
211

Chapter 10

Intel Identity Protection
Technology: the Robust,
Convenient, and
Cost-Effective Way to
Deter Identity Theft

People need to be more aware and educated about identity theft. You
need to be a little bit wiser, a little bit smarter and there’s nothing wrong
with being skeptical. We live in a time when if you make it easy for
someone to steal from you, someone will.

—Frank Abagnale

Most people have received scam e-mails that prompt them to visit fake web sites that
resemble actual bank web sites. If the user is fooled into believing in the “phishing”
web site and enters his username and password, then the credentials will be saved by
attackers that will later log in to the victim’s bank account and drain the account. Besides
phishing, an advanced attacker may also infect the victim’s computer with key logger
malware to capture and record the keystrokes when the victim is typing his username and
password for login.

With the rapidly increasing threats of identity theft in today’s mobile era, multifactor
authentication is deployed more widely than ever. Naïve single-factor username and
password combination is likely not secure enough for authenticating access to high-value
assets, even though the password is long and complicated.

Multifactor schemes would mitigate phishing and key logging attacks by requiring
additional credentials during the authentication process. The username and password
compromise the first factor—“something you know.” Two other types of credentials
are the following:

Chapter 10 ■ Intel IdentIty proteCtIon teChnology

212

•	 “Something you are” refers to something that is part of you,
commonly your biological characteristics, such as fingerprints.
For example, the iPhone 5s is equipped with a fingerprint identity
sensor. A user can unlock the phone by scanning his fingerprint.

•	 “Something you have” refers to a physical object that belongs to
you. It can be as simple as a “key-card matrix” on which a fairly
large number of index-key pairs are printed. During authentication,
the web site challenges the user with a randomly selected index,
and the user looks up the matrix and enters the corresponding key
to sign in. This solution is not ideal, because the same set of keys
is repeatedly reused, and may be monitored and replayed by
thieves. A more robust “something you have” is a hardware digital
token or key fob that displays a one-time password.

The security and management engine is a critical functional component of Intel
Identity Protection Technology1 (IPT). The Intel IPT provides a strong, convenient, and
cost-effective solution for multifactor authentication, as well as other features, such as
the protected transaction display (PTD). This chapter is dedicated to revealing how the
engine takes advantage of its built-in infrastructure to make the IPT possible.

One-Time Password
In contrast to a regular password that is valid for an unlimited number of authentication
sessions until it is reset, a one-time password (OTP) is a credential that is used only
once. Although the value of an OTP may seem random, it is not randomly generated, but
cryptographically derived. A good OTP algorithm shall render it practically infeasible to
predict future OTP values based on previous observations. The OTP is usually updated
at fixed internals, for example every 30 or 60 seconds, depending on security models of
specific applications.

The token (client) possessed by the user and the back-end authentication server are
always in sync—they refresh the OTP by performing the same calculation at the same
time with the same “derivation materials.” In other words, after initialization, the token
and the server will both assume the same OTP at any given moment in the future. To
prove his ownership of the token to the server, the user types in the OTP value displayed
on the token at the time of authentication to satisfy the requirement of second-factor
authentication, supplementing other factors (for example, the username and password).

The utilization of OTP significantly increases the difficulty of phishing attacks. The
attacker’s fake web site has to also collect the OTP entered by the user. Because the OTP is
valid for only a small duration, the attacker cannot save the OTP and make use of it later.
Instead, the phishing server has to be set up as a real-time man-in-the-middle, where it
simultaneously establishes two connections, one with the victim’s client platform and
the other with the real authentication server. This makes the attack more complex and
expensive. Figure 10-1 shows a real-time man-in-the-middle attack scenario.

Chapter 10 ■ Intel IdentIty proteCtIon teChnology

213

An OTP system has two aspects to consider:

•	 Secrecy: With reasonable resources, adversaries shall not be able
to calculate or guess OTP values. Theoretically, any collision-free
one-way cryptography function with a secret seed as input is
qualified. The HMAC2 (hash-based message authentication code)
algorithm is the most popular choice.

