
Intel SGX Explained

Victor Costan and Srinivas Devadas
victor@costan.us, devadas@mit.edu

Computer Science and Artificial Intelligence Laboratory
Massachusetts Institute of Technology

ABSTRACT

Intel’s Software Guard Extensions (SGX) is a set of

extensions to the Intel architecture that aims to pro-

vide integrity and confidentiality guarantees to security-

sensitive computation performed on a computer where

all the privileged software (kernel, hypervisor, etc) is

potentially malicious.

This paper analyzes Intel SGX, based on the 3 pa-

pers [14, 79, 139] that introduced it, on the Intel Software

Developer’s Manual [101] (which supersedes the SGX

manuals [95, 99]), on an ISCA 2015 tutorial [103], and

on two patents [110, 138]. We use the papers, reference

manuals, and tutorial as primary data sources, and only

draw on the patents to fill in missing information.

This paper does not reflect the information available

in two papers [74, 109] that were published after the first

version of this paper.

This paper’s contributions are a summary of the

Intel-specific architectural and micro-architectural details

needed to understand SGX, a detailed and structured pre-

sentation of the publicly available information on SGX,

a series of intelligent guesses about some important but

undocumented aspects of SGX, and an analysis of SGX’s

security properties.

1 OVERVIEW

Secure remote computation (Figure 1) is the problem

of executing software on a remote computer owned and

maintained by an untrusted party, with some integrity

and confidentiality guarantees. In the general setting,

secure remote computation is an unsolved problem. Fully

Homomorphic Encryption [61] solves the problem for a

limited family of computations, but has an impractical

performance overhead [140].

Intel’s Software Guard Extensions (SGX) is the latest

iteration in a long line of trusted computing (Figure 2)

designs, which aim to solve the secure remote compu-

tation problem by leveraging trusted hardware in the

remote computer. The trusted hardware establishes a se-

cure container, and the remote computation service user

Data Owner’s

Computer

Remote Computer

Container

Data Owner Software
Provider

Infrastructure
Owner

Manages

Private Data

Owns
Trusts

Private Code

Computation

Dispatcher

Setup

Verification

Authors

Trusts

Untrusted Software

Setup
Computation

Receive
Encrypted

Results

Figure 1: Secure remote computation. A user relies on a remote

computer, owned by an untrusted party, to perform some computation

on her data. The user has some assurance of the computation’s

integrity and confidentiality.

uploads the desired computation and data into the secure

container. The trusted hardware protects the data’s con-

fidentiality and integrity while the computation is being

performed on it.

SGX relies on software attestation, like its predeces-

sors, the TPM [71] and TXT [70]. Attestation (Figure 3)

proves to a user that she is communicating with a specific

piece of software running in a secure container hosted

by the trusted hardware. The proof is a cryptographic

signature that certifies the hash of the secure container’s

contents. It follows that the remote computer’s owner can

load any software in a secure container, but the remote

computation service user will refuse to load her data into

a secure container whose contents’ hash does not match

the expected value.

The remote computation service user verifies the at-

testation key used to produce the signature against an

endorsement certificate created by the trusted hardware’s

manufacturer. The certificate states that the attestation

key is only known to the trusted hardware, and only used

1

Trusted Hardware

Data Owner’s

Computer

Remote Computer

Secure Container

Data Owner Software
Provider

Infrastructure
Owner

Manages

Private Data

Owns
Trusts

Private Code

Computation

Dispatcher

Setup

Verification

Authors

Trusts

Untrusted Software

Setup
Computation

Receive
Encrypted

Results

Public Loader

Manufacturer

Builds

Trusts

Figure 2: Trusted computing. The user trusts the manufacturer of a

piece of hardware in the remote computer, and entrusts her data to a

secure container hosted by the secure hardware.

for the purpose of attestation.

SGX stands out from its predecessors by the amount

of code covered by the attestation, which is in the Trusted

Computing Base (TCB) for the system using hardware

protection. The attestations produced by the original

TPM design covered all the software running on a com-

puter, and TXT attestations covered the code inside a

VMX [181] virtual machine. In SGX, an enclave (secure

container) only contains the private data in a computation,

and the code that operates on it.

For example, a cloud service that performs image pro-

cessing on confidential medical images could be imple-

mented by having users upload encrypted images. The

users would send the encryption keys to software running

inside an enclave. The enclave would contain the code

for decrypting images, the image processing algorithm,

and the code for encrypting the results. The code that

receives the uploaded encrypted images and stores them

would be left outside the enclave.

An SGX-enabled processor protects the integrity and

confidentiality of the computation inside an enclave by

isolating the enclave’s code and data from the outside

environment, including the operating system and hyper-

visor, and hardware devices attached to the system bus.

At the same time, the SGX model remains compatible

with the traditional software layering in the Intel archi-

tecture, where the OS kernel and hypervisor manage the

computer’s resources.

This work discusses the original version of SGX, also

referred to as SGX 1. While SGX 2 brings very useful

Trusted Platform

Secure Container

Data Owner’s Computer

Initial State

Public Code + Data

Key exchange: B, g
A

Shared key: K = g
AB

Key exchange: A, g
A

g
A

g
B

, SignAK(g
A

, g
B

, M)

M = Hash(Initial State)

Shared key: K = g
AB

EncK(secret code/data)
Secret Code + Data

Computation Results

EncK(results)
Computation Results

AK: Attestation Key

Endorsement Certificate

Figure 3: Software attestation proves to a remote computer that

it is communicating with a specific secure container hosted by a

trusted platform. The proof is an attestation signature produced

by the platform’s secret attestation key. The signature covers the

container’s initial state, a challenge nonce produced by the remote

computer, and a message produced by the container.

improvements for enclave authors, it is a small incre-

mental improvement, from a design and implementation

standpoint. After understanding the principles behind

SGX 1 and its security properties, the reader should be

well equipped to face Intel’s reference documentation

and learn about the changes brought by SGX 2.

1.1 SGX Lightning Tour

SGX sets aside a memory region, called the Processor

Reserved Memory (PRM, § 5.1). The CPU protects the

PRM from all non-enclave memory accesses, including

kernel, hypervisor and SMM (§ 2.3) accesses, and DMA

accesses (§ 2.9.1) from peripherals.

The PRM holds the Enclave Page Cache (EPC,

§ 5.1.1), which consists of 4 KB pages that store enclave

code and data. The system software, which is untrusted,

is in charge of assigning EPC pages to enclaves. The

CPU tracks each EPC page’s state in the Enclave Page

Cache Metadata (EPCM, § 5.1.2), to ensure that each

EPC page belongs to exactly one enclave.

The initial code and data in an enclave is loaded by un-

trusted system software. During the loading stage (§ 5.3),

the system software asks the CPU to copy data from un-

protected memory (outside PRM) into EPC pages, and

assigns the pages to the enclave being setup (§ 5.1.2).

It follows that the initial enclave state is known to the

system software.

After all the enclave’s pages are loaded into EPC, the

system software asks the CPU to mark the enclave as

initialized (§ 5.3), at which point application software

can run the code inside the enclave. After an enclave is

2

initialized, the loading method described above is dis-

abled.

While an enclave is loaded, its contents is cryptograph-

ically hashed by the CPU. When the enclave is initialized,

the hash is finalized, and becomes the enclave’s measure-

ment hash (§ 5.6).

A remote party can undergo a software attestation

process (§ 5.8) to convince itself that it is communicating

with an enclave that has a specific measurement hash,

and is running in a secure environment.

Execution flow can only enter an enclave via special

CPU instructions (§ 5.4), which are similar to the mech-

anism for switching from user mode to kernel mode.

Enclave execution always happens in protected mode, at

ring 3, and uses the address translation set up by the OS

kernel and hypervisor.

To avoid leaking private data, a CPU that is executing

enclave code does not directly service an interrupt, fault

(e.g., a page fault) or VM exit. Instead, the CPU first per-

forms an Asynchronous Enclave Exit (§ 5.4.3) to switch

from enclave code to ring 3 code, and then services the

interrupt, fault, or VM exit. The CPU performs an AEX

by saving the CPU state into a predefined area inside the

enclave and transfers control to a pre-specified instruc-

tion outside the enclave, replacing CPU registers with

synthetic values.

The allocation of EPC pages to enclaves is delegated

to the OS kernel (or hypervisor). The OS communicates

its allocation decisions to the SGX implementation via

special ring 0 CPU instructions (§ 5.3). The OS can also

evict EPC pages into untrusted DRAM and later load

them back, using dedicated CPU instructions. SGX uses

cryptographic protections to assure the confidentiality,

integrity and freshness of the evicted EPC pages while

they are stored in untrusted memory.

1.2 Outline and Troubling Findings

Reasoning about the security properties of Intel’s SGX

requires a significant amount of background information

that is currently scattered across many sources. For this

reason, a significant portion of this work is dedicated to

summarizing this prerequisite knowledge.

Section 2 summarizes the relevant subset of the Intel

architecture and the micro-architectural properties of

recent Intel processors. Section 3 outlines the security

landscape around trusted hardware system, including

cryptographic tools and relevant attack classes. Last,

section 4 briefly describes the trusted hardware systems

that make up the context in which SGX was created.

After having reviewed the background information,

section 5 provides a (sometimes painstakingly) detailed

description of SGX’s programming model, mostly based

on Intel’s Software Development Manual.

Section 6 analyzes other public sources of informa-

tion, such as Intel’s SGX-related patents, to fill in some

of the missing details in the SGX description. The sec-

tion culminates in a detailed review of SGX’s security

properties that draws on information presented in the

rest of the paper. This review outlines some troubling

gaps in SGX’s security guarantees, as well as some areas

where no conclusions can be drawn without additional

information from Intel.

That being said, perhaps the most troubling finding in

our security analysis is that Intel added a launch control

feature to SGX that forces each computer’s owner to gain

approval from a third party (which is currently Intel) for

any enclave that the owner wishes to use on the com-

puter. § 5.9 explains that the only publicly documented

intended use for this launch control feature is a licensing

mechanism that requires software developers to enter a

(yet unspecified) business agreement with Intel to be able

to author software that takes advantage of SGX’s protec-

tions. All the official documentation carefully sidesteps

this issue, and has a minimal amount of hints that lead to

the Intel’s patents on SGX. Only these patents disclose

the existence of licensing plans.

The licensing issue might not bear much relevance

right now, because our security analysis reveals that the

limitations in SGX’s guarantees mean that a security-

conscious software developer cannot in good conscience

rely on SGX for secure remote computation. At the same

time, should SGX ever develop better security properties,

the licensing scheme described above becomes a major

problem, given Intel’s near-monopoly market share of

desktop and server CPUs. Specifically, the licensing limi-

tations effectively give Intel the power to choose winners

and losers in industries that rely on cloud computing.

2 COMPUTER ARCHITECTURE BACK-

GROUND

This section attempts to summarize the general archi-

tectural principles behind Intel’s most popular computer

processors, as well as the peculiarities needed to reason

about the security properties of a system running on these

processors. Unless specified otherwise, the information

here is summarized from Intel’s Software Development

Manual (SDM) [101].

Analyzing the security of a software system requires

3

understanding the interactions between all the parts of

the software’s execution environment, so this section is

quite long. We do refrain from introducing any security

concepts here, so readers familiar with x86’s intricacies

can safely skip this section and refer back to it when

necessary.

We use the terms Intel processor or Intel CPU to refer

to the server and desktop versions of Intel’s Core line-

up. In the interest of space and mental sanity, we ignore

Intel’s other processors, such as the embedded line of

Atom CPUs, or the failed Itanium line. Consequently,

the terms Intel computers and Intel systems refers to

computer systems built around Intel’s Core processors.

In this paper, the term Intel architecture refers to the

x86 architecture described in Intel’s SDM. The x86 ar-

chitecture is overly complex, mostly due to the need to

support executing legacy software dating back to 1990

directly on the CPU, without the overhead of software

interpretation. We only cover the parts of the architecture

visible to modern 64-bit software, also in the interest of

space and mental sanity.

The 64-bit version of the x86 architecture, covered in

this section, was actually invented by Advanced Micro

Devices (AMD), and is also known as AMD64, x86 64,

and x64. The term “Intel architecture” highlights our

interest in the architecture’s implementation in Intel’s

chips, and our desire to understand the mindsets of Intel

SGX’s designers.

2.1 Overview

A computer’s main resources (§ 2.2) are memory and

processors. On Intel computers, Dynamic Random-

Access Memory (DRAM) chips (§ 2.9.1) provide the

memory, and one or more CPU chips expose logical

processors (§ 2.9.4). These resources are managed by

system software. An Intel computer typically runs two

kinds of system software, namely operating systems and

hypervisors.

The Intel architecture was designed to support running

multiple application software instances, called processes.

An operating system (§ 2.3), allocates the computer’s re-

sources to the running processes. Server computers, espe-

cially in cloud environments, may run multiple operating

system instances at the same time. This is accomplished

by having a hypervisor (§ 2.3) partition the computer’s re-

sources between the operating system instances running

on the computer.

System software uses virtualization techniques to iso-

late each piece of software that it manages (process or

operating system) from the rest of the software running

on the computer. This isolation is a key tool for keeping

software complexity at manageable levels, as it allows

application and OS developers to focus on their software,

and ignore the interactions with other software that may

run on the computer.

A key component of virtualization is address transla-

tion (§ 2.5), which is used to give software the impression

that it owns all the memory on the computer. Address

translation provides isolation that prevents a piece of

buggy or malicious software from directly damaging

other software, by modifying its memory contents.

The other key component of virtualization is the soft-

ware privilege levels (§ 2.3) enforced by the CPU. Hard-

ware privilege separation ensures that a piece of buggy

or malicious software cannot damage other software indi-

rectly, by interfering with the system software managing

it.

Processes express their computing power requirements

by creating execution threads, which are assigned by the

operating system to the computer’s logical processors.

A thread contains an execution context (§ 2.6), which is

the information necessary to perform a computation. For

example, an execution context stores the address of the

next instruction that will be executed by the processor.

Operating systems give each process the illusion that it

has an infinite amount of logical processors at its disposal,

and multiplex the available logical processors between

the threads created by each process. Modern operating

systems implement preemptive multithreading, where

the logical processors are rotated between all the threads

on a system every few milliseconds. Changing the thread

assigned to a logical processor is accomplished by an

execution context switch (§ 2.6).

Hypervisors expose a fixed number of virtual proces-

sors (vCPUs) to each operating system, and also use

context switching to multiplex the logical CPUs on a

computer between the vCPUs presented to the guest op-

erating systems.

The execution core in a logical processor can execute

instructions and consume data at a much faster rate than

DRAM can supply them. Many of the complexities in

modern computer architectures stem from the need to

cover this speed gap. Recent Intel CPUs rely on hyper-

threading (§ 2.9.4), out-of-order execution (§ 2.10), and

caching (§ 2.11), all of which have security implications.

An Intel processor contains many levels of interme-

diate memories that are much faster than DRAM, but

also orders of magnitude smaller. The fastest intermedi-

4

ate memory is the logical processor’s register file (§ 2.2,

§ 2.4, § 2.6). The other intermediate memories are called

caches (§ 2.11). The Intel architecture requires applica-

tion software to explicitly manage the register file, which

serves as a high-speed scratch space. At the same time,

caches transparently accelerate DRAM requests, and are

mostly invisible to software.

Intel computers have multiple logical processors. As

a consequence, they also have multiple caches dis-

tributed across the CPU chip. On multi-socket systems,

the caches are distributed across multiple CPU chips.

Therefore, Intel systems use a cache coherence mech-

anism (§ 2.11.3), ensuring that all the caches have the

same view of DRAM. Thanks to cache coherence, pro-

grammers can build software that is unaware of caching,

and still runs correctly in the presence of distributed

caches. However, cache coherence does not cover the

dedicated caches used by address translation (§ 2.11.5),

and system software must take special measures to keep

these caches consistent.

CPUs communicate with the outside world via I/O

devices (also known as peripherals), such as network

interface cards and display adapters (§ 2.9). Conceptu-

ally, the CPU communicates with the DRAM chips and

the I/O devices via a system bus that connects all these

components.

Software written for the Intel architecture communi-

cates with I/O devices via the I/O address space (§ 2.4)

and via the memory address space, which is primarily

used to access DRAM. System software must configure

the CPU’s caches (§ 2.11.4) to recognize the memory

address ranges used by I/O devices. Devices can notify

the CPU of the occurrence of events by dispatching in-

terrupts (§ 2.12), which cause a logical processor to stop

executing its current thread, and invoke a special handler

in the system software (§ 2.8.2).

Intel systems have a highly complex computer initial-

ization sequence (§ 2.13), due to the need to support a

large variety of peripherals, as well as a multitude of

operating systems targeting different versions of the ar-

chitecture. The initialization sequence is a challenge to

any attempt to secure an Intel computer, and has facili-

tated many security compromises (§ 2.3).

Intel’s engineers use the processor’s microcode facil-

ity (§ 2.14) to implement the more complicated aspects

of the Intel architecture, which greatly helps manage the

hardware’s complexity. The microcode is completely

invisible to software developers, and its design is mostly

undocumented. However, in order to evaluate the feasi-

bility of any architectural change proposals, one must be

able to distinguish changes that can be implemented in

microcode from changes that can only be accomplished

by modifying the hardware.

2.2 Computational Model

This section pieces together a highly simplified model

for a computer that implements the Intel architecture,

illustrated in Figure 4. This simplified model is intended

to help the reader’s intuition process the fundamental

concepts used by the rest of the paper. The following sec-

tions gradually refine the simplified model into a detailed

description of the Intel architecture.

I/O device

Memory (DRAM)

Processor

System Bus

Register file

…
0

Execution

logic

Processor

Register file

Execution

logic interface to

outside

world

Figure 4: A computer’s core is its processors and memory, which

are connected by a system bus. Computers also have I/O devices,

such as keyboards, which are also connected to the processor via the

system bus.

The building blocks for the model presented here come

from [165], which introduces the key abstractions in a

computer system, and then focuses on the techniques

used to build software systems on top of these abstrac-

tions.

The memory is an array of storage cells, addressed

using natural numbers starting from 0, and implements

the abstraction depicted in Figure 5. Its salient feature

is that the result of reading a memory cell at an address

must equal the most recent value written to that memory

cell.

WRITE(addr, value)→ ∅

Store value in the storage cell identified by addr.

READ(addr)→ value

Return the value argument to the most recent WRITE

call referencing addr.

