to zero and the identification of the link may be trusted for the fix. 

However, the uncertainties associated with both direction measurements need to be considered 

before inferring any conclusion. If the vehicle heading is obtained by stand-alone GPS, then the 

heading is not accurate when the vehicle travels at a low speed (Quddus et al., 2003). Although 

heading information from GPS/DR is quite good, it may sometimes provide inaccurate results. 

The uncertainty in heading can be detected by the error variance for heading ( 2
hσ ) from the 
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variance-covariance matrix. In order to have a 99% confidence level, the true heading ( trueθ ) 

from the navigation system is:  

 

htrue σθθ 3±=                                                                                    (11) 

 

The error associated with the heading of a road link can be obtained from the quality of the map 

data. If the heading of a link AB of length L is denoted by β  and the map scale is m:1  then the 

maximum error (3σ , a 99% confidence level) associated with β  can be given by βΔ  as shown 

in Figure 4. This is because the position of nodes A or B can be anywhere within a circle of 

radius m. In the worst-case scenario, the position of the node A may be at a, and the position of 

the node B may be at b.  

 

“place Fig. 4 about here” 

 

Therefore, the link ab has the largest heading error ( βΔ ) relative to the original link AB. This 

can be derived as 

 

          )
2/

arctan(
L
m

=Δβ                                                                     (12) 

 

Therefore, the true heading of the link AB is  

 

                               )
2/

arctan(
L
m

true ±= ββ                                                          (13) 
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The maximum error associated with θ  is 3 hσ , and β  is βΔ . Using an error propagation 

theorem, the combined heading error (HE) can be given by the following equation: 

 

     22 ))
2/

(arctan()3(
L
mHE h += σ                                                 (14)  

 

The identification of the link is said to be reliable if the difference between θ  and β  (i.e., the 

observed difference) is less than or equal to the combined heading error, HE. In other words, if 

the difference between βθ −  and HE  is less than or close to zero, then it can be said that the 

identification of the link by the map matching algorithm is more reliable. This difference can be 

termed as the heading residual ( HΔ ) and is given by:  

 

                0≤−−=Δ HEH βθ                                                              (15) 

3.2.3 Integrity based on the ability to accurately estimate vehicle location 

 

The proximity between the raw position fix and the corresponding map-matched location on a 

link can be used to derive the integrity of a map matching algorithm in terms of location 

determination. If a position fix and the map-matched location are close to each other then the map 

matching algorithm is normally assumed to be quite trustworthy given that the map matching 

algorithm takes into account both the road network connectivity and the recent history of the 

vehicle trajectory. However, the quality of the position fix and the error associated with the road 

width need to be taken into account.  
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Two-dimensional (2-D) horizontal positional accuracies are normally estimated and reported 

using distance root mean square (DRMS) radial error statistics (Kaplan, 1996). The DRMS error 

measures are approximations to the error ellipses that are computed for measured position fixes. 

The DRMS error statistic is related to the variance-covariance matrix associated with the outputs 

of the navigation sensors and can be defined as, 

 

2
,

2
, ngpsegpsDRMS σσ +=                                                                   (16) 

 

where 2
,egpsσ  and 2

,ngpsσ  are the error variances associated with the easting and northing 

components of a position fix. 

 

DMRS statistics can have variable confidence levels. The probability that the measured position 

fix falls within the circle of radius of DRMS from the true position largely depends on the ratio 

between 2
,egpsσ and 2

,ngpsσ . If, for instance, the 2-D error distribution is close to being circular 

(i.e., 2
,egpsσ = 2

,ngpsσ ), the probability of falling inside this circle is about 63%. If 2
eσ =10 2

nσ , then 

the probability is about 68%. A circle twice this radius, i.e., 2DRMS represents 95% to 98% 

positional probability based on the ratio between 2
eσ and 2

nσ . The probability that the true 

position is within a circle of radius 3DRMS is more than 99% (Kaplan, 1996). 