•	 Synchronization: The same OTP value must be known by the
server and the client at any given moment, without requiring
synchronizations after initialization.

The security strength of an OTP system solely depends on the seed, so the seed
must be reliably protected by both the server and the client from leakage. Traditionally,
more attention has been paid to designing physically strong and tamper-resistant tokens.
However, the server’s security hardenings are even more critical because if it is hacked,
then likely seeds for all tokens are at risk.

RSA Security, the Security Division of EMC, designs and manufactures a well-known
OTP token, SecurID. In March 2011, the company issued an open letter3 stating that its
corporate security systems had identified an “extremely sophisticated cyber-attack” being
mounted against it. The letter did not disclose technical details, probably due to the
concern of benefiting potential attackers, but it revealed that the attack had resulted in
certain information specifically related to SecurID being extracted from RSA’s systems. In
the aftermath, RSA offered token replacements or free security monitoring services to its
more than 30,000 SecurID customers. The breach cost EMC $66.3 million, according to
the company’s earnings.

The most famous OTP standards are the HMAC-based one-time password (HOTP4)
and the time-based one-time password (TOTP5).

HOTP
The derivation algorithm chosen by the HOTP method is HMAC-SHA-1. The HMAC key,
also referred to as seed, is a shared secret agreed by the server and the client at the time of
initialization. The key may be randomly generated or calculated from a master secret of
the server. The key is static for the life cycle of the client and it must be kept secret by both
parties against tampering.

Client Phishing server

Disconnected

Username, password, OTP

Authentication succeeded

Real server

Username, password, OTP

Figure 10-1. Man-in-the-middle attack

Chapter 10 ■ Intel IdentIty proteCtIon teChnology

214

An HOTP is calculated as follows:

HOTP(key, counter) := Truncate(HMAC-SHA-1(key, counter))

In the HMAC-SHA-1() function, counter is the data to be hashed. The Truncate()
function reduces the 160-bit keyed-hash result to a smaller size so the user can
conveniently enter the HOTP on a keyboard.

The two input parameters, key and counter, are the derivation materials. They
are used for providing secrecy and synchronization, respectively. After a successful
authentication, both the server and the client increment the counter by one, hence the
counter should always be in sync. The server automatically increments the counter once
it verifies the HOTP. On the client side, for a connected token (such as via a USB port), the
connected computer can programmatically increment the counter.

However, many token products are not equipped with connection capability. The
advantage of a connection-less token is obviously its simple hardware and low BOM (bill
of materials) cost—it needs only small tamper-resistant storage for the key and counter
and an HMAC-SHA-1 logic; it does not require circuits for USB or clocking. The tradeoff is
that the user has to, after a successful authentication, manually notify the token and have
it increment the counter and generate the next HOTP. The notification is usually realized
by the user pushing a button on the device. This manual step introduces uncertainty and
potential problems for synchronization. For example, the user may accidentally push
the button twice, resulting in the token’s counter value being more advanced than the
server’s. To take care of such issues, the HOTP protocol defines a “look-ahead window,”
where the server calculates the next s HOTPs. The authentication is accepted as long as
any of the s HOTP matches the HOTP received from the client. The window size s cannot
be too large, otherwise security may be compromised.

But this mechanism does not completely resolve all potential synchronization
issues. Imagine the user’s three-year-old child plays with the token and pushes the button
countless times. The server’s look-head window will not cover this case, and the token
must be returned to factory for reinitialization.

