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Introduction. This article considers a fairly general class of operators on
sections of a vector bundle over a compact manifold, including the "smooth"
differential operators and singular integral operators. The members of this class
share many of the properties of differential operators, particularly the elliptic
ones. Two general advantages have motivated the development. First, it leads
to transparent proofs of the familiar results for elliptic equations, on regularity,
the Fredholm alternative, and eigenfunction expansions; and for a larger class
than the differential operators. These proofs are not new; rather some of the
techniques used in the case of differential operators appear here as general prop-
erties of the class of integro-differential operators considered. A second ad-
vantage of the larger system, not extensively exploited in this article, is topolog-
ical. Homotopies (in the class of smooth functions) of the characteristic poly-
nomial of a differential operator can be "lifted" to homotopies of the operator
itself in the class of integro-differential operators considered, but not (generally)
in the class of differential operators. This is an important help in treating some
questions raised by Gelfand [6] ; some of the questions concerning the index
have now been answered by Atiyah and Singer [1].

To find the notation and main results, one can read §1—§3 (except for proofs),
§6, and the definitions and statements of theorems and corollaries from the
remaining sections.

The paper is organized as follows. §1 describes the well-known function spaces
on /{"that are involved, as well as certain operators on them. §2 describes the
singular integral operators and their symbols. §3 extends this collection to one
that contains the differential operators on R", as well as the inverses of the in-
vertible elliptic operators. The symbol c(A) of an operator A is defined, and the
behavior of a under composition of operators is discussed. §4 considers the
behavior of a under coordinate changes. §5 gives some necessary lemmas from
functional analysis. §6 establishes the notation for vector bundles, and the
analogs for bundles of the function spaces of §1. §7 defines the singular integral
operators on sections of a vector bundle E over a compact manifold X, and
their symbols. If A is a singular integral operator from sections of one bundle E
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to sections of another bundle F over X, o(A) is defined as a fibre-preserving
map of the cotangent space of X into the bundle of homomorphisms of £ into F.
Theorem 7.1 characterizes the class of symbols, and Theorem 7.2 relates manip-
ulations of the operators (sum, product, adjoint) to manipulations of symbols.
§8 applies these results to obtain the theorems on solvability of elliptic equa-
tions ( Theorem 8.3) and regularity of solutions (Theorem 8.1, corollary). §9
gives some further results in the same direction. §10 gives some theorems on
expansions in eigenfunctions of self-adjoint operators, characterizing the ex-
pansion of C°° sections.

The remaining sections consider various closures of the class of operators
considered here, in order to give a satisfactory account of the effect of tensoring,
and the homotopy invariance of the index(2).

Some of the results given here have been announced by Dynin [5] ; his an-
nouncement has affected the structure of this article. The author is also indebted
to Professors Atiyah, Bott, and particularly I. M. Singer (who read a somewhat
preliminary version) for questions, discussion, and suggestions.

1. HriR"). R" denotes real n-dimensional Euclidean space. Its points are
denoted by x = ixy,---,xn),v, etc.; the inner product is (x,y)= EïXj-y,-,
the norm is |xj = (x,x)1/2. S"_1 is the unit sphere {|x| = 1}. If a = (ajv.aj
is an n-tuple of non-negative integers, then |a| = Ea,-, and x"=\~í\ix})Xj. D"
and id/dx)" are notations for the partial derivative]^" idjdxff*. f is the Fourier
transform of /,/"(£) = 0)""/2 JY(X'?)/Yx)dx. Then

(1) (D'fUO = i-iOJ\0-
L2iR") is the usual Hubert space, with inner product ifig) =   ¡fg* =  ¡f g *,
both integrals being over R". Here * denotes complex conjugate.

For integer r ^ 0, H"iR")={f:feL2, and ||/|r< oo}, where

(2) \\fl= Jj\riO\2H+\i\2Yd^.

Thus HÏR^cH'-'iR") for r > 0, //°(Ä") = L2(R"), and \\f\\Q = yjifif). The
norm || ||r defines the topology of H'iR"), which is a Banach space. || || will
generally be used in place of [|  ||0.

Note that, in view of (1) and the fact that every polynomial of degree ^ r is
dominated by a constant times (1 + |£|2)r/2, H\R') (r a positive integer) con-
sists of all functions in L2 whose derivatives (in the sense of distributions) of
order ^ r are also in L2.

For r < 0, H\Rn) is the anti-dual of //-r(R"), i.e., the space of all continuous
mappings k: H"r(Ä") - C such that Xiaf + g) = (a*)(X(f)) + X(g) = (aX)(f) + X(g).

(2) Added in proof. An appendix dsrives formulas for the index of elliptic operators on
sections of trivial bundles over Euclidean space, and over two-dimensional manifolds.
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(Here aeC,/and g are in H~r(R").)As usual, \\X\\r = sup | A(/) | for ||/||_r = l.
It is very well known that L2 is isomorphic to its anti-dual by the correspondence
g *-*■ kg, kg(f) = (g,f). An even more obvious identification allows us to write
Hr(R")cHr~l(R") for all r = 0. Thus, for all r = 0, ± 1,•••, Hr(R") is em-
bedded in a norm-decreasing manner into Hr~1(R").

For each r = 0, + l,---, H~r(R") is isomorphic to the anti-dual of Hr(R").
One could also make the following equivalent definition: Hr(R") = {f'f is

a tempered distribution, f~ is a locally integrable function, and
J*|/~(ö|a(l + |¿j[2)ríí¿; < co}, for r = 0,±l,-. Then formula (2) defines || ||r
for all r.

Bœ(A") is the set of all functions /: R" -> C such that/and all its partial de-
rivatives are bounded. (It follows that all these derivatives are continuous.) A
base of neighborhoods at 0 is given by [/,„ = {f:feBœ(R"), \Dj(x)\<l/m
for all xe R", |ce| = m]. Since / is continuous and bounded if / eL(Ä"),
it follows from formulas (1) and (2) that if feHr(R") for some r > |a| + n¡2,
then Daf is continuous and bounded by some constant times ||/||r. (This is a
primitive form of Soboleff's inequality.) Thus the inverse limit HX(R") = f}Hr(R")
is included continuously in Bœ(R").

The direct limit Z/"0O(lc") = (JZZr(Rn) is isomorphic in an obvious way to the
anti-dual of HX(R"). Each Hr(R") (r = 0, ± l,—,± co) is closed under mul-
tiplication byfunctionsin B00(Ä").//00(jr)is dense in Hr(R")for r= 0, ± 1, •••, ± co.
(The last two observations have close analogs in the usual theory of distributions.)

We will be concerned with linear maps A : H00 -» //œ. We say that such an A
is continuous : Hr -* Hs if sup \Af || , < co, the sup being over all / in H °° with
||/|P = 1. If A is continuous: Hk-+Hk~r, for all fc = 0,± 1,---, we say that A
is of order = r. In particular, D* = (d ¡ox)" is of order |a|, i.e., of order ^ |a|
and not of order ^ |a| — 1. If A = — E"(<3 ¡dxf)2, then / + A is a linear isometry :
Hr(Rn) - Hr-2(Rn) for | r \ < oo .

If A and A* are both linear maps: Hœ(Rn)-+Hx(R"), and (Afg) = (f,A*g)
for all/,ge //°°(R"), then A* is called the formal adjoint of A. Since H°° is dense
in H~œ, A* is unique, and it is clear that A is the formal adjoint of ^4*. Not
every map A has a formal adjoint; but if A is of order = r for some r < co, then
its extension Ak:Hk^Hk~r is bounded and has an adjoint A%:Hr~k->H~k.
Thus any operator of order = r < co has a formal adjoint A* of order ^ r,
the restriction of the A* to //"YR").

The operators of order zero carry a natural topology, which can be described
by the neighborhoods of zero Um = {A : A is of order zero and
sup || Af \\k 11| f\\k = l\m for | k | = m). We call this the order zero topology; it
makes the operators of order zero into a Frechet space.

2. Singular integral operators. We define the Riesz operator R" by
(Ä"/)Ä(ö = (i/|i|)yÄ(0- If the ax are functions in B00, then any finite sum
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E a^R" defines an operator of order zero. The Bœ singular integral operators
are the closure of the space spanned by these finite sums, in a certain topology
to be described.

These operators arise in connection with partial differential equations as fol-
lows. Define A0 by (A0/)"(£)= |<^|/A(£). Then any Bœ differential operator
L= ^nx\=maaD", homogeneous of order m, has a representation
L=(E|tI|=ma0[R°I)(-iAo)'n. In this factorization the second term ( —/A0)m is
easily analyzed, and the first term is an operator of order zero, which allows
one to apply some analytic techniques not directly available for differential
operators.

These operators are called singular integral operators because of their repre-
sentation by means of singular convolutions. For instance, if a = (1,0,...,0),
then

(axR"f)(x) = (const)lim     J     ax(x)(xx - yx)\x - y\-"-1f(y)dy,

for fin H^R"). (Iff is in H°(Rn), the above formula holds almost everywhere,
as shown in [2].) Important results on composition and change of variable are
proved by using this representation. We refer to other articles for these results,
and prove here only those that are easily established by using Fourier trans-
forms.

The symbol of EaaRa is obtained by taking the Fourier transform of the
convolution terms: o( 2ZaaR")(x,Ç) = ¿Zaa(x)(Ç/\£, |)" Th-S is analogous to the
characteristic polynomial of a differential operator. The symbol a( ¿Za^K*) has
certain properties which we formalize in defining B°°(lt" x Sn_1): this is the
set of all functions /j(x,£) on R" x {£:|£| > 1}, such that h(x,t£) = h(x,c¡) for
i> l,and all of whose derivatives are bounded on R"x {|£| > 1}. Bœ(R" x S""1)
carries a natural topology with neighborhoods of zero given by

Um={h:\(dldx)"(eidC)ßh(x,C)\<llm for \a\+\ß\<m, \í\>l, x in R"}.

Theorem 2.1. (i) // ~EaaRx and HbßRß define the same operator on H°(R"),
then cr( ¿Za^R") — o( zZbßRß). (ii) a is a 1-1 map of the space of operators of the

form Y,aaR*, into Bao(R" x S"_1). (iii) ct~x extends by continuity to a one-one
map a'1 of Bco(R" x S"-1) into the operators of order zero on //co(R"), in the
order zero topology.

This is proved in [3], and in [10]. Part (i) also follows from Theorem 2.2
below. For part (iii), see also [11, pp. 665-666].

On the basis of Theorem 2.1, we make the following definition.
Definition 2.1. The B00 singular integral operators on HX(R") are the oper-

ators in cT-liBœiRn x S"-1)). If A = o'^h), then aiA) = k.
In particular, this class contains the multipliers M0 : M^f = c\>f, for cf> in
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B^R"); and o(M¿)(x,í,) = c/»(x). We shall generally use <j> for both the function
and the multiplier, since it is clear from the context which is intended.

The following result, which sheds some light on the connection between
symbols and operators, is essentially due to Gohberg [7].

Theorem 2.2.   Given x0 in R", £0 in R", ¿;0 # 0, there is a sequence {<¡>m}
of functions in BX(R")   such   that   (i)   (¡>m(y) = 0  for   \x0-y\>ljm,   (ii)
(\<f>m(y)\2dy = 1,   and   (iii)  for   each   B00 singular   integral   operator   A,

\\A(j)m-a(A)(x0,^0)<j}m\\-y0.

Proof. By density, it suffices to consider A = 2ZaxR". Since properties (i)
and (ii) imply that || ax<j>m — ax(x0)<j)m || -* 0, it is enough to exhibit a sequence
4>m with properties (i) and (ii) and such that || Ra<t>m - (£0 /| Ç0 |)"c/>m || -► 0. In [12,
Lemma 15], are exhibited functions \j/m in Bx such that (a): Jj iAm|2 = 1,
(b): ||J,-*0|>i/2m|</'mO')|2<0'< l/2m, and (c): the support of (i¡/mf is contained
in {|ío-«/|í|)|<lM- By (a) and (c), || Rtym - ({0/|fo|r>»||->0. To ob-
tain <j>„ it suffices to multiply t/cm by a Bm function 9m such that \9m\ = l,9m = 0
in  |y-x0|>l/m, 8m = 1 in  |y - x0| < l/2m; and let qbm = 8J/m/1| 9Jim ||.

3. B°° operators of order r. Following the example of Dynin [5], we fit the
singular integral operators and differential operators into a common framework.
In order to do this briefly, we introduce the isomorphism A:Hk{Rn)-*Hk~x{Rn)
given by (Aff(¿) = (1 +\Ç\2)il2f"iÇ).

Definition 3.1. A B00 operator of order r is any of the form A = BAr,
where B is a B°° singular integral operator.  We set a{A){x,¿;) = | i, \'o{B){x,Ç).

Given any function h in Bx{Rn x S"-1), there is a unique A, a B°° operator
of order r, such that a{A){x,Ç) = |c;|r/i(x,c;).

The result of composition of two such operators, or change of variable in
one of them, leads to certain remainder terms of lower order. We use Sr as a
generic symbol for these remainders : Sr denotes any operator which is continuous :
Hk{R")^Hk-'{R") for all k.

Recall that (A0/)^) = |£|A{). Since [(1 + |£|2)r/2- |c;|'](l + l^2)1-^2
is a bounded function of ¿; for each r > 0, it follows that Ar = Ar0 + Sp_2. Thus
since D"= R"{—iA0)M, the B°° operators of order r include the differential
operators of order r, modulo operators of lower order.

The following result is an easy extension of Theorem 5 in [3].

Theorem 3.1. Let Bj{j= 1,2,3,4) be B°° singular integral operators {of
order zero) on //°°(R") and a{Bx)a{B2) = ct(B3),o-(B4) = o{Bx)*. Then

(i) B, Ar + B2Ar is a Bm operator of order r, and o(BxAr + B2A0 = o-(BiAr)
+ o-(B2Ar).