Figure 5: The memory abstraction

A logical processor repeatedly reads instructions from

the computer’s memory and executes them, according to

the flowchart in Figure 6.

The processor has an internal memory, referred to

as the register file. The register file consists of Static

5

IP Generation

Commit

Register Read

Execute

Exception HandlingIP Generation

Exception Handling

Execute the current instruction

Read the current instruction’s

input registers

Did a fault occur?

Write the execution results to

the current instruction’s output

registers

NO

Increment RIP by the size of

the current instruction

Write fault data to the

exception registers
YES

Interrupted?

NO

Write interrupt

data to exception

registers

Write the exception

handler address to RIP

Locate the current

exception’s handler

YES

Push RSP and RIP to

the exception stack

Write the exception

stack top to RSP and

Decode
Identify the desired operation,

inputs, and outputs

Output registers

include RIP?

NO

YES

Locate the handler’s

exception stack top

Fetch
Read the current instruction

from the memory at RIP

Figure 6: A processor fetches instructions from the memory and

executes them. The RIP register holds the address of the instruction

to be executed.

Random Access Memory (SRAM) cells, generally known

as registers, which are significantly faster than DRAM

cells, but also a lot more expensive.

An instruction performs a simple computation on its

inputs and stores the result in an output location. The

processor’s registers make up an execution context that

provides the inputs and stores the outputs for most in-

structions. For example, ADD RDX, RAX, RBX per-

forms an integer addition, where the inputs are the regis-

ters RAX and RBX, and the result is stored in the output

register RDX.

The registers mentioned in Figure 6 are the instruction

pointer (RIP), which stores the memory address of the

next instruction to be executed by the processor, and the

stack pointer (RSP), which stores the memory address

of the topmost element in the call stack used by the

processor’s procedural programming support. The other

execution context registers are described in § 2.4 and

§ 2.6.

Under normal circumstances, the processor repeatedly

reads an instruction from the memory address stored in

RIP, executes the instruction, and updates RIP to point

to the following instruction. Unlike many RISC architec-

tures, the Intel architecture uses a variable-size instruc-

tion encoding, so the size of an instruction is not known

until the instruction has been read from memory.

While executing an instruction, the processor may

encounter a fault, which is a situation where the instruc-

tion’s preconditions are not met. When a fault occurs,

the instruction does not store a result in the output loca-

tion. Instead, the instruction’s result is considered to be

the fault that occurred. For example, an integer division

instruction DIV where the divisor is zero results in a

Division Fault (#DIV).

When an instruction results in a fault, the processor

stops its normal execution flow, and performs the fault

handler process documented in § 2.8.2. In a nutshell, the

processor first looks up the address of the code that will

handle the fault, based on the fault’s nature, and sets up

the execution environment in preparation to execute the

fault handler.

The processors are connected to each other and to the

memory via a system bus, which is a broadcast network

that implements the abstraction in Figure 7.

SEND(op, addr, data)→ ∅

Place a message containing the operation code op, the

bus address addr, and the value data on the bus.

READ()→ (op, addr, value)

Return the message that was written on the bus at the

beginning of this clock cycle.

Figure 7: The system bus abstraction

During each clock cycle, at most one of the devices

connected to the system bus can send a message, which

is received by all the other devices connected to the bus.

Each device attached to the bus decodes the operation

codes and addresses of all the messages sent on the bus

and ignores the messages that do not require its involve-

ment.

For example, when the processor wishes to read a

memory location, it sends a message with the operation

code READ-REQUEST and the bus address corresponding

to the desired memory location. The memory sees the

message on the bus and performs the READ operation.

6

At a later time, the memory responds by sending a mes-

sage with the operation code READ-RESPONSE, the same

address as the request, and the data value set to the result

of the READ operation.

The computer communicates with the outside world

via I/O devices, such as keyboards, displays, and net-

work cards, which are connected to the system bus. De-

vices mostly respond to requests issued by the processor.

However, devices also have the ability to issue interrupt

requests that notify the processor of outside events, such

as the user pressing a key on a keyboard.

Interrupt triggering is discussed in § 2.12. On modern

systems, devices send interrupt requests by issuing writes

to special bus addresses. Interrupts are considered to be

hardware exceptions, just like faults, and are handled in

a similar manner.

2.3 Software Privilege Levels

In an Infrastructure-as-a-Service (IaaS) cloud environ-

ment, such as Amazon EC2, commodity CPUs run soft-

ware at four different privilege levels, shown in Figure 8.

VMX

Root

Ring 1

Ring 2

Ring 3

VMX

Non-Root

Ring 0 Hypervisor

Ring 1

Ring 2

Ring 0 OS Kernel

Ring 3
Application

SMM BIOS

SGX Enclave

S
y
s
te

m
 S

o
ftw

a
re

Less Privileged

More Privileged

Figure 8: The privilege levels in the x86 architecture, and the

software that typically runs at each security level.

Each privilege level is strictly more powerful than the

ones below it, so a piece of software can freely read and

modify the code and data running at less privileged levels.

Therefore, a software module can be compromised by

any piece of software running at a higher privilege level.

It follows that a software module implicitly trusts all

the software running at more privileged levels, and a

system’s security analysis must take into account the

software at all privilege levels.

System Management Mode (SMM) is intended for use

by the motherboard manufacturers to implement features

such as fan control and deep sleep, and/or to emulate

missing hardware. Therefore, the bootstrapping software

(§ 2.13) in the computer’s firmware is responsible for

setting up a continuous subset of DRAM as System Man-

agement RAM (SMRAM), and for loading all the code

that needs to run in SMM mode into SMRAM. The SM-

RAM enjoys special hardware protections that prevent

less privileged software from accessing the SMM code.

IaaS cloud providers allow their customers to run their

operating system of choice in a virtualized environment.

Hardware virtualization [181], called Virtual Machine

Extensions (VMX) by Intel, adds support for a hypervi-

sor, also called a Virtual Machine Monitor (VMM) in

the Intel documentation. The hypervisor runs at a higher

privilege level (VMX root mode) than the operating sys-

tem, and is responsible for allocating hardware resources

across multiple operating systems that share the same

physical machine. The hypervisor uses the CPU’s hard-

ware virtualization features to make each operating sys-

tem believe it is running in its own computer, called a

virtual machine (VM). Hypervisor code generally runs

at ring 0 in VMX root mode.

Hypervisors that run in VMX root mode and take ad-

vantage of hardware virtualization generally have better

performance and a smaller codebase than hypervisors

based on binary translation [161].

The systems research literature recommends breaking

up an operating system into a small kernel, which runs

at a high privilege level, known as the kernel mode or

supervisor mode and, in the Intel architecture, as ring 0.

The kernel allocates the computer’s resources to the other

system components, such as device drivers and services,

which run at lower privilege levels. However, for per-

formance reasons1, mainstream operating systems have

large amounts of code running at ring 0. Their monolithic

kernels include device drivers, filesystem code, network-

ing stacks, and video rendering functionality.

Application code, such as a Web server or a game

client, runs at the lowest privilege level, referred to as

user mode (ring 3 in the Intel architecture). In IaaS cloud

environments, the virtual machine images provided by

customers run in VMX non-root mode, so the kernel runs

in VMX non-root ring 0, and the application code runs

in VMX non-root ring 3.

2.4 Address Spaces

Software written for the Intel architecture accesses the

computer’s resources using four distinct physical address

1Calling a procedure in a different ring is much slower than calling

code at the same privilege level.

7

spaces, shown in Figure 9. The address spaces overlap

partially, in both purpose and contents, which can lead to

confusion. This section gives a high-level overview of the

physical address spaces defined by the Intel architecture,

with an emphasis on their purpose and the methods used

to manage them.

System Buses

CPU

DeviceDRAM

Registers
MSRs

(Model-Specific Registers)

Memory Addresses I/O Ports

Device

Software

Figure 9: The four physical address spaces used by an Intel CPU.

The registers and MSRs are internal to the CPU, while the memory

and I/O address spaces are used to communicate with DRAM and

other devices via system buses.

The register space consists of names that are used to

access the CPU’s register file, which is the only memory

that operates at the CPU’s clock frequency and can be

used without any latency penalty. The register space is

defined by the CPU’s architecture, and documented in

the SDM.

Some registers, such as the Control Registers (CRs)

play specific roles in configuring the CPU’s operation.

For example, CR3 plays a central role in address trans-

lation (§ 2.5). These registers can only be accessed by

system software. The rest of the registers make up an

application’s execution context (§ 2.6), which is essen-

tially a high-speed scratch space. These registers can

be accessed at all privilege levels, and their allocation is

managed by the software’s compiler. Many CPU instruc-

tions only operate on data in registers, and only place

their results in registers.

The memory space, generally referred to as the address

space, or the physical address space, consists of 236

(64 GB) - 240 (1 TB) addresses. The memory space is

primarily used to access DRAM, but it is also used to

communicate with memory-mapped devices that read

memory requests off a system bus and write replies for

the CPU. Some CPU instructions can read their inputs

from the memory space, or store the results using the

memory space.

A better-known example of memory mapping is that

at computer startup, memory addresses 0xFFFF0000 -

0xFFFFFFFF (the 64 KB of memory right below the

4 GB mark) are mapped to a flash memory device that

holds the first stage of the code that bootstraps the com-

puter.

The memory space is partitioned between devices and

DRAM by the computer’s firmware during the bootstrap-

ping process. Sometimes, system software includes

motherboard-specific code that modifies the memory

space partitioning. The OS kernel relies on address trans-

lation, described in § 2.5, to control the applications’

access to the memory space. The hypervisor relies on

the same mechanism to control the guest OSs.

The input/output (I/O) space consists of 216 I/O ad-

dresses, usually called ports. The I/O ports are used

exclusively to communicate with devices. The CPU pro-

vides specific instructions for reading from and writing

to the I/O space. I/O ports are allocated to devices by

formal or de-facto standards. For example, ports 0xCF8

and 0xCFC are always used to access the PCI express

(§ 2.9.1) configuration space.

The CPU implements a mechanism for system soft-

ware to provide fine-grained I/O access to applications.

However, all modern kernels restrict application software

from accessing the I/O space directly, in order to limit

the damage potential of application bugs.

The Model-Specific Register (MSR) space consists of

232 MSRs, which are used to configure the CPU’s op-

eration. The MSR space was initially intended for the

use of CPU model-specific firmware, but some MSRs

have been promoted to architectural MSR status, making

their semantics a part of the Intel architecture. For ex-

ample, architectural MSR 0x10 holds a high-resolution

monotonically increasing time-stamp counter.

The CPU provides instructions for reading from and

writing to the MSR space. The instructions can only be

used by system software. Some MSRs are also exposed

by instructions accessible to applications. For example,

applications can read the time-stamp counter via the

RDTSC and RDTSCP instructions, which are very useful

for benchmarking and optimizing software.

2.5 Address Translation

System software relies on the CPU’s address transla-

tion mechanism for implementing isolation among less

privileged pieces of software (applications or operating

systems). Virtually all secure architecture designs bring

changes to address translation. We summarize the Intel

8

architecture’s address translation features that are most

relevant when establishing a system’s security proper-

ties, and refer the reader to [108] for a more general

presentation of address translation concepts and its other

uses.

2.5.1 Address Translation Concepts

From a systems perspective, address translation is a layer

of indirection (shown in Figure 10) between the virtual

addresses, which are used by a program’s memory load

and store instructions, and the physical addresses, which

reference the physical address space (§ 2.4). The map-

ping between virtual and physical addresses is defined by

page tables, which are managed by the system software.

Virtual

Address

Physical

Address
Mapping

Page

Tables

Virtual

Address Space

Physical

Address Space

Address

Translation

Software
DRAM

System bus

Figure 10: Virtual addresses used by software are translated into

physical memory addresses using a mapping defined by the page

tables.

Operating systems use address translation to imple-

ment the virtual memory abstraction, illustrated by Fig-

ure 11. The virtual memory abstraction exposes the same

interface as the memory abstraction in § 2.2, but each

process uses a separate virtual address space that only

references the memory allocated to that process. From

an application developer standpoint, virtual memory can

be modeled by pretending that each process runs on a

separate computer and has its own DRAM.

Process 1’s

address space

Computer’s physical address space

Process 2’s

address space

Process 3’s

address space

Memory page

Figure 11: The virtual memory abstraction gives each process

its own virtual address space. The operating system multiplexes

the computer’s DRAM between the processes, while application

developers build software as if it owns the entire computer’s memory.

Address translation is used by the operating system to

multiplex DRAM among multiple application processes,

isolate the processes from each other, and prevent ap-

plication code from accessing memory-mapped devices

directly. The latter two protection measures prevent an

application’s bugs from impacting other applications or

the OS kernel itself. Hypervisors also use address trans-

lation, to divide the DRAM among operating systems

that run concurrently, and to virtualize memory-mapped

devices.

The address translation mode used by 64-bit operating

systems, called IA-32e by Intel’s documentation, maps

48-bit virtual addresses to physical addresses of at most

52 bits2. The translation process, illustrated in Figure 12,

is carried out by dedicated hardware in the CPU, which is

referred to as the address translation unit or the memory

management unit (MMU).

The bottom 12 bits of a virtual address are not changed

by the translation. The top 36 bits are grouped into four

9-bit indexes, which are used to index into the page

tables. Despite its name, the page tables data structure

closely resembles a full 512-ary search tree where nodes

have fixed keys. Each node is represented in DRAM as

an array of 512 8-byte entries that contain the physical

addresses of the next-level children as well as some flags.

The physical address of the root node is stored in the

CR3 register. The arrays in the last-level nodes contain

the physical addresses that are the result of the address

translation.

The address translation function, which does not

change the bottom bits of addresses, partitions the mem-

ory address space into pages. A page is the set of all

memory locations that only differ in the bottom bits

which are not impacted by address translation, so all

the memory addresses in a virtual page translate to corre-

sponding addresses in the same physical page. From this

perspective, the address translation function can be seen

as a mapping between Virtual Page Numbers (VPN) and

Physical Page Numbers (PPN), as shown in Figure 13.

In addition to isolating application processes, operat-

ing systems also use the address translation feature to run

applications whose collective memory demands exceed

the amount of DRAM installed in the computer. The OS

evicts infrequently used memory pages from DRAM to

a larger (but slower) memory, such as a hard disk drive

(HDD) or solid-state drive (SSD). For historical reason,

this slower memory is referred to as the disk.

2The size of a physical address is CPU-dependent, and is 40 bits

for recent desktop CPUs and 44 bits for recent high-end server CPUs.

9

Virtual

Address

11…0

Page

Offset

20…12

PTE

Index

29…21

PDE

Index

38…30

PDPTE

Index

47…39

PML4

Index

64…48

Must

match

bit 48

Page Map Level 4 (PML4)

PML4 Entry: PDPT address

Page-Directory-Pointer Table

(PDPT)

PDPT Entry: PD address

Page-Directory (PD)

PD Entry: PT address

Page Table (PT)

PT Entry: Page address

CR3 Register:

PML4 address

+

Physical Address

Physical Page Number (PPN)

V
ir
tu

a
l
P

a
g

e
 N

u
m

b
e
r

(V
P

N
)

Figure 12: IA-32e address translation takes in a 48-bit virtual

address and outputs a 52-bit physical address.

The OS ability to over-commit DRAM is often called

page swapping, for the following reason. When an ap-

plication process attempts to access a page that has been

evicted, the OS “steps in” and reads the missing page

back into DRAM. In order to do this, the OS might have

to evict a different page from DRAM, effectively swap-

ping the contents of a DRAM page with a disk page. The

details behind this high-level description are covered in

the following sections.

The CPU’s address translation is also referred to as

“paging”, which is a shorthand for “page swapping”.

2.5.2 Address Translation and Virtualization

Computers that take advantage of hardware virtualization

use a hypervisor to run multiple operating systems at

the same time. This creates some tension, because each

operating system was written under the assumption that it

owns the entire computer’s DRAM. The tension is solved

Address Translation Unit

Page OffsetVirtual Page Number (VPN)

111263

12

Physical Page Number (PPN)

43

Page Offset

0

11 0

Virtual address

Physical address

must match bit 47

4748

Figure 13: Address translation can be seen as a mapping between

virtual page numbers and physical page numbers.

by a second layer of address translation, illustrated in

Figure 14.

Virtual Address

Guest-Physical Address

MappingPage Tables

Physical Address

Mapping
Extended Page

Tables (EPT)

Guest OS

Address Space

Physical

Address Space

Virtual

Address Space

Figure 14: Virtual addresses used by software are translated into

physical memory addresses using a mapping defined by the page

tables.

When a hypervisor is active, the page tables set up

by an operating system map between virtual addresses

and guest-physical addresses in a guest-physical ad-

dress space. The hypervisor multiplexes the computer’s

DRAM between the operating systems’ guest-physical

address spaces via the second layer of address transla-

tions, which uses extended page tables (EPT) to map

guest-physical addresses to physical addresses.

The EPT uses the same data structure as the page

tables, so the process of translating guest-physical ad-

dresses to physical addresses follows the same steps as

IA-32e address translation. The main difference is that

the physical address of the data structure’s root node is

stored in the extended page table pointer (EPTP) field

in the Virtual Machine Control Structure (VMCS) for

the guest OS. Figure 15 illustrates the address translation

process in the presence of hardware virtualization.

2.5.3 Page Table Attributes

Each page table entry contains a physical address, as

shown in Figure 12, and some Boolean values that are

referred to as flags or attributes. The following attributes

10

Virtual

Address

EPT

PD

EPT

PT

EPT

PDPT

EPT

PML4

PDPT

(Physical)

PDPT

(Guest)

EPTP in

VMCS

EPT

PD

EPT

PT

EPT

PDPT

EPT

PML4

PD

(Physical)

PD

(Guest)

EPT

PD

EPT

PT

EPT

PDPT

EPT

PML4

PT

(Physical)

PT

(Guest)

EPT

PD

EPT

PT

EPT

PDPT

EPT

PML4

Physical

Address

Guest

Physical

Address

EPT

PD

EPT

PT

EPT

PDPT

EPT

PML4

PML4

(Physical)

CR3:

PML4

(Guest)

Figure 15: Address translation when hardware virtualization is

enabled. The kernel-managed page tables contain guest-physical

addresses, so each level in the kernel’s page table requires a full walk

of the hypervisor’s extended page table (EPT). A translation requires

up to 20 memory accesses (the bold boxes), assuming the physical

address of the kernel’s PML4 is cached.

are used to implement page swapping and software isola-

tion.