 

The 3DRMS error statistic can be used to deduce integrity for a map matching algorithm. A map-

matched vehicle location is said to be trustworthy if this location is very close to its actual (true) 

location. Therefore, a good map-matched location for an epoch should be within a circle of radius 

3DRMS drawn at the corresponding position fix. The distance between the raw position fix and 

the map-matched location is necessarily less than 3DRMS if a 99% or more confidence level is 
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desired. Since the road network data only contains road centreline data and a map matching 

algorithm takes the road centreline as the true reference for vehicle positioning, then an 

adjustment is essential for road width. This adjustment, which largely depends on the types of 

roadways (i.e., motorway, major road, minor road ,etc), can be regarded as the correction for the 

road centreline ( centrelineRΔ ). The expanded radius of a circle can then be given by the following 

equation: 

 

centrelinedrms RDRMSR Δ+= 33                                                              (17) 

 

Assuming that a vehicle equipped with a navigation sensor travels on a two-way road with 2-

lanes in each direction as shown in Figure 5, P represents a position fix for an epoch t and T is the 

corresponding true location. AB is the road centreline which is a network representation of the 

two-way 2-lane road of width W. A map matching algorithm identifies link AB as the correct link 

for the position fix P. Q is the vehicle location on the link estimated by the algorithm.  Although 

the true location of the vehicle (T) falls inside a circle of radius 3DRMS (i.e., drmsr3 ), the map-

matched location falls outside. This is due to the fact that the map-matched location is always on 

the road centreline whereas the true location does not necessarily have to be on the centreline. 

However, the map-matched location, Q, is positioned within the confidence area of an expanded 

circle of radius drmsR3  which includes the correction for road width..  

“place Fig. 5 about here” 

The correction for road centreline, centrelineRΔ , is normally the deviation of the actual location of 

the vehicle relative to the centreline, i.e., the shortest distance from T to AB as can be seen in 

Figure 5. The deviation largely depends on the number of lanes associated with the roadway. For 

instance, the value of centrelineRΔ  will normally be higher for a motorway than a minor road. With 
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navigation data from a low-cost GPS receiver, it is impossible to determine the particular lane on 

which the vehicle is travelling. Therefore, the maximum deviation can be considered as the 

correction for road centreline. Assuming a lane width of 3.5m, the maximum deviation of the 

actual vehicle location from the road centreline for roads with various numbers of lanes is shown 

in Table 2. 

 

“place Table 2 about here” 

For the UK, data on the number of lanes is not readily available in GIS format at this moment. 

However, UK Ordnance Survey is working towards the development of an integrated transport 

network (ITN) layer which will include road attributes such as road width and the number of 

lanes. For this study, a value of 3.5m for centrelineRΔ  is assumed for all roads. Therefore, equation 

(17) becomes  

 

                          5.33 22
3 ++= nedrmsR σσ                                                         (18) 

 

The map-matched location is said to be good if the distance between the raw position fix (P) and 

the map-matched position (Q) is less than drmsR3 . The difference between PQ and drmsR3  can be 

termed as the distance residual, DΔ , which can be defined as 

  

         03 ≤Δ=− DRPQ drms                                                                       (19) 

 

Therefore, the key variables required to derive a metric for measuring the quality of map 

matching are kσ, DΔ  and HΔ . The integrity of a map matching algorithm can be regarded as 

high if:  
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•   kσ is small 

• DΔ  is less than or close to zero  

• HΔ  less than or close to zero 

 

All the above conditions are linguistic statements. Therefore, the metric can best be derived using 

a qualitative decision-making process rather than a mathematical process. Hence, a fuzzy logic 

model is a good choice to deal with these linguistic terms. This is explained below. 

 

3.3 The Derivation of an Integrity Metric using Fuzzy Logic 

 

A Sugeno fuzzy inference system (FIS) developed by Sugeno (1985) is used to derive a metric (0 

to 100) representing the integrity of the results of a map matching algorithm based on the 

parameters kσ, DΔ and HΔ .  