(ii)  B1A'B2A" = B3A'+',+Sr+p_1.
(iii) (B, A')* = B4A' + SP_,.
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Proof, (i) is clear, (ii) is proved in [3, Theorem 5], and in [10, p. 7-05], for
r = p = 0. The case for r # 0 thus reduces to showing ArB2 = B2Ar + Sr-y. If
r > 0, this reduces in turn to showing that A0B2 = B2A0 + S0, which is proved
in [3, Theorem 5]. If r <0, then ArB2 = ArB2A~rAr = ArA~rB2Ar + ArS_r_,Ar
(by the case just proved), so ArB2 = B2Ar + Sr-y.

(iii) is also shown in [3], for r = 0. In general we have (B1Ar)*
= ArB1*=B1*Ar+Sr_1, and from the case r = 0, B*tAr= B4Ar + S_,Ar. This
completes the proof.

4. Coordinate changes. If U is open in R", B°°([/) denotes those functions
in B°°(lt") which vanish except in some compact subset of U. If Fis also open in
R" and h:V^> U is a C°°diffeomorphism of Konto U, then there is an associated
map h*:B°°(U) -+ Bœ(V) given by (h*f)(y) =f(h(y)) for y in V, h*f(y) - 0 for
y not in V.

If L is any B00 differential operator of order r, then Lmaps Bco(L/)->B0C([/),
for each U. We have h*L= L'h* + S, where S is a differential operator of order
<r, and o(L')(y,n) = o(L)(h(y),S,) (wherein nk= TCjidhj/dyJiy), i.e.,
n = (dh/dy)^)). Thus for differential operators the symbol o(L) is appropriately
viewed as a function on the cotangent bundle of R". This is easy to interpret
in the case of first order operators, i.e., vector fields. Then Lis a section of the
tangent bundle of R", and hence can be viewed as a function on the dual tangent
bundle, i.e., on the cotangent bundle. This function is precisely er(L).

A similar result holds for B°° operators.

Theorem 4.1. Let Abe a B00 operator of order r on R", and let a(A)(x,Ç) = 0
if x£C, where C is some compact subset of R". Let U be open, C c U, and
h: V-* U be a diffeomorphism. Then h*A = A'h* + Sr_l5 where Sr_t maps B°°(U)
into B™(V), and o(A')(y,(dhldy)!;) = o(A)(h(y),c:).

Proof. The condition on a(A) guarantees that A maps B^'U) into B°°(C/),
so that h*A makes sense.

In the case r = 0, the result is established in [11, pp. 674-677].
In case r ^ 1, A = BAr= BAr0 + Sr_2, so we may consider the transforma-

tion of BA0. Now A0 = T,]al = iiR"D", and RaD" = DaR*, so Ar0 = E|a+/)I-ry«RflI>",
where the yx are constants. Thus BAr0 = T,^=I.BXDX, where the Bx are B00 singular
integral operators of order zero whose symbols vanish off C. Thus it suffices to
check the transformation of BD, where B is a B°° singular integral operator
and D a differential operator of order r. In this case we have h*BD = B'h*D
+ S_xD = B'D'h* +S_yD +B'Sr_y. Now the symbol of B' is known from the

case r = 0, and we checked the symbol of D' before stating the present theorem.
Thus the result for r > 0 follows from Theorem 3.1, part (ii).

The case r < 0 can be referred to r ^ 0 by liberal use of Theorem 3.1. Let
B,By,--,B4 denote B°°singular integral operators of order zero; let o(B) vanish
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off"some compact subset of U; let xj/eB^iU) and ipa(B)= a(B); let <j) =h*ip; and
finally let the V denote maps that are bounded : Hk-*Hk~r+1 for all k. Then
since a(B)a(\¡/) = o(B) we have, from Theorem 3.1, that B = B\j/ + S_t. Thus
h*BAr=h*Bij/Ar + T1=Bxh*ir>Ar+T2, where a(Bx) is known from the case
r = 0. Continuing in this vein, we get

h*BAr = Bxh*ipAr + T2 = <hBxArA-'h*\j/Ar + T2

= BxAr(<t>A~r)h*il/Ar + T3 = BxArh*B2A-rij/Ar + T4

= BxArh*B3 + T5 = BxArB4h* + T6 = B'Arh* + T1.

The symbols of the Bj, and finally of B', may be calculated from the case r = 0
of the present theorem, or from Theorem 3.1, to complete the proof.

5. Results related to compactness.

Lemma 5.1 (Rellich's Lemma). Let A be a bounded operator: Hk~l(R")
-+Hr+k(R"), let il/eBx(R"), and let t/> have compact support. Then A\¡/ and i¡/A
are compact operators: //*(«'')-^i/r+*(RB).

Proof. A = (AA)A~\ and ¿A is bounded: Hk(Rn)^Hr"rk(R''). Thus it suf-
fices to  show  that  A_1i/c  is compact on  Hk(R").  Let  Js  be defined  by
(/*/r(ö-(l+|i|2)"1/a/Ä«D if |£|=S, (Jsff(O = 0 if |i|>S. Then
|| Js — A-1 ||t = (1 +S2)_1/2->0 as S -»co, so it suffices to show Js\jj is com-
pact on Hk(R"). Suppose then that J|/,T(c;)|2(l +\Ç\2)kd$ = l. We will show
that the convolutions i//~ *ff are uniformly equicontinuous on |¿;|:gS,
from which it follows that some subsequence of Js</'/,I converges in Hk,
by Arzela's theorem. For the equicontinuity, \^*f„^(i) — ^* f„~(n)\
= I K (Z)[^(^-Z) - ^(n-Z)-]dZ\ ^ \\e^-e^k,v/hei:ees(y) = exp(i(i,y)).
If fc^O,

\\e^-enili\\-k^\\e(ip-e^\\0= max |e^)-e¿jO||Hlo = *|í ^Wlo»
MâR

where R is such that \¡/{y) = 0 for ¡ y | ^ R. If k = - m < 0, then || e(ip - e^i || _t
can be bounded by a combination of the H° norms of e^ — e^jj and its deriv-
atives of order = m, which leads again to || e(\j/ — en\j/\\m :g C | £ — r\ |, where
C depends on R, S, and the derivatives of \¡i of order = m.

The result for Aij/ follows by considering adjoints.

Lemma 5.2. If A is a B00 operator of order r, (¡> and \¡/ are in B^R"), and
<rKx0)<Kxo)a(A)(x0,£0) # 0 for some x0 and ¿;0, then (¡>A\¡j is neither compact:
Hk(Rn)->Hk-r(Rn), nor bounded: S*_'(R")-//*~'(R").

Proof. By Lemma 5.1, it suffices to show 4>A\¡f is not compact : //*(R") -*Hk~r(R").
Since A is an isomorphism: //m(R")->//m_1(R"), this is equivalent to showing

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



174 R. T. SEELEY [May

A*"'^/4iAA"*isnotcompactoní/0(R").ButbyTheorem3.1,A*"r^^A~*=J5-f S-»,
where e(B)(x0,l;0) = |f0| ~r^(x0)t>(x0)o-(/l)(x0,^0) #0, and B is a B00 singular
integral operator of order zero. Considering the sequence {</>m} of Theorem 2.2,
we have on the one hand that || Bcpm || -> | o(B)(x0,£0) | # 0. On the other hand,
if B + S_J were compact we would have || B</>„ || ->0, as follows. The supports
of the cj)m shrink to a point, so tpm converges weakly to zero in H°(R"). Further
if \¡/(y) =1 for | v — x01 g 1 and \¡/ is in B°°(Ä") with compact support, then
S_xil/ is compact (from Lemma 5.1), and S_t^m = S_x\¡icj>m^>0. Finally, if
ß + S_, is compact, it follows that ||£</>m|| -»0.

Lemma 5.3. If r < —n/2, and \j/ is in H°(R"), then \j/Ar is a Hilbert-Schmidt
operator on H°(R");and Arij/ extends by continuity from a map:Hx(R") -* H°(R")
to a Hilbert-Schmidt operator on H°iR*).

Proof.   First, if feH°(R") then (AT)" is in L1,

j\iArf)~iÇ)\dS£ [ J(l +|£|2)^]1/2||/||,

so    ||i>Ay|^C||i/f||||/||,    and   ^Ar   is   bounded   on   H°(R").   Moreover,
Ar/(x) = )Kr(x - y)f(y)dy, where Kr e H°iRn). Thus the kernel k of \bAr satisfies
jj\kix,y)\2dydx = ¡}\Hx)K,ix - y)\2dydx < co.

The case for Ari¡/ is referred to ij/*Ar by taking adjoints.

6. Vector bundles. For a brief discussion of vector bundles, see Lang [9, Chap-
ter III].

Let X be a C00 compact manifold of dimension n, without boundary. E and
F denote C °° vector bundles over X, of complex dimension p. A section is a
(not necessarily continuous) map f:X-*E such that nf = identity, where % is
the projection of E onto X. The fibre 7i-1(x) is denoted by Ex. Each point x0 in X
has a neighborhood U such that there are a C°° diffeomorphism x of U onto
an open subset V of R", and p C"3 sections {am} such that {<xm(x)} is a basis of
Ex for each x in U. A collection such as {orm} is called a Cœ basis of sections over
U, or simply a basis of Ey,.

If Y is another C °° manifold and F a ^-dimensional complex vector bundle
over Y, then HOM(£.F) is a bundle over the product manifold X x Y, whose
fibre Hlx¡y) at (x, v) is the space of all linear transformations of Ex into Fy. The
topology of HOM(£,F) is the compact-open topology of maps of E into F. The
manifold structure of HOM(£,F) is determined in an obvious way by local
bases of sections of E and F. If Y- X, then Hom(£,F) is defined as the restric-
tion of HOM(£,£) to the diagonal of X x Y.

We will assume a C°° volume element on the manifold X, and a C00 Hermitian
inner product in the bundles £, etc. (but no inner product in the tangent bundle).
The inner product in £ is denoted by (( , )), and its integral over X by ( , ).
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Thus for any C°° sections fand g of E, Hf,g)) is a C°° function on X, and if,g)
is a complex number. A bundle with such a structure will be called a Hermitian
bundle. In such a bundle the Gram-Schmidt process provides orthonormal
local bases, i.e., bases such that ((oLj,ock)) = 6jk. If £ and F are Hermitian, then
HOM(£,F) is Hermitian, with ((fz,gz)) = tracefig*. Here z = (x,y) is in
X x Y.fz and gz are in the fibre at (x,y), and g*is the adjoint of gz.

TiX) is the tangent bundle of X. If U c X and x is a coordinate map of U
onto Vcz R", then x gives a basis of sections over U which is denoted by{ d/oxj}.
The dual basis in the cotangent bundle T*iX) is {dxj}. T'(X) is the subbundle
of T*(X) obtained by deleting the origin from each fibre. The projection of T'(X)
onto X is denoted by t.

If cj> is a C°° function with support in U <zz X, and x a coordinate map of U
onto F in R", then ^ is the map of functions on X into functions on R" given
by <t>xgiy) = tKx_1O0)if0t,~1O0) for yeV, and <J>xgiy) = 0 otherwise. Similarly cf>x
maps functions on R"into functions on X by cbxfix) = <^(x)/(x(x)) for x in U,
cj>xfix) = 0 otherwise.

For r ^ 0, H\E) is the collection of (equivalence classes of) sections of £
such that cj)x((f,ßj)) is in Hr(R") for each coordinate map x, each local basis
{ßj} over the domain of x, and each C00 function ^> with support in the domain
of x- Hr(E) inherits a topology from Hr(R"); neighborhoods of zero in Hr(E)
require the Euclidean Hr norms of finitely many 4>x((f,ßfy) to be small. Hr(E)
can be made into a Banach space by using a C00 partition of unity E$J = 1,
with coordinate maps xJ and orthonormal bases { ßJk} in the support of each
^':(|/||r)2= E7-,,(||^'X(/,Ä))||r)2.

H°(E) is a Hubert space with inner product (/,g)= jx((f,g))- H\E), for
r < 0, is the anti-dual of H~r(E). As in the Euclidean case, we use the inner prod-
uct to identify H°(E) with its anti-dual, and consider H'(E) embedded in
Hr~\E) for all r. Hœ(E) is the inverse limit f]Hr(E), and is dense in Hr(E) for
each r. Since X is compact, //°°(£) is the space of all C°° sections of £, and its
anti-dual H " °°(£) = U//r(£) is essentially the space of distributional sections of £.

The inner product (fig), defined for / and g in H°(E), extends to
a pairing between Hk(E) and H~k(E) for all k: if fcjSO, and fis (an anti-linear
functional) in //"*(£), then (fig) =f(g) for g in Hk(E). If/is in //*(£) (fc ̂  0),
then (f,g) = g(fi)* for g in //""(£).

There is an anti-isomorphism <xm between // m(£) and the dual Hm(E), given
by amf(g) = fe,/) for g in iT(£).

The various spaces Hk(E) can be defined directly in terms of distributional
sections, without assuming a Hermitian structure. All the results below that
can be stated without such a structure would still hold, since such a structure
can always be imposed.

Let F be another Hermitian bundle over X. A linear map A:Hœ(E)-+ Hœ(F)
isan operator of order ^ r if and only if for each k = 0,±l,---,A extends to a con-
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tinuous map Ak:Hk(E)^Hk r{F). An operator of order = r has a formal ad-
joint A* : H^F) -* Hœ(E), such that {Af g) = if,A* g) for/in H°°(£), g in tf°°(T).
This is obtained by considering the adjoints Ak*:Hr~k{F)-> H~k{E), of the maps
Ak:H\E)^Hr-k{F).

7. Singular integral operators on bundles. In the following, Sr denotes |an
operator of order = r, a "lower order terms" remainder. E and F are Hermitian
bundles over X.