The present (P) flag is set to 0 to indicate unused parts

of the address space, which do not have physical memory

associated with them. The system software also sets the

P flag to 0 for pages that are evicted from DRAM. When

the address translation unit encounters a zero P flag, it

aborts the translation process and issues a hardware ex-

ception, as described in § 2.8.2. This hardware exception

gives system software an opportunity to step in and bring

an evicted page back into DRAM.

The accessed (A) flag is set to 1 by the CPU whenever

the address translation machinery reads a page table entry,

and the dirty (D) flag is set to 1 by the CPU when an

entry is accessed by a memory write operation. The

A and D flags give the hypervisor and kernel insight

into application memory access patterns and inform the

algorithms that select the pages that get evicted from

RAM.

The main attributes supporting software isolation are

the writable (W) flag, which can be set to 0 to prohibit3

writes to any memory location inside a page, the disable

execution (XD) flag, which can be set to 1 to prevent

instruction fetches from a page, and the supervisor (S)

flag, which can be set to 1 to prohibit any accesses from

application software running at ring 3.

3Writes to non-writable pages result in #GP exceptions (§ 2.8.2).

2.6 Execution Contexts

Application software targeting the 64-bit Intel architec-

ture uses a variety of CPU registers to interact with the

processor’s features, shown in Figure 16 and Table 1. The

values in these registers make up an application thread’s

state, or execution context.

OS kernels multiplex each logical processor (§ 2.9.4)

between multiple software threads by context switching,

namely saving the values of the registers that make up a

thread’s execution context, and replacing them with an-

other thread’s previously saved context. Context switch-

ing also plays a part in executing code inside secure

containers, so its design has security implications.

RAX RBX RCX RDX

RSI RDI RBP RSP - stack pointer

RIP - instruction pointer

R8 R9 R10 R11

R12 R13 R14 R15

64-bit integers / pointers 64-bit special-purpose registers

RFLAGS - status / control bits

ignored segment registers

CS DS ES SS

segment registers

FS

64-bit FS base

GS

64-bit GS base

RSP

Figure 16: CPU registers in the 64-bit Intel architecture. RSP can be

used as a general-purpose register (GPR), e.g., in pointer arithmetic,

but it always points to the top of the program’s stack. Segment

registers are covered in § 2.7.

Integers and memory addresses are stored in 16

general-purpose registers (GPRs). The first 8 GPRs have

historical names: RAX, RBX, RCX, RDX, RSI, RDI,

RSP, and RBP, because they are extended versions of

the 32-bit Intel architecture’s GPRs. The other 8 GPRs

are simply known as R9-R16. RSP is designated for

pointing to the top of the procedure call stack, which is

simply referred to as the stack. RSP and the stack that

it refers to are automatically read and modified by the

CPU instructions that implement procedure calls, such

as CALL and RET (return), and by specialized stack han-

dling instructions such as PUSH and POP.

All applications also use the RIP register, which con-

tains the address of the currently executing instruction,

and the RFLAGS register, whose bits (e.g., the carry flag

- CF) are individually used to store comparison results

and control various instructions.

Software might use other registers to interact with

specific processor features, some of which are shown in

Table 1.

The Intel architecture provides a future-proof method

for an OS kernel to save the values of feature-specific

registers used by an application. The XSAVE instruction

11

Feature Registers XCR0 bit

FPU FP0 - FP7, FSW, FTW 0

SSE MM0 - MM7, XMM0 -

XMM15, XMCSR

1

AVX YMM0 - YMM15 2

MPX BND0 - BND 3 3

MPX BNDCFGU, BNDSTATUS 4

AVX-512 K0 - K7 5

AVX-512 ZMM0 H - ZMM15 H 6

AVX-512 ZMM16 - ZMM31 7

PK PKRU 9

Table 1: Sample feature-specific Intel architecture registers.

takes in a requested-feature bitmap (RFBM), and writes

the registers used by the features whose RFBM bits are

set to 1 in a memory area. The memory area written by

XSAVE can later be used by the XRSTOR instruction to

load the saved values back into feature-specific registers.

The memory area includes the RFBM given to XSAVE,

so XRSTOR does not require an RFBM input.

Application software declares the features that it plans

to use to the kernel, so the kernel knows what XSAVE

bitmap to use when context-switching. When receiving

the system call, the kernel sets the XCR0 register to the

feature bitmap declared by the application. The CPU

generates a fault if application software attempts to use

features that are not enabled by XCR0, so applications

cannot modify feature-specific registers that the kernel

wouldn’t take into account when context-switching. The

kernel can use the CPUID instruction to learn the size of

the XSAVE memory area for a given feature bitmap, and

compute how much memory it needs to allocate for the

context of each of the application’s threads.

2.7 Segment Registers

The Intel 64-bit architecture gained widespread adoption

thanks to its ability to run software targeting the older 32-

bit architecture side-by-side with 64-bit software [169].

This ability comes at the cost of some warts. While most

of these warts can be ignored while reasoning about the

security of 64-bit software, the segment registers and

vestigial segmentation model must be understood.

The semantics of the Intel architecture’s instructions

include the implicit use of a few segments which are

loaded into the processor’s segment registers shown in

Figure 16. Code fetches use the code segment (CS).

Instructions that reference the stack implicitly use the

stack segment (SS). Memory references implicitly use the

data segment (DS) or the destination segment (ES). Via

segment override prefixes, instructions can be modified

to use the unnamed segments FS and GS for memory

references.

Modern operating systems effectively disable segmen-

tation by covering the entire addressable space with one

segment, which is loaded in CS, and one data segment,

which is loaded in SS, DS and ES. The FS and GS regis-

ters store segments covering thread-local storage (TLS).

Due to the Intel architecture’s 16-bit origins, segment

registers are exposed as 16-bit values, called segment

selectors. The top 13 bits in a selector are an index in a

descriptor table, and the bottom 2 bits are the selector’s

ring number, which is also called requested privilege

level (RPL) in the Intel documentation. Also, modern

system software only uses rings 0 and 3 (see § 2.3).

Each segment register has a hidden segment descrip-

tor, which consists of a base address, limit, and type

information, such as whether the descriptor should be

used for executable code or data. Figure 17 shows the

effect of loading a 16-bit selector into a segment register.

The selector’s index is used to read a descriptor from the

descriptor table and copy it into the segment register’s

hidden descriptor.

Descriptor Table

Register Selector

Index Ring

Register Descriptor

Base Limit Type

 ⋮

TypeLimitBase

 ⋮

Base Limit Type

TypeBase Limit

TypeBase Limit

GDTR

Base Limit

Input Value

Index Ring

+

Figure 17: Loading a segment register. The 16-bit value loaded by

software is a selector consisting of an index and a ring number. The

index selects a GDT entry, which is loaded into the descriptor part of

the segment register.

In 64-bit mode, all segment limits are ignored. The

base addresses in most segment registers (CS, DS, ES,

SS) are ignored. The base addresses in FS and GS are

used, in order to support thread-local storage. Figure 18

outlines the address computation in this case. The in-

struction’s address, named logical address in the Intel

documentation, is added to the base address in the seg-

ment register’s descriptor, yielding the virtual address,

also named linear address. The virtual address is then

12

translated (§ 2.5) to a physical address.

+

FS Register Descriptor

Base Limit Type

GPRsRSI

Linear Address

(Virtual Address)

Physical

Address

Address

Translation

Figure 18: Example address computation process for MOV

FS:[RDX], 0. The segment’s base address is added to the ad-

dress in RDX before address translation (§ 2.5) takes place.

Outside the special case of using FS or GS to refer-

ence thread-local storage, the logical and virtual (linear)

addresses match. Therefore, most of the time, we can get

away with completely ignoring segmentation. In these

cases, we use the term “virtual address” to refer to both

the virtual and the linear address.

Even though CS is not used for segmentation, 64-bit

system software needs to load a valid selector into it. The

CPU uses the ring number in the CS selector to track the

current privilege level, and uses one of the type bits to

know whether it’s running 64-bit code, or 32-bit code in

compatibility mode.

The DS and ES segment registers are completely ig-

nored, and can have null selectors loaded in them. The

CPU loads a null selector in SS when switching privilege

levels, discussed in § 2.8.2.

Modern kernels only use one descriptor table, the

Global Descriptor Table (GDT), whose virtual address

is stored in the GDTR register. Table 2 shows a typical

GDT layout that can be used by 64-bit kernels to run

both 32-bit and 64-bit applications.

Descriptor Selector

Null (must be unused) 0

Kernel code 0x08 (index 1, ring 0)

Kernel data 0x10 (index 2, ring 0)

User code 0x1B (index 3, ring 3)

User data 0x1F (index 4, ring 3)

TSS 0x20 (index 5, ring 0)

Table 2: A typical GDT layout in the 64-bit Intel Architecture.

The last entry in Table 2 is a descriptor for the Task

State Segment (TSS), which was designed to implement

hardware context switching, named task switching in

the Intel documentation. The descriptor is stored in the

Task Register (TR), which behaves like the other segment

registers described above.

Task switching was removed from the 64-bit architec-

ture, but the TR segment register was preserved, and it

points to a repurposed TSS data structure. The 64-bit

TSS contains an I/O map, which indicates what parts of

the I/O address space can be accessed directly from ring

3, and the Interrupt Stack Table (IST), which is used for

privilege level switching (§ 2.8.2).

Modern operating systems do not allow application

software any direct access to the I/O address space, so the

kernel sets up a single TSS that is loaded into TR during

early initialization, and used to represent all applications

running under the OS.

2.8 Privilege Level Switching

Any architecture that has software privilege levels must

provide a method for less privileged software to invoke

the services of more privileged software. For example,

application software needs the OS kernel’s assistance to

perform network or disk I/O, as that requires access to

privileged memory or to the I/O address space.

At the same time, less privileged software cannot be

offered the ability to jump arbitrarily into more privileged

code, as that would compromise the privileged software’s

ability to enforce security and isolation invariants. In our

example, when an application wishes to write a file to the

disk, the kernel must check if the application’s user has

access to that file. If the ring 3 code could perform an

arbitrary jump in kernel space, it would be able to skip

the access check.

For these reasons, the Intel architecture includes

privilege-switching mechanisms used to transfer control

from less privileged software to well-defined entry points

in more privileged software. As suggested above, an ar-

chitecture’s privilege-switching mechanisms have deep

implications for the security properties of its software.

Furthermore, securely executing the software inside a

protected container requires the same security considera-

tions as privilege level switching.

Due to historical factors, the Intel architecture has a

vast number of execution modes, and an intimidating

amount of transitions between them. We focus on the

privilege level switching mechanisms used by modern

64-bit software, summarized in Figure 19.

2.8.1 System Calls

On modern processors, application software uses the

SYSCALL instruction to invoke ring 0 code, and the ker-

nel uses SYSRET to switch the privilege level back to

ring 3. SYSCALL jumps into a predefined kernel loca-

13

Ring 3Ring 0
VMX

Root

SYSCALL

SYSRET

VMEXIT
VMFUNC

VMLAUNCH
VMRESUME

Fault
Interrupt

IRET

VM
exit

VM exit

Figure 19: Modern privilege switching methods in the 64-bit Intel

architecture.

tion, which is specified by writing to a pair of architec-

tural MSRs (§ 2.4).

All MSRs can only be read or written by ring 0 code.

This is a crucial security property, because it entails that

application software cannot modify SYSCALL’s MSRs.

If that was the case, a rogue application could abuse the

SYSCALL instruction to execute arbitrary kernel code,

potentially bypassing security checks.

The SYSRET instruction switches the current privilege

level from ring 0 back to ring 3, and jumps to the address

in RCX, which is set by the SYSCALL instruction. The

SYSCALL / SYSRET pair does not perform any memory

access, so it out-performs the Intel architecture’s previous

privilege switching mechanisms, which saved state on

a stack. The design can get away without referencing a

stack because kernel calls are not recursive.

2.8.2 Faults

The processor also performs a switch from ring 3 to

ring 0 when a hardware exception occurs while execut-

ing application code. Some exceptions indicate bugs in

the application, whereas other exceptions require kernel

action.

A general protection fault (#GP) occurs when software

attempts to perform a disallowed action, such as setting

the CR3 register from ring 3.

A page fault (#PF) occurs when address translation

encounters a page table entry whose P flag is 0, or when

the memory inside a page is accessed in way that is

inconsistent with the access bits in the page table entry.

For example, when ring 3 software accesses the memory

inside a page whose S bit is set, the result of the memory

access is #PF.

When a hardware exception occurs in application code,

the CPU performs a ring switch, and calls the correspond-

ing exception handler. For example, the #GP handler

typically terminates the application’s process, while the

#PF handler reads the swapped out page back into RAM

and resumes the application’s execution.

The exception handlers are a part of the OS kernel,

and their locations are specified in the first 32 entries of

the Interrupt Descriptor Table (IDT), whose structure is

shown in Table 3. The IDT’s physical address is stored in

the IDTR register, which can only be accessed by ring 0

code. Kernels protect the IDT memory using page tables,

so that ring 3 software cannot access it.

Field Bits

Handler RIP 64

Handler CS 16

Interrupt Stack Table (IST) index 3

Table 3: The essential fields of an IDT entry in 64-bit mode. Each

entry points to a hardware exception or interrupt handler.

Each IDT entry has a 3-bit index pointing into the

Interrupt Stack Table (IST), which is an array of 8 stack

pointers stored in the TSS described in § 2.7.

When a hardware exception occurs, the execution state

may be corrupted, and the current stack cannot be relied

on. Therefore, the CPU first uses the handler’s IDT entry

to set up a known good stack. SS is loaded with a null

descriptor, and RSP is set to the IST value to which the

IDT entry points. After switching to a reliable stack,

the CPU pushes the snapshot in Table 4 on the stack,

then loads the IDT entry’s values into the CS and RIP

registers, which trigger the execution of the exception

handler.

Field Bits

Exception SS 64

Exception RSP 64

RFLAGS 64

Exception CS 64

Exception RIP 64

Exception code 64

Table 4: The snapshot pushed on the handler’s stack when a hard-

ware exception occurs. IRET restores registers from this snapshot.

After the exception handler completes, it uses the

IRET (interrupt return) instruction to load the registers

from the on-stack snapshot and switch back to ring 3.

The Intel architecture gives the fault handler complete

control over the execution context of the software that in-

curred the fault. This privilege is necessary for handlers

(e.g., #GP) that must perform context switches (§ 2.6)

as a consequence of terminating a thread that encoun-

tered a bug. It follows that all fault handlers must be

trusted to not leak or tamper with the information in an

application’s execution context.

14

2.8.3 VMX Privilege Level Switching

Intel systems that take advantage of the hardware virtu-

alization support to run multiple operating systems at

the same time use a hypervisor that manages the VMs.

The hypervisor creates a Virtual Machine Control Struc-

ture (VMCS) for each operating system instance that

it wishes to run, and uses the VMENTER instruction to

assign a logical processor to the VM.

When a logical processor encounters a fault that must

be handled by the hypervisor, the logical processor per-

forms a VM exit. For example, if the address translation

process encounters an EPT entry with the P flag set to 0,

the CPU performs a VM exit, and the hypervisor has an

opportunity to bring the page into RAM.

The VMCS shows a great application of the encapsula-

tion principle [130], which is generally used in high-level

software, to computer architecture. The Intel architecture

specifies that each VMCS resides in DRAM and is 4 KB

in size. However, the architecture does not specify the

VMCS format, and instead requires the hypervisor to

interact with the VMCS via CPU instructions such as

VMREAD and VMWRITE.

This approach allows Intel to add VMX features that

require VMCS format changes, without the burden of

having to maintain backwards compatibility. This is no

small feat, given that huge amounts of complexity in the

Intel architecture were introduced due to compatibility

requirements.

2.9 A Computer Map

This section outlines the hardware components that make

up a computer system based on the Intel architecture.

§ 2.9.1 summarizes the structure of a motherboard.

This is necessary background for reasoning about the

cost and impact of physical attacks against a computing

system. § 2.9.2 describes Intel’s Management Engine,

which plays a role in the computer’s bootstrap process,

and has significant security implications.

§ 2.9.3 presents the building blocks of an Intel proces-

sor, and § 2.9.4 models an Intel execution core at a high

level. This is the foundation for implementing defenses

against physical attacks. Perhaps more importantly, rea-

soning about software attacks based on information leak-

age, such as timing attacks, requires understanding how

a processor’s computing resources are shared and parti-

tioned between mutually distrusting parties.

The information in here is either contained in the SDM

or in Intel’s Optimization Reference Manual [96].

2.9.1 The Motherboard

A computer’s components are connected by a printed

circuit board called a motherboard, shown in Figure 20,

which consists of sockets connected by buses. Sockets

connect chip-carrying packages to the board. The Intel

documentation uses the term “package” to specifically

refer to a CPU.

CPU CPU

CPU CPU

CPU CPU

CPU CPU

DRAM

DRAM

DRAM

DRAM

DRAM

DRAM

DRAM

DRAM

QPI DDR

NIC / PHY

PCIe

PCH

USB SATA

DMI

ME

FLASH

UEFI

ME FW

SPI

Figure 20: The motherboard structures that are most relevant in a

system security analysis.

The CPU (described in § 2.9.3) hosts the execution

cores that run the software stack shown in Figure 8 and

described in § 2.3, namely the SMM code, the hypervisor,

operating systems, and application processes. The com-

puter’s main memory is provided by Dynamic Random-

Access Memory (DRAM) chips.

The Platform Controller Hub (PCH) houses (rela-

tively) low-speed I/O controllers driving the slower buses

in the system, like SATA, used by storage devices, and

USB, used by input peripherals. The PCH is also known

as the chipset. At a first approximation, the south bridge

term in older documentation can also be considered as a

synonym for PCH.

Motherboards also have a non-volatile (flash) mem-

ory chip that hosts firmware which implements the Uni-

fied Extensible Firmware Interface (UEFI) specifica-

tion [180]. The firmware contains the boot code and

the code that executes in System Management Mode

(SMM, § 2.3).

The components we care about are connected by the

following buses: the Quick-Path Interconnect (QPI [91]),

a network of point-to-point links that connect processors,

the double data rate (DDR) bus that connects a CPU

to DRAM, the Direct Media Interface (DMI) bus that

connects a CPU to the PCH, the Peripheral Component

Interconnect Express (PCIe) bus that connects a CPU to

peripherals such as a Network Interface Card (NIC), and

15

the Serial Programming Interface (SPI) used by the PCH

to communicate with the flash memory.