TOTP
The TOTP scheme is a variant of HOTP that replaces the counter in the HOTP with a time
value, time:

TOTP(key, time) := Truncate(HMAC(key, time))

The HMAC function may be HMAC-SHA-1, HMAC-SHA-256, or HMAC-SHA-512. The
time is equal to the Unix time or Epoch time (number of seconds that have elapsed since
midnight UTC (coordinated universal time) of January 1, 1970) divided by a predefined
interval, with the default floor function. The floor(x) function represents the greatest
integer that is not greater than fraction x. The recommended interval is 30 seconds:

time := floor(Unix_time/interval)

Chapter 10 ■ Intel IdentIty proteCtIon teChnology

215

Compared to the HOTP, the TOTP scheme uses time as the counter for
synchronization, which eliminates the problems of incrementing the counter for
connection-less tokens. The TOTP scheme requires a token to have clocking capability by
embedding an oscillator in the device. A token’s clock drift needs to be considered and
accommodated accordingly by the server. The protocol also recommends the server to
implement “look-ahead” and “look-behind” windows to for resynchronization when a
tolerable amount of clock drifts have occurred on the token.

The TOTP scheme is the cornerstone of the reference architecture of OATH6
(Initiative for Open Authentication), an industry-wide collaboration to promote the
adoption of strong authentication.

Transaction Signing
The OCRA7 (OATH Challenge-Response Algorithm) is an authentication and signing
mechanism created by the OATH. The OCRA algorithm is based upon HOTP with
extension to including various types of information in the calculation of the OCRA.

In a nutshell, the calculation of OCRA uses the following formula:

OCRA := CryptoFunction(Key, DataInput)

The same formula is applicable to both the server and the client. The
CryptoFunction defines the HMAC algorithm (HMAC-SHA-1, HMAC-SHA-256, or
HMAC-SHA-512) and the result size after truncation. Key is a preshared secret, like in the
HOTP scheme. The value DataInput is a concatenation (denoted by symbol “||”) of the
byte arrays of a number of variables:

DataInput := OCRASuite || Counter || Q || P || S || T

Here’s what these variables mean:

•	 OCRASuite: Represents the suite of operations to calculate
the OCRA. The OCRASuite string describes the selection of
CryptoFunction and the list parameters that are included in the
DataInput following OCRASuite.

•	 Counter: A 64-bit unsigned integer that is initialized to 0. It
is incremented by both the server and the client after every
successful authentication session.

•	 Q: The 128-byte challenge sent from the other party.

•	 P: Digest of a password preagreed by the server and the client.
The hash algorithm can be SHA-1, SHA-256, or SHA-512.

•	 S: Contains application-specific information of the current
session, up to 512 bytes.

•	 T: Current timestamp.

Chapter 10 ■ Intel IdentIty proteCtIon teChnology

216

The Counter is optional. Some other parameters (P, S, and T) may also be absent as
defined by the OCRASuite. A typical OCRA authentication session in which the server
verifies the client’s identity is a three-way handshake, as shown in Figure 10-2.

Client Server

OCRA

Challenge Q

Authentication result

Figure 10-2. Three-way handshake for one-way OCRA authentication

Client Server

OCRA-client

Authentication result

Client challenge Qc

OCRA-server, server challenge Qs

If OCRA-server fails
verification, abort

Figure 10-3. Four-way handshake for mutual OCRA authentication

Four modes are defined for OCRA:

•	 One-way authentication: The server verifiers the client’s identity
by sending a challenge Q to the client and verifies the OCRA value
received from the client. This is the usage depicted in Figure 10-2.

•	 Mutual authentication: The server and the client verify each
other’s identity by exercising the one-way authentication in both
directions. The client verifies the server’s identity first.
See Figure 10-3 for the four-way handshake flow.

•	 One-way signature: Similar to one-way authentication, but session
information S is not used in calculating the OCRA.

•	 Mutual signature: Similar to mutual authentication, but session
information S is not used in calculating the OCRA.

Besides OCRA, it is also possible to employ asymmetric-key cryptography and public
key infrastructure (PKI) to achieve the same authentication and transmission integrity.
The advantage of OCRA is its simper cryptography logic (HMAC) and faster computation.
Public key algorithms require more gates to implement and more clock cycles to
compute, which poses challenges for BOM cost and performance for small form-factor
client devices. Now that the server and the client already have a shared secret, the OCRA
makes use of it to avoid the higher-cost and inefficiency of PKI.