Definition 7.1. Alinear map A:Hco(E)^Hœ(F) is a B00 operator of order r
if and only if

(i) for </> and if/ in CrX3(X) with disjoint support, <¡>A\¡i is an operator of
order = r — 1, and

(ii) if U <= X, x is a coordinate map of U into R", and {ßf\ and {yk} are bases
of £ and F, respectively, over U, and <j> and \¡i are in C°°(X) with support in U, then

tpA^i^Laßf) =  E {q)zAkj\l/xaj)yk+Sr-x,
j.k

where ^4tJ- is a Bœ operator of order r on R".
The symbol a(A) is the map of T'L¥) into Hom(£,F) given by

(3) o(A)(0 [ laj(x)ßj(x)-] = E ¡_a(Akj)(x(x), z)] a/x)yk(x),
j,k

where x = t(£), z = (z,,--.^,,), £= zZzjdXj, and x is any point such that
c/>(x) ̂(x) # 0. t is the projection of T'(X) onto X.

It is not immediately clear that a(A) is well defined. However, by Lemma 5.2,
a(Akf)(y,z) is uniquely determined, for y such that 4>(x~í(y))}l'(x~í(y))¥=0.
Then the invariance of a(A) under changes of the coordinate map x follows
from Theorem 4.1. Finally, the invariance of o(A) for changes in the bases {/?,}
and {yk} follows from Theorem 3.1, bearing in mind that multiplication M^ by
a C00 function c/> with compact support is a B°° operator of order zero, with
o(M¿)(£,) = 4>(x), where <; lies over x.

A B00 operator of order r is in particular an operator of order ^ r, i.e., con-
tinuous from Hk(E) to Hk~r(F). Any operator /I of order =r-l is a B00
operator of order r, and o(A) = 0.

Note that if x is the projection of T'(X) onto X, and rc that of Hom(E,T)
onto X, then <tL4) maps t_1(x) into n~1(x) for each x in X. It is also clear
that if A is a B00 operator of order r, then o-L4) is Cœ; and if í > 0, then
o(Ä)(tC) = t'a(Á)(í). We express this by saying that a(A) is a fibre-preserving
C00 map, homogeneous of degree r, from T'(X) into Hom(E,F).

In the next proof we require, for a given covering of X by open sets { £/,-},
a collection {(/>,} of Cœ functions with the support of <fij in l/,-, «^=0, and
E(/)2 = 1. These are obtained from any C °° set {ij/j} with the support of i/Vy in
Uj, V> ̂  0, and   lijij > 0, by letting c/>,. = i/>7-[ E(^)2]"1/2.
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Theorem 7.1. a maps the set of B00 operators of order r linearly onto the
fibre-preserving C00 maps, homogeneous of degree r, from T\X) into Hom(£,F).
The kernel of o is the set of operators of order z%r — I.

Proof. That o is linear into is clear. To show it is onto, let {Uk} be an open
covering of X such that £ and F have bases {ßk} and {yj} over Uk, and
such that there is a coordinate map x* of Uk into R". Let cf>k have support in
Uk, 2Z4>k = 1, and <pk be C°°. Let \\i be a map: T'(AT)->Hom(£,F) of the type
considered in the statement of this theorem. Then there are C00 functions ij/jj on
T'\U¿ such that <K0( I,ta¿x)fi(x)) - EMQafcJfrx), where x = ti®eUk.
Then there are B°° operators of order ron R", AXJ, such that <x(.4y)(>',z) = iptjiO,
where £ = 2,ZjdXjix), x = t(F), and y = x*(x). Now let Ak(Ha$)
= E¡/</> Afjcj)xa¡)yj, where cj> = cbk and x = X*; and set /I = E^4*. Then A
satisfies Definition 7.1, part (i), and for the given neighborhoods, coordinates,
and bases it satisfies part (ii) of Definition 7.1. The same argument that shows
the symbol is invariant now shows that A satisfies Part (ii) of Definition 7.1 for
all neighborhoods, coordinates, and bases. Since oiAk)iÇ) = cj>kixi£,))2\j/ií,), it
follows that oiA) = 'A-

It has already been noted that all operators of order :g r — 1 are in the kernel
of a. Conversely, if <t(y4)= 0 then for the Akj of Definition 7.1 we have
(0 ox-1)0A ox~1)criAkj) = 0, so 4>xAkj\px is of order zfLr — 1, and 4>xAi¡/x is of
order ^r— 1 for each c\> and \¡i.

The main features of the B °° operators introduced above are given in Theo-
rems 7.1 and 7.2. Theorem 7.2 refers to the adjoint of a symbol cL4):T'(^0
-> Hom(£,F). This is the map aiA)*:T\X) -> Hom(F,£) such that
MA){Qf,g)) = Hf,aiA)*iOg)) for each/in Ex and g in Fx, where x = z(0-

Theorem 7.2. Let Ey, Fy, E2, and F2 be Hermitian bundles over X. Let
¿:Hco(£1)->#œ(F1) and B:HxiE2)^HxiF2) be BOT operators of orders r
and p respectively. Then the following results hold.

(a) If r = p, Ey = E2, and Fy = F2, then A + B is a B00 operator of order r,
and ciA + B) = oiA) + <r(B).

(b) 7/£t = F2, then AB is a Bm operator of order rp, and aiAB) = aiA)oiB).
(c) The formal adjoint A* of A is a B°° operator of order r, and oiA*) = oiA)*.

Proof, (a) is clear. For (b), we check first condition (i) of Definition 7.1. Let
cj) and \\i be in C°°(.Y) and have disjoint supports. Choose 6 so that 9 — 1 in
a neighborhood of the support of cj>, and so that the support of 0 is disjoint from
that of \¡i. Then cf>AB\¡/ = c¡>AdBxú + cj>Ai\ - 6)Bij> is of order ^ r + p - 1, since
QB\¡i is of order ^ p — 1 and #^4(1 — 6) of order ^ r — 1.

To check part (ii) of Definition 7.1, suppose cj>, ij/, and x given, and choose 9
so that 9 = 1 on a neighborhood of the support of cf>, while the support of 9
lies in the domain of the coordinate map x- Then write c¡>AB\¡j = cf>A92B\ji
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+ <¡>A(1 — 92)B>{/, and observe that the second term is of order = r + p — 1.
Now let {ßj} be a local basis in E2, {y¡} a local basis in F2 = Ex, and {ôk} a local
basis in Fx. Then by Theorem 3.1,

cj>A92BH1LaJßj)= I,(<l>xAki9x9xBij<r>xaJ)ök = ÏWC^aJÔ, + Sr+P_,,
ijk jk

where
°(CkJ)(y,z) = 92(X-1(y)) E a(Aki)(y,z)a(Bij)(y,z).

i

Considering A*, let c/> and \¡/ have disjoint support. Then 4>A*\¡/ = (\j/*A<¡>*)*
is an operator of order = r — 1. To obtain a representation in local coordinates,
let (¡> and ip have support in U <= X, and x be a coordinate map of 17 into R".
Let {ßi} and {y,-} be orthonormal bases (over U) for Ex and T, respectively.
Then we have for /= Haßi and g= Efcyfy that (f,4>A*\j/g) = (A(f>*f,ij/g)
= ZjSR^xbj)*(AijAr(l,%)v = ^lj)Rncl)^ArAijVil,xbjr, where ^, is a B00
singular integral operator of order zero plus an operator of order = — 1,
and v gives the volume element on X in the local coordinates x- From Theorem
3.1, the last expression is H¡j j ^¡{A^Ar\¡/Xbj)*v + (f,Sr.xg), where A\¡ is a
B°° singular integral operator and o(A{f) is the complex conjugate of o(A¡f).
This yields the representation of <t>Aij/, and the symbol crL4*), thus completing
Theorem 7.2.

Each C°° section y of Hom(E,T) gives rise to a B°° operator of order zero, C,
such that <j(C)(Ç) = y(T(0), as follows: (Cf)(x) = y(x)(f(x)). The following
analog of Theorem 2.2 describes a related local behavior for arbitrary B°° operators
of order zero.

Theorem 7.3. Given x0eX, and sections cc of T*(X) and ß of E such that
oc(x0) # 0 and ((ß,ß)) = 1 in a neighborhood of x0, then there exists a sequence
{9m} in Cœ(X) such that || 9mß \\ = 1, the support of 9m converges to x0, and for
each B00 operator A of order 0, \\A9mß-[o(Ä)oa]9mß\\-+0.

Proof. Let x be a coordinate map in a neighborhood U of x0, let { y¡} be a
basis of F over U, and let { ß}) be a basis of E over U with ßx = ß. Let i¡/ equal 1
in a neighborhood of x0, and the support of ij/ lie in U. Then let
ir>Air>(I,ajßj)= EiJ#J^¡Aa^i + s-i(^aA)- Let aW= Ez/x)dz/x), and
z(x) = (z,(x), ••• , z„(x)), z° = z(x0), and </>™(jco),zo be as in Theorem 2.2.
Then define {/m} in C°(X) so that/m = 0 where 1^ = 0, and \¡ixfm = f/>™(xo).zo
for m sufficiently large. Then

\\Alxi¡,xr - o(AiX)(x(-),z(-))i¡,xr\\ =

¡An^r-^AnMxoYz^rW + |[^uXz(-),z(0)-o(^iXz(*o),2O)]^/"|h0.
Now for m sufficiently large, i/r2/m =/m, so Afmß = iiiA^,fmß + S.xfmß.

Since/"1/? converges weakly to zero, we have || S-Xfmß \\ ->0 (Lemma 5.1), and
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consequently   || Afmß - [tj(A) ooCjfß || - 0.  Since   \\fmß ||2 = }x\fm\2 ^ C > 0,
we can set 0m=/m||/m||_1.

Corollary. || A9mß \\ converges to || oiA)(<x(x0))ß(x0) || iwhere \\ c¡> |2 = ((<£,</>))
for (¡> in FX0).

Proof. ||[o-(^)oa]0||2= ix|Öm|2||[ff(^)oa]^||2. Since fx|0m|2=l and
the support of 9m converges to x0, the result follows.

Note that if £ = F = X x C, then oiA) is essentially a map of T\X) into C,
and the sections a and /? need not appear explicitly in the statement of Theorem
7.3, only a(x0) is needed.

Definition 7.2. [| o-(,4)(£) || is the norm of <x(.4)(£) as a linear transformation
from Ex -> Fx, where x = t(¿;). If A is of order zero, |oiA)| = sup{|| oiA)iÇ) ||.

Theorem 7.3 has the following corollary.

Lemma 7.1. For some section ß of E, the sequence 9mß of Theorem 7.3
satisfies || A9mß || -> || o-(¿) (<x(x0)) || while 10m)31| = 1.

Proof.   We already have

lim || ¿0m/? ||2 = lim\\{oiA)o^9mß\\2 = lim ̂ zZ\oiAiX)ixi-),zi-))9mi-)\2

= Y\°{An)ixix0),z°)\2 = \\oiA)io:ix0))ßix0)\\2.

Thus it suffices to choose the section ß so that

||[a(¿)(a(x0))Mx0)||2 = ||o-L4)(a(x0))||2.

Since the 9mß converge weakly to zero, we find immediately

Lemma 7.2. If A is a Bx operator of order 0, and K is any compact
operator from H\E) to H°(F), then \o(A)\ Ú \A + K\\.

8. Elliptic operators: the basic results.
Definition 8.1. AB00 operator A:Hc°iE)->Hc°iF) is elliptic if and only if,

for each £ in T\X), oiA)iÇ) is an isomorphism of Ex onto Fx, where £ lies over x.
The collection of elliptic B00 operators of order r from H™iE) to H°°(F) is

denoted   <fr(£,F).
Thus if A is elliptic, o-(A)(<^) has an inverse {oiA) (£)]"1; the function

<r04)-1 :cr(/l)_1(¿) = [p(A)(£,)]~l is the symbol of an elliptic operator A' which
serves more or less as an inverse of A. The existence of A' is the basis of the
results on existence and smoothness of solutions of elliptic equations. The reg-
ularity follows almost immediately from Theorem 7.2, so we treat that first.
In Theorem 8.1, IE is the identity: //°°(£)-»//°°(£).

Theorem 8.1. If A is in cfr(E,F), then there is an A' in «?_/£,£) such that
A'A = IE + SLy and AA' = IF + S'Ly. If B is any operator of order z% — r
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such that either BA = IE+ S_, or AB = IF + S_,, then B is in <f_r(F,jE) and
a(B) = c(A').

Proof. From Theorem 7.1, there is an A' in «f_p(F,£) such that
a(A')a(A) = o(IE), and o(A)c(A') = o(IF). From Theorem 7.2, o(AA' - If) = 0
and crL4',4 —/E) = 0. From Theorem 7.1,^4^' — /f and A'A — IE are of order -1.

If BA = IE +S„X, then B + BS"_X= BAA'= A'+ S-XA', so B - A' is of
order = —1 — r, and B is a B°° operator of order — r with cj(B) = o(A'). An
identical argument holds if AB = IE + S_i, and the proof is complete.

Corollary. // A is in Sr(E,F), f is in H'œ(E), and Af is in Hk(F), then f
is in Hk+r(E).

Proof. Let A' be as in Theorem 8.1, and suppose / is in Hm(E) with m < k + r.
Since Af is in Hk(F) and A' is of order -r, A'Af=f + S_xfis in Hk+'(E). Thus
f= A'Af-S-J is in Hm+l(E). The corollary follows by induction.

We turn now to the question of solvability of Af= g. From the point of view
of functional analysis, the characteristic property of elliptic operators is that
they satisfy a weakened form of Fredholm 's alternative. We continue this section
by defining this property, and stating the main general results in connection
with it.

Definition 8.2. Let X and Y be Banach spaces. A bounded operator A:X -* Y
is an F-operator if and only if A(X) is closed, ^4_1(0) is finite dimensional, and
^4*_1(0) is finite dimensional.