 

The three state input variables of this FIS are: (1) the corrected uncertainty associated with the 

map-matched position, kσ (m), (2) the distance residual, ΔD (m), and (3) the heading residual, 

HΔ (degree). The fuzzy subsets associated with the kσ  are small, medium, and high. The fuzzy 

subsets associated with the ΔD are positive and negative. The fuzzy subsets related to the HΔ are 

also positive and negative. All inputs are fuzzified and shown in Figure 6. 

 

The single output of this FIS is the integrity of the map-matched position (denoted as L1). A zero-

order Sugeno fuzzy model is considered which takes five constants for the output. These values 

are selected initially as e.g., very low (Z1) = 0, low (Z2) = 50, average (Z3) =70, high (Z4)=90, 

and very high (Z5)=100. The next step is to formulate the fuzzy rules which are related to the 
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number of system state variables. Experience and engineering knowledge are used to 

formulate the fuzzy rules. For instance, if the corrected uncertainty (kσ ) is close to zero 

and the distance residual is also close to zero then the integrity associated with the map-matched 

position should be high. Special attention is given to the overlap between the fuzzy subsets 

of a particular input. This can reduce the number of fuzzy rules as every input generates 

some response. Twelve rules comprising the fuzzy knowledge are applied to this FIS (see Table 

3). The rules are established based on human knowledge and experience in interpreting the 

variables.  

“place Table 3 about here” 

 “place Fig. 6 about here” 

 

3.4 Statistical Performance of the Integrity Measure 

 

The integrity measure derived above has to be transformed into quantifiable parameters in order 

to assess its performance. Three parameters are examined: (1) false alarm rates, (2) missed 

detection rates, and (3) overall correct detection rates. The procedures to determine these 

parameters are given below: 

 

• Determine the integrity value (0 to 100) for each observation using the fuzzy logic 

method described in section 3.3. 

• Determine a threshold for the integrity in order to represent a wrongly map-matched 

location (see section 3.4.1 below).  

• Identify epochs where the integrity value falls below the threshold. These epochs 

(denoted as set A) can be regarded as the incorrect matches identified by the integrity 

method. 
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• Select epochs associated with the incorrect matches based on the reference (true) 

trajectory obtained from GPS carrier phase observables. These epochs (denoted as set B) 

are the true incorrect matches.  

• Identify epochs which can be found in set A but cannot be found in set B. The total 

number of such epochs is termed as m. This means that the integrity method gives an 

incorrect warning for m epochs which can be regarded as total false alarms (FA).  

• Identify epochs which can be found in set B but cannot be found in set A. The total 

number of such epochs is termed as n. This indicates that the integrity method fails to 

give a warning for n epochs which can be regarded as total missed detections (MD).  

 

If the total number of observations is denoted by r, then the false alarm rates (FAR) can be given 

as:   

                                    
)(  
)(   

rnsobservatiototal
malarmsfalsetotalFAR =                                                              (20)                                 

The missed detection rates (MDR) can be given as: 

 

                                    
)(  

)(   
rnsobservatiototal

ndetectionsmissedtotalMDR =                                                     (21) 

The overall correct detection rates, OCDR, which is the overall performance of the integrity 

method, can be given as: 

 

                               MDRFAROCDR −−= 1                                                                                     (22) 

 

3.4.1 Derivation of the integrity threshold 
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In any integrity assessment it is necessary to define a threshold level below which the 

measurement should be discarded. In order to derive the threshold for the integrity measure 

previously described, the fuzzy logic-based integrity method was applied in combination with the 

fuzzy logic map matching algorithm. This analysis was done for the example case using 

navigation data obtained from GPS/DR and digital map data obtained from a map of scale 

1:2500.  

 

The positioning data was obtained from a comprehensive field test in London on the 5 July 2004. 

The test vehicle was equipped with a GPSi-AVL2 navigation platform (115x113x45 mm) 

consisting of a 12-channel single frequency (L1) high sensitivity GPS receiver (for C/A code-

ranging), a low-cost rate gyroscope and the interfaces required to connect to the vehicle speed 

sensor (odometer). The rate gyro and the vehicle odometer support the basic DR configuration. 

