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Abstract. In this paper sufficient conditions for the boundedness, asymptotic
properties and exponential decay are first obtained for solutions of linear systems of
integral inequalities with infinite delay. Then nonlinear integro-differential equations are
reduced to delay integral inequalities by the variation of parameter formula, and some
criteria are given for asymptotic stability, uniformly asymptotic stability and exponential
asymptotic stability. The results obtained here are illustrated by examples which have
been particularly difficult to treat by means of the standard Lyapunov theory.

1. Introduction. This paper is concerned with asymptotic behavior and stability
of solutions of the integro-differential equation

(1) x{t) = A{t)x{t) + flU x(rΛtm + <?[*, s,f
where Λ(t) is a continuous nxn matrix on [0, oo), r(t) < r x(ί), r2{t) < t and r(ί)-> oo as ί-> oo.

In this discussion, Rn denotes the ^-dimensional Euclidean space, R + = [0, oo) and
C[X, Y~\ the class of continuous mappings from the topological space X to the topologi-
cal space Y. C=C([α, 0], Rn), in which oc<t could be — oo. For φeC we define
||φ| |α = supα<u<ί|φ(M)|, where | | is a norm in Rn.

It is assumed that feC[R+ x C, iT] and GeC[R+ xRxC, Λ"]. For any to>0
and any φeC, a solution of (1) is a function x: R-+Rn satisfying (1) for t>tQ and that
x(t) = φ(t) for — co<t<t0. Throughout this paper we always assume that (1) has a
continuous solution denoted by x(ί, ί0, φ) or simply x(t) if no confusion should arise.

We refer the reader to [1] or [6] for the definitions of the terms we use on stability.
We always assume that /(ί, 0) = G(t, s, 0) = 0 in our discussion of stability.

If r{t) = t in (1), then (1) becomes a familiar integro-differential equation investigated
extensively by a number of authors (see Burton [1], Hara, Yoneyama and Itoh [6],
Kato [8] and Murakami [10] and their bibliographies). To avoid difficulty in
constructing the Lyapunov functional, Gopalsamy [5] dealt with the systems of the
type (1) with r^ή^t-r (r is a constant) and r2(t) = t using the inequality technique,
while Hara, Yoneyama and Itoh [6] dealt with the case with r2(t) = t and f = 0 using
the "variation of parameters" formula. Some "easily verifiable" sufficient conditions
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were given by [5], [6] for the asymptotic stability (AS), uniform asymptotic stability

(USA) and exponential asymptotic stability (EAS) of the zero solution of (1). In this

paper the asymptotic properties of solutions of delay integral inequalities are first

discussed. Then, we obtain some generalizations of the results in [5], [6] based on the

inequalities. The criteria obtained are effective for the UAS and EAS of linear equations

with both unbounded coefficients and infinite delay. The results are illustrated by

examples which have been particularly difficult to treat by means of the standard

Lyapunov theory.

ACKNOWLEDGEMENT. The author would like to thank the referee for his careful

reading of this paper and making a number of helpful suggestions.

2. Delay integral inequalities.

DEFINITION 1. /(£, s)eUCt means that feC\_R+xR, R+~\ and that for any given

α and any ε > 0 there exist positive numbers 2?, T and A satisfying

(2) f(t,s)ds<B, f(t,s)ds<ε, \/t>A.
J a J a

Especially, fe UCt if /(ί, s) = f{t-s) and J * f(u)du<oo.

THEOREM 1. Let j ^ e C ^ , R+~\be a solution of the delay integral inequality

(3)

ψijit, u) c^u, v)\\yjv\\sdvdu \ + glU

( 4 ) yi^Kφit), V / e ( - o o , / 0 ] , i = l , . . . , / w ,

where atJ(t)9 hi(t)eC(R+, R+\ gt(t, to)eClR+xR+, R+l φ £ ( ί)eC[(-oo, ί 0 ] , R+l to>

τeR + , - o o < α < α f < 0 (/= 1, 2, 3), 11̂ 115 = sup s<u<J yj(u)\, s = r(t)<t and r(t)^>oo as

ί—•oo. Assume that the following conditions are satisfied:

(HI) gi(t9t0)<b = b(t0) (W>/0), MO + ftMoWiίίόHO as ί->oo, b^u), ctJ(t9u)9

Ψij(t, u) e UCt, and there are constants π^ > 0 such thai

(5) bij(t9 u)du + ψυ(t, u) c y(II, v)dvdu < πυ V/ > τ .
J Oil J O.2 •/Λ3

(H2) The spectral radius p(Π) of the matrix Π = (πij) is less than one. Then

(i) yi(t)->0 as /->oo.