The index of such an operator is indL4) = dimL4_1(0)) — dimL4*-'(O)).
A rather complete discussion of bounded and unbounded F-operators is given

in [8]. Proofs of the results quoted here are also given, for the case X = Y, in
[12] ; those for X # Y are nearly identical.

The requirement that the range A(X) be closed has the following consequences.
(See [4, pp. 487-488].) First, A(X) ={y: A*y* = 0 =>y*(y) = 0}. Second,
A*(Y*)={x*:Ax = 0=>x*(x) = 0}. Finally, A*(Y*) is closed.

Theorem 8.2. (i) If A:X-+ Y and B: Y->Z are F-operators, then so is BA,
and ind (BA) = ind(B) + indL4).

(ii) A is an F-operator if and only if there are operators A' and A" such that
A'A = IX + K'> AA" = Iy + K", where K' and K" are compact operators,
and Ix and IY are identity operators.

(iii) A is an F-operator with ind(^4) = 0 if and only if there is an operator K
with finite range such that A + K maps X isomorphically onto a closed sub-
space of T, of finite codimension; such an A +K has a bounded left inverse.

(iv) // A is an F-operator and K compact, then A + K is an F-operator
and ind(A + K) = ind(A).

(v) // A is an F-operator, then there is an e > 0 such that, if || A — B || < e,
then B is an F-operator and ind(B) = indL4).

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1965]        INTEGRO-DIFFERENTIAL OPERATORS ON VECTOR BUNDLES 181

The next lemma connects the compact operators of the above theorem with
the "lower order" operators of Theorem 8.1.

Lemma 8.1. // S is continuous: //*I_1(£)-^Hk~\F), then S is compact:
HkiE)^Hk-\F).

Proof. If E</>¡ = 1 is a C00 resolution of the identity then S= E^.S^.
Thus it suffices to show that c¡>S\¡/ is compact: //*(£)->Hk~\F) whenever
the support of cp lies in the domain of a coordinate map over which £ is trivial,
and \j/ has a similar support. Then the result can be transferred to a system of
operators on H^R"), to which Lemma 5.1 applies.

The proof of the fundamental result on solvability is now immediate.

Theorem 8.3. Let A be in c?r(E,F). Then (i) for each k, A extends to an
F-operator Ak:Hk(E) -> Hk~r(F). (ii) The null space of Ak is the same as the null
space of A:Hco(E)->Hco(F). (iii) // A* is the formal adjoint of A, then
ind(A) = dim(A~l(0))-dim(A*'l(0)).(iv) The range of Akis the set {finHk~r(F):
A*g = 0 implies (f,g) = 0}. (v) If A' is in Sr(E,F) and o(A') = o(A), then
ind(A') = ind(A).

Proof. The first statement follows from Theorem 8.1, Lemma 8.1, and Theo-
rem 8.2(h). The second statement follows from the corollary of Theorem 8.1.
For statement (iii), choose k ^ 0 so that k — r ^ 0. Then the adjoint A* of Ak
is the extension A*-k of the formal adjoint A* to H'~k(F).

Considering the statement (iv), since the range of Ak is closed, it equals
{/in Hk~r(F):A*X = 0 implies X(f) = 0}. Because of the connection between
the formal adjoint and A*, this set equals {/in Hk~r(F):A*^kg = 0 implies
(fig) = 0}. Finally since o(A*) = o(A)*, A* is also elliptic, and the solutions g
in H""~k(F) of A*_kg = 0 are in Hœ(F), hence are the same as the solutions of
A*g = 0.

Finally, if o(A') = o(A) then A' — A is an operator of order ^ r — 1, hence
compact from Hk(E) to Hk~\F) (by Lemma 8.1). Then from Theorem 8.2(iv),
ind(A') = ind(A).

Theorem 8.3 has a converse, given by Theorem 9.2 below.

9. Applications of the basic elliptic results.

Lemma 9.1.    If A is in cfr(E,E) and oiA)* = oiA), then ind (A) = 0.

Proof. If A* = A, then ind (/I) = 0 by Theorem 8.3(iii). If oiA)* = oiA)
then o(A) = o((l/2)(A + A*)), so by Theorem 7.1 and Lemma 8.1, Ak differs
from (1/2)(A +A*)k by a compact operator from H\E) to Hk'\F). Then
from Theorem 8.2(iv), ind(^) = ind((1/2)(4 + A*)) = 0.

Theorem 9.1. Let \j/ be a fibre-preserving C00 map, homogeneous of degree
one, from T\X) into Hom(£,£), and suppose i^(¿) is positive definite for each c;
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in T'(X). Then there is an operator P in «?,(£,£) such that (Pf,f)^(f,f)forf
in H°(E), P* = P, and <j(P) = i/c. For each integer k, Pk is in £k(E,E) and ex-
tends to an isomorphism of HS(E) onto Hs~k(E) for each integer s.

Proof. Given a P in «?,(£,£) such that (Pf,f)~è(f,f) and P = P*, the state-
ment about Pk follows easily. For if fe HS(E) and P/= 0, then by Theorem 8.1,
corollary,/is in Hœ(E), so that 0 = (/,/); thus P is 1-1 on H\E). Since P = P*,
it follows from 8.3 (iv) that P is onto, and then by the closed graph theorem
that P is an isomorphism of HS{E) onto Z/S_1(E). Consequently P* is an isomor-
phism of HS{E) onto Hs~k{E). To show P* is in £k(E,E) for each k, we show
P~l is in &_X(E,E) and refer to Theorem 7.2. But P-1is of order - 1, and is
a regularizer for P, so that P~lsS_x(E,E) by Theorem 8.1.

To construct a self-adjoint P with a(P) = ip and (Pfif) = (/, /), consider a
function <¡) = 0 with support in U <=. X, an orthonormal basis {ßf} of Ev, and a
coordinate map/:[/-► R". Let P~be the matrix representing i/cin the basis {ßf\,
and let B be a matrix of Euclidean B00 singular integral operators with o(B)(y,z)
= [|zI" 1í,~(Ezj-dXjix))]1'2, where ¡z|2 = Ez/and y = /(x). Let Abe the oper-
ator defined in §2 (A2 = / + A), and set P^( Xarfj) = T^^B^AB^a^,
where Bkj is the entry in row k and column; of the matrix of operators B, and
Btj is its formal adjoint. We now have P0 in £X(E,E), a(P^)(Ç) = <¡>2(t:(C))\1/(0,
PI¡> = P*, and (P^ff) = 0.

Finally, take a collection {4>f\ of functions like the <f> above, such that E$2 = 1,
and set P = / + ¿Zp^j .

Remark. The point of Theorem 9.1 is that a positive symbol i// exists, and
so an isomorphism P exists. This can be stated without reference to the Hermitian
structure, by requiring that \]/(Ç) be a positive multiple of the iden-
tity for each £.

Theorem 9.2. If a BK operator A of order r extends to an F-operator Ak
from Hk(E) to Hk~r(F)for some k, then A is elliptic, and dimE = dimF.

Proof. Let P in &X(E,E) and Q in $X(F,F) be isomorphisms as in Theorem
9.1. Let B = Qk~rAP~k; we will show B is elliptic, so that A is elliptic and
dimE = dimF. Now B0 = Qk~rAk P~k is an F-operator from//0(£)to//0(F),
and (Bo")B0 is an F-operator from H°(E) to H°(E) with index zero. By Theorem
8.2(iii) there is a compact K such that B*B0 +K has a bounded left inverse
C:H°{E)^H°{E). Hence \\{B%B0 + K)f\\ = || C ||_1||y|| - Consider now the sec-
tions 9mß of Theorem 7.3. Since they converge weakly to zero in H°{E), we have
|| K9mß || ->0, and consequently by the corollary of Theorem 7.3, ||(B?B0 + K)9mß\\
->|| [cr(B*B)(a(x0))]jS(x0) || for the given sections a of T*(X) and ß of E. Since
||fl"/il| = l, we have || [e(B*B)(a(x0))-]ß(x0) \\ = ¡C ¡l'1 for a(x0) in T¿ and
ß(x0) of length one in EXo. Thus g(B*B)(^) is one-one and onto for each c;. Since
o(B*B) = a(B*)cr(B),c(B) is one-one.
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An identical argument shows c(B)* = c(B*) is one-one, so rr(B) is an isomor-
phism, and B is elliptic. Finally, A = Qr~kBPk is elliptic.

We now consider a local form of the assertion of Theorem 8.3 about the range
of an elliptic operator. First, two conventions: If/ and g are in i/_c0(£)
and U is a subset of X, then "/= g in U" means that ificb) = ig, cb) for all cp
in H°°(£) such that cf> = 0 in X - U. An operator A is "surjective in 17" if
and only if, given g in r7_c0(F), there is an/in H-00(£) with /!/=£ in t7- The
null space of A is denoted NiA).

Theorem 9.3. Let U be closed and A be elliptic. Then A is surjective in U
if and only if no nonzero function in NiA*) has support in U.

Proof. Suppose h is in NiA*), Af = h in U, and h has support in U. Then
ih,h) = if,A*h) =0. Thus A is surjective in U only if no nonzero function in
NiA*) has support in U.

Assume now the condition on NiA*), and let L be the set of linear functionals
on NiA*) of the form A(fc) = (/i,</>) for some C°° section cf> vanishing in U.
Then Lis the dual of NiA*); for if (h,cb) = 0 for all cf> as above, then h = 0 in
X — U, and consequently h =0 in X. Now, given g in i/~°°(F), choose aC°°
section </> vanishing in U such that ih,cb) = ih,g) for all ft in NiA*). Then
g — </>=g in U, and g — </> is orthogonal to NiA*), so there is an / with
Af=g-cb.

Corollary. If A is in SLE,E) and x0 in X is given, then there is a neigh-
borhood U of x0 such that A is onto with respect to U.

Proof. Since NiA*) is finite dimensional, x0 must have a neighborhood U
satisfying the conditions of Theorem 9.3.

Remark. If A is a differential operator, then the above corollary holds if
we assume only that oiA)iÇ) is an isomorphism for all £, over x0. For then a neigh-
borhood F of x0 may be embedded in a torus of dimension n, and the coefficients
of A extended from F so as to be elliptic over the whole torus. The same method
allows one to deduce from the corollary of Theorem 8.1 a local regularity
theorem for elliptic differential operators.

10. Some expansion theorems.

Theorem 10.1. Let A be in S,(£,£), r ^ 0, A = A*. Then there is a basis
{cj>m} of H°iE) of orthonormal eigensections of A. The eigenvalues satisfy
|Am|r->oo as m-*co. A section f in //_00(£) is in HkriE) if and only if
E|(¿m,/)|2|¿m|2*<oo.

Proof. If r < 0, the extension A0 of A to ii0(£) is a compact Hermitian
operator, by Lemma 8.1. Thus the eigenfunctions exist, and |Am|r->oo. By
Theorems 8.3, and 8.1, corollary, the null space JV(/40) of A0 is finite dimensional
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and consists of H°° sections. Hence the orthogonal projection P0 on JV(^10)
is of order z% m for every m. Thus A' = A + P0 is in ST(E,E), NiA') = 0; and
ind(A') = 0 since A' is formally self-adjoint. As in Theorem 9.1, A' is an iso-
morphism of H\E) with Hk'riE) for every k. Thus/is in Hkr(E) if and only if
(A'ff is in H\E), which is equivalent to E |A„| 2k\(4>n,f) \ 2 = E \icbn,iA ')'/) | 2 < oo.

In case r > 0, again let P0 be the projection on the null space of A, and con-
sider the inverse of A + P0.

For a result on uniform convergence, the following lemma is helpful.

Lemma 10.1. If S is any operator oforder <—n ¡2, from //°°(£) to HK(F),
then the extension of S to H°(E) is a Hilbert-Schmidt operator.

By saying S is Hilbert-Schmidt, we mean there is a section K in //°(HOM(£,F))
such that S/(x)= ¡xK(y,x)f(y)dv>. Recall that HOM(£,F) is a bundle over
X x X, whose fibre at (y,x) is the linear transformations of Ey into Fx.

To find the kernel K, use a partition of unity E(/>; = 1 such that the support
of each cbj is contained in a neighborhood Uj with a coordinate map into R",
and such that £ and F both have local bases over V¡. Then S = lljkCpjScp^
and each ^_,-S<pt can be represented as a system of operators on H^R"). By
Lemma 5.3, each component of this system has a Hilbert-Schmidt kernel, which
yields a kernel KJk in H°(HOM(£,F)) representing cpjSfa. Then K= T,KJk is
the desired kernel for S.

If S is Hilbert-Schmidt, theni S is also compact, so S*S, acting on H°(E),
has an eigenfunction expansion S*Sf= E^m(/,^)m)</)m, with /lmja0. If S is
Hilbert-Schmidt, it follows as usual that  2Um < co.

An operator D:Hco(E)^Hx(F) is of finite order if it is of order ;g m for
some m < oo.

Theorem 10.2. Lei ^ be in cft(E,E), r # 0, and A = A*. Let {cj)m} be the
basis of orthonormal eigensections of A, Acpm = lm</>m. Tften / is in //°°(£) i/
and only if E|(/,</>m)| |ö</>m| converges uniformly for each operator D of
finite order(3).

Proof.   By | Dcbm \ we mean the function on S such that

|ö«/>m|(x) = ((D</.m(x),Z)^(x)))1/2.

The convergence condition is clearly sufficient for / to be a C°° section, and
therefore in Hœ(£).

Let P0 be the projection on the null space of A. Then A + P0 has the same
eigensections as A, so it suffices to consider an invertible A. But then we may
assume r < 0. Further, /4"has the same eigensections as A, so we may consider
r < — n/2. Then A is Hilbert-Schmidt and the eigenvalues Xm satisfy E| Am|2 < oo.