The positioning and speed accuracies of the GPS receiver are 25 m CEP (Circular Error Probable) 

and 0.1m/s respectively. The heading drift of the rate gyro is 3 deg/hr. An Extended Kalman 

Filter (EKF) developed by Zhao et al. (2003) is used to integrate GPS data with the DR data. In 

order to obtain the reference (truth) trajectory, the vehicle was also equipped with a 24-channel 

dual-frequency Leica SR9500 geodetic receiver. High accuracy local measurement of 3-D offsets 

between the two antennae was undertaken in order that the position information was referenced to 

a single point. The test route had a good mixture of different roadway characteristics such as one-

way, two-way, dual carriage-way, motorway, roundabout, merging and diverging sections. The 

route was a circular loop and about 80km long and was chosen carefully to have good satellite 

visibility as GPS carrier-phase observables require observations from a large number of GPS 

satellites for reliable and correct ambiguity resolution. Therefore, it was also expected that the 

navigation data from stand-alone GPS would be quite good because of fewer effects of signal 

masking.  
                                                 
2 Manufactured by Neve Technologies, Home page: http://www.neveits.com 
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The positioning data (easting and northing), speed and heading were collected at one second 

intervals directly from both GPS receivers. The duration of data collection was about 2 hrs. For 

each of the map-matched locations obtained from the map matching algorithm, three input 

variables (kσ, ΔD and ΔH) to the Sugeno FIS were calculated. The corrected uncertainty (kσ) was 

calculated using either equations (9) or (10). The distance residual (ΔD) was estimated using 

equation (19) and the heading residual (ΔH) was obtained from equation (15). For each of the 

inputs, the corresponding crisp output from the Sugeno FIS was obtained and is the integrity 

measure for the map-matched location.  

 

“place Fig. 7 about here” 

 

Figure 7 shows the results of the metric representing the integrity of the map-matched locations. 

The value of the metric (level of confidence) varies from 0 to 100 where 0 means the map-

matched location had no integrity and 100 means the map-matched location had a very high level 

of integrity. The level of confidence associated with each of the map-matched locations is then 

evaluated against the true location of the vehicle in order to test the capability of the integrity 

measure. Very good agreement was achieved, for example, in Figure 7, the fuzzy logic map 

matching algorithm selects a wrong link for one of the position fixes (indicated with a circle) and 

the corresponding integrity value is 20.  

 

Figure 8 shows the relationship between the frequency for the correct and incorrect matches for 

the different bins of integrity values. It can be seen that larger values of the integrity measure are 

related to the correct map-matched locations. The frequency of the correct matches is close to 

zero when the integrity value is below 70 for the fuzzy logic map matching algorithms. The 
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topological and probabilistic map matching algorithms also give similar results. This suggests 

that the incorrect map-matched locations are usually associated with metric values of less than 70 

which correspond to the middle L1 output constant from the Sugeno FIS. This was chosen to 

represent an “average” level of integrity. For this example values below 70 can therefore be seen 

as having below average integrity and 70 can be taken as being an appropriate threshold value. In 

other words, if the value of the metric is below 70, then we are not confident that the map-

matched location has integrity. 

 

“place Fig. 8 about here” 

3.5 Performance Evaluation of the Integrity Method  

 

As discussed earlier, one of the applications of integrity monitoring is to deliver a warning to the 

driver that the map-matched location identified by the map matching algorithm is not reliable. 

Following the detection of the failure, the map matching algorithm aims to quickly recover from 

the failure. For our example in the previous section, it was found that an integrity value below 70 

indicates a failure for all map matching algorithms.  

 

This section describes the performance of the integrity method developed in section 3.4. This is 

accomplished using a new dataset of GPS carrier-phase observables which has not been used to 

determine the criteria for the integrity method. This new dataset was obtained from a field 

campaign using the same test vehicle described in section 3.4.1 in the West of London (near 

Reading) on the 18 August 2005. The nearest Ordnance Survey (OS) active station is AMER 

(located in Amersham). The raw data for this station is available at a 30 second sampling interval. 

