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Chapter 1

Introduction

1.1 Analysis of interaction between objects and elec-

tromagnetic fields

Over the past century, electromagnetic research has developed from a branch of theoretical
physics to a full engineering discipline with a set of tools that contains exact solutions for
canonical problems, asymptotic analysis, experiments, and numerical simulations. Here,
we will focus on the interaction between electromagnetic fields and objects. In many cases,
the analysis of this interaction is part of a design process, in which we would like to find an
optimal setting for the object under study, e.g., an optimal geometry of the object or an
optimal excitation of the electromagnetic field. Before the advent of computers that are ca-
pable of handling large numerical problems, the design process was guided by experiments.
Nowadays, the general opinion is that we need numerical methods, possibly combined with
asymptotics or parameter extraction, such as reduced-order modeling [40], to simulate and
analyze the behavior of the electromagnetic field in a real-life application. The results of

these numerical studies can then be verified by a limited number of experiments.

Numerical methods can be very flexible with respect to the class of problems they solve.
However, this flexibility comes at a price, in the sense that the computation time and com-
puter resources to solve a problem with a brute-force technique may become prohibitively

large, since these numerical methods frequently give rise to large linear systems to guar-
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antee sufficient accuracy. This has caused increasing interest in iterative algorithms to
solve such large linear systems, for which the matrix-vector product can be computed ef-
ficiently, e.g., by means of a Fast Fourier Transformation or by exploiting sparsity, see,
e.g., [59, 84, 85, 86, 87]. Therefore, an important trend in computational electromagnetics
has been, and still is, to devise numerical methods for which the linear system has an

efficient matrix-vector product.

1.2 Parameter variations for design

According to “The concise Oxford dictionary” [69], engineering is the application of science
to the design, building, and use of machines, constructions, etc. Therefore, the design
process brings together science, art, and experience. A design is subject to a number of
specifications, which should be met. Basically, a design is a blueprint together with a set
of parameters, for which the proper values should be found. However, the odds of directly
finding a parameter setting such that the design matches all specifications at once are
negligible. Most design processes can be divided into three stages. In the first stage, there
are many possibilities and many proposals are acceptable. At this stage, the blueprint is
constructed and the parameters are identified. In the second stage, when several design
decisions have already been made, parameter sweeps are used to establish acceptable ranges
of the parameters. The parameter sweeps provide rough estimates for the parameter values
and for the sensitivity of the design for changes in these parameter values. In the third
stage, only small parameter changes are allowed and we have entered the fine-tuning stage

of the design process.

From the above, it is clear that the last two stages of the design procedure mainly comprise
parameter changes and the analysis of these changes with respect to the specifications. Ir-
respective of the strategy to change the parameters, the designer needs a tool to analyze
the effect of the parameter changes. This tool has to be as time-efficient as possible to
make sure that parameter studies can be performed thoroughly. An important advantage
of numerical methods is that they allow for parameter studies in a straightforward manner
by changing a number of parameter values in the input of these methods, whereas param-
eter studies in an experimental set-up are associated with the manufacturing of complete
prototypes or at least parts of them. Although the fundamental problems of a parameter

study have been overcome by resorting to numerical methods, in a real-life situation, the
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computation time usually becomes excessively long. The iterative techniques, mentioned
in Section 1.1, together with an efficient matrix-vector product can be employed to improve
efficiency. However, for parameter studies with a large amount of parameter changes, the
total computation time to analyse the design for all these parameter setting can still be
longer than desirable for practical applications. In the early stages of parameter studies,
the accuracy of the numerical method can be reduced in favor of reduced computation
time. Along similar lines, several researchers in the field have come up with methods to
further reduce the total computation time for parameter studies. As examples, we men-
tion “space mapping” [5] and “reduced-order modeling”, see e.g. [40]. Both techniques aim
at the construction of a simplified model of the subject under study, to capture its main
characteristics for a broad range of parameter values. The simplified model is constructed
by analyzing a limited number of parameter settings and perform an interpolation for in-
termediate parameter values. As an alternative for these parameter-extraction methods,
“marching on in anything” has been proposed [73, 74]. The key observation that led to
“marching on in anything” is that, in general, we expect that small parameter changes
cause small changes in the solution of the mathematical model, i.e., we have a robust
model. This robustness is used to construct an initial estimate for an iterative solution
method from solutions with preceding parameter values. Hence, “marching on in anything”

still considers the full model, instead of a model based on parameter extraction.

The second aspect that characterizes the design process is the strategy to employ the
information that results from parameter variation in such a way that proper values for the
parameters can be established. If a designer is in control of this process, it is difficult to
assess how these decisions are made. Alternatively, one could try to formulate the design
problem in terms of a mathematical optimization problem. At present, several papers have
appeared that deal with the formulation of realistic electromagnetic optimization problems
for design, see e.g. [20] and references therein. However, there are still a lot of open
questions in this field. For the solution of such optimization problems, many algorithms
are available. Some authors have opted for statistically oriented optimizers, e.g., genetic
algorithms or simulated annealing, while others base their strategy on optimization with
the aid of gradient information. Since parameter values are changed gradually in the
latter, this strategy is compatible with “marching on in anything”. A disadvantage of the
gradient-based optimizers is that they require the computation of the gradient with respect
to all relevant parameters, which implies additional computational effort. Also, gradient-
based optimizers readily end up in a local optimum, whereas statistical algorithms are less

sensitive for local optima. On the other hand, gradient-based optimizers are frequently
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much more efficient than statistically oriented optimizers.

1.3 Key ingredients for design

The construction of numerical methods to analyze objects in an electromagnetic environ-
ment requires a careful balance between factual details and realistic computer resources.
This means that we should try to judge how important these details of the real-life situ-
ation are to capture the main trends in the behavior of the object in the presence of an
electromagnetic field. If we think that a number of details are not crucial for this behavior,
we should seriously consider neglecting these details in favor of simpler approximations.
Well-known examples are the replacement of thin metallic sheets by infinitely thin perfectly
conducting surfaces or the replacement of a complicated propagation path by free space.
To study the efficiency of “marching on in anything” for parameter variations, we have
chosen to start from simple representatives of a large class of scattering problems. There-
fore, we consider three types of objects in free space to model real-life situations. The first
one is a perfectly conducting cylinder with circular cross-section to model a wire antenna.
The second one is a perfectly conducting infinitely thin flat plate, which represents a patch
antenna. The third one is an inhomogeneous dielectric object as a model for the human
body. We formulate the interaction between these objects and the electromagnetic field in
terms of integro-differential equations and we demonstrate that “marching on in anything”,

applied to these integro-differential equations, leads to efficient parameter sweeps.

Although the integro-differential equations are meant to model a physical situation, it may
happen that these equations do not admit reliable approximations. Therefore we analyze
the mapping properties of the integro-differential equations, to find possible limitations
in the model formulation. Equations that admit approximations of the solution that are
stable for increasingly finer details are known as being “well-posed”, whereas equations
that do not admit a reliable approximation of the solution are referred to as being “ill-
posed”. For the thin wire, we show that the so-called reduced-kernel integral equation is
ill-posed. As an alternative, we mention that the exact-kernel integral equation is well-
posed, although its forcing function needs to be modified to obtain an exact description of
the scattering problem. For the perfectly conducting flat plate, well-posedness has been
established in the literature, and we briefly discuss these results. Finally, we analyze the

integro-differential equation for the inhomogeneous dielectric body, and we show that it is
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well-posed, under mild conditions for the dielectric properties of the object. The analysis
also holds for the time-harmonic cases in which the object, or the background, or both
are lossless. To the best of the author’s knowledge, the latter result is not known in the

literature.

The mapping properties of the integro-differential equations should be kept in mind when
we construct a numerical method to solve these equations, since they indicate whether
we can expect a reliable approximation of the solution. The first step in the process of
constructing a numerical method is known as discretization. This results in a system of
linear equations that can be solved by numerical linear-algebra techniques, such as the
LU-decomposition, the singular-value decomposition, or the conjugate-gradient method.
The first two techniques aim at an exact construction of the solution of the linear sys-
tem, whereas the latter usually generates an approximate solution, since the algorithm
is terminated after a prescribed error criterion has been satisfied. To arrive at a linear
system with an efficient matrix-vector product, special attention is devoted to the dis-
cretization process. In particular, the choice of a uniform mesh is important, since it leads
to a matrix-vector product in the form of discrete convolutions that can be computed by
means of Fast Fourier Transformations. In this thesis, we construct numerical methods
for the wire and the flat plate. With the aid of these numerical schemes, we illustrate the
consequences of the ill-posedness of the thin-wire equation with reduced kernel and the
conditional well-posedness of the perfectly conducting flat plate. Further, we improve the
approximation of the solution of the thin-wire equation with reduced kernel by means of
regularization and filtering. After the construction of these numerical schemes, we formu-
late an equation for the derivative with respect to one of the physical parameters. This
second step is relevant for the application of gradient-based optimizers. In particular, we
derive an equation and construct a numerical scheme for the derivative with respect to the
physical parameter length of a perfectly conducting flat plate. We compare the results with
two finite-difference schemes and we demonstrate that one of the finite-difference schemes
provides accurate estimates for this derivative with respect to length. Subsequently, we
show that the application of marching on in anything renders parameter sweeps much more
efficient for our three problems. As a special case, we demonstrate the construction of a
time-domain simulation by multiple-frequency computations on a fixed mesh, to overcome
instabilities associated with a direct computation in the time domain by marching on in

time.

Finally, in this thesis, we apply gradient-based non-linear optimization techniques to the



6 Introduction

numerical methods for straight thin-wire antennas. We optimize the gain of a Yagi-Uda
antenna and the radiation pattern of an array of straight wires. For the Yagi-Uda antenna,
we compare two strategies. In the first one, we regard the set of linear equations for the
current on the wire antenna as a set of non-linear constraints for the parameters. In the
second strategy, we solve these equations for the current on the wire in an internal function.
The results indicate that the latter strategy is less demanding for the non-linear optimizer
than the first one. This points into the direction of applying marching on in anything to the

internal process of solving the linear system, to obtain a more efficient design technique.

1.4 Outline of the thesis

In Chapter 2, we formulate integro-differential equations that describe the interaction
between a perfectly conducting straight thin wire, a perfectly conducting flat plate, and a
dielectric object on the one hand, and the electromagnetic field on the other hand. The
mapping properties of these integro-differential equations are analyzed in Chapter 3, and
in Chapter 4 we discuss the construction of efficient numerical methods for the wire and
the flat plate. We formulate an integro-differential equation for the derivative with respect
to the length of the perfectly conducting flat plate and demonstrate a numerical scheme
for it in Chapter 5. In Chapter 6, we apply the marching-on-in-anything technique to the
integro-differential equations of our three types of scattering problems and we show that
this technique renders parameter sweeps much more efficient. In Chapter 7, we apply non-
linear optimization techniques to the numerical methods for straight thin-wire antennas.

Finally, our conclusions and recommendations are presented in Chapter 8.



Chapter 2

Formulations for the electromagnetic
field

To model the behavior of the electromagnetic field in the presence of objects, we need a
mathematical framework to formulate scattering problems for this field. We will consider
three types of objects for which we will formulate integro-differential equations. These
objects are a perfectly conducting straight thin wire, a perfectly conducting flat plate and
an inhomogeneous dielectric object of arbitrary geometrical shape, all embedded in free
space, together with the sources of the electromagnetic field. The thin wire is a model
for a wire antenna, the flat plate is a model for a patch antenna, and the inhomogeneous
dielectric object is a model for the human body. In all three cases, the integro-differential

equations are obtained from integral representations for the scattered electromagnetic field.

2.1 Maxwell’s equations

The behavior of electric and magnetic fields is governed by Maxwell’s equations. These
equations form a system of first-order partial differential equations, corresponding to a

series of experiments. For continuously differentiable vector-fields, Maxwell’s equations



8 Formulations for the electromagnetic field

are classically given by

Vr XH=JT+ atD, (21&)
V, x € = 9,8, (2.1b)

where r contains the space variables, H is the magnetic-field strength, J is the electric-
current, density, ¢ is the time variable, D is the electric-flux density, £ is the electric-field
strength and B is the magnetic-flux density. Maxwell’s equations are supplemented with
the law of conservation of charge, which is also known as the continuity equation for charge

density and current density, viz.
Ve T +0,0=0, (2.2)

where p is the electric-charge density. Both J and p concern the free charged particles. The
above equation indicates that a time-rate of change in the electric-charge density amounts
to an electric-current density. Further, we demand that the fields are causal in time, i.e.,
for every fixed point in space r, there is a time ¢,(7), such that the electromagnetic field
is identically zero for ¢ < ty(r) in a neighborhood of r. In particular, we assume that in
a neighborhood of our objects under consideration, the electromagnetic field is identically
zero for ¢ < 0. The conservation of charge combined with Maxwell’s equations and the

causality principle gives rise to the following set of auxiliary equations
V,-B=0, (2.3a)
V,-D=op. (2.3b)

Although Maxwell’s equations are coordinate-independent owing to the coordinate-free
definition of the curl and divergence operators, actual computations require a coordinate

system. We will use a right-handed Cartesian reference system with position vector r
T = TUp + YUy + 2U,, (2.4)

equipped with a scalar product denoted by - and a vector product denoted by x. The

length of a vector is expressed as

Ir| = vr T =22+ 2 + 22 (2.5)

To eliminate the temporal behavior of the electromagnetic fields, we apply a Laplace trans-

formation with respect to the time variable to Eq. (2.1), according to

F(s) = / F(t) exp(—st)dt, Re{s} >0, (2.6)
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assuming that F(t) is integrable with respect to t. Notice the change of notation between
time-domain vectors and Laplace-domain vectors. The corresponding inverse of the Laplace

transformation is given by

d+joo
1

d—joo

F(t) F(s)exp(st)ds = % / F(0 + jw) exp[(d + jw)t]dw, (2.7)

and 0 > 0. Time-domain quantities are inherently real-valued. Hence, the integral along

the Bromwich contour can be reduced to

_exp(d

F(t) t)Re /F(5+jw) exp(jwt)dw p . (2.8)

™

In most cases we will let the real part of the Laplace parameter s become zero, which
should be understood as

=limd+j 2.9

s =1limé + jw, (2.9)

where w > 0 is the radial frequency. Further, for 6 = 0, we define the frequency f = w/27.

After the Laplace transformation, Maxwell’s equations read

VxH=J+sD, (2.10a)
V x E=—sB, (2.10b)

supplemented with the law of conservation of charge

V-J+sp=0, (2.11)

and the auxiliary equations
V-B=0, (2.12a)
V.-D = p, (2.12b)

where we have replaced V, by V for convenience, since there is no confusion with other

coordinate systems. We will use this notation henceforth.

2.2 Boundary conditions and constitutive relations

To arrive at a system of partial differential equations with a unique solution, we must

supplement Maxwell’s equations by boundary conditions and constitutive relations, i.e.,
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relations between the field quantities. With respect to the boundary conditions, we dis-
tinguish two kinds: one kind at the interface between two media with different material
properties, also known as interface conditions, and one kind that describes the behavior of
the fields at infinity, referred to as the radiation conditions. The radiation conditions will
be discussed in Section 2.4. For the smooth interface 0D between region 1 and region 2

with normal n pointing into region 2, we have

n x (E; — E;) =0, (2.13a)
nx (Hy— H;) =Jg, (2.13b)
n-(By — B;) =0, (2.13c)
n - (Dy — Dy) = pg, (2.13d)

where the subscripts 1 and 2 indicate the limits of the fields on opposite sides of the
interface 0D in region 1 and 2, respectively, Jg is an electric surface current density
flowing along and tangential to the interface and pg is the surface charge density at the

interface. Additionally, we have the law of conservation of surface charge
vs'JS+7'L'(J2—J1):—Sp5, (214)

where V, - Jg denotes the surface divergence of the surface current density. This relation
is similar to the law of conservation of charge for volume densities. In Appendix A, the
definition of the surface divergence is given and the law of conservation of surface charge

is derived.

For the constitutive relations, the Laplace domain is particularly useful. These relations

express the influence of matter on the electromagnetic field and vice versa. In free space

we have
B = 1yH, (2.15a)
D =¢)E, (2.15b)
J =0, (2.15¢)

where g is the permeability of free space and ¢( is the permittivity of free space. In the

presence of matter, contained in a volume D, we have

B=u(H+M), (2.16a)
D =¢yFE + P, (2.16b)
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where we have introduced the polarization field P and the magnetization field M. The
vector fields J, M, and P consist of a primary part and a secondary part. The primary part
is not influenced by the electromagnetic field, i.e., it is independent of E and H, whereas
the secondary part expresses the interaction between matter and the electromagnetic field.
For linearly reacting media with time-invariant reaction, we will use the generally accepted

constitutive relations

J*=o(r, s)E, (2.17a)
M?** = xu(r,s)H, (2.17Db)
P = goxe(r, s)E, (2.17¢)

where we have indicated the secondary part of the vector fields by a superscript *¢¢. The
functions o, x,, and y. are either scalars, in the isotropic case, or tensors from C? x C? to
C, in case of anisotropy, and are known as the conductivity, the magnetic susceptibility,
and the electric susceptibility of the medium, respectively. Upon combining Eqs (2.16) and

(2.17), we arrive at

B = u(r,s)H + poMP™™, (2.18a)
D =¢(r,s)E + P'"'™, (2.18b)
J=o(r,s)E + J"™, (2.18c)

Again, the functions p and ¢ are either scalars, in the isotropic case, or tensors from C? x C3
to C, in case of anisotropy. The function p is known as the permeability of the medium
and ¢ is the permittivity of the medium. The superscripts "™ indicate primary matter

fields, which appear as impressed sources in our problems.

At the interface between two penetrable media, i.e., on both sides of the interface, p, ¢,
and o remain finite, the surface current density in (2.13) appears only as a primary field.
In case the relations (2.18) hold and the primary fields are absent, the set of boundary

conditions can be written as

n x (B, — E;) =0, ( )
nx (Hy— H;)=0, ( )
n - (ueHs — pnHy) =0, (2.19¢)
n - (2B —e1Ey) = ps, (2.19d)
n - (02Ey —o01E) = —sps. ( )
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Upon combining Eqs (2.19d) and (2.19¢), we arrive at
n - [(oy + seg)Ey — (01 + se1) Eq ] = 0. (2.20)

In case region 1 represents a perfectly electric conducting medium, which is an example of
an impenetrable medium, and region 2 is penetrable, the surface current density J ¢ will be
present in general. If there are no primary fields present in region 1, the electromagnetic
field in region 1 will vanish. In case the primary fields in both region 1 and 2 are absent,

we obtain the boundary conditions

nx By =0, (2.21a)
nx Hy,=Js, (2.21b)
n - (uHy) =0, (2.21c)
n - (2E3) = ps. (2.21d)

2.3 Energy and function spaces

Energy is one of the most fundamental concepts of physics. From a mathematical point
of view, this concept leads to the identification of function spaces, in which we would
like to find a description of the electromagnetic field. We discuss this in more detail in
Chapter 3. In the time-harmonic case, i.e., in the Laplace domain with Re{s} = 0, energy

is introduced through the complex Poynting vector S
S=ExH", (2.22)

where * indicates complex conjugation. The expression %Re{S } can be interpreted as the
time-averaged power-flux density. Upon analyzing the divergence of the Poynting vector on
a bounded domain D with sufficiently smooth boundary 0D and using Maxwell’s equations

together with Eq. (2.18), we arrive at the complex power balance

—///(E~J’5+KU-H*)dV:jw///(uH-H*—5*E*-E)dV
’ o ma s ffmrr nan

(2.23)
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where

Jo = JP™ 4 G PP (2.24a)
Ky = jwuoMP™™. (2.24b)

From now on n will denote the outward-pointing unit normal vector on 0D, unless stated

otherwise. Further, we have assumed that the conductivity o is real-valued.

The integral on the left-hand side of the power balance represents the power generated by
the primary sources J, and K,. On the right-hand side we find the harmonic variation
of the stored electromagnetic energy, which possibly involves losses, the dissipated power
corresponding to Ohm’s law, and the power radiated through the interface dD. From
the power balance we observe that, if the constitutive parameters remain finite and if the
quantities E - E* and H - H* are integrable on the domain D, the dissipated power and

the stored energy in D remain finite, thereby introducing the function space

LDy ={f|f f eL'(D)}, (2.25)

where L'(D) is the space of Lebesgue-integrable functions, and the superscript  indicates
three-dimensional vector fields. This leads to the conclusion that L?*(D)? is an appropriate

function space for E and H under finite-energy conditions. The space L?(D)? is a Hilbert

.9 = [[[ £-gav. (2.26)

1

1fll =V (£, f) = // f-fravy (2.27)

space with inner product

and norm

for all f,g € L*(D)*.

However, we can further identify the space of the electric and magnetic fields by taking
into account Maxwell’s equations, Eq. (2.10), for linearly reacting media. If we assume
that the primary fields J”*™ MP?"™ and PP™™ also belong to L*(D)?, which excludes
point sources and line sources, and that the material parameters remain bounded, then
both V x E and V x H should belong to L*(D)?. So, naturally we arrive at the following
function space for both E and H, see e.g. [35]

H(curl,D) = {f | f € L*(D)*, V x f € L*(D)*}, (2.28)
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with inner product and norm

(f:@)ens = (£,9) + (VX £,V xg), (2.29a)
Hchurl = (fa f)(:urla (229b)

for all f,g € H(curl, D).

Strictly speaking, these conclusions only apply to the time-harmonic case. However, since
the time-harmonic case is included in the Laplace domain, we will assume that the conclu-
sions from the derivation given above extend to the Laplace domain, i.e., we will assume
that the primary matter fields belong to L?(D)3. In case the Laplace transforms F'(s) and
G/(s), which correspond to real-valued time-domain quantities f(¢) and g(t), are continuous

for all s, with Re{s} > d, and square integrable on the line Re{s} = §, we have the identity

[e.o] o0

/ F(6+ jo) G (6 + jw)dw = % / F(#)g() exp(—26t)dt. (2.30)

—00 0

If we combine this equation with the power balance in the time domain for linearly reacting
media in the domain D, we arrive at the conclusion that the electromagnetic energy in D
increases at most exponentially as ¢ — oo, where the exponent is determined by 24. This
means that the time-domain energy is a slowly increasing function in time, in the sense of

the theory of tempered distributions.

At a first glance, we would expect that the continuously differentiable vector functions are
the proper candidates for E and H and one may wonder how to get from the space of
continuously differentiable vector functions to vector functions in L?(D)? or H(curl, D).
The basic idea is that the space of continuously differentiable vector functions is dense in
L?(D)? and H(curl, D) [11] and that continuously differentiable vector functions still allow
an interpretation in terms of the power balance. Therefore, using the norms of these spaces
to define the limiting process, we can interpret elements of L*(D)? and H (curl, D) as the
result of a limiting process of a sequence of continuously differentiable vector functions.
In the same way we can apply the differential operator Vx to elements in H (curl, D).
Distribution theory offers an alternative: we can define the operator V x in a distributional
sense, where we employ the duality between the space of testing functions (D) and the

space of distributions Z'(D).



2.4 Radiation and potentials 15

2.4 Radiation and potentials

One of the most striking properties of Maxwell’s equations is their linearity, i.e., the su-
perposition principle holds. This principle allows us to separate the electric and magnetic
fields with respect to their origin. We will distinguish between incident fields, originating
from a primary source in free space, and scattered fields, caused by the presence of objects

from which the incident fields scatter. Hence we write

E=E'+FE°, (2.31a)
H=H'+ H®. (2.31b)

The superscript ? indicates the incident field, whereas * indicates the scattered field. Al-
though incident fields usually originate from primary sources, we will also consider source-
free solutions of Maxwell’s equations, e.g., plane waves in case of free space. These plane

waves can also be interpreted as fields generated by sources at infinity.

Electromagnetic fields scattered by objects in free space exhibit radiation. To describe this
mathematically, we construct a model by using Maxwell’s equations, together with the
constitutive relations and boundary conditions, as discussed in the preceding sections. In
this model, certain assumptions are made, such as infinite free space, sharp corners and
edges, perfectly conducting materials, etc. This may lead to mathematical difficulties that
are not related to physical phenomena in the real world. Therefore, we aim to supplement
these models with additional criteria to prevent this type of problems. An example of such

criteria is given by the “radiation conditions”.

Upon analyzing solutions of Maxwell’s equations in the Laplace domain for a source in free
space, we are left with the problem that there are two independent candidate solutions of
the resulting equations. To describe these solutions, we have to distinguish between the
cases Re{s} > 0 and Re{s} = 0. For Re{s} = 0, the two solutions correspond to energy
moving from the source towards infinity and energy coming from infinity and moving
towards the source, for increasing time. It is clear that the second solution does not meet
the requirement of causality, since the effect of a source on a wave field travels from the
source towards the observation point. This relation between energy flow and causality is

expressed by the “radiation conditions”, which we will now introduce.

Consider a sphere of radius R. Let the boundary of the sphere be denoted by 0B. Then

the following conditions for the scattered electromagnetic field should hold uniformly with
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respect to the direction n as R — oo

|RE®|o5] < K, (2.32a)
|RH|p5| < K, (2.32b)
R[(wpom x H® + ko E®) |95] — 0, (2.32¢)
R[(kym x E® — wuoH?) |a5] — O, (2.32d)
E° H* c L} (R*? (2.32e)

where kg = w,/Eoftg. Further, f € L2 (R*)* means that, upon multiplying f by a C§° func-
tion with compact support, the resulting function must be an element of L*(R®)3. The
conditions (2.32c) and (2.32d) are known as the Silver-Miiller conditions [14]. Condi-

tion (2.32e) expresses the need for locally finite energy of the electromagnetic field.

The Silver-Miiller conditions indicate that, for w # 0 and R sufficiently large, the electro-
magnetic field becomes locally transverse with respect to the direction n, and that we can

use the approximations (indicated by =)
E* = —Zy(n x H?), (2.33a)
H® =Yy(n x E), (2.33b)
where Zy = Yy ! = \/po/e0. Taking the vector product of Eq. (2.33a) with H** and using

Eq. (2.33b) yields
S =E°x H" = Z,|H*|* n, (2.34)

which indicates that, regarding the scattered fields, the Poynting vector S is pointing
outwards for w # 0 and R sufficiently large. Hence, energy of the scattered electromagnetic

field is flowing away from the object towards infinity.

For Re{s} > 0, the two solutions are characterized by exponentially increasing and ex-
ponentially decaying electromagnetic fields when the point of observation moves from the

object towards infinity. If we consider the integrals

I, = // E° - E**dV, (2.35a)
D

I, = // H* - H*dV, (2.35b)
D

for increasing volumes D, I, and [,,, increase without bound for the exponentially increasing
solution. Therefore, this solution does not satisfy E*, H* € L*(R?)3. Hence, for Re{s} > 0,
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the first four conditions of the radiation conditions are replaced by demanding exponential
decay of the electric and magnetic field components. Alternatively, the complete set of
conditions can be replaced by

E°, H® € [*(R*)°. (2.36)
Under this condition, the solution for 6 | 0 coincides with the solution for which the

Silver-Miiller conditions hold.

For a bounded object in free space with finite constitutive parameters and a finite number of
sharp corners in these parameters, the radiation conditions ensure that Maxwell’s equations
have a unique solution. For an object consisting of a lossless medium surrounded by a
perfectly conducting shell, uniqueness cannot be proven for Re{s} = 0, unless the object
has no interior, e.g., in case of a perfectly conducting infinitely thin plate. This non-
uniqueness corresponds to an interior resonance. However, the exterior electromagnetic
field problem, i.e., the solution to Maxwell’s equations outside the perfectly conducting
object, is unique provided that the shell of the object contains a finite number of sharp
corners and edges. These uniqueness results were proven by Jones [36, Chapter 9], using
an argument introduced by Vekua [79, p. 318] and Rellich [53].

We now turn our attention to solving Maxwell’s equations in free space with an electric-

current density J as source,

Vx H=J+ seE, (2.37a)
VxE=-suH, (2.37Db)

subject to the radiation conditions (2.32) or (2.36). Owing to the fact that B and there-
fore in this case also H is source-free (solenoidal), which is indicated by Eq. (2.12a), the

Helmholtz decomposition [78] allows us to introduce a vector potential A as

H=VxA, (2.38)
which we substitute in Eq. (2.37b). A further application of the Helmholtz decomposition
yields

Vo
E = —sugA— —, (2.39)
S€p

where we have introduced the scalar potential ®. To arrive at a system of partial differential
equations for the scalar and vector potentials, we combine Eqs (2.37a), (2.38) and (2.39),
and apply the Lorenz gauge

V-A=-90. (2.40)
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We then find that the vector and scalar potential satisfy the Helmholtz equations

V2A — s*goupA = —J, (2.41a)
V20 — s*c0ug® =V - J, (2.41Db)

where we have assumed the existence of the divergence of the electric-current density. The
Lorenz gauge also allows us to represent the electric field in terms of the vector potential
A only, i.e.,

BE- - (VV - A= s°su0A) . (2.42)

5€0

To solve the Helmholtz equations, we require a condition for the vector and scalar poten-
tial to describe their behavior at infinity. Taking into consideration the requirement of
exponential decay for Re{s} > 0 or into consideration the outward-travelling energy of the
electromagnetic field for Re{s} = 0, we apply the same principles to the potentials, i.e., the
potentials should exhibit the exponentially decaying behavior or they should correspond to
outward-travelling waves. For continuously differentiable J and V - J and describing the
vector fields by a Cartesian vector field, the solutions to the Helmholtz equations (2.41a)
and (2.41b) are

Alr) = / / / Glr — ') J(#)dV, (2.43a)

B(r) = — / / / Glr — )V - J(#)dV", (2.43D)

where
exp(—s|r — r'[/co)
4rt|r — 1|

G(r—7r')= : (2.44)
which is known as the Green’s function in free space. Further, ¢y = 1/,/Eop0, the velocity
of light in free space. The volume integration is over the primed variable in the volume V,
i.e., ' denotes the source coordinates. Further, V - J(v') = V, - J(7') is the divergence
of the current density operating in the primed coordinates. The unprimed coordinate r
refers to the point of observation. In case the Laplace parameter s is purely imaginary, the
introduction of the velocity of light allows us to introduce the wavelength A as
_ 2mcy ¢

\ = 5 T T (2.45)
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2.5 Perfectly conducting objects

We now consider a perfectly conducting object occupying the domain D, with a piecewise-
smooth boundary 0D with an orientable normal, surrounded by free space. We assume
that an electromagnetic field is incident on the object and that its source lies in the domain
R?\ D, where D = D U dD. From Eq. (2.21b), we know that the jump occurring in the
magnetic field at the interface 0D corresponds to an electric surface current density Jg.