(ii) When λt(ί) = O, for any N>0 there are constants δ = δ(to)>0 and wt>0 such

that the solution y^t) of (3) with the initial condition (4) satisfies

(6) yi(t)<wr'N, W>/0, VφeC, \\φ\\a<δ.
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Furthermore, if b is independent of t0, so is δ in (6); and if t — r(t)<r ( r>0 constant) and

Qi(t + t0, to)->0 as /->oo uniformly with respect to t0, then ||</>||α<<5 yields that yi(t)->0

as ί->oo uniformly, that is, for any ε>0, there is a positive number T, independent of t0,

such that

(7) yi(t)<s, W>/0 + 7\ \\φL<δ, to>τ.

PROOF, (i) Applying [9, Theorem 9.16] and using p(Π)< 1, we can find positive

numbers wt such that

(8) ^Σ^-V1-
7 = 1

We first show that yt(t) is bounded. From h^ή + g^t, ίoW^o)-*^ there is a 7\ >0 such

that Wihiiή + Wigiit, to)φi(to)<{X — Λ^β for t>to-\-T1. By the continuity of y^t), there

exists 7V>max{l, w£||φ||α} such that y^ήKw^N for all te[μ, to + T{\. We now prove

that

(9) yi{t)<wrίN<msix{wr1N} = Ω, We[α, oo).
i

Assume, on the contrary, there are c> t0 + T1 and some / such that

(10) Wiyi(c) = N, Wjyj(t)<N, V ί G ( - α ) , ^ ] , j=\,..

By (3) and (10) we get

(11) w^c^wAM + W; £ \aij(c)w71N+ b^c^w^
7=1 I J α i

+ ψijic, u) Cij(u, v)wj ιNdυdu i + Wig^
J (X.2 VOLT, J

which contradicts the equality in (10). So (9) is true.

Next we will show that for any φeC, l im^^ yt{t, t0, φ) = 0. For any ε>0, let

^ = εmin/{wι }(l—ZlJ^max^wJ, Δ=maxi{Ai}. From λf(ί) + 0ifo to)φ]{to)->0 and bφ

c φ φij E UCt, there exist positive numbers R and A = A(t0) > 7\ such that for all / > t0 + A

(12) Ai(ί) + ̂ ί o ) 0 i ( ί o ) < γ s Ψij(t,u)du<R, Ω\ cij(u,v)dv<R,

rt-A o rt-A o rt-A β

Ω btjbύiduz^f-, Φij{t,u)du<-^, Ω\ Cij(t,v)dv<-?—
J β l 3 m JX2 6Rm Ja3 6Rm

Then from (9) and (12), we have
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(13) {bι,(t,u)\\yJa\\,duU\'
J \Jαi Jt-A

<Ω
rt-A rt rt

btJ(t9 u)du+ btj(t9 u)\\yju\\sdu< btj(t9 u)\\yju

J α i Jt-A Jt-A 3m

ί*t Γu Γt-A Γu

(14) Φij(t,u)\ ciJ(u,v)\\yjv\\sdvdu=\ ψtj(t,u)\ cy(«, v)\\yjv\\sdvdu

+ Ψtj{t> w)( + W M > v)\\yjv\\sdvdu
Jt-A \JΛ3 JU-AJ

< φ^t, u) Cij(u, v)Ωdvdu+ φij(t, u) co(w, v)Ωdvdu
J <X2 J &3 Jt — A J <X3

4- φij(t, u) cijiu, υ) \\yjv || s dvdu
Jt-A Ju-A

rt ru o
< ψyit, u) c^u, i7)||^JlέfoAι + — - ,

Jt-A Ju-A * m

for t>to + 2A. By (3), (13), (14) and the first inequality in (12) it follows that

(15) yi(t)< £ Uy(ί) | |^ | | ,+ \ btJ(t9 i ι) | |^ | | ,Λ
i = i L Jt-A

+ Γ Ψij(t9u)(U c^vnyJs
Jt-A Ju-A

From s = r(t)-+Go (ί^oo), there must be tx >t0 such that

(16) Λ(t) = min{r(t\t-A}>t0,

I n t h e s a m e w a y , t h e r e e x i s t t1<t2<" m <tk<tk + ί<- - s u c h t h a t

( 1 7 ) Λ(ή>tk, Vt>tk+ί, fc=l,2,....