This makes it difficult to use this data for the carrier-phase processing.  
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A reference station (R) was therefore created at Silwood Park near Reading (see Figure 9) in 

order to obtain continuous raw data at one second intervals. A Leica SR9500 geodetic base station 

GPS receiver was used to record the data at the reference station. Another Leica SR9500 geodetic 

receiver was used to collect GPS carrier phase data when the vehicle was travelling on the test 

route shown in Figure 9 for about an hour. The test route is within 15km of the reference station 

meaning that the length of the baseline is always less than 15km. All available datasets from the 

two receivers were then processed in a kinematic post-processing mode using the Leica SkiPro 

package. The satellite positions were computed using precise ephemeredes. Both fixed and float 

solutions were obtained but only fixed solutions (840 epochs) were used in this analysis.  

 

The navigation data from GPS/DR and the digital map data from a map of scale 1:2500 were used 

to implement the fuzzy logic map matching algorithm which was used to measure the 

performance of the integrity method. 

 

For each of the map-matched locations obtained from the fuzzy logic map matching algorithm, 

the input variables kσ, ΔD and ΔH were calculated as inputs to the Sugeno FIS that derives the 

integrity measure. Although σ, ΔD and ΔH were obtained from the observed data, k was 

estimated from equations (9) or (10). In order to examine whether the coefficients in these 

equations were trustworthy, equation (8) was re-estimated using the new dataset described above. 

It was found that the newly estimated coefficients (β=1.41 and θ =0.052) fell within the 

confidence limits shown in Table 1. Therefore, equations (9) and (10) were directly used to 

estimate k. The output of the FIS was also calculated when k was obtained from β=1.41 and θ 

=0.052. The means of these two outputs were not found to be statistically different. 

 

“place Fig. 9 about here” 
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In order to assess the performance of the integrity method for the fuzzy logic map matching 

algorithm, the step-by-step procedure presented in section 3.4 was implemented. The total 

number of valid observations was 840 (ambiguity fixed solutions only), the threshold to 

determine the parameters representing the statistical performance of integrity was taken as 70. 

Therefore, the total number of false alarms was found to be nine, and the total number of missed 

detections was found to be six. This gives a FAR of 0.011, a MDR of 0.007, and an OCDR of 

0.982. Thus, the integrity method is capable of providing a valid warning to the driver 98.2% of 

the time when the fuzzy logic map matching algorithm is used. After detecting each failure mode 

(i.e., when the integrity value falls below 70), the map matching algorithm goes back to the MPJ 

(in the case of probabilistic map matching algorithm) or the SMP-junction (in the case of fuzzy 

logic map matching algorithm) to acquire a correct fix.  

 

Although the integrity value for an average output of the FIS is 70, it is possible that selection of 

different thresholds could affect the performance of the integrity method. It is envisaged that 

higher number of false alarms is associated with higher thresholds and vice versa. On the other 

hand, higher missed detections is related to lower thresholds and vice versa. Figure 10 confirms 

the above assertion for the fuzzy logic map matching algorithm when the navigation data is 

obtained from GPS/DR and the digital map data is obtained from a map of scale 1:2500. The 

number of false alarms increases rapidly when the thresholds are higher than 70 and for these 

thresholds, the number of missed detections is small.  

 

“place Fig. 10 about here” 

Figure 11 shows how the selection of threshold affects the overall performance of the integrity 

method. OCDR (%) increases with an increase in threshold level. This is because the missed 

detections decrease. The OCDR is significantly reduced when the thresholds are above 70. This is 
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because the false alarms increase. The optimal performance of the integrity method is associated 

with the threshold value of 70, which is based on the average L4 from the Sugeno FIS.   

“place Fig. 11 about here” 

3.6 Sensitivity Analysis 

 

The performance of the integrity method for different map matching algorithms using inputs from 

various navigation sensors and digital maps is described in this section.  Two types of navigation 

systems (GPS and GPS/DR) and three types of digital maps of different map scales (1:1250, 

1:2500 and 1:50000) are taken as inputs to the map matching algorithms in order to assess the 

integrity measure derived in the previous section. A total of 18 analyses (2 navigation systems, 3 

digital maps and 3 map matching algorithms) were carried out using the dataset described in the 

previous section.  The results are shown in Table 4.  