It is shown in Appendix A that the vector and scalar potentials, introduced in Eqs (2.38)

// r—r)Js(r)dA', (2.46a)

// r—r)Vs Js(r')dA', (2.46b)

and (2.39), are given by

where V- Jg(7') denotes the surface divergence of the surface current density with respect

to the primed coordinates. Hence, the electric and magnetic fields in R*\ D can be written

H(r)=H'(r) + V x A(r), (2.47a)
E(r) = E'(r) - Sigo [V@( ) + CoA( )] (2.47b)
= E'(r) + S%o {VV -A(r) — i—;A(r)] : (2.47c¢)

To arrive at an integro-differential equation for the surface current density, we should
perform the limiting process in which the observation point r approaches the boundary
0D from the exterior region R* \ D. The limiting process is by no means a simple matter
of replacing = by r|,p. For a smooth boundary 0D with continuously varying outward-
pointing unit normal n(r) and for continuously differentiable Jg(r) and V; - Jg(r) for
r € 0D, a careful examination shows that [14, Sections 2.5 &2.6]

11%1 H(r + hn(r)) =H'(r) — M +(V x A)(r), (2.48a)
lim E(r + hn(r) =B (r) - ”(’")VQ;O" s(r) _ Sigo [(V(D)(r) + ‘Z—;A(r)] (2.48b)
—Ei(r) — ”(’")VQ;OJS(T) + Sigo {(vv CA)(r) - i—%A(r)] . (2.48¢)
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for » € OD. Further, the integrals in Eq. (2.46) should be understood in the sense of
Cauchy principal values. Also, we have implicitly assumed that the incident fields are
continuous across the boundary dD. Finally, we apply the boundary conditions (2.21a)
and (2.21b) to arrive at

n(r) x Hi(r) = JST(T) “n(r) x [V x A] (r), (2.49a)
—sgo [n(r) x E'(r)] = —n(r) x {(V(I)) (r)+ i—;A(T)] (2.49Db)
=n(r) x {(VV -A)(r) — i—;A(r)] , (2.49c¢)

for » € OD. The integro-differential equations are known as the magnetic-field integral
equation (MFIE) and the electric-field integral equation (EFIE) [51], respectively. Both
EFIE and MFIE suffer from a non-uniqueness problem at certain real-valued frequencies.
This non-uniqueness corresponds to an interior resonance of the object. A possible rem-
edy is to consider a normalized combination of the EFIE and MFIE, which is known as
the combined-field integral equation (CFIE) [51]. If D no longer represents a volume sur-
rounded by a perfectly conducting shell, the magnetic-field integral equation breaks down.
This is due to the fact that the boundary condition in (2.21b) ceases to be valid and
should be replaced by condition (2.13b). The problem is that we no longer know what the
magnetic field on the other side of the boundary should be, which is essential for the formu-
lation. The electric-field integral equation remains valid for this case, i.e., the open-screen

problem.

2.5.1 Thin-wire equations

In electromagnetics, scattering by structures composed of thin wires has been studied by
many authors. Most authors use one of two so-called thin-wire equations. Both equations
can be derived through the application of the scattered-electric-field integral representa-
tion (2.39) or (2.42) and by the introduction of some approximations for the electric surface
current density. However, for a straight thin-wire segment with circular cross-section, we
can show that both thin-wire equations are exact, except for end effects. We model the
thin-wire segment as a perfectly conducting circular cylinder, as shown in Figure 2.1, with
radius a and length L. The axis of the cylinder coincides with the z-axis. To describe the

surface current density on the mantle of the cylinder, we use the cylindrical coordinate
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X

Figure 2.1: straight thin-wire segment with incident field.

system {r, ¢, z}. The mantle of the wire is parameterized by r = a, ¢ € (—=, 7] and
z € (0,L). In the following, we will assume that we can neglect the effect of the surface

current density at the end faces.

For a thin wire, i.e., a < A = (27¢) /w, for which the central axis is parallel to the z-axis,
the scattered field components Ej and Hj in the far-field region are dominated by the
¢-independent part of the z-directed component of the electric surface current density Jg,
as shown in Appendix B. The ¢-independent part of the z-directed surface current density

corresponds to the total current in the z-direction, as defined by

™

L(z) = / T5(6,2) - wsadg. (2.50)

-

The results of Section 2.5 and the fact that the unit vector in the z-direction u, of the
cylindrical coordinate system coincides with the unit vector in the z-direction of the Carte-

sian coordinate system show that the z-component of the scattered electric field can be
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represented as

L =
B26.9) = |02 [ [or6= 62— £, a)V. - To(6' 2 ado'a

0 —m

o (2.51)
2
_i_g / / g(ra ¢ - ¢/7 2 Zla a)JS(¢/7 Z/) ' uzad¢/dzl )
0 0 —m
where
exp [—(3/00)\/7“2 + a2 — 2racos(¢) + 22
g(r,¢,z,a) = : (2.52)
Am\/r? + a® — 2racos(¢) + 22
which is the Green’s function of Eq. (2.44) in cylindrical coordinates, and
1
V- JS(T‘/) = 58¢/J5,¢/(¢’, Z/) + 8Z/J5,Z/((]5/, Z/). (253)

At this point, the formulations of the two thin-wire equations depart.

For the so-called integral equation with reduced kernel, the observation point of the scat-
tered field is taken at the z-axis [72]. For this choice, the Green’s function g no longer

depends on ¢’ and we can evaluate the integrals over ¢’ in closed form, which yields
L L

2
Ei(r=0,2)=— |0, /ga(z — 20 1,(2)dz — i—z /ga(z —2L(ZYdZ |,  (2.54)
0

0 0

where
exp [~(s/co) /a2 + (z = 2]

/!
Ja\z — 2 ) = )
( ) dry/a? + (z — 2')?

is the so-called approximate or reduced kernel.

(2.55)

To obtain the so-called integral equation with exact kernel, we observe that the Green’s
function ¢ is a periodic function of ¢ — ¢'. Hence, integration over a full period of ¢ also
amounts to removing the ¢’ dependence of the integrated Green’s function. Therefore, the
integration over ¢’ can also be evaluated. We integrate over a circle with constant radius
r < a. This yields

T L
1
/Ej(r, b, 2)dd = o 8Z/ge(7",z — 2 ,a)0,1,(2")dZ
o . (2.56)
&2
——2/ge(r,z—z’,a)fz(z’)dz’ ,
0
0
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where
™

Gelr, 2 0) = / o(r, 6, 2 a)d, (2.57)

-7

which, for r = a, is known as the exact kernel. Note that we have employed d¢ instead of

rd¢ to integrate over ¢, owing to the circular integration contour.

We complete the formulation of the thin-wire equations by noting that the total field inside
a perfectly conducting object is zero. This also applies to a linear combination (integration)
of the electric field inside the object. Therefore, Eqs (2.54) and (2.56) lead to the following
integro-differential equations for z € (0, L):

L
i )
—seoEL(r=0,2) = |97 — 8—2 /ga(z — 2L (Z")d7, (2.58a)
L o )
T _ o L
—sgg / E'(a,¢,2)de = |0 — i—Z /ge(a, z—2a)l,(2)dZ. (2.58Db)
I 0
- 0

We have replaced the partial derivative with respect to 2’ by a derivative with respect to z
outside the integral, using the translation invariance of the Green’s functions with respect
to z — 2/, and the fact that I,(0) = I,(L) = 0, which implies that the current is confined
to the wire. Further, in the second equation we have taken r = a, i.e., the observation
coordinate lies on the mantle of the wire. Eq. (2.58a) is known as the approximate or
reduced-kernel integral equation. We will refer to Eq. (2.58b) as the exact-kernel integral
equation. From a historical perspective, we note that most authors apply the incident
electric field on the axis of the wire as the excitation for the right-hand side of Eq. (2.58b).
Here, we should remark that we have not taken into account the surface current density
at the end faces. For the exact kernel this amounts to modeling a hollow tube and the
integral equation is exact for that configuration. For the reduced-kernel integral equation,
neglecting the effect of the end faces remains an approximation. It is possible to take
into account the end faces, at the expense of extra terms in both thin-wire equations
and extra equations for the end faces. The formulation becomes more involved due to
these corrections, which explains why most authors neglect the effect of the end faces. An

argument in favor of this approximation can be found in [72].
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2.5.2 Perfectly conducting flat plate

Regarding the formulation, the simplest example of a perfectly conducting open screen is
a perfectly conducting flat plate, as shown in Figure 2.2. For an electric field E* incident
on a flat plate P, located in the plane z = 0, the electric-field integral equation reduces to

2
—seoElL(r) = {82 — %] Ag(r) + 0,0,A,(r), reP, (2.59a)
0
2

_S€0E;(’I") = {8; — i—z] Ay(r) + 0,0, A, (r), reP, (2.59b)

0

where the subscript of the potential and the electric field indicates the component of the
vector in Cartesian coordinates. Notice that we choose to use the vector potential only,
i.e., Eq. (2.42).

Figure 2.2: perfectly conducting flat plate with incident field.

2.6 Dielectric objects

A dielectric object, occupying the bounded domain D, is described by a permittivity func-
tion £(r), which is a scalar (in the isotropic case) or a 3 x 3 matrix function (in the
anisotropic case). Note that the permittivity tensor is now represented by a 3 x 3 matrix,
since we use an explicit reference system. The configuration is depicted in Figure 2.3.
Outside D = D U 9D, the permittivity function equals the permittivity of free space. We
will assume that the permeability equals pg everywhere. For the moment, we will also

assume that o is identically zero everywhere, and we will come back to this at the end
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N2
°.

T

Figure 2.3: dielectric object with incident field.

of this section. We decompose the electric and magnetic field according to Eq. (2.31).
Consequently, the scattered fields satisfy

Vx H° = 8€0Es + 8€0XE = S60Es + JC, (260&)
V x E° = —suyH?, (2.60Db)

subject to the radiation conditions. We have introduced x(r), which is a scalar or a
3 x 3 matrix function with x(r) = (e(r)/co — 1) or xks(r) = (cke(T) — €00k,e)/c0, re-

spectively. Also, we assume that the permittivity is bounded, i.e., max |x(7)| = Xmaz OF
reD

max |Xks(7)| = Xmaz- Further, we have defined the contrast-current density J¢, which
,re

has support D. In absence of a primary polarization field, another useful definition of the
contrast-current density is
J¢ = sgoxe ' D. (2.61)

In general, the divergence of the contrast-current density is undefined, since it does not
correspond to a physical electric-current density. Hence, the vector-potential description
of the scattered electric field in Eq. (2.42) is appropriate. To arrive at a domain integro-
differential equation for the contrast-current density, we write the total electric field as the
sum of the incident field and the scattered field. The resulting expression is

2
seoB' = seg (E — E°) = seoE + S—QA - VV.A, (2.62)
€
which together with Eq. (2.43a), i.e.,

Afr) = / / / Gr — v')Je(r')dV", (2.63)



26 Formulations for the electromagnetic field

is a domain integro-differential equation for E if we use the definition in Eq. (2.60a) for
J¢. Alternatively, we can obtain a domain integro-differential equation for D, by using

the constitutive relation between E and D, which leads to

2
seoB' = see D + A —VV - A (2.64)
0
In the derivation of Eq. (2.64), we have used definition (2.61) for the contrast-current
density. Finally, we obtain a domain integro-differential equation for J¢ by multiplying
Eq. (2.62) by the contrast function x and using the definition of J¢, which results in

2
seoxBE' = J + x [i_?A -VV. A} . (2.65)
0

As mentioned above, we have assumed that o is identically zero everywhere. However, it is
also possible to take objects with a finite conductivity into account. In that case, we have
to replace e(r) by o(r)/s 4+ e(r). Further, sD should be replaced by J + sD and we have
to assume that both the primary polarization and the primary electric-current density
are absent. Hence, x(7) = (0(r)/sso + €(r)/co — 1) in the isotropic case or xy(r) =
(0ke(T)/s + €ke(r) — €00ke)/c0 in the anisotropic case. The counterpart of Eq. (2.64)
becomes )

seoE' = o(0/s + &) (J + sD) + S—2A —VV.-A, (2.66)
&0
where the contrast-current density is given by
J¢=¢gox(o/s+2) ' (J + sD). (2.67)

Note that Eqs (2.62), (2.64), and (2.66) are also integral representations for the electric
field, the electric-flux density, and the electric-current and the electric-flux density in R?,

whereas Eq. (2.65) is an identity outside D.



Chapter 3

Mapping properties of the

integro-differential equations

From the formulation of the various integro-differential equations formulated in the preced-
ing chapter, we would like to find the analytic solutions. However, an explicit expression
can only be found for a very limited number of configurations, such as stratified spheres,
circular cylinders and planes [9]. In most cases, we have to resort to some kind of numer-
ical approximation. To analyze the approximation properties of the resulting numerical
method or to understand the origin of breakdown of a method, we need to examine whether

or not, the equations give rise to a well-posed problem.

3.1 Principles for analyzing mapping properties

A problem is well-posed (in the sense of Hadamard) if each of the following conditions is
satisfied.

1. A solution to the problem exists.

2. If a solution to the problem exists, it is unique.

3. The solution to the problem depends continuously on the given data.
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If, for a given problem, one of these conditions is not satisfied, it will be extremely difficult
(or impossible if the first condition is violated) to find an approximation of the solution.
Such a problem is referred to as ill-posed. To establish whether or not a problem (or an
equation) is well-posed, we have to recall some definitions and theorems from functional
analysis, assuming basic knowledge of Banach and Hilbert spaces. We will denote the norm
by || - || and the inner product by (-,-), with its corresponding norm. In case we employ
more than one norm or inner product, we will use a subscript to indicate which norm or
inner product we use. For the proofs of the theorems we will refer to standard literature at
the end of each theorem. Further, we will comment on the consequences of the definitions

and theorems.

Definition 1
A mapping L from a linear space X into a linear space Y, denoted by L : X — Y, is called

linear if
L(ox + By) = aLx + Ly, (3.1)

for any x,y € X and any scalars o and f.

The concept of linearity gives rise to the superposition principle. The integro-differential

equations in Chapter 2 are of the form
Lu=f, (3.2)

where L is the linear integro-differential operator, v is the unknown current density, and

f is the excitation or forcing function in the form of the incident field.

Definition 2
Let L be a linear operator from X to Y. The null space of L, denoted by N (L), is the

subspace
N (L) ={x |z e X, Lv = 0}. (3.3)

The range of L, denoted by R (L), is the subspace

R(L)={y|ye€Y,y= Lx forsome z € X}. (3.4)

If the linear operator L : X — R (L) has N (L) = {0}, then L is called one-to-one or
injective. This means that if a solution exists, it is unique. For a linear mapping L that
is one-to-one, we can construct the inverse operator of L, denoted by L' and L' is
a mapping from R (L) to X. Hence, if f € R (L), then the solution u of the equation
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Lu = f exists and is given by u = L= f. To analyze the third condition of well-posedness,

we introduce the concept of bounded linear operator.

Definition 3
Let X and Y be normed linear spaces and let L : X — Y be a linear operator. If the
number

IL]| = sup [[Lz|y (3.5)

llzflx =1
is finite for any € X with ||z||x = 1, then L is called a bounded linear operator on Y,
and || L] is called the norm of L.

For the boundedness of the inverse operator L~! we define

Definition 4
For a linear mapping L : X — Y, the inverse operator L~! is called bounded if L is
one-to-one and L' is bounded from R (L) to X.

Consider two problems

Luy = fr, (3.6a)
Luy = fo, (3.6b)

where L : X — Y and let X and Y be normed spaces. Under the conditions that L is
one-to-one, L~! is bounded, and f; and f, belong to R (L), we have

Jur — uollx = [|[L7"fi = L7 follx < IZ7Y - 1A = follv (3.7)

Hence, to prove that the linear problem Lu = f, for a given f, is well-posed amounts to
proving that N'(L) = {0}, that f € R (L), and that L™! is a bounded linear operator
from R (L) to X. One of the merits of this observation is that when we consider an

approximation u, of u, we have the approximation property
lun —ullx = llun = L7 fllx < L7 - (1Lun = flly- (3.8)

Hence the norm of the residual error, i.e., || Lu, — f||y, gives a bound for the approximation

error of u.

If the domain and range of the operator L are Banach spaces, the Open Mapping Theorem
gives sufficient conditions for which the inverse of an operator is bounded:
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Theorem 1 (Open Mapping Theorem)
Let L be a bounded linear operator from X to Y and let X and Y be Banach spaces. If
L is one-to-one and R (L) is closed, then L™ : R (L) — X is bounded [32].

The consequence of this theorem is that if the first two conditions of well-posedness are
satisfied for Lu = f and L is a bounded linear operator, then the third condition (continu-
ity) is also satisfied, provided that the domain and range of L are Banach spaces. From the

Open Mapping Theorem and the identity L='Lx = x, we obtain the following theorem.

Theorem 2
Let L : X — Y, then L is one-to-one and R (L) is closed if and only if ||Lz|y > a|z|x

for all z € X, for some a > 0.

Another important property of linear operators is compactness.

Definition 5
Let X and Y be normed spaces. A linear operator L : X — Y is called compact (or
completely continuous) if for every bounded sequence {z,} in X, the sequence {Lz,} has

a density point, i.e., it contains a convergent subsequence.

Hence, compactness gives rise to an existence result in the sense that, in many cases, the

sequence {z,} is an approximation sequence, i.e., there is density point.

Finite-rank operators, i.e., operators for which the dimension of their range is finite, are
examples of compact operators. Compactness is closely tied to the choice of the norm of
the vector space on which we consider the operator. Therefore, compactness can be lost

or gained by changing the norm on X or Y.

Theorem 3
The identity operator on a normed space X, denoted by I : X — X is compact if and only
if X has finite dimension [14, 42].

The above theorem assumes that a fixed norm is used on X. Given a vector space X with
norms || - ||; and || - ||2, it may happen that the identity operator is compact. In that case
we say that there is a compact embedding. As an example of a compact embedding, we
mention the Sobolev space H'(R) with norm | - |1 and norm || - ||z, where H'(R) is a

Hilbert space in which each element and its generalized first derivative belong to L?(R).
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Theorem 4
Let A be a compact operator and B a bounded linear operator, then AB and BA are

compact operators [14, 42].

The preceding two theorems can be combined to characterize the inverse of a compact

operator:

Theorem 5
Let L be a compact operator, L : X — Y. If L7 : R (L) — X exists, i.e., L is one-to-one,

then L~! is unbounded if X is infinite-dimensional.

If X is an infinitely dimensional normed space and L is a compact linear operator from X
to Y, then the equation Lu = f is ill-posed on R (L), since it does not satisfy the third
condition of a well-posed problem. Combined with the Open Mapping Theorem, the above
theorem shows that either X or R (L) is not a Banach space. So, if X is a Banach space,
R (L) is not closed with respect to the norm of Y. In Section 3.3.3, we will show that the
thin-wire integral operator with reduced kernel in Eq. (2.58a) is compact for a large class
of Banach spaces. Hence, the range of the operator is not closed with respect to the norms

on these Banach spaces.

We will now consider operators of the form L = I + A from X to X, where A is a
compact operator and X is a normed space. Sometimes, I + A is referred to as a compact
perturbation of I. The MFIE of Eq. (2.49a) for a smooth boundary 9D is an example
of such an operator. The study of operators of this form was initiated by Fredholm, who
considered integral equations of the form
b
(I+ A)u=u(z)+ /g(z, u(2)dz = f(z2), (3.9)
and X is the space of continuous functions, where the kernel ¢(z,z’) is bounded and
continuous. Integral equations of this form are known as Fredholm integral equations of
the second kind, whereas integral equations of the form
b
Au = /g(z, u(2)dz = f(2), (3.10)
a
are referred to as Fredholm integral equations of the first kind. Since A is compact,

Fredholm integral equations of the first kind are ill-posed. Operators of the form I 4+ A are
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completely characterized by the three Riesz theorems. In the following theorem, we will

give the most important results of the three Riesz theorems.

Theorem 6
Let X be a Banach space and let A be a compact operator from X to X, then [14, 42, 54]

1. N (I + A) is finite dimensional,
2. R(I+A)isclosed, ie.,, R(I+A) =R+ A),

3. N(I+A)={0}ifand only if R (I + A) = X.

The consequence of the three Riesz theorems is that we can establish existence and bound-

edness of the inverse (I + A)~!: X — X by proving uniqueness.

The above theorem also holds for operators of the form L =T + A, where T is a bounded
linear operator on X with X = R (T) and T~! bounded, and A is compact from X to X.
This is a consequence of the fact that 7-'A is also compact from X to X, by Theorem 4.

Hence, we have

Theorem 7

Let X be a Banach space, let A be a compact operator from X to X and let T be a
bounded linear operator on X with X = R (T) and 7! bounded. If T + A is one-to-one,
then the inverse operator (T'+ A)~' : X — X exists and is bounded. [14, 42]

This observation is used in so-called analytical regularization techniques, which have been

developed in the former Soviet Union, see e.g. [49, 80] and references therein.

One way to prove that a bounded linear operator 7" on a Hilbert space has a bounded

inverse, is to show that 7" is coercive.
Definition 6
Let H be a Hilbert space. A linear operator T : H — H is called coercive if
(T, 2)| > a2, (3.11)

for all z € H.

Theorem 8
Let T be a bounded coercive linear operator on a Hilbert space H, then R (T) = H and
T—! is bounded [42].
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Theorem 9

Let H be a Hilbert space. A bounded linear operator of the form L = T + A with
T : H — H a bounded coercive linear operator and A : H — H a compact operator, has
a bounded inverse if and only if V' (T + A) = {0}.

The above theorem expresses that if we can decompose a bounded linear operator into
a coercive part and a compact part, we can prove well-posedness by proving uniqueness.
This result outlines the standard strategy to analyze integral equations of the first kind

with singular kernel in a Hilbert space.

Finally, we introduce the concept of duality. Duality is defined in terms of functionals,
which are bounded linear operators mapping a real or complex normed linear space into
R or C, respectively. Eigenvalue analyses should always be considered in complex linear

spaces, since eigenvalues are complex in general.

Definition 7
The linear space of all bounded linear functionals on a normed linear space X is called the
dual space of X, denoted by X’. X’ is endowed with the norm

IF|| = sup |Fal. (3.12)

llzf|=1

X' is a Banach space with respect to this norm.

Definition 8
Two normed spaces X and Y form a dual system (X, Y") if there is a complex function (-, -)
defined on X x Y, such that (-,-) is a bounded, non-degenerate, bilinear (or, alternatively,

a sesquilinear) form on X x Y i.e.,

| {(z,y)| < K||z||x|ly|]ly forz € X,y €Y and K € R,
(xg,y) = 0 for some 2y € X and all y € Y implies zq = 0,

(x,y0) = 0 for some yy € Y and all z € X implies yo = 0.

The above definition of a dual system implies that Y is continuously embedded in X',
denoted by Y — X', i.e., for each y € Y there is a bounded linear functional F}, on X

such that (x,y) = F,(x) and the mapping y — F,, is continuous. The converse, i.e., each
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F € X' can be represented by a y € Y, does not necessarily hold. A counter example is

given below.

Ezxample
We denote the space of continuous functions on the interval [—1,1] by C(—1,1) and the

norm is the supremum norm. We chose X =Y = C(—1,1), and

1

(f.9) = / f(2)g(x)dz, (3.13)

-1

for f,g € C(—1,1). The system (C'(—1,1),C(—1,1)) is a dual system [42]. However, the
bounded linear functional F'(f) = f(0) cannot be represented by a g(z) € C'(—1,1). This
can be shown by choosing f(z) = 2™, n = 1,2,..., which means that F(z") = 0. From
the orthogonality relation of the Legendre polynomials, we infer that g(x) is constant on

[—1, 1], which is impossible.

Given a Hilbert space, another example of a dual system is this Hilbert space together with
its inner product. The following theorem indicates the isomorphism between a Hilbert

space and its dual space.

Theorem 10 (Riesz Representation Theorem)
Let F' be a functional on a Hilbert space H. There exists exactly one xqg € H such that
Fx = (z,x) for all z € H. Moreover, we have || F|| = ||zo [32].

3.2 Projection Methods

Projection methods cover a large class of numerical methods. We follow the description of

Krasnosel’skii [41] to define projection methods:

Let X and Y be Banach spaces. Consider the equation
Lu = f, (3.14)

where L is a surjective linear operator from X to Y, i.e., R (L) = Y. The projection method
to solve this equation consists of the following steps. We choose an n-dimensional space

X,, C X, spanned by the set of basis or expansion functions %,, and an n-dimensional



3.2 Projection Methods 35

space Y,, C Y. We define a projection operator P, from Y to Y, i.e., R(P,) =Y, and
P? = P,. The projection operator P, can be constructed by using a dual system (W,Y),

in the following way.

Let Y, = span{yy,...,y,} and W,, = span{w, ..., w,}, where {wy,...,w,} is a basis in
W, dual to {y1,...,yn}, i.e.,
(Wks Ye)y = Okt (3.15)

where 0 is the Kronecker delta. The subscript ; indicates a dual system that is related
to R (L). The definition of a dual system guarantees the existence of the dual basis for
W,. Further, {wy, ..., w,} is known as the set of weighting or testing functions 7. The
projection operator P, is now given by

n

Py = Z (Wes Y) 1 Yi- (3.16)

k=1
In the same way, we can define a projection operator ), : X — X,,, by means of a dual
system (X, V),,
spanning the space V,,, then

i.e., let X, = span{xy,...,z,} and let {vy,...,v,} be a dual basis in V

n

Qnr = Z(%Wﬁ Ty, (3.17)

=1
where the subscript 5 indicates a dual system that is related to the domain of L. Now we

replace the equation Lu = f by the system
P,LQ,u= P,f. (3.18)

From the definition of (),, we see that we can write
Qnu = Z oyTy, (3.19)
=1

where the set of coefficients {cy} is still unknown, since u is unknown. However, substi-

tuting this representation of Q,u in Eq. (3.18), we arrive at

> (Z (wi, Le)y az) ve = (we, [y, (3.20)

k=1 \(=1 k=1
if (-,-), is linear in the second argument, i.e., it contains no complex conjugation. Hence,

we can determine «y from the system

n

> wp, Lag)y o = (wy, f)y, k=1,....n, (3.21)

(=1
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provided that the square matrix on the left-hand side has full rank, which essentially
restricts the choices for %, and ;. If the above system does not have full rank, the
matrix, formed by the elements (wy, Lxg),, is neither injective, nor surjective, since for
finite-dimensional matrices the column rank and row rank are equal. Hence, the numerical
system has become ill-posed, in spite of the fact that the original system Lu = f may be
well-posed. In that case, the linear system with forcing function equal to zero admits a
non-trivial solution, which is called a “spurious mode”, see e.g. [67] and references therein.

This is the result of an improper choice for either 4, or .7,.

The process to obtain a finite set of equations is also known as discretization. The aim
of a projection method is to construct a sequence of subspaces {X,} and {W,} which are
ultimately dense in X and W, respectively, for n — oo. A sequence of subspaces {X,} is

ultimately dense in a normed space X if for every z € X we have

inf ||z —xz,]| =0 for n— occ. (3.22)
Tn€Xn

In general, we cannot expect convergence to the exact solution for n — oo, unless X,, and
W,, are ultimately dense in X and W, respectively, and W is isomorphic to Y’, i.e., the
dual space of Y. A detailed analysis of projection methods, together with conditions for

convergence for n — oo can be found in [41, 42].

3.3 Thin wire

For the infinitely long thin wire in free space, we will find a closed-form solution for the
current on the wire, generated by an incident field that is caused by a source outside the
wire. Further, we will show that the thin-wire equations with exact and reduced kernel
are equivalent in this case. For the finite wire in the same setting, we will examine the

mapping properties of the integral equation with reduced kernel.

3.3.1 Infinitely long wire

Consider an infinitely long circular cylinder in free space with radius a and central axis along

the z-direction. Maxwell’s equations, after we have applied the Laplace transformation (cf.
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Eq. (2.10)), read:

VX E=—-suyH, (3.23a)
V x H = s5,E, (3.23b)

where Re{s} > 0. We perform a spatial Fourier transformation in the z-direction

Flr,6,k.) = / F(r, 6, ) exp(jik.2)dz, (3.24n)
1 7. ,
F(r,6.2) = 5 [ F(r.6,k) exp(—ib.2)dk, (3.211)

after which we decompose the fields into their z-components and transverse parts (with

subscript 7). We obtain

2
<k§ + i—2> B = jk,VrE, — suo (u X VTHZ> , (3.25a)
0
2
<k§ + S—2> Hy = jk,VrH, + seo (u X VTEZ> , (3.25b)
Co
2
V2E, — <i—2 + k2> B =0, (3.25¢)
0
2
Vi, — (2 +k2) H, =0, (3.25d)
2 ?

where ¢y = 1/,/Eopto and where

1
Vr =u,0, + u¢;8¢, (3.26a)
1 1
2 _ 2

In view of the circular symmetry, we employ a Fourier series expansion in the ¢-direction

2T

Flrm, k) = % / F(r, 6, k.) exp(jma)dg, (3.27a)
0

F(r,p,k,) = i F(r,m, k,) exp(—jmg), (3.27Db)

m=—0oQ
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which, for the individual components of the fields, yields

2
<k,§ + S_2> E, = jko B - T (3.282)
c2 r
0 .
<’f§ - S—2> H, = jko, 0.+ 0 F,, (3.28b)
& r
2
& r
52\ . k,m . o
kZ - == z ridzy 3.28d
(12 5) o= 25
1 2 2 o
{aﬁ + =0, — (% + 24 k2>] E, =0, (3.28¢)
r r c
1 2 2 o
020 (B S e =0 (3.251)
r r c

As mentioned in Section 2.5.1, we are interested in the total current I,(z) in the z-direction:
27

L(k) = / (a6, k.)add = 2mably(a,0, k) = —2% 5 B0,k . (3.29)

B (e
For m = 0, the above system of equations decouples into two independent systems, such

that the total current in the z-direction is independent of H,.

For an incident field originating from outside the wire, i.e., the source of the incident field
has radial coordinate r = b > a, we can write the total field in the z-direction for m = 0

in the interval a < r < b, as
Euz(T, 0,k,) = Aoy (kr) + BoKj (kr). (3.30)

where Iy and K, are modified Bessel functions of the first and second kind of order zero,
respectively, and k = \/m. The term with I represents a constituent of the
incident field and the term with K represents a constituent of the field scattered by the
cylinder. The incident field, after Fourier transformation in the z-direction, in the area

r < b can be written as

Ei(r, ¢, k) Z A m (K7) exp(—jma). (3.31)

m=—o0
We now enforce the boundary condition at the mantle of the cylinder, i.e.,
E.(a,0,k,) =0

Iy (ka) (3.32)
Ky (ka) Ko ()]

= E,(r,0,k;) = Ag(k,) {IO (k1) —
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for a < r < b. For the total current in the z-direction we obtain through Eq. (3.29)
fz(kz) _ 2mseg 2 Ao(k,)ka
k2 + (s2/c5) Ko (ra)

where the primes refer to the derivative with respect to the argument. The term between

[Iy (ka) K}, (ka) — I (ka) Ky (ka)], (3.33)

brackets is recognized as the Wronskian and equals — (/fa)_l. Thus we obtain the result
271'860 AO (k‘z)
k2 + (s/¢5) Ko (ra)’

or

s .
<kz + c_g> Ky (ka) I,(k,) = 2nseqAog(k,). (3.35)
Finally, we would like to express Ag(k,) in terms of the incident field. With reference to

Eq. (3.31), and by noting that I,,(0) = 0 for m # 0 and I(0) = 1, we see that
EL(0, ¢, k:) = Ao (k) (3.364)
21
/ E:(a, ¢, k.)d¢ = 2w Ag(k.) Iy (ra) . (3.36b)
0
Therefore, we can relate the total current on the wire in the z-direction to either E' on

the axis of the wire or to the average of E on the wire boundary, according to

2
1 N N
(—kz — 8—2) —Ky (ka) 1,(k,) = —seoE2(0, 9, k), (3.37a)
cy) 2w
9 2w
<—k§ - %) Io (va) Ko (ka) L (k) = —seo / Ei(a, ¢, k.)do. (3.37b)
0
0
Employing the identity (see Appendix B)
exp(—sR/cy)
4R N
L 7o (3.38)
- / L (k7<) Ko (k) expl—jm(¢ — &)] expl—jka (z — 2)]dk,

where R = |r — /| = \/r2+ 12 — 2rr’ cos(¢p — ¢') + (2 — 2/)2, r~ = max{r,r'} and ro =

min{r, '}, we deduce that

/ %}f:/%)exp[jkz(z_z)]dz:%m (ar), (3:39)
/] SPUBSO) el (= — o = Iy (o) Ko (), (3.39D)

—oo 0
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where R, = \/a® + (z — 2/)2 and R, = \/2a® — 2a2 cos(¢ — ¢/) + (z — 2/)2. The subscript
« stands for “approximate” and the subscript . stands for “exact”. Upon combining
Eqgs (2.55), (2.57), (3.37) and (3.39), and transforming back to the spatial domain, we

obtain the integro-differential equations

9 o
(ag N %> / ga(z = 2)L(2)dz' = —s20EL(0, ¢, 2), (3.40a)
0
o0 2w
2 82 / / / i
0 — 2 ) | gela,z =2, a)L.(<)d2' = —seq [ E.(a, $,2)do, (3.40D)
0
e /

for z € R, and where the ¢’-dependence of the second equation drops out of the left-hand

side owing to the integration over the full period of ¢.