The PCIe bus is an extended, point-to-point version

of the PCI standard, which provides a method for any

peripheral connected to the bus to perform Direct Mem-

ory Access (DMA), transferring data to and from DRAM

without involving an execution core and spending CPU

cycles. The PCI standard includes a configuration mech-

anism that assigns a range of DRAM to each peripheral,

but makes no provisions for restricting a peripheral’s

DRAM accesses to its assigned range.

Network interfaces consist of a physical (PHY) mod-

ule that converts the analog signals on the network me-

dia to and from digital bits, and a Media Access Con-

trol (MAC) module that implements a network-level pro-

tocol. Modern Intel-based motherboards forego a full-

fledged NIC, and instead include an Ethernet [84] PHY

module.

2.9.2 The Intel Management Engine (ME)

Intel’s Management Engine (ME) is an embedded com-

puter that was initially designed for remote system man-

agement and troubleshooting of server-class systems that

are often hosted in data centers. However, all of Intel’s

recent PCHs contain an ME [80], and it currently plays a

crucial role in platform bootstrapping, which is described

in detail in § 2.13. Most of the information in this section

is obtained from an Intel-sponsored book [162].

The ME is part of Intel’s Active Management Tech-

nology (AMT), which is marketed as a convenient way

for IT administrators to troubleshoot and fix situations

such as failing hardware, or a corrupted OS installation,

without having to gain physical access to the impacted

computer.

The Intel ME, shown in Figure 21, remains functional

during most hardware failures because it is an entire

embedded computer featuring its own execution core,

bootstrap ROM, and internal RAM. The ME can be used

for troubleshooting effectively thanks to an array of abil-

ities that include overriding the CPU’s boot vector and a

DMA engine that can access the computer’s DRAM. The

ME provides remote access to the computer without any

CPU support because it can use the System Management

bus (SMBus) to access the motherboard’s Ethernet PHY

or an AMT-compatible NIC [100].

The Intel ME is connected to the motherboard’s power

supply using a power rail that stays active even when the

host computer is in the Soft Off mode [100], known as

ACPI G2/S5, where most of the computer’s components

Intel PCH

Intel ME

I-Cache

D-Cache

DMA

Engine

Internal

SRAM

DRAM

Access

Execution

Core

HECI

Controller

Internal Bus

SMBus

Controller

SPI

Controller

Interrupt

Controller

Boot

ROM

Watchdog

Timer

Crypto

Accelerator

Ethernet

MAC

PCIe

Controller

USB

Controller

Audio

Controller

Ethernet

PHY

PCIe

lanes

Audio, MIC

Bluetooth

USB

PHY

Integrated

Sensor Hub

SPI

Bus

I2C

UART

Figure 21: The Intel Management Engine (ME) is an embedded

computer hosted in the PCH. The ME has its own execution core,

ROM and SRAM. The ME can access the host’s DRAM via a memory

controller and a DMA controller. The ME is remotely accessible

over the network, as it has direct access to an Ethernet PHY via the

SMBus.

are powered off [87], including the CPU and DRAM.

For all practical purposes, this means that the ME’s exe-

cution core is active as long as the power supply is still

connected to a power source.

In S5, the ME cannot access the DRAM, but it can

still use its own internal memories. The ME can also still

communicate with a remote party, as it can access the

motherboard’s Ethernet PHY via SMBus. This enables

applications such as AMT’s theft prevention, where a

laptop equipped with a cellular modem can be tracked

and permanently disabled as long as it has power and

signal.

As the ME remains active in deep power-saving modes,

its design must rely on low-power components. The exe-

cution core is an Argonaut RISC Core (ARC) clocked at

200-400MHz, which is typically used in low-power em-

bedded designs. On a very recent PCH [100], the internal

SRAM has 640KB, and is shared with the Integrated Sen-

sor Hub (ISH)’s core. The SMBus runs at 1MHz and,

without CPU support, the motherboard’s Ethernet PHY

runs at 10Mpbs.

When the host computer is powered on, the ME’s exe-

cution core starts running code from the ME’s bootstrap

ROM. The bootstrap code loads the ME’s software stack

from the same flash chip that stores the host computer’s

firmware. The ME accesses the flash memory chip via

an embedded SPI controller.

16

2.9.3 The Processor Die

An Intel processor’s die, illustrated in Figure 22, is di-

vided into two broad areas: the core area implements the

instruction execution pipeline typically associated with

CPUs, while the uncore provides functions that were

traditionally hosted on separate chips, but are currently

integrated on the CPU die to reduce latency and power

consumption.

Chip Package
Core Core

Core Core

L3 Cache

Graphics

Unit

Memory

Controller

Home Agent

I/O Controller

I/O to Ring

QPI

Packetizer

QPI Router

DRAM

DDR3

Platform Controller Hub NIC

DMIPCI-X

CPU

QPI

IOAPIC

CPU

Config

Power

Unit

Figure 22: The major components in a modern CPU package.

§ 2.9.3 gives an uncore overview. § 2.9.4 describes execution cores.

§ 2.11.3 takes a deeper look at the uncore.

At a conceptual level, the uncore of modern proces-

sors includes an integrated memory controller (iMC) that

interfaces with the DDR bus, an integrated I/O controller

(IIO) that implements PCIe bus lanes and interacts with

the DMI bus, and a growing number of integrated pe-

ripherals, such as a Graphics Processing Unit (GPU).

The uncore structure is described in some processor fam-

ily datasheets [97, 98], and in the overview sections in

Intel’s uncore performance monitoring documentation

[37, 90, 94].

Security extensions to the Intel architecture, such as

Trusted Execution Technology (TXT) [70] and Software

Guard Extensions (SGX) [14, 139], rely on the fact that

the processor die includes the memory and I/O controller,

and thus can prevent any device from accessing protected

memory areas via Direct Memory Access (DMA) trans-

fers. § 2.11.3 takes a deeper look at the uncore organiza-

tion and at the machinery used to prevent unauthorized

DMA transfers.

2.9.4 The Core

Virtually all modern Intel processors have core areas con-

sisting of multiple copies of the execution core circuitry,

each of which is called a core. At the time of this writing,

desktop-class Intel CPUs have 4 cores, and server-class

CPUs have as many as 18 cores.

Most Intel CPUs feature hyper-threading, which

means that a core (shown in Figure 23) has two copies

of the register files backing the execution context de-

scribed in § 2.6, and can execute two separate streams of

instructions simultaneously. Hyper-threading reduces the

impact of memory stalls on the utilization of the fetch,

decode and execution units.

Execution Units

FP

INT INTINT

FP SSE

MEM

SSE

L1

I-Cache

Instruction Scheduler

Decode

L1

D-Cache

L2

Cache

Logical CPU

LAPIC

Registers
L1

I-TLB

Logical CPU

LAPIC

Registers

L1

D-TLB

Page Miss Handler (PMH)

Fetch

Microcode

L2

TLB

Figure 23: CPU core with two logical processors. Each logical

processor has its own execution context and LAPIC (§ 2.12). All the

other core resources are shared.

A hyper-threaded core is exposed to system software

as two logical processors (LPs), also named hardware

threads in the Intel documentation. The logical proces-

sor abstraction allows the code used to distribute work

across processors in a multi-processor system to func-

tion without any change on multi-core hyper-threaded

processors.

The high level of resource sharing introduced by

hyper-threading introduces a security vulnerability. Soft-

ware running on one logical processor can use the high-

resolution performance counter (RDTSCP, § 2.4) [152]

to get information about the instructions and memory ac-

cess patterns of another piece of software that is executed

on the other logical processor on the same core.

That being said, the biggest downside of hyper-

threading might be the fact that writing about Intel pro-

cessors in a rigorous manner requires the use of the cum-

bersome term Logical Processor instead of the shorter

and more intuitive “CPU core”, which can often be ab-

breviated to “core”.

2.10 Out-of-Order and Speculative Execution

CPU cores can execute instructions orders of magni-

tude faster than DRAM can read data. Computer archi-

17

tects attempt to bridge this gap by using hyper-threading

(§ 2.9.3), out-of-order and speculative execution, and

caching, which is described in § 2.11. In CPUs that

use out-of-order execution, the order in which the CPU

carries out a program’s instructions (execution order) is

not necessarily the same as the order in which the in-

structions would be executed by a sequential evaluation

system (program order).

An analysis of a system’s information leakage must

take out-of-order execution into consideration. Any CPU

actions observed by an attacker match the execution

order, so the attacker may learn some information by

comparing the observed execution order with a known

program order. At the same time, attacks that try to infer

a victim’s program order based on actions taken by the

CPU must account for out-of-order execution as a source

of noise.

This section summarizes the out-of-order and specu-

lative execution concepts used when reasoning about a

system’s security properties. [150] and [76] cover the

concepts in great depth, while Intel’s optimization man-

ual [96] provides details specific to Intel CPUs.

Figure 24 provides a more detailed view of the CPU

core components involved in out-of-order execution, and

omits some less relevant details from Figure 23.

The Intel architecture defines a complex instruction

set (CISC). However, virtually all modern CPUs are ar-

chitected following reduced instruction set (RISC) prin-

ciples. This is accomplished by having the instruction

decode stages break down each instruction into micro-

ops, which resemble RISC instructions. The other stages

of the execution pipeline work exclusively with micro-

ops.

2.10.1 Out-of-Order Execution

Different types of instructions require different logic

circuits, called functional units. For example, the arith-

metic logic unit (ALU), which performs arithmetic op-

erations, is completely different from the load and store

unit, which performs memory operations. Different cir-

cuits can be used at the same time, so each CPU core can

execute multiple micro-ops in parallel.

The core’s out-of-order engine receives decoded

micro-ops, identifies the micro-ops that can execute in

parallel, assigns them to functional units, and combines

the outputs of the units so that the results are equiva-

lent to having the micro-ops executed sequentially in the

order in which they come from the decode stages.

For example, consider the sequence of pseudo micro-

Memory

Execution

Out of Order Engine

Instruction

Fetch Unit

Branch

Predictors

L1 I-TLB

Reservation Station

Integer ALU

Shift

Integer ALU

LEA

FMA

FP Multiply

Vector

Logicals

Branch

Divide

Vector Shift

Integer

Vector

Multiply

FMA

FP Multiply

Integer

Vector

ALU

Vector

Logicals

FP Addition

Load &

Store

Address

Store

Data

Integer ALU

LEA

Vector

Shuffle

Vector

Logicals

Integer ALU

Shift

Branch

Store

Address

Port 0 Port 1 Ports 2, 3 Port 4 Port 5 Port 6 Port 7

L1 I-Cache

Pre-Decode Fetch Buffer

Instruction Queue

Simple

Decoders

Complex

Decoder

Micro-op Decode Queue

Microcode

ROM

Micro-op

Cache

Renamer

Register

Files

Reorder

Buffer

Load

Buffer

Store

Buffer

Scheduler

L1 D-Cache L2 D-Cache

Integer

Vector

ALU

Memory Control

Instruction Decode

L1 D-TLB

Fill Buffers

Figure 24: The structures in a CPU core that are relevant to out-

of-order and speculative execution. Instructions are decoded into

micro-ops, which are scheduled on one of the execution unit’s ports.

The branch predictor enables speculative execution when a branch is

encountered.

ops4 in Table 5 below. The OR uses the result of the

LOAD, but the ADD does not. Therefore, a good scheduler

can have the load store unit execute the LOAD and the

ALU execute the ADD, all in the same clock cycle.

The out-of-order engine in recent Intel CPUs works

roughly as follows. Micro-ops received from the decode

queue are written into a reorder buffer (ROB) while they

are in-flight in the execution unit. The register allocation

table (RAT) matches each register with the last reorder

buffer entry that updates it. The renamer uses the RAT

to rewrite the source and destination fields of micro-ops

when they are written in the ROB, as illustrated in Tables

4The set of micro-ops used by Intel CPUs is not publicly docu-

mented. The fictional examples in this section suffice for illustration

purposes.

18

Micro-op Meaning

1 LOAD RAX, RSI RAX← DRAM[RSI]

2 OR RDI, RDI, RAX RDI← RDI ∨ RAX

3 ADD RSI, RSI, RCX RSI← RSI + RCX

4 SUB RBX, RSI, RDX RBX← RSI - RDX

Table 5: Pseudo micro-ops for the out-of-order execution example.

6 and 7. Note that the ROB representation makes it easy

to determine the dependencies between micro-ops.

Op Source 1 Source 2 Destination

1 LOAD RSI ∅ RAX

2 OR RDI ROB #1 RSI

3 ADD RSI RCX RSI

4 SUB ROB # 3 RDX RBX

Table 6: Data written by the renamer into the reorder buffer (ROB),

for the micro-ops in Table 5.

Register RAX RBX RCX RDX RSI RDI

ROB # #1 #4 ∅ ∅ #3 #2

Table 7: Relevant entries of the register allocation table after the

micro-ops in Table 5 are inserted into the ROB.

The scheduler decides which micro-ops in the ROB

get executed, and places them in the reservation station.

The reservation station has one port for each functional

unit that can execute micro-ops independently. Each

reservation station port port holds one micro-op from

the ROB. The reservation station port waits until the

micro-op’s dependencies are satisfied and forwards the

micro-op to the functional unit. When the functional unit

completes executing the micro-op, its result is written

back to the ROB, and forwarded to any other reservation

station port that depends on it.

The ROB stores the results of completed micro-ops un-

til they are retired, meaning that the results are committed

to the register file and the micro-ops are removed from

the ROB. Although micro-ops can be executed out-of-

order, they must be retired in program order, in order to

handle exceptions correctly. When a micro-op causes a

hardware exception (§ 2.8.2), all the following micro-ops

in the ROB are squashed, and their results are discarded.

In the example above, the ADD can complete before

the LOAD, because it does not require a memory access.

However, the ADD’s result cannot be committed before

LOAD completes. Otherwise, if the ADD is committed

and the LOAD causes a page fault, software will observe

an incorrect value for the RSI register.

The ROB is tailored for discovering register dependen-

cies between micro-ops. However, micro-ops that exe-

cute out-of-order can also have memory dependencies.

For this reason, out-of-order engines have a load buffer

and a store buffer that keep track of in-flight memory op-

erations and are used to resolve memory dependencies.

2.10.2 Speculative Execution

Branch instructions, also called branches, change the

instruction pointer (RIP, § 2.6), if a condition is met (the

branch is taken). They implement conditional statements

(if) and looping statements, such as while and for.

The most well-known branching instructions in the Intel

architecture are in the jcc family, such as je (jump if

equal).

Branches pose a challenge to the decode stage, because

the instruction that should be fetched after a branch is

not known until the branching condition is evaluated. In

order to avoid stalling the decode stage, modern CPU

designs include branch predictors that use historical in-

formation to guess whether a branch will be taken or

not.

When the decode stage encounters a branch instruc-

tion, it asks the branch predictor for a guess as to whether

the branch will be taken or not. The decode stage bun-

dles the branch condition and the predictor’s guess into

a branch check micro-op, and then continues decoding

on the path indicated by the predictor. The micro-ops

following the branch check are marked as speculative.

When the branch check micro-op is executed, the

branch unit checks whether the branch predictor’s guess

was correct. If that is the case, the branch check is retired

successfully. The scheduler handles mispredictions by

squashing all the micro-ops following the branch check,

and by signaling the instruction decoder to flush the

micro-op decode queue and start fetching the instruc-

tions that follow the correct branch.

Modern CPUs also attempt to predict memory read pat-

terns, so they can prefetch the memory locations that are

about to be read into the cache. Prefetching minimizes

the latency of successfully predicted read operations, as

their data will already be cached. This is accomplished

by exposing circuits called prefetchers to memory ac-

cesses and cache misses. Each prefetcher can recognize

a particular access pattern, such as sequentially read-

ing an array’s elements. When memory accesses match

the pattern that a prefetcher was built to recognize, the

prefetcher loads the cache line corresponding to the next

memory access in its pattern.

19

2.11 Cache Memories

At the time of this writing, CPU cores can process data

≈ 200× faster than DRAM can supply it. This gap is

bridged by an hierarchy of cache memories, which are

orders of magnitude smaller and an order of magnitude

faster than DRAM. While caching is transparent to ap-

plication software, the system software is responsible for

managing and coordinating the caches that store address

translation (§ 2.5) results.

Caches impact the security of a software system in

two ways. First, the Intel architecture relies on system

software to manage address translation caches, which

becomes an issue in a threat model where the system soft-

ware is untrusted. Second, caches in the Intel architecture

are shared by all the software running on the computer.

This opens up the way for cache timing attacks, an entire

class of software attacks that rely on observing the time

differences between accessing a cached memory location

and an uncached memory location.

This section summarizes the caching concepts and im-

plementation details needed to reason about both classes

of security problems mentioned above. [170], [150] and

[76] provide a good background on low-level cache im-

plementation concepts. § 3.8 describes cache timing

attacks.

2.11.1 Caching Principles

At a high level, caches exploit the high locality in the

memory access patterns of most applications to hide the

main memory’s (relatively) high latency. By caching

(storing a copy of) the most recently accessed code and

data, these relatively small memories can be used to

satisfy 90%-99% of an application’s memory accesses.

In an Intel processor, the first-level (L1) cache consists

of a separate data cache (D-cache) and an instruction

cache (I-cache). The instruction fetch and decode stage

is directly connected to the L1 I-cache, and uses it to read

the streams of instructions for the core’s logical proces-

sors. Micro-ops that read from or write to memory are

executed by the memory unit (MEM in Figure 23), which

is connected to the L1 D-cache and forwards memory

accesses to it.

Figure 25 illustrates the steps taken by a cache when it

receives a memory access. First, a cache lookup uses the

memory address to determine if the corresponding data

exists in the cache. A cache hit occurs when the address

is found, and the cache can resolve the memory access

quickly. Conversely, if the address is not found, a cache

miss occurs, and a cache fill is required to resolve the

memory access. When doing a fill, the cache forwards

the memory access to the next level of the memory hierar-

chy and caches the response. Under most circumstances,

a cache fill also triggers a cache eviction, in which some

data is removed from the cache to make room for the

data coming from the fill. If the data that is evicted has

been modified since it was loaded in the cache, it must be

written back to the next level of the memory hierarchy.