(3) Added in proof. This criterion has been used in special cases by Kodaira and Spencer,
and by Calderón and Zygmund in [3].
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Since A is an isomorphism: Hk(E)->Hk~'(E), we may give the topology in
Hkr(E) by the norm ||/|ir = || Akf\\0. From the Soboleff inequalities,
((f(x),f(x))) g C2(|/||_r)2. We may take D to be of order dr > 0 for some
ci<0, so that || Df\\jr =Cj\\f\\a+d)r. Thus \Dqbm\(x) = C \\ D<j>m \\ _r Ú C'\\4>m\\r^X)
= C'\\Ad-1ct>m\\0 = C'\km\d.-i.

Now from Theorem 10.1, |(/,</>m)| \Xm\d 3 is a bounded function of
m, so  ¿Z\(f,cj>m)\\D<bm\^Ml\Xm\2<œ.

Remark. Theorem 10.1 shows that/is H°°(£)ifand only if E|(/,</>m)|2|Am|*< oo
for every k. This has an interesting analog in the case of a compact real analytic
manifold X and a self-adjoint analytic elliptic differential operator A of order r.
Then/is real analytic if and only if E|(f/>m,/)|2t"m < oo for some t > 1, where
(um)r = \km\. The proof of this rests on solutions of the Cauchy problem and
analyticity of solutions of analytic equations, and would be out of place
here.

11. Closure in L2 operator norm. Denote by s#0(E,F) the closure of the
B00 operators of order zero from H°°(£) to //°°(F), in the norm \\A\\= sup || Af\\0
f°r ||/||o — 1 • Thus ¿<f0(E,F) is a norm-closed subspace of the bounded operators
from H°(E) to H°(F). <s/0 includes the set X of all compact operators. For,
operators of finite rank whose range lies in //œ(f) are of order < — 1, and so
are B °°operators of order zero; and such operators are dense in X.

In order to state the first theorem of this section, denote by C0(E,F) the com-
plete normed vector space of all continuous, fibre-preserving maps of T'(X)
into Hom(£,F) which are homogeneous of degree zero on each fibre of T'(X).
If F is such a map and x the projection of T'(X) onto X, then || £(£) || is the
norm of F(Ç) as a linear operator from £t(i) to FI(i), and the norm in C0(E,F)
is |F|=sup||F(0|.

Theorem 11.1. (i) The symbol map o extends to a map a' of s#0(E,F) onto
C0(E,F).

(ii)   o'(Cfi) = 0, and a' induces a linear isometry of J3?*0pf onto C0(E,F).
(iii) If A e s/0(E,F), B e s/0(F, G), then BA e ¿t0(E,G) and o'(BA) = o'(B)o'(A).
(iv) // A es/0(E,F), then A* e s?0(F,E) and o(A*)(Ç) = [<xL4)(£)]*•
(v) If Ae¿tf0(E,F), then e(A)(Ç) is an isomorphism for all Ç if and only if

A is an F-operator from H°(E) to H°(F).

The theorem is a consequence of

Lemma   11.1.   // A is a B00 operator of order zero from //"(£) to //°°(F),
and A + Jf" its equivalence class in séü\cfí, then |o"L4)| = |^4 + Jf||.

Proof. That | <tL4) | ^ || A + ¿f || follows from Lemma 7.2. For the other
inequality consider the operator A~ on H°(E ©F) = H°(E)©H°(F) defined by
A~(e@f) = A*f(&Ae. Here £©F denotes the orthogonal direct sum (Whitney
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sum) of the bundles £ and F, and H°(E) © H°(F) is the orthogonal direct sum
of the Hilbert spaces H°(E) and H°(F). We have \\A~ || = || A\\ and |o"U~)|
= | oiA)\ ; and A is a self-adjoint B*° singular integral operator. The lemma de-
pends on showing that the spectrum spiA~) consists of the union over £ of the
eigenvalues of <r(.4~)(<j;), plus isolated points of finite multiplicity.

Note that for any F-operator B, the range of B is the orthogonal complement
of the null space of B*. In particular, when B is a self-adjoint F-operator, B is
invertible if and only if its null space is trivial. Now suppose X0 is an eigenvalue
of A~ and |10| > |<x(i4~)|. Then X0I — A~ is an elliptic singular integral oper-
ator, and by Theorem 8.3 it has a finite dimensional null space. Then the orthog-
onal projection P0 on this null space is compact, and since X0 is real X0I — A~—P0
is a self-adjoint F-operator. Since it has trivial null space, it is invertible; and
further there is a ô such that 0 < Ô < | X01 — | oiA~) \, and XI — A~ — P0 is in-
vertible for | X — X01 < ô. It follows that the real numbers X with 0 < | X — X01 < ô
are not in sp(4~). For if X is real, 0 < | X — X01 < S, and Xf — A~f= 0, then /
is orthogonal to the range of P0 and Xf—A~f— P0f= 0; hence such an /= 0,
and XI — A~ is invertible.

Now let e >0 be given, and let XX,---,XN be the eigenvalues of A~ in
{|2| > |o-(^)| + e}, and PX,--,PN the projections on the corresponding eigen-
spaces. Then HXjPj is compact, and sp(^4~ — HXjPf) lies in {| X | ^ | oiA) | + e},
so || A~ - TXjPj || g | oiA~) | + e = | oiA) \ + e.

Now A can be represented by a matrix

/0     A*\
\A      0 /'

and we have found a matrix K of compact operators such that

/        Kyy A*+Ky2S

\A + K21        K22     i

has norm ^ | oiA) \ + e. Since the norm of each entry in such a matrix is domi-
nated by the norm of the operator represented by the matrix, we have
|| A + K2l || 1% I oiA) | + s, and the lemma is proved.

Remark.   The general idea of considering A~ instead of A is due to Singer.
Proof of Theorem 11.1. By Lemma 11.1, Am-+A in L2 norm only if oL4m)

converges in C0iE,F); we let o\A) = UmoiAm). Now the equality of Lemma 1.1
carries immediately from the B°° operators to all of ¿f°, and consequently ss?0lJf
is isometric to a subspace of C0iE,F). Since the symbols of B°° operators are
dense in C0iE,F), the isometry is onto C0iE,F). This proves parts (i) and (ii)
of the theorem; parts (iii) and (iv) follow immediately by taking limits. For (v),
suppose o'iA)ii) is 1-1 and onto for each Ç. Then F:F(¿) = [ff'(^)(5)]_1 is
continuous, and is therefore the symbol of an operator A' in j/0(F,£). Since
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o'iA'A) = / = a'(AA'), AA' = I + K and A'A = I + K' for some compact
operators K and K', so A is an F-operator by Theorem 8.2. For the converse,
observe that Theorem 7.3 carries over immediately to operators in ¿¡/0, so that
the necessary part of the proof of Theorem 9.2 can be repeated. This completes
Theorem 11.1. We will write a for a', on the basis of part (i).

The set s#0 is the appropriate setting for a result on the homotopy invariance
of the index.

Theorem 11.2. Let A and B be elliptic operators in ¿&0(E,F), and suppose
there is a homotopy Ft of a(A) to a(B), such that for each t and C,F, is in C0(E,F)
and F,(0 is nonsingular. Then index(A) = index(B).

Proof. According to parts (iv) and (v) of Theorem 8.2, the set
Sk = {A + Jf:Ae sé0(E,F),a{A) is nonsingular and index {A) = k} is open in
j/0/jr. For if index {A) = k and || B + Jf - {A + Jf) || < e, there is a compact
K such that || B + K — A || < s. Choosing e as in 8.2(v), we have index{A)
= index(B + K) = index(B). Thus index is continuous from the elliptic members
of j/q/jT into the integers, and Theorem 11.2 follows by the usual connectedness
argument and the isomorphism of <s/0/Jf with C0{E,F).

12. Closure in the order zero topology. Theorem 11.1 extends several properties
of the BM operators to a rather large class. However, the operators in this larger
class ¿/0{E,F) do not preserve Hk for k ^ 0, and no regularity theorem can
be expected for solutions of elliptic equations. We can retain these properties
by considering the closure in a finer topology, the order zero topology on the
space of operators of order zero from //°°(£) to //°°(F). This topology is easy
to describe by giving Hk{E) and //*(£) a norm, \\k. Then set
|||A|||m = sup||^/||,/||/||„ the sup being for |fc| = m and/#0in H°°(£). A
base of neighborhoods of zero in the order zero topology is given by the sets
Um = {A:\\\ A\\\m < l/m}. Our results on the closure in the order zero topology
rest on results for closure in m-norm.

For integer m — 0, let s/m{E,F) be the closure of the B00 operators of order
zero (as operators on //""(£)) in the m-norm || |||m. A member A of s/m{E,F)
is essentially a 2m + 1-tuple A = {A-m,---,Am) of operators, where A¡ is con-
tinuous from HJ{E) to H (£) and A¡ is a restriction of A¡_x. Then since H~\E)
is the anti-dual of Hr{E),weha\e A* = {Am*,-,A_m*) = {A*_m,-~,A*m),andif
B is in ¿Sm{F,G) BA = {B_mA_m,-,BmAm). If B is a Bœ operator from //°°(£)
to Hœ{F), then of course B} is its extension to HJ{E)^HJ{F). AU)->A in sim
means A(kj) -* Ak in operator norm, for each | k | = m.

s4 ofE,F) is the inverse limit of the stfm(E,F). An sé'„, operator of order r is
any of the form APr, where A e s/^E^) and P is an isomorphism in $X(E,E),
i.e., an elliptic B00 operator of order one, inducing an isomorphism
Pk:HkÍE)-*Hk~1(E) for each fc. A trivial check (as in Lemma 12.1 below) shows
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that the class of si ^ operators of order r does not depend on the choice of P,
and could in fact be defined as the operators of the form Q'A', with Q an iso-
morphism in $y(F,F) and A' in six(E,F). The symbol of such an operator is
defined to be o(AP') = oiA)oiPr), and is likewise independent of the choice of
P. The si'„ operators of order r are also the closure of the B °° operators of
order r in a fairly obvious topology. The representation ,4Pr allows us to re-
duce the analysis of operators of order r to the case r = 0.

Since sim <= si0, the symbol map o extends naturally to sim, and parts (iii),
(iv) and (v) of Theorem 11.1 apply to sim.

Lemma 12.1. Let AesimiE,F), and p be a C00 function on T'(X), homo-
geneous of degree one. Let Pecfy(E,E) be such that Pk is an isomorphism of
Hk(E)^Hk-\E)for all k, and o(P)(£) = p(S)I; let QeSy(F,F) be such that
Qkis an isomorphism for all k and o(Q)(i,) = p(Ç)I. Then QrAP'~''is in Am-Lfi,F)

for 0 z% r g m, and o(QrAP~r) = o(A).

Proof. If AU) is a sequence of BOT operators and AU) -» A, then for
\k\ûm,QrAi})P"r ->QrAkp-r in the norm of operators from Hk~r(E) to
Hk~r(F), and oiQrAU)p-') = o(AU))->oiA).

Theorem 12.1.   If A = (A^m, — ,Am)esimiE,F), then
(i)   for each k, oiA) = 0 if and only if Ak is compact;
(ii) for each k, A is elliptic if and only if Ak is an F-operator;
(iii) if A is elliptic, then index(/4fe) = index(/l0).

Proof, (i) Let B = QkAP~k as in Lemma 1.1. Then o(B0) = o(A), and
Ak = (Q~k)ryBiy(Pk)k is compact if and only if B0 is compact. From Theorem 11.1,
B0 is compact if and only if o(B0) = 0.

The proof of (ii) imitates the proof of (i).
For (iii), let AU) be a sequence of Bx operators, A^-*■ A, o(A(J))^o(A).

Since A is elliptic, so are the AU) for j sufficiently large. By Theorem 8.3(iii),
index(^)) = index(40y)). By Theorem 8.2(v), index(AkJ))-► indexiAk) for
|fe| ^ m, and the result follows.

The following restricted regularity result is a corollary of part (iii) of Theorem
12.1.

Lemma 12.2. If A = iA^m,---,A,„)esimiE,F) is elliptic, then for each k the
null space of Ak lies in //m(£).

Proof. Let viAk) denote the dimension of the null space of Ak. Then viAk)
is a nonincreasing function of k, and — viAk*)= — viA*-k) is likewise a non-
increasing function of k. Since index^) = v(Ak) — v(A^) is constant, v(Ak)
must be constant and the lemma is proved.

Theorem 12.2. Let Aesim(E,F) be elliptic. Suppose feH~m(E) and
Af= A_Je Hk(F) for some kz^rn. Then fe Hk(E).
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Proof. Let P0 be orthogonal projection (in H°{E)) on the null space of A*A.
By Lemma 12.2, B = A*A + P0 is in sé"m(E,E). Moreover, index(Bt) = index(B0)
= 0, while v{Bk) = 0, so Bk is an isomorphism on Hk{E), for each | k | ^ m. Since
AfeHk(F), A* maps Hk{F) into Hk{E), and P0 projects onto a subspace of
//m(£), we have Bfe //*(£). Since Bk is an isomorphism on //*(£), it follows
that /e//"(£).

Remark 12.1. Theorems 12.1 and 12.2 extend immediately, with appropriate
changes of indices, to s/œ operators of order r.

Since it is difficult to characterize the symbols of the operators in ^œ(£,F)
by some properties such as smoothness (as was the case for the B00 operators
and the j#0 operators), it is worth while to answer more modest questions such
as whether the inverse of the symbol of an elliptic operator in ¿/m(£,F) is the
symbol of some operator in s#m(F,E). The remaining results in this section are
in this direction. They are not applied in the remaining sections.

Lemma 12.3. Let Aes#m(E,F), and suppose Ak is invertible for some k,
\k\=m. Then As is invertible for all |j'|gm, A'1 =((A_m)-1,---,(AJ-1)
es*m(F,E), and <r(A^)(i) = |>L4)(£)]-i.