From the boundedness of j {(ί), we can let

(18) »ίk = max| sup
i (th<θ< oo

For a given A:, if

(19)

then by (15)
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(20)
i

If (19) is not true, by (15) there is a T > tk such that

(21)
ί I ;=iL JT-A

Jί-^ Ju-A J J

Noting that ηk>ηk + 1 > 0 for all A: = 0, 1, . . . , we also see that

(22) {}3 /

Let jS = j8maxί{w/}. From the definition of /?,

(23)

Thus,

(24)

Since zl < 1, there is an integer p such that

Thus

(25) η

Taking Γ=3pΛ, we get

(26) sup {Wiy^KWiS or ^.(ί)<ε, Vt>to+T,
θ

which proves l i m ^ ^ ^ ( 0 = 0.

(ii) From (8) and Λf(ί) = 0, for any 7V>0 we may take

(27) 5
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When ||φ||α<(5, (6) may be proved in a fashion completely analogous to that of (9).

Finally, we prove that (7) is true. Since g^t, t0) is uniformly bounded, gi(t + t0, to)^0

as ί-»oo uniformly with respect t0, and since Ω defined through (9) corresponding to

N in (6) is independent of t0, we can find a positive number A>r(>t — r(ή), independent

of t0, such that all the inequalities in (12) hold. Then tk in (17) can be given by

(28) tk =

Using techniques similar to that before and taking T=3pA, independent of t0, we have

(29) Λ(0<ε, W > ί o + 7 \

The proof of this theorem is complete.

REMARK 1. If (3) holds under the condition yι(t)<δ for some δ, then (6) is true

for any 0<7V<<^mini{wI}, provided δ is defined by (27).

THEOREM 2. Let yt e C[R, R+~] (i= 1,..., m) and

Σ jfly(ί)II^L+ Γ Ψtjit, u)\\yju\\
J=i t J α i

(30) yi(t)< Σ jfly(ί)II^L+ Γ Ψtjit, u)\\yju\\sdu
t J

[ ξtJ(t9u)
<X2 •

where αf e (— oo, 0] (/ = 1, 2, 3), s = t — r, r, btj > 0, δj > 0 are constants, a^t), ψij(t, u),

ξij(t9 u\ ζij(t, u) are continuous for —co<u<t<cc.

Suppose there are nonnegative numbers μtj and a positive number σ such that

(31) atJ(t)+ Γ φu(t9 tήe«t-*du+ [' £v(ί, u) f" ζ y (
Jαi Jα2 Jot3

α«ί/ //ιe spectral radius of the matrix (μo ) satisfies

(32) P ( μ y ) < l .

w a constant /l>0 and for every N>0 there exist positive numbers wt and
1Λ }̂ such that for i= 1,..., m,

(33) w Λ . ( 0 < ^ - λ ( ί - ί o ) = z(ί), V/>/0, \\ΦL<δ.

PROOF. From p(μ l 7)<l, for any given r there are w f>0 and sufficiently small

positive number Λ<min{σ, δt} such that

(34) Σ^ V^1-

For any given 7V>0, there is a sufficiently small δ>0 such that
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m

(35)
7 = 1

If (33) is not the case, there is a number c> t0 and some i such that

(36) wiyi{c) = z{c), Wjyj(t)<z(t), We( — OO, C] , y = 1, . . . , m .

By (30), (36) and (33), when ||0||β<<5 we have

m C Γc

(37) wy^c) < wt Σ ) aij(c)wi1Ne~~A(c~to)eλr + ψij(c, u)wj xNe~ λ(u ~to)eλrdι
j — i L J on

[C Γ" - 1 -λ(v-to) λr

L 2

 lJ ' jΛ3

 lJ ' J l3

« f _ Γ fc

<7Ve ( c ίo)Wj 2^ <WJ e \ aij(c)+ Φu(c, u)eλ(c u)du

j=Λ L J α i

Γ c Γ" Ί 1
+ ^ ;(c, w) ζii(u,v)eic v)dvdu\ + buδlN>

Jα2 Jα3 J J

< ΛΓzlf(/ί)β ~ A ( c " ί o ) < Ne- A ( c " ί o ) = z{c),

which is a contradiction. Theorem is now proved.