“place Table 4 about here” 

If the integrity associated with a map-matched location falls below the threshold of 70, the 

algorithm gives a warning to the driver and the map matching algorithm re-identifies the vehicle 

location. The MDR ranges between 0.7% and 8.5%. Better map matching algorithms 

(probabilistic and fuzzy logic) increase OCDR. No major differences in FAR, MDR, and OCDR 

between the probabilistic and the fuzzy logic map matching algorithms is found. The highest 

OCDR is found to be 98.2% when the fuzzy logic map matching algorithm was employed using 

the navigation data from GPS/DR and the map data from the map of scale 1:2500. The lowest 

OCDR of 84.2% is achieved with the topological map matching algorithm when the navigation 

data is from GPS/DR and the map data is from a map of scale 1:50000.   

 

Due to frequent satellite loss-of-lock in built up areas, an effort to obtain the true vehicle position 

using GPS carrier phase data was unsuccessful within dense urban areas. As a result, the 

determination of 2-D horizontal accuracy together with the cross-track and along-track errors 
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offered by the map matching algorithms could not be estimated due to the lack of true vehicle 

positioning information. Thus, it was also not possible to evaluate the performance of the 

integrity method in an urban area with a more complex road network. The higher accuracy GPS 

carrier phase observations coupled with a high-grade inertial navigation system (INS) will 

potentially facilitate the measurement of reference (true) positioning data in urban areas.  

 

4. CONCLUSIONS 

 

A generic method for the assessment of integrity (level of confidence) of a map matching 

algorithm has been developed in this study. This is achieved by formulating a metric between 0 to 

100 where ‘0’ means the map-matched location has no integrity and ‘100’ means the location has 

a high level of integrity. The metric which represents the integrity of the map-matched locations 

is determined based on various error sources associated with the position fixes and map data 

using a fuzzy logic technique. A threshold level is derived, which is essential to determine the 

statistical performance of the integrity measure and to provide a warning to the driver regarding 

any erroneous location estimation. The information on incorrect map-matched locations can be 

presented to the driver by an audible announcement within a specified Time to Alarm (TTA). 

TTA can depend on safety requirements, network geometry, and speed, among other 

factors.  During this period, the driver may depend on other sources of location information (i.e., 

pre-trip guidance). The integrity method developed in this study is generic and transferable and 

hence is applicable to any map matching algorithms. The method has been tested in this study 

using three different map matching algorithms of varying complexity. The results have been 

validated using high precision GPS carrier phase observables.  
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There is always a certain level of integrity risk associated with a threshold. The risk can be seen 

as representing the acceptable trade-off between the probabilities of missed detections and false 

alarms. Some ITS services, such as emergency services, route guidance, bus priority at signalised 

junctions require a low level of integrity risk and hence the threshold should be increased (e.g., 

>70). Integrity risk may not be less critical for some services. In these cases the threshold for the 

integrity measure could perhaps be decreased (i.e., <70).  

 

The developed integrity method was validated using real-world field data collected from a 

suburban area in London. Due to inherent problems associated with GPS signal masking and 

multipath error in dense urban areas, it was not possible to obtain the true vehicle positions from 

the GPS carrier phase observations in central London.  Therefore, the performance offered by the 

developed integrity method could not be estimated under dense urban conditions. However, a 

tightly coupled integrated navigation system employing GPS and a high-grade Inertial Navigation 

System (INS) may be used to obtain true vehicle trajectories in urban areas at the centimetre 

level.  

 

Not surprisingly, it has been found that the performance of the integrity method developed in this 

study largely depends on the type of map matching algorithm. The results suggest that while the 

OCDR value is quite high for all the map matching algorithms tested, the fuzzy logic map 

matching algorithm has the highest potential to provide valid warnings to the driver.  