Chapter 10 ■ Intel IdentIty proteCtIon teChnology

217

Using OCRA, the man-in-the-middle attack presented in Figure 10-1 is no longer a
threat, because the transaction, including the session-specific information (for example,
the recipient of a money transfer), is signed with a key that is known by only the server and
the client. Consequently, the attacker is not able to alter a legitimate user’s transactions
or initiate his own transactions, because he cannot forge signatures without knowing the
correct key.

OTP Tokens
Numerous two-factor authentication solutions that deploy OTP as the second factor are
on the market today. An OTP token can be implemented in software or hardware.

Functioning as an OTP client, a software or virtual OTP token is a program installed
and executed on a desktop computer or a mobile device. The software OTP has a number
of pros:

•	 Low cost: No hardware purchase required.

•	 Convenience: No hassle of carrying physical tokens. No worries
about replacing the token when its battery runs out.

•	 Transparency: In most cases, the user does not need to type in the
OTP. The software automatically calculates and transmits it to
the server.

•	 Reliable synchronization with server: Clock drifting on a computer
is much less of a concern than clock drifting on a small token
device, because the computer’s clock always synchronizes with
the time server over the network.

•	 Easy reinitialization: When reinitialization is necessary for
any reason, there is no need to return the token to the vendor.
Reinitialization with the server can be done remotely.

While enjoying these advantages, the software solution has a key drawback—it is
more vulnerable. Generally speaking, because software OTP may be compromised by
malware installed by viruses or remote attackers, the robustness of software OTP cannot
match that of well-implemented hardware OTP systems. Physical access and special
equipment are required to tamper a hardware OPT device, making the attack more
difficult and costly to mount. For enhanced security, hardware OTP clients are deployed
by many large enterprises and government agencies. The pros of the software tokens are
exactly the cons of hardware tokens.

Is it possible to feature the pros of both software and hardware OTPs? The security
and management engine provides such a solution for the Intel IPT.

Chapter 10 ■ Intel IdentIty proteCtIon teChnology

218

Embedded OTP and OCRA
The second factor in multifactor authentication—“something you have”—does not have
to be a separate object. It can be the computer that the user is operating on. In Intel’s
IPT solution, the security and management engine that is built in an Intel platform is
the second factor. Security-wise, the engine is physically a hardware device that the user
carries with his computer; therefore, its protection strength is comparable to hardware
OTP tokens. On the other hand, thanks to its embedded nature, it has all the desirable
properties of software OTP as well.

The OTP scheme supported by the engine implements the TOTP algorithm and the
OCRA protocol. The solution is compliant with the OATH standard. This standard-based
model that Intel IPT uses simplifies interoperability with other third-party components.

Token Installation
The installation (also referred to as provisioning) of a token on the embedded engine is
equivalent to a hardware token’s manufacturing process. As required by the TOTP, two pieces
of information are delivered to the client from the server during the installation process:

•	 Key: As defined in the TOTP calculation formula.

•	 Time baseline: The Unix time at the moment of installation.

Obviously, the transmission of key must be encrypted because it is the root of
security for all upcoming authentication sessions. The transmission of time baseline
and encrypted key should be integrity protected to prevent unauthorized alternation by
denial-of-service attacks.

As discussed in Chapter 3, the engine’s kernel lacks the knowledge of wall-clock
time, but it is capable of securely tracking time that has elapsed for individual
applications. Therefore, the server has to send time baseline to the engine during
provisioning. The OTP application calls the set time kernel function immediately upon
receiving the baseline from the server. When an authentication is requested, the OTP calls
the kernel’s get current time function and uses the returned value to calculate the TOTP.

Recall the EPID (enhanced privacy identification) algorithm and the SIGMA (SIGn
and Message Authentication) protocol introduced in Chapter 5. They are the backbone
of the OTP provisioning process. In the SIGMA session, the authentication server is the
verifier and the OTP client is the prover. The service provider must be issued a verifier
certificate beforehand. The server’s certificate chain is verified by the embedded engine
during the SIGMA session. The conceptual provisioning flow is illustrated in Figure 10-4.