Cache

Lookup

Cache

Eviction

Cache

Fill

Look for a cache

line storing A

Found?

Return data

associated with A

Get A from the

next memory level

Choose a cache line

that can store A

Found?

Write the cache line

to the next level

Store the data at A

in the free line

NO

miss

NO

YES

hit

YES

Is the line dirty?

Mark the line

available

YES

NO

Look for a free cache

line that can store A

Figure 25: The steps taken by a cache memory to resolve an access

to a memory address A. A normal memory access (to cacheable

DRAM) always triggers a cache lookup. If the access misses the

cache, a fill is required, and a write-back might be required.

Table 8 shows the key characteristics of the memory

hierarchy implemented by modern Intel CPUs. Each

core has its own L1 and L2 cache (see Figure 23), while

the L3 cache is in the CPU’s uncore (see Figure 22), and

is shared by all the cores in the package.

The numbers in Table 8 suggest that cache placement

can have a large impact on an application’s execution

time. Because of this, the Intel architecture includes

an assortment of instructions that give performance-

sensitive applications some control over the caching

of their working sets. PREFETCH instructs the CPU’s

prefetcher to cache a specific memory address, in prepa-

20

Memory Size Access Time

Core Registers 1 KB no latency

L1 D-Cache 32 KB 4 cycles

L2 Cache 256 KB 10 cycles

L3 Cache 8 MB 40-75 cycles

DRAM 16 GB 60 ns

Table 8: Approximate sizes and access times for each level in the

memory hierarchy of an Intel processor, from [127]. Memory sizes

and access times differ by orders of magnitude across the different

levels of the hierarchy. This table does not cover multi-processor

systems.

ration for a future memory access. The memory writes

performed by the MOVNT instruction family bypass the

cache if a fill would be required. CLFLUSH evicts any

cache lines storing a specific address from the entire

cache hierarchy.

The methods mentioned above are available to soft-

ware running at all privilege levels, because they were de-

signed for high-performance workloads with large work-

ing sets, which are usually executed at ring 3 (§ 2.3). For

comparison, the instructions used by system software

to manage the address translation caches, described in

§ 2.11.5 below, can only be executed at ring 0.

2.11.2 Cache Organization

In the Intel architecture, caches are completely imple-

mented in hardware, meaning that the software stack has

no direct control over the eviction process. However,

software can gain some control over which data gets

evicted by understanding how the caches are organized,

and by cleverly placing its data in memory.

The cache line is the atomic unit of cache organization.

A cache line has data, a copy of a continuous range of

DRAM, and a tag, identifying the memory address that

the data comes from. Fills and evictions operate on entire

lines.

The cache line size is the size of the data, and is always

a power of two. Assuming n-bit memory addresses and a

cache line size of 2l bytes, the lowest l bits of a memory

address are an offset into a cache line, and the highest

n− l bits determine the cache line that is used to store

the data at the memory location. All recent processors

have 64-byte cache lines.

The L1 and L2 caches in recent processors are multi-

way set-associative with direct set indexing, as shown

in Figure 26. A W -way set-associative cache has its

memory divided into sets, where each set has W lines. A

memory location can be cached in any of the w lines in a

specific set that is determined by the highest n− l bits

of the location’s memory address. Direct set indexing

means that the S sets in a cache are numbered from 0 to

S − 1, and the memory location at address A is cached

in the set numbered An−1...n−l mod S.

In the common case where the number of sets in a

cache is a power of two, so S = 2s, the lowest l bits in

an address make up the cache line offset, the next s bits

are the set index. The highest n− s− l bits in an address

are not used when selecting where a memory location

will be cached. Figure 26 shows the cache structure and

lookup process.

Line Offset

l-1…0

Address Tag

n-1…s+l

Set Index

s+l-1…l

Memory Address

…Set S-1, Way 1 Set S-1, Way W-1Set S-1, Way 0

⋮ ⋱ ⋮⋮

Set i, Way 1 Set i, Way W-1…Set i, Way 0

⋮⋮ ⋮ ⋱

Set 1, Way W-1Set 1, Way 0 …Set 1, Way 1

Set 0, Way W-1…Set 0, Way 1Set 0, Way 0

Way W-1…Way 1Way 0

Tag Line Tag Line Tag Line

Matched Line

Tag Comparator

Match? Matched Word

Figure 26: Cache organization and lookup, for a W -way set-

associative cache with 2
l-byte lines and S = 2

s sets. The cache

works with n-bit memory addresses. The lowest l address bits point

to a specific byte in a cache line, the next s bytes index the set, and

the highest n− s− l bits are used to decide if the desired address is

in one of the W lines in the indexed set.

2.11.3 Cache Coherence

The Intel architecture was designed to support applica-

tion software that was not written with caches in mind.

One aspect of this support is the Total Store Order (TSO)

[147] memory model, which promises that all the logical

processors in a computer see the same order of DRAM

writes.

The same memory location might be simultaneously

cached by different cores’ caches, or even by caches on

separate chips, so providing the TSO guarantees requires

21

a cache coherence protocol that synchronizes all the

cache lines in a computer that reference the same memory

address.

The cache coherence mechanism is not visible to

software, so it is only briefly mentioned in the SDM.

Fortunately, Intel’s optimization reference [96] and the

datasheets referenced in § 2.9.3 provide more informa-

tion. Intel processors use variations of the MESIF [66]

protocol, which is implemented in the CPU and in the

protocol layer of the QPI bus.

The SDM and the CPUID instruction output indicate

that the L3 cache, also known as the last-level cache

(LLC) is inclusive, meaning that any location cached by

an L1 or L2 cache must also be cached in the LLC. This

design decision reduces complexity in many implemen-

tation aspects. We estimate that the bulk of the cache

coherence implementation is in the CPU’s uncore, thanks

to the fact that cache synchronization can be achieved

without having to communicate to the lower cache levels

that are inside execution cores.

The QPI protocol defines cache agents, which are

connected to the last-level cache in a processor, and

home agents, which are connected to memory controllers.

Cache agents make requests to home agents for cache

line data on cache misses, while home agents keep track

of cache line ownership, and obtain the cache line data

from other cache line agents, or from the memory con-

troller. The QPI routing layer supports multiple agents

per socket, and each processor has its own caching agents,

and at least one home agent.

Figure 27 shows that the CPU uncore has a bidirec-

tional ring interconnect, which is used for communi-

cation between execution cores and the other uncore

components. The execution cores are connected to the

ring by CBoxes, which route their LLC accesses. The

routing is static, as the LLC is divided into same-size

slices (common slice sizes are 1.5 MB and 2.5 MB), and

an undocumented hashing scheme maps each possible

physical address to exactly one LLC slice.

Intel’s documentation states that the hashing scheme

mapping physical addresses to LLC slices was designed

to avoid having a slice become a hotspot, but stops short

of providing any technical details. Fortunately, inde-

pendent researches have reversed-engineered the hash

functions for recent processors [85, 135, 197].

The hashing scheme described above is the reason

why the L3 cache is documented as having a “complex”

indexing scheme, as opposed to the direct indexing used

in the L1 and L2 caches.

L
3

 C
a
c
h

e

CBox

Core

L2 Cache

L3 Cache

Slice

L3 Cache

Slice

CBox

Core

L2 Cache

Home

Agent

CBox

Core

L2 Cache

L3 Cache

Slice

L3 Cache

Slice

CBox

Core

L2 Cache

QPI

Packetizer

Memory

Controller

DDR3

Channel

Ring to

QPI

Ring to

PCIeI/O Controller

UBox

QPI Link

PCIe Lanes

Figure 27: The stops on the ring interconnect used for inter-core

and core-uncore communication.

The number of LLC slices matches the number of

cores in the CPU, and each LLC slice shares a CBox

with a core. The CBoxes implement the cache coherence

engine, so each CBox acts as the QPI cache agent for its

LLC slice. CBoxes use a Source Address Decoder (SAD)

to route DRAM requests to the appropriate home agents.

Conceptually, the SAD takes in a memory address and

access type, and outputs a transaction type (coherent,

non-coherent, IO) and a node ID. Each CBox contains

a SAD replica, and the configurations of all SADs in a

package are identical.

The SAD configurations are kept in sync by the UBox,

which is the uncore configuration controller, and con-

nects the System agent to the ring. The UBox is re-

sponsible for reading and writing physically distributed

registers across the uncore. The UBox also receives inter-

rupts from system and dispatches them to the appropriate

core.

On recent Intel processors, the uncore also contains at

least one memory controller. Each integrated memory

controller (iMC or MBox in Intel’s documentation) is

connected to the ring by a home agent (HA or BBox in

Intel’s datasheets). Each home agent contains a Target

Address Decoder (TAD), which maps each DRAM ad-

dress to an address suitable for use by the DRAM chips,

namely a DRAM channel, bank, rank, and a DIMM ad-

dress. The mapping in the TAD is not documented by

Intel, but it has been reverse-engineered [151].

The integration of the memory controller on the CPU

brings the ability to filter DMA transfers. Accesses from

a peripheral connected to the PCIe bus are handled by the

integrated I/O controller (IIO), placed on the ring inter-

connect via the UBox, and then reach the iMC. Therefore,

22

on modern systems, DMA transfers go through both the

SAD and TAD, which can be configured to abort DMA

transfers targeting protected DRAM ranges.

2.11.4 Caching and Memory-Mapped Devices

Caches rely on the assumption that the underlying mem-

ory implements the memory abstraction in § 2.2. How-

ever, the physical addresses that map to memory-mapped

I/O devices usually deviate from the memory abstraction.

For example, some devices expose command registers

that trigger certain operations when written, and always

return a zero value. Caching addresses that map to such

memory-mapped I/O devices will lead to incorrect be-

havior.

Furthermore, even when the memory-mapped devices

follow the memory abstraction, caching their memory is

sometimes undesirable. For example, caching a graphic

unit’s framebuffer could lead to visual artifacts on the

user’s display, because of the delay between the time

when a write is issued and the time when the correspond-

ing cache lines are evicted and written back to memory.

In order to work around these problems, the Intel archi-

tecture implements a few caching behaviors, described

below, and provides a method for partitioning the mem-

ory address space (§ 2.4) into regions, and for assigning

a desired caching behavior to each region.

Uncacheable (UC) memory has the same semantics

as the I/O address space (§ 2.4). UC memory is useful

when a device’s behavior is dependent on the order of

memory reads and writes, such as in the case of memory-

mapped command and data registers for a PCIe NIC

(§ 2.9.1). The out-of-order execution engine (§ 2.10)

does not reorder UC memory accesses, and does not

issue speculative reads to UC memory.

Write Combining (WC) memory addresses the spe-

cific needs of framebuffers. WC memory is similar to

UC memory, but the out-of-order engine may reorder

memory accesses, and may perform speculative reads.

The processor stores writes to WC memory in a write

combining buffer, and attempts to group multiple writes

into a (more efficient) line write bus transaction.

Write Through (WT) memory is cached, but write

misses do not cause cache fills. This is useful for pre-

venting large memory-mapped device memories that are

rarely read, such as framebuffers, from taking up cache

memory. WT memory is covered by the cache coherence

engine, may receive speculative reads, and is subject to

operation reordering.

DRAM is represented as Write Back (WB) memory,

which is optimized under the assumption that all the

devices that need to observe the memory operations im-

plement the cache coherence protocol. WB memory is

cached as described in § 2.11, receives speculative reads,

and operations targeting it are subject to reordering.

Write Protected (WP) memory is similar to WB mem-

ory, with the exception that every write is propagated

to the system bus. It is intended for memory-mapped

buffers, where the order of operations does not matter,

but the devices that need to observe the writes do not im-

plement the cache coherence protocol, in order to reduce

hardware costs.

On recent Intel processors, the cache’s behavior is

mainly configured by the Memory Type Range Registers

(MTRRs) and by Page Attribute Table (PAT) indices in

the page tables (§ 2.5). The behavior is also impacted by

the Cache Disable (CD) and Not-Write through (NW)

bits in Control Register 0 (CR0, § 2.4), as well as by

equivalent bits in page table entries, namely Page-level

Cache Disable (PCD) and Page-level Write-Through

(PWT).

The MTRRs were intended to be configured by the

computer’s firmware during the boot sequence. Fixed

MTRRs cover pre-determined ranges of memory, such

as the memory areas that had special semantics in the

computers using 16-bit Intel processors. The ranges

covered by variable MTRRs can be configured by system

software. The representation used to specify the ranges

is described below, as it has some interesting properties

that have proven useful in other systems.

Each variable memory type range is specified using

a range base and a range mask. A memory address be-

longs to the range if computing a bitwise AND between

the address and the range mask results in the range base.

This verification has a low-cost hardware implementa-

tion, shown in Figure 28.

AND

MTRR mask

Physical Address EQ

MTRR base

match

Figure 28: The circuit for computing whether a physical address

matches a memory type range. Assuming a CPU with 48-bit physical

addresses, the circuit uses 36 AND gates and a binary tree of 35

XNOR (equality test) gates. The circuit outputs 1 if the address

belongs to the range. The bottom 12 address bits are ignored, because

memory type ranges must be aligned to 4 KB page boundaries.

Each variable memory type range must have a size that

is an integral power of two, and a starting address that

is a multiple of its size, so it can be described using the

23

base / mask representation described above. A range’s

starting address is its base, and the range’s size is one

plus its mask.

Another advantage of this range representation is that

the base and the mask can be easily validated, as shown

in Listing 1. The range is aligned with respect to its size

if and only if the bitwise AND between the base and the

mask is zero. The range’s size is a power of two if and

only if the bitwise AND between the mask and one plus

the mask is zero. According to the SDM, the MTRRs are

not validated, but setting them to invalid values results in

undefined behavior.

constexpr bool is_valid_range(

size_t base, size_t mask) {

// Base is aligned to size.

return (base & mask) == 0 &&

// Size is a power of two.

(mask & (mask + 1)) == 0;

}

Listing 1: The checks that validate the base and mask of a memory-

type range can be implemented very easily.

No memory type range can partially cover a 4 KB page,

which implies that the range base must be a multiple of

4 KB, and the bottom 12 bits of range mask must be set.

This simplifies the interactions between memory type

ranges and address translation, described in § 2.11.5.

The PAT is intended to allow the operating system or

hypervisor to tweak the caching behaviors specified in

the MTRRs by the computer’s firmware. The PAT has

8 entries that specify caching behaviors, and is stored

in its entirety in a MSR. Each page table entry contains

a 3-bit index that points to a PAT entry, so the system

software that controls the page tables can specify caching

behavior at a very fine granularity.

2.11.5 Caches and Address Translation

Modern system software relies on address translation

(§ 2.5). This means that all the memory accesses issued

by a CPU core use virtual addresses, which must undergo

translation. Caches must know the physical address for a

memory access, to handle aliasing (multiple virtual ad-

dresses pointing to the same physical address) correctly.

However, address translation requires up to 20 memory

accesses (see Figure 15), so it is impractical to perform a

full address translation for every cache access. Instead,

address translation results are cached in the translation

look-aside buffer (TLB).

Table 9 shows the levels of the TLB hierarchy. Recent

processors have separate L1 TLBs for instructions and

data, and a shared L2 TLB. Each core has its own TLBs

(see Figure 23). When a virtual address is not contained

in a core’s TLB, the Page Miss Handler (PMH) performs

a page walk (page table / EPT traversal) to translate the

virtual address, and the result is stored in the TLB.

Memory Entries Access Time

L1 I-TLB 128 + 8 = 136 1 cycle

L1 D-TLB 64 + 32 + 4 = 100 1 cycle

L2 TLB 1536 + 8 = 1544 7 cycles

Page Tables 236 ≈ 6 · 1010 18 cycles - 200ms

Table 9: Approximate sizes and access times for each level in the

TLB hierarchy, from [4].

In the Intel architecture, the PMH is implemented in

hardware, so the TLB is never directly exposed to soft-

ware and its implementation details are not documented.

The SDM does state that each TLB entry contains the

physical address associated with a virtual address, and

the metadata needed to resolve a memory access. For

example, the processor needs to check the writable (W)

flag on every write, and issue a General Protection fault

(#GP) if the write targets a read-only page. Therefore,

the TLB entry for each virtual address caches the logical-

and of all the relevant W flags in the page table structures

leading up to the page.

The TLB is transparent to application software. How-

ever, kernels and hypervisors must make sure that the

TLBs do not get out of sync with the page tables and

EPTs. When changing a page table or EPT, the system

software must use the INVLPG instruction to invalidate

any TLB entries for the virtual address whose translation

changed. Some instructions flush the TLBs, meaning that

they invalidate all the TLB entries, as a side-effect.

TLB entries also cache the desired caching behavior

(§ 2.11.4) for their pages. This requires system software

to flush the corresponding TLB entries when changing

MTRRs or page table entries. In return, the processor

only needs to compute the desired caching behavior dur-

ing a TLB miss, as opposed to computing the caching

behavior on every memory access.

The TLB is not covered by the cache coherence mech-

anism described in § 2.11.3. Therefore, when modifying

a page table or EPT on a multi-core / multi-processor

system, the system software is responsible for perform-

ing a TLB shootdown, which consists of stopping all the

logical processors that use the page table / EPT about

to be changed, performing the changes, executing TLB-

invalidating instructions on the stopped logical proces-

sors, and then resuming execution on the stopped logical

24

processors.

Address translation constrains the L1 cache design.

On Intel processors, the set index in an L1 cache only

uses the address bits that are not impacted by address

translation, so that the L1 set lookup can be done in par-

allel with the TLB lookup. This is critical for achieving

a low latency when both the L1 TLB and the L1 cache

are hit.

Given a page size P = 2p bytes, the requirement

above translates to l + s ≤ p. In the Intel architecture,

p = 12, and all recent processors have 64-byte cache

lines (l = 6) and 64 sets (s = 6) in the L1 caches, as

shown in Figure 29. The L2 and L3 caches are only

accessed if the L1 misses, so the physical address for the

memory access is known at that time, and can be used

for indexing.