Consequently, both thin-wire integral equations for the infinitely long wire with circular
cross-section are exact for the total current in the z-direction, provided that the proper
right-hand side is used. We also mention here that the equations are valid for any radius

a of the circular cross-section of the wire. Hence, the word “thin” does not apply here.

3.3.2 Finite wire

For the integral equation with exact kernel (2.58b), existence and uniqueness was proven
by Jones [37] for excitations that are continuous and have finite derivative with respect to
the axial variable. Later, the existence results were extended by Rynne [55, 56, 57, 58] to a
large class of vector spaces. This means that we can assume that the solution to the integral
equation with exact kernel exists. We will use this fact to analyze the properties of the
integral equation with reduced kernel. In [72] it was shown that the integral representation
with reduced kernel represents exactly the z-component of a scattered electric field on the
axis of the wire due to the current on the mantle. Therefore, in the present context, the

only question is which incident field should be chosen for the forcing function.
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To answer this question, we turn our attention to the following functions.

L
S 82
Fi(r,z) = {83 — c_g] / ge(r,z — 2’ a)L(2")d7, (3.41a)
2'=0
27
Fir2) =seo [ Eifro,2)do, (3.41b)
$=0

where I, is the total current in the z-direction on the wire obtained through the integral
equation with exact kernel in Eq. (2.58b), and E! is the incident field. If we set r = a, we
obtain the integral equation with exact kernel for F¥ + F' = 0. For r = 0 we obtain the
traditional integral equation with reduced kernel (Eq. (2.58a)) for F?¥ + F! = 0 (except for
a factor 2m). The latter can be verified from the fact that the Green’s function no longer

depends on ¢.

We assume that the incident field has a source that lies outside the domain 0 < r < a,
0 < z < L. Under this assumption, both the incident field E® and the scattered field E®,
due to the current on the mantle of the wire, are regular inside this domain. Further, both
functions under the integral over ¢ satisfy the source-free scalar Helmholtz equation inside
the domain 0 < r < a, 0 < z < L. Hence the functions F?¥ and F! satisfy

;) FX(r,z) =0, (3.42)

<82 + =0, 4+ 0; —
where a € {i, s}.

We would like to find a forcing function on the axis of the wire. The thin-wire equation
with exact kernel yields a current 7,, owing to the above mentioned existence results, and

therefore we have

<82 + =0, + 02 — c—2> (F! + F¥)(r,z) =0, (3.43a)

0
{ F'(a,2)+ F¥(a,z) =0 for0 <z <L,

: (3.43b)
Fl(r,z) + F:(r,2) regular for0 <r <a, 0 < z < L.

However, the solution to the system above is not unique. The solution can be described in

terms of modes of a hollow cylinder:

Fi(r,z) + Fi(r, 2) Z Jo (pm ) (A exp[—Ym (L — 2)] + B exp|—vmz]),  (3.44)
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where p,, is the m-th zero of Jy, v, = \/(pm/a)2 + (s/cy)? and A,, and B,, are unknown
mode coefficients. Further, the branch cuts of 7,, are chosen such that Re{v,,} > 0
and Im{v,,} > 0 for w > 0. In general, the mode coefficients will not be zero. They are
determined by the fields at the end faces, which result after applying appropriate boundary
conditions at the end faces at z = 0 and z = L. Therefore, from the results for the integral
equation with exact kernel, we immediately obtain existence for the integral equation with
reduced kernel (under finite-energy conditions) for specific values of the coefficients A,
and B,,:

F#(0,2) = —FX0, 2) + i Ap expl=ym(L — 2)] + B exp(—vm2)) , (3.45)

at the expense of taking into account the boundary conditions at the end faces. Another
way to formulate the problem of finding the coefficients A,, and B, is to use the Stratton-
Chu formulas, e.g., [65, Section 8.14].

To obtain a uniqueness result for the integral equation with reduced kernel, we use the
uniqueness result for the integral equation with exact kernel. The idea is as follows. Sup-
pose that there is a current I, # 0 that satisfies

F(0,2z) =0 for0< 2z < L. (3.46)

If we can show that
F(a,z) =0 for0<z<1L, (3.47)

then the uniqueness result for the exact kernel integral equation guarantees that I, = 0
and uniqueness for the reduced kernel integral equation follows immediately. Therefore, the

uniqueness problem reduces to the problem of proving that if a function F?(r, z) satisfies

2
<W+ a+0?—;>F%r@ 0, (3.48a)

0
{Pﬂ&dzo for0 < z < L,

(3.48b)
Fi(r,z)regular for0<r <a, 0 <z <L,

then F?(a,z) =0.

To find a solution to the above problem, we use a Fourier series expansion for F¥(r, z) in
the z-direction on the interval [0, L]. We obtain

Z fm(r) exp(—2mjmz/L), (3.49)

m=—0oQ
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where f,,(r) satisfies

fm(r) =0, (3.50a)

1 orm\? s

2
@*;a’"‘(T) ~ 3
0

{ fm(0) =0 (3.50D)

fm(r) regular for 0 <r < a.

The regular solution to the above ordinary differential equation is

fm(r) = AmIO (f)/m'r) , (351)

where I is the modified Bessel function of the first kind of order zero, and

orm\° 2
2
=(—) +=. 3.52
= () + 5 (3.52)
Since Iy(0) = 1, we observe that A,, = 0 for all m € Z. Hence, we have proven that
F?(a,z) = 0 and at the same time we have established that, if a solution to the integral
equation with reduced kernel exists, it is unique. For completeness, we mention that
the statement made in the title of [22] is too restrictive in the sense that a solution of
the integral equation with reduced kernel can exist for a properly chosen incident field.

Otherwise, the integral equation with exact kernel would not admit a solution either.

Upon closer inspection, we observe that, in case the wire is sufficiently thin with respect to
the wavelength, all modes are evanescent and therefore take effect only in proximity of the
end faces of the wire. It is in this respect that we should understand the approximation
in [72] that the end effects are negligible. Also, the frequently occurring numerical break-
down near the end faces of implementations of the integral equation with reduced kernel

can be understood in this way, since the coefficients A,, and B,, are taken identically zero.

3.3.3 The ill-posed nature of the integral equation with reduced

kernel

Since we can now conclude that we can solve the same thin-wire problem in two different
ways, the question arises which equation is the preferred one. From a numerical point of
view, the integral equation with exact kernel is well-posed as has been shown by Rynne

in a series of papers [55, 56, 57, 58|, whereas the integral equation with reduced kernel,
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regarded as an integral operator equation, is ill-posed for Lebesgue spaces and for all
standard Sobolev spaces W™(0, L) with positive and finite r and 1 < p < oo. For the

Sobolev spaces, ill-posedness is a consequence of the compact-imbedding theorem [3].

The argument is as follows: the reduced kernel is a C'*™ function. Therefore, the application
of the integral to an integrable current and the kernel yields a C'*° function. However,
the set of '™ functions is only a subset of the Lebesgue spaces and the Sobolev spaces.
Therefore, we can take a forcing function in a Lebesgue or Sobolev space that does not
belong to the set of C'™ function and existence of the solution cannot be guaranteed for

these spaces.

However, even if we have a forcing function that is smooth enough to guarantee existence
of the solution, we have the problem that the inverse operator is unbounded. The cru-
cial observation is that the operator is compact. The range of the operator is a subset of
C>([0, L]), and C*°([0, L]) is dense in all standard Lebesgue and Sobolev spaces. Suppose
we choose W1 (0, L) as the space for the forcing function. Due to the compact-imbedding
theorem we can always find a space W"*2(0, L), which has compact imbedding in the space
Wrepi((, L). Since the set of C*°([0, L]) functions is also a subset of W"?2(0, L), the inte-
gral operator is compact in WTP1(0, L). We now invoke Theorem 5, which states that the
inverse of the integral equation is unbounded, and we conclude that the thin-wire integral
equation with reduced kernel is ill-posed. Hence, finding a numerical approximation to an

existing solution will require special care.

From the above, it may seem that two independent conditions for well-posedness are vio-
lated. However, the fact that the range of the operator is not closed causes the unbound-
edness of the inverse operator. Therefore, if we can find a norm for which the range of
the operator is closed and restrict ourselves to forcing functions for which this norm is
finite, then we have automatically solved the problem of the unbounded inverse. This is
a consequence of the Open Mapping Theorem. As a direct consequence, we observe that
the operator must have lost its compactness property for this norm. Unfortunately, within
the framework of standard Lebesgue and Sobolev spaces it is impossible to find a norm,

for which the range of the operator is closed.

The ill-posed nature of the problem can be quantified by invoking a theorem on the singular
values of an integral equation with an analytic kernel [42, 46], which states that if we

consider the thin-wire integral operator as a mapping from L?(0, L) to L?(0, L), i.e., we
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use basis and testing functions belonging to L?(0, L) and use the L?*(0, L) inner product,
the singular values decay exponentially. This renders the integral equation with reduced

kernel severely ill-posed.

In other words, regarding the discretized system we can expect (exponentially) increasing
condition numbers for an increasingly finer discretization if we use the reduced-kernel
integral equation. In case we take a fixed discretization, which corresponds to a fixed
level of accuracy, we can still compute an approximation to the current by means of the
reduced-kernel integral equation. For the reduced kernel, there is a transition from a
region with coarse discretization and a limited condition number to a region with rapidly
increasing condition number and fine discretization. The accuracy in the first region is
limited by the discretization and in the second region by the increasing condition number.
The optimal discretization, corresponding to the highest obtainable accuracy, is determined
by the smoothness of the kernel, which in this case depends on the radius of the circular

cross-section of the wire, a, and the ratio s/c.

On the other hand, the integral equation with exact kernel is more difficult to discretize
than the integral equation with reduced kernel, due to the angular integral. In practical
applications, for which the end effects can be neglected, we are interested in a reasonable
approximation obtainable by the discretization. Hence, the reduced kernel equation may
be a convenient alternative with a better performance under certain conditions. In this

respect the thin-wire equation with reduced kernel is truly limited to thin wires.

3.3.4 Regularization methods for ill-posed problems

In the preceding section, we have shown that the thin-wire integral equation with reduced
kernel is ill-posed. A way to obtain stable approximate solutions of such ill-posed prob-
lems, denoted as Lu = f, is to apply a regularization method. The idea of a regularization
method is to modify the linear operator L in such a way that the modified operator is
bounded and has a bounded inverse. The classical interpretation is based on the mini-
mization of a functional. First of all, if the solution of the equation Lu = f exists, then u

is also the solution of the problem

: _ 2
min || Lu — flly, (3.53)
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where we have considered the operator L as a mapping from a Hilbert space X to a Hilbert
space Y. If the solution to Lu = f does not exist, then we define the solution u as the
solution of the above minimization problem, provided that L*L is invertible, where L® is
the adjoint of L, i.e.,

(Lz,y)y = (x, L) x, (3.54)

for all x € X and y € Y. However, due to the conditional existence of u and the unbound-
edness of (LL)™!, the norm of u can become unbounded. The norm applied to u does
not have to be the same norm as in problem (3.53). If there is a bounded linear operator
B : X — Y with a bounded inverse B! : Y — X, then ||ul|x and ||Bul|y are equivalent
norms. To suppress unbounded solutions in the minimization problem of Eq.(3.53), we

add a penalty function, viz.
min [[Zu — £} + o Bul}. (3.55)

where a > 0 is the so-called regularization parameter. In general, o should be small, to
make sure that the penalty function ||Bul|?- does not alter the solution too much. Now

suppose u, solves the above minimization problem, i.e.,
min || Lu — fIy. + o[ Bully = || Lua = flfy + ol Bually, (3.56)
then we have
IL(uq + Bou) = fIIY + &l B(ua + Bou)ly- — | Lua — I3 — of| Bually- >0, (3.57)

for any § € C and du € X. Owing to the fact that X and Y are Hilbert spaces, we can

write

L (uq + Bou) = fII5 + ol B(ua + Béu) [l — || Lua — fIly — al|Bua|l5

3.58

= |8J? (JILoully + a||Boully) + 2 Re {B(du, L*Luy + aB*Bu, — L*f)x} > 0, (3.58)
where the adjoint operator B® is defined as

(Bx, y)y = (37, B“y)X, (359)

for all z € X and y € Y. For the specific choice

(L*Luy + aB*Bug,, — L f,0u) x

N 3.60
g IE5ul T allBoull (3.60)

we obtain ,
L*Lu, B*Bu, — L°f,6
|(LLu +a2 u j; u) x| >0, (3.61)
[ Loull3 + af Béull3-
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for all ou € X, ||du|| # 0. Hence, the solution of the minimization problem satisfies the

linear equation
(aB*B + L*L)uy = L*f. (3.62)

The operator aB*B + L®L is coercive and bounded from X to X, and therefore, by
Theorem 8, it has a bounded inverse from X to X. Apparently, we have replaced the
ill-posed problem Lu = f by the well-posed problem of Eq. (3.62). The remaining choices
are the value of « and the operator B. In case X C Y and B = I, the above regularization

method is known as Tikhonov regularization [42].

3.4 Perfectly conducting plate

The aim of this section is to summarize results from the literature, with respect to the solv-
ability of the electric-field integral equation (EFIE) for an open screen, without developing
any new theory. To this end, we will introduce a class of Hilbert spaces, that are known as
Sobolev spaces. These spaces are used to analyze a weak form of the electric-field integral
equation, instead of the classical strong form. The weak form results from the observation
that the EFIE cannot be evaluated pointwise at the edges of the screen, due to the singular
behavior of the fields. These results will be used to explain the difference in performance

of two numerical schemes for the flat plate in Chapter 4.

For the perfectly conducting plate, results regarding the well-posedness have been estab-
lished independently by Abboud & Starling [1] and Smirnov [61]. The results in [61] are
slightly more general than those in [1], in the sense that the analysis in the latter requires a
smoother incident field. In both papers, the mapping properties of the EFIE are analyzed,
with the aid of a generalization of Theorem 9. The coercive part of the operator is formed

by the surface integral over the surface current density and the static Green’s function

1

Gs(r) = ——, 3.63
") = oo (3.63)
or, alternatively, the function
exp (—|r])
Ge(r) = , 3.64
= (364)

for which the Fourier transformation over R? is

1
S(1+ R, (365)
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where k spans the two-dimensional wave-vector space space and where r denotes normal-
ized coordinates. The analysis with G is more difficult in the Fourier domain, due to a

singulary at k = 0.

To state the main result of these papers and to explain its consequences, we need to
introduce Sobolev spaces. The Fourier transformation on R", for n € {2,3}, can be
extended to the function space ./(R™) of Schwartz’s tempered distributions [45, p. 4]. We
define the Sobolev space H*(R™), s € R, as [45, p. 30]

H(R™) = {u | u e .Z'(RY), (1+ |k[})*?i e L*(R")}, (3.66)
and the norm by
Jul? = / (L+ [kP)° o] dk. (3.67)
Rn

where k is now the n-dimensional vector spanning the n-dimensional Fourier space and
denotes the Fourier transformation of w. Further, 4 is a locally integrable function, such
that the norm in Eq. (3.67) is finite. The advantage of this definition is that we can work
with functions @ in the Fourier domain, whereas their counterparts u are distributions,
in general. As an example, we consider the J-distribution in R™. Since the modulus of
the Fourier transform of the J-distribution equals one everywhere, we conclude that this
distribution belongs to H*(R"™) for s < —n/2. Since the J-distribution acts on continuous
functions, we find, by duality, that functions that belong to H*(R"™), with s > n/2, are

continuous.

The above definition can be used to define Sobolev spaces on a bounded volume €2 with
boundary 0f). However, without restrictions on the boundary 0¢2, this is difficult. If the
boundary 0f is sufficiently smooth, then we can employ a partition of unity. This gives
rise to H%(0Q2), s € R. At the same time, this gives rise to the definition of Sobolev spaces
Hs(Q) € H5(R™), s > 0, on the domain €2 [45, p. 34&40]. Then, one can study the closure
of C§°(Q2), the set of infinitely differentiable continuous functions with compact support in
(2, under the norms of these Sobolev spaces, thus introducing the spaces H(€2) C H*(2),
s > 0, [45, p. 55]. Finally, the spaces H5(2), s > 0, are introduced as the dual spaces of
HE(Q) with respect to the L*(Q2) inner product [45, p. 70].

Although these definitions apply to scalar functions, they can be extended to vector fields
by demanding that each of the Cartesian components of a vector field belongs to the same

scalar Sobolev space. This has inspired the definitions of normal and transverse spaces
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as [1]

NH?*(0Q) ={u | u=vn,ve H(0Q)}, (3.68a)
TH*(09) = {u | u € H*(0Q)?, u - n = 0}, (3.68b)

where n is the outward unit normal vector on 92 and H®(9)? is the three-dimensional

vectorial counterpart of H*(092).

For a continuous function u on Q@ = QU 09, we can examine the limit

lim u(r) = ul,q, * € 09Q, (3.69)

which is called the trace of u on 0€2. The concept of trace can be generalized for u € H*(Q).
The problem is that the trace may no longer be a function on the boundary, i.e., it will be
a distribution. The generalization is contained in the trace theorem, which states that, for
a regular boundary 99 and u € H*(S2), the trace of u on 09 belongs to H*~'/2(0Q) [45,
p. 41&42]. Note that if 2 is a volume in R* with a sufficiently smooth boundary 0, the

trace of u € H*(Q2) is not a continuous function on 052, for s < 3/2.

For a sufficiently regular Q C R?, we define the space
THY2(div,00) = {u |u € THY?(0Q), V, - u € H/2(0Q)}, (3.70)

where V; - u is the surface divergence of u, as defined in Appendix A. With the aid of
this definition, we can state a trace theorem for vector functions belonging to H (curl, 2),
as defined in Section 2.3, [1, 11]:

Theorem 11
The mapping u € C'(Q) — m x ul,, can be uniquely extended to a surjective contin-
uous operator v, from H(curl, Q) to TH~/?(div,02), where 0Q is at least twice normal
differentiable.

This theorem is based on the following identity for continuously differentiable vector func-

tions uw and wv:

é//v-(vxu)—u.(Vxv)dV:a#(uxy).ndA: #(nxu)-vdA, (3.71)

Q o

From the above theorem, we infer that the surface current density Jg on a perfectly con-

ducting, sufficiently regular closed surface 052, e.g., a perfectly conducting sphere, belongs
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to TH~'/?(div, ) under finite energy conditions, i.e., for incident fields which belong
to Hise(curl, R?) (cf. the remarks below Eq. (2.32)). Actually, for surfaces with contin-
uously differentiable normal, it can be shown that the surface current density belongs
to TH'?(div,0Q), provided that the incident field is sufficiently regular, i.e., n x E* €
TH'?(div, 99Q) [35]. For the open-screen problem, the results depend rather delicately on
the exact definition of the function spaces and the value of s in the definition of H®*(052).
It is at this point that various notations exist. We will use the notation of E. Stephan,
which is also used in [1]. The link between this notation and the notation in [45] is given

in the footnotes of [1].

Let P be the surface of the perfectly conducting open screen under consideration. If P is
twice normal differentiable, we can construct a volume 2 with boundary 02, such that P
is a smooth part of 0€2. Then we define [1]

TH?(curl, 09) = {u | w € TH*(09), V, x u € H™*(0Q)}, (3.72a)
TH"?(curl, P) = TH"?(curl, 6Q) /TH5$<%(curl, o), (3.72b)
TH " (div,P) = rp(T H5"(div, 00)), (8.72¢)

where Vi x u = V; - (u X n) denotes the surface curl of u, and

TH2(curl,00) = {u | w € TH™(curl, ), supp(u) C 92\ P}, (3.73)

where supp(u) denotes the support of u, i.e., the largest compact set such that (¢, u) =0
for all sufficiently smooth testing functions ¢ with support in 9 \ supp(wu). Further, rp
is the restriction operator on P, which restricts the domain of definition of its argument
to the domain P. The space TH~/?(curl, P) is defined as a quotient space to which the
standard quotient topology is assigned, see e.g. [32]. The definition of the quotient space
implies an equivalence relation between vector functions defined on 0f2, i.e., all vector
fields which are equal on P are considered equivalent, provided that they all belong to
T H~?(curl, 0Q), irrespective of their behavior on the rest of 9Q. The following lemma is
based on this equivalence relation [1] (see also [45, p. 78 & 79]).

Lemma 1

——1/2
TH='?(curl, P) and TH / (div,P) are dual spaces of one another with respect to the
L?*(P)? inner product.

Since the surface current density Jg on a perfectly conducting screen is zero outside the

screen (owing to the continuity of the tangential magnetic field), the appropriate function
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—~——1/2
space for Jg is TH / (div, P). Elements of this function space are characterized by the

following lemma [1].

Lemma 2
1. Let u be such that u € 7/7\1{171/2(73), and V, -u € H™Y/2(P). Thus, we can define
the normal trace v,u on JP, i.e., the boundary contour of P, in each point r» € 0P
in the tangent plane at » € P, in the space H~!(0P). This trace is given by the
following formula:
(v, ¢) = (u, ViR$) +(V, - u, Rp), (3.74)

where R¢ is an arbitrary function of H*/(P) whose trace ¢ on 9P belongs to H'(0P),
and V R¢ is the surface gradient of R¢ on P.

/2

1
2. We have w € TH ~ (div,P) if and only if y,u = 0.

The theorem in [61] on the solvability of the EFIE can be stated as follows.

Theorem 12
If Re{s} > 0, s # 0, where s denotes the Laplace parameter, the electric field integro-

—_1/2
differential operator for a sufficiently regular open screen P is a mapping from T'H / (div, P)

to TH~'/?(curl, P) and is continuously invertible on these spaces.

This theorem, together with Lemma 1, implies that we can use the Galerkin method
together with the L?(P)? inner product on the surface of the scatterer to discretize the
EFIE. In that case, the basis and testing functions should belong to 7/:?[71/2 (div,P). A
minimal requirement for such functions is given in the second part of Lemma 2. The rooftop
functions defined in [28] and the Rao-Wilton-Glisson functions of [52] are examples of such

functions.

3.5 Dielectric object

In Section 2.6, we have distinguished between three types of domain integro-differential
equations for a dielectric object. The domain integro-differential equation (2.62) was an-
alyzed in [47], under the assumption that the permittivity functions are continuously dif-

ferentiable with respect to the spatial variables. However, for a permittivity function with
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discontinuities, sharp edges, or corners, the analysis in [47] breaks down. Recently, the
same domain integro-differential equation was analyzed by means of the Banach contrac-
tion theorem in [82] under finite energy conditions. In this analysis, no assumptions are
made on the smoothness of the permittivity functions, although both the object and the
background need to be lossy. Here, we present an analysis of the domain integro-differential
equation (2.65) in the presence of discontinuities, sharp edges, and corners in the permit-
tivity function, including the cases in which the background or the object (or both) are
lossless and Re{s} = 0.

First, we need to establish some properties of the permittivity function, assuming that o
is identically zero. In general, £(7, s) is a 3 x 3 matrix function, that is invertible at every
(fixed) space coordinate for a fixed value of s. Further, the modulus of every element of

the matrix is bounded from above. After splitting € in a real and imaginary part, i.e.,
e=¢ —je', (3.75)
we can pose even stronger hypotheses on ¢, based on causality and energy:
0<¢& - (€) <a'¢r-€, (3.76a)
0<¢ - ("¢) <d"¢" €, (3.76b)
for ¢ € C? and where * denotes complex conjugation. Further, the coefficients ¢’ and a”
are independent of r and s. These relations should hold for any fixed point in space and
indicate that both ¢’ and ¢” are positive semi-definite. Furthermore, we will assume that
if the real part is indefinite at some point in space, the imaginary part will be definite and

vice versa, for a fixed s. This guarantees the existence of the inverse of (r, s) at any point

in space. Hence, for a domain G that contains the dielectric object, we have

[ £-cnavza ][ 1 1 (3.77)
G g

for some o > 0. A discussion of these hypotheses can be found in [11, Chapter 1]. In case

the object contains Ohmic losses, similar inequalities can be derived for o(r,s)/s+¢(r, s).

3.5.1 Helmholtz decomposition

To analyze the domain integro-differential equation, we extend the domain D to the cube
IC, with boundary 0/C, such that D is contained in C and the distance d between D and
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oK

Figure 3.1: extension of the domain D to .

OK is positive. This is shown in Figure 3.1. We choose a Cartesian coordinate system such
that its origin coincides with the center of the cube, the axes are oriented parallel to the
edges of the cube and these edges have length 2a. Further, we extend the definition of the
contrast-current density J¢ to IC by extending J by zero outside D.

Let f be a continuously differentiable vector field on K, i.e., f € C1(K)?> N C(K)3. Then

the Helmholtz decomposition allows a decomposition of f as [18]
f(r)=Vp(r)+V xw(r), (3.78)

where p € C?(K) and w € C1(K)* N C(K)3, for » € K. We can supplement the Helmholtz

decomposition by a boundary condition for w
n X wl,. =0, (3.79)
where m is the outward-pointing unit normal vector of K. Using the identity

V(gxh)=h-Vxg—g-V xh, (3.80)
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where - indicates the (non-complex) scalar product between two vectors, we have

/// (w* x Vp)dV = // Vp-V x wdV, (3.81)

where * indicates complex conjugation. From Gauss’s theorem and Eq. (3.79), we obtain

the orthogonality relation
// Vp -V xw'dV = #Vp- (n x w*)dA = 0. (3.82)
K oK

Further, it can be proven [17, p. 245-248&314] that
/// r —r)p(r)dV’, (3.83)

G(r) = 2P (;‘Lf"/ ), (3.84)

where

satisfies the inhomogeneous Helmholtz equation

82

V?s(r) — = s(r) = —p(r), (3.85)
c
for » € K. For a continuously differentiable scalar function ¢(r), we can show by straight-

forward integration by parts and by using the translation invariance of G(r — ') that

///G(r —r)0yq(r)dV' =
' /// Clrm // G(r —r')q(r")dA" — // r—7')q(r')dA’,

8K‘i:a 8K|

(3.86)

where ¢ € {z,y, 2}, 7 € {2/,y, 7'}, OK|,_, is the surface of the cube described by i = a
and OK|,__, is the surface of the cube described by i = —a, e.g., OK|__, is given by z = a,
—a < y < a, —a < z < a. This identity, applied to the separate components in the
Helmholtz decomposition, together with Eq. (3.79), yields

(07 r— )V x w(r)dV’ vX[ﬂp r—w()dV',  (3.87a)
//G'r—'r V'p(r)dV’ V///Gr—r r)dV'+

#G r — r)p(r)n(r)dA. (3.87b)
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We note that the term containing the volume integral over p is identical to Vs(r) in
Eq. (3.83). From Eqs (2.42) and (2.43a), we observe that the scattered electric field is of

e womr) = (V-3 [ff o —rrserar (8.88)

where f(7) represents the contrast-current density J*(r), after extension to IC. If we apply
the results of Eqs (3.78), (3.83), (3.85), and (3.87) to the representation of the scattered

electric field, we obtain

<vv - —‘Z—é) / / / Glr — ) f(r)dV' = (vv . —i—;> #G(r P p(r () d A

o 22/77 Glr —r)V x w(r)dV, .

for r € K.

3.5.2 Mapping properties under finite energy conditions

In view of the radiation conditions discussed in Section 2.4, we expect J¢ to belong to
the space L?(K)?, provided that xE" also belongs to L?(K)?. Therefore, it is useful to
investigate the mapping properties of the domain integro-differential equation (2.65) as a
mapping from L?(K)? to L?(K)3. Based on the fact that the continuously differentiable
functions are dense in L*(K), the Helmholtz decomposition can be extended to vector fields
in L?(K)? in the sense of Eq. (3.78) and the boundary condition (3.79) [18, Corollary 6,
p. 226]. Accordingly, we have p € H'(K) and w € H},(K)?, where
H'(K) = {g] g€ L*(K), Vg € L*(K)’}, (3.90a)
Hy(K)? = {g g € H'(K)’, n x gly =0} (3.90b)

The element p is uniquely determined up to a constant and w is unique under the supple-

#w -ndA =0, (3.91)
S

for each regular closed surface S € K. We will assume that the remaining constant of p

[[frav =0 o

K

mentary condition

has been fixed by demanding
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Owing to the same density properties, the results of Eq. (3.89) can be generalized to
f € L?(K)?. To this end, we introduce the operators

If =f, I:I2(K)? — L*(K)3, (3.93a)
Pf = Vp, P:L*(K)® — L*(K)3, (3.93b)
Qf = (I P)f =V x w, LA(K)* — L*(K)?, (3.93¢)

Kf= /// r—7r)f(r)dV’, K : L*(K)> — H*(K)?,  (3.93d)

(
L(

Lf = (C_o - VV. > #p(r )G(r —r)n(r)dA’, L:L*K)>— C>®(K)*  (3.93¢)
M, f = xf, M, : I2(K)® — LA(K)*.  (3.93f)

The operator L exists if p has been fixed according to Eq. (3.92), since in that case p
is uniquely determined by f. Further, the operators P and () are mutually orthogonal
projection operators, by Eq. (3.82), in line with the Helmholtz decomposition. Using these
definitions and the preceding results for the Helmholtz decomposition of Eq. (3.89), we can
write, for J¢ € L*(K)3,

. 2
seoxE = J° + x z—ZA(JC) —VV-AJ)| = [[ +MP+ MKQ+ ML} J". (3.94)
0

For this combination of operators, the following properties hold.

e [ + M, P has a bounded inverse. This will be proven in Section 3.5.4.

e The Green’s function GG in the operator K is square integrable on K and therefore K is
a Hilbert-Schmidt operator. In particular, K is compact from L*(K)? to L*(K)? [32].
This implies that the product M, KQ is compact from L*(K)? to L?(K)3, since both
M, and @) are bounded.

We intend to cast the operator on the right-hand side of Eq. (3.94) in the form

T+C, (3.95)

such that the inverse of T' exists and is bounded from L?(K)? to L?(K)?, while C' is compact
from L?(K)? to L*(K)3. In that case, we can apply Theorem 7 to establish well-posedness
of the scattering problem. This leaves us with the operator product M, L. We observe that
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the function x(7) is identically zero for 7 outside D. Therefore, we introduce an auxiliary

operator M, in the following way

Myf(r) = ¢(r)f(r), (3.96)
where ¢(r) is a C§°(K) function such that

p(r) =1 for ienaf;c\a: —r| >2d/3,
< < i _
0<¢(r)<1 for d/3< mlenafic e —r| < 2d/3, (3.97)
= ‘ —rl <
é(r) =0 for mlenaf;c\:c r| <d/3,

for » € IC, and d is the minimum distance between the boundary 0 and the domain D.

We can now write

x(r) = x(r)o(r) + x(r)(1 — ¢(r)) = x(r)o(r), (3.98)

owing to the fact that x(r) = 0 outside the domain of the dielectric object. Hence,
My = Myy + My(—g) = Myp = My My, (3.99a)
= M, L = M, M,L. (3.99b)

We shall prove that ML is compact. The operator MyL is a mapping from L*(K)? to
Cs°(K)?. This is a consequence of the fact that the function G is a C™ function outside
its singularity. The singularity is confined to O/C, since the integration is restricted to OX.
Further, C$°(K)? is a subset of H'(K)3. Owing to the compact-imbedding theorem for
Sobolev spaces [3, p. 144], MyL is a compact operator from L?(K)* to L?(K)?. Finally,
the operator M, is bounded, since x(r) is bounded. Hence, by Theorem 4, the operator
M, M, L is compact from L*(K)? to L*(K)3. We conclude that M, L is a compact operator.
It is for this reason that we have extended the domain D to the cube K. Moreover, the
cube allows for an elementary Helmholtz decomposition since it is connected and simply
connected. From the point of view of numerical methods, the cube is also a logical choice,
since it allows straightforward meshing and the application of algorithms such as the Fast

Fourier Transformation.