Client Server

Token metadata, protected by SK

SIGMA, resulting in session keys SK

Figure 10-4. Conceptual OTP provisioning flow

Chapter 10 ■ Intel IdentIty proteCtIon teChnology

219

Refer to Figure 5-7 in Chapter 5 for details on the SIGMA messages. At the end of a
successful SIGMA session, the server has assured that the client is an IPT-capable Intel
platform and the client has confirmed that the server is a valid authentication server that
supports Intel IPT. Both parties also have derived the shared session keys (SK), including
an encryption key and an integrity key. The token metadata, including OTP key or seed,
choice of the HMAC algorithm, current time, and so forth, is delivered from the server
to the client securely with the protection of SK. The client saves the metadata in secure
nonvolatile storage. It can either store the data on the flash chip by invoking the kernel’s
secure storage capability, or it rewraps the data using DAL (dynamic application loader;
see Chapter 9 for details) application-specific keys and sends to the host for storage.
In the latter case, the data is transmitted back to the engine when an OTP is requested.

Although the provisioning can ideally be a once-in-a-lifetime event, it is necessary
to reprovision the token under certain circumstances. For example, if the platform’s RTC
(real-time clock) well is reset due to reasons such as a drained coin-cell battery, then
the secure timer installed by the OTP application will be lost. The OTP firmware has to
request the server to install the token again. On the other side, the server may also request
reprovisioning; for example, in case the seed is compromised. The easy provisioning process
is a major advantage of the Intel OTP solution, compared to physical token systems.

TOTP and OCRA Generation
The TOTP and OCRA generation flow is straightforward. After receiving a generation
request from the host via HECI (host-embedded communication interface), the firmware
reads the current time from the kernel and performs the calculation using time and key.
For OCRA, data input parameters such as the server’s challenge and session information
are provided by the host to the firmware together with the generation request.

The resulting TOTP or OCRA is sent to the host in the clear for authentication with
the server. Note that if the token metadata is stored on the host, then it must be loaded to
the embedded engine first. The firmware has no direct connection with the server, and all
communication is proxied by the host application.

Highlights and Lowlights
Let’s summarize the attractions of Intel’s embedded OTP solution:

•	 Strong protection: As a module of the security and management
engine, the OTP inherently benefits from the comprehensive
hardening measures (refer to Chapter 4) implemented on the engine.
The protection is rooted in tamper-resistant hardware, meeting or
exceeding the security of consumer-grade hardware tokens.

•	 Low cost: To benefit from the technology, the user does not
need to purchase new hardware or software. Almost all service
providers support the feature at no cost to customers. Compared
to using hardware tokens, the cost of initial setup and continuous
management for Intel’s OTP is considerably less, which is an
incentive for deployment.

Chapter 10 ■ Intel IdentIty proteCtIon teChnology

220

•	 Multiple tokens in one device: No more physical tokens. No
worrying about damaging or losing your tokens. Token theft is
also a much lesser risk now because stealing a computer is more
difficult than stealing a small token device. Furthermore, more
than one token can be built in a single device—your computer. It
is unimaginable to carry many tokens with you all the time.

•	 Transparency: After the initial setup, the second-factor authentication
happens in the background without human interaction. The user
signs in to web sites or networks by entering merely a username
and password combination, just as he did before.

•	 Revocable server: The EPID infrastructure, backed by the
engine and Intel’s back-end server, ensures that a compromised
authentication server can be revoked. Besides compromise, the
authentication server may be revoked due to other predefined
reasons.

In the meantime, because the tokens, once provisioned, are tied to the hardware
of a specific platform, it is impossible to invoke the same token on different devices.
As a result, if the user needs to log in to his bank account from more than one device
(for example, from both his laptop and tablet), then all devices must register with the
bank’s web site and install a token, respectively. Fortunately, the inconvenience is trivial,
because the provisioning is supposedly a one-time procedure for a device.

However, when the user occasionally has to log in from a public or someone else’s
computer, an alternate second factor must be utilized in lieu of the Intel OTP token.
Service providers must offer feasible backup approaches for the second factor; for
example, sending a verification code to the user’s cellphone or e-mail address and having
the user enter it for authentication.