Proof. Since A¡ is an F-operator and index (Af) = index (Ak) = 0, A¡ is in-
vertible if it is either one-one or onto. If í > k, A3 has the left inverse (Ak)~l,
so Aj is one-one. If j < k, the range of A} includes the range (Ak) = Hk(F).
Since Hk(F) is dense in HJ(F), and range (Af) is closed, A¡ is onto.

For the last two assertions, let A(l) be a sequence of B°° operators converging
to A. Then by the continuity of inverses, A(p is invertible for sufficiently large /,
and (Ayy)~t-*Af1. This completes the proof, since (A{l>)~1 is a B00 operator
by Theorem 8.1.

Theorem 12.4. // Aesém(E,F) is elliptic, then there is an A' in ¿tfm(F,E)
with o(A')rs(A) = I.

Proof. Consider A~ es/m(E(BF, £©£), as in Lemma 11.1, and let P0 be
projection on the null space of A~. Then B = A~ + P0 is elliptic, self-adjoint,
and invertible; and by Lemma 12.2, B is in s/m(E © F, E © F). By Lemma 12.3,
B " * is in s4m{E © F, E © F), and one sees easily that we can let A' be the entry
in row one and column two of the matrix representation of B_1, this being the
entry that maps H°(F) into H°(E).

Another immediate consequence of Lemma 12.3 is that, if Aes/m(E,E), then
spectrum (Ak) = spectrum (Af) for |/|_m, |fc|gm. Thus it is reasonable to
speak of spL4) = spectrum L40)-

Theorem 12.5. Let Aes/m(E,E), and suppose (j) is analytic on spL4). Then
<b(A) = (<t>(A_m),-,<t>(Am)) is in sfJE,E), and o(<¡>(A))= <j>(a(A)).
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Proof. sim is a complete normed space; thus if F is a contour surrounding
sp(A), (1/27IÍ) JVcb(X)(X — A)~1dX converges in sim. By the obvious extension
of Theorem 7.3 to si0, we have spectrum(cr(^4)(|)) c spectrum(^40); thus the
spectrum of the symbol lies inside F, and (lßni) jrc¡>(X)(X-o(A)(Ç))~ldX
converges to c¡>(o(A)(£,)), which concludes the theorem.

Our final result in this direction is a partial generalization of Theorem 12.4.
If A e sijfi, E), then let sp (o(A)) denote the union over all £ in T'(X) of spectrum
(o-(yl)((i;)),i.e.,the union of all the eigenvalues of o(A). Ifcj) is analytic on sp(<r(^4)),
then cj)(o(A)), defined by cb(o(A))(£,) = cb(o(A)(^)), is a continuous function on
T'(X), homogeneous of degree zero.

Theorem 12.6. // Aesim(E,E) and cb is analytic on sp(o(A)), then there
is a B in sim(E,E) with o(B) = cb(o(A)).

Proof. Let T be a path in the complex plane lying in the domain of cb, and
surrounding sp(o(A)). Then for X eF, A — X is elliptic; but index (A — X) need
not be zero, so there is not necessarily an invertible operator with the same symbol
as A — X. To avoid this difficulty consider A(X) = (A — X)~, as in Lemma 11.1.
For each X0 in F there is a compact operator P(X0) (projection on the null space
of A(X0)), such that A(X) — P(X0) is invertible for | X — X0 \ < e(X0). Since F is
compact, we may break it into finitely many disjoint curves Ft, • ■ ■, Fk and choose
Xj e Fj so that A(X) — P(Xf) is invertible for X e Fj. Thus the entry in row one
and column two of B~ = E; JY/^W - P(Xj))-1cj)(X)dX is in sim(E,E). Since
o((A(X) — P(Xj))~1) = <r(.4(A))-1, the entry in row one and column two of
oiiAiX) — P(Aj))-1) is ioiA) — X)~1, and the corresponding entry in <r(B~)
is<p(a04)).

13. Tensor products. Here we consider the tensor product A ® B of an
operator A acting on bundles over a manifold X, and an operator B acting on
bundles over Y. The object is to obtain some further algebraic structure related
to the index (Theorem 13.2) pointed out by Atiyah and Singer. The technical
difficulty is that even if A and B are in the class si0, A® B is not in si0 except
in trivial cases. However, we can fit the tensor product into the si'„ framework
by considering operators of order greater than zero.

Consider vector bundles £ over X idimX = n), and G over Y(dimy=>n).
Then £® G is a bundle over X x Y isomorphic to HOM(£*,G), where £* is
the dual bundle of £. As in §6, we assume a Hermitian inner product on £ and G,
which induces a similar structure on £ ® G. If fe H°(£) and g e H°iG), then
f® ge/T°(£® G). A multiple Fourier series argument shows that finite sums
E/,- ® gj, with/,- in H™iE) and g¡ in H°°(G), are dense in Hk{E ® G) for each k.

The inner product in i/°(£ ® G) is determined by (/® g, h ® k) = (f,h)(g,k).
If A maps Hco(E)^Hœ(F), and B maps Hœ(G)-*■ Hœ(G), then A®B is de-
fined on the (dense) subset of finite tensor sums by (A ®B)( E/,- ®gj)= E^4/,-®Bgy.
The justification of this can be based on the following remarks.
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Remark 13.1. If r is an integer = 0 and A is an operator of order — r on
//"(R"), then for each k — 0, A ® / extends from the finite sums E/,- ® gj to a
bounded operator from Hk+r(Rn+m) to Hk(Rn+m). To show this suppose, for <¡> in

/T°(R"),  that  }\{A<t>r^)\2{i +\^\2)kd^ = C2S\<I>^)\2{1 +\Ç\2)k+rdt;   for
O^fcgK.  Then  from (1 + |£|2 + \n\2)k   =    Ey/1 + |í|2)*-,/|»í| 2J we get

J|((^®i)/)A(€,ií)|aa+|¿|2 + |»f|2)*dí

áC2Eyi|ií|wJ|/A«,ff)|a(l+|{|J)*--'(i+|¿|2M.

Replacing (1 + |c;|2)r by (1 + |c;|2 + |>,|2)r and integrating with respect to r\
yields

j j \{{A®I)fy{t,n)\2{l +\tl\2 +\n\2)kdl;dn

= C'jjin^n^il+l^+lnl'r^dr,.
Remark 13.2. If A is a Euclidean operator of order ~r{r ^0), so is A ® /,

and \{A ®I)k\ ^ suplm|Sfc|| ̂ 4ft ||, where Ak denotes the extension of A to
Hk(R"). The inequality follows directly from the previous remark for k = r,
and indirectly from the same remark for k^O, by taking adjoints. For 0<k<r
we have

jj \((A®I)fnii,n)\2(l + \^\2 +\n\2)k-'dÇdn

=   J*J |(L4®/)/)-(£,i,)|2(l + \Ç\2)k-rdl;dri

=   \\Ak\\2 jj m^Wl+l^Mdn

=   ÏM'iUl+r)2.
The following lemma follows from the previous two remarks by using a par-

tition of unity and local bases of sections.

Lemma 13.1. Let r be an integer — 0, and A be any operator of order — r
from Hœ(E) to Hœ(F) (E and F bundles over X), and G be a bundle over Y.
Then there is a unique continuous linear operator ^4®/ of order =r from
Hœ(E ® G) to H°°(F ® G), such that (A ® /)(/® g) = (Af) ® g. Let Ak be the
extension of A to a map: Hk(E) ->Hk~r(F). There is a constant ck independent
of A such that \\ (A ® I)k || = c*supMSfc || Am ||.

Note this result applies to ,4®B, since A®B = (A®I)(I®B).
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Theorem  13.1.   Let r be a positive integer, A be an si'„ operator of order r
from Hœ(E) to í/°°(F), and let I be the identity on Hœ(G). Then A®I is an
si a, operator of order r, from //C0(£®G) to //C0(F®G);   and o(A® !)(£,)
= oiA)iO®oiI)ií).

Proof. By Lemma 13.1, we may assume A is a B00 operator of order r. Let
{cbj} be a partition of unity on X = tz(E) = n(F), and {\pk} a partition of unity on
Y = n(G). Suppose support((/>¡) u support(cbf) lies in a coordinate neighborhood
in X over which £ and F are trivial, whenever support(cb) n support(cbf) is
not empty; and suppose the support of each >J/k lies in a coordinate neighborhood
of Y over which G is trivial. Then write A ® I = Hijtkcb¡Acbj ® ipkI. If the sup-
ports of cb¡ and </>,- are disjoint, then cb¡Acbj is of order < r, and hence by Lemma
13.1, cb¡Acbj®I is of order < r, and cb¡Acbj®I is a B°° operator of order r
with symbol zero. If the supports of cb¡ and cbj are not disjoint, we can introduce
local coordinates and local bases of £, F, and G, and thus reduce the question
to the following lemma.

Lemma 13.2. Let A be a B°° singular integral operator on H^iR"), let
A0 on H^iR") be defined by (A0/H£) = |é|/~(í), /eí A on Hœ(Rn+m) be
defined by (Ag)^,n) = (1 + | £|2 + |ij|2)-'V(Í,>í) « e Än, n e Ä"), and /ei
r be a positive integer. Then there is a sequence Aj of B00 singular integral
operators on HxiRn+m), and an operator S_j of order ^ — 1, such that AJ
->04(A0)r®/)A~r + S_! in the order zero topology of operators onHmiRn+m);

and oiAfiix,y;S,n)^\!;\'i\c:\2 + \n\2yrt2oiA)ix,c;).

Proof.   First, write ((A0)r®/)A~r =H + S, where

(Hg)^,n) = \^(\i\2+\n\2)-rl2g^,n).

Then considering the Fourier transform of S, it is easy to show S is of order
minus two on H™(Rn+m). If R" is a Riesz operator on H^R"),

(K"/r«) = (É/|{ DT«),
then

((R*®/)/Tgr(£,n) = «/|í|)^|'(|^|2'+|n|2)-'/V(^n)= ha«.i/)*Ä«,i,).

The factor | £|r makes hx continuous in {|{|2 + |n|2 ^ 1}, and hx is homogeneous
of degree 0. Hence hx can be uniformly approximated by a sequence hxj(Ç,n)
of functions homogeneous of degree zero and C00 in {|c^|2 + |n|2 ^ 1}. The
haj are symbols of B°° singular integral operators HxJ on Hco(Rn+m); and
Hxj->(R"®I)H in the order zero topology. Thus for any finite sum
A = YéüJV (ax in B°°(Ä")), there is a sequence AJ of B°° singular integral op-
erators such that AJ -> (A ® I)H in the order zero topology. Since sums of the
form  Ha^* are dense in the Bœ singular integral operators in the order zero
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topology (Theorem 2.1), there is such a sequence A1 for any B°° singular integral
operator A. Finally, AJ-+iA ® I)H = (^(A0)p®/)A"r-(^®T)S.

Turning now to the index question, let £t and F y be vector bundles over X,
E2 and F2 vector bundles over Y. Then Gx = (£t ®£2)©(F1 ®F2) and
G2 = iFy ® E2) © iEy ® F2) are bundles over X x Y. If A is an ¿^(F^F,.)
operator of order r > 0, and B an siafE2,F2) operator of order r > 0, then
A # B is the ^»(Gi, G2) operator of order r such that (^#B)(et ® e2 ©/j ®/2)
= (Aßt ® e2 -fy ® B*f2) © iey ® Be2 + A*fy ®f2). A # B is conveniently rep-
resented by the matrix

A®I -I®B* \

I®B     A*®I   /'

Lemma 13.1 shows A#B is an siJfiy,G2) operator of order r. Its adjoint
(A # B)* is represented by the matrix

,A*®I     I®B*\

\-I®B   A®I /'

and (A # B)*(A # B) by the diagonal matrix, with diagonal entries A*A ® I
+ I®B*B and I ® BB* +AA*®I. From this it is easy to see that A #B is

elliptic if and only if A and B are elliptic.

Theorem 13.2.   index (A #B) = in dex(A)- index (B).

Proof. Let v(A), v(B), etc., denote the dimension of the null space of A, B, etc.
Let {cbj} be an orthonormal basis of eigensections of A*A with eigenvalues X¡.
Let {tb]}, {tf>j}, {ib2}; and p¡, \¡, Xj, be the corresponding objects for AA*,
B*B, and BB* respectively. Let 4>u = (cb¡ ® </>2)©0 and \b%i = 0©(\b\ ® \b)).
Then the set {cb^tbu} is an orthonormal basis of H°iGy), and iA # B)*iA # B)q>u
-(A, + Vy)¿y. iA#B)*iA#B)ir>ij = Ípi + Zj)ir>lJ. Thus {0O-,^.} is a basis of
eigensections of iA # B)*iA # B), and since X¡ + v} = 0 if and only if X¡ = v,- = 0,
with the same for pt + x¡, it is easy to see that v((^ # B)\A # B))=v(A*A)v(B*B)
+ v(AA*)v(BB*). Since for any elliptic operator C, v(C*C) = v(C), we find
v04#B) = v(,4)v(B) + v(^l*)v(B*). Replacing A by A* and B by -B, we have
v((¿#B)*) = v04*)v(B) + v(¿)v(£*), and Theorem 3.2 follows immediately.

14. The maximal ideal space of si0(C X X, C x X). Here we consider again
the closure, in L2 operator norm, of the space of B°° operators of order zero,
in the special case of a trivial one-dimensional bundle Cxi These operators
form an algebra, which turns out to have a simple set of generators ; and its
maximal ideal space is the unit cosphere bundle. This gives the symbol o(A)
a natural invariant interpretation as the representing function of A on the
maximal ideal space.

(
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We suppose X has a Riemannian metric in T*(X), represented in local co-
ordinates by I £ I = I L]zjdXj(x) | = ~EzjZkgjk(x). In these coordinates, the La-
placian is A = — (1/v) H(d ¡dxf)vgjk(d¡dxù ■ This is a Bœ operator of order two,
and o(A)(i) = | ¿|2. When £ = C x X we write /Zfc(X) for //*(£).