We end up with an operator in the form of (3.95), with

T =1+ M,P, (3.100a)
C = M, KQ+ M,LS. (3.100b)

To prove existence and boundedness of the inverse we still have to prove that the solution

of the operator is unique. Therefore, the next step is to prove uniqueness.
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3.5.3 Uniqueness

Uniqueness of the solution to Maxwell’s equations, subject to the radiation conditions, for
a dielectric object of finite size, i.e., the domain of the object is bounded in R3, with a
finite number of sharp corners and edges in a homogeneous background was proven by
Jones [36, Chapter 9]. In the proof, the continuity of the tangential electric and magnetic
fields at the interface between the homogeneous background and the dielectric object is
used. Therefore, we can assume that the following system has only the trivial solution:

V x H° = seE°,

V x E* = —sugH?, (3.101)

radiation conditions,

where ¢ equals ¢y outside a bounded domain. Let us now assume that both Ji and J5
are solutions of Eq. (2.65) with the same excitation. Then J§ = J{ — J§ is a solution
of the homogeneous counterpart of Eq. (2.65). The corresponding scattered fields E5 and
H; generated by this current density, and subject to the radiation conditions follow from
Eqgs (2.38), (2.42), and (2.43a). By definition of the current densities J¢ = seox(E’ + Ef)
and J§ = seox(E" + E3) we have J5 = seox(E; — E5) = seoxEj. Consequently, the
fields E5 and Hj satisfy Eq. (3.101). Therefore, we can conclude that E5 = 0. Hence,

5 = 0 and the integro-differential equation (2.65) has a unique solution, provided that
(R?)°.

the solution is restricted to LZ

3.5.4 The operator [ + M, P

From Section 3.5.3, it follows that the equation
(T + C)J° = segM, E', (3.102)

has a unique solution, so it remains to prove that the solution exists. In Section 3.5.2, we
have shown that the solution exists if the operator T = I + M, P is bounded and has a
bounded inverse. The boundedness of T is a simple consequence of the boundedness of
g(r, s). To prove the existence and boundedness of the inverse, we decompose the operator
T in the form of a 2 x 2 operator matrix. This is possible, since P and () are mutually
orthogonal projection operators and R (P) U R (Q) = L*(K)3.

P+ PMP 0
QM, P Q

PM; P 0
QM P Q

, (3.103)
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where we have used the fact that I + M, = M., and that P is idempotent, since it is a

projection operator. Hence, we can denote the mapping properties of 1" as

P P
o[ REV) L RP) Y (3.104)
R(Q) R(Q)
Further, P is equal to the identity operator on R (P) and @ is equal to the identity operator

on R (Q). Therefore, straightforward linear algebra shows that we can construct an inverse

of the form
PAP 0

—QM,PAP Q
where PAP should be the inverse of PM;,, P on R (P). At the same time, if PAP does not

exist, then the inverse of T" does not exist. Therefore, a necessary and sufficient condition

T = , (3.105)

for the existence of the inverse of I 4+ M, P is that PAP exists. However, the operator
M., is coercive, as can be seen from the hypotheses on € in Eq. (3.77), since I 4+ x = ¢/&q,
or I +x = (0/s+¢€)/ep in case Ohmic losses are present. Further, the range of P is a
Hilbert space with respect to the L?(K)? inner product, and the coercivity of PM;,, P
on R (P) is a direct consequence of the coerciveness of M., i.e., PM., P is a bounded

coercive linear operator on R (P). Theorem 8 guarantees the existence and boundedness
of the inverse of PMy, P on R (P), which is denoted as PAP.

Along the same lines and under the same conditions for e(r,s) or o(r,s)/s + &(r, s), it
can be proven that the operator in Eq. (2.62) is an invertible mapping from H (curl, G)
to H(curl,G), where G is a regular domain in K that contains D in its interior. Finally,
Eq. (2.64) and Eq. (2.66) are invertible mappings from H(div,G) to H(curl,G), owing to
the mapping properties of £(r, s) and o(r, s)/s + (7, s), respectively.

3.5.5 Summary for the dielectric object

We have shown that, under very general assumptions with respect to the properties of a
dielectric object, the domain integro-differential equation for the contrast-current density
has a bounded inverse from L?(K)3 to L*(K)® by showing that it can be reduced to a
Fredholm integral equation of the second kind with a unique solution. In other words, the
problem is well-posed from L?(K)* to L*(K)*. For a projection method, this means that
we can adopt the Galerkin method with respect to the L?(K)? inner product and with

basis and testing functions belonging to L?(K)3. Alternatively, one could construct basis
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and testing functions for the Helmholtz decomposition. However, the presented analysis is
not directly applicable in a practical numerical tool that employs local basis and testing

functions.

At present, numerical schemes based on Eq. (2.62) [2] and Eq. (2.64) or Eq. (2.66) [60,
84, 86, 87| are available. In these schemes, which employ the L?(D)? inner product, the
term VV - A is tackled by bringing the gradient operator over to the testing function,
which is piecewise linear in the longitudinal direction. As a result, a finite-difference
formula is obtained for the differential operator. For the formulation where the Green’s
function has been replaced by a spatially averaged version of the Green’s function [2,
84, 86, 87|, this approximation is valid, since the weak Green’s function is continuous
everywhere. It has been demonstrated that the weak Green’s function converges to the
original Green’s function when the radius of the sphere, on which the Green’s function
is averaged, goes to zero. However, further research is required to examine whether this
also holds for the combination of the integro-differential equation and the weak Green’s
function. For all of the methods mentioned above, it is not clear that the dual space of the
range space of the domain-integro-differential operator can be spanned by the proposed
testing functions, since the differentiability of these testing functions is used explicitly.
This results in a solution space for the contrast-current density that is larger than L?(KC)3.
In turn, this larger space may no longer give rise to a unique solution of the domain
integro-differential equations. Therefore, we cannot guarantee convergence in norm for
these methods. Recently, a “potential integral equation method” was proposed [19]. The
advantage of its formulation is that the second-order spatial derivatives operating on the
vector potential (VV-A) have been removed, at the expense of spatial derivatives operating
on the permittivity function. Therefore, this formulation is restricted to sufficiently smooth
profiles. The numerical scheme proposed for this formulation is based on point-matching,

which implies that convergence in an optimal norm cannot be expected.



Chapter 4

Discretization and solution strategy

For the thin wire and the perfectly conducting flat plate, we will demonstrate the steps to
arrive at a discretized system of equations. Further, we will discuss the conjugate-gradient
method to solve these systems in an efficient manner. The dielectric object will not be
discussed here, since we have not developed a discretization for the corresponding integro-
differential equation. We will consider the dielectric object again in Chapter 6, where we

will use a standard discretization.

4.1 Straight thin-wire segment

For the thin-wire problem, we will consider the reduced-kernel integral equation only. We

repeat the pertaining equation:

L
2
—s50F (r =0,2) = {83 — %] /ga(z — 2L (Z)d, (4.1)
0
0

for z € (0,L). The discretization of this equation leads to simpler expressions than the
discretization of the integral equation with exact kernel. Also, this equation allows us to

demonstrate the consequences of using an ill-posed formulation.
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4.1.1 Hallén’s equation for the thin wire

From the above equation, we will derive Hallén’s equation by noticing that the operator
in front of the integral is the Laplace-transformed one-dimensional wave operator. The

fundamental solution of this wave operator can be found by solving the equation

()

The solution for z € R that satisfies the one-dimensional radiation condition is given by

G1(z, 20) = —d(2z — 20). (4.2)

¢ s
G1(z,20) = 2—2 exp <_c_0 |z — z0|> : (4.3)

which is the so-called one-dimensional Green’s function. We now use a one-dimensional

version of Green’s theorem, viz.

/f(Z)g”(Z) — "(2)9(z)dz = [f(2)g'(2) = f'(2)9(2)]s - (4.4)

We set
L
= /ga z— 2L (7)d7, (4.5a)
0
“ .,

o) = Dexp (—C— o=l (45b)

0

and use Eqs (4.1) and (4.2) for the second derivatives of f(z) and ¢(z). This results in

L L
Yi 5
galzo — 2VL(2)d2' == | BEi(r=0,2)exp | —— |20 — 2| ) d=
2 Co
0 0 (46)
S $
+ Fyexp (——Zo) + Frexp [——(L — ZO)] ,
Co Co

for 29 € (0, L) and where Yy = /20/po. Eq. (4.6) is known as Hallén’s equation. The major
attraction of Hallén’s equation is that the spatial derivatives have been removed. The terms
with Fy and F}, correspond to the boundary terms in Eq. (4.4). Strictly speaking, Fj and
Fp, depend on I,(z), but we will treat them as independent variables. For the formulation

of Hallén’s equation, the choice of the integral equation with exact kernel would have
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produced the same expression as in Eq. (4.6), with g,(z) replaced by g.(z). For Hallén’s
equation with exact kernel, Jones [37] has proven existence and uniqueness if the additional
boundary conditions I,(0) = I,(L) = 0 are used. In that case, the additional constants Fj
and Fy, are in fact independent variables and Hallén’s equation is equivalent to Eq. (2.58b).
For Hallén’s equation with reduced kernel, such results are not known. A way to eliminate
the additional constants Fj and F7j, in case of Hallén’s equation with reduced kernel would
be to enforce the equality sign at the additional points z = 0 and z = L. This is discussed
in [72] for Hallén’s equation in the time domain. However, it is not clear whether the
additional boundary conditions 7,(0) = I,(L) = 0 guarantee the independence of F, and

Fp, in this case.

4.1.2 Discretization of Hallén’s equation

To obtain an approximation of the current, we divide the wire into N equal segments
of length A = L/N. Then we enforce Hallén’s equation at the points zp = nA, n €
{0,..., N}, which results in a linear system of N + 1 equations for the current I,(z),
and Fy and Fj. Traditional numerical schemes introduce a set of basis functions for
the current and try to evaluate the resulting integrals over the kernel g, and the basis
functions. However, in almost all cases the analytical evaluation of the resulting integral is
hampered by the exponential function in the reduced kernel. This problem can be resolved
by approximating the exponential and the current at the same time. Therefore, we employ

the approximation [72]

N-1
L (Z") exp —C—SO\/a2 + (nA — z’)Q] = Z Aa(Z = n'A) - L(n'A)
=1

(4.7)
X exp [—i\/a2 + (nA —n'A)?|,
Co
where
1L A
Aa() =4 Lo for <A, (43)
0 elsewhere.

This is a linear-spline interpolation. The approximation of the exponential is justified by
the fact that the current and the exponential function exhibit oscillations of approximately
the same period if the real part of the Laplace parameter is small. In that case, the mesh

width should be much smaller than the wavelength to capture the oscillating behavior of



64 Discretization and solution strategy

the current by piecewise-linear functions. Also, there is no reason to take into account
the behavior of the exponential function more accurately than the behavior of the current,

since the approximation of their product determines the accuracy of the computed integral.

The resulting set of equations is

Z W €xp ( —R,_ ) L(n'A) = an/ exp (——]n— n \A) E'(n'A)
n'=1

n’=0

(4.9)
+ Fyexp <—inA) + I, exp <—£(L - "A)) :

Co Co

for n € {0,..., N}. Further, R, = v/n2A? + a2, and closed-form expressions are available
for the weighting coefficients W,,, which are defined as

2 dz
W / 477\/a2 nA — )2 (4.10)

The summation involving the incident field E? is obtained by approximating the pertaining

integral by a repeated trapezoidal rule, which gives rise to the coefficients

L
wn:/A(z—nA)dz: A m=L...N-1 (4.11)
A/2 n=0,N.

2=0
This is allowed for sufficiently smooth incident fields only. In case of plane waves and delta-
gap sources, a closed-form expression of the integral over the incident field is available.
The left-hand side of Eq. (4.9) can be recognized as a discrete convolution, which can be
efficiently computed by the Fast Fourier Transformation (FFT). The discrete convolution
has been obtained owing to the continuous convolution of the original thin-wire equation
and to the discrete translation invariance in the basis and testing functions, i.e., the sets
of basis and testing functions consist of a single function with equidistant shifts. Eq. (4.9)

could have been obtained directly from Eqs (4.1) and (4.7) by choosing testing functions

T (z —nA) = 2_5 exp <—C—SO |z — nA|) , (4.12)

for z € (0, L). Anticipating the discussion in Section 4.2.3, we remark that we can remove

the boundary terms with Fy and Fp, by using the testing functions

Asinh [(s/co) (A — |z — nAl)] for |z — nA| < A,

(4.13)
0 elsewhere,

T(z—nA) = {
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for n € {1,...,N — 1}. The coefficient A is introduced to scale the equations. We
will refer to these functions as piecewise-sinusoidal testing functions, although they are
a generalization of these functions. The merit of this formulation is that we save two
equations and two unknowns, viz. Fy and Fp, which becomes more important when we

consider an array of wires. A sensible choice for the coefficient A would be

1
Als) = —————. 4.14
(5) sinh(sA/ep) (4.14)
Applying the testing procedure to the right-hand side of Eq. (4.1) yields
L
2

/T(z —nA) [83 - g] f(z)dz =

0 0 (4.15)

As

Co

{f((n —1)A) — 2cosh (C_SOA> f(nA) + f((n+ 1)A)} ,
where we have used the notation of Eq. (4.5a). Hence, the one-dimensional Laplace-
transformed wave operator has been replaced by a natural generalization of the central
differences for 9% — s?/c2, which becomes exact for A — 0 and the above choice for
A. Usually, difference formulas are obtained from an interpolation polynomial for the
expansion functions. However, in this case we obtain the difference formulas from the
choice of testing functions. As a result of the testing procedure, we usually end up with

approximations in the forcing function.

4.1.3 Finite array of straight thin wires

We continue the discretization process for an array of straight thin wires, consisting of
M wires with circular cross-section, all with radius a. Further, the axes of all wires are
aligned parallel to the z-axis in the plane y = 0. The axis of wire £ has coordinates
(x,y,2)=(xk, 0, 2) for z € (—Lg/2, Lg/2), where Ly indicates the length of the k-th wire.
This means that the center of every wire is located at z = 0. This problem can be modeled
with the aid of the thin-wire equation with reduced kernel. On the axis of wire £, i.e.,
r=uwx y=0,z € (—L/2,L/2), we can write
2

(02 = ) Aslon,2) = —s=0EL (11, 2), (1.16)
0
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for k=1,..., M, where

| ) Li/2 o exp [—(S/CU) @+ (2 — z’)Z] Ny
Sz, 2) = k(2 4”\/m z
—Ly/2 Ly /2 [ \/ (417)
Mo exp |—(s/co)/(xx — xm)? + (2 — 2')?
+ %L[/Z Im(z) 477\/(1'19 — :L'm)2 ¥+ (Z — Z’)2 dz ,

where we have approximated the coupling between the current on wire £ and the other
wires by placing the current on the other wires on the wire axes. We will show that
this approximation is valid when the distance between wire k£ and the other wires is large

enough with respect to the radius of the wires and the wavelength.

For the distance between observation point on the axis of wire £ and the location of the

currents on the mantle of wire m we have

I — 7| = /(xr — Tm)? — 2a(2 — ) cos(@) + a2 + (2 — /)2, (4.18)

for ¢ € (—m, w]. Further, we define

R=/(z) — )2+ (2 — )2 (4.19)

To approximate 1/ |r — 7’| by 1/R and exp(—s|r — | /¢y) by exp(sR/cy), for s = jw, we

have the conditions

=1
R

“ e —#| — R| < 2r. (4.20D)
Co

‘1 - <1, (4.20a)

A Taylor series of | — 7’| /R shows that these inequalities hold under the conditions

a < R, (4.21a)
o’ < AR, (4.21D)
a << \/2. (4.21c)
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We make the following approximations:
N—1

2 e —am) + (2 — 2) ] > Aa,l Z+(L7—7’LA )

Co

Lo (2') exp {_

n=1

Co
N—1 I
I, (") exp [—— a4+ (2 — z’)Z] = Z Ap, (2 + (52 —nAR) - Lu(——== + nAy,)
Co 1 2
s L,
X exp [——\/&2 + (—— +nA,, — z)2] , (4.22Db)
Co 2
where I
Ay ===, 4.23
- (123)
for m = 1,..., M. Notice that we have discretized all wires with the same number of

expansion functions, irrespective of their length. Also, the integrals describing the inter-
action between two different wires are computed with the same accuracy as the integrals
for a single wire. Although this is not necessary, it leads to a straightforward scheme.

We choose piecewise-sinusoidal testing functions Ty (z + Li/2 — (Ay), for k = 1,..., M,

¢=1,..., N —1, since they partially invert the one-dimensional Helmholtz equation, i.e.,
To(2) = sinh [(s/co) (Ax — |2])] /sinh ((s/co)Ay) for |z| < Ag, x = x, (4.24)
0 elsewhere.
Introducing the notations
Ly,
Ilm,n| =1, (—7 + nAm> , (4.25a)
A[lﬂ?, é] :Az (.Tk, —Lk/2 + EA].E), (425b)
exp [—(3/00)\/(35,c —Tm)? + (A, — L /2 — 210)?
Glk,l,m,n] =
47
Lim /2
L, /2 —nAp))dz
/2~ nAm)) for m # k, (4.25¢)
\/Ik—xm (21,0 — 2')?
—Lm /2
exp [— s/co)\/a® + (nAy, — L /2 — z1,0)?
Glk, 0, m,n] =
47
Lim /2
A2 + (L, /2 — nA !
x / Gt (Ln/2 = nAw)d2 g (4.25d)
Va2 + (2 — 2')?

—Lm /2
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where
L
e = —?’“ N (4.26)
we end up with
M N-1
Z {Glk, 0 —1,m,n] — 2cosh (sAx/co) G[k, ¢, m,n| + G[k, L+ 1,m,n]}
m=1 n=1
Ly/2 (4.27)
% ITm, n]/ sinh(sAg/co) = —Yi / To(z + Li/2 — CAQ) B (g, 2)dz,
—Lg/2

fork=1,....M,¢=1,...,N — 1. A closed-form expression for G[k, ¢, m,n| is available.
In general, the above system of equations has no convolution symmetry, except for the
self-coupling terms. The loss of convolution symmetry is caused by the fact that the wires
are not of equal length, and therefore the testing and expansion functions are no longer

identical on each wire.

4.2 Perfectly conducting flat plate

Inspired by the formulation of the Hallén equation for the straight thin-wire segment,
we will proceed in a similar way for the perfectly conducting flat plate. We will call
the result the Hallén-type equation for the flat plate. For this formulation, we consider
a rectangular flat plate in the plane z = 0, described by 0 < x < a and 0 < y < b.
The problem of a flat rectangular plate has been studied numerically by many authors, see
e.g., [28, 52, 84, 85|, and recently an infinite series of eigenfunctions adapted to this problem
has been constructed [34]. We recall the electric-field integral equation of Section 2.5.2

2

—seoEL(r) = {83 — %] Ag(r) + 0,0,A,(r), reP, (4.28a)
0
2

_S€0E;(’I") = {8; — %] Ay(r) + 0,0, A, (r), reP, (4.28b)
0

where P={r|0<z<a,0<y<b z=0}
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4.2.1 Derivation of the Hallén-type equation

In the formulation of the Hallén-type equation, we will concentrate on the x-component of
the electric-field integral equation for a fixed y-coordinate, i.e., we will regard Eq. (4.28a)
as a one-dimensional equation in x. In this equation, we notice the same one-dimensional
Laplace-transformed wave operator as in the thin-wire equation in front of A,. To remove
the spatial derivatives, we proceed in the same way as in the case of the thin-wire equation.
Using Eq. (4.28a) and Eq. (4.2), we write

a

/ [G1 (2, 0) 02 AL (1, y) — Ay(2,9)02G1 (2, 20)] d
© . (4.29)
=— / G1(x, ) {awayAy(x, y) + seo B (z, y)} dzx + / §(x — mo) Ap(z, y)dz.

To obtain a second expression for the left hand side of Eq. (4.29), we apply the one-

dimensional version of Green’s theorem in Eq. (4.4), setting

f(x) = Ay(z,y) = Ay(r) for reP, (4.30a)

c s
g9(z) = Gi(z,20) = 2—(; exp <_c_0 |z — $0|> ) (4.30b)

to arrive at

[Gl (l’, xﬂ)aiAw(xa y) - Am(xa y)azGl (LU, xO)] dx

o\@

= |:@ exp <_i |l‘ - .TE0|> a:vA:v(Ia y) (4.31)
2s Co
1 S ¢
+=sgn(x — xp) exp (—— |z — xol) Az, y)]
2 Co =0

As in the case of the Hallén equation for the thin wire, the right-hand side of this equation

can be written in the form

R exp (-2 + Bpyexs (S -a)) (432)

Co Co
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with Fy(y) and F,(y) as yet unknown functions of y. This means that we can write the
alternative equation
a

Ay(z0,7y) :/Gl(x,xo) [0,0,A,(x,y) + seoEL(z, y)] do+
0 (4.33)

Raess (~ 2 ) + B esp |00 -0)].

Co Co

The first integral on the right-hand side of Eq. (4.33) is further simplified by integration
by parts:

/ Gz, 20)8,0, Ay (2, y)dz = (G (2, 70), Ay (2, )",
0 (4.34)

— [ 041 (a20)0, 4 o )i
0
The boundary terms can be included in the boundary terms that are already present in

Eq. (4.33), since Fy(y) and F,(y) until now are arbitrary functions of y, so there is no

problem in adding one more function. Eq. (4.33) can now be written as

1 / s
Ay(0,79) =3 /sgn(x — Zg) exp (—c—0|x - x0|> Oy Ay(x,y)dx
0
+ Yo /exp <—i\x - x0\> E(x,y)dx (4.35)
2 Co
0

s s

+ Rl esp (—2) + Eawexn | S (- )]
Co Co

where Yy = \/eo/po. After a similar analysis for the y-component of the electric-field

integral equation, we obtain

b

1 5
Aytoa) = [ senty = w)exp (=2l =l ) 2.4, (o)
0
vy | (4.36)
0 S i .
2 [exo (=Zl— ) Byt
0

+ Hy(z) exp <—C—50y0) + Hy(z) exp { (o — b)] .

S
Co
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4.2.2 Discretization of the Hallén-type equation

To find an approximate numerical solution, we enforce Eqs (4.35) and (4.36) at discrete
points. First, we divide the rectangular plate into equal rectangles of size Az x Ay in
the x- and y-direction, respectively, where Az = a/M and Ay = b/N. We enforce the
x-component of the Hallén-type equation at the points

(wo,y) = (kAx, (£ + %)Ay), ke{o,...,M}, (€{0,...,N—1}. (4.37)

Therefore, A;(zg,y) should be computed at these points. For the y-component of the

Hallén-type equation, we enforce the equality sign at the points
1
(,y0) = ((k + §)Ax,€Ay), kelo,....M -1}, ¢€{0,...,N}, (4.38)

and therefore A,(z,yp) should be computed at these points. In the remaining part we will
only consider the z-component of the Hallén-type equation, i.e., Eq. (4.35). We turn our
attention to the approximation of the vector potential components. Approximation of the
vector potential requires approximating the surface current density Jg. We will make use
of standard rooftop functions [28] to approximate the surface current density. However, the
exponential of the Green’s function defined in Eq. (2.44) hampers an analytic expression.
Therefore, inspired by the discretization of the thin-wire equation, we approximate the

product of the exponential and the surface current density at the same time.

L&) e |~ 2= v =
> > {mACE, (n+ %)Ay} Aaa(r’ = mAz)lay(y' — (n + %)Ay) (4.39)
X exp —C—SO\/(;C —mAz)* +(y — (n + %)Ay)2 :

where J,(2',y') = Js(z,y) - u,, the pair (z,y) is given by Eq. (4.37), and Aa,(x) is defined
by Eq. (4.8) and

1 for |y <2y
I1 = 27 4.40
Ay(y) { 0 elsewhere. ( )

The remaining surface integrals in the expression of A, are available in closed form [81]. For
the y-component of the vector potential, we use an analogous expression for the exponential

and Jy, i.e., Jy, = Jg - u,.
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The line integral containing the y-component of the vector potential in the integrand is
approximated by a repeated midpoint rule and the spatial derivative is approximated by
a central difference:

1 r S
5 /sgn(x — kAz) exp (—0—le — kAx\) 0y A, (kAz, y)\y:(H%)Ay dx

AI Z exp (——|(m + 3~ k)A:E|> sgn(m + % — k) (4.41)

X {Ay((m + §)Ax, (¢ +1)Ay) — A, ((m + §)Ax,€Ay)

The central differences can also be obtained by integrating the equation in the y-direction
from (A to (¢ + 1)A, and approximating the terms without a partial derivative in the

y-direction by a midpoint rule.

We observe that the summation in Eq. (4.41) can be written as a discrete convolution.
Hence, we can use the Fast Fourier Transformation (FFT) to compute the expression ef-
ficiently. Also, the expressions for the components of the vector potential at equidistant
points have the form of a two-dimensional discrete convolution and can therefore be eval-

uated by a two-dimensional FFT.

4.2.3 Removing the boundary terms

In Section 4.4.2, we will show that the Hallén-type equation for the rectangular plate suffers
from poor convergence and we conjecture that this is caused by the boundary terms in the
Hallén-type equation. Therefore, we will show how the boundary terms can be removed
from the equation. Consider Eq. (4.35) for fixed y and for three different values of z,. We
now have a set of three equations from which we would like to eliminate the boundary
terms with Fy and Fj,. Therefore, we multiply each equation by a suitable constant and
add them to form a single equation in which both boundary terms are eliminated. To make
this clear we look at the resulting terms for Fj and F,, where we have denoted the three

different points for xy by z;, x5 and x3 and the coefficients, by which we multiply, «,
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and 7y

Fy - a exp {—ixl} + Bexp {—ixg} + yexp {—ixg,} =0, (4.42a)
Co

Co Co

F,: aexp{ci(xl —a)} + Bexp {Ci(x2 - a)} +*yexp{i(x3 —a)} = 0. (4.42b)

0 0 Co

Upon expressing « and v in terms of 3, we obtain

-~ sinh[(s/co)(x3 — x2)] a
sinh[(s/co) (w3 — x1)] .
_ sinh[(s/co)(z2 — m1)]
sinh[(s/co)(zg — x1)] b

This shows that we can expect problems when sinh[(s/co)(z3 —x1)] = 0. If s has a non-zero
real part, this will not occur. However if s is purely imaginary, i.e., s = jw, problems arise
if |3 — 21| is a multiple of half a wavelength. Therefore, we choose x; = x5 — Az and
3 = X9+ Ax. Since Nyquist’s sampling criterion forces the mesh size to be finer than half

a wavelength, the problem does not arise.

Instead of removing the boundary term after the equations have been discretized, we can
obtain the same result by using the appropriate one-dimensional Green’s function. This
Green’s function can be reconstructed by taking the original Green’s function, shifting it
over a distance Ax and multiplying it by « or 7. Then we combine the three Green’s

functions to obtain a new Green’s function which does not give rise to the boundary terms.

Following this procedure, we obtain the new one-dimensional Green’s function, viz.

G (2. 70) = Asinh [(s/cy) (Az — |x — x0|)] = € [0 — Az, z0 + Ax], (4.44)
0 elsewhere,
where A is an appropriate constant to match the amplitude, e.g.,
1
A= ————FF—. 4.45
sinh(sAx/cg) (4.45)

Apparently, the Hallén-type equation is equivalent to the standard EFIE formulation,
where the x-component is tested with piecewise-sinusoidal testing functions in the z-
direction, when the real part of the Laplace parameter s is zero. A similar interpretation
holds for the testing functions that operate on the y-component of the EFIE. In view of the
remarks made for the Hallén-type equation, we can summarize our set of testing functions

working on the z-component of EFIE as

T(x —pAz,y — (¢ + 1/2)Ay) = Gz, pAz)Iayy — (¢ + 1/2)Ay], (4.46)
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forpe{l,...,M —1},q € {0,..., N—1}. The remaining integrals in the y-direction that
are not directly available are approximated by a midpoint rule. For the y-component of

EFIE we employ analogous functions.

By using the piecewise-sinusoidal testing functions, we have eliminated the boundary terms,
at the expense of a finite-difference formula for A, and A, in the left-hand side of Eq. (4.35)
and Eq. (4.36), respectively. This difference formula is generated by the testing functions,
in the same way as for the wire equation. At the same time, our testing functions have
only local support, which allows us to consider more generally shaped flat plates, as long
as these shapes can be represented by a uniform rectangular mesh. Finally, we note that
the discretized Hallén-type equation and the EFIE that is discretized by means of the

piecewise-sinusoidal testing functions are of comparable complexity.

4.3 The conjugate-gradient method

The discretized equations for the thin wire and the flat plate can, at least in principle,
be solved by direct matrix methods, such as LU decomposition. However, the number of
unknowns in the linear system resulting from the discretization process can become quite
large. Solving large systems by such a brute-force method requires considerable storage
capacity and computation time. Iterative techniques are an alternative and they require
a matrix-vector product only. For the thin wire and the flat plate we have substantiated
that the matrix-vector product can be efficiently computed by means of the Fast Fourier
Transformation. This reduces the problem to a lower storage requirement and a shorter
computation time. Although the family of iterative techniques has become large, the
conjugate-gradient method is still one of the most elegant algorithms. A clear exposition of
its properties can be found in [6, 7, 84], the most important property being the minimization
of the residual. Basically, the conjugate-gradient method is a full projection method with
minimal costs, owing to certain orthogonality properties of the Krylov subspace. For the

linear system

Lu=f, (4.47)
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where L is an M x M matrix, u is the unknown vector and f is the excitation vector, the

conjugate-gradient method is given by

ug arbitrary, (4.48a)
ro = f — Luy, (4.48b)
Uy = Up_1 + QpUy, (4.48c¢)
Up = Trnfl + anlvnfla (448d)
rn=f— Lu, =7r,_1 — a,Lv,, (4.48e)
(rn—la Lvn)
= b=l (4.48f)
|| Lvn|[?
(LTry,, Lv,)
By = ———"5, (4.48¢)
[ Lvn|[?

forn > 1, By = 0 and vy = 0. Further, T should be chosen in such a way that LT is
self-adjoint with respect to the inner product between two M-dimensional vectors, defined

as
M
(v,w) = Z VW (4.49)
m=1

where * denotes complex conjugation and v,, denotes the m-th component of v. The norm
| - || of the vector is generated by the inner product in the natural way. If L is not self-
adjoint, the standard choice for 1" is T' = L®, where the superscript ¢ denotes the adjoint.
Typically, we start the algorithm with zero initial estimate, i.e., uy = 0, and we terminate
the algorithm when the residual error ||r,||/||ro|| has dropped below a preset value. The

conjugate-gradient algorithm in combination with a matrix-vector product based on FFTs
is usually referred to as CGFFT.

For the conjugate-gradient algorithm, the speed of convergence can be characterized in
terms of the condition number of the system LT. The minimization property for the
residual, together with the analysis in [59, Section 6.11], gives the result

Il <2 [ Y22 ol (4:50)

where ks is the f9-condition number of the system LT. We note that the conjugate-gradient
algorithm given here does not coincide with the one given in [59]. The above bound on
the residual indicates that problems in the convergence can be expected for high values of
k9. Also, if L is not self-adjoint and we choose T' = L%, the condition number of LT is

the square of the condition number of L. Therefore, if L is already poorly conditioned,
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convergence is even further hampered by choosing T" = L*. This problem is removed in
other Krylov subspace methods, such as the Bi-conjugate-gradient method or the BiCGstab
method [59]. However, the property of a monotonically decreasing residual error, which is
a feature of full projection methods such as the conjugate gradient algorithm, is lost for
the methods mentioned above. Since the minimization of the residual error is also a part of
marching on in anything, as discussed in Chapter 6, we will employ the conjugate-gradient

method only.