3. Stability of integro-differential equation. To derive conditions for the stability
of the systems with large dimensionality, let us assume that the system (1) can be
decomposed into m subsystems described by the equations

(38) xt(t) = At(tMt) + m *('))+ <?,(t, s, x(r2(s)))ds,G/(ί,s,

where x,eR", Σ7=i »ί = «. l̂U. ^ ))=Σ7=
We make the following assumptions

11 Gt(t, u, x(r2(u)))\ < Σ J = 1 [rfij

where b(ff(t)9 d
(V(t)eCtR + , R + ] , c^(ί, M ) G C [ K + X R, K + ] (fc= 1, 2), °(ι;)/ι;->0 as i -^O.

Let Φι(t, t0) be a fundamental matrix [7, p. 82] of the linear equation xf(0 =
and assume that

11 Φ^ί, u) I b\?(u) E £/Cf, cg>(ί, u) G ί/C, (A: = 1, 2) .

THEOREM 3. Let the assumptions (A) and (B) Ao/d ίmd suppose there are non-
negative numbers πty (k=\, 2) such that for any t>τeR+
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(39) Γ I ΦAt, u)\lb$\u)+d§\u) [cf>(u, v)dv-]du<πt> .
Jfo Jα

If the spectral radius p(/7(1)) of the matrix Π^ = (π{$) is less than one, then the following
hold:

( i ) °( ) = 0 and γto | Φf(ί, u)\giμ)du^0 (/->oo) imply that

(40) \Xi{t,tθ9φ)\^09 VφeC.

In the following (ii) and (iii) we let gi(t) = 0 so that x = 0 is a solution of (38) and is
called the zero solution.

(ii) The zero solution is AS.
(iii) The zero solution is UAS if | Φf(f + ί0, £0)|-•() as t->oo uniformly in to>τεR+

and there are r>0 and b>0 such that t — r(t)<r (for any t>τ) and \Φi(t,u)\<b for
τ<u<t<oo.

(iv) If in (ii) and (iii) ° ( ) = 0 and (A) holds for all xeRn, the zero solution is globally

AS and globally UAS, respectively.

PROOF. By the assumptions (A), (B) and the variation of parameters formula, we
have

(41) l*i«l<ΓlΦi(ί,w)lJΣ ίb\i
Jίo U = l

Γu m

+ Σ&W
J α J = l

Γ Φίt+ J ί 0

 φfί'M 9iu Φi(ί,ίo)IIΨι(ίo)l

Under the conditions of (i), in (5) π i J = π//) and p(π^j})< 1. So (i) holds by Theorem 1.
We now prove (ii), (iii). Since p(Π(1)) < 1, there is a positive number ε « 1 such that

(42) p(77(1) + έ/7 ( 2 ))<l

by the property that the spectral radius of a matrix vary continuously as the elements
of the matrix vary continuously.

For the above ε, there exists <5>0 such that | x i f | s < δ implies o(| |x i i | | s)<
By using (41) and g£t) = O, we have

c\?(u, υ)-]\\xjv\\sdv}du + \ Φ,(ί, ί0)!I Φfr0)\

as long as \xi(s)\<δ for all se(— oo, f\.
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By (39) and (43), in (5) we may take π y = π| j ) + επj?). Thus (42) implies that p ( π y ) < 1

under the condition |jcf(ί)|<<5. By means of (ii) in Theorem 1 and Remark 1, for the

above <5, there exists a positive number η<δ such that \xi(t)\<δ (for any teR) as

||(/>||α<^. In (ii) we have the stability by taking an arbitrary small N in (6). In (iii) the

uniform stability is implied by (27) and the uniform boundedness of Φ, (ί, ί0), which

together with the other conditions assure that x/(i)->O as t-*co uniformly by the last

conclusion of Theorem 1.

Under the assumptions of (iv), the δ in (6) may be taken as δ = Nτnini{(l—Ai)/wib9

w^1} (see (27)), where b is an upper bound of | Φt(ί, ί o) | . Applying Theorem 1, we get

the global AS (or UAS) by taking an arbitrary large N so that the δ may be arbitrarily

large. The proof is now complete.

COROLLARY 1. If the assumption (A) holds and (B) is replaced by

U f r , φ,u)eUCt

) ( * = 1,2),

where af(M)>0 satisfies γt_τθii{u)du zfcoo in t>τ, that is,

P
0Li(u)du

Jt-T

P
(44) 0Li(u)du^>oo as T-^ao uniformly in t>τ ,

J
and if the spectral radius p{Mi{ά^) + b^)c^))}<\, in which c\j]>γac$Xu s)ds for all

t>τeR+, then all the conclusions of Theorem 3 are true under the conditions except the

uniform boundedness of Φf(ί, u) in (iii) (which is included in (B')).