Protected Transaction Display
The PTD is another critical ingredient of Intel IPT. It is introduced for a different usage
model from the OTP and can be incorporated with the OTP. The PTD is designed to
enable reliable collection of the user’s confirmation or PIN (personal identification
number) entry, and detection of malware’s falsification of the user’s input. The PTD
can also ensure that a PIN entry is securely transmitted from the Intel platform to the
authentication server, shielded from illegal eavesdropping.

The uniqueness and core innovation of the PTD that distinguishes it from other
solutions is that it leverages the PAVP (protected audio and video path; see Chapter
8 of this book for details) technology of Intel platforms to display the authentication
sprite, such as the PIN pad, on the user’s monitor. Because the PAVP isolates the sprite
and protects it from being accessed by the host, malware running on the host operating
system is not able to see the sensitive overlay area. As a result, software cannot fake a
user’s mouse clicks or scrape the screen. Figure 10-5 shows what a user sees during a
PTD session.

Chapter 10 ■ Intel IdentIty proteCtIon teChnology

221

The user uses his mouse to click the secure PIN pad to enter the PIN. An entry is
represented by an asterisk. To further enhance security, the location of the dialog box
overlay is randomized for an authentication session; the positions of the ten digits of
the PIN pad are also randomized every time. The PIN pad area is not visible to the host.
Figure 10-6 shows what an attacker’s screen scraper would capture.

Figure 10-5. PAVP-protected PIN pad on the end user’s screen

Figure 10-6. PIN pad captured by a screen scraper

Chapter 10 ■ Intel IdentIty proteCtIon teChnology

222

Drawing a Sprite
Several flows and designs can be utilized when drawing a sprite. Figure 10-7 presents a
sample in which a remote authentication server draws the sprite with the assistance of
PAVP. In the diagram, the IPT proxy is the IPT’s software component running on the host
operating system. GPU stands for graphics processing unit. Symbol (data)k denotes the
ciphertext of cleartext data encrypted with an AES8 (advanced encryption standard) key k.

Server IPT proxy
Embedded

engine

(SEK)SK

GPU

Calculate (SEK)SK

SIGMA, resulting in session keys SK

Generate sprite
Generate SEK

Calculate (sprite)SEK

PTD initialization
Create session

PAVP initialization

(SEK)SK

Decrypt (SEK)SK, get SEK

SEK injection

(sprite)SEK

(sprite)SEK

Decrypt (sprite)SEK, get sprite
Display sprite

client

Figure 10-7. Authentication server drawing a secure sprite

Similar to OTP, the authentication server must be an endorsed verifier of the SIGMA
protocol. To draw a secure sprite on the screen, the server starts with requesting the
IPT to initialize a PAVP session. The server then creates the sprite and encrypts it with a
randomly generated sprite encryption key or SEK. Next, a SIGMA session is established
between the server (verifier) and the client (prover). The SIGMA yields the session key SK
shared between the server and the firmware. The server wraps SEK with SK. The resulting
(SEK)SK is delivered to the embedded engine, which in turn decrypts and recovers SEK.
Next, the engine injects SEK to the GPU. On the host side, the IPT proxy receives the
encrypted sprite from the server and passes it to the GPU for rendering and display.

Chapter 10 ■ Intel IdentIty proteCtIon teChnology

223

The sequence assures that the clear sprite is never exposed during the entire
transmission path from the server to the GPU. Attackers hidden on the Internet or the
host can see only the encrypted version of the sprite; they cannot access the encryption
key, thanks to the security provided by the SIGMA protocol. The graphics kernel code,
like shaders, loaded by the host driver, cannot access sprite frames either. The security is
safeguarded at the hardware level.