4.4 Numerical results

We have discussed the formulation of the problem, the discretization process and the choice
of a scheme to solve the set of linear equations that originates from the discretization. We
are now in a position to present some numerical results for the current on a straight thin
wire and the surface current density on a perfectly conducting flat plate. For both problems
we will examine the Hallén formulation and the piecewise-sinusoidal formulation. We recall
from Chapter 3 that the thin-wire integral equation with reduced kernel is ill-posed and
we will demonstrate the consequences for the numerical approximation. The EFIE for the
plate is well-posed. However, we will show that for the Hallén-type equation the condition

number becomes unacceptably high, due to an improper choice for the testing functions.

4.4.1 Results for the thin wire

For a straight thin-wire segment of length L = 0.5\ and circular cross-section with radius
a = 5-1073)\, where \ denotes the wavelength, we have computed the current along
the segment using 31 basis functions for the current. The incident field is a plane wave,
polarized in the z-direction. For the Hallén formulation, the modulus of the current along
the segment and the relative error versus the number of iterations of the conjugate-gradient
algorithm are given in Figure 4.1. For the formulation with piecewise-sinusoidal testing
functions, the results are presented in Figure 4.2. In both cases, the conjugate-gradient
method was terminated when the relative error dropped below 1073, For the current along
the wire, both formulations give visually the same results. However, the behavior of the

relative error versus the number of iterations is quite distinct, as is the number of iterations
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Figure 4.1: results for a straight thin-wire segment with L = 0.5\, a = 5- 1073, using the
Hallén formulation and 31 basis functions. The incident field is a plane wave, polarized in
the z-direction. (a) Modulus of the current distribution versus the position on the wire.

(b) Relative error versus the number of iterations for the conjugate-gradient algorithm.
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Figure 4.2: results for a straight thin-wire segment with L = 0.5\, a = 5- 1073, using the
piecewise-sinusoidal formulation and 31 basis functions. The incident field is a plane wave,
polarized in the z-direction. (a) Modulus of the current distribution versus the position
on the wire. (b) Relative error versus the number of iterations for the conjugate-gradient

algorithm.
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required for convergence.

To illustrate the consequences of the ill-posed nature of the thin-wire equation with reduced
kernel, we have refined the discretization by a factor of five, i.e., 155 basis functions, for
the same excitation and physical dimensions of the wire. The results for the Hallén and
the piecewise-sinusoidal formulation are shown in Figure 4.3 and Figure 4.4, respectively.
We observe that the Hallén formulation produces erratic results, whereas the piecewise-
sinusoidal formulation still gives smooth results except close to the end faces. These results
are in agreement with the statements made in Section 3.3.3 about the effect of the end faces.
We have computed the condition number of the numerical system for both formulations.
For the Hallén equation, the condition number was approximately 285 for 31 basis functions
and 2.4 - 10* for 155 basis functions. For the piecewise-sinusoidal formulation the condition
number was approximately 169 for 31 basis functions and 422 for 155 basis functions.
In view of the fact that the piecewise-sinusoidal formulation can be obtained from the
Hallén formulation, the difference between the condition numbers for 155 basis functions
is remarkable. A further refinement of the discretization gives unreliable results for both

formulations.

To produce reliable results for even finer discretizations, we apply a regularization method,
as discussed in Section 3.3.4. We will only discuss the piecewise-sinusoidal formulation.
For the penalty term ||Bu||? in the minimization problem (3.55), we choose

N-1

1Bully = Jun—1 — 2un + un |, (4.51)
n=1

where u is the vector that contains the current coefficients, i.e., for the n-th component of
the vector u we have u,, = I,(nA). Further, ug = I,(0) = 0 and uy = I,(NA) = 0. This
regularizer was also used in [70, p. 361] to suppress unwanted oscillations in an inverse-

profiling algorithm. The operator B can be expressed in terms of a tri-diagonal matrix

-2 1 0 ... ... ... 0
1 -2 1
0o 1 =2
B= | t .0 e el e el (4.52)
-2 1 0
1 -2 1
0 0 1 -2 |
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Figure 4.3: results for a straight thin-wire segment with L = 0.5\, a = 5- 1073, using the
Hallén formulation and 155 basis functions. The incident field is a plane wave, polarized
in the z-direction. (a) Modulus of the current distribution versus the position on the wire.

(b) Relative error versus the number of iterations for the conjugate-gradient algorithm.
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Figure 4.4: results for a straight thin-wire segment with L = 0.5\, a = 5- 1073, using the
piecewise-sinusoidal formulation and 155 basis functions. The incident field is a plane wave,
polarized in the z-direction. (a) Modulus of the current distribution versus the position
on the wire. (b) Relative error versus the number of iterations for the conjugate-gradient

algorithm.
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For v € CV~!, it can be shown, by induction with respect to N, that

n=1

N-2
(u, Bu) = — (w? +luy P+ Jun — unﬂ\?) : (4.53)

where (-,-) is the inner product in CN~! and w, is the n-th component of the vector w.
This means that the matrix B is negative definite and therefore it is invertible. Further,
B is sparse. Hence, the matrix-vector product B*Bwu can be computed efficiently, and
the system of Eq. (3.62) can be solved by means of the conjugate-gradient algorithm of
Section 4.3 with T' = I, since the operator aB®B + L°L is self-adjoint.

The matrix B is identical to the finite-difference approximation of the one-dimensional
Laplace operator V2 = 92 on a uniform grid. Since the Laplace operator induces mono-
tonicity, as expressed by the maximum principle, we expect that the matrix B will suppress

the highly oscillating behavior of the current I,(z). Further, we note that the expression

L

/ |21.(2)|" d, (4.54)

0

is a norm if I,(z) belongs to the Sobolev space HZ(0,L). Therefore, the inverse of the
Laplace operator is bounded from L?*(0, L) to HZ(0,L). However, for a general incident
field, the current on the wire close to the end face z = 0 will behave as O(/z) for z | 0.

Hence, the current on the wire will not belong to HZ(0, L) in most cases.

To demonstrate the effect of the proposed regularization, we consider the same configu-
ration as above, i.e., a straight thin-wire segment of length L = 0.5\ and circular cross-
section with radius @ = 5-1073), and the incident field is a plane wave, polarized in the
z-direction. We have computed the current on the wire using 1000 basis functions. Al-
though the number of basis functions is extremely high for this example, it allows us to
clearly demonstrate the effect of regularization. First, we have tried to solve the linear
system by the conjugate-gradient method without any regularization, i.e., Lu = f. After
65000 iterations, the residual error was 1.8 - 1073 and did not yet meet our termination
criterion of 1073. The result for the current on the wire after 65000 iterations is shown in
Figure 4.5(a). Subsequently, we have computed the current from the regularized system
with the above choice for B and o« = 107!, The residual error in the conjugate-gradient
method reached the termination criterion of 10=3 after 391 iterations. The current on the

wire for the regularized system is presented in Figure 4.6(a).
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Figure 4.5: current along a straight thin-wire segment with L = 0.5\, a = 5 - 1073},
using the piecewise-sinusoidal formulation and 1000 basis functions. The incident field is a
plane wave, polarized in the z-direction. (a) Modulus of the current distribution versus the
position on the wire, without regularization and before filtering. (b) Modulus of the current

distribution versus the position on the wire, without regularization and after filtering.
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Figure 4.6: current along a straight thin-wire segment with L = 0.5\, a = 5 - 1073},
using the piecewise-sinusoidal formulation and 1000 basis functions. The incident field
is a plane wave, polarized in the z-direction. (a) Modulus of the current distribution
versus the position on the wire, after regularization with o = 107! and before filtering.
(b) Modulus of the current distribution versus the position on the wire, after regularization
with o = 107! and filtering.
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We observe that the regularization drastically improves the convergence of the conjugate-
gradient method and that the oscillations are suppressed, except at the end faces. To
improve the results for the current, we have applied post-processing in the form of a filter.
This filter can be expressed in the form of a matrix-vector product, where the current

coefficients are stored in the vector u and the matrix is given by

2 1 0 ... ... ... 0
1 2 1
, 0 1 2 " - :
C=711% "= ] (4.55)
2 1 0
: : 2
(0 ... ... ... 0 1 2]

The matrix C' represents a local averaging procedure, which can be applied repeatedly to
smooth the current distribution. In particular, we have applied the matrix-vector product
nine times to the current coefficients obtained with and without regularization, i.e., we have
computed C%u. The results of the filtering procedure are presented in Figure 4.5(b) and
4.6(b) for the current distribution without and with regularization, respectively. The results
in both figures are almost identical. Hence, the most important effect of the regularization

procedure is the improved convergence of the conjugate-gradient method.

4.4.2 Results for the flat plate with the Hallén-type equation

For the Hallén-type equation, we have analyzed the surface current density on a square
plate with dimensions A x A, where A denotes the wavelength. We have applied a mesh of
31 x 31 squares. The incident field was a plane wave at normal incidence with amplitude
1 V/m, polarized in the z-direction. Numerical tests have shown that a converged solution
is obtained for relative residual errors smaller than 107 in the conjugate-gradient scheme.
By convergence we mean that the results have become smooth and further iterations show
no visual changes. Figure 4.7 shows the progress of the iterative procedure for this case
and Figures 4.8(a) and 4.8(b) show the modulus of the surface current densities in the
x- and y-direction, respectively. The surface current densities closely resemble the results
in [52, 84, 85]. From the progress of the conjugate-gradient method in Figure 4.7, we observe

that it requires a large number of iterations to obtain a converged solution. Table 4.1
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Figure 4.7: progress in the convergence of CGFFT for the Hallén equation.

presents the number of iterations needed for a converged solution for three different cases,

all of which are plane-wave excitations at normal incidence with an x-polarized wave.

Dimension Mesh | # iterations | rel. error
A X A 15 x 15 459 107°
AX A 31 x 31 1418 107°

1.5A x 1.5\ | 31 x 31 2484 107°

Table 4.1: number of iterations for several meshes.

The large number of iterations needed to obtain a converged solution is an indication

that the system matrix has a large condition number, as was explained in Section 4.3.

To determine the origin of this large condition number, we have performed an eigenvalue

analysis. We have chosen to compute the eigenvalues and eigenvectors instead of the

singular values and vectors, since the computation of the eigenvalues and eigenvectors

produces one set of vectors instead of two. Moreover, the eigenvectors and eigenvalues

have a physical interpretation that can be related to the natural modes of the system.

First of all, we have visually inspected the eigenvectors corresponding to the eigenvalues

with the smallest modulus. These eigenvectors are the most interesting, since they will have
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Figure 4.8: surface current density for an x-polarized plane wave of 1 V/m at normal
incidence on a A x \ plate with the Hallén-type equation (relative residual error < 107°).
(a) Modulus of the surface current density in the z-direction. (b) Modulus of the surface

current, density in the y-direction.

eigenvalues with the largest modulus in the inverse discrete system and they will dominate
the solution if the eigenvectors are present in the excitation vector. The variables corre-
sponding to the surface current density did not indicate suspicious irregularies. Therefore,
the most obvious candidates for causing the ill-conditioning of the system matrix are the
variables corresponding to the boundary terms in Eqs (4.35) and (4.36). This observation
is in agreement with Lemma 2 of Section 3.4, since the one-dimensional Green’s function

(7, is not zero at the edges of the plate.

The eigenvalue analysis also provides a lower bound on the condition number. If we denote

the discretized system for the Hallén-type equation as Lu = f, then we know

sup || Lull > [AMnazl, (4.56a)
flull=1

where A, is the eigenvalue with largest modulus and \,,,;;, the eigenvalue with the smallest

modulus. A lower bound on the condition number is given by

(4.57)
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where k9 is the spectral condition number. Table 4.2 shows the order of magnitude of the
lower bound on the condition number for three discretizations. Further, we note that, in
the conjugate-gradient method, we use the product of the system matrix and its adjoint,
i.e., LL®. Therefore, we have to work with the square of the estimated condition number,
which is in the order of 108 — 10'° for all cases presented in Table 4.2. This means that,
in practice, we need at least double precision to obtain sufficiently accurate results. These
estimates for the condition number indicate that discretization errors in the forcing function
f of the system Lu = f can affect the results for the unknown u. Apparently, we have
been fortunate in this case, since the results for the surface current density in Figure 4.8
are still smooth and resemble the results in [52, 84, 85], which indicates that the forcing

function contains only physically relevant components.

Dimension Mesh K
A XA 15 x 15 | 10*
A XA 31 x 31| 10°
1.5A x 1.5\ | 31 x 31 | 10°

Table 4.2: estimated condition number for several discretizations.

4.4.3 Results for the flat plate without boundary terms

For the piecewise-sinusoidal formulation, we present the numerical results for the same
square plate as in Section 4.4.2. The computed surface current densities are visually
indistinguishable from those of the original Hallén-type equation and are therefore not
given here. Instead, we focus on the convergence of the conjugate-gradient algorithm, as
illustrated in Figure 4.9.

We observe that the convergence has improved drastically. This confirms the conjecture
that the ill-conditioning of the matrix equation is caused by the boundary terms. What
we cannot observe from the graph is that the results for the surface current densities
have already converged for a much larger residual error in comparison with the Hallén-
type equation. The formulation with boundary terms has converged for a residual error
smaller than 107°, whereas the formulation without boundary terms requires a residual

error smaller than 5 - 107*, which is reached after 153 iterations. The fact that we can
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Figure 4.9: progress in the convergence of CGFFT for the piecewise-sinusoidal formulation.

use a different termination criterion is caused by the fact that the discrete system, and
therefore also the definition of the residual, has changed. This improves the convergence by
more than a factor of two in this case. Table 4.3 presents the number of iterations to obtain
convergence for the same configurations as in Table 4.1 for the Hallén-type equation. We

observe improvements in the order of a factor of ten to twenty.

Dimension Mesh | # iterations | rel. error
A XA 15 x 15 53 5-107*
AX A 31 x 31 153 5-1074

1.5A x 1.5A | 31 x 31 126 5-107*

Table 4.3: number of iterations for several meshes.

To demonstrate the ability of the piecewise-sinusoidal formulation to cope with more gen-
erally shaped flat surfaces as compared to the Hallén-type equation, we give the results for
a cross consisting of five attached equal squares, as presented in Figure 4.10. Each square
has length \/3 and a mesh of 10 x 10 squares. The incident electric field is an xz-polarized
plane wave at normal incidence and amplitude of 1 V/m. This type of geometry is often

applied as elements in frequency-selective surfaces. Also, it is suggested as a model for
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Figure 4.10: perfectly conducting flat cross with incident field.
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Figure 4.11: surface current density for a cross with z-polarized normally-incident plane
wave. (a) Modulus of the surface current density in the z-direction. (b) Modulus of the

surface current density in the y-direction.
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strip-line interconnects on printed circuit boards or in integrated circuits. The behavior of
the surface current density at corners and edges that are present in this configuration has
been studied by many authors. Nevertheless, numerical methods that are both accurate
and flexible are not yet available [30]. The surface current densities obtained with the
piecewise-sinusoidal formulation are presented in Figure 4.11. The number of iterations
to reach a relative error of 5- 107" was 257. Careful examination of these results points
out that the numerical scheme seems to perform poorly at corners, especially at corners
pointing into the structure. This is illustrated by the peaks in the current densities in
these corners. Hence, the formulation with piecewise-sinusoidal testing functions does not

completely solve the above problem either.



Chapter 5

Derivative with respect to length

A way to examine the effect of small parameter variations is to compute the gradient
(Fréchet derivative) with respect to these parameters, the so-called sensitivity. We can
use sensitivity information in an optimization tool to construct an optimal design. The
most challenging sensitivity information, from an analytic point of view, is the shape
sensitivity for an infinitely thin plate. The reason for this is that the surface current
density may become singular at the edges of the plate, which makes the interpretation of
the sensitivity more difficult. For the shape sensitivity, we wonder what the effect is of
a slight change in the geometry of the object under study. The general formulation for
obtaining shape sensitivity can be found in [33, 62]. The shape sensitivity for a perfectly
conducting open screen for the static and the time-harmonic case was studied in [75,
76]. However, this formulation relies on the application of the flux-transport theorem,
where, supposedly, flux is represented by continuous functions. This leaves us with an
interpretation problem, because of the afore mentioned singular (non-continuous) behavior
of the surface current density at the edges of the screen [36, Chapter 9]. Therefore, we will
give a derivation, avoiding the flux-transport theorem, in the case of a perfectly conducting
flat plate, based on the principles of [33, 62]. Further, we will examine the possibility to
obtain an estimate for the sensitivity by means of finite-difference approximations. This
is useful for verification purposes. Also, the finite-difference approximations are readily
obtained, whereas the analytic formulation and its numerical implementation are relatively
time-consuming. Hence, a finite-difference approximation could provide a (temporary)

short-cut in a development and design process, provided that it yields a reliable estimate.
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5.1 Optimization of energy norms in scattering prob-

lems

Many design and detection problems in electromagnetics can be formulated in terms of the
maximization or minimization of energy-related quadratic forms. Here, we will consider
two cases. The first case is the maximization of the radiated energy in a predetermined
direction. This case applies to the design of an antenna that should radiate as much energy
as possible in a certain direction. The time-averaged radiated energy per solid angle in the
direction 6 = 6y, ¢ = ¢y, denoted by S(fy, @y), can be expressed in terms of the scattered
electric field in the far-field region in the same direction, i.e., E*(y, ¢y). If we combine
the design parameters pq,...,p, of the antenna in a vector p, we have the optimization

problem
|E* (p; 60, o)’
27 ’

max S(p; 0y, ¢o) = max (5.1)
P P

where Zy = /p/€0, and the semicolon (;) indicates a separation between free and fixed

parameters.

The second case is the minimization of a quadratic error ERR between a prescribed elec-
tromagnetic field and the actual electromagnetic field of a configuration. We will assume
that the error is defined on the surface S. This case is relevant for detection problems, in
which we would like to reconstruct material properties from measured data. In that case,
S is the surface on which the receivers are placed. Another example is the optimization of
antenna parameters, such that the radiation pattern matches a prescribed radiation pat-
tern, as closely as possible. For this case, the surface S is a part of the sphere at infinity.
If we denote the prescribed electric field by Ej, the actual electric field by E®, and the
optimization parameters by p, i.e, the material parameters or geometrical parameters, then

we can formulate the problem as

min FRR(p) = min // |E5 — E*(p)|” wdA, (5.2)
P P K
where w is a positive weighting function to emphasize or reduce the importance of the
behavior of the fields at certain parts of the surface S. In most cases, the ranges of the
parameters are restricted by certain constraints. However, for the moment we will ignore
this and concentrate on the so-called objective functions S and FRR, which are quadratic

forms. If the ranges of the parameters are continuous intervals, many algorithms to solve
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the above optimization problems use the gradient of the objective function with respect
to the parameters in the vector p to guide the search process. The i-th component of the
gradient for the above objective functions, i.e., the derivative of the objective function with

respect to p;, is given by

OS5 0 ) = R0 0500 ) [0 ') 530

0, ERR(p) =2Re{ [[ 10, °(p) - (B3~ B ()] wit (5.3b)

Hence, to compute the objective function and its gradient, we have to compute E*(p) and
V,E*(p), i.e., the gradient with respect to p for each relevant component of E*. In turn,
the scattered electric field can be expressed in terms of current densities J. For a fixed
observation point, the components of the scattered electric field depend linearly on the

current densities. For an antenna with perfectly conducting boundary 0D, we obtain from
Eqgs (2.42) and (2.46a)

E° = 5—350 <VV : —i—;) // G(r —r")Js(r')dA, (5.4)

where G(r) is the Green’s function of free space. For an observation point outside the
boundary 0D, we can bring the spatial differentiations inside the integral. The resulting
expression is
1 2
B=_ / Vo A[VaGr — )] - Ts(r)} — S G — ) Ts(r)dA. (55)
S€g Co
oD

For the component of the electric field in the direction wy, this can be denoted as
u- E° = (Js,9y), (5.6)

where g, is a given vector field, consisting of the Green’s function G' and spatial differenti-
ations acting on G. In general, g, = g,(p), i.e., g, will depend on the design parameters.
Further (-,-) is the L?(0D)? inner product, which acts on the primed coordinates. Hence,
the components of the electric field at a fixed observation point can be expressed in terms
of functionals acting on the current density. For the derivative with respect to p; of these

functionals we obtain
api(uf ’ Es) = (apiJSng) + (J57 apigz)- (5'7)

Finally, Js depends on p through Maxwell’s equations and the boundary conditions, or,

alternatively, through an equivalent integro-differential equation.
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5.1.1 An adjoint problem to compute a gradient efficiently

From the preceding section, we can conclude that we should consider the following problem.
Let F(p) be a linear functional in a Hilbert space H, and p a vector of parameters. By
the Riesz representation theorem (Theorem 10, Section 3.1), there is an element g(p) € H
such that

F(p)u = (u, g(p)), (5.8)

where (-,-) denotes the inner product of H, and g(p) € H is given. Further, u is the

solution of the linear system
L(p)u = f(p), (5.9)

e.g., u represents the current density on an antenna and Lu = f denotes a discretized
integro-differential equation for the current density. We denote the solution of this problem
by u(p) = L(p)~" f(p). We define

¥(p) = F(p)u(p), (5.10)

and we wish to compute the gradient of ¥(p) with respect to p, i.e., V¥(p). We obtain

9, ¥ (p) = (Op,u(p), 9(P)) + (u(Pp), Op.g(P)), (5.11)

where 0,,u(p) can be computed from the system

L(p)apiu(p) = apzf(p) - [8P1L(p)] u(p), (5'12)

and where 0,,g(p) is directly available from the definition of the problem. If the number of
parameters in p is large, it seems that we have to solve a large number of linear systems to
obtain d,,u(p), to compute 0,, ¥(p) for all i. If L(p) represents a large system of equations,
this would make the process of computing the gradient rather expensive. However, there
is a way to solve this problem more efficiently [44]. Let us introduce the adjoint problem
to Eq. (5.9)

L*(p)v(p) = g(p), (5.13)
where L%(p) is the adjoint operator of L(p) with respect to the inner product (-,-), i.e.,
(L(p)z,y) = (z, L*(p)y), (5.14)

for all z,y € H. Substituting Eq. (5.13) in Eq. (5.11) and using the above definition of the

adjoint operator, we obtain

0y, ¥ (p) = (L(p)dp,u(p), v(p)) + (u(p), p.9(P))- (5.15)
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Finally, the application of Eq. (5.12) yields

Op ¥ (p) = (0p, f (p) — [0p, L(p)] u(p), v(P)) + (u(P), 5y, 9(p))- (5.16)

Hence, we only have to solve two linear systems to compute the gradient of the functional,
i.e., one direct problem in the form of Eq. (5.9) and one adjoint problem in the form
of Eq. (5.13). Therefore, if the number of parameters is larger than one and only one
excitation function f is involved, this way of computing the gradient of ¥(p) is more

efficient.

5.2 Sensitivity analysis for the flat plate

In the remaining part of this chapter, we consider the construction of Eq. (5.12), where
p1 is the length of a perfectly conducting flat rectangular plate (a) and the wavelength is
fixed. In [76], more general shape deformations have been studied. To obtain a formulation
for the sensitivity with respect to the length a, we introduce a parameter 7 that controls
the length, viz. a(7) = a (14 7/a), and we can directly write the electric-field integral
equation (EFIE) for the new surface:

2

- SSOEi(xa y) = |:82 - i_:| A:I:('Ia Y, T) + axayAy(xa yaT)a (5173)

T

2
0
52
2
0

— seoBy(x,y) = [8; - ] Ay(x,y,7) + 00, Az, y, T), (5.17Db)

for 0 <z < a(r), 0 <y < b, where

a(t

) b
Ai(x,y, 1) = / / Ty, 7) exp [—(s/co) R(x — 2’y —y )]dy,dxl, (5.18a)
0 0

ARz — ',y — ¥')

R(z,y) = Va? +y?, (5.18b)

t = x,y. To arrive at a meaningful concept for the sensitivity, we introduce a mapping to
stretch our coordinate system in one direction uniformly. For the source and observation

coordinates in the z-direction, i.e., x and 2/, we write
T
r = (1 + —) o, (5.192)
a

= (1 + g) z, (5.19h)
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where xy and z{, are variables independent of 7. Using the chain rule, we can replace the

derivatives with respect to = by derivatives with respect to xy:

__ 1 —(1_T 2
0 = T a0 = (1= 1) 0 + 00, (5.20a)
2 1 _ 27\ 2
0; = iz T/a)ano =1 - 0y, +O(77). (5.20Db)

Since no rotations take place in the mapping, the z- and y-components of the vector

potential are mapped onto themselves. This yields

—seo B, ((1+7/a)xo,y) = _<1 - %T + 0(#)) 07, — i_;] Ago (1 +7/a)x0,y,7)+
(1= Z+0()) 020, 4, (1 + 7/a)a0,5,7), (5.21a)
—seo B, (1 + 7/a)zo,y) = _aj — ‘Z—;] Ay (L4 7/a)xo,y,7)+
(1- 24 06™) 0. Auy(1 + /a)s07) (5210

where

A (1+2) a0y //eXp{ (s/c) R+ 7/a)(zo — 20),y — ']}

ATR[(1+7/a)(zo — x4),y — ¥/] (5.22)
J; [(1 + E) o, y’,T] (1 + 2) dy'day,

i = xo,y. Now we take the total derivative (d,) with respect to 7 and set 7 to zero in the
resulting expression. For 7 = 0, we have x = xy and 2’ = z{,. Therefore, we will drop the

subscript o in the source and observation coordinates. We arrive at

1 {seoxaxE;(x, )+ [ai -

a

52 AT
—] (1) ()
2

+O.0,47 (1) (00) — |22+ 5| A2 | =
[a; - i—z} Ay(dr Ty r=0) (2, y) + 050, Ay (dr Jy|r=0) (x, ), (5.23a)

0

a

1 ) 2
- {swansen + [ - 5| 4o
0

82

+O,AT (o) + |8 = 5| A ) | =

Co
s

[a? - Cg] e Ty r—0) (@, ) + 0,05 Ay (dr Tl r—o0) (z, ), (5.23b)
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where

_ beXP (s/co) R(x — 2,y — y/')] o N da a
_// ATR(x — o',y — 9f) Fi(a, y)dy'da’, (5.24a)
eXP[ (s/co)RR (fy—y’)]‘ ]x
{=x—x

b
AT //‘ WRE.y -~ y)

Ji(2',y)dy'd2’, (5.24b)

for F; € {J;,d;Ji|-—0}, i € {z,y} and

ddiemo = d, i [ (14 2) o,y 7]

(5.25)

7=0

Further, A9 is similar to the vector potential, except for a modified Green’s function,
which is the product of the derivative of the Green’s function and (z — z’). We observe
that the integro-differential equations for d,J,|,—y and d,.J,|,—y assume the same form as

Eq. (2.59). Only the forcing functions have changed.

In view of the discussion of the mapping properties of the electric-field integral equation
for open screens in Section 3.4, one may wonder whether the forcing function, i.e., the
left-hand side, in Eq. (5.23) for d,Jgs|,—o belongs to TH~'/?(curl, P). If this were the
case, then the well-posedness of the above equations would be established immediately
and d,J s|,—o would belong to 7/’\1;171/2 (div, P). At the same time, this would indicate that
the numerical scheme of Section 4.2.3 can be applied to the above equations. Unfortu-
nately, we cannot guarantee that the forcing function belongs to TH~'/?(curl,P). This
can readily be seen from the terms 20, E}(z,y) and 20, E}(x,y). Further, the terms that
contain spatial differentiations on the vector potential, i.e., —92A, and 924, no longer
represent Cartesian components of VV - A. Finally, the terms containing A" do belong to
TH~'/?(curl, P), since the modified kernel in A?" has the same type of singularity as the
Green’s function G(r), i.e., 1/|r|, and the terms with spatial differentiations on A" are
Cartesian components of VV - A", Hence, we need additional information on the incident
field and the surface current density to guarantee that the forcing function belongs to the
proper function space. At present, we do not have this extra information. Nevertheless,
we will discretize the integro-differential equation for the sensitivity with respect to length

by means of the numerical scheme presented in Section 4.2.3.
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5.3 Discretization

Since we have obtained the same integro-differential equation for the shape derivative with
respect to length variation as in case of the surface current density of the flat plate with
modified forcing function, we will use the same discretization for d,J, |, and d.J,|,=o as
we employed for J, and J,. Hence, we will use rooftop functions to approximate d,J;| o
and d,J,|,— together with the exponential factor of the Green’s function and we will
use piecewise-sinusoidal testing functions. Therefore, we can use the same computational
kernel for the derivative of the current density as we used for the surface current density
itself. It remains to approximate the forcing function. To make the scheme consistent,
we approximate the product of the surface current density and the exponential factor
in the kernel of A; or AY", for i € {z,y}, by rooftop functions. All differentials acting
on A; or A" are brought over to the testing functions by integration by parts. The
integrals that cannot be simplified in this manner are approximated by a midpoint rule
(in the direction of the pulse function IT) or a trapezoidal rule (in the direction of the
sinusoidal function). The remaining integral expressions for A; or AY" are available in
closed form, see Appendix C and [81]. The approximated forcing function has the form
of a discrete convolution, owing to the uniform coordinate stretch in the formulation of
the shape derivative and the translational invariance of the set of expansion and testing
functions. Hence, the forcing function of the discrete system can be computed efficiently

by two-dimensional FFTs.