PROOF. From the assumption (B'),

(45) Γ I Φt(t, u) \bW(u)du < M, Γ exp j - Γ φ)dvlά^ujdu
J to Jto I Ju )

Ί? expί - J ' <φ)dλ I' < A/,βg>,

which implies that |Φj(ί, u)\b'ff(u)e UCt by ^^jOL^ujdu^oo in ί>τ. Using the same

method, we can get

(46) I I Φt{t, u
Jto

and I Φί(ί, II) l^ί i i )e ί/Cr Hence π(ff in (39) may be M^άff + bffcff) and p(π}j>)<l.

Thus by Theorem 3 the proof is complete.

EXAMPLE 1. Consider the scalar equation

(47) x(t) = - a(t)x(t) + b(t)x(r(ή) + c(t) Γ k(t, s)x(s)ds ,
Jo
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where α(ί)>0, r(t)<t,b(t), c(t) and /c(ί, s) are continuous functions and r(ί)-> oo as f->oo.

Let ί+=max{/, 0}. Suppose JJ_r^(w)^w=$oo in ί > 0 , | fo(ί)| <foα(ί), c(ί)<cα(ί) (a, c>0)

and

' Γ TU\k(t,.
Jo

(48) sup I I k(t,s) \ds-+0 as Γ->oo ,
ί > 0

(49) sup< b + c
ί > 0 I

Then by Corollary 1 the zero solution of (47) is globally AS. Furthermore, if t — r(t) is

bounded, the zero solution is globally UAS.

REMARK 2. Example 1 is notable because a(t\ b(t) and c(t) may be unbounded

and can vanish over the time interval sets with infinite measure; yet we conclude AS

(or UAS if t — r(t) is bounded). Ifb(t) = 0, c(t) = 1 and j ^ fe(ί, s)ds < ca(t) (c < 1), an analogue

of Theorem 8 (II) in [8] can be obtained by Corollary 1.

COROLLARY 2. Suppose that there exist numbers M t >0, (5f>0, ^ ί 7 > 0 and con-

tinuous functions Cij(v) such that

(50)
m

(51) | f i M ) ) l < Σ y ^ l , + 9 i W - gιeC(R+,R+),

(52) |GXi,«,x(r2(u)))|<£c0(i-u)||x,.Js) VxeΛ".

(53) p(πh) = p L y + f °° cij(v)dv)Milδi 1 < 1 ,

then:

(i) All solutions o/(38) approach zero as /-> oo ifgi(t) isbounded and j ^ gi(v)dv < oo.

(ii) ΓAe zera solution of (38) w globally UAS */ ^f(ί) = 0 α«ί/ ί - r(ί) < r.

PROOF. From the conditions (50), (51) and (52), the assumptions (A) and (B') are

satisfied, and

(54) 4 ) ^ ^ 1 )

Hence by (53) p{M i(αί)) + *l) )c;j ))}<l and (ii) holds by Corollary 1.

In the following we will show that under the assumptions of (i)
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ΓlΦί(ί,«(55) I \Φi{Uu)\gi{ύ)du^ .

Let gi(t)<A, for any ε>0 there is a constant Γ>0 such that

Γt-T Γt-T ΛS

(56) \Φi{t,u)\du<\ Mte-w-^du^—- e~
Jto Jto δi

and for ί-T»\, γt_τgi{v)dυ<εl2Mi. Thus

(57) Γ I Φt(t9 u) I gt(u)du = { Γ * + ί' j | Φt(t, u) \ 9i{u
J to ^ J to J t— TJ

β i (

t-T

This proves that (55) holds and (i) is now proved.

REMARK 3. The spectral radius is bounded by all norms. In particular, taking

\\(atj)\\ =max / ΣΓ=i l*yl> we have in (53)

(58)

Therefore,

(59)

P(πo)< ll(*o

if

<δJMi9

which shows that Corollary 2 includes Theorem 2.1 of Gopalsamy [5] as a spe-

cial case when xteR, Ai(t) = aii9 Fi{Ux{')) = Yj

rJ=ljΦiaijxj{t-πij\ Gi(t,s,x(r2(s))) =

ΣJ=ιkij(t — s)Xj(s) with J^j|fci7..(s)|ίfc<oo (which is not necessary in Corollary 2).