 

It has also been found that the performance of the integrity method also varies based on the type 

of input data used for implementing the map matching algorithm. The results indicate that the 

OCDR of a specific map matching algorithm largely depends on the type of digital road network 

map used in implementing the algorithm. However, the type of navigation system has very little 

effect on the integrity. This is because the test data used were collected from a suburban area 
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where the performance of a stand-alone GPS is quite similar to that of a GPS/DR.  These results 

are not surprising, as the analysis in Quddus et al. (2005) found that the fuzzy-logic algorithm 

performed best with the same 1:2500 scale map that provided the best integrity performance in 

this analysis and that the sensor type made little difference. 

 

This paper describes a simple empirical method to derive the integrity of a map matching 

algorithm. Although the performance of the integrity method developed in this study is quite 

robust for the test route used, it is essential to investigate further the performance of the integrity 

method with other test routes, especially in urban areas. An alternative to the empirical approach 

would be to consider more rigorous statistical approaches similar to that used in autonomous 

integrity monitoring systems such as Receiver Autonomous Integrity Monitoring (RAIM) which 

would be based on consistency checking and redundancy measurements (outlier detection 

capability) within a sensors/data integration architecture, but would need to consider the quality 

of the digital road network data.  
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Table 1 

Parameters Coefficients t-statistics p-value 95% confidence intervals
Lower limit Upper limit 

Error sigma (β) 1.3295 21.14 0.00 1.205 1.454 
Dummy variable (θ) 0.0706 6.20 0.00 0.048 0.093 
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Table 2 

The number of lanes The maximum deviation ( centrelineRΔ ), m 

5 7  
4 5.25  
3 3.5  
2 1.75  
1 0 
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Table 3 

R1: if kσ  is high and DΔ is positive and HΔ is positive then the integrity associated with map-

matched location (L1) is very low (Z1) 

R2: if kσ  is high and DΔ is positive and HΔ is negative then the L1 is low (Z2) 

R3: if kσ  is high and DΔ is negative and HΔ is positive then the L1 is low (Z2) 

R4: if kσ  is high and DΔ is negative and HΔ is negative then the L1 is average (Z3) 

R5: if kσ  is medium and DΔ is positive  and HΔ is positive then the L1 is low (Z2) 

R6: if kσ  is medium and DΔ is positive and HΔ is negative then the L1 is average (Z3) 

R7: if kσ  is medium and DΔ is negative and HΔ is positive then the L1 is average (Z3) 

R8: if kσ  is medium and DΔ is negative and HΔ is negative then the L1 is high (Z4) 

R9: if kσ  is small and DΔ is positive and HΔ is positive then the L1 is average (Z3) 

R10: if kσ  is small and DΔ is positive and HΔ is negative then the L1 is high (Z4) 

R11: if kσ  is small and DΔ is negative and HΔ is positive then the L1 is high (Z3) 

R12: if kσ  is small and DΔ is negative and HΔ is negative then the L1 is very high (Z5) 
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Table 4 
Map 

Matching 
Algorithms 

Positioning 
Systems 

Map 
Scale  

FAR 
 (%) 

MDR 
(%) 

OCDR 
(%) 

Topological 

GPS 
1:1250 5.6 3.5 91.0 
1:2500 5.8 3.0 91.2 

1:50000 9.8 7.9 82.4 

GPS/DR 
1:1250 5.7 3.6 90.7 
1:2500 6.0 3.0 91.1 

1:50000 10.2 8.5 81.3 

Probabilistic 

GPS 
1:1250 1.5 1.0 97.5 
1:2500 1.3 1.2 97.5 

1:50000 3.1 4.3 92.6 

GPS/DR 
1:1250 1.4 1.0 97.6 
1:2500 1.4 1.1 97.5 

1:50000 3.5 3.6 93.0 

Fuzzy Logic  

GPS 
1:1250 1.3 1.0 97.7 
1:2500 1.3 0.7 98.0 

1:50000 2.5 3.0 94.5 

GPS/DR 
1:1250 1.2 0.7 98.1 
1:2500 1.1 0.7 98.2 

1:50000 3.0 2.6 94.4 
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