5.4 Numerical results

Figure 5.1 presents the results of the computation of the derivative of the surface current
density with respect to length for a A x A flat plate with an z-polarized plane wave incident
from the direction § = 45°, ¢ = 90°, with the analytic formulation. We have used a mesh
of 31 x 31 rectangles to discretize the surface current density on the plate. To verify the
results, a finite-difference approximation with a uniform stretch in the z-direction of the
mesh is presented in Figure 5.2. Hence, the mesh points have been shifted according to
the coordinate stretch and the number of rectangles in the mesh remained constant. The
finite-difference approximation was obtained by computing the surface current density for
a plate with length a = (1 — A)X and the surface current density for a plate with length
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= (1 + A)\, and approximating the derivative as

J‘T AN — J"rzfA/\

dJ|7—0 . QA)\

(5.26)

In this case, we used A = 1/61. To express the accuracy of this finite-difference approxi-

mation, we introduce a norm for d,J,|,—y and d,J,|,— as

a b 9 1/2
_ )1 y y
||dTJCE|T:0||_ %// [dTJZ'(I7y)|T:0] g(l_g> dydl‘ ) (5.27&)
0 0
a b 9 1/2
1 T T
. dfoall = o [ [Nt ebaid 2 (1= 2)] dudsy o (s2m)
0 0

where we have assumed that d,J;|,—¢ and d,.J,|,—¢ have the same type of singularity near
the edges of the plate as J, and J,, respectively. We compute an approximation of the
above norms by means of repeated trapezoidal and repeated midpoint rules, which coincide
with the definitions of the rooftop functions for d.J,|,—y and d,.J,|.—, i.e.,

TM—1N-1 /2
: o (n+1/2)(N —n—1/2)
ol = 2
[dr Tz ]r=ol| = 2:1 Z 0’ +[m, ]| MN3 ’ (5.28a)
N (m+1/2)(M —m—1/2)]""
. 2 - -
o es] = | 32 37 . ] e ] S (528
where
dJo[m,n] = d; Jo(mAz, (n +1/2)Ay)|—, (5.29a)
dJym,n] = d; J,((m + 1/2) Az, nAy)|,—o, (5.29b)

and Ax = a/M and Ay = b/N. We denote the finite-difference approximation by a
superscript /? and the approximation of the analytic formulation by a superscript “"¢. We
define the relative error as

HdTJ:?M‘TZO - dTJCIJ;d‘TZOHZ + HdTJg‘/ma’T:U - dTJ?fd‘TZOHZ
Hdegna‘TZOHZ + HdTJ;na’TZUHZ

relative error =

(5.30)

For the finite-difference approximation with coordinate stretch, the relative error is ap-
proximately 8.1 -1073. One could also decide to approximate the derivative by computing

the surface current density on a fixed mesh for a length a = (1 — A)\ and increasing
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Figure 5.1: derivative with respect to length variation of the surface current density for a
Ax A flat plate with an z-polarized plane wave incident from the direction 8 = 45°, ¢ = 90°,

with the analytic formulation. (a) d,J;|;—o, in modulus. (b) d,J,|;—o, in modulus.
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b) Approximation of d,.J,|,—p, in modulus.
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the length of the plate by adding a row of squares to the mesh to increase the length of
the plate and computing the surface current density for a plate of length a = (1 + A)\.
The derivative can then be approximated by using an interpolation scheme to match the
mesh points of both meshes and by applying a difference formula. In this case we have
2A\ = Az, i.e., the dimension of the rectangles in the meshing in the z-direction. If we
use 30 uniform intervals in the z-direction to compute the first surface current density and
31 uniform intervals in the z-direction to compute the second surface current density, we
have A = 1/61. This corresponds to the above choice of A. We have employed linear
interpolation in the x-direction and nearest-neighbor interpolation in the y-direction for
d;Jz| _, and nearest-neighbor interpolation in the z-direction and linear interpolation in
the y-direction for d,.J,| _,. The results for this approach are given in Figure 5.3. The
interpolation scheme is consistent with the choice of rooftop functions for the surface cur-
rent density. However, the computed results for the x-component of the derivative do not
resemble the results for the analytic formulation and both the z- and the y-component are
approximately a factor of two higher. We have also computed the relative error with re-
spect to the results of the analytic formulation, according to Eq. (5.30). The relative error

was approximately 1.7, which indicates that this finite-difference approximation yields an
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unreliable estimate for the sensitivity.

To explain the difference between the two finite-difference approximations, we return to
the discretized system of Eq. (3.18)

P,L(Q,u) = P,f, (5.31)

where P, is determined by the set of testing functions, L is the integro-differential op-
erator, QQ,u is the numerical approximation of the surface current density, and f is the
forcing function, i.e., the incident electric field. For the finite-difference approximation
with uniform coordinate stretch, all operators depend on the stretch variable 7 and we

obtain
Po(T)L(7)[Qn(T)u] = Pa(7) f (1), (5.32)

where n is fixed. Differentiation with respect to 7 yields

Po(0)L(0)d-[Qn(T)u]lr=0 = — d-Pa(7)[r=0 {L(0)[Qn (0)u] — f(0)}

(5.33)
— P(0) {d-L(7) | r=0[Qn(0)u] — dr f(T)r=0} ,
where (),,(0)u is the solution of the system
B (0)L(0)[Qn(0)u] = Po(0) f(0), (5.34)

and —d,L(7)|,—o[Qn(0)u] + d, f(7)|,=0 corresponds to the excitation function on the left-
hand side of Eq. (5.23). Owing to the uniform coordinate stretch in the observation co-
ordinates and Eq. (5.34), the term d.P,(7)|,—0 {L(0)[@,(0)u] — f(0)} is identically zero.
Therefore, we obtain from Eq. (5.33)

Pn(O)L(O)dT[Qn(T)u”T:O = _Pn(o) {dTL(T)|T:0[Qn (O)U] - de(T)|T:0} . (535)

Hence, differentiation of the discretized system gives the same result as discretization of
the analytic sensitivity for a uniform coordinate stretch, provided that we do not introduce
additional approximations in the operators L, P, and (),. In case of the numerical system
of Section 4.2.3, we have introduced approximations for the integrals. Also, in Section 5.3,
we have introduced approximations in the forcing function of Eq.(5.35). Therefore, the
two approaches do not necessarily coincide. However, the small relative error of the finite-
difference approximation with respect to the results from the analytic formulation indicates

that these approximations do not dominate the solution.

For the finite-difference approximation with a change in the number of variables, the projec-

tion operators P, and (), are not differentiable, since the sets of basis and testing functions
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Figure 5.4: derivative with respect to length variation of the surface current density for a
flat cross, excited by an x-polarized plane wave under normal incidence, for the analytic

formulation. (a) d;J;|;—o, in modulus. (b) d;J,|,;—, in modulus.
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Figure 5.5: finite difference approximation of the derivative of the surface current density
for a flat cross, excited by an z-polarized plane wave under normal incidence, for a uniform
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change. The subsequent application of an interpolation operator is an attempt to restore
the differentiability with respect to the parameter “length” (a). Therefore, the results will
depend highly on the interpolation operator and the changes in the operators P, and @,.

The analytic derivation of the derivative with respect to length variation is not restricted to
a rectangular plate. If we change the repeated integrations over the length and the width
of the rectangular plate into surface integrations over a more general shape, which can be
captured in a uniform rectangular mesh, we obtain an expression for the derivative with
respect to a uniform stretch over the full length in the z-direction of the shape. The same
discretization scheme as mentioned above can then be used to compute an approximation
of this derivative. As an example, we have computed this derivative for a cross consisting
of five equal squares of length /3 under normal incidence of a plane wave polarized in the
x-direction. The results with the analytic formulation are presented in Figure 5.4 and the
finite-difference approximation corresponding to the same coordinate stretch with a fixed
number of rectangles is given in Figure 5.5, for A = 5-1073. Again, we note that the

finite-difference approximation resembles the results for the analytic formulation.



Chapter 6

Marching on in anything

In engineering, we often encounter the problem of computing a numerical approximation
to the solution of a given set of differential or integral equations for a range of values of
a certain parameter. For instance, in a design process a number of variables are changed
several times to obtain an optimal result (in some sense). Another example is the construc-
tion of a time-domain result from a large number of frequency-domain computations, to
prevent error accumulation or even instabilities in the marching-on-in-time procedure, see
e.g. [70]. Additionally, we have the problem that the number of unknowns in a numerical
simulation is so large that the time to solve a problem for one single parameter value is
already very long. In these circumstances it would be a major improvement if we could
speed up the computations by using information of already computed solutions to compute
the numerical approximation for a new parameter value, since in general we expect that
the approximation will not change drastically if we make a small change in the parameter

value. This chapter contains results that have been published previously in [74].

6.1 Main idea

Consider the following linear problem, depending on the parameter p:

L(p)u = f(p), (6.1)
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where, for each p, L(p) is a bounded linear operator on a normed space with bounded
inverse L(p)~! and u = u(p) = L(p) ' f(p). We assume that f(p) and L(p) are continuously
differentiable with respect to p, for p € [p_1, po]. Then we can employ

F0) = Flor) + / F(e)de, (6.2)

to write

F(po) = Fp-1) + / F(€)de = Lip)ulp_1) + / 7€)
= Lipoulpn) = Lp-Julp-) + [ 1'€)de 63)

= u(pn) = Lpo) Llp-)ulp-i) + [ L) ).
p-1
We observe that u(pg) can be approximated by L(py) ™' L(p_1)u(p_1). In general, we have
no idea of the structure of L(py) ' L(p_1). However, a similar identity as in Eq. (6.2) shows

that
pb—1

Lpo) L) =1+ [ L) L€, (0.0
Po
where [ represents the identity operator. Under certain conditions, the expression on the

right-hand side of the inequality

/ Lipo) ' L/(€)de — 1| < / ILGo) TE) — 2T/ (oo — py)|| dE, (65)

will be small for some 7, e.g., for small |p_; — py| or when L(py) ™' L' (£) closely resembles a
multiple of the identity. In these cases we can approximate the expression L(py)~'L(p_1)
by a multiple v_; = 7+ 1 of the identity /. With these simplifications we can approximate

u(po) as
pP—-1 Po

ulpo) = | T+ / Lipo) ™ L(€)de | ulp-1) + / Lipo) ™ £/(€)de
Po P—1 (66)

Po

= yau(po) + / L(po) ™" f'(€)de.

pP-1
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Alternatively, the above approximation can be written as

0= L(po) " [f(p-1) — 7-1L(po)u(p-1)]. (6.7)

However, we emphasize here that the validity of the assumptions strongly depends on the
operators L(p), L'(p) and L(p)~!, the vectors f(p) and f’(p), and the increment py — p_;.
Further, the estimate v_; will depend on py and p_;.

A similar analysis for two extrapolation points can be performed, under the assumption

that the second derivative of f(p) also remains integrable. Starting from the expansion

p

1) = F(po) + (0 — po) ' (po) + / (€ — po) f"(€)de, (6.8)

Po

we arrive at

pP-1

f-1) = f(po) + (p—1 —po) f'(po) + [ (§—po)f"(£)d, (6.9a)

f(p=2) = f(po) + (P2 — po) ['(po) + [ (& —po)f"(£)dE. (6.9b)

Po
;D/2
Po
Elimination of the terms that contain f’(py) gives

Flpo) =222 pip ) 4 LT )

P-1—DP-2 P—1—P-2

(p*Z - pU) 0 " (pU —p,l) ' "

o B [ e+ [ (e )€1

Po — P2 " P-1—D " (6.10)
=hL(p_l)u(p_l) - ﬁL(p_Q)u(p_m

(p*Z _pU) 0 . " (pU —p,l) ' o "

T / (€= ) + L / (€~ )" (E)E

If we leave out the Riemannian remainder terms, i.e., the terms containing the integral
over (& —po)f"(€), we obtain

pO_p—Q L(po)ilL(p,I)U/(p,I)—i— p—l _pO

p-1— P2 P p72L(p0)71L(p72)u(p72)_ (6.11)

u(po) =
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An expansion of L(p) shows that
p-1

L)' Llp-) =1+ [ L) L) (6.122)
Lp) Lp-2) = T+ [ Lpo) L' (€)de (6.12b)

Po
Again, we assume that the above expressions are close to v_;I, for £ = 1,2. We arrive
at the conclusion that u(py) can be approximated by a linear combination of u(p_;) and
u(pr)ﬁ Le

u(po) = Y-1u(p-1) + v-2u(p-2), (6.13)
where v_; depends on py and p_;, and v_, depends on py and p_s. At present, we have
no proof that these simplifications are appropriate. Instead, we will apply this strategy
to the integro-differential equations of Chapter 2, to explore the merits and limitations of
this idea.

6.2 Least-squares approximation

One of the problems that remains unsolved in the theory above is how to estimate the
values v_; such that

L (po) " L(p=k) — 7=4]]| (6.14)
is small. With the aid of the general definition of the norm of an operator, we can conclude

that .
sup | L(po) " L(p—k)u — y—pul|

Jull0 ]
should be small. In fact, it is not necessary that this estimate on the operator holds for

: (6.15)

any vector u, since the only relevant vector u is u(p_j). However, the most important
conclusion of the preceding section is that, under certain conditions, we can approximate

u(po) by its linear prediction
K
) = ykulp_g), (6.16)
k=1

for some fixed number K. Hence, the coefficients v_; should be determined from

u(po) Z’qupk

HIIH

(6.17)
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The only remaining issue in the above formulation is the choice of the norm. For reasons of
consistency, this choice should coincide with the norm that is used for the solution method
for the system L(p)u = f(p). Since we will apply the conjugate-gradient method, which

minimizes the norm [6, 7, 84]

lu— L)~ f W)l = I L(p)u = f(P)ll2, (6.18)

where || - |2 denotes the 2-norm in CY and N is the dimension of the linear system, it
is logical to employ the same norm for the minimization problem of y_,. The resulting
problem can be written in terms of a least-squares problem, which gives the unique best
approximation in CV, which is regarded as a Hilbert space. Hence, v_; can be determined

from the system of normal equations

> -k (Lpo)ulp—r), L(po)u(p-e)) = (f, L(po)u(p-g)) ~ £=1,....K, (6.19)

k=1
and u(p_g) is the result of the k-th preceding simulation.

In the general form of the CG algorithm in Section 4.3, the initial estimate uy in the
notation of Eq. (4.48a) is unspecified. Therefore, we insert our estimate of Eq. (6.16) at
this point. The advantage is that the conjugate-gradient algorithm is left untouched and
the convergence properties remain unaltered. Also, there is no error accumulation from
preceding simulations, since the CG algorithm will improve the solution for u(py), until
the termination threshold for the residual error has been reached. Extensive numerical
tests have shown that the construction of the coefficients v_; by means of the least-squares
approximation yields the most efficient estimate as compared to other constructions that

are for instance based on polynomial extrapolation [71].

Combination of a CGFFT scheme together with the above least-squares estimate was first
used by Tijhuis et al. [50, 71, 72]. The idea was conceived originally to circumvent insta-
bilities in the marching-on-in-time procedure for time-domain integral equations by a large
number of frequency-domain computations [71]. Therefore the scheme was called “march-
ing on in frequency”. The late professor R.E. Kleinman came up with the denomination
“marching on in anything”, since by then it had been demonstrated that the proposed

algorithm performed well for a large number of (physical) parameters.
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6.3 Thin wire

To illustrate the behavior of the CG-extrapolation procedure in more detail, we return to
the configuration for which the effectiveness of the method was demonstrated first, i.e., a
straight thin-wire segment in a homogeneous medium. We solve the system of equations
(4.9) repeatedly for s, =+ j2rmAf with 6 > 0 and m = 0,1,..., M, i.e., the parameter
p is equal to the frequency f. Subsequently, we determine the spectral integral in the
inverse Laplace transformation (2.8) with the aid of a repeated trapezoidal rule and a
Fast Fourier Transformation to obtain a time-domain result. This is explained in detail
in Appendix D. Throughout the computations, we keep the discretization fixed for all
frequencies. This does not affect the accuracy of the computed time-domain signal, since
the excitation is bandlimited [71].

To demonstrate the effect of a change in the step size and the error criterion, i.e., the
threshold for the relative residual error to terminate the CG iterations, on the performance
of the proposed algorithm, we consider a wire of length L =1 m and radius ¢ = 2 mm in
the frequency range from zero to 3.0 GHz with plane-wave excitation at normal incidence.
First, we take a frequency step Af = 20 MHz, i.e., M = 150, we take 6 = 107"?¢y/L
and a relative error for the conjugate-gradient algorithm of 1078, Figure 6.1(a) shows the
number of iterations needed when we take a zero initial estimate (dashed line) and three
preceding results (solid line), i.e., K = 3. The number of iterations per frequency can
be reduced by allowing for a larger relative error in the CGFFT method. The reduced
number of iterations for the same configuration with a relative error of 1072 is given in
Figure 6.1(b). Furthermore, the extrapolation procedure becomes more effective. This
may seem an unsatisfactory way to reduce the computational load. Our argument is that
we are solving a discretized system with a discretization error in the order of a few percent.
Therefore, reaching high accuracy in the CG process does not contribute significantly to

the accuracy of the obtained computational results.

A second way to improve the efficiency of the extrapolation scheme per step is to reduce
the frequency step. This is illustrated in Figure 6.2(a) for a frequency step of 5 MHz,
i.e., M = 600, § = 107*¢y/L and a relative error of 1072, From this figure, we observe
that the highest peaks are lowered and that the average number of iterations per step is
reduced. However, due to the decrease in step size, the number of frequencies for which

we have to compute the current increases by a factor of four. A further reduction of
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Figure 6.1: number of iterations versus step for the marching-on-in-frequency version of
the CGFFT method for a thin wire with plane-wave excitation at normal incidence with
parameters L = 1 m, a = 2 mm, §L/cy = 107'% and Af = 20 MHz. (a) Number of
iterations required to reach a relative error of 1078, (b) Number of iterations required to
reach a relative error of 1073,
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Figure 6.2: number of iterations required to reach a relative error of 10~ versus step for the
marching-on-in-frequency version of the CGFFT method for a thin wire with plane-wave
excitation at normal incidence with parameters L = 1 m, a = 2 mm. (a) Af =5 MHz
and 0L/cy =107"2. (b) Af =5 MHz and 6L /¢y = 1.
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the number of iterations per frequency is possible by taking even smaller frequency steps.
However, the computation of the extrapolation coefficients also requires the computation
of a matrix-vector product for every vector in the extrapolation procedure. Therefore,
there is an optimum in the step size for which the total computation time is minimal. This

was already reported in [72].

A third parameter that can be used to improve the efficiency of the extrapolation strategy
is the parameter §. In constructing our initial estimate, we assumed that the solution to
the system of equations depends in a well-behaved manner on the parameter of interest.
However, in the vicinity of a pole in the complex s-plane, this is no longer true. For a
stable linear system the poles lie in the left-hand side of the complex s-plane. By choosing
dL/cy very small, we may be close to a pole near the imaginary axis, which corresponds
to a resonance in the time domain. For the straight thin wire, the positions of the poles
correspond to frequencies for which the length of the wire is a multiple of half a wavelength.
Therefore, we expect an improvement in the convergence of our algorithm when the ratio
dL/cy is increased. This is shown in Figure 6.2(b) for 0L/cy = 1. We see that the number
of iterations per frequency step indeed decreases for increasing . On the other hand, if
we take too large a value for 0L /cy, e.g., 10, the computed time-domain result is no longer
reliable. This is caused by the (numerical) effect that, especially for large values of ¢, the
factor exp(0t) in Eq. (2.8) amplifies the errors in the sampled time signal that results from

the Discrete Fourier Transformation. This is illustrated in Appendix D.

6.4 Perfectly conducting plate

The second example is a flat, rectangular plate in free space located at 0 < = < a,
0 <y < band z=0. For this problem, we solve the electric-field integral equation (2.59)
numerically. Since we would like to show that our extrapolation scheme performs well
for a standard discretization, we use the discretization of [84, 85]. In this discretization,
the unknown surface current density Jg is approximated by rooftop functions, the weak
form of the Green’s function is introduced together with an interpolation scheme for the
vector potential. The electric-field integral equation is then weighted by the same rooftop
functions. In the resulting discretized form, the convolution symmetry is preserved, so
that the matrix-vector products in the conjugate-gradient procedure can be evaluated

with the aid of two-dimensional FFT operations. Therefore, the complexity of this scheme
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Figure 6.3: number of iterations required to reach a relative error of 107 versus angle
of incidence for the marching-on-in-angle version of the CGFFT method in [84, 85] for a
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is comparable to the complexity of the scheme in Section 4.2.3.

In particular, for s = jw, we have computed the monostatic radar cross-section of a A x A
plate. A plane wave is incident on the plate at an angle 6 with respect to the z-axis and
an angle ¢ = 90° with respect to the z-axis. Hence, the parameter p is equal to 6 in
this case. The incident plane wave is z-polarized. We have computed the surface current
density for # = mA6f with Af = 1° and m = 0,...,180. The discretized plate has a mesh
of 31 x 31 squares. Figure 6.3 shows the number of iterations for increasing #. The dashed
line represents starting from a zero initial estimate, and the solid line is for two preceding
results in the initial estimate, i.e., K = 2. The discretization of Section 4.2.3 exhibits
a similar behavior, as shown in Figure 6.4. For both discretizations, we observe that
the initial estimate at # = 90° does not require improvement by the conjugate-gradient
algorithm. This is due to the symmetry in the problem and it confirms the theory in
Section 6.1. The monostatic radar cross-section of the A\ x A plate in the plane ¢ = 90° is

presented in Figure 6.5.

Having dealt with marching on in angle, another result for the plate concerns marching
on in length. The idea was inspired by the shape sensitivity analysis in [75, 76] and in
Chapter 5. Here, we start from a A x A plate and we increase the length of the plate in
100 steps to a 2\ x A plate. We used a fixed spatial discretization of 62 x 31 rectangles.
We employ a fixed mesh, since the results in Chapter 5 indicate that changes in the mesh
can give rise to non-smooth results, which would be difficult to extrapolate. The number
of iterations required to reach a relative error of 1073 versus the length of the plate, for
the numerical scheme in [84, 85|, is shown in Figure 6.6. In the computations leading
to Figures 6.3 and 6.6, it turned out that extrapolation with K = 2 was in fact more
efficient than extrapolation with K = 3. Moreover, extensive numerical experiments for
the parameters frequency, length, and angle of incidence, all with several choices of the step
size for these parameters, have shown that K = 2 yields the most rapid convergence of the
conjugate-gradient method, as compared with K =1, K = 3, and K = 4. This is caused
by the fact that, for values of K larger that two, the linear system for the least-squares
estimate in Eq. (6.19) is almost singular, which makes the initial estimate unreliable. From
the point of view of memory requirement, this is a convenient result, since we only have to
store the results of the last two simulations. The fact that we need only two vectors for the

extrapolation indicates that the linear system is stable for modest parameter variations.
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6.5 Three-dimensional dielectric body

The third example is an inhomogeneous dielectric cube, again in free space. We formulate
the scattering problem as a domain integro-differential equation over the object domain D
as in Eq. (2.64) or Eq. (2.66) together with the definition for the contrast-current density
of Eq. (2.61) or Eq. (2.67), respectively. We use the discretization of [86, 87], taking the
permittivity function constant in each rectangular subdomain in the space discretization.
Similar as for the surface current density in the plate problem, the electric-flux density
D(r), or J/s+ D, is approximated by an expansion that is piecewise linear in the longitu-
dinal direction and constant in the transverse directions. The Green’s function is replaced
by its weak form, and the result is weighted by testing functions that are identical to the ex-
pansion functions. Again, the space discretization shows a discrete convolution symmetry

and can be efficiently computed by three three-dimensional Fast Fourier Transformations.

We have performed a large number of numerical tests for variations in the parameters fre-
quency, contrast, and dimension, all for several choices of the step size for these parameter.
We have systematically examined the convergence for K = 1 to K = 4. In all cases, the

most rapid convergence, over a large interval, was found for K = 2.

As an illustration, we have modeled a cube of muscle tissue centered inside a cube of fat
tissue. The incident field is z-polarized with propagation vector parallel to the z-axis and
a strength of 1 V/m. The dispersive tissues are modeled with the aid of a Debye model [43]
and the dimensions of the inner and outer cubes are 0.14 m and 0.30 m, respectively. The
discretized object has 30 x 30 x 30 mesh points. The field is computed in the middle of
the muscle cube for frequencies f from 100 to 600 MHz and then converted to a time-
domain signal. Hence, the parameter p is equal to f. We have taken f = f, + mAf, for
fo = 100 MHz, m = 0,...,100, and Af = 5 MHz. The number of iterations needed to
reach a relative residual error of 1073 is shown in Figure 6.7, where the dashed line is for
a zero initial estimate, and the solid line for minimization using two preceding results, i.e.,
K = 2. The time signal, shown in Figure 6.8, is computed by an FFT for the waveform
exp [—(t — 7)?/2T?] sin(wot), where 7 = 14 ns, T = 2.75 ns and wy /27 = 450 MHz.
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Chapter 7

Optimization of wire antennas

Many problems in engineering are formulated in terms of design specifications. A classical
example within the context of electrical engineering is the design of filter banks. However,
as a general rule, these specifications cannot be met in a straightforward manner. There-
fore, it is interesting to examine optimal solutions. Optimality means that the design has
the least amount of deviation from the original specifications. There are several techniques
to study optimal solutions. Here, we will focus on continuous optimization techniques, in
which the ranges of the design parameters are continuous intervals. Also, we will assume
that an appropriate initial estimate for the parameters is available, which may prevent hit-
ting a local optimum. In most cases, these parameter estimates follow from prior studies,

e.g., feasibility studies or results from the literature.

Within the mathematical optimization community software has been developed to opti-
mize large-scale non-linear physical problems, which are discretized by finite-element or
finite-difference methods. At the same, time tools have been generated for automatic dif-
ferentiation [31], to compute gradients and Hessians. Further, two programming languages
have been developed suitable for several types of optimization: AMPL [26] and GAMS [10].
Also, several optimization packages together with an AMPL interface have been made ac-
cessible via the internet by the Argonne National Laboratory in the U.S.A. through the
Network Enabled Optimization System (NEOS). For the optimization of wire antennas,
wel have used AMPL in combination with NEOS.

!This research was performed at the University of Dundee from January until June 2000, under the

supervision of prof. P.D. Smith and prof. R. Fletcher.
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The mathematical optimization community has focused mainly on solving problems based
on finite elements or finite differences. However, in electromagnetics an integral-equation
method, which gives rise to dense matrices, is expected to be more appropriate to solve
optimization problems 2. In particular, integral equations are generally employed for radi-
ation problems, e.g., in antenna design. It is not obvious that the optimization strategies
developed for finite elements and finite differences are also suitable for techniques based on
integral equations. The main difference is that integral equations are global formulations
whereas differential equations (which give rise to finite elements and finite differences)
are essentially local. Therefore, the linear systems that result from integral equations are

dense, whereas systems for finite-element and finite-difference methods are sparse.

7.1 Yagi-Uda antenna

To examine whether or not we can use the optimization routines for integral equations,
we looked for a simple test case, for which validation of the solutions was possible. A
well-known example we found was a Yagi-Uda antenna [66]. This antenna is part of the
larger class of wire antennas, which has been studied extensively on both a theoretical
and an experimental level. The basic characteristics of a Yagi-Uda antenna are depicted
in Figure 7.1. Typically, this antenna consists of a driver to which the feeding network is
connected, a reflector to block the energy flow in the negative z-direction, and a series of
directors, which guide the energy in the positive z-direction. Several papers have appeared
on the optimization of Yagi-Uda antennas, see e.g. [4, 12, 38] and references therein. In
these references, gradient optimization together with an analytical model for the antenna
or a genetic algorithm together with a numerical model are employed. Our study differs
from previous work in the sense that we have used a completely numerical model for the
Yagi-Uda antenna and that we have applied a constrained optimization technique based
on gradients. In this specific case, it was not our interest to find the best antenna but
merely to find out what strategy is the most appropriate to optimize the performance of

the antenna.

2 At present, several commercial software packages that are based on integral equations, e.g., Momentum

and Sonnet, have integrated their electromagnetic solver with an optimization environment.
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Figure 7.1: example of a Yagi-Uda antenna.

7.1.1 Formulation of the optimization criteria for the Yagi-Uda

antenna

We model the antenna by M wires with circular cross-section, all with radius a. The
reflector is labeled as wire 1, the driver as wire 2 and the directors as wires 3 to M. We
assume that the reflector and driver are always present. Further, the axes of all wires lie
in one plane and are parallel to each other. We choose our reference system such that
this plane is the zz-plane and the wire axes are parallel to the z-axis. Hence, the axis
of wire m has coordinates (z,y, 2)=(zm,0,2) for z € (=L,,/2, L,,/2), and x,, < Typiq
for m =1,..., M — 1. This type of symmetry in the z-direction is typical for Yagi-Uda
antennas. The feeding network of the antenna is connected to the second wire (the driver)
at its center. The symmetry of the antenna configuration can be exploited to reduce the
number of unknowns for the currents on the wires. However, for reasons of flexibility,
which will become clear later on, we have not used this symmetry. At the same time, the

symmetry can be used to check the model and the optimization results.

To model the currents on the wires of the antenna, we have used the linear system of
Eq. (4.27), which we denote by

Z-1=V, (7.1)

where 7 is the impedance matrix, I is a vector that contains the current coefficients, and

V' contains the excitation. We approximate the connection of the feeding network at the
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driver by a delta-gap source with voltage V,, located at the center of the wire, i.e.,

E;(xka Z) = Vgé(z)éﬂik,xza (7'2)
where
5y 0 = 1 for x; =y, (7.3)
Y 0 elsewhere,

which is the Kronecker delta. Although the delta-gap model is problematic for the thin-wire
integral equation with reduced kernel, as can be seen from Eq. (3.37a) and the asymptotic
behavior of Ky(z) for z — oo, we will use it as a model for a highly localized source and

make sure that the discretization remains coarse enough to prevent numerical problems.

Since we now have a model for the currents on the wires of the Yagi-Uda antenna as a

function of the excitation, we can define the resistance of the antenna as

Ro=ne{-t (7.4)

where I[2, N/2| is the current on the driver (wire 2) at z = 0, i.e., the position of the
delta-gap source. Another definition of the resistance can be obtained by computing the
total radiated energy. Although the latter definition is more accurate from a numerical
point of view, it is also much more expensive to compute, since we also need to compute the
gradient of the resistance with respect to all parameters. Further, we need an expression for
the time-averaged radiated energy (S) per solid angle in the direction of the main beam
of the Yagi-Uda antenna. In standard spherical coordinates, the main beam is located
at 0 = 90° and ¢ = 0°. The time-averaged radiated energy (S) per solid angle can be
expressed in terms of the radiated electric field in the far-field zone as

R*E - E*

S(0.6) = =57

(7.5)

where R is the distance between the center of the antenna and the observation point and
Zy is the wave impedance of free space. The radiated electric field in the far-field region,
for s = jw, has only a component in the direction of uy. This component can be written
as

P y Lm/?
Eul0.6) = joposin) LIS [ expliconp + a) el (70
m=1

T Lm/2
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where

p =cos(¢) sin(h), (7.7a)
q =cos(0). (7.7b)

After the introduction of a linear-spline approximation for the currents on the wires, the
time-averaged radiated energy per solid angle, in the direction 6 = 90°, ¢ = 0°, can be

approximated as

w2y M N-1 2
S(90°,0°) = 327?2%() Z I[m, n|A,, exp(jwz,/co)| - (7.8)
m=1 n=1

The goal of the optimization is to maximize the radiated energy in the main direction of
the antenna. However, since the antenna will be connected to a coaxial cable of 75 €2,
the input resistance of the antenna has to be commensurate to avoid strong reflections on
the feeding network. Hence, we have chosen to apply the constraint R;, € [50,100] €,
indicating reflection coefficients not exceeding 20%, if the input reactance is zero. To make

the formulation definite, we lock the antenna onto the coordinate system by choosing

Further, we need to impose a few restrictions to ensure the validity of the numerical model

for the currents on the wires. The first restriction is
Ty < Typyr — 10a for m=1,..., M —1, (7.10)

which expresses that there is an ordering between all the wires and that the wires cannot
lie closer together than 10 times the radius of the circular cross-section of the wires. We
impose this restriction because the approximation of the coupling from one wire to another
is only valid if the wavelength and the distance between the wires are sufficiently large, with
respect to the radius a. This was already explained in Section 4.1.3. The other restriction
is

8 < 2mcoN

<100 for m=1,...,M. (7.11)

m
This implies that the length of the wire must be such that the number of sampling points per
wavelength on that wire is at least 8 and at most 100. The lower bound prevents inaccurate
modeling and the upper bound prevents numerical instability, which is caused by the ill-

posed nature of the wire equation. However, the formulation of the above restriction is
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non-linear, due to the fact that L,, is present in the denominator. Therefore, we will
employ the equivalent formulation

2mcgN 2mcgN
<L, <
100w — 8w

for m=1,..., M. (7.12)

These inequalities are simple bounds, which are preferred over non-linear inequalities in

an optimization solver.

7.1.2 Implicit and explicit physical model

We return to the optimization of the radiated power in the main direction. The optimiza-
tion problem can be formulated in two different ways. In the first method, which we will
call the explicit approach, we regard the matrix equation (7.1) for the currents on the
wires as a set of non-linear constraints and only the impedance matrix Z depends on the
parameters xz,, and L,,. Consequently, the currents are considered as variables that do not
depend on the geometrical parameters x,, and L,,. This dependence will enter the problem
via the set of constraints, and the currents are explicitly written in the formulation. In

this explicit model we write the optimization problem as:

maximize | S({I[m,n|},{zn},{Ln}; M,N),
subject to | Z -1 =V
500 < Ry, < 100 9,

(7.13)
Tm < Tpr — 10a form=1,...,M —1,

1'2:0,

21coN/100w < L, < 2meogN/8w form =1,..., M.