REMARK 4. When m= 1 (i.e. xί eRn), F1=0, the condition (53) becomes

(60) ί"
Jo

Clx(Ό)dΌ<-

which is the condition (5.2) of Theorem 5.1 in Hara et al. [6].

To drive conditions for EAS, we now make the following assumptions:

UFt(t,x( ))\^Σ7=db\j\t)\\xj,L + b^\t)o(\\χJt\\^, s = t-r

11 G,(t, u, x(r2(u)))\<Σ%! lc\?(t, u)\\xju\\s+cW(t)°(||xJUL)] ,

(B") |Φ ί (ί,ί 0 ) |<M I e-'M'-"') (M;>0, δ^O are constants).

THEOREM 4. Suppose (A') α«ί/ (B") hold. Suppose that there are nonnegative
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numbers βff, γW (k= 1, 2) and a positive number σ such that

(61) P I ΦtJ(t9 u)\bW(u)e<*-*du<β% ,
Jto

I I Φ0(ί, iι)11 cg>(n, φ^-^dwiii^yiy , Vt>τeR+ .
Jίo Jα

(62)

Suppose further that the spectral radius

(63)

Γλe/i ίλe zero solution 0/(38) w EAS. Furthermore, if°(\\xjt\\s) = 0 and (A') holds for all

XER", the zero solution is globally EAS.

PROOF. By (63) there exists a sufficiently small positive number δ such that

(64) p[βψ + y<j> + δ(β\f + γ (?»)] = p{μij) < 1 .

For the above δ there exists a positive number <5<£ such that | |x ί f | | s <δ" implies

° (II xit II s) < <5 II X/f II s By t r i e assumptions (A'), (B"), and imitating the proof of (43), we have

(65) \χi(t)\<\\ΦLMie-δdt-to)+ Σ Γiφ f fe^l ίcf t ί i^+^ί^
J = l J ί o I

Γ
Jα

\?(u, v)-]\\xiv\\sdv]du .

Hence we can use Theorem 2 to prove that the zero solution of (38) is EAS.

When OGIXJJJΞΞO, (63) implies that there exist w f >0 and λ>0 such that

(66) Σ H γ H 7 W + v ! ] V r < i .

7 = 1

Thus for any δ>0, there exists N(δ)»\ such that

(67) f w.w^lβ^

Letting μij = β\]) + y\]) and bi} = Mh (35) holds by (67). Following the remainder of the

proof of Theorem 2, the zero solution is globally EAS. The proof is now complete.

REMARK 5. Theorem 4 includes Theorem 6.1 of Hara et al. [6] as a special case

when m=\ (i.e. xιeRn\ F1 = 0 and

A
Jo M i

(68) sup c[1i(u9v)eσ{u-v)dv<-
u*° Jo

It is difficult to check the following example by (68) and the Liapunov method.
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EXAMPLE 2. Let α>0, τ>0, α>0, b, c be constants, and consider the scalar

equation

(69) x(t)= -atx(t) + btx(t -τ) + ct \
J — o

Then (A') and (B") hold, | Φ(ί, to)\ = exp{-$t

toavdv}<e-a(t-t<>) for ί o > l , and for any

positive number σ < max{α, α}

(70) f expj I -avdv\\b\ueσit-u)du< \ exp{-(β-σ) \ vdv\\b\udu<-^~,
Jίo U« J Jίo I J« J a~σ

(71) Γ expί I ~awdw\\c\u Γ e-a{u-v)eσ{t-v)dvdu< — .
Jίo U« J J-oo (α-σ)(α-σ)

(63) implies that there exists σ > 0 such that

IΛ I
(72)

a — σ (a — σ)((x — σ)

This is equivalent to

(73) M + ifi<i.
a aa

Therefore if (73) holds, then by Theorem 4, the zero solution of (69) is globally EAS.

REMARK 6. It is worth noting that in Example 2 the coefficients at, bt and ct are

unbounded and the delay is infinite. Similar examples for UAS (or AS) were given by

Burton, Casal and Somolinos [2], Burton and Hatvani [3], Busenberg and Cook [4]

and Xu [12]. However, the EAS cannot be implied by the UAS even if the equations

with infinite delay are linear and autonomous (Murakami [10]).

REMARK 7. The methods obtained can be applied to the stability analysis of

neutral functional differential equations [11].
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