Gathering the User’s PIN Input
The IPT proxy is responsible for collecting the user’s clicks on the secure PIN pad. Notice
that, as software, the IPT proxy has no knowledge of the position of the PIN pad or its
digit button layout, hence it is not capable of calculating the user’s PIN input. The proxy
records the coordinates of the clicks and reports to the authentication server. The server
is the only entity that is able to interpret the user’s input. It does so by comparing the click
coordinates with the sprite it created.

Optionally, the coordinates may be encrypted using a SIGMA session key before
transmission. Figure 10-8 shows a sequential diagram of this flow.

Server IPT proxy Embedded engine

Collect mouse click coordinates

coordinates

client

Calculate (coordinates)SK

(coordinates)SK
(coordinates)SK

Decrypt (coordinates)SK and
get coordinates;

Compare coordinates with
sprite and derive user input

Figure 10-8. Authentication server gathering coordinates of mouse clicks and deriving
user input

Firmware Architecture
Depending on product, the IPT may be implemented as an applet for the engine’s DAL
feature, or a native firmware module on the engine. If the firmware supports DAL,
for example, on most Intel Ultrabook models, then the IPT implementation will be
distributed in a Java applet. On certain smartphones and other products where the DAL
is not built into the engine’s firmware, the IPT will be a native firmware ingredient that is
loaded from the system’s flash chip. The firmware design and functionalities of the IPT
component are identical for both variants.

Chapter 10 ■ Intel IdentIty proteCtIon teChnology

224

Figure 10-9 illustrates the high-level firmware architecture. Internal to the security
and management engine, the IPT, together with the DAL that loads it, reside in a
dedicated task. The IPT/DAL task is not consumed by any other components of the
firmware. The IPT/DAL task consumes the following components of the engine to realize
its IPT functionality:

IPT/DAL
task

Inter-task
call manager

Kernel

Embedded system

Cryptodriver

Utility task
(HECI, etc.)

Secure timer

Host

EPID task

Secure
storage

IPT proxy

Internet

Authentication server

Client platform

PAV Ptask

Figure 10-9. Architecture of the embedded IPT

Chapter 10 ■ Intel IdentIty proteCtIon teChnology

225

•	 Storage manager: The metadata of installed tokens can be stored
on the flash device in the engine’s data partition. If the metadata
is stored on the host, then the application-specific encryption and
integrity keys for protecting the metadata are stored on the flash.

•	 Cryptography driver: The TOTP and OCRA calculations use
HMAC; the PTD uses AES and HMAC. Additional IPT features
may use other cryptography algorithms, such as RSA9 (Rivest,
Shamir, and Adleman) digital signing.

•	 Protected runtime clock: The TOTP calculation requires a
timestamp.

•	 PAVP task: The PAVP is used by PTD for displaying secure sprites.

•	 EPID task: The provisioning of a token and the session
initialization for PTD require EPID and SIGMA’s prover
functionality.

•	 Utility task: For the HECI communication with the IPT proxy
running on the host. Note that HECI is the only interface of the
IPT firmware. The IPT does not consume DMA (direct memory
access) or network interfaces.

Embedded PKI and NFC
Intel continues to develop innovative technologies to safeguard users’ identity. Recently,
to further enrich IPT, two new members, PKI and NFC (near-field communication), have
joined the IPT family.

The PKI feature supports secure nonvolatile storage for users’ asymmetric private
keys, such as an RSA key, in the security and management engine. Equipped with this
solution, computers can be seamlessly integrated with existing usages, such as VPN
(virtual private network) authentication, e-mail and document signing, and so on. Once a
private key is imported to the engine or generated by the engine, it will never be exposed
in the clear to the external world and all cryptography operations with the private key are
performed inside the engine.

The NFC feature enables a user to pay for his online purchases by simply tapping
an NFC-capable credit card against the NFC sensor and the secure element chip in
the computer, and completing the transaction with positive identity authentication.
Thanks to NFC, the customer no longer has to manually type in the long 16 digits of the
credit card number. The solution is not only more convenient and user-friendly but also
more secure. Key logger malware is not able to steal the card number because it is not
entered through a keyboard. The credit card information is processed by the security and
management engine and securely transmitted to the server, with robust hardware-level
protection.