The notation S({I[m,n]}, {zm}, {Ln}; M, N) indicates that the geometrical parameters of
the antenna, i.e., x,, and L,, for m = 1,..., M, and the current coefficients, i.e., Im,n]
form=1,...,M and n = 1,..., N — 1, are the variables in the optimization process,
whereas M and N are fixed. Note that a fixed N corresponds to a restriction of the wire
lengths L,,. The above formulation of the optimization problem is a standard approach

for finite-element and finite-difference methods.

The second method, called the implicit approach, is to consider the currents on the wires as

variables that depend on the geometrical parameters x,,, and L,,. In this case, the currents
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are only auxiliary variables to compute the functions of interest. Therefore, the currents
do not enter the formulation and are only written implicitly. This approach demands that,
whenever the geometrical parameters are changed, the currents are recomputed inside the

functions for S or R;,. The optimization problem is then formulated as:

maximize | S{zm}, {Ln}; {I[m,n|}|z.12v, M, N),
subject to | 50 2 < R;, < 100 €2,

Tm < Tpa1 — 10a form=1,...,M —1, (7.14)
) :07
21coN/100w < L., < 2mcoN/8w form=1,..., M.

The notation S({zn},{Lm};{I[m,n]}|z1=v, M, N) implies that x,, and L, for m =
1,..., M are the variables in the optimization process. Further, M and N are fixed and
the current coefficients I[m,n], for m =1,...,M and n = 1,..., N — 1, are determined

internally by solving the linear system Z -1 = V.

The main difference between the two approaches is that, in the explicit case, the solver
for the optimization has to be capable of handling large (and possibly sparse) matrices
for the Hessian, whereas, in the implicit case, the solver handles only relatively small
matrices. Hence, the dimension of the parameter space for the explicit approach is much
larger than for the implicit approach, since it also contains the current coefficients. On the
other hand, the implicit approach requires solving the numerical model for the currents
internally, whereas this step is not present in the explicit approach. Therefore, the implicit
approach allows for a straightforward implementation of marching on in anything. Another
difference is that, for the implicit approach, we work with a solution of the physical model,
i.e., our currents satisfy Eq. (7.1), whereas for the explicit approach the currents do not

necessarily satisfy Eq. (7.1) in case constraint violation is allowed.

To see whether it is possible to solve our Yagi-Uda optimization problem, we have consid-
ered two test cases: a Yagi-Uda antenna with two wires and a Yagi-Uda antenna with five
wires. The remaining parameters of the antenna model are fixed as specified in Table 7.1.
The values in this table indicate that we used a frequency of 300 MHz, which corresponds
to a wavelength () of 1 meter. As initial estimates for the geometrical parameters of the
Yagi-Uda antenna, we used values obtained from [66]. These initial estimates are given in
Table 7.2, together with an estimate for the current at the position of the delta-gap source.

The estimate for the current was obtained by solving Eq. (7.1) for the initial estimates of
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the geometrical parameters of the antenna.

Parameter | Value | Dimension
a 0.001 m
N 32 -
w/co 27 rad/m
Vy 1 \Y

Table 7.1: fixed parameters for antenna model.

7.1.3 Optimization algorithms for the explicit approach

The modeling language AMPL [26] has been designed for problems in the form of our
explicit approach. The advantage of this language is that it is based on sets and therefore
it is very flexible in programming. Another advantage is that it incorporates an automatic
differentiation package [31] and therefore the user does not have to supply expressions
for the gradient and the Hessian. A third advantage is that at the Network Enabled
Optimization System (NEOS) website (www-neos.mcs.anl.gov/neos/) several solvers are
available that work with an AMPL interface. These solvers can be used free of charge.
A disadvantage of AMPL is that it does not support complex arithmetic and that several
numerical facilities, such as Fast Fourier Transformations and matrix decompositions, are

not present. Hence, our implicit approach cannot be tested with AMPL.

At the time of our research, six solvers where available on the NEOS website: DONLP2 [63,
64], FILTER [24, 25|, LANCELOT [15, 16], LOQO [77], MINOS [48] and SNOPT [27].
Unless stated otherwise, we have used the default versions for all the solvers. Since FILTER
was developed by Prof. Fletcher and co-workers, this solver was also available on a local

computer at the University of Dundee.

7.1.4 Results for the explicit approach

For the Yagi-Uda problem, three out of the six solvers available provided a converged

answer without further tuning of their parameters. The other three gave output messages
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Parameter Value Dimension
L 0.5 m
L, 0.5 m
Ls 0.4 m
Ly 0.4 m
Ly 0.4 m
T -0.2 m
Ty 0 m
T3 0.34 m
T4 0.68 m
Ts 1.02 m

1[2,16] —0.0057 + 70.0069 A

Table 7.2: initial estimates for the Yagi-Uda parameters. The parameters with subscripts

larger than two apply only to the five-wire Yagi-Uda antenna.

indicating problems with the convergence. We have attempted to tune the parameters
for the unsuccessful solvers. However, no improvements have been observed and the final
answers were not close to a solution. Therefore, we will only discuss the results of the
successful solvers: DONLP2, FILTER and SNOPT. The results of the two-wire problem
are given in Table 7.3 and those for the five-wire antenna in Table 7.4. In these tables, we
have used the following notations: F is number of Function evaluations, G is the number of
Gradient evaluations of the objective function, C is the number of Constraint evaluations,
Jac is the number of Jacobian evaluations of the set of constraints, Hes is the number of
Hessian evaluations and S/ S is the ratio between the radiated energy found by the
solver and the radiated energy of the initial estimate. To compute S;,;, we have computed
the currents on the wires from Eq. (7.1) with the geometrical parameters from Table 7.2

and we have applied Eq. (7.8).

F| G C | Jac | Hes | Sopt/Sini
DONLP2 || 141 | 50 | 28667 | 6232 - 3.88
FILTER 63 | 89 261 89 | 143 0.42
SNOPT 21 | 20 21 20 - 3.88

Table 7.3: algorithmic data from the two-wire Yagi-Uda antenna.
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F G C Jac | Hes | Sopt/Sini
DONLP2 || 357 | 147 | 198759 | 45710 - 6.54
FILTER 147 | 183 607 183 | 310 0.29
SNOPT 44 | 43 44 43 - 6.54

Table 7.4: algorithmic data from the five-wire Yagi-Uda antenna.

DONLP2 | FILTER | SNOPT
Ly 0.480 1.105 0.480
Ly 0.459 1.463 0.459
Ty -0.214 -0.010 -0.214

Table 7.5: optimized geometrical parameters for the two-wire Yagi-Uda antenna, in meters.

For the results of DONLP2, we have to remark that this solver counts every evaluation
of a single constraint, whereas FILTER and SNOPT count only the evaluation of the full
set, of constraints. This explains why the number of constraint and Jacobian evaluations is
relatively high for DONLP2. To compare the results from DONLP2 with the other results,
the number of constraint and Jacobian evaluations has to be divided by the number of
constraints, i.e., 70 for the two-wire problem and 172 for the five-wire problem, under the
assumption that all constraints are evaluated an equal number of times. This is an estimate
that holds under most conditions. Further, both DONLP2 and SNOPT use a quasi-Newton
estimate of the Hessian matrix, in contrast to FILTER, which uses an exact Hessian. In
both tables we see that SNOPT has the best overall performance. We can also see that
FILTER found a different and poorer (local) optimum for both problems. Remedies are
discussed in the next section. The optimal geometrical dimensions of the two-wire and
five-wire antennas are given in Tables 7.5 and 7.6, respectively. Finally, we note that we
have not been able to test problems with more than five wires, due to memory constraints
on the servers. The most likely cause of this is the use of automatic differentiation in
AMPL. To give an idea: the five-wire Yagi-Uda problem required more than 600 MB for
FILTER.
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DONLP2 | FILTER | SNOPT
L, 0.479 0.473 0.479
Ly 0.457 1.454 0.457
Lj 0.449 1.126 0.449
L, 0.446 2.365 0.446
Ls 0.447 0.443 0.447
Ty -0.335 -0.699 -0.335
T3 0.372 6.094 0.373
T4 0.678 6.104 0.680
Ts 1.014 6.723 1.014

Table 7.6: optimized geometrical parameters for the five-wire Yagi-Uda antenna, in meters.

7.1.5 Discussion on local minima in the explicit approach

From Tables 7.3 and 7.4, we see that DONLP2 and SNOPT found the same value for
Sopt/ Sini, whereas FILTER found a value lower than one. This value being lower than one
can be explained from the fact that solvers look for a nearby Kuhn-Tucker point [23]. In
general, the objective function will have a larger value at this point in comparison with the
initial estimate. However, depending on the strategy of handling constraint violation, this
property may be destroyed. The question is now whether or not we can force FILTER to
find the same or an even better maximum. There are basically three approaches to tackle
this problem. First, we can pose extra (linear) constraints on the geometrical parameters of
the Yagi-Uda antenna. Second, we can use some of FILTER’s parameters to influence the
search behavior. Third, we can reformulate the optimization problem or introduce extra
non-linear constraints. The third option is not considered here, since the two other solvers
already give a better answer than FILTER with the present formulation, and introducing

extra non-linear constraints is expensive in computation time.

To examine the first two options, we focus on the five-wire Yagi-Uda antenna. In Figure 7.2
the radiation patterns in the plane y = 0 are shown for the Yagi-Uda antenna found by
SNOPT and by FILTER, respectively. As regards FILTER, it is clear that the energy is
distributed over several lobes in the radiation pattern and therefore the maximum found by
FILTER is lower than the one found by SNOPT. The multiple lobes in the radiation pattern
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Figure 7.2: radiation patterns for the Yagi-Uda antenna, on a linear scale. (a) Optimized
by SNOPT. (b) Optimized by FILTER.

are due to the lengths of the individual wires in the antenna. Multiple lobes are typically a
result of wire lengths longer than A/2, which is 0.5 meter in this case. To find out whether a
further restriction on the wire lengths gives the same solution for FILTER and SNOPT, we
have optimized our Yagi-Uda antenna again with FILTER and SNOPT with the additional
constraint that the wires must be shorter than 0.5 meter. SNOPT gave the same solution
as before, but again FILTER found a different (and lower) optimum than SNOPT. The
resulting radiation pattern for the solution by FILTER is shown in Figure 7.3. For the
new solution found by FILTER, the optimum is lower due to radiation in the backward
direction. An explanation can be found in the length and position of the reflector: the
reflector length is smaller than the driver length and the reflector is positioned at roughly
21 meters from the driver, while in typical Yagi-Uda antennas the reflector is longer than
the driver and the distance between reflector and driver is typically in the order of \/4,
which is 0.25 meter in this case. We could have added two additional constraints to the
Yagi-Uda antenna to see if we can find the same optimum with SNOPT and FILTER.
However, we have already relied heavily on antenna theory to restrict the problem and
in a general antenna optimization problem equivalent antenna knowledge might not be

available. Therefore, we continue by examining the second approach, i.e., to use built-in
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Figure 7.3: radiation pattern for the Yagi-Uda antenna optimized by FILTER solution

with restricted wire lengths.

features of FILTER. One of the key features of FILTER is that it allows constraint violation
during the search process. In this way it is able to search with a higher efficiency because
it can short-cut curved boundaries. However, allowing constraint violation can cause non-
local search behavior, i.e., the initial estimate is no longer an indication for the search area.
Another way to make this clear is to envisage the entire search domain as consisting of
several disconnected areas without constraint violation immersed in areas with constraint
violation. Since we regard the initial estimate as a proper starting point for the search
process, we would like to control the amount of constraint violation that is acceptable for
FILTER.

An indication that we should only allow small constraint violation is that the number
of iterations spent on infeasibility (256) is rather high compared to the total number of
iterations (353). Infeasibility occurs when the trust region in FILTER becomes too small
with respect to the constraint violation [24], i.e., the trust region contains no points without
constraint violation in the intermediate quadratic problem. The FILTER user manual [25]
hints that the performance of FILTER can possibly be improved by controlling the amount
of constraint violation. This can be done by using the parameters ubd and tt. We have
performed several simulations to find the proper value for ubd with a fixed value tt=10"*.
Table 7.7 summarizes the results where the value of S,,:/Sin; is taken as a criterion to

further decrease ubd as long as the optimum found by SNOPT is not reached. Table 7.7
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ubd 10 1]107' | 1072
Sopt/ Sini 0.61 | 0.65 | 2.38 | 6.54
function evaluations 78 | 109 88 86
gradient evaluations 38 45 29 26
Hessian evaluations 43 50 30 31
constraint evaluations 104 | 137 90 95
iterations 61 77 58 23
iterations in infeasible NLP 11 11 2 9

Table 7.7: ubd versus objective function value.

shows that FILTER is capable of finding the same optimum as SNOPT by decreasing ubd.
Also, the number of evaluations of function, constraints, gradients, and Hessian tends to
decrease as well as the number of iterations spent on “infeasible NLP”. Since the tuning
of parameters requires no additional knowledge of the physical problem, this approach is

more satisfactory than posing additional linear constraints on the geometrical parameters.

7.1.6 Algorithms for the implicit approach

The implicit approach is not suitable for the modeling language AMPL, since it has no
facilities for matrix decomposition or inversion. Therefore, we have implemented the model
in Fortran77. We have programmed the gradient of the objective function and the Jacobian
of the set of constraints without automatic differentiation. Also, we have decided not to use
an exact Hessian because it is very time consuming to write and error-prone. Therefore,
FILTER has been extended with a quasi-Newton estimate of the Hessian and the resulting
code is called FILTERQN (FILTER Quasi-Newton).

The constrained-optimization solvers we have used for the implicit approach are: DONLP2
(obtained through netlib), FILTERQN and NPSOL (which is part of the NAG Fortran
library as routine EO4UCF). We have also used two solvers for unconstrained optimization:
L-BFGS-B [83], and BFGS-LS, a BFGS-update routine for the Hessian combined with the

line-search algorithm given in [23]. For the unconstrained optimization solvers, the only
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non-linear constraint in the problem, i.e., the constraint on the impedance, is handled
by adding two penalty functions to the objective function. We use the standard penalty

function for inequalities [23]. The new objective function (Fe,) can now be written as
A Ay )
Frew = Fog + 5 (min {0, R;, — 50})" + 5 (min {0,100 — R;,})", (7.15)

where F,;4 is the original objective function (S) and A, are the penalty parameters.
We start with an initial choice for the penalty parameters (typically 1) and optimize the

objective function. After convergence we compute R;, and perform two tests:

T1: Ry >50—c¢, (7.16a)
T2: Ry <100 +e¢, (7.16b)

where € is a small positive number (107%). If test T1 fails, we increase A; by a factor of
ten and start the optimization again with the optimal parameters from the previous step.
If test T2 fails, we increase Ay by a factor of ten and return to the optimization process.

We continue this process until both T1 and T2 are satisfied.

The linear constraints for the lengths of the wires and their positions can all be rewritten
in terms of simple bounds by considering the distances between the wires instead of the
position. In this manner we can include the simple bounds in the problem description if
we use L-BFGS-B. In case we use BFGS-LS, we cannot include these bounds. This may
seem an unfair comparison. However, in the final solutions of the explicit approach, none

of these constraints are active.

7.1.7 Results for the implicit approach

The convergence results of the solvers for the two-wire problem are given in Table 7.8 and
those for the five-wire problem are given in Table 7.9. In these tables, we have used the
same notations as in Section 7.1.4. Again, we note that DONLP2 counts the evaluation of
a single constraint or its gradient, whereas FILTERQN and NPSOL count the evaluation
of the entire set of constraints or the Jacobian. From the tables, we observe that the
implicit approach is more effective in terms of evaluations in comparison with the explicit
approach of DONLP2. We also see that the objective values reach the same level as
before and that FILTERQN finds the same optimum as the other solvers. For the five-
wire problem, FILTERQN performs worse than FILTER in the explicit approach. This is
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F| G C | Jac | Sopt/Sini
DONLP2 19| 14| 297 9 3.88
FILTERQN 21| 14| 21| 14 3.88
NPSOL 12 12 12| 12 3.88
BFGS-LS 85 | 83 - - 3.88
L-BFGS-B 118 | 118 - - 3.88

Table 7.8: algorithmic data from the two-wire Yagi-Uda antenna with the implicit physical

model.

F| G C | Jac | Sopt/Sini
DONLP2 64 | 44 | 1688 | 42 6.54
FILTERQN || 240 | 152 | 240 | 152 6.54
NPSOL 100 | 100 | 100 | 100 6.48
BFGS-LS 432 | 426 - - 6.48
L-BFGS-B 395 | 395 - - 6.54

Table 7.9: algorithmic data from the five-wire Yagi-Uda antenna with the implicit physical
model.

most probably caused by the absence of a second-order correction step [23] and an inexact
Hessian in FILTERQN. However, for the two-wire problem, FILTERQN performs better
than FILTER. Further, we note that the penalty parameter approach is not very effective

compared to the constrained-optimization methods.

For the five-wire problem, we observe that the solvers NPSOL and BFGS-LS find a slightly
poorer local optimum than the other solvers. The optimized geometrical parameters for
the five-wire problem, obtained from DONLP2 and NPSOL, are summarized in Table 7.10.
The parameters from DONLP2 are almost identical to the results for the explicit approach
in Table 7.6. However, the results from NPSOL are somewhat different, although the
optimized values are still close to the initial estimates. Hence, we have probably found
another local optimum, although it does not deviate too much from the other optimum.
Finally, we mention that we did not encounter any memory problems: the five-wire problem

required approximately 424 kB.
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DONLP2 | NPSOL
Ly 0.479 0.482
Ly 0.457 0.475
Ls 0.449 0.457
Ly 0.446 0.447
Ls 0.447 0.449
Ty -0.335 -0.237
T3 0.373 0.192
T4 0.680 0.475
T5 1.014 0.768

Table 7.10: optimized geometrical parameters for the five-wire Yagi-Uda antenna, in me-
ters, for the solvers DONLP2 and NPSOL.

7.1.8 Conclusions for the Yagi-Uda optimization

The problem formulation with the implicit physical model seems more effective and efficient
than the problem formulation with the explicit physical model. For the approach with the
explicit physical model we find several local maxima, which differ quite a lot from the
best maximum and some of the geometrical parameters have unusual values. For the
approach with the implicit physical model we find only one maximum for the two-wire
problem and two maxima for the five-wire problem. The two maxima for the five-wire
problem do not differ too much and the geometrical parameters for the poorer maximum
are still close to the initial values. The best maxima of the implicit approach correspond
to the best maxima of the explicit approach. These observations seem to indicate a more
local search behavior in case of the formulation with the implicit physical model. Also,
there seems to be no advantage of an exact Hessian over a quasi-Newton Hessian in the
explicit approach for this particular problem. For FILTER, we have tuned the parameters
for constraint violation, and we have shown the effect of this tuning on the solution.
For similar optimization problems, it seams worthwhile to tune these parameters before
optimizing the full problem, or, alternatively, to optimize the problem for several settings
of the parameters that control the constraint violation. Further, the penalty-parameter
approach is less effective than the constrained-optimization approach. Finally, we observe
that additional linear constraints lead to more local search behavior, but they also require
more theoretical knowledge.
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7.2 Array of thin wires

From the Yagi-Uda antenna, it is a small step to consider wire-antenna arrays, which form
the second class of test problems. We consider an array of M identical parallel dipoles
with fixed position and length. Wire m is excited by a delta-gap source with complex
voltage V™. We will address the optimization of the phases and amplitudes of the delta-
gap sources. In a practical design situation, it frequently occurs that the feeding network
and the array of antennas are designed separately. Therefore, our design problem considers
the case where the design of the array of antennas has been finished and we are left with

the design of an appropriate feeding network.

We will assume that the central axes of all wires lie in the plane y = 0 and that the center
of the m-th wire is r,,, = z,,u; + 2z, u,. The design objective is either an optimal directivity
in the main direction or an optimal sidelobe level, possibly subject to constraints. Again,

we denote the linear system of Eq. (4.27) by
Z 1=V (7.17)

The electric field in the far-field region is given by
M N-1

o exp(—jwR/e)
Ey(0,¢) = jwpo sin(6) o R n; nz::I I [m,n]F(m,n, 0, ¢), (7.18)
where R is the distance between the center of the antenna and observation point and
. 1 — cos(wqA,/co)
F(m,n,0,¢) = exp {jw[Tmp + zmnql/co} Boi2d) (7.19a)

Zmn = Zm — L [2 + nAp, (7.19b)
p = cos(¢) sin(6), (7.19¢)
q = cos(6), (7.19d)
Ay = Ly/N. (7.19)

The time-averaged radiated power per solid angle in the direction (6, ¢) can be expressed

in terms of the electric field in the far-field region as

R2|E, (8, )2
5(0,0) = B

The time-averaged total power radiated by the array can be approximated as

P = %Re {i ng[:n(zm)} : (7.21)

m=1

(7.20)
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We can now define the directivity D of the antenna as

4
Do, ¢) = T50) (7.22)
P
and the sidelobe level (SLL) as
SLL = min |D(90°90°) — D(6,¢)|. (7.23)

(0,¢)¢main lobe

For the optimization considered here, we regard the sidelobe level as the minimum of a
discrete set of preselected points, instead of the minimum of the continuous set. We denote
the K preselected points by (0k, ¢x), k =1,..., K. Hence, we can write

SLL = minK |D(90°,90°) — D(0k, o] - (7.24)

=1,...,

We now turn our attention to the formulation of the optimization problems for the di-
rectivity and the sidelobe level. First, we consider the matrix equation (7.17) as a set
of equality constraints. Unfortunately, we have to separate the real and imaginary parts
of the system and enforce them separately, since all solvers for constrained optimization
accept real arithmetic only. Further, we pose additional constraints with respect to the
amplitude of the delta-gap sources to prevent ambiguity, and constraints for symmetry
on the excitation voltages, if needed. For the optimization of the directivity in the main

direction we arrive at

maximize | D(90°,90°),
subject to | Z- I =1V,

—L<Re{V"} <1 m=1,.... M, (7.25)
—1<Im{V"} <1 m=1,..., M,

m o __ M+1—m .

Vit =V, i m=1,...,[M/2] (symmetry),

where the symmetry condition is optional. For the optimization of the sidelobe level, we
could have used the same formulation. However, this leads to a minimax problem, since
we would like to maximize the sidelobe level, which in turn is given by a minimum. We
will proceed in a different manner. We introduce a slack variable y [23]:

y= min |D(90°,90°) — D(0y, ¢r)| - (7.26)

k=1,..K

Then we have
D(90°,90°) —y > D(O, ¢pp) fork=1,... K, (7.27)
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since the directivity in the main direction, i.e., D(90°,90°), should always be higher than
the directivity outside the main lobe and the difference should be at least as large as the

sidelobe level.

Finally, we introduce a minimum level of directivity (D,,;,) in the main direction and

optional symmetry conditions. We arrive at the following optimization problem:

maximize | ¥,

subject to | Z -1 =1V,

D(90°,90°) —y > DOk, 00x) k=1,..., K,
D(90°,90°) > Dyin, (7.28)

—1 <Re{V,"} <1 m=1,...,M,

1 <Im{V;"} <1 m=1,...,M,

m _ Y M+1-m .

Vo=V m=1,...,|M/2] (symmetry).

7.2.1 Results for the wire array

The optimization problems have been implemented in the programming language AMPL [26]
and we have used the optimization tool FILTER [24] to solve the optimization problems
for the directivity and the sidelobe level. We have optimized several arrays with various
layouts. In all cases we started with an equal excitation of all dipoles. We will illustrate
our results by two examples: one to optimize directivity, and one to optimize the sidelobe
level. First, we discuss the optimization of the directivity of a planar 5 x 4 array of dipoles
with distance A/4 in the z-direction and A/2 in the z-direction. The dipoles have a length
of 0.45\. The radius of the circular cross-section of each wire was 0.001A. The planar
array has been depicted in Figure 7.4. The radiation pattern in the plane z = 0 before
(coupled uniform) and after (coupled optimized) optimization is shown in Figure 7.5. This
figure also includes the radiation pattern for equal amplitude sources when the coupling
between the wires in not taken into account (uncoupled uniform). In all cases we have
computed the currents on the wires and the radiated energy with the same numerical
method. The results illustrate that the directivity can only be improved by 0.9 dB. Also,
the directivity estimate obtained for the case without mutual coupling is too optimistic
with respect to the optimized feeding network. This example indicates once more that

mutual coupling should be taken into account in array designs.
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Figure 7.4: 5 x 4 planar array.
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Figure 7.5: optimized directivity of a 5 x 4 planar array.
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Figure 7.6: optimized sidelobe level of a five-element linear array. The solid line represents
the radiation pattern for uniform excitation, + indicates the pattern after optimization
with symmetry constraints and the dashed line is the pattern after optimization without

symmetry constraints.

The second example is a linear array of five elements with a spacing of A/2. The dipoles
have a length of A/2 and a circular cross-section with radius a = 0.001\. The objec-
tive is to reduce the sidelobe level in the plane z = 0 and to maintain a minimum gain
of 10 dB. We have examined the cases with and without symmetry constraints on the
excitation voltages. The radiation patterns in the plane z = 0 are presented in Fig-
ure 7.6. The performance of the initial excitation of the array is indicated by wuniform,
the optimized array with symmetry constraints on the excitation is indicated by opt sym
and the array without symmetry constraints on the excitation is indicated by opt nosym.
For the preselected points outside the main lobe we have chosen 6, = 90°, for all k. In
case we have applied symmetry constraints on the excitation voltages, we have chosen
or € {0, 10, 20, 30, 40, 50,55,60}°, i.e., K = 8. For the case without symmetry constraints,
we have used ¢, € {0, 10,20, 30, 40, 50, 55, 60, 120, 125, 130, 140, 150, 160, 170, 180}°, i.e.,
K = 16. From Figure 7.6, we observe that the cases with and without symmetry con-
straints give the same result, which indicates that the (non-linear) constraints on the
sidelobe level for ¢ > 90° can be exchanged for the simple bounds on the excitations. The
simple bounds are easier to deal with and much cheaper to evaluate in comparison with

the non-linear constraints. We note that, in contrast with the Yagi-Uda optimization, we
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did not encounter any trouble in solving these optimization problems. Also, other solvers
gave the same results and therefore we expect that we have no problems associated with
local maxima and constraint violation. Further, the memory requirements were low, owing
to the fact that only the right-hand side of Eq. (7.17) contains design parameters. This
confirms the conjecture that the automatic differentiation has caused the excessive memory

requirement in case of the Yagi-Uda problem.
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Chapter 8

Conclusions and recommendations

At present, the toolbox of designers in electromagnetic engineering contains experiments
and numerical simulation tools. With these tools, the designer constructs a blueprint of the
design together with a set of parameters, which are, for instance, related to the geometry or
the excitation of the design. After the construction of the blueprint, the aim of the design
process is to establish proper values for these parameters. The proper values are related
to design criteria, which are usually related to directing energy in a certain direction, and
criteria for manufacturing. Often, numerical tools are available to compute characteristics
of a design for a fixed parameter setting only. However, a large part of the design process
consists of finding the proper parameter setting, i.e., fixing values for the parameters,
mainly by means of parameter sweeps. Therefore, it would be a major improvement if these
sweeps could be dealt with efficiently. In this thesis, we have aimed at the extension of the
numerical simulation tools by suggesting “marching on in anything” for efficient parameter
sweeps. In particular, we have demonstrated the efficiency of marching on in anything for
three types of scattering problems, viz., a straight thin wire, a perfectly conducting flat
plate, and a dielectric object, all in free space. Further, we have initiated a study to design
antennas by a class of non-linear optimization strategies. With these strategies, the above
mentioned parameter values can be found, after the formulation of a proper objective
function, which represents the design criteria and criteria for manufacturing. Within the
context of electromagnetic engineering, the formulation of a realistic objective function
for a practical design remains a challenge. We have started from the simplest case of
wire antennas, for which abundant literature is available, to determine the most promising

approach for more complicated cases. This approach is based on sequential quadratic
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programming in a low-dimensional parameter space, where the physical model is kept
outside the optimization problem. Another advantage of this approach is its compatibility
with marching on in anything, i.e., the optimization approach and marching on in anything
can be combined in a straightforward manner to arrive at an efficient search procedure for

appropriate parameter values.

Before we can apply an optimization strategy to a design problem, a number of steps have
to be taken. First, we have to find a model, which is sufficiently simple with respect to
computer resources, and we have to find a mathematical formulation for the electromag-
netic behavior of the blueprint. Then, we have to construct a numerical method, which
has a sufficiently flexible discretization with respect to parameter variations, to find an
approximation of the solution of this mathematical formulation. Ideally, it would be useful
to have some idea about the reliability and the accuracy of this approximation. For certain
types of non-linear optimizers, e.g., genetic algorithms, these steps are sufficient to start
the optimization process. However, more efficient solvers also employ gradients. These
gradients consist of the first derivatives of the above mentioned objective function with
respect to all design parameters. The computation of these gradients also requires a math-
ematical formulation and a numerical method. Although the computation of a gradient
requires extra effort and computation time, the total computation time of the optimization
process is usually reduced drastically as compared to optimization with genetic algorithms,
due to the increased efficiency of the gradient-based solver. Therefore, it is recommended

to compute the gradient.

For the straight thin wire, we have formulated two integral equations, which are known
as the integral equation with exact kernel and the integral equation with reduced kernel,
to describe the interaction between the current on the wire and the incident electric field.
For the infinitely long straight thin wire, we have shown that both integral equations are
exact with respect to the total current in the axial direction. For the finite straight thin
wire, we have shown that there is a conditional equivalence between both formulations,
which has enabled us to show uniqueness and conditional existence of the solution for the
integral equation with reduced kernel, based on results for the integral equation with exact
kernel. Further, we have shown that the integral equation with reduced kernel is severely
ill-posed for all standard Lebesgue and Sobolev spaces. Subsequently, we have developed
two numerical schemes for the integral equation with reduced kernel. The ill-posed nature
of the integral equation with reduced kernel has been illustrated by erratic results for the

current on the wire and rapidly increasing condition numbers of the numerical system
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for increasingly finer discretizations. We have demonstrated regularization and filtering
methods to improve the condition number of the numerical system and the approximation
of the current.

For the perfectly conducting flat rectangular plate, we have formulated the standard
electric-field integral equation (EFIE), which relates the surface current density on the
plate to the incident electric field. From this equation, we have derived a Hallén-type
equation, which was inspired by the Hallén equation for straight wires. The merit of this
equation is that the spatial derivatives on the vector potential have been removed, at the
expense of additional boundary terms. We have constructed a numerical method for the
Hallén-type equation. Also, we have derived a numerical method, based on piecewise-
sinusoidal testing function, for the EFIE, and we have shown that the resulting scheme
can be obtained from the discretized Hallén-type equation as well. We have solved both nu-
merical systems by the CGFFT method, which is a combination of the conjugate-gradient
method and the Fast Fourier Transformation. Numerical tests show that the conjugate-
gradient method converges much faster for the system with piecewise-sinusoidal testing
functions than for the discretized Hallén-type equation, due to the presence of the extra
boundary terms in the latter. Further, the method with piecewise-sinusoidal testing func-
tions is much more flexible with respect to the geometries it can handle, since the testing
functions have only local support. Hence, it is advantageous to use the numerical scheme
with piecewise-sinusoidal testing functions. This conclusion is underlined by results from

the literature, which characterize proper testing functions for the EFIE.

For the dielectric object, we have derived three different integro-differential equations,
which relate the contrast-current density to the incident electric field. We have analyzed
one of these equations in detail and we have established conditions for well-posedness. Also,
we have noted that all three integro-differential equations are equivalent and well-posed
under the same conditions for the permittivity function of the object. From a theoretical
point of view, although not experimentally validated, present numerical schemes can be

improved by employing different testing functions.