Lemma 14.1. T/iere is an operator J on //°°(Z) such that o{J){Ç) = |£|-1,
and

(i)   AJ2 = / +S.J, J2A = / + SL1;
(ii)  J is an isomorphism: Hk{X)->Hk+1{X) for each k,
(iii) VJ = JV + S_i for each vector field V, and
(iv) for each ¿j in T'LY) t/iere is a sequence {<p™} such that

|| F7<^™ + i|t;|-1ci(K(xo))0™|| -»O as m-> co. //ere £ /ies ouer x0, <b™ converges
weakly to zero, and || r/>" || = 1.

The existence of a J with the given symbol and property (ii) is given in Theo-
rem 9.1. Since <r(A)(c;) = <r(J2)(c;)_1, (i) follows from Theorem 7.2 on composi-
tion. The same theorem establishes (iii), since o(VJ) = o(V)o(J) = o(J)o(V) = o{JV).
Finally since ct(TJ) = — i |{|_1c;(F(x0)), (iv) follows from Theorem 7.3.

Now let sé be the closure (in the norm of operators on H°{X)) of the algebra
generated by the operators of the form VJ (with V ranging over the C °° vector
fields), and the operators of order — —1. We note first that sé includes the ideal
JT of all compact operators on H°{X). For sé includes all operators of the form
A:Af=(f,g)h, where g and h are in Hœ(X). Since Hœ(X) is dense in H°{X),
sé includes all operators of the form A:Af= {f,g)h, with g and h in H°{X),
hence includes all operators of finite dimensional range, and finally includes
all compact operators.

With the metric on T*{X) we pick out S*(X), the subbundle of T*(X) con-
sisting of unit vectors.

Theorem 14.1. The algebra sé is the closure in operator norm of the al-
gebra of B°° operators of order zero. The factor algebra sé/JT has S*(X)
as its space of maximal ideals, and is isometric to the algebra of continuous
functions on S*(X). For each B00 operator A, o(A) is the representing function
of the image of A in sé ¡CfT.

We begin the proof by observing that sé contains all operators of the form
M4,:M4,f(x) = 4>(x)f(x), where <f> is a continuous function on X. Suppose i/c
is an r/°° function with support in a coordinate neighborhood with coordinates
X, and let V} = \¡/d¡dXj. Then \}i2A = - TVjgJkVk + Sx (with Sx of order 1), and
M^ = i/c2AJ2 + S_! = - !vJJgJkVkJ + S'_x is in sé, since gJkVk is a C°° vector
field. Since squares of such Hœ functions generate C0(X) in sup norm, and
hence in operator norm, we find all multipliers M^ are in sé.

From property (iii) of Lemma 14.1, it follows that VXJV2J — V2JVXJ is an
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operator of order minus one, and hence a compact operator, by Lemma 5.1.
Hence si ¡X is commutative. Since si is a £*-algebra (i.e., ||^4*^4|| = ||-4|2),
si¡X is a commutative B* algebra (see [13, p. 249]), and by the Gelfand rep-
resentation theory si ¡X is isometric to the algebra of continuous functions
on its maximal ideal space.

To identify this space, note first that any homomorphism h of si¡X onto C
induces a homomorphism of C0iX); for the multipliers M^ are isometrically
embedded in si /Jf. Thus to each n corresponds a point xh in X such that
hiM„>) = cbixh).

Further, if Fis a real vector field then iiVJ)* = iVJ + S_x (by direct cal-
culation using (iii) of Lemma 14.1), so hiiVJ) is a real linear functional on the
vector fields V. Since h(icbVJ) = cf>(xh)h(iVJ), it follows that h(iVJ) depends
only on V(xh) and hence h(iVJ) = Ç(V(xh)) for some ¿; in the cotangent plane at
xh. To evaluate | Ç |, consider A = - TVjJgJkVkJ, where - E VjgikVk = i>2A + S y
as before. Then A = M^ + S_ls so n(^) = i/^2(xÄ) = t,h(iVjJ)h(gJkiVkJ)
= ETOxJ^xOTOxO) = 1/,2(x„)| £ |2; or | {|2 = 1.

Conversely, given t\ in S*(X) we construct a homomorphism /i = ht as follows.
Set n( E/[lk('>V)) = E;n*^(-i'7yt(xo))» where £ lies over x0. Since
|| VjkJcb?-l;(-iVJk(xo))cb?\\^0, we have|| XjJUWT) ~ K¿XlVJtr)4>íl->0,
and therefore | h(A) | á || -4 || • Since 0™ converges weakly to zero, we get in the
same way | h(A +K)\^\A+K\ for every compact operator K, so that for
the image A + Jf of A in si/Jf, we have | h(A) | ^ || A + Jf ||. Thus h(A) is
independent of the representation 2ZjY[k(VjkJ), and extends to a homomorphism
of J3//Jf onto C.

Thus the maximal ideals of si ¡X corresponds to the points of S*(X). Since
the representing functions A"(h) are continuous for the usual topology of S*(X),
and separate points, it follows that the maximal ideal space of si\X is topolog-
ically S*(X). Since the representing function of VJ coincides with its symbol,
the same holds for the (unclosed) algebra generated by the {VJ}. It is then natural
to call the representing function of an operator A in si its symbol, and to write
it o(A).

It remains to identify si with the closure of the B°° operators of order zero,
the si0 of §11. Since VJ is in si0, we have si c s/0 and si\X <zz si0/jf. Also
the o on si agrees with o on si0. Since o induces an isomorphism of si/¿f onto
C0(S*), and of si0/jf onto C0(S*) (by Theorem 11.1), we have si = si0, and
Theorem 14.1 is established.

15. Operators with closed range. Theorem 11.1 (v) characterizes the operators
A in si0(E,F) with closed range and finite null space, and such that A* also
has finite null space. These turn out to be the operators whose symbols are iso-
morphisms, the elliptic operators. Here we show to what extent o(A) determines
whether or not the range of A is closed. Denote the range of A by R(A), and
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the null space by N(A). In (iii) and (iv) we do not assume the sphere bundle
S(X) to be connected.

Theorem 15.1. (i) If a(A)(^) is one-one for each £,, then N(A) is finite di-
mensional and R(A) is closed.

(ii) If cr(A)(i) is onto for each Ç, then N(A*) is finite dimensional and R(A)
is closed.

(iii) // a(A) has continuous but not maximal rank, then there are compact
operators K and K' such that R{A + K) is closed and R(A + K') is not closed.

(iv) // o(A) has discontinuous rank, then R(A) is not closed.

This result follows easily from Theorem 11.1, together with two elementary
observations.

Lemma 15.1. If A is a normal operator on a Hubert space, then
R(A) is closed if and only if A is invertible, or zero is isolated in spec-
trum(A).

This follows rather directly from the spectral theorem.

Lemma 15.2. // any of R(A), R(A*), R(AA*), R(A*A) are closed, so are
the others.

This depends on the fact that R(A) is closed if and only if R(A) is the orthog-
onal complement of N(A*), which holds if and only if R(A*) is the orthogonal
complement of N(A) [4, pp. 487-488].

We recall also part of the proof of Lemma 11.1.

Lemma 15.3. // Ais a Hermitian singular integral operator, then spectrum(A)
contains the union over Ç of the eigenvalues of o(A)(£,), and spectrum(A) minus
these values consists of isolated points of finite multiplicity.

Parts (i) and (ii) of Theorem 15.1 are now clear. If o(A)(Ç) is onto for each «J,
then so is a(AA*)(Ç), so that AA* is elliptic and has closed range. In either case,
Lemma 15.2 applies.

For part (iii), we show first that if g(A) is not one-one, but has continuous
rank, then A + K has closed range for some compact K. Let P = (A*A)112,
and A = UP, where U maps the closure of R(P) isometrically onto the closure
of R(A), and the orthogonal complement of R(P) onto zero. Since sé0(E,E)
is closed in uniform norm, P is in séQ(E,E) and a(P)(0 = (o-(A*A)(Ç))i/2.
Since rank ct(P) = rank o(A) is continuous, <r(P) must have an isolated zero
eigenvalue. By Lemma 15.3, the spectrum of P near zero consists of zero plus,
perhaps, a sequence k„ of eigenvalues of finite multiplicity, kn -+ 0. If £„ is pro-
jection on the null space of P — k„I, then Kx = — 7LknE„ is compact, and zero
is isolated in the spectrum of P + Kx. Thus R(P + Kx) is closed, and so is
R(A + UKX) = R(U(P + Kx)). Thus the K of Theorem 15.1 (iii) can be taken
as UKX.
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Now suppose a(A) has continuous but not maximal rank. By the previous para-
graph we may assume R(A) is closed. Then N(A) is infinite dimensional; for
otherwise A* A would have closed range and finite dimensional null space, and
would be elliptic, which implies o(A) is one-one. Likewise N{A*) is infinite di-
mensional. Now let {</>„} be an orthonormal basis of N(A), and {\¡/„} a like basis
of N(A*). Set K'(¡>„ = \¡inln, K' = 0 on the orthogonal complement of N(A).
Then R(A + K') includes all the \j/„, but includes 2Za„\¡/„ if and only if
En2|a„|2 < oo. Consequently, R(A + K') is not closed.

For part (iv), suppose nullity of o(A) (which = nullity of cs(A*A)) is discon-
tinuous. Then a simple argument given below shows that o(A*A) has arbitrarily
small nonzero eigenvalues. Since these eigenvalues are in spectrum(A*Ä)
(Lemma 15.3), Lemma 15.1 shows R(A*A) is not closed.

To show a{A* A) has arbitrarily small eigenvalues, suppose the opposite. Then
there is a circle y about the origin in the complex plane which does not pass
through or surround any nonzero eigenvalue of o(A*A)(Ç), for any Ç. Then
the function given by F{Ç) = (lßni) ¡y[(j{A*A){Ç) - X]~1dX is continuous and
projection-valued. Therefore F has continuous rank, equal to the nullity of o{A).
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AppendixO
The object of this appendix is to extend, by more or less elementary methods,

some results of Vol'pert [9](2), Dynin [3], Mihlin [4], [5] and the  author [7]
on the index of elliptic systems of singular integral operators on compact mani-

(1) Added in proof , May 18, 1964.
(2) Numbers in square brackets refer to the list of references at the end of this appendix.
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folds ; and to derive an elementary formula expressing the index of elliptic systems
on Euclidean space R" as l/(n — 1)! times the degree of a certain map. We use
information on the homotopy groups of the unitary group [2], a little fibre bundle
theory, the Hopf classification of maps into spheres and a tensor product tech-
nique used by Atiyah and Singer [1]. It has been stated in several papers [4], [5]
that results for Euclidean space could be obtained from corresponding facts
for the sphere by a stereographic projection. Here we use a technique of "trans-
planting"that seems more flexible ; in particular, our results for compact manifolds
and Euclidean space are obtained by transplanting certain system of operators
on the torus. We note that, conversely, singular integral operators are defined in
[6], [3], and the first part of this paper, as sums of "transplants" of singular inte-
gral operators on R".

The main result we obtain can be deduced from the general formula in [1]. The
point is that our methods are relatively elementary, and produce results in some
important special cases. They may therefore shed some light on the general
question of the index.

The author is indebted to his colleagues D. Arlt, E. Connell, and H. Levine
for their patient topological assistance and to I.M.Singer for some helpful discus-
sions. Singer has also observed that Theorem 1 below (transplanting) is true, and
called it "excision." His proof appeared to involve the construction of a boundary
value problem, however.

§A1 describes the transplanting techin que in the form of a theorem ; §A2 gives
our two basic lemmas; §A3 discusses their application to compact manifolds
and §A4 to Euclidean space. §A5 sketches a generalization to arbitrary open
manifolds of the theory of singular integral operators on compact manifolds, by
requiring that the operators treated be close to multiplication operators in
neighborhoods of infinity.

The notation of this appendix is the same as in the preceding article.

Al. Transplanting. In the following theorem Ex is a bundle over a compact
manifold Xy, Uy is an open subset of X2, Ey | Ul denotes the restriction of £. to
Uy, and E'y denotes the bundle £2 pulled backover S*(X), the cosphere bundle
ofZ.

Theorem 1. Let Xy and X2 be compact manifolds, E¡ a bundle over X¡,
Uy an open subset of Xy, and Ay an elliptic operator on sections of Ey with
a(Ay)(Çx) = I for x$Cy, where Cy is some compact subset of U\. Suppose there
is an isomorphism cf> of Ey\Vi onto E2\Ü2 (U2 an appropriate open set in X2).
Let c¡>' be the induced isomorphism of the part of E[ over Uy onto the part
of E'2 over U2. Then there is an elliptic operator A2 on sections of E2, such that
index(^2) = indexa), </>' induces a transformation ofo(Af) into o(A2) over U2,
and o(A2) = I outside of U2.
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Proof. Let \¡i be a real C°° function on Xx with support in Ux, i/c = 1
on C,. Let IE. denote the identity operator on sections of E}, and set
A\ = \¡/Ax\¡) + (1 — i¡j2)Ie¡. Then o(Ax) = o(A'x), so also indexL4,) = indexL4J).
Now define a function i/c2 on X2 such that i/c2 = 0off U2,and i¡/2f= <f>(*¡f • <¡> ~ *(/))
for each section/of E2\V2. Set A2 = (j)i¡/Ax(l)~1\j/2 + (1 — \¡/\)I El.Then </>' induces
a transformation of o(Ax) into o(A2), and o(A2) = / off U2. Also, for sections g
of £2 with support in U2, we have A2g = <¡>A'xq}~1 g, and A%g = <¡>A'X* <h~l g.
(We may suppose, by altering the volume element on X2 and the inner product
on £2, that <f> preserves these structures.) Since the null spaces of A'x, A2, and
their adjoints have support in Ux or U2 respectively, it follows that 4> induces
isomorphisms of these null spaces, and index(A2) = index(A'x) = index(Ax).