For more technical details of Intel IPT’s PKI and NFC features, refer to the white paper10
“Deeper Levels of Security with Intel Identity Protection Technology.” More information
about Intel IPT can be found on the official web site (http://ipt.intel.com/).

http://ipt.intel.com/

Chapter 10 ■ Intel IdentIty proteCtIon teChnology

226

References
1. Intel Identity Protection Technology, http://ipt.intel.com/, accessed on

April 20, 2014.

2. National Institute of Standards and Technology, “The Keyed-Hash Message Authentication
Code (HMAC),” http://csrc.nist.gov/publications/fips/fips198-1/FIPS-198-1_
final.pdf, accessed on November 17, 2013.

3. RSA, the Security Division of EMC, “Open Letter to RSA Customers,”
www.sec.gov/Archives/edgar/data/790070/000119312511070159/dex991.htm,
accessed on May 10, 2014.

4. Internet Engineering Task Force, “HOTP: An HMAC-Based One-Time Password
Algorithm,” Request for Comments 4226, http://tools.ietf.org/html/rfc4226,
accessed on May 10, 2014.

5. Internet Engineering Task Force, “TOTP: Time-Based One-Time Password
Algorithm,” Request for Comments 6238, http://tools.ietf.org/html/rfc6238,
accessed on May 10, 2014.

6. Initiative for Open Authentication, www.openauthentication.org/, accessed on
May 10, 2014.

7. Internet Engineering Task Force, “OCRA: OATH Challenge-Response Algorithm”,
Request for Comments 6287, http://tools.ietf.org/html/rfc6287, accessed on
May 10, 2014.

8. National Institute of Standards and Technology, Advanced Encryption Standard
(AES), http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf,
accessed on November 17, 2013.

9. RSA Laboratories, “PKCS #1 v2.1: RSA Cryptography Standard,” ftp://ftp.rsasecu-
rity.com/pub/pkcs/pkcs-1/pkcs-1v2-1.pdf, accessed on November 17, 2013.

10. Intel Identity Protection Technology white paper, “Deeper Levels of Security with
Intel Identity Protection Technology,” http://ipt.intel.com/Libraries/
Documents/Deeper_Levels_of_Security_with_Intel%c2%ae_Identity_
Protection_Technology.pdf, accessed on May 10, 2014.

http://ipt.intel.com/
http://csrc.nist.gov/publications/fips/fips198-1/FIPS-198-1_final.pdf
http://csrc.nist.gov/publications/fips/fips198-1/FIPS-198-1_final.pdf
http://www.sec.gov/Archives/edgar/data/790070/000119312511070159/dex991.htm
http://tools.ietf.org/html/rfc4226
http://tools.ietf.org/html/rfc6238
http://www.openauthentication.org/
http://tools.ietf.org/html/rfc6287
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
ftp://ftp.rsasecurity.com/pub/pkcs/pkcs-1/pkcs-1v2-1.pdf
ftp://ftp.rsasecurity.com/pub/pkcs/pkcs-1/pkcs-1v2-1.pdf
http://ipt.intel.com/Libraries/Documents/Deeper_Levels_of_Security_with_Intel%c2%ae_Identity_Protection_Technology.pdf
http://ipt.intel.com/Libraries/Documents/Deeper_Levels_of_Security_with_Intel%c2%ae_Identity_Protection_Technology.pdf
http://ipt.intel.com/Libraries/Documents/Deeper_Levels_of_Security_with_Intel%c2%ae_Identity_Protection_Technology.pdf

	Chapter 10: Intel Identity Protection Technology: the Robust, Convenient, and Cost-Effective Way to Deter Identity Theft
	One-Time Password
	HOTP
	TOTP

	Transaction Signing
	OTP Tokens
	Embedded OTP and OCRA
	Token Installation
	TOTP and OCRA Generation
	Highlights and Lowlights

	Protected Transaction Display
	Drawing a Sprite
	Gathering the User’s PIN Input

	Firmware Architecture
	Embedded PKI and NFC
	References