Line Offset

5…0

Address Tag

47…12

Set Index

11…6

L1 Cache Address Breakdown

PML4E Index

47…39

PDPTE Index

38…30

PDE Index

29…21

Page Offset

11…0

PTE Index

20…12

4KB Page Address Breakdown

Line Offset

5…0

Address Tag

47…16

Set Index

14…6

L2 Cache Address Breakdown

PML4E Index

47…39

PDPTE Index

38…30

PDE Index

29…21

Page Offset

20…0

2MB Page Address Breakdown

Line Offset

5…0

Address Tag

47…16

Set Index

18…6

L3 Cache Address Breakdown

Figure 29: Virtual addresses from the perspective of cache lookup

and address translation. The bits used for the L1 set index and line

offset are not changed by address translation, so the page tables do

not impact L1 cache placement. The page tables do impact L2 and L3

cache placement. Using large pages (2 MB or 1 GB) is not sufficient

to make L3 cache placement independent of the page tables, because

of the LLC slice hashing function (§ 2.11.3).

2.12 Interrupts

Peripherals use interrupts to signal the occurrence of

an event that must be handled by system software. For

example, a keyboard triggers interrupts when a key is

pressed or depressed. System software also relies on

interrupts to implement preemptive multi-threading.

Interrupts are a kind of hardware exception (§ 2.8.2).

Receiving an interrupt causes an execution core to per-

form a privilege level switch and to start executing the

system software’s interrupt handling code. Therefore, the

security concerns in § 2.8.2 also apply to interrupts, with

the added twist that interrupts occur independently of the

instructions executed by the interrupted code, whereas

most faults are triggered by the actions of the application

software that incurs them.

Given the importance of interrupts when assessing

a system’s security, this section outlines the interrupt

triggering and handling processes described in the SDM.

Peripherals use bus-specific protocols to signal inter-

rupts. For example, PCIe relies on Message Signaled

Interrupts (MSI), which are memory writes issued to

specially designed memory addresses. The bus-specific

interrupt signals are received by the I/O Advanced Pro-

grammable Interrupt Controller (IOAPIC) in the PCH,

shown in Figure 20.

The IOAPIC routes interrupt signals to one or more

Local Advanced Programmable Interrupt Controllers

(LAPICs). As shown in Figure 22, each logical CPU

has a LAPIC that can receive interrupt signals from the

IOAPIC. The IOAPIC routing process assigns each inter-

rupt to an 8-bit interrupt vector that is used to identify

the interrupt sources, and to a 32-bit APIC ID that is used

to identify the LAPIC that receives the interrupt.

Each LAPIC uses a 256-bit Interrupt Request Regis-

ter (IRR) to track the unserviced interrupts that it has

received, based on the interrupt vector number. When the

corresponding logical processor is available, the LAPIC

copies the highest-priority unserviced interrupt vector

to the In-Service Register (ISR), and invokes the logical

processor’s interrupt handling process.

At the execution core level, interrupt handling reuses

many of the mechanisms of fault handling (§ 2.8.2). The

interrupt vector number in the LAPIC’s ISR is used to

locate an interrupt handler in the IDT, and the handler is

invoked, possibly after a privilege switch is performed.

The interrupt handler does the processing that the device

requires, and then writes the LAPIC’s End Of Interrupt

(EOI) register to signal the fact that it has completed

handling the interrupt.

Interrupts are treated like faults, so interrupt handlers

have full control over the execution environment of the

application being interrupted. This is used to implement

pre-emptive multi-threading, which relies on a clock

device that generates interrupts periodically, and on an

interrupt handler that performs context switches.

System software can cause an interrupt on any logical

processor by writing the target processor’s APIC ID into

the Interrupt Command Register (ICR) of the LAPIC

associated with the logical processor that the software

is running on. These interrupts, called Inter-Processor

25

Interrupts (IPI), are needed to implement TLB shoot-

downs (§ 2.11.5).

2.13 Platform Initialization (Booting)

When a computer is powered up, it undergoes a boot-

strapping process, also called booting, for simplicity.

The boot process is a sequence of steps that collectively

initialize all the computer’s hardware components and

load the system software into DRAM. An analysis of

a system’s security properties must be aware of all the

pieces of software executed during the boot process, and

must account for the trust relationships that are created

when a software module loads another module.

This section outlines the details of the boot process

needed to reason about the security of a system based

on the Intel architecture. [92] provides a good refer-

ence for many of the booting process’s low-level details.

While some specifics of the boot process depend on the

motherboard and components in a computer, this sec-

tion focuses on the high-level flow described by Intel’s

documentation.

2.13.1 The UEFI Standard

The firmware in recent computers with Intel processors

implements the Platform Initialization (PI) process in

the Unified Extensible Firmware Interface (UEFI) spec-

ification [180]. The platform initialization follows the

steps shown in Figure 30 and described below.

Security (SEC)

Pre-EFI Initialization (PEI)

Driver eXecution Environment (DXE)

Boot Device Selection (BDS)

Transient System Load (TSL)

Run Time (RT)

measures

measures

measures

measures

measures

microcode

firmware

bootloader

OS

DRAM Initialized

Cache-as-RAM

Figure 30: The phases of the Platform Initialization process in the

UEFI specification.

The computer powers up, reboots, or resumes from

sleep in the Security phase (SEC). The SEC implementa-

tion is responsible for establishing a temporary memory

store and loading the next stage of the firmware into it.

As the first piece of software that executes on the com-

puter, the SEC implementation is the system’s root of

trust, and performs the first steps towards establishing

the system’s desired security properties.

For example, in a measured boot system (also known

as trusted boot), all the software involved in the boot pro-

cess is measured (cryptographically hashed, and the mea-

surement is made available to third parties, as described

in § 3.3). In such a system, the SEC implementation

takes the first steps in establishing the system’s measure-

ment, namely resetting the special register that stores the

measurement result, measuring the PEI implementation,

and storing the measurement in the special register.

SEC is followed by the Pre-EFI Initialization phase

(PEI), which initializes the computer’s DRAM, copies

itself from the temporary memory store into DRAM, and

tears down the temporary storage. When the computer is

powering up or rebooting, the PEI implementation is also

responsible for initializing all the non-volatile storage

units that contain UEFI firmware and loading the next

stage of the firmware into DRAM.

PEI hands off control to the Driver eXecution Envi-

ronment phase (DXE). In DXE, a loader locates and

starts firmware drivers for the various components in the

computer. DXE is followed by a Boot Device Selection

(BDS) phase, which is followed by a Transient System

Load (TSL) phase, where an EFI application loads the

operating system selected in the BDS phase. Last, the

OS loader passes control to the operating system’s kernel,

entering the Run Time (RT) phase.

When waking up from sleep, the PEI implementation

first initializes the non-volatile storage containing the

system snapshot saved while entering the sleep state.

The rest of the PEI implementation may use optimized

re-initialization processes, based on the snapshot con-

tents. The DXE implementation also uses the snapshot

to restore the computer’s state, such as the DRAM con-

tents, and then directly executes the operating system’s

wake-up handler.

2.13.2 SEC on Intel Platforms

Right after a computer is powered up, circuitry in the

power supply and on the motherboard starts establishing

reference voltages on the power rails in a specific or-

der, documented as “power sequencing” [184] in chipset

specifications such as [102]. The rail powering up the

Intel ME (§ 2.9.2) in the PCH is powered up significantly

before the rail that powers the CPU cores.

When the ME is powered up, it starts executing the

code in its boot ROM, which sets up the SPI bus con-

nected to the flash memory chip (§ 2.9.1) that stores both

26

the UEFI firmware and the ME’s firmware. The ME then

loads its firmware from flash memory, which contains

the ME’s operating system and applications.

After the Intel ME loads its software, it sets up some of

the motherboard’s hardware, such as the PCH bus clocks,

and then it kicks off the CPU’s bootstrap sequence. Most

of the details of the ME’s involvement in the computer’s

boot process are not publicly available, but initializing

the clocks is mentioned in a few public documents [5, 7,

42, 107], and is made clear in firmware bringup guides,

such as the leaked confidential guide [93] documenting

firmware bringup for Intel’s Series 7 chipset.

The beginning of the CPU’s bootstrap sequence is

the SEC phase, which is implemented in the processor

circuitry. All the logical processors (LPs) on the mother-

board undergo hardware initialization, which invalidates

the caches (§ 2.11) and TLBs (§ 2.11.5), performs a Built-

In Self Test (BIST), and sets all the registers (§ 2.6) to

pre-specified values.

After hardware initialization, the LPs perform the

Multi-Processor (MP) initialization algorithm, which

results in one LP being selected as the bootstrap pro-

cessor (BSP), and all the other LPs being classified as

application processors (APs).

According to the SDM, the details of the MP initial-

ization algorithm for recent CPUs depend on the moth-

erboard and firmware. In principle, after completing

hardware initialization, all LPs attempt to issue a spe-

cial no-op transaction on the QPI bus. A single LP will

succeed in issuing the no-op, thanks to the QPI arbi-

tration mechanism, and to the UBox (§ 2.11.3) in each

CPU package, which also serves as a ring arbiter. The

arbitration priority of each LP is based on its APIC ID

(§ 2.12), which is provided by the motherboard when the

system powers up. The LP that issues the no-op becomes

the BSP. Upon failing to issue the no-op, the other LPs

become APs, and enter the wait-for-SIPI state.

Understanding the PEI firmware loading process is

unnecessarily complicated by the fact that the SDM de-

scribes a legacy process consisting of having the BSP set

its RIP register to 0xFFFFFFF0 (16 bytes below 4 GB),

where the firmware is expected to place a instruction that

jumps into the PEI implementation.

Recent processors do not support the legacy approach

at all [156]. Instead, the BSP reads a word from address

0xFFFFFFE8 (24 bytes below 4 GB) [40, 203], and ex-

pects to find the address of a Firmware Interface Table

(FIT) in the memory address space (§ 2.4), as shown

in Figure 31. The BSP is able to read firmware con-

tents from non-volatile memory before the computer is

initialized, because the initial SAD (§ 2.11.3) and PCH

(§ 2.9.1) configurations maps a region in the memory

address space to the SPI flash chip (§ 2.9.1) that stores

the computer’s firmware.

Legacy Reset Vector

FIT Pointer

Firmware Interface Table (FIT)

0xFFFFFFF0

0xFFFFFFE8

FIT Header

PEI ACM Entry

Pre-EFI Initialization ACM

TXT Policy Entry

Public Key

Signature

PEI Implementation

TXT Policy Configuration

DXE modules

0xFFFFFFFF

ACM Header

Figure 31: The Firmware Interface Table (FIT) in relation to the

firmware’s memory map.

The FIT [153] was introduced in the context of Intel’s

Itanium architecture, and its use in Intel’s current 64-

bit architecture is described in an Intel patent [40] and

briefly documented in an obscure piece of TXT-related

documentation [89]. The FIT contains Authenticated

Code Modules (ACMs) that make up the firmware, and

other platform-specific information, such as the TPM

and TXT configuration [89].

The PEI implementation is stored in an ACM listed

in the FIT. The processor loads the PEI ACM, verifies

the trustworthiness of the ACM’s public key, and ensures

that the ACM’s contents matches its signature. If the PEI

passes the security checks, it is executed. Processors that

support Intel TXT only accept Intel-signed ACMs [55, p.

92].

2.13.3 PEI on Intel Platforms

[92] and [35] describe the initialization steps performed

by Intel platforms during the PEI phase, from the per-

spective of a firmware programmer. A few steps provide

useful context for reasoning about threat models involv-

ing the boot process.

When the BSP starts executing PEI firmware, DRAM

is not yet initialized. Therefore the PEI code starts ex-

ecuting in a Cache-as-RAM (CAR) mode, which only

relies on the BSP’s internal caches, at the expense of im-

posing severe constraints on the size of the PEI’s working

set.

27

One of the first tasks performed by the PEI implemen-

tation is enabling DRAM, which requires discovering

and initializing the DRAM chips connected to the moth-

erboard, and then configuring the BSP’s memory con-

trollers (§ 2.11.3) and MTRRs (§ 2.11.4). Most firmware

implementations use Intel’s Memory Reference Code

(MRC) for this task.

After DRAM becomes available, the PEI code is

copied into DRAM and the BSP is taken out of CAR

mode. The BSP’s LAPIC (§ 2.12) is initialized and

used to send a broadcast Startup Inter-Processor Inter-

rupt (SIPI, § 2.12) to wake up the APs. The interrupt

vector in a SIPI indicates the memory address of the AP

initialization code in the PEI implementation.

The PEI code responsible for initializing APs is ex-

ecuted when the APs receive the SIPI wake-up. The

AP PEI code sets up the AP’s configuration registers,

such as the MTRRs, to match the BSP’s configuration.

Next, each AP registers itself in a system-wide table,

using a memory synchronization primitive, such as a

semaphore, to avoid having two APs access the table

at the same time. After the AP initialization completes,

each AP is suspended again, and waits to receive an INIT

Inter-Processor Interrupt from the OS kernel.

The BSP initialization code waits for all APs to register

themselves into the system-wide table, and then proceeds

to locate, load and execute the firmware module that

implements DXE.

2.14 CPU Microcode

The Intel architecture features a large instruction set.

Some instructions are used infrequently, and some in-

structions are very complex, which makes it impractical

for an execution core to handle all the instructions in hard-

ware. Intel CPUs use a microcode table to break down

rare and complex instructions into sequences of simpler

instructions. Architectural extensions that only require

microcode changes are significantly cheaper to imple-

ment and validate than extensions that require changes

in the CPU’s circuitry.

It follows that a good understanding of what can be

done in microcode is crucial to evaluating the cost of

security features that rely on architecture extensions. Fur-

thermore, the limitations of microcode are sometimes the

reasoning behind seemingly arbitrary architecture design

decisions.

The first sub-section below presents the relevant facts

pertaining to microcode in Intel’s optimization reference

[96] and SDM. The following subsections summarize

information gleaned from Intel’s patents and other re-

searchers’ findings.

2.14.1 The Role of Microcode

The frequently used instructions in the Intel architecture

are handled by the core’s fast path, which consists of

simple decoders (§ 2.10) that can emit at most 4 micro-

ops per instruction. Infrequently used instructions and

instructions that require more than 4 micro-ops use a

slower decoding path that relies on a sequencer to read

micro-ops from a microcode store ROM (MSROM).

The 4 micro-ops limitation can be used to guess intel-

ligently whether an architectural feature is implemented

in microcode. For example, it is safe to assume that

XSAVE (§ 2.6), which was takes over 200 micro-ops on

recent CPUs [53], is most likely performed in microcode,

whereas simple arithmetic and memory accesses are han-

dled directly by hardware.

The core’s execution units handle common cases in

fast paths implemented in hardware. When an input

cannot be handled by the fast paths, the execution unit

issues a microcode assist, which points the microcode

sequencer to a routine in microcode that handles the

edge cases. The most common cited example in Intel’s

documentation is floating point instructions, which issue

assists to handle denormalized inputs.

The REP MOVS family of instructions, also known

as string instructions because of their use in strcpy-

like functions, operate on variable-sized arrays. These

instructions can handle small arrays in hardware, and

issue microcode assists for larger arrays.

Modern Intel processors implement a microcode up-

date facility. The SDM describes the process of applying

microcode updates from the perspective of system soft-

ware. Each core can be updated independently, and the

updates must be reapplied on each boot cycle. A core

can be updated multiple times. The latest SDM at the

time of this writing states that a microcode update is up

to 16 KB in size.

Processor engineers prefer to build new architectural

features as microcode extensions, because microcode can

be iterated on much faster than hardware, which reduces

development cost [193, 194]. The update facility further

increases the appeal of microcode, as some classes of

bugs can be fixed after a CPU has been released.

Intel patents [110, 138] describing Software Guard

Extensions (SGX) disclose that SGX is entirely imple-

mented in microcode, except for the memory encryp-

tion engine. A description of SGX’s implementation

28

could provide great insights into Intel’s microcode, but,

unfortunately, the SDM chapters covering SGX do not

include such a description. We therefore rely on other

public information sources about the role of microcode

in the security-sensitive areas covered by previous sec-

tions, namely memory management (§ 2.5, § 2.11.5),

the handling of hardware exceptions (§ 2.8.2) and inter-

rupts (§ 2.12), and platform initialization (§ 2.13).

The use of microcode assists can be measured using

the Precise Event Based Sampling (PEBS) feature in re-

cent Intel processors. PEBS provides counters for the

number of micro-ops coming from MSROM, including

complex instructions and assists, counters for the num-

bers of assists associated with some micro-op classes

(SSE and AVX stores and transitions), and a counter for

assists generated by all other micro-ops.

The PEBS feature itself is implemented using mi-

crocode assists (this is implied in the SDM and con-

firmed by [120]) when it needs to write the execution

context into a PEBS record. Given the wide range of

features monitored by PEBS counters, we assume that all

execution units in the core can issue microcode assists,

which are performed at micro-op retirement. This find-

ing is confirmed by an Intel patent [24], and is supported

by the existence of a PEBS counter for the “number of

microcode assists invoked by hardware upon micro-op

writeback.”

Intel’s optimization manual describes one more inter-

esting assist, from a memory system perspective. SIMD

masked loads (using VMASKMOV) read a series of data

elements from memory into a vector register. A mask

register decides whether elements are moved or ignored.

If the memory address overlaps an invalid page (e.g., the

P flag is 0, § 2.5), a microcode assist is issued, even if

the mask indicates that no element from the invalid page

should be read. The microcode checks whether the ele-

ments in the invalid page have the corresponding mask

bits set, and either performs the load or issues a page

fault.

The description of machine checks in the SDM men-

tions page assists and page faults in the same context.

We assume that the page assists are issued in some cases

when a TLB miss occurs (§ 2.11.5) and the PMH has to

walk the page table. The following section develops this

assumption and provides supporting evidence from In-

tel’s assigned patents and published patent applications.

2.14.2 Microcode Structure

According to a 2013 Intel patent [83], the avenues con-

sidered for implementing new architectural features are

a completely microcode-based implementation, using

existing micro-ops, a microcode implementation with

hardware support, which would use new micro-ops, and

a complete hardware implementation, using finite state

machines (FSMs).

The main component of the MSROM is a table of

micro-ops [193, 194]. According to an example in a

2012 Intel patent [194], the table contains on the order

of 20,000 micro-ops, and a micro-op has about 70 bits.

On embedded processors, like the Atom, microcode may

be partially compressed [193, 194].

The MSROM also contains an event ROM, which is an

array of pointers to event handling code in the micro-ops

table [160]. Microcode events are hardware exceptions,

assists, and interrupts [24, 36, 149]. The processor de-

scribed in a 1999 patent [160] has a 64-entry event table,

where the first 16 entries point to hardware exception

handlers and the other entries are used by assists.