A2. Two lemmas. Let M denote an oriented 2n — 1 manifold (in our appli-
cation, M = S*(X)). If/and g are maps of M into U(n), f ■ g denotes the pointwise
product, /• g(m)=f(m) ■ g(m). Let p denote the projection of U(ri) onto S2"-1
obtained by taking the first row of a matrix. Here S2"-1 is the oriented unit
sphere in C". Let s0 = (1,0, •••,0), and U(n — 1) denote p~1(s0), a subgroup of
U(n). The following lemma has been given for n = 2 by Vol'pert [9] and
Mihlin [4](3). The proof below, due to D. Arlt, is obtained by first "localizing"
to an «-cell of M, then following the proof that the homotopy groups of a topolog-
ical group are induced by pointwise multiplication of maps.

Lemma 1. degree (p o (/ • g)) = degree (p of) + degree (p o g).

Proof. Let /2n_1 denote an oriented 2n — 1 cube coherently embedded in M,
and M' denote the complement of/2"-1. Let E2"-1 denote M with M' collapsed
to a point, or Z2"-1 with its boundary collapsed to a point. Then any map <bofM
into S2""1 mapping M' into s0 yields a c/> ~:I2"-1 -yS2""1, and degree(<£~)
= degree (<¡>).

Given f:M-> U(n), we can find / ' homotopic to / such that f'(M ') <= U(n - 1).
To see this, let i¡/ map S2n_1into S2"-1 with degree (i/c) = degree(pof), and
thus obtain (¡>:M->S2"-1 with 4>(M') = s0, degree(qb) = degree(pof). By the
Hopf classification theorem, qj is homotopic to p of; then the covering homotopy
theorem shows there is an/' homotopic to/ with pof' = (j>.

Now given / and g, let /' and g' be obtained as above; it suffices to
prove the lemma for /' and g', restricted to /2"_1. Denote these restric-
tions by £ and G, and realize I2""1 as 0 ^ ti ^ 1 (j = l,---,2n - 1).
Set Fit) = F{stx, t2,-, t2n_x) ■ G{0, t2,-, t2n_x) for 0 S h á 1 - 1/s, £s
= F(sr,, i2,-", r2„_,)G(l -s +stx,t2, ••■, t2n_x) for 1 - 1/s £ tt £ 1/s, and
FJ=»F(l,î2."»<2»-i)G(l-9 + Sï1,<2,-,r2l>_1) for l/s^tx = l. Then for
each s, 1 — s í£ 2, £s maps /2"_1 into U{n), and its boundary into U(n — 1).

(3) See also B. Bojarski, On the index problem for systems of singular integral equations,
Bull. Acad. Polon. Sei. Ser. Sei. Math. 11 (1963), 653-655.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



200 R. T. SEELEY [May

Also poFy=po(F-G) and poF2 = poF + poG, with addition in the
sense of homotopy groups. Thus p o (F • G) is homotopic to poF + poG,
and since degree yields an isomorphism of Tt2n_y(S2n~1) with the integers, the
lemma follows.

The next lemma relies on the tensor product technique of §13, used by Atiyah
and Singer in connection with the index problem.

Lemma 2. For each integer n ^ 1, there exists on the n-torus T" an n x n
elliptic system A„ of singular integral operators such that index(/4„) = 1,
o(A„)(Çx) is a unitary matrix for each £x in S*(T"), and o(An) = I except over
one n-simplex of a triangulation of T". The degree of the map of S*(T") into
S2"-1, obtained from o(A) as in Lemma 1, is (n — 1)! when the appropriate
orientations are chosen.

We let T" be R" reduced mod 2n in each variable. Then T*(X) is naturally
T" x R", and S*(X) is V x S"~l. The n-simplex of the lemma will be
{x: |x^| <7i/2,j = l,2,-..,n}.

The operator Ay is nearly classical. Let H be the harmonic conjugate operator,
//(E-00o0a„e'"I)=E-co00sgn(n)anei"x, where sgn(n) = n/|n| if n # 0, sgn(0) = 0.
The bundle S*(T*) is the disjoint union of two copies of T1 on one of which
o(H) = +1, on the other of which o(H)= - l:o(H)(x,Ç) = f forxe T1, |£| = 1.
A direct check by Fourier series shows that if A = (l/2)(l +eix)H + (l/2)(l-eix),
then the null space of A is spanned by (1 + e~ix) and the null space of A* is
trivial, so index(A) = 1. Also \o(A)\ = 1, and o(A) = 1 on the part of S*(T*)
over the point x = n, so o(A) is homotopic to a symbol o(Af) which is the identity
on all points of S*(T*) over %\2 z% | x | zi n.

We proceed by induction, supposing A„ has been constructed. Let A„ be the oper-
ator on n-tuples of functions on T" given by A„( Hxaxéa'x) = a0 + Ea|ot| axe'"'x,
where a = (a !,•••, a„) is an n-tuple of integers, and |a|2 = Ea2; and A, the
corresponding operator on functions on T1. Denote points in T'(T") by (x,£).
xeT", |£| #0. Then o(An)(x,Ç)= \Ç\, and A„ is an isomorphism of H*+1
onto Hk for k = 0,1, •••. Let /„ be the identity operator on n-tuples of functions
on T". Set B = CyC2C3C4, with C,- = BjA~¿¡, and

(AnAn®Iy -I„®AyA*y\

\/n ®   AyAy A„A* ®    I y     I

B2 is obtained from By by replacing A„ with the identity, B3 is obtained from By
by replacing Ay with the identity, and B4 is obtained from B3 by replacing A„
with the identity; and A„+1 operates on 2n-tuples of functions on Tn+1. By is the
product AnAn # AyAy discussed in Theorem 13.2 where it is shown that
index(4#B) = index(/l) -index(B). Thus index (By) = 1. Further B2 = y4„A„#A1,
so index(B2) = 0; likewise index(B3) = index(B4) = 0. Since A„+1 is an iso-
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morphism, and the index of a product is the sum of the indices of the factors, we
find index (B) = 1.

To consider the symbol, let a point in j"(T'n+1) be denoted by (xj,—,xn,y;
5i»*"»i«>f)> with all entries real and n2 + E¿;2 # 0. Since o-(A1) = |i/|,
o-(A„) = |^|,ct(A„+1) = s/(^2 + n2), and a(Ax) and g(A„) are unitary, one computes
readily that cr(B) is the identity if |y | Sï n/2 or any \xj\ — n/2; for Theorem 13.2
asserts that the symbol of A#A' is cr(A)#a(A'). It remains only to reduce B
from a 2n by 2n system to an n + 1 by n + 1 system. But it follows readily from
the covering homotopy theorem, together with the fact that U(k) is a bundle over
S2*-1 (as in Lemma 1), that any map of a manifold M of dimension 2n + 3 into
U(k) (k > n + 1) is homotopic to a map of M into unitary matrices of the form

(; ' :■;)

where U is in U(n + 1). Applying this with M taken as the part of S*(Tn + 1)
lying over {(^c^| ^ n/2, |y\ = n¡2}, we find o(B) is homotopic to a map £ into
matrices of this special type, with £ = identity except over {| Xj \ — n/2, \y\^ n/2}.
There is then an (n + 1) by (n + 1) system A„+x with <r{An + x) = the lower right-
hand corner of £, i.e., if

/*■■■"" \F{x,y;i,n)=       ■

then cf{An+x){x,y;^,n) = U. An+X meets the conditions of the lemma, except that
we do not yet know the degree of p o o{An+x).

Let ¿j0eS""', and denote by G the group of maps <p of S*(T"+1) into U(n),
with </>(x,cf) = 1 when S, = Ç0, or when any |xj-| = n/2. The group operation in G
is pointwise multiplication. For each c/> in G we have anon system A^ with
g(A^) = (¡>; and ind(c/>) = index(A^) is a homomorphism of G which induces a
homomorphism of the group H of homotopy classes of maps in G. By the first part
of the lemma, ind maps H onto the integers; for the operator M which multiplies
n-tuples of functions by o(A„)( ■ ,£0)_1, is an isomorphism, and <r(M^4n) is in G,
with index(MA„) = index(A„) = 1. On the other hand, as in Lemma 1, H is
isomorphic to Tt2„-i(U(n)), and thus isomorphic to the integers Z, so ind is
essentially an isomorphism of n2n-x(U(n)) onto Z.
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Now let p denote the projection of U{n) on S2" 1 as in Lemma 1. Since
^-i(^(»)) = ^=<X2n-i(S2"-1),7r2„_2(L/(n-l)) = Z(n_1),,and7i2„_2(l/(n))=0
[2], the homotopy exact sequence of the bundle (7(n) over S2n ' shows that
(/>-> degree(p o (/>)/(n — 1)! induces an isomorphism of ^2„-y(U(n)) onto Z,
which must then be ± the isomorphism given by ind.

A3. An elementary index formula on compact manifolds. We consider now
elliptic n x n systems A of singular integral operators on a compact n-manifold X,
and suppose o(A)(Çx) is unitary for each ¿;x in S*(X). Again let p denote the
projection of U(n) on S2"-1.

Theorem 2. S*(X) and S2"-1 can be oriented so that for each n by n system
A as above (n — 1)! index(4)= degree(p o o(A)), if and only if each elliptic
(n — 1) by (n — 1) system on X has index zero.

Thus the formula of the theorem holds for any manifold of dimension z% 2
(see [7]), for spheres S" (see [3]), and generally when X is the boundary of a
region in R" [1, p. 429](4). I. M. Singer points out that the vanishing of the index of
all(n — 1) by (n — 1) systems is equivalent to the condition that theTodd class of
the manifold be 1. This requires the general formula of [1].

For the proof, suppose first the formula holds, and B is an elliptic (n — 1) by
(n—ljsystem with unitary symbol.Adjoining an identity operator to B,we have
an n by n system A with index(A) = index(B), and po o(A) mapping onto one
point s0, so index(A) = 0.

For the converse, let the n by n system A be given. As in the "localization"
part of the proof of Lemma 1, we may deform o(A) so that po o(A)(£,x) = s0
except for £x in some 2n — 1 cube. Then p o o(A) induces an element of 7t2„_ y(Uin)),
so degree (p o oiA)) = kin — 1)! for some integer k. (See the end of the proof of
Lemma 2.) Using Lemma 2 and the transplant method of Theorem 1, we find an
n by n system A' with index(/T) = — k and degree(p o oiA')) = — Kn — 1)!.
Then by Lemma 1, degree(p o oiA'A)) = 0, so oiA'A) is homotopic to a system
B with p o oiB) mapping into s0. Thus B may be chosen so that it is obtained by
adjoining an identity operator to an (n - 1) by (n — 1) system B', so

0 = index(B) = index(/l'y4) = index iA') + index (/I) = —k + index iA).

A4. A formula for the index on Euclidean space. In [8] there was discussed
a class of singular integral operators on Euclidean space R"; it was shown that
the index exists and depends only on the homotopy class of the symbol.

Theorem 3. For an n x n elliptic system A of operators on Euclidean space,
with unitary symbol, the formula of Theorem 2 holds: (n — 1)! indexfyl)
= degree ip o oiA)).

(4) See also I. M. Singer, On the index of elliptic operators, Outlines of the Joint Soviet
American Symposium on Partial Differential Equations.
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The proof uses methods of the previous results. First, we may replace A by an
operator .4' such that indexiA) = indexiA'), degree (poafyi)) = degree(p o oiA')),
and lini|x|_,QO(7(/4')(x,¿;) = /, <r(y4')(x,f0) = / for some fixed £0 and all x. The
proof now concludes as in the end of Lemma 2. In this case, we prove "index"
maps onto the integers by transplanting the system A„ of Lemma 2 from T"
onto R", as in the proof of Theorem 1.

A5. Singular integral operators on open manifolds. The previous methods sug-
gest how to construct a theory of singular integral operators on open manifolds.
Classically, differential operators on open manifolds require some boundary
conditions to obtain well-posed problems, and in particular, in the elliptic case,
the number of boundary conditions is half the order of the equation times the
rank of the system. Since singular integral operators have order zero, no boundary
conditions should be necessary. On the other hand, singular integrals behave
rather badly at boundary points, so some assumption must be made about the
nature of the operator near the boundary. Hence the definition given below. In
this section, X denotes an open manifold (i.e. not necessarily compact, but no
boundary points are in the manifold), carrying a Cx volume element; and E and
F are bundles over X with complex Hermitian structure. In this case //°(£)
depends on the choice of volume element and Hermitian structure.

Definition. An operator A from sections of £ to sections of F is a special
singular integral operator (ssiop) if and only if :

(i) For each pair of Cœ functions cb and \b with disjoint compact supports,
cbAip is a compact operator from f/°(£) to //°(F) icpAi/f may be subjected to more
stringent restrictions for various classes of operators).

(ii) When cb and \¡j have support in a coordinate neighborhood over which £ and
F are trivial, then cbA\p can be represented by a matrix of singular integral operators
in Euclidean space, using the coordinates on X and the local trivializations of £
and F.

(iii) There is a function cb of compact support in X, and a section ib of
Hom(£,F), such that A = cbAcb + (1 - cb2)M^,, where M# is the map of sections
of £ to sections of F induced by ib.

Condition (iii) is automatically fulfilled if X is compact, and then the definition
reduces to that of [6] and the first part of this paper. The whole theory of singular
integral operators as developed there and in this paper holds without essential
change for the operators just defined. Further, the index may be computed by
reducing to the compact case as follows. Choose in X a manifold Y with smooth
boundary bY, such that the closure of Y is compact in X, and Y contains the sup-
port of the function cb of part (iii) of the above definition. Then we may double
Y with respect to bY, and extend A by reflection to the reflection of Y, since A
is simply a multiplication operator in a neighborhood of b Y. Arguing as in Theorem
1, the index of A is half the index of this doubled operator.
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Finally, we may take limits and extend the theory to a larger class of operators,
as in §§11 and 12, or [8, §IV].
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