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Abstract. The Advanced Encryption Standard (AES) is the Federal
Information Processing Standard for symmetric encryption. It is widely
believed to be secure and efficient, and is therefore broadly accepted as
the standard for both government and industry applications. If fact, al-
most any new protocol requiring symmetric encryption supports AES,
and many existing systems that were originally designed with other sym-
metric encryption algorithms are being converted to AES. Given the pop-
ularity of AES and its expected long term importance, improving AES
performance and security has significant benefits for the PC client and
server platforms. To this end, Intel is introducing a new set of instructions
into the next generation of its processors, starting from 2009. The new
architecture has six instructions: four instructions (AESENC, AESEN-
CLAST, AESDEC, and AESDELAST) facilitate high performance AES
encryption and decryption, and the other two (AESIMC and AESKEY-
GENASSIST) support the AES key expansion. Together, these instruc-
tions provide full hardware support for AES, offering high performance,
enhanced security, and a great deal of software usage flexibility, and are
therefore useful for a wide range of cryptographic applications. The AES
instructions can support AES encryption and decryption with each one
of the standard key lengths (128, 192, and 256 bits), using the stan-
dard block size of 128 bits. They can also be used for all other block
sizes of the general RIJNDAEL cipher. The instructions are well suited
to all common uses of AES, including bulk encryption/decryption using
cipher modes such as ECB, CBC and CTR, data authentication using
CBC-MACs (e.g., CMAC), random number generation using algorithms
such as CTR-DRBG, and authenticated encryption using modes such as
GCM. Beyond improving performance, the AES instructions provide im-
portant security benefits. Since the instructions run in data independent
time and do not use table lookups, they help eliminating the major tim-
ing and cache-based attacks that threaten table-lookup based software
implementations of AES. In addition, these instructions make AES sim-
ple to implement, with reduced code size. This helps reducing the risk
of inadvertent introduction of security flaws, such as difficult-to-detect
side channel leaks. This paper provides an overview of the new AES in-
structions and how they can be used for achieving high performance and
secure AES processing. Some special usage models of this architecture
are also described.
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1 Introduction

The Advanced Encryption Standard (AES), defined in 2001 by NIST [I1].
(FIPS197 hereafter), is considered the state of the art in symmetric encryption,
and a crucial ingredient for security and privacy applications. Rising require-
ments for high encryption/decryption bandwidths that have minimal impact
on the user experience, increase the value of a high throughput AES solution
for commodity processors. One example is disk encryption applications, such as
Microsoft’s Vista BitLocker [I0], where due to increased volume size and disks
speed, software encryption overhead may become a bottleneck for both the client
and the server platforms.

The security of AES execution is an additional consideration added to the PC
environment due to increased awareness to recent side channel attacks on AES
software that uses lookup tables (e.g., [13]). Mitigation techniques significantly
degrade the resulting performance, therefore making a hardware based AES
solution even more advantageous.

Intel offers a comprehensive hardware solution for AES, introducing six new
instructions to its processors, starting from the processor called “Westmere”.

This paper describes the instructions, how they can be used efficiently and
flexibly, and explains some of the benefits of this particular AES architecture.

2 Intel’s AES Architecture

2.1 Preliminaries and Notations

Hereafter, we use the terminology of FIPS197, which details of all transforma-
tions, flows for encryption/decryption and key expansion that define AES.

We point out some subtlety related to the notation conventions. FIPS197
defines AES in terms of bytes. However, the algorithm is described using a text
convention where hexadecimal strings are written with the low-memory byte on
the left, and the high-memory byte on the right (this convention is analogous to
writing integers in a “Big Endian” convention). This text convention determines
the way in which the test vectors are written, and the description of some of
the transformations. On the other hand, Intel’s Architecture convention is the
opposite: hexadecimal strings are written with the low-memory byte on the right
and the high-memory byte on the left (analogous to writing integers in a “Little
Endian” convention). Of course, store/load processor operations are consistent
with the way that the AES instructions operate (i.e., using these instructions
does not require any byte reversal). For reference, we provide here an example for
all of the eight AES transformations, expressed in the “Little Endian” convention
which is used on Intel’s processors.
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SubBytes(73744765635354655d5b56727b746£5d) =

8£92a04dfbed204d4c39b1402192a84c
MixColumns(627a6£6644b109c82b18330a81c3b3e5) =

7b5b54657374566563746£725d53475d
ShiftRows(7b5b54657374566563746£725d53475d) =

73744765635354655d5b56727b746£5d
InvMixColumns(8dcab9dc035006bc8f57161e00cafd8d) =

5be3ebl11928b5eaeeec9cc3bcb5£5777
InvShiftRows(7b5b54657374566563746£725d53475d) =

5d7456657b536£65735b47726374545d
InvSubBytes(5d7456657b536£65735b47726374545d) =

8dcab9dc035006bc8£57161e00cafd8d
RotWord(3c4fcf09) = 093c4fct SubWord(73744765) = 8£92a04d

Fig.1. The AES transformations expressed in “Little Endian” notation, as used in
Intel’s architecture

2.2 The Six AES Instructions

Intel’s architecture offers six instructions to support AES (see Fig.2]). AESENC,
AESENCLAST, support encryption. AESDEC and AESDECLAST are building
blocks suitable for decryption using the Equivalent Inverse Cipher (see FIPS197
for definition). Each instruction has a register-memory and a register-register
variant. AESIMC and AESKEYGENASSIST support the Key Expansion. AES-
IMC facilitates the conversion of the encryption round keys to a form suitable for
the Equivalent Inverse Cipher. AESKEYGENASSIST uses an immediate byte
as part of the input (used as RCON).