The execution units can issue an assist or signal a fault

by associating an event code with the result of a micro-

op. When the micro-op is committed (§ 2.10), the event

code causes the out-of-order scheduler to squash all the

micro-ops that are in-flight in the ROB. The event code is

forwarded to the microcode sequencer, which reads the

micro-ops in the corresponding event handler [24, 149].

The hardware exception handling logic (§ 2.8.2) and

interrupt handling logic (§ 2.12) is implemented entirely

in microcode [149]. Therefore, changes to this logic are

relatively inexpensive to implement on Intel processors.

This is rather fortunate, as the Intel architecture’s stan-

dard hardware exception handling process requires that

the fault handler is trusted by the code that encounters

the exception (§ 2.8.2), and this assumption cannot be

satisfied by a design where the software executing in-

side a secure container must be isolated from the system

software managing the computer’s resources.

The execution units in modern Intel processors support

microcode procedures, via dedicated microcode call and

return micro-ops [36]. The micro-ops manage a hard-

ware data structure that conceptually stores a stack of

microcode instruction pointers, and is integrated with out-

of-order execution and hardware exceptions, interrupts

and assists.

Asides from special micro-ops, microcode also em-

ploys special load and store instructions, which turn into

29

special bus cycles, to issue commands to other functional

units [159]. The memory addresses in the special loads

and stores encode commands and input parameters. For

example, stores to a certain range of addresses flush spe-

cific TLB sets.

2.14.3 Microcode and Address Translation

Address translation (§ 2.5) is configured by CR3, which

stores the physical address of the top-level page table,

and by various bits in CR0 and CR4, all of which are

described in the SDM. Writes to these control registers

are implemented in microcode, which stores extra infor-

mation in microcode-visible registers [62].

When a TLB miss (§ 2.11.5) occurs, the memory exe-

cution unit forwards the virtual address to the Page Miss

Handler (PMH), which performs the page walk needed

to obtain a physical address. In order to minimize the

latency of a page walk, the PMH is implemented as

a Finite-State Machine (FSM) [78, 154]. Furthermore,

the PMH fetches the page table entries from memory

by issuing “stuffed loads”, which are special micro-ops

that bypass the reorder buffer (ROB) and go straight

to the memory execution units (§ 2.10), thus avoiding

the overhead associated with out-of-order scheduling

[63, 78, 159].

The FSM in the PMH handles the fast path of the entire

address translation process, which assumes no address

translation fault (§ 2.8.2) occurs [63, 64, 149, 160], and

no page table entry needs to be modified [63].

When the PMH FSM detects the conditions that trigger

a Page Fault or a General Protection Fault, it commu-

nicates a microcode event code, corresponding to the

detected fault condition, to the execution unit (§ 2.10)

responsible for memory operations [63, 64, 149, 160]. In

turn, the execution unit triggers the fault by associating

the event code with the micro-op that caused the address

translation, as described in the previous section.

The PMH FSM does not set the Accessed or Dirty

attributes (§ 2.5.3) in page table entries. When it detects

that a page table entry must be modified, the FSM issues

a microcode event code for a page walk assist [63]. The

microcode handler performs the page walk again, setting

the A and D attributes on page table entries when neces-

sary [63]. This finding was indirectly confirmed by the

description for a PEBS event in the most recent SDM

release.

The patents at the core of our descriptions above [24,

63, 64, 149, 160] were all issued between 1996 and 1999,

which raises the concern of obsolescence. As Intel would

not be able to file new patents for the same specifications,

we cannot present newer patents with the information

above. Fortunately, we were able to find newer patents

that mention the techniques described above, proving

their relevance to newer CPU models.

Two 2014 patents [78, 154] mention that the PMH is

executing a FSM which issues stuffing loads to obtain

page table entries. A 2009 patent [62] mentions that

microcode is invoked after a PMH walk, and that the

microcode can prevent the translation result produced by

the PMH from being written to the TLB.

A 2013 patent [83] and a 2014 patent [155] on scatter

/ gather instructions disclose that the newly introduced

instructions use a combination of hardware in the ex-

ecution units that perform memory operations, which

include the PMH. The hardware issues microcode assists

for slow paths, such as gathering vector elements stored

in uncacheable memory (§ 2.11.4), and operations that

cause Page Faults.

A 2014 patent on APIC (§ 2.12) virtualization [168]

describes a memory execution unit modification that in-

vokes a microcode assist for certain memory accesses,

based on the contents of some range registers. The patent

also mentions that the range registers are checked when

the TLB miss occurs and the PMH is invoked, in or-

der to decide whether a fast hardware path can be used

for APIC virtualization, or a microcode assist must be

issued.

The recent patents mentioned above allow us to con-

clude that the PMH in recent processors still relies on an

FSM and stuffed loads, and still uses microcode assists to

handle infrequent and complex operations. This assump-

tion plays a key role in estimating the implementation

complexity of architectural modifications targeting the

processor’s address translation mechanism.

2.14.4 Microcode and Booting

The SDM states that microcode performs the Built-In

Self Test (BIST, § 2.13.2), but does not provide any de-

tails on the rest of the CPU’s hardware initialization.

In fact, the entire SEC implementation on Intel plat-

forms is contained in the processor microcode [40, 41,

168]. This implementation has desirable security proper-

ties, as it is significantly more expensive for an attacker

to tamper with the MSROM circuitry (§ 2.14.2) than it

is to modify the contents of the flash memory chip that

stores the UEFI firmware. § 3.4.3 and § 3.6 describe

the broad classes of attacks that an Intel platform can be

subjected to.

30

The microcode that implements SEC performs MP

initialization (§ 2.13.2), as suggested in the SDM. The

microcode then places the BSP into Cache-as-RAM

(CAR) mode, looks up the PEI Authenticated Code Mod-

ule (ACM) in the Firmware Interface Table (FIT), loads

the PEI ACM into the cache, and verifies its signature

(§ 2.13.2) [40, 41, 144, 202, 203]. Given the structure of

ACM signatures, we can conclude that Intel’s microcode

contains implementations of RSA decryption and of a

variant of SHA hashing.

The PEI ACM is executed from the CPU’s cache, after

it is loaded by the microcode [40, 41, 202]. This removes

the possibility for an attacker with physical access to the

SPI flash chip to change the firmware’s contents after the

microcode computes its cryptographic hash, but before it

is executed.

On motherboards compatible with LaGrande Server

Extensions (LT-SX, also known as Intel TXT for servers),

the firmware implementing PEI verifies that each CPU

connected to motherboard supports LT-SX, and powers

off the CPU sockets that don’t hold processors that im-

plement LT-SX [144]. This prevents an attacker from

tampering with a TXT-protected VM by hot-plugging

a CPU in a running computer that is inside TXT mode.

When a hot-plugged CPU passes security tests, a hy-

pervisor is notified that a new CPU is available. The

hypervisor updates its internal state, and sends the new

CPU a SIPI. The new CPU executes a SIPI handler, in-

side microcode, that configures the CPU’s state to match

the state expected by the TXT hypervisor [144]. This

implies that the AP initialization described in § 2.13.2 is

implemented in microcode.

2.14.5 Microcode Updates

The SDM explains that the microcode on Intel CPUs

can be updated, and describes the process for applying

an update. However, no detail about the contents of an

update is provided. Analyzing Intel’s microcode updates

seems like a promising avenue towards discovering the

microcode’s structure. Unfortunately, the updates have

so far proven to be inscrutable [32].

The microcode updates cannot be easily analyzed be-

cause they are encrypted, hashed with a cryptographic

hash function like SHA-256, and signed using RSA or

elliptic curve cryptography [202]. The update facility

is implemented entirely in microcode, including the de-

cryption and signature verification [202].

[75] independently used fault injection and timing

analysis to conclude that each recent Intel microcode

update is signed with a 2048-bit RSA key and a (possibly

non-standard) 256-bit hash algorithm, which agrees with

the findings above.

The microcode update implementation places the

core’s cache into No-Evict Mode (NEM, documented

by the SDM) and copies the microcode update into the

cache before verifying its signature [202]. The update fa-

cility also sets up an MTRR entry to protect the update’s

contents from modifications via DMA transfers [202] as

it is verified and applied.

While Intel publishes the most recent microcode up-

dates for each of its CPU models, the release notes asso-

ciated with the updates are not publicly available. This

is unfortunate, as the release notes could be used to con-

firm guesses that certain features are implemented in

microcode.

However, some information can be inferred by read-

ing through the Errata section in Intel’s Specification

Updates [88, 104, 106]. The phrase “it is possible for

BIOS5 to contain a workaround for this erratum” gen-

erally means that a microcode update was issued. For

example, Errata AH in [88] implies that string instruc-

tions (REP MOV) are implemented in microcode, which

was confirmed by Intel [12].

Errata AH43 and AH91 in [88], and AAK73 in [104]

imply that address translation (§ 2.5) is at least partially

implemented in microcode. Errata AAK53, AAK63,

and AAK70, AAK178 in [104], and BT138, BT210,

in [106] imply that VM entries and exits (§ 2.8.2) are

implemented in microcode, which is confirmed by the

APIC virtualization patent [168].

3 SECURITY BACKGROUND

Most systems rely on some cryptographic primitives for

security. Unfortunately, these primitives have many as-

sumptions, and building a secure system on top of them

is a highly non-trivial endeavor. It follows that a sys-

tem’s security analysis should be particularly interested

in what cryptographic primitives are used, and how they

are integrated into the system.

§ 3.1 and § 3.2 lay the foundations for such an anal-

ysis by summarizing the primitives used by the secure

architectures of interest to us, and by describing the most

common constructs built using these primitives. § 3.3

builds on these concepts and describes software attesta-

tion, which is the most popular method for establishing

5Basic Input/Output System (BIOS) is the predecessor of UEFI-

based firmware. Most Intel documentation, including the SDM, still

uses the term BIOS to refer to firmware.

31

trust in a secure architecture.

Having looked at the cryptographic foundations for

building secure systems, we turn our attention to the

attacks that secure architectures must withstand. Asides

from forming a security checklist for architecture design,

these attacks build intuition for the design decisions in

the architectures of interest to us.

The attacks that can be performed on a computer sys-

tem are broadly classified into physical attacks and soft-

ware attacks. In physical attacks, the attacker takes ad-

vantage of a system’s physical implementation details

to perform an operation that bypasses the limitations set

by the computer system’s software abstraction layers. In

contrast, software attacks are performed solely by execut-

ing software on the victim computer. § 3.4 summarizes

the main types of physical attacks.

The distinction between software and physical attacks

is particularly relevant in cloud computing scenarios,

where gaining software access to the computer running

a victim’s software can be accomplished with a credit

card backed by modest funds [157], whereas physical

access is a more difficult prospect that requires trespass,

coercion, or social engineering on the cloud provider’s

employees.

However, the distinction between software and phys-

ical attacks is blurred by the attacks presented in § 3.6,

which exploit programmable peripherals connected to

the victim computer’s bus in order to carry out actions

that are normally associated with physical attacks.

While the vast majority of software attacks exploit

a bug in a software component, there are a few attack

classes that deserve attention from architecture designers.

Memory mapping attacks, described in § 3.7, become a

possibility on architectures where the system software is

not trusted. Cache timing attacks, summarized in § 3.8

exploit microarchitectural behaviors that are completely

observable in software, but dismissed by the security

analyses of most systems.

3.1 Cryptographic Primitives

This section overviews the cryptosystems used by se-

cure architectures. We are interested in cryptographic

primitives that guarantee confidentiality, integrity, and

freshness, and we treat these primitives as black boxes,

focusing on their use in larger systems. [116] covers the

mathematics behind cryptography, while [51] covers the

topic of building systems out of cryptographic primitives.

Tables 10 and 11 summarize the primitives covered in

this section.

Guarantee Primitive

Confidentiality Encryption

Integrity MAC / Signatures

Freshness Nonces + integrity

Table 10: Desirable security guarantees and primitives that provide

them

Guarantee Symmetric Asymmetric

Keys Keys

Confidentiality AES-GCM, RSA with

AES-CTR PKCS #1 v2.0

Integrity HMAC-SHA-2 DSS-RSA,

AES-GCM DSS-ECC

Table 11: Popular cryptographic primitives that are considered to

be secure against today’s adversaries

A message whose confidentiality is protected can be

transmitted over an insecure medium without an adver-

sary being able to obtain the information in the message.

When integrity protection is used, the receiver is guaran-

teed to either obtain a message that was transmitted by

the sender, or to notice that an attacker tampered with

the message’s content.

When multiple messages get transmitted over an un-

trusted medium, a freshness guarantee assures the re-

ceiver that she will obtain the latest message coming

from the sender, or will notice an attack. A freshness

guarantee is stronger than the equivalent integrity guar-

antee, because the latter does not protect against replay

attacks where the attacker replaces a newer message with

an older message coming from the same sender.

The following example further illustrates these con-

cepts. Suppose Alice is a wealthy investor who wishes

to either BUY or SELL an item every day. Alice cannot

trade directly, and must relay her orders to her broker,

Bob, over a network connection owned by Eve.

A communication system with confidentiality guaran-

tees would prevent Eve from distinguishing between a

BUY and a SELL order, as illustrated in Figure 32. With-

out confidentiality, Eve would know Alice’s order before

it is placed by Bob, so Eve would presumably gain a

financial advantage at Alice’s expense.

A system with integrity guarantees would prevent Eve

from replacing Alice’s message with a false order, as

shown in Figure 33. In this example, without integrity

guarantees, Eve could replace Alice’s message with a

SELL-EVERYTHING order, and buy Alice’s assets at a

very low price.

Last, a communication system that guarantees fresh-

ness would ensure that Eve cannot perform the replay

32

Network

Message

Alice Bob

Eve NoSell

YesBuy

Eavesdrop

Figure 32: In a confidentiality attack, Eve sees the message sent by

Alice to Bob and can understand the information inside it. In this

case, Eve can tell that the message is a buy order, and not a sell order.

Network

Eve’s Message

Alice Bob

Eve Sell Everything

Send own

message

Drop

message

Figure 33: In an integrity attack, Eve replaces Alice’s message with

her own. In this case, Eve sends Bob a sell-everything order. In this

case, Eve can tell that the message is a buy order, and not a sell order.

attack pictured in Figure 34, where she would replace

Alice’s message with an older message. Without fresh-

ness guarantees, Eve could mount the following attack,

which bypasses both confidentiality and integrity guaran-

tees. Over a few days, Eve would copy and store Alice’s

messages from the network. When an order would reach

Bob, Eve would observe the market and determine if the

order was BUY or SELL. After building up a database

of messages labeled BUY or SELL, Eve would replace

Alice’s message with an old message of her choice.

Network

Eve’s Message

Alice Bob

Eve Sell Everything

Send own

message

Drop

message

Figure 34: In a freshness attack, Eve replaces Alice’s message with

a message that she sent at an earlier time. In this example, Eve builds

a database of labeled messages over time, and is able to send Bob her

choice of a BUY or a SELL order.

3.1.1 Cryptographic Keys

All cryptographic primitives that we describe here rely

on keys, which are small pieces of information that must

only be disclosed according to specific rules. A large part

of a system’s security analysis focuses on ensuring that

the keys used by the underlying cryptographic primitives

are produced and handled according to the primitives’

assumptions.

Each cryptographic primitive has an associated key

generation algorithm that uses random data to produce

a unique key. The random data is produced by a cryp-

tographically strong pseudo-random number generator

(CSPRNG) that expands a small amount of random seed

data into a much larger amount of data, which is compu-

tationally indistinguishable from true random data. The

random seed must be obtained from a true source of ran-

domness whose output cannot be predicted by an adver-

sary, such as the least significant bits of the temperature

readings coming from a hardware sensor.

Symmetric key cryptography requires that all the par-

ties in the system establish a shared secret key, which

is usually referred to as “the key”. Typically, one party

executes the key generation algorithm and securely trans-

mits the resulting key to the other parties, as illustrated

in Figure 35. The channel used to distribute the key must

provide confidentiality and integrity guarantees, which

is a non-trivial logistical burden. The symmetric key

primitives mentioned here do not make any assumption

about the key, so the key generation algorithm simply

grabs a fixed number of bits from the CSPRNG.

Hardware Sensor

Random Seed

Cryptographically Secure

Pseudo-Random Number

Generator (CSPRNG)

Key Generation

Algorithm

Bob Alice

Secret

Key

random data

Secret

Key

private

communication

Figure 35: In symmetric key cryptography, a secret key is shared

by the parties that wish to communicate securely.

The defining feature of asymmetric key cryptography

is that it does not require a private channel for key distri-

bution. Each party executes the key generation algorithm,

which produces a private key and a public key that are

mathematically related. Each party’s public key is dis-

tributed to the other parties over a channel with integrity

guarantees, as shown in Figure 36. Asymmetric key

primitives are more flexible than their symmetric coun-

terparts, but are more complicated and consume more

computational resources.

3.1.2 Confidentiality

Many cryptosystems that provide integrity guarantees

are built upon block ciphers that operate on fixed-size

message blocks. The sender transforms a block using an

33

Key Generation

Algorithm

Bob

Alice

Private

Key

Bob’s Public

Key

tamper-proof

communication

Public

Key

Hardware Sensor

Random Seed

Cryptographically Secure

Pseudo-Random Number

Generator (CSPRNG)

random data

Figure 36: An asymmetric key generation algorithm produces a

private key and an associated public key. The private key is held

confidential, while the public key is given to any party who wishes to

securely communicate with the private key’s holder.

encryption algorithm, and the receiver inverts the trans-

formation using a decryption algorithm. The encryp-

tion algorithms in block ciphers obfuscate the message

block’s content in the output, so that an adversary who

does not have the decryption key cannot obtain the origi-

nal message block from the encrypted output.

Symmetric key encryption algorithms use the same

secret key for encryption and decryption, as shown in

Figure 37, while asymmetric key block ciphers use the

public key for encryption, and the corresponding private

key for decryption, as shown in Figure 38.

Network

Encrypted Block

Alice Bob

Secret Key

Message

Block

Encryption Decryption

Message

Block

Secret Key

Figure 37: In a symmetric key secure permutation (block cipher),

the same secret key must be provided to both the encryption and the

decryption algorithm.

Network

Encrypted

Block

Alice Bob

Message

Block

Encryption Decryption

Message

Block

Bob’s

Public

Key

Bob’s

Private

Key

Figure 38: In an asymmetric key block cipher, the encryption

algorithm operates on a public key, and the decryption algorithm uses

the corresponding private key.

The most popular block cipher based on symmetric

keys at the time of this writing is the American Encryp-

tion Standard (AES) [39, 141], with two variants that

operate on 128-bit blocks using 128-bit keys or 256-

bit keys. AES is a secure permutation function, as it

can transform any 128-bit block into another 128-bit

block. Recently, the United States National Security

Agency (NSA) required the use of 256-bit AES keys for

protecting sensitive information [143].

The most deployed asymmetric key block cipher is the

Rivest-Shamir-Adelman (RSA) [158] algorithm. RSA

has variable key sizes, and 3072-bit key pairs are con-

sidered to provide the same security as 128-bit AES

keys [20].

A block cipher does not necessarily guarantee confi-

dentiality, when used on its own. A noticeable issue is

that in our previous example, a block cipher would gen-

erate the same encrypted output for any of Alice’s BUY

orders, as they all have the same content. Furthermore,

each block cipher has its own assumptions that can lead

to subtle vulnerabilities if the cipher is used directly.

Symmetric key block ciphers are combined with op-

erating modes to form symmetric encryption schemes.

Most operating modes require a random initialization

vector (IV) to be used for each message, as shown in

Figure 39. When analyzing the security of systems based

on these cryptosystems, an understanding of the IV gen-

eration process is as important as ensuring the confiden-

tiality of the encryption key.

Network

Encrypted

Message

Alice Bob

Message

Encryption Decryption

Message

Secret

Key

Secret

Key

CSPRNG

Initialization

Vector (IV)

IV

Figure 39: Symmetric key block ciphers are combined with oper-

ating modes. Most operating modes require a random initialization

vector (IV) to be generated for each encrypted message.

Counter (CTR) and Cipher Block Chaining (CBC)

are examples of operating modes recommended [45] by

34

the United States National Institute of Standards and

Technology (NIST), which informs the NSA’s require-

ments. Combining a block cipher, such as AES, with an

operating mode, such as CTR, results in an encryption

method, such as AES-CTR, which can be used to add

confidentiality guarantees.

In the asymmetric key setting, there is no concept

equivalent to operating modes. Each block cipher has its

own assumptions, and requires a specialized scheme for

general-purpose usage.

The RSA algorithm is used in conjunction with

padding methods, the most popular of which are the meth-

ods described in the Public-Key Cryptography Standard

(PKCS) #1 versions 1.5 [112] and 2.0 [113]. A security

analysis of a system that uses RSA-based encryption

must take the padding method into consideration. For

example, the padding in PKCS #1 v1.5 can leak the pri-

vate key under certain circumstances [23]. While PKCS

#1 v2.0 solves this issue, it is complex enough that some

implementations have their own security issues [134].

Asymmetric encryption algorithms have much higher

computational requirements than symmetric encryption

algorithms. Therefore, when non-trivial quantities of

data is encrypted, the sender generates a single-use secret

key that is used to encrypt the data, and encrypts the

secret key with the receiver’s public key, as shown in

Figure 40.

Network

Encrypted

Secret Key

Alice Bob

Message

Asymmetric

Encryption

Asymmetric

Decryption

Message

Bob’s

Public

Key

Bob’s

Private

Key

CSPRNG

Symmetric Key

Generation

Algorithm

Secret Key

Symmetric

Encryption

Encrypted

Message

Secret Key

Symmetric

Decryption

Figure 40: Asymmetric key encryption is generally used to bootstrap

a symmetric key encryption scheme.

3.1.3 Integrity

Many cryptosystems that provide integrity guarantees are

built upon secure hashing functions. These hash func-

tions operate on an unbounded amount of input data and

produce a small fixed-size output. Secure hash functions

have a few guarantees, such as pre-image resistance,

which states that an adversary cannot produce input data

corresponding to a given hash output.

At the time of this writing, the most popular se-

cure hashing function is the Secure Hashing Algo-

rithm (SHA) [48]. However, due to security issues in

SHA-1 [173], new software is recommended to use at

least 256-bit SHA-2 [21] for secure hashing.

The SHA hash functions are members of a large family

of block hash functions that consume their input in fixed-

size message blocks, and use a fixed-size internal state.

A block hash function is used as shown in Figure 41. An

INITIALIZE algorithm is first invoked to set the internal

state to its initial values. An EXTEND algorithm is ex-

ecuted for each message block in the input. After the

entire input is consumed, a FINALIZE algorithm produces

the hash output from the internal state.

Initialize

Intermediate State

ExtendMessage Block

Intermediate State

ExtendMessage Block

Intermediate State

…

Finalize

Output

…

Intermediate State

Figure 41: A block hash function operates on fixed-size message

blocks and uses a fixed-size internal state.

In the symmetric key setting, integrity guarantees are

obtained using a Message Authentication Code (MAC)

cryptosystem, illustrated in Figure 42. The sender uses

a MAC algorithm that reads in a symmetric key and a

variable-legnth message, and produces a fixed-length,

short MAC tag. The receiver provides the original mes-

sage, the symmetric key, and the MAC tag to a MAC

verification algorithm that checks the authenticity of the

message.

The key property of MAC cryptosystems is that an

35

Network

Message

Alice Bob

Secret

Key

Message

MAC

Signing

MAC

Verification

Message

Secret

Key

MAC tag
Correct?

Accept

Message
Yes

Reject

Message
No

Figure 42: In the symmetric key setting, integrity is assured by com-

puting a Message Authentication Code (MAC) tag and transmitting it

over the network along the message. The receiver feeds the MAC tag

into a verification algorithm that checks the message’s authenticity.

adversary cannot produce a MAC tag that will validate a

message without the secret key.

Many MAC cryptosystems do not have a separate

MAC verification algorithm. Instead, the receiver checks

the authenticity of the MAC tag by running the same

algorithm as the sender to compute the expected MAC

tag for the received message, and compares the output

with the MAC tag received from the network.

This is the case for the Hash Message Authentica-

tion Code (HMAC) [124] generic construction, whose

operation is illustrated in Figure 43. HMAC can use

any secure hash function, such as SHA, to build a MAC

cryptosystem.

Network

Message

Alice Bob

Secret

Key

Message

HMAC HMAC

Message

Secret

Key

HMAC tag

Equal?

Accept

Message
Yes

Reject

Message
No

Secure

Hash

Secure

Hash

Figure 43: In the symmetric key setting, integrity is assured by

computing a Hash-bassed Message Authentication Code (HMAC)

and transmitting it over the network along the message. The receiver

re-computes the HMAC and compares it against the version received

from the network.

Asymmetric key primitives that provide integrity guar-

antees are known as signatures. The message sender pro-

vides her private key to a signing algorithm, and transmits

the output signature along with the message, as shown

in Figure 44. The message receiver feeds the sender’s

public key and the signature to a signature verification al-

gorithm, which returns TRUE if the message matches the

signature, and FALSE if the message has been tampered

with.

Network

Message

Alice Bob

Alice’s

Private Key

Message

Signing
Signature

Verification

Message

Alice’s

Public Key

Signature Correct?

Accept

Message
Yes

Reject

Message
No

Secure

Hashing

Hash

Secure

Hashing

Hash

Figure 44: Signature schemes guarantee integrity in the asymmetric

key setting. Signatures are created using the sender’s private key, and

are verified using the corresponding public key. A cryptographically

secure hash function is usually employed to reduce large messages to

small hashes, which are then signed.

Signing algorithms can only operate on small mes-

sages and are computationally expensive. Therefore, in

practice, the message to be transmitted is first ran through

a cryptographically strong hash function, and the hash is

provided as the input to the signing algorithm.

At the time of this writing, the most popular choice for

guaranteeing integrity in shared secret settings is HMAC-

SHA, an HMAC function that uses SHA for hashing.

Authenticated encryption, which combines a block

cipher with an operating mode that offers both confi-

dentiality and integrity guarantees, is often an attractive

alternative to HMAC. The most popular authenticated

encryption operating mode is Galois/Counter operation

mode (GCM) [137], which has earned NIST’s recom-

mendation [47] when combined with AES to form AES-

GCM.

The most popular signature scheme combines the RSA

encryption algorithms with a padding schemes specified

in PKCS #1, as illustrated in Figure 45. Recently, elliptic

curve cryptography (ECC) [121] has gained a surge in

popularity, thanks to its smaller key sizes. For example, a

384-bit ECC key is considered to be as secure as a 3072-

bit RSA key [20, 143]. The NSA requires the Digital

Signature Standard (DSS)[142], which specifies schemes

based on RSA and ECC.

3.1.4 Freshness

Freshness guarantees are typically built on top of a sys-

tem that already offers integrity guarantees, by adding a

36

Little-Endian Integer

Private Key

Message

RSA

Decryption

256-bit

SHA-2

Hash0x00 0x01 PS 0x00 DER

DER-Encoded Hash Algorithm ID

30 31 30 0d 06 09 60 86 48 01

65 03 04 02 01 05 00 04 20

Padding String

ff ff ff ... ff

PKCS #1 v1.5

RSA Signature

This is a

signature

Figure 45: The RSA signature scheme with PKCS #1 v1.5 padding

specified in RFC 3447 combines a secure hash of the signed message

with a DER-encoded specification of the secure hash algorithm used

by the signature, and a padding string whose bits are all set to 1.

Everything except for the secure hash output is considered to be a

part of the PKCS #1 v1.5 padding.

unique piece of information to each message. The main

challenge in freshness schemes comes down to economi-

cally maintaining the state needed to generate the unique

pieces of information on the sender side, and verify their

uniqueness on the receiver side.

A popular solution for gaining freshness guarantees

relies on nonces, single-use random numbers. Nonces are

attractive because the sender does not need to maintain

any state; the receiver, however, must store the nonces of

all received messages.

Nonces are often combined with a message timestamp-

ing and expiration scheme, as shown in Figure 46. An

expiration can greatly reduce the receiver’s storage re-

quirement, as the nonces for expired messages can be

safely discarded. However, the scheme depends on the

sender and receiver having synchronized clocks. The

message expiration time is a compromise between the de-

sire to reduce storage costs, and the need to tolerate clock

skew and delays in message transmission and processing.

Alternatively, nonces can be used in challenge-

response protocols, in a manner that removes the storage

overhead concerns. The challenger generates a nonce

and embeds it in the challenge message. The response to

the challenge includes an acknowledgement of the em-

bedded nonce, so the challenger can distinguish between

Network

Message

Alice Bob

Synchronized

Clock

Message

CSPRNG

Message

Nonce

Seen

Before?
OKYes

Reject

Replay
No

Timestamp

Synchronized

Clock

Recent?

OKYes

Reject

Expired
No

Recent

Nonces

Figure 46: Freshness guarantees can be obtained by adding times-

tamped nonces on top of a system that already offers integrity guar-

antees. The sender and the receiver use synchronized clocks to

timestamp each message and discard unreasonably old messages.

The receiver must check the nonce in each new message against a

database of the nonces in all the unexpired messages that it has seen.

a fresh response and a replay attack. The nonce is only

stored by the challenger, and is small in comparison to

the rest of the state needed to validate the response.

3.2 Cryptographic Constructs

This section summarizes two constructs that are built on

the cryptographic primitives described in § 3.1, and are

used in the rest of this work.

3.2.1 Certificate Authorities

Asymmetric key cryptographic primitives assume that

each party has the correct public keys for the other par-

ties. This assumption is critical, as the entire security

argument of an asymmetric key system rests on the fact

that certain operations can only be performed by the own-

ers of the private keys corresponding to the public keys.

More concretely, if Eve can convince Bob that her own

public key belongs to Alice, Eve can produce message

signatures that seem to come from Alice.

The introductory material in § 3.1 assumed that each

party transmits their public key over a channel with in-

tegrity guarantees. In practice, this is not a reasonable

assumption, and the secure distribution of public keys is

still an open research problem.

The most widespread solution to the public key distri-

bution problem is the Certificate Authority (CA) system,

which assumes the existence of a trusted authority whose

public key is securely transmitted to all the other parties

in the system.

37

The CA is responsible for securely obtaining the pub-

lic key of each party, and for issuing a certificate that

binds a party’s identity (e.g., “Alice”) to its public key,

as shown in Figure 47.

Secured

Storage

Certificate

Subject Identity

Subject Public Key

Certificate Policy

Certificate Signature

Certification

Statement
Valid From / Until

Certificate Usage

Issuer

Private Key

Issuer Public Key

Signing

Algorithm

Figure 47: A certificate is a statement signed by a certificate author-

ity (issuer) binding the identity of a subject to a public key.

A certificate is essentially a cryptographic signature

produced by the private key of the certificate’s issuer,

who is generally a CA. The message signed by the issuer

states that a public key belongs to a subject. The cer-

tificate message generally contains identifiers that state

the intended use of the certificate, such as “the key in

this certificate can only be used to sign e-mail messages”.

The certificate message usually also includes an identifier

for the issuer’s certification policy, which summarizes

the means taken by the issuer to ensure the authenticity

of the subject’s public key.

A major issue in a CA system is that there is no obvi-

ous way to revoke a certificate. A revocation mechanism

is desirable to handle situations where a party’s private

key is accidentally exposed, to avoid having an attacker

use the certificate to impersonate the compromised party.

While advanced systems for certificate revocation have

been developed, the first line of defense against key com-

promise is adding expiration dates to certificates.

In a CA system, each party presents its certificate

along with its public key. Any party that trusts the CA

and has obtained the CA’s public key securely can verify

any certificate using the process illustrated in Figure 48.

One of the main drawbacks of the CA system is that

the CA’s private key becomes a very attractive attack tar-

get. This issue is somewhat mitigated by minimizing the

use of the CA’s private key, which reduces the opportuni-

ties for its compromise. The authority described above

becomes the root CA, and their private key is only used

to produce certificates for the intermediate CAs who, in

Trusted

Issuer?

Valid

now?

Certificate

Subject Identity

Subject Public Key

Certificate Policy

Certificate Signature

Valid From / Until

Certificate Usage

Issuer Public Key

Expected

subject?

Yes

Valid

for expected

use?

Yes

Yes

Start

Valid

signature?

Yes

Accept

Public Key

Yes

Reject

Certificate

No

No

No

No

No

Figure 48: A certificate issued by a CA can be validated by any

party that has securely obtained the CA’s public key. If the certificate

is valid, the subject public key contained within can be trusted to

belong to the subject identified by the certificate.

turn, are responsible for generating certificates for the

other parties in the system, as shown in Figure 49.

In hierarchical CA systems, the only public key that

gets distributed securely to all the parties is the root

CA’s public key. Therefore, when two parties wish to

interact, each party must present their own certificate, as

well as the certificate of the issuing CA. For example,

given the hierarchy in Figure 49, Alice would prove the

authenticity of her public key to Bob by presenting her

certificate, as well as the certificate of Intermediate CA

1. Bob would first use the steps in Figure 48 to validate

Intermediate CA 1’s certificate against the root CA’s

public key, which would assure him of the authenticity of

Intermediate CA 1’s public key. Bob would then validate

Alice’s certificate using Intermediate CA 1’s public key,

which he now trusts.

In most countries, the government issues ID cards for

its citizens, and therefore acts as as a certificate authority.

An ID card, shown in Figure 50, is a certificate that binds

a subject’s identity, which is a full legal name, to the

38

Secure Storage

Secure Storage

Secure Storage

Intermediate CA 1’s

Certificate

Intermediate CA 1

CA 1’s Public Key

Certificate Signature

Usage: CA

Root CA’s Public Key

Root CA

Intermediate

CA 1

Root CA’s Public Key

Root CA’s Private Key

Sign

CA 1’s Public Key

CA 1’s Private Key

Alice

Alice’s Certificate

Alice

Alice’s Public Key

Certificate Signature

Usage: End-User

CA 1’s Public Key

Sign

Alice’s Public Key

Alice’s Private Key

Secure Storage

Secure Storage

Intermediate CA 2’s

Certificate

Intermediate CA 2

CA 2’s Public Key

Certificate Signature

Usage: CA

Root CA’s Public Key

Intermediate

CA 2

CA 2’s Public Key

CA 2’s Private Key

Bob

Bob’s Certificate

Bob

Bob’s Public Key

Certificate Signature

Usage: End-User

CA 2’s Public Key

Bob’s Public Key

Bob’s Private Key

Figure 49: A hierarchical CA structure minimizes the usage of

the root CA’s private key, reducing the opportunities for it to get

compromised. The root CA only signs the certificates of intermediate

CAs, which sign the end users’ certificates.

subject’s physical appearance, which is used as a public

key.

The CA system is very similar to the identity document

(ID card) systems used to establish a person’s identity,

and a comparison between the two may help further the

reader’s understanding of the concepts in the CA system.

Alice Smith

Issued Expires

12/01/2015 12/01/2017

Valid From Valid Until

Issued by

Fictional City Card Office

Subject Public Key

Subject Identity

Issuer Public Key

is replaced by the

Issuer Name

Certificate Signature

is replaced by physical

security featuresFictional Country

Citizen ID Card Certificate Usage

Figure 50: An ID card is a certificate that binds a subject’s full legal

name (identity) to the subject’s physical appearance, which acts as a

public key.

Each government’s ID card issuing operations are reg-

ulated by laws, so an ID card’s issue date can be used

to track down the laws that make up its certification pol-

icy. Last, the security of ID cards does not (yet) rely

on cryptographic primitives. Instead, ID cards include

physical security measures designed to deter tampering

and prevent counterfeiting.

3.2.2 Key Agreement Protocols

The initial design of symmetric key primitives, intro-

duced in § 3.1, assumed that when two parties wish

to interact, one party generates a secret key and shares

it with the other party using a communication channel

with confidentiality and integrity guarantees. In practice,

a pre-existing secure communication channel is rarely

available.

Key agreement protocols are used by two parties to

establish a shared secret key, and only require a com-

munication channel with integrity guarantees. Figure 51

outlines the Diffie-Hellman Key Exchange (DKE) [43]

protocol, which should give the reader an intuition for

how key agreement protocols work.

This work is interested in using key agreement proto-

cols to build larger systems, so we will neither explain

the mathematic details in DKE, nor prove its correctness.

We note that both Alice and Bob derive the same shared

secret key, K = gAB mod p, without ever transmit-

ting K. Furthermore, the messages transmitted in DKE,

namely gA mod p and gB mod p, are not sufficient

39

Alice Bob

Pre-established parameters: large prime p, g generator in