With respect to the gradient that can be used in an optimization tool, we note that we
have not encountered any difficulty in computing the gradient with respect to lengths
and distances for an array of parallel wires. However, for the flat plate, the formulation
of the derivative with respect to the length of the plate was intricate, due to the pres-

ence of singularities in the surface current density. We have carefully formulated and
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discretized an integro-differential equation for this derivative. Further, we have examined
two finite-difference approximations for this derivative. We have shown that one of these
approximations yields a reliable estimate for the derivative. Generally, a gradient also pro-
vides information on the sensitivity of the design with respect to small parameter changes,

which are due to, e.g., manufacturing tolerances.

As regards marching on in anything, we have proposed a simple theory based on differ-
entiability and boundedness of the linear operators and the excitation vectors involved,
to explain the success of this strategy. In particular, marching on in anything is a way
to construct an approximate solution for a numerical system, within the context of the
conjugate-gradient method, from a linear combination of preceding simulation results with
nearby parameter values. We have shown that the efficiency of this strategy is influenced
by the residual error of the conjugate-gradient method and the step size of the parameter
variation. Also, the number of preceding simulation results that is taken into account in
the construction of the initial estimate affects the convergence. It turns out that for a large
class of parameter variations, we should take into account two or three preceding results
and we recommend that one experiments a little before engaging in large parameter sweeps.
For standard numerical schemes for the straight thin wire, the perfectly conducting flat
plate, and the dielectric object, we have shown that marching on in anything improves
the efficiency of the conjugate-gradient method dramatically for parameters sweeps with

respect to frequency, angle of incidence, and length.

For the flat plate and the array of thin wires, we have completed the steps to employ a
non-linear optimization solver. For the array of thin wires, we have formulated a number
of practical design problems, in terms of energy-related objective functions and a set of
constraints. We have optimized a Yagi-Uda antenna, while testing several non-linear op-
timization strategies. Also, we have examined how to remedy that a solver finds a local
optimum. We conclude that it is advantageous to tune the parameters of the solvers a
number of times for each problem and to examine the final solutions. In particular, opti-
mization solvers based on sequential quadratic programming have been highly successful.
We have also optimized the amplitudes and phases of the sources of an array antenna,
with respect to maximum gain or maximum sidelobe level. For the flat plate, we have not
performed any optimization, since a flat rectangular plate by itself, or a plate with a fixed
shape, does not give rise to an interesting design problem. The simplest step towards a
design problem with a flat plate would be to add a dielectric layer and a ground plane

with a coaxial feed to the configuration, to model a single patch antenna. Alternatively,
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one could consider an infinite periodic arrangement of flat plates together with a number

of dielectric layers to form a frequency-selective surface or an array of patch antennas.

With the results summarized above, we have available the key elements to explore the con-
cept of “electromagnetic engineering”, i.e., we have efficient numerical methods together
with a characterization of their approximation properties, efficient parameter variation,
gradient computation, and optimization. However, before we can tackle a realistic design
problem, a few extra hurdles have to taken. First of all, a more realistic environment should
be taken into account instead of free space. At the same time, we would like to be able to
change part of a complicated geometry without repeating expensive field computations for
the entire configuration. This can for example be achieved by an embedding approach [74].
In this technique, the complex environment is taken into account via scattering operators,
whereas the benefits of an efficient matrix-vector product by means of Fast Fourier Trans-
formations are preserved in the modeling of the object. Further, the mesh of the object
under study in CGFFT algorithms is rather rigid. More flexibility in the mesh can be
obtained by applying fast multipole methods [13] or the “adaptive integral method” [8],
which still give rise to efficient matrix-vector products. Finally, electromagnetic engineer-
ing would benefit from a study with respect to the formulation of non-linear optimization
problems for realistic design criteria together with a characterization of local optima that
arise in these problems. This type of research can for example benefit from methodologies
that are applied in circuit theory, where optimization strategies have a longstanding repu-
tation, see e.g. [68]. The results of such a study would enable the application of non-linear
optimizers in a much earlier stage of the design process. At present, a number of papers in
this direction have appeared or will appear in the near future, see e.g. [20] and references

therein.
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Appendix A

Surface current and charge densities

A.1 Notion of a surface vector field

Consider an orientable surface § with continuously differentiable unit normal n, parame-

terized in a Cartesian reference system as

(& n) = x(&n)us +y(&, n)uy + 2(€,n)u., (A1)

where (£,17) € G and G is a compact area in R%. Hence, each point on the surface is
related to a unique pair (£, 7). The parametrization for the normal is given by n(§,n). We

introduce a family of parallel surfaces Sy,

Sp=Ar[r=r&n)+hn(En) En) g}, (A.2)

for h € [—hy, ho]. Hence, we have S = Sp. The fact that S has a continuously differentiable
normal guarantees the existence of a positive hg, for which the surfaces S, do not intersect.
The set of all parallel surfaces Sy, gives rise to a finite volume V,, that can be parameterized
as r(§,n,h), for (§,7) € G and h € [—hg, hy]. In this volume, the mapping (£,n,h) —
r(&,n, h) is invertible.

Suppose that a continuously differentiable tangential vector field v5(&,n) is defined on S,
i.e., vg-n = 0. Then we extend the vector field vg to a vector field v on the volume Vj,

’U(’I"(f, n, h)) = 5€(h)’05(f, 77)7 (A3)
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where 0.(h) is a real-valued C§° function with support [—¢,¢], 0 < € < hy and

€

/ 5.(h)dh = 1. (A.4)

—€

The above vector field v is called an extension of vg from S to V.

For any continuous function f(r), we consider the limiting process

lgilrgl///f(r)v(r)dv

Vho

~ lim // / Fr(&m h)S.()dh | ws(E,n) [I(E,mldedn (A5)

51§0n€g J
/f (6, 0))vs (&, )\an\dfdn—//f rYvs(r
(&meg

where |J(&,n)| denotes the Jacobian on S. Hence, the limiting process reduces the volume
integral over V}, to a surface integral over S. This observation has led to the notation

limvgo.(h) = vs(r)is(n). (A.6)

€l0

A.2 Surface divergence

The extension of a vector field defined on a surface to a vector field defined on a volume also
brings up the question what happens to operations on these vector fields. For our purposes,
the divergence operator is the most interesting and we will derive Gauss’s theorem on a

surface.

Let C be a Jordan curve on the surface S and let u, be the tangential unit vector along
C, such that w, gives rise to a positive orientation of C with respect to the normal n on
S. We define the vector u, = u, X m, which is the outward-pointing unit normal on C,
tangential to S. In the same way as for Sj, we can define a family of parallel curves Cy,

with outward-pointing unit normal w,, which is independent of h and tangential to S.
Hence, C = Cy.
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Let vg be the continuously differentiable vector field on S with corresponding extension
v, as defined in the preceding section. Then, we can apply the three-dimensional version
of Gauss’s theorem to the volume V. in V,,, bounded by the family of curves C;, and the
surfaces S_. and S.. Owing to the fact that vs - n = 0, the surfaces S_. and S. do not

contribute to the surface integral in Gauss’ theorem. Hence, we have

// V-v(r)dV:/Eég(h)dh/vg-u,,déz y{vg-ul,dé, (A7)

C c

owing to the definition of d.(h). The resulting expression is independent of the choice of

d:(h) and the parametrization of S.

If the parametrization of the surface S is such that {Ocr,d,r,n} forms a (curvilinear)
right-handed, orthogonal coordinate system in V;,, then we can employ the well-known
identities for the divergence operator in three dimensions, to work out the left-hand side
of Eq. (A.7). We define the quantities

he = [|0gr (€, ), (A.8a)

hy = [0y (&M, (A.8b)
1

ug = -0 (&, n), (A.8c)
£
1

Uy = h—anr(f, m); (A.8d)
n

Use = Vs - Ug, (ASG)

Usn = Vs - Uy, (Agf)

and, after integration in the direction of the normal n = u; x u,,, we obtain

// V-v(r)dV =

// z%h {0 [hyvs.e(r(&,m)] + By [hevs  (r (&)} T (&,m)| dédn.

(&meg

(A.9)

Therefore, we define the surface divergence on vg in the above right-handed orthogonal

coordinate system as

1

Vs vs = 1 {0 [hyse(r(&,m)] + 0y [hevs (r (& m)]} - (A.10)
§hen
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For the plane with constant z-coordinate, the surface divergence in Cartesian coordinates
is given by
VS Vg = axvs’x + ayvs’y, (A.ll)

as expected. On the mantle of a circular cylinder with radius a, the surface divergence is
1

Vs Vs = —8(;51)5,(;5 + 8ngyz. (A12)
a

The definition of the surface divergence in Eq. (A.10) is coordinate dependent. A coordinate-
independent definition is obtained in the following way [14, 47]. Let S be an orientable
surface with continuously differentiable normal, and let {C,} be a sequence of Jordan
curves on S. Let the sequence {¥,} of enclosed surfaces on S by C, converge to the
point r on S, in the sense that for every £ > 0 there exists an N(¢) € N such that for all
n > N(e) the subset ¥, is contained in the sphere with radius € and center r. Let the
surface area of ¥, be denoted by o(X,,). Then we define the surface divergence as

) 1
Vs-vg:nh_)r{)lom %’US"’U,Vdg. (A13)

,n

A.3 Conservation of surface charge

The introduction of the surface divergence allows us to derive the law of conservation of
surface charge. From Eq. (2.13b), we observe that a surface current density Jg corresponds
to a jump in the tangential magnetic field. We define a continuously differentiable surface
S at the jump in the magnetic field. As in Section A.1, we can define a family of surfaces
parallel to &, which together give rise to the volume V},,. We divide this volume into two

parts:

Vi =A{r|r=rEn) +hn(En), (€ n) € G.0 <h < h}, (A.14a)
Vie =Ar | r=7(&n) +mn(&,n),(En) €G,—hy <h <0}. (A.14b)

In both volumes V,TO and V), , we can apply Stokes’s theorem to a Jordan curve Cj, on the
surface S, with u, the outward-pointing unit normal on Cj, which is tangential to S, as
defined in Section A.2. Further, the surface enclosed by C; on S, is denoted by S . For

a continuously differentiable vector field v in V,TO or V, we obtain

//(va)-ndA: y{v-uTcM:yg—(nxv)-u,,dﬁz//—vs-(nxv)dA. (A.15)

Se,n Ch Ch c,
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Hence, on the surface S¢,, we have the identity
Vs (mxv)=-n-V xwv, (A.16)

where n is the unit normal of the surface on which the surface divergence is defined. If we
use the superscript * for vector fields in V;ro and the superscript ~ for vector fields in V), ,

the application of the above identity, on opposite sides of the surface S, leads to

. —1i . +) _ . -
Vs Jg—lﬂgl[vs (an) V, (an )]

:l}%l [-n- (VxH"-V xH)] (A.17)
= l}%l{—n- (J*+sD")—(J +sD7)]} =-—n(J" —J") — sps,

Hence, we have obtained the law of conservation of surface charge

Ve-ds+n-(J"—=J7)+sps=0. (A.18)

A.4 Vector potential for a surface current density

The extension of a vector field defined on a surface S to a vector field defined on a volume
V), as discussed in Section A.1, suggests that the vector and scalar potentials, as defined
in Eqs (2.38) and (2.39), for the electromagnetic field in the presence of a surface current

density assume the form

Alr) = / / Glr — ') Js(r')dA, (A.19)
B(r) = — / / Glr — 1)V, - Js(r')dA, (A.19b)

where § is the surface on which the surface current density Jg is defined. For continuously
differentiable Jg and V; - Jg, we can define a limiting process, in which the point of
observation r approaches the surface S from one side. A careful examination shows that [14,
Sections 2.5 & 2.6]

n(r) x Jg(r)

I}HBI (VX A)(r£hn(r)=F —— * (V x A)(r), (A.20a)

lin (V) (r & hn(r)) =+ ”(T)V;' Js(r)

+ (V) (r), (A.20D)
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where r is a point on & and where the integrals in the definition of the potentials exist
in the sense of a Cauchy principal value. If we insert the potentials of Eq. (A.19) into
Eqgs (2.38) and (2.39), the resulting fields satisfy Maxwell’s equations in free space outside
S and the radiation conditions (2.32). The boundary conditions (2.13) are satisfied, owing
to Eq. (A.20). Finally, owing to the definition of the surface divergence, the potentials
satisfy the Lorenz gauge. Therefore, the pertaining definitions of the potentials are in fact
the potentials we are looking for and they are consistent with the potentials for volume
current and charge densities of Eq. (2.43).



Appendix B

Scattering by a straight thin wire

B.1 Representation of the Green’s function in cylin-

drical coordinates

We will derive an expression for the Green’s function for free space, tailored to cylindrical
problems. First, we use the integral [21, page 95, Eq. (53)] or [29, Section 6.677, Eq. (5)]

exp(—jyva® + b?) 70
=2 [ dtcos(bt)Ky(ar/t? — y?
™ \/m / ( ) 0( Y )

o0

:/dtexp(—jbt)Ko(aM)-

— 00

Further we use Gegenbauer’s addition theorem [21, page 44, Eq. (4)]

where w = /22 + Z2 — 22Z cos(¢) and z < Z.

(B.1)

(B.2a)

(B.2b)
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Choosing
a=\/ri+r2 = 2rsrocos(¢ — @), (B.3a)
t=k,, (B.3c)
.S
y=—j—, (B.3d)
Co
z = kmin{r,r'} = kr, (B.3e)
Z = kmax{r,r'} = krs, (B.3f)
p=0—¢, (B-3g)
2
K=+ k2, (B.3h)
0
we end up with
exp(—sR/co)
47rR B
(B.4)

47@ dk. Z n(kr ) Ky (7)) exp[—jn(¢ — ¢')] exp[—jk. (2 — 2)),

n=—oo

where R = \/7"2 + 72 = 2rr'cos(¢p — @) + (2 — /)%

B.2 Far-field approximations for thin wires

For the surface current density on the mantle of a cylinder with circular cross-section and
central axis on the z-axis, we can write
Js=Jspuy+ Js u, = Jgu[—sin(@)u, + cos(d)u,| + Js u.. (B.5)

From Eqgs (2.38) and (2.46), we obtain the scattered magnetic field outside the mantle of
the cylinder as

fﬁ@):/‘VGw—rqugwmA, (B.6)

where all vectors are expressed in Cartesian coordinates and M denotes the mantle of the

cylinder. Further, we have

vew—rqz—au—ryiii-<5+——L—> (B.7)

=T \e Tr=r]
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For s = jw and |r| — oo, we obtain

jwG(r —7')

VG(r —7r')=— (B.8)

Co ’T\'

Hence, for the magnetic field in the far-field region, we obtain the approximation

Hi(r) =29 [ T« // Gr — ) Js(r') | da. (B.9)
M

for |[r| — oo. For s = jw, the scattered electromagnetic field satisfies the radiation
conditions of Section 2.4. Hence, we can employ Eq. (2.33a) to express the scattered

electric field in the far-field region as

Co

s ;jwzoix LI r—r r')dA’
E’(r) = i i M//G( )T s(r)dA" |, (B.10)

for |r| — oo. If we introduce standard spherical coordinates for r, we can readily show
that £y and Hj are generated by Js,, and that Ej} and Hy are generated by Js,. In the

remaining part of this section, we will focus on Ej and Hj. For these components, we have

() = 12500 // r— ') g (r')dA, (B.11a)

E;(r) = jwpugsin(6) //G('r — 1) Js . (r")dA', (B.11b)
M

for |r| — co. To evaluate the integral in the above expressions, we write Jg, in a Fourier

series in the ¢-direction, i.e.,

Js. (9, 2) = i jgyz(m,z)exp(—jm@, (B.12)

m=—0Q

and we use Eq. (B.4), to arrive at
/ G(r — ') Js () dA =

o0

/dz /ad¢’ Z Js.(m, ') exp(—jm¢) (B.13)
47?2 dk, Z I,(ka) K, (kr) exp[—jn(¢ — ¢')] exp[—ijk.(z — 2)],

n=—oo
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where L is the length of the cylinder, and a is the radius of the circular cross-section.
Further, we have used r~ = r and r. = a, which indicates that the distance between the
z-axis and the observation point 7 is at least a. The integral over ¢’ can now be evaluated

and we obtain

/ / G — 7')Js.(r')dA =
M

I - . (B.14)
a = . .
Py / dz' / dk, Z Js . (n, 2') I, (ka) Ky (k1) exp(—jnd) exp[—jk,(z — 2')].
0 —00 n=-00
Finally, we have the asymptotic expansions
I,(2) =0(") z2—0, (B.15a)
Ko(2) =0 [%] P (B.15b)

which show that the component jgyz(O,z’), i.e., the ¢-independent part of the surface

current density in the z-direction, dominates the far field of Ej and H, in case a < A =
(2mcy) /w.



Appendix C

Integrals in closed form for the

gradient

The proposed discretization for the derivative with respect to length in Section 5.3, leads
to integrals defined on rectangular domains, which are oriented along the z- and y-axis.

The pertaining integrals are

2 2
// xQZ— e dzxdy = ?y + 5 arctan (i) + % arctan <§> , (C.1a)
23 72 3 3 3
y_y 2 2 Yy z Y
// 2+y2d<rdy—7—gln(:c +y)+§+§arctan(§>, (C.1b)
2 3 3 2
dy = % - % arctan (g) + % In (1 + %) : (C.1c)
72
// e 2)3/2 dzdy = yln (x + 2?2+ y2> , (C.1d)
(22 +y
// (22 + y2)*? drdy =y\/2* + 7 (C.1e)

2
- _ 2 Yy 2 2
// 1) 3/2dxdy 24 y? 4+ = 5 ln(x—i— x +y>. (C.1f)
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Appendix D

Numerical computation of the

inverse Laplace Transformation

Consider the following time-domain signal

0 for t <0,
P(t) =< Asin*(at) for 0 <t < m/a, (D.1)
0 for t > w/a.

The Laplace transform of P(t) is given by

_ 202 A1 — exp(—s7/a)]
s(s? + 4a?)

P(s) (D.2)
We are interested in computing a numerical approximation of P(¢) from P(s). We recall
the definition of the inverse Laplace Transformation of Eq. (2.8) for a causal, real-valued

time-domain signal F(t)

(e 9]

Re /F(5+jw) exp(jwt)dw » . (D.3)

0

exp (ot
s
To arrive at an efficient numerical scheme for the inverse Laplace transformation, we trun-
cate the integration interval at w = wy,qz, which is determined by the decay of F/(6+ jw) for
w — o0. The error in the time-domain signal, due to this approximation, can be estimated

from Parseval’s identity. We approximate the integral over w by a repeated trapezoidal
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rule, to arrive at

o), [ =

Ft) = exp( )Re {Z F(§ + jnAw) exp(jnAwt)wn} , (D.4)
s
n=0
where
Aw = “’% (D.5a)
A

wy = 7‘” (D.5b)
w, =Aw forn=1,...,N -1 (D.5c¢)

In the repeated trapezoidal rule we have neglected the term F (8§ + jwimae), Since we assume

that this is already small, owing to the definition of wy,q;.

The next step is to sample the time variable ¢ on a uniform grid. We write
t = mAt. (D.6)

For the inverse Laplace transformation, we obtain

exp(mdiAt) — , _
F(mAt) = ——Re Z F(6 + jnAw) exp(jmnAwAt)w, p . (D.7)
m
n=0
We introduce the following notations
Flm] = F(mAt), (D.8a)
F(0 + jnAw)w, f =0,...,N—1,
Fln] = (6 + jnAw)w, for n=0 (D.8h)
0 forn=N,... M —1,

where M is a power of two, and M > 2N. The integer M is introduced to obtain a smaller
time step and it results in a smoother interpolation of the computed time-domain signal.
The sum in Eq. (D.7) assumes the form of an FFT if m < M — 1 and

2T
AwAt = —. D.9
WAt =2 (D.9)

We end up with

™

Flm] = MRe {]‘i:l Fn] exp(j27rmn/]\/[)} : (D.10)

n=0
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0 5 10 15
TIME [s]

Figure D.1: numerical inversion of the Laplace transform for P(¢) with d =0.5s71, A =1,
a = 7/2 rad/s, Wme = 400 rad/s and M = 2N = 2.

We illustrate the capabilities of this numerical approximation of the inverse Laplace trans-
formation with the aid of the time-domain signal P(t). We compute an approximation of
P(t) by means of Eq. (D.10) and Eq. (D.2) with A =1, @ = 7/2 rad/s, Wpa. = 400 rad/s
and M = 2N = 2", The results for P(t) in the first 15 seconds for § = 0.5 s~' and
§ = 1.5 s7! are given in Figure D.1 and Figure D.2, respectively. From these figures, we
observe that the time-domain signal becomes unreliable when d¢ becomes larger than 12.
This is caused by the effect that, especially for large values of m, the factor exp(mdAt) in
(D.10) amplifies the errors in the sampled time signal that results from the Fast Fourier
Transformation. In the case of the time-domain signal P(t), it is still possible to use 6 = 0,
since the Laplace transform P(s) does not have a pole on the imaginary s-axis. However,

if we consider the time-domain signal Q(t), defined as

o) = [ P(ryar (D.11)

we have a pole at s = 0 and the corresponding Laplace transform is given by

(D.12)

The results of the numerical reconstruction of Q(t) for § = 1.5 is given in Figure D.3. We

observe that the numerical reconstruction becomes unreliable for ¢t larger than 18.
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10 15

0 5
TIME [s]

Figure D.2: numerical inversion of the Laplace transform for P(¢) with d = 1.5s71, A =1,

a = 7/2 rad/s, Wme = 400 rad/s and M = 2N = 2.

D —

15

0 5 10
TIME [s]

Figure D.3: numerical inversion of the Laplace transform for Q(¢) with d = 1.5s7!, A =1,

a = 7/2 rad/s, wme = 400 rad/s and M = 2N = 2!,
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Summary

When applying non-linear optimization techniques for design and detection in an elec-
tromagnetic environment, one is often confronted with the problem that large systems of
equations have to be solved for a large number of parameter values. Without additional
precautions, this leads to excessively long computation times. Therefore, it is important
to construct methods, for which the total computation time in case of varying parameter
values is strongly reduced. One way to achieve this would be to combine fast forward
algorithms with an extrapolation technique. To examine this idea, we have studied three
relevant scattering problems, i.e., the scattering by a perfectly conducting straight thin-
wire antenna, by a perfectly conducting infinitely thin flat plate, and by a dielectric object.
The latter two always have finite dimensions. In all cases, the scattering problem has been

formulated in terms of an integro-differential equation.

Historically, there are two integro-differential equations for the thin wire, which are known
as “exact” and “approximated”. For the infinitely long straight wire, we show that both
equations give the same solution in terms of analytic functions, provided that the excitation
is restricted to sources outside the wire and that the proper excitation functions are used.
For the finite wire it is known from the literature that the “exact” version is well-posed,
which means that the solution to the equation exists, that it is unique, and that it varies
continuously as a function of a continuously varying excitation. With the aid of these
results, we demonstrate that the solution of the “approximated” version is unique and
that the solution exists under certain conditions. Further, we show that the solutions does
not necessarily vary continuously as a function of a continuously varying excitation. The
behavior of the “approximated” version is illustrated by means of two simple numerical

implementations.

For the scattering by a perfectly conducting infinitely thin flat plate, we construct an
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efficient numerical scheme, in which the matrix-vector product can be computed by means
of Fast Fourier Transformations (FFTs). For this case, we also consider two numerical
schemes. The first one is based on an analytically modified version of the classical equation.
The second one is a modification of a classical numerical scheme. The numerical solutions
are computed by the conjugate-gradient (CG) method. The rate of convergence of the
CG method for both schemes is quite distinct. This can be explained by results from
functional analysis in the literature, which characterize the solution space of the integro-
differential equation for the flat plate. Further, we formulate an analytic equation for
the shape derivative for variations of the length or width of the plate. We compute this
derivative numerically by solving a discretized version of the analytic formulation and by
two finite-difference schemes. The finite-difference scheme that corresponds to a stretch of
the coordinate system produces reliable results, in contrast to the finite-difference scheme
that alters the mesh of the numerical system. This can be explained from the fact that the
matrix elements in the first scheme vary analytically as a function of the length or width

of the plate, whereas the matrix elements in the latter do not.

For the integro-differential equation that corresponds to the scattering problem by a di-
electric body, we show that the formulation is well-posed. Further, we expose a weak point

in the currently available numerical schemes for this equation.

For the three integro-differential equations, we examine the efficiency of parameter varia-
tions by using “marching on in anything”. “Marching on in anything” is the generic term
of the construction of initial estimates from solutions for preceding parameter values in
combination with the conjugate-gradient method. Examples of parameters are: frequency,
angle of incidence, length and width of an object, and also step size along a search direction
in a non-linear optimization process. The initial estimate is used in an iterative technique
to improve convergence. We use existing and generally accepted numerical implementa-
tions of the integro-differential equations for the three scattering problems, to exclude that
considerations in our own implementations influence the efficiency of marching on in any-
thing. We demonstrate the effect of the step size in the parameter variation, the error
criterion of the CG method, and the presence of poles in the complex plane of the Laplace
parameter by means of the example of the finite straight thin wire. The improvement in
efficiency is remarkable for the thin-wire problem. For the flat plate and the dielectric

body, we demonstrate a similar improvement in efficiency.

Finally, we consider the possibilities to optimize configurations of straight wires, such as
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Yagi-Uda antennas and arrays of dipoles, by means of standard non-linear optimization
techniques. We distinguish between introducing the physical model of the wire structure
as a set of extra non-linear constraints and solving the physical model internally. The
examples show that solving the physical model internally demands less robustness of the
optimization strategy and software than the formulation of the physical model in terms of

additional non-linear constraints.
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Samenvatting

Bij het toepassen van niet-lineaire optimalisatie methoden voor ontwerp en detectie in een
elektromagnetische omgeving wordt men geconfronteerd met het feit dat oplossingen van
een groot stelsel vergelijkingen moeten worden berekend voor een groot aantal parameter-
waarden. Zonder extra maatregelen leidt dit in het algemeen tot een buitensporig hoge
rekentijd. Het is dus van belang om methoden te construeren waarvoor niet alleen een pro-
bleem voor een vaste parameterinstelling efficiént kan worden opgelost, maar ook dat het
vinden van de oplossing voor variérende parameterwaarden sterk in rekentijd wordt bekort.
Eén manier om dit te bereiken is door snelle voorwaartse algoritmen te combineren met
een extrapolatie techniek. Om dit idee te testen worden een drietal relevante verstrooiings-
problemen nader bekeken, te weten de verstrooiing aan een rechte dunne ideaal geleiden-
de draad, aan een ideaal geleidende oneindig dunne vlakke plaat en een aan diélektrisch
lichaam. De laatste twee zijn van eindige afmetingen. In alle gevallen kan het verstrooi-

ingsprobleem worden geformuleerd in termen van een integro-differentiaalvergelijking.

Voor de dunne draad zijn er historisch gezien twee integro-differentiaalvergelijkingen, be-
kend onder de benamingen “exact” en “benaderd”. Voor de oneindig lange rechte draad
wordt aangetoond dat beide varianten dezelfde oplossing geven in termen van analytische
functies, aangenomen dat de excitatie beperkt wordt tot bronnen buiten de draad en dat
de excitatiefuncties correct zijn opsteld. Vanuit de literatuur is bekend dat voor een ein-
dige draad de “exacte” variant correct gesteld is, hetgeen betekent dat de oplossing van
de vergelijking bestaat, uniek is, en continu variéert als functie van een continu variérende
excitatie. In dit proefschrift wordt met behulp van deze resultaten aangetoond, dat de
oplossing voor de “benaderde” variant uniek is en dat de oplossing bestaat onder zekere
voorwaarden. Tevens wordt aangetoond dat de oplossing niet noodzakelijkerwijs continu
variéert als functie van een continu variérende excitatie. Het gedrag van de “benaderde”

versie wordt geillustreerd met behulp van een tweetal eenvoudige numerieke implementa-



176

ties.

Voor de verstrooiing aan een ideaal geleidende oneindig dunne rechthoekige vlakke plaat
wordt een efficiént numeriek schema geconstrueerd, door het matrix-vector product met
behulp van “Fast Fourier Transforms” (FFT’s) te berekenen. Ook hier beschouwen we twee
schema’s. De eerste is gebaseerd op een analytisch gewijzigde versie van de klassieke verge-
lijking. De tweede is een gemodificeerde variant van een klassiek schema. De numerieke op-
lossing wordt berekend met behulp van de geconjugeerde gradiénten (CG) methode, waar-
bij een groot verschil optreedt in het convergentiegedrag van de CG-methode voor de twee
numerieke schema’s. Dit verschil kan worden verklaard aan de hand van functionaalanalyti-
sche resultaten uit de literatuur, die de oplosruimte van de integro-differentiaalvergelijking
voor de vlakke plaat karakteriseren. Verder wordt de analytische formulering van de vorm-
afgeleide voor variaties in de lengte of breedte van de plaat bepaald. Deze afgeleide wordt
numeriek berekend op basis van deze analytische formulering en op basis van een tweetal
differentieschema’s. Het differentieschema dat correspondeert met een oprekking van het
coordinatenstelsel geeft betrouwbare resultaten, in tegenstelling tot het differentie schema
waarbij de vermazing van het numerieke systeem verandert. Dit kan worden verklaard
doordat de matrixelementen van het eerste systeem analytisch varieren als functie van

lengte en breedte, in tegenstelling tot die van het tweede systeem.

Voor de integro-differentiaalvergelijking die correspondeert met het probleem van de ver-
strooiing aan een diélektrisch lichaam, wordt bewezen dat deze formulering correct gesteld
is. Tevens wordt een zwak punt van de gangbare numerieke schema’s voor deze vergelijking
blootgelegd.

Voor de drie integro-differentiaal vergelijkingen wordt de efficiéntie van parametervariaties
onderzocht door gebruik te maken van “marching on in anything”. “Marching on in any-
thing” is de verzamelnaam voor het construeren van beginschattingen uit oplossingen voor
voorafgaande parameterwaarden in combinatie met de geconjugeerde gradiénten methode.
Voorbeelden van parameters zijn: frequentie, hoek van inval, lengte en breedte van een
object, maar ook stapgrootte langs de zoekrichting in een niet-lineair optimalisatie pro-
ces. Deze beginschatting wordt gebruikt in een iteratieve techniek, die gebaseerd is op het
minimaliseren van een kwadratische fout, om de convergentie te bevorderen. Er wordt ge-
bruik gemaakt van bestaande en algemeen geaccepteerde numerieke implementaties van de
integro-diffentiaalvergelijkingen voor de drie verstrooiingsproblemen. Dit, om uit te sluiten

dat afwegingen in onze eigen implementaties van invloed zijn op de efficiéntie van marching
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on in anything. Het effect van stapgrootte in de parametervariatie, het afbreekcriterium
van de CG-methode en de aanwezigheid van polen in het complexe vlak van de Laplace
parameter wordt gedemonstreerd met het voorbeeld van de eindige rechte dunne draad. De
met, behulp van “marching on in anything” behaalde versnelling voor het draadprobleem is
aanmerkelijk. Voor de plaat en het diélektrisch lichaam wordt tenminste een vergelijkbare

winst in efficiéntie aangetoond.

Het proefschrift besluit met een onderzoek naar de mogelijkheden om structuren van rech-
te draden, zoals Yagi-Uda antennes en arrays van dipolen, te optimaliseren met behulp
van standaard niet-lineaire optimalisatie technieken. Hierbij wordt onderscheid gemaakt
naar het inbrengen van het fysische model van de draadstructuren als extra niet-lineaire
vergelijkingen en het intern oplossen van het fysische model. De voorbeelden laten zien
dat het intern oplossen van het fysische model minder zware eisen stelt aan de optimali-
satie strategie en software dan het formuleren van het fysische model in termen van extra

niet-lineaire vergelijkingen.
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