3 Basic Usage of the AES Instructions

This section illustrates the basic usage of the AES instructions, using AES-
128 (ECB mode) as an example. The general paradigm is that for AESENC,
AESENCLAST, AESDEC, AESDECLAST, the inputs xmml and xmm?2 are
interpreted as xmml = State and xmm2 = Round Key. For AESIMC, the
input xmm?2 is interpreted as xmm2 = Round Key. Fig. [ illustrates encryp-
tion/decryption flows. For AESKEYGENASSIST, the input should be inter-
preted as an intermediate step in the Key Expansion procedure, where the
immediate byte is the value of RCON. An example for AES-128 Key Expansion is
illustrated in Fig. @ (Key Expansion for AES-192 and AES-256 is provided in the
Appendix).

4 Some Design Considerations That Led to the Selection
of the AES Architecture

Introducing a new instruction to Intel’s processors implies long-term legacy com-
mitment. Additionally, silicon area is a precious “real-estate”. This mandates a
great deal of care in the definitions and cost-performance-flexibility tradeoffs.
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AESENC xmml, xmm2/m128 AESENCLAST xmml, xmm2/m128
Tmp := xmml Tmp := xmml

RoundKey :=xmm2/m128 RoundKey := xmm2/m128

Tmp := ShiftRows (Tmp) Tmp := ShiftRows (Tmp)

Tmp := SubBytes (Tmp) Tmp := SubBytes (Tmp)

Tmp := MixColumns (Tmp)

xmm1l:= Tmp xor RoundKey xmml:= Tmp xor RoundKey

AESDEC xmml, xmm2/m128 AESDECLAST xmml, xmm2/m128
Tmp:=xmm1l Tmp:= xmml

RoundKey := xmm?2/m128 RoundKey := xmm2/m128

Tmp := InvShiftRows (Tmp) Tmp := InvShiftRows (Tmp)

Tmp := InvSubBytes (Tmp) Tmp := InvSubBytes (Tmp)

Tmp := InvMixColumns (Tmp)

xmml:= Tmp xor RoundKey xmml:= Tmp xor RoundKey

AESKEYGENASSIST xmml, xmm2/m128, imm8

Tmp := xmm2/m128

RCON][31-8] := 0; RCON[7-0] := imm8;

X3[31-0] := Tmp[127-96]; X2[31-0] := Tmp[95-64];

X1[31-0] := Tmp[63-32]; X0[31-0] := Tmp[31-0];

xmml := [RotWord (SubWord (X3)) XOR RCON, SubWord (X3),
Rotword (SubWord (X1)) XOR RCON, SubWord (X1)]

AESIMC xmm1l, xmm2/m128

RoundKey := xmm2/m128;

xmm1 := InvMixColumns (RoundKey)

Examples:

xmml = 7b5b54657374566563746£725d53475d
xmm?2 = 48692853686179295b477565726f6e5d
AESENC result: a8311c2f9fdba3c58b104b58ded7e595
AESENCLAST result: c7fb881e938c5964177ec42553fdc611
AESDEC result: 138ac342faea2787b58eb95eb730392a
AESDECLAST result: c5a391ef6b317£95d410637b72a593d0
xmm?2 = Tb5b54657374566563746£725d53475d
AESIMC result: 627a6£6644b109c82b18330a81c3b3eb
xmm?2 = 3c4fcf098815f7aba6d2ae2816157e2b; imm& = 1
AESKEYGENASSIST result: 01eb848beb848a013424b5e524b5e434

Fig. 2. Functional descriptions (architectural behavior) and examples of the AES in-
structions (note that ShiftRows and SubBytes, InvShiftRows and InvSubBytes com-
mute)

Obviously, the AES architecture must offer an adequate solution for the short
term requirements, but as importantly, it should have the ability to accommo-
date long range requirements that may emerge in the future. Therefore, the
AES architecture needs to address the following considerations: a) Flexibility,
b) Performance, ¢) Performance scalability, d) Security. We explain how these
properties are achieved by the AES architecture.

4.1 Design for Software Flexibility

Software flexibility implies that the architecture should be able to support all of
the current usage models for AES. Indeed, it is easy to realize that this the case
with the new AES instructions: They are the building blocks that can support
all the AES variants defined by FIPS197, uses of AES in cipher modes such as
CBC or CTR, data authentication using CBC-MACs such as CMAC, random
number generation using algorithms such as CTR-DRBG, and authenticated
encryption using modes such as GCM. As an example, Fig. [l shows encryption
in CBC mode.
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AES-128 encryption Decryption Round Keys AES-128 decryption
pxor xmml, xmm?2 pxor xmml, xmm12;
AESENC xmml, xmm3 AESIMC xmm3, xmm3 AESDEC xmml, xmmll
AESENC xmm1, xmm4 AESIMC xmm4, xmm4 AESDEC xmm1, xmm10
AESENC xmm1l, xmmb AESIMC xmmb5, xmmb5 AESDEC xmm1l, xmm9
AESENC xmml, xmm6 AESIMC xmm6, xmm6 AESDEC xmm1l, xmm8
AESENC xmml, xmm7 AESIMC xmm?7, xmm7 AESDEC xmml, xmm?7
AESENC xmm1l, xmm8 AESIMC xmm&, xmm8& AESDEC xmm1l, xmm6
AESENC xmml, xmm9 AESIMC xmm9, xmm9 AESDEC xmm1l, xmmb
AESENC xmm1l, xmm10 AESIMC xmm10, xmm10 AESDEC xmm1l, xmm4
AESENC xmml, xmml1l AESIMC xmmll, xmm1l1l AESDEC xmm1l, xmm3
AESENCLAST xmml, xmm12 AESDECLAST xmml, xmm?2

Fig. 3. Left panel: AES-128 encryption. Register xmm1 holds the data to encrypt,
xmm?2 is the whitening key, and xmm3-xmm12 hold Round Keys 1-10. The AES flow
starts with a whitening step (XOR with xmm2). Rounds 1-9 are implemented using
AESENC, and round 10 is implemented using AESENCLAST. Middle panel: AESIMC
is used for transforming the round keys for decryption using the Equivalent Inverse
Cipher. Right panel: AES-128 decryption. Register xmm1 holds the data to decrypt.
Registers xmm12-xmm?2 hold the decryption round keys and the whitening key.

movdqu xmml, XMMWORD PTR Key
movdqu XMMWORD PTR Key_Sched, xmm1 key_expansion_128:
mov rcx, OFFSET Key_Schedule+16
pshufd xmm2, xmm2, Oxff

AESKEYGENASSIST xmm?2, xmm1, 0x1 vpslldg xmm3, xmm1, 0x4

call key_expansion_128 pxor xmml, xmm3
AESKEYGENASSIST xmm2, xmm1, 0x2 vpslldg xmm3, xmm1, 0x4

call key_expansion_128 pxor xmml, xmm3
AESKEYGENASSIST xmm2, xmm1, 0x4 vpslldg xmm3, xmm1, 0x4

call key_expansion_128 pxor xmml, xmm3
AESKEYGENASSIST xmm2, xmm1, 0x8 pxor xmml, xmm2

call key_expansion_128 movdqu XMMWORD PTR [rex], xmml
AESKEYGENASSIST xmm2, xmm1, 0x10 add rex, 0x10

call key_expansion_128 ret

AESKEYGENASSIST xmm?2, xmm1, 0x20
call key_expansion_128
AESKEYGENASSIST xmm?2, xmm1, 0x40
call key_expansion_128
AESKEYGENASSIST xmm2, xmm1l, 0x80
call key_expansion_128
AESKEYGENASSIST xmm2, xmml, 0x1b
call key_expansion_128
AESKEYGENASSIST xmm2, xmm1l, 0x36
call key_expansion_128

Fig. 4. AES-128 Key Expansion example (the cipher key is stored in the array “Key”
and the generated key expansion is stored in the array “Key Sched”. (see comments in
the Appendix)

Software has the flexibility to pre-expand the keys and re-use them (which
is the typical usage model in bulk encryption) or to expand them on-the-fly. In
addition, when compared with existing software implementations, one can realize
that the AES instructions can help reduce the associated code size. We also point
out here that the AES round instructions remain as useful as they are now, even
if future analysis would change the standard to perform more rounds during
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void AES 128 CBC Encrypt (...) {
int i, j, k;
m128i tmp, feedback;
m128i RKEY [11];
for (k=0; k<11; k++) {
RKEY [k] = mm load si128 ( ( m128i*)&Key Schedule [4¥k]);

feedback = mm load si128 ( ( m128i*)&IV [0]);
for(i=0; i < NBLOCKS; i++) {
tmp = mm load si128 ( ( m128i*)&PLAINTEXT[i*4]);
tmp = mm xor sil128 (tmp,feedback);
tmp = mm xor sil28(tmp, RKEY/[0]);
for(j=1; j < 10; j++) {
tmp = mm aesenc sil28 (tmp, RKEY [j]);
}

tmp = mm aesenclast si128 (tmp, RKEY [10]);
feedback = tmp;
mm store si128 (( m128i*)&CIPHERTEXT[4*i], tmp);

Fig.5. Encryption in CBC mode. A C code snippet, using compiler intrinsics, illus-
trates a function that encrypts NBLOCKS data blocks.

encryption/decryption. Furthermore, as long as the Key Expansion procedure is
not fundamentally changed, AESKEYGENASSIST (taking any Round Constant
as an input byte) could be used for generating additional round keys.

4.2 Design for Performance

Performance is a main motivation for introducing the AES instructions. To this
end, the architecture takes advantage of the 128-bit data-path available in the
Intel’s modern processors (compare with the 32-bit instructions proposed in [14],
in a different setup, that does not have such a wide data-path).

The AES architecture is optimized for the common usage model for the PC
platform where the round keys are generated once, stored in registers or in
the cache memory, and then used for multiple data blocks. To this end, the
hardware support for the key expansion is decoupled from the more performance-
critical encryption/decryption acceleration. The four AES rounds instructions
encapsulate the maximal sequence of transformations which is possible without
having micro-architectural branches. To illustrate, consider a possible alternative
instruction such as AESROUND xmml, xmm2, imm8, where the immediate
byte is a control that selects encryption/decryption and round/last round. Such
architecture would require the implementation to have micro-branching which
could incur some performance loss. To avoid this, four separate instructions are
dedicated to each of the four “flavors” of the AES rounds.

4.3 Design for Performance Scalability

Performance scalability is also achieved by encapsulating the “maximal” pos-
sible flow in the performance-critical instructions, thus leaving room for micro
architectural cost-performance tradeoffs. To illustrate this flexibility, consider the
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AESENC instruction that performs tha sequence of transformation: ShiftRows;
SubBytes; MixColumns; AddRoundKey (=XOR). These could be implemented
by one piece of dedicated hardware, or by means of hardware elements that pro-
cess the data in small granularity combined with some micro-instruction flows.
Thus, it is possible to choose the cost-performance balance across processors and
processors generations, according the performance requirements.

To show the benefit of bundling the maximal flow in one instruction, consider
the following alternative of having two separate instructions, SUBBYTES xmm1,
xmm?2, and MIXCOL xmml, xmm2. With these, the AES encryption round
could be performed by the sequence PSHUFB (for ShiftRows), SUBBYTES,
MIXCOL, PXOR. However, such an architectural approach limits the highest
possible performance of the instruction.

4.4 Design for Security

We briefly explain here how side channel attacks can compromise the security
of AES software implementations, and how the new architecture mitigates this
problem.

Processor cache is a special type of memory that allows faster access compared
to accessing main memory. The processor stores recently read memory areas in
cache, with the speculative anticipation that these areas would be re-accessed
“soon”. In each memory access, the processor first checks if the data is in the
cache (enjoying fast access) and if not, it reads from main memory (or lower
level caches), and stores it in the cache for future usage. To place new data in
the cache, the processor needs to evict less recent data.

Currently, many common efficient software implementations of AES use lookup
tables (e.g., Gladman’s code [4], OpenSSL [12], and Lipmaa [6l/7]). The entries in
the table(s), which are read during encryption, depend implicitly on the secret
round key and on the processed data. A “spy process”, which runs at the same
privilege level, can exploit this fact: it runs in parallel to some AES code, fills the
cache lines with its own data, and reads them again after the table was accessed
by the AES code. Depending on the reading latency that the spy experiences (for
its own data, as measured by using the RDTSC instruction), it can discover if the
corresponding cache line was evicted or not, and therefore deduce which part of
the table was accessed by the AES code. Repeatedly collected, and combined with
the appropriate analysis, this information could eventually leak out the secret key
(see e.g., [I313]).

These side channel threat can be avoided by writing the AES software in a way
that the memory access patterns hide the key dependence (e.g., [I33]). However,
these mitigation techniques may involve a significant performance penalty. There
are also software implementations of AES that do not use table lookup at all
(e.g., Matsui [8/9], Bernstein and Schwabe [2]).

The AES instructions are designed to mitigate all of the known timing and
cache side channel leakage of sensitive data. Their latency is data-independent,
and since all the computations are performed internally by the hardware, no
lookup tables are required. Therefore, if the AES instructions are used properly,
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the AES encryption/decryption, as well as the key expansion, would have data-
independent timing and would involve only data-independent memory access.
Consequently, the AES instructions allow for easily writing high performance
AES software which is, at the same time, protected against the currently known
side channel threats.

5 Performance Optimizations for Parallel Modes of
Operation

Significant performance optimization for encryption/decryption using the AES
instructions can be achieved by re-ordering the code. This helps taking better
advantage of parallelism in parallel modes of operation such as ECB, CTR, and
CBC-Decrypt (with the CBC-Encrypt serial mode being the exception). This
section explains how it can be done.

The hardware that supports the four AES round instructions is pipelined.
This allows independent AES instructions to be dispatched theoretically every
1-2 CPU clock cycle, if data can be provided sufficiently fast. As a result, the
AES throughput can be significantly enhanced for parallel modes of operation,
if the “order of the loop” is reversed: instead of completing the encryption of
one data block and then continuing to the subsequent block, it is preferable to
write software sequences that compute one AES round on multiple blocks, using
one round key, and only then continue to computing the subsequent round on

; load Round key
mov rdx, OFFSET keyex addr add rdx, 0x10
movdqu xmm0, XMMWORD PTR [rdx] movdqu xmm0, XMMWORD PTR [rdx]

pxor xmm1l, xmmO aesenclast xmm1, xmmO
pxor xmm2, xmm0 aesenclast xmm?2, xmmO
pxor xmm3, xmmO0 aesenclast xmm3, xmmO
pxor xmm4, xmmO0 aesenclast xmm4, xmmO0
pxor xmmb, xmmO0

pxor xmm6, xmmO aesenclast xmmb5, xmm0O
pxor xmm?7, xmmO0 aesenclast xmm6, xmmO
pxor xmm8, xmm0 aesenclast xmm?7, xmmO

aesenclast xmma8, xmmO0
mov ecx, 9

main loop: ; storing the encrypted blocks
; load Round key
add rdx, 0x10 movdqu XMMWORD PTR [dest], xmm1

movdqu xmm0, XMMWORD PTR [rdx] movdqu XMMWORD PTR [dest+0x10], xmm2
movdqu XMMWORD PTR [dest+0x20], xmm3

]
aesenc xmml, xmmO0 movdqu XMMWORD PTR [dest+0x30], xmm4
aesenc xmm2, xmm0 movdqu XMMWORD PTR [dest+0x40], xmm5
aesenc xmma3, xmm0 movdqu XMMWORD PTR [dest+0x50], xmm6
aesenc xmm4, xmm0 movdqu XMMWORD PTR [dest+0x60], xmm?7
aesenc xmmb, xmm0 movdqu XMMWORD PTR [dest+0x70], xmm8

aesenc xmm6, xmmO
aesenc xmm?7, xmmO0
aesenc xmma8, xmm0

loop main loop

Fig. 6. Encrypting multiple data blocks in parallel (ECB mode)
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for multiple blocks (using another round key). For such optimization, one needs
to choose the number of blocks that will be processed in parallel. The optimal
parallelization parameter value depends on the scenario, for example on how
many registers are available, and how many data blocks are to be (typically)
processed. In general, it is useful to process 4-8 blocks in parallel, in order
to achieve high throughput. We provide here two examples: Figure [@l outlines
assembler code for encrypting 8 blocks in parallel, in ECB mode, and Figure [
gives a C code snippet for decrypting 4 blocks in parallel in CBC mode.

void AES 128 CBC Decrypt C 4 blocks (...) {
m128i RKEY DECRYPT [11];
m128i tmpl, tmp2, tmp3, tmp4, feedback;
m128i zl, z2, z3, z4;
int j, k;
for (k=0; k<11; k++) {
RKEY DECRYPT [10-k] =
mm load si128 ( ( m128i*)&Key Schedule Decrypt [4*k]);

}
feedback = mm load si128 ( ( m128i*)&IV [0]);

mm load si128 ( ( m128i*)&CIPHERTEXT]
mm load si128 ( ( m128i*)&CIPHERTEXT]
mm load sil128 ( ( m128i*)&CIPHERTEXT|
mm load sil128 ( ( m128i*)&CIPHERTEXT|

N NN
W N =
[l

N

mm xor si128(z1,RKEY DECRYPTI[0]);
mm xor si128(z2,RKEY DECRYPTI[0]);
( [0]);
( [0D);

o+ o
ERE]
T T
N =

mm xor sil28(z3,RKEY DECRYPT
mm xor sil28(z4,RKEY DECRYPT

tmp3
tmp4

for(j=1; j <10; j++) {

tmpl = mm aesdec sil28 (tmpl, RKEY DECRYPT [j]);
tmp2 = mm aesdec sil28 (tmp2, RKEY DECRYPT [j]);
tmp3 = mm aesdec sil28 (tmp3, RKEY DECRYPT [j]);
tmp4 = mm aesdec sil28 (tmp4, RKEY DECRYPT [j]);
}
tmpl = mm aesdeclast si128 (tmpl, RKEY DECRYPT [10]);
tmp2 = mm aesdeclast si128 (tmp2, RKEY DECRYPT [10]);
tmp3 = mm aesdeclast si128 (tmp3, RKEY DECRYPT [10]);
tmp4 = mm aesdeclast si128 (tmp4, RKEY DECRYPT [10]);
tmp4 = mm xor sil28(tmp4,z3);
tmp3 = mm xor sil28(tmp3,2z2);
tmp2 = mm xor sil28(tmp2,z1);
tmpl = mm xor sil28(tmp1l,feedback);

mm store sil28 (( m128i*)&DECRYPTED TEXT[0], tmpl);
mm store sil28 (( m128i*)&DECRYPTED TEXT[4], tmp2);
mm store sil28 (( m128i*)&DECRYPTED TEXTI8], tmp3);
mm store si128 (( m128i*)&DECRYPTED TEXT[12], tmp4);

Fig. 7. Decrypting 4 blocks in parallel, in CBC mode (C code using compiler intrinsics)

5.1 Parallelizing CBC Encryption for Performance

CBC encryption is a serial mode of operation, because encrypting a block re-
quires the encryption result of the previous block. Therefore, CBC encryption
does not allow for hiding the latency of the AES instructions by operating on
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void AES 128 CBC Encrypt Parallel 4 Blocks (...) {

int i, j, k;
m128i tmp, feedback, feedbackl, feedback2, feedback3, feedback4;
ml28i tmpl, tmp2, tmp3, tmp4;
m128i RKEY [11];

for (k=0; k<11; k++) {

RKEY [k] = mm load si128 ( ( m128i*)&Key Schedule [4*k]);
feedbackl = mm load si128 ( ( m128i*)&IV1 [0]);
feedback2 = mm load si128 ( ( m128i*)&IV2 [0]);
feedback3 = mm load si128 ( ( m128i*)&IV3 [0]);
feedback4d = mm load si128 ( ( m128i*)&IV4 [0]);
for(i=0; i < NBLOCKS; i++) {
tmpl = mm load sil128 ( ( ml128i*)&PLAINTEXT1[i*4]);
tmp2 = mm load sil128 ( ( ml128i*)&PLAINTEXT2[i*4]);
tmp3 = mm load si128 ( ( m128i*)&PLAINTEXT3[i*4]);
tmp4 = mm load si128 ( ( ml128i*)&PLAINTEXT4[i*4]);
tmpl = mm xor sil28 (tmpl, feedbackl);
tmp2 = mm xor sil28 (tmp2, feedback2);
tmp3 = mm xor sil28 (tmp3, feedback3);
tmp4 = mm xor sil28 (tmp4, feedback4);
tmpl = mm xor si128(tmpl,RKEY/0]);
tmp2 = mm xor sil28(tmp2,RKEY[0]);
tmp3 = mm xor sil28(tmp3,RKEY[0]);
tmp4 = mm xor sil28(tmp4, RKEY[0]);

for(j=1; j <10; j++) {

tmpl = mm aesenc si128 (tmpl, RKEY [j]);
tmp2 = mm aesenc sil128 (tmp2, RKEY [j]);
tmp3 = mm aesenc si128 (tmp3, RKEY [j]);
tmp4 = mm aesenc si128 (tmp4, RKEY [j]);
}
tmpl = mm aesenclast si128 (tmpl, RKEY [10]);
tmp2 = mm aesenclast si128 (tmp2, RKEY [10]);
tmp3 = mm aesenclast si128 (tmp3, RKEY [10]);
tmp4 = mm aesenclast si128 (tmp4, RKEY [10]);
feedbackl = tmpl;
feedback2 = tmp2;

feedback3 = tmp3;
feedback4 = tmp4;

mm store si128 (

mm store sil128 (

m128i*)&CIPHERTEXT1[4*i], tmpl1);
m128i*)& CIPHERTEXT2[4*i], tmp2);
m128i*)& CIPHERTEXT3[4*i], tmp3);

(
mm store sil128 ((
(
(

mm store si128 (( m128i*)&CIPHERTEXT4[4*i], tmp4);

Fig. 8. CBC encryption for 4 blocks in parallel (C code using compiler intrinsics)

independent blocks as shown above. However, in some cases it is possible to
parallelize CBC encryption if the application needs to operate on multiple inde-
pendent data streams. One possible example can be disk encryption applications
where disk sectors are encrypted independently (not necessarily with the same
key). If the software can encrypt multiple sectors in parallel, the application
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can enjoy the speedup of a parallel mode. Figure [§] gives a C code snippet for
encrypting 4 blocks in parallel, in CBC mode (in this example, using the same
key and different IV’s).

6 More on Software Flexibility and Surprising Usage
Models

6.1 Supporting RIJNDAEL with Block Size Larger Than 128 Bits

Although the main usage model for the AES instructions is AES, which operates
on 128-bit blocks, they can also be used for processing the general RIJINDAEL
cipher that supports any block size which is a multiple of 32 bits, from 128 to 256
bits. Figure [d gives an example for computing a RIJNDAEL-256 round, using
the new AES instructions.

6.2 Isolating the AES Transformations

Cipher designers may wish to build new cryptographic algorithms using com-
ponents of AES. Such algorithms could benefit from the performance and side
channel protection of the AES instructions if they are designed to use the AES
transformations. In particular, the AES transformations can be a useful building
block for hash functions. For example, the MixColumns transformation provides
rapid diffusion and the AES S-box is a good nonlinear mixer. Manipulations on
large block sizes could be useful for constructing hash functions, with a long
digest size. This concept is already being used in quite a few of the new Secure
Hash Function algorithms that have been recently submitted to the NIST cryp-
tographic hash Algorithm Competition (some of the examples from the First
Round Candidates list include LANE, SHAMATA, SHAvite-3, ECHO, Gr@stl,
Lesamnta (512-bit), and Vortex). Some algorithms use the whole AES round as
a building block, some only one AES transformations, and some use variants of
these transformations.

VPBLENDVB xmm3, xmm2, xmm1l, xmm5
VPBLENDVB xmm4, xmml, xmm2, xmm5
PSHUFB xmm3, xmm38
PSHUFB xmm4, xmm8
AESENC xmm3, xmm6
AESENC xmm4, xmm7

Fig. 9. Using the AES instructions for computing a RIJNDAEL round with a 256-bits
block size. Register xmm1 holds the “left” half of RIJNDAEL input state (columns
0-3), xmm?2 hold the right half of state (columns 4-7), xmm6 and xmm?7 hold the left
half and right half of RIJNDAEL round key, respectively. The output state is written
into registers xmm1 (left half) and xmm?2 (right half). Register xmm8 holds a mask
(0x03020d0c0f0e0908b0a050407060100) used for the shuffling step which is necessary
to account for the difference in ShiftRows offsets between the 256 (1,3,4) and 128-
bit (1,2,3) versions of RIJNDAEL. Register xmm5 holds a mask for VPBLENDVB,
selecting bytes 1-3, 6-7, 10-11, and 15 of the RIJNDAEL state from the first source
operand, and all other bytes from the second source operand.
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Therefore, it is important to note that although the AES instructions perform
bundled sequences of AES transformations, each one of these transformations
can be isolated by a proper combination of these instructions, and the use of the
byte shuffling (PSHUFB instruction). This is shown in Figure [0

6.3 Using the AES Instructions for RAID-6

We show here a surprising usage for the AES instructions for a non cryptographic
application.

A Redundant Array of Independent Disks (RAID) combines a multiple physi-
cal hard disk drives into a logical drive for purposes of reliability, capacity, or per-
formance. A level 6 RAID (RAID-6) system provides a high level of redundancy
allowing recovery from two disk failures. Two syndromes (P and @) are generated
for the data and stored on hard disk drives in the RAID system. The P syndrome
is generated by computing parity information for the data in a strip. The gener-
ation of the ) syndrome requires Finite Field multiplications in GF(28) defined
by the reduction polynomial 28 +2* + 2% +2+1 (same as the one used for AES).
Recovering data and/or P and/or @ syndromes requires both GF(28) multipli-
cations and inversions. In a RAID array with n data disks Dg, D1, D2, ..., Dy
(for n < 255) P and @ are defined by: P = Dy + Dy + Dy + ...+ D, _1, and
Q=9"Do+g' Di+ga-Da+...+9g" 1 D,_1, where g = {02} is a generator
of GF(2%), and + and - denote the operations in this field. The computational
bottleneck associated with the RAID-6 system is the cost of computing (). The
performance of the generation of the () syndrome may be improved by express-
ing @ in its Horner representation Q = ((...Dp—1...) g+ D2)-g+ D1)-g+ Do.
The difficulty in the related software implementation stems from the fact that
traditional processors have poor performance with Finite Fields computations.
See [I] for a detailed overview.

We now note that the MixColumns transformation is a matrix multiplication
in GF(2%), therefore useful for computing the @ syndrome. In order to use

Isolating ShiftRows

PSHUFB xmm0, 0x0b06010c07020d08030e09040£f0a0500
Isolating InvShiftRows

PSHUFB xmm0, 0x0306090c0£0205080b0e0104070a0d00
Isolating MixColumns

AESDECLAST xmm0, 0x00000000000000000000000000000000

AESENC xmm0, 0x00000000000000000000000000000000
Isolating InvMixColumns

AESENCLAST xmm0, 0x00000000000000000000000000000000

AESDEC xmm0, 0x00000000000000000000000000000000
Isolating SubBytes

PSHUFB xmm0, 0x0306090c0£0205080b0e0104070a0d00

AESENCLAST xmm0, 0x00000000000000000000000000000000
Isolating InvSubBytes

PSHUFB xmm0, 0x0b06010c07020d08030e09040f0a0500

AESDECLAST xmm0, 0x00000000000000000000000000000000

Fig. 10. Isolating the AES transformations using combinations of AES instructions
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declspec (align(16)) unsigned int zero [4] =
{0x0, 0x0, 0x0, 0x0};
declspec (align(16)) unsigned int maskl [4] =
{0x££02££00,0xf£06££04,0xff0aff08, OxffOeffOc};
declspec (align(16)) unsigned int mask2 [4] =
{0x03££01££f,0x07££05£f,0x0bff09ff, OxOfff0dff};
declspec (align(16)) unsigned int mask3 [4] =
{0x01000302,0x05040706 ,0x09080b0a, 0x0d0cOfOe};

void RAIDG6 1 block in parallel (...) {
int ind1;
m128i MASK1, MASK?2, MASK3, ZERO;
m128i XMMO, XMM1, XMM2;

);
);
)

MASK3 = mm load sil128 (( m128i*)&mask3[0]
MASK2 = mm load sil128 (( m128i*)&mask2[0]
MASK1 = mm load sil128 (( m128i*)&mask1[0]
ZERO = mm load si128 (( m128i*)&zero [0]);

3

for (ind1=0; ind1 < NBLOCKS; ind1++) {
XMMO = mm load sil128 (( m128i*)&DATA[4*ind1]);
XMM1 = mm shuffle epi8(XMMO0, MASK1);
XMM1 = mm aesdeclast si128 (XMM1, ZERO);
XMM2 = mm shuffle epi8(XMMO0, MASK2);
XMMO = mm shuffle epi8(XMMO0, MASK3);
XMM1 = mm aesenc sil28(XMM1, ZERO);
XMM2 = mm aesdeclast si128 (XMM2, ZERO);
XMM1 = mm shuffle epi8(XMM1, MASK1);
XMM2 = mm aesenc sil28(XMM2, ZERO);
XMM2 = mm shuffle epi8(XMM2, MASK2);
XMM2 = mm xor sil28(XMM2, XMM1);
XMMO = mm xor sil28(XMMO0, XMMZ2);

mm store sil128 (( m128i*)&RES[4*ind1], XMMO);
}
}

Fig. 11. Using the AES instructions for RAID-6: multiplying 16 bytes by {02}

the AES instructions, the MixColumns transformation needs to be isolated, as
explained above. This transformation operates separately on the 4 columns of
the state. If a column (32 bits) is denoted by the four bytes [d,c,b,a], then
the output [d',c’, ¥, a’] of MixColumns is @’ = ({02} - a) + ({03} - b) + ¢ + d;
bV =a+ ({02} -b)+ ({03} -¢c)+d; ¢ = a+b+ ({02} -¢) + ({03} - d); d' =
({03} -a) +b+c+ ({02} - d) denoted in shorthand by [3a+b+c+2d,a+ b+ 2c+
3d,a+2b+3c+d,2a+ 3b+ c+d]. If the bytes b, d (odd positions) are set to 0,
then the result of MixColumns becomes [3a+c¢, a+2¢, a+ 3¢, 2a+¢|, and with the
PSHUFB instruction odd position bytes can be zeroed to yield [0, a+2¢, 0, 2a+].
If this result is XOR-ed with [0, a, 0, ¢] (a shuffled version of the input), the final
result is [0, 2¢, 0, 2a], that is, two of the 4 bytes of the column were multiplied
by {02}. Similar operations can be applied to the even-positioned bytes of the
state. Figure [Tl shows a code snippet that uses the AES instructions for RAID-
6 (here, for clarity and brevity the code operates on a single block at a time.
Operating on multiple blocks in parallel, improves the performance as explained
above).
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7 Conclusion

This paper provided some details and insights on Intel’s new AES instructions
which are expected to be widely used for security and privacy, by a wide range
of applications and operating systems.

The AES instructions provide a substantial performance speedup to bulk data
encryption and decryption. Exact performance measurements will be made avail-
able as soon as processors with these instructions are released. However, we can
indicate that when using parallelizable modes of operation (e.g., CBC decryp-
tion, CTR, and CTR-derived modes GCM, XTS), the performance speedup
could exceed an order of magnitude over the current performance of software-
only AES implementations. In scenarios where pipelined operation is impossible,
for example in CBC encryption, operating on a single buffer, the performance
speedup would still be significant, around 2-3 times over software implemen-
tation. Note that AES implementations using the new instructions are inher-
ently protected against the software side channel attacks associated with AES
implementations based on table-lookup.

The paper showed some of the advantages of the AES instructions and how
they can be used flexibly and efficiently.

An important observation that we pointed out was that due to the out-of-order
execution capabilities of modern processors, hardware pipelining, and software
techniques, parallel modes of operation can achieve a much higher throughput
than serial modes. This is one point to consider when selecting modes of opera-
tion in future cryptosystems. For example, AES-GCM may become a favorable
mode for achieving secrecy and authentication. In this context, we also mention
that, together with the AES instructions, another instruction for computing
carry-less (polynomial) multiplications (called PCLMULDQ) is released. This
could give further speedup to AES-GCM (see [5]).
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movdqu xmm1l, XMMWORD PTR Key key_expansion_192:
movq xmm3, QWORD PTR Key_ pshufd xmm?2, xmm?2, 0x55
movdqu XMMWORD PTR Key_Sched, xmm1 vpslldg xmm4, xmm1, 0x4
movqg QWORD PTR[Key_Sched+0x10], xmm3 pxor xmm1, xmm4
mov ecx, OFFSET Key_Sched+24 pslldg xmm4, 0x4
AESKEYGENASSIST xmm2, xmm3, 0x1 pxor xmml, xmm4
call key_expansion_192 pslldqg xmm4, 0x4
AESKEYGENASSIST xmm2, xmm3, 0x2
call key_expansion_192 pxor xmml, xmm4
AESKEYGENASSIST xmm2, xmm3, 0x4 pxor xmml, xmm?2
call key_expansion_192 pshufd xmm2, xmm1, Oxff
AESKEYGENASSIST xmm2, xmm3, 0x8 vpslldg xmm4, xmm3, 0x4
call key_expansion_192
AESKEYGENASSIST xmm2, xmm3, 0x10 pxor xmma3, xmm4
call key_expansion_192 pxor xmma3, xmm2
AESKEYGENASSIST xmm2, xmm3, 0x20 movdqu XMMWORD PTR [rcx], xmml
call key_expansion_192 add rcx, 0x10
AESKEYGENASSIST xmm2, xmm3, 0x40 movdqu XMMWORD PTR [rcx], xmm3
call key_expansion_192 add rcx, 0x8
AESKEYGENASSIST xmm2, xmm3, 0x80 ret
call key_expansion_192
jmp END; END:
movdqu xmml, XMMWORD PTR Key key _expansion_256:
movdqu xmm3, XMMWORD PTR Key_ pshufd xmm2, xmm2, Oxff
movdqu XMMWORD PTR Key_Sched, xmm1 vpslldg xmm4, xmm1, 0x4
movdqu XMMWORD PTR[Key_Sched+0x10], xmm3 pxor xmm1l, xmm4
mov rcx, OFFSET Key_Sched+0x20 pslldqg xmm4, 0x4
pxor xmml, xmm4
AESKEYGENASSIST xmm2, xmm3, 0x1 pslldqg xmm4, 0x4
call key_expansion_256 pxor xmm1l, xmm4
AESKEYGENASSIST xmm2, xmm3, 0x2 pxor xmm1l, xmm2
call key_expansion_256 movdqu XMMWORD PTR [rcx], xmml
AESKEYGENASSIST xmm?2, xmm3, 0x4 add rex, 0x10
call key_expansion_256 cmp rex,OFFSET Key_Schedule+0xf0
AESKEYGENASSIST xmm2, xmm3, 0x8 jz ReachedLastKey
call key_expansion_256 AESKEYGENASSIST xmm4, xmm1l, 0
AESKEYGENASSIST xmm2, xmma3, 0x10 pshufd xmm2, xmm4, Oxaa
call key_expansion_256 vpslldg xmm4, xmm3, 0x4
AESKEYGENASSIST xmm2, xmm3, 0x20 pxor xmm3, xmm4
call key_expansion_256 pslldg xmm4, 0x4
AESKEYGENASSIST xmm2, xmma3, 0x40 pxor xmm3, xmm4
call key_expansion_256 pslldg xmm4, 0x4
jmp END; pxor xmm3, xmm4
pxor xmm3, Xxmm?2
movdqu XMMWORD PTR [rcx], xmm3
add rcx, 0x10
ReachedLastKey:
ret
END:

Fig. 12. AES-192 and AES-256 key expansion

Remark: There are several ways for expanding the key, using AESKEY-
GENASSIST. These given examples use new Intel AVX instructions
(http://software.intel.com//sites/avx/) with a nondestructive source. For exam-
ple, instead of (A) movdqu xmm3, xmm]1; pslldg xmm3, 0x4 we use (B)vpslldqg xmm3,
xmml, 0x4. AVX extensions will be introduced only in the 2010 processors, and
therefore option (B) would not be valid in the 2009 processors that require the form
(A). The changes from form (B) to form (A) are straightforward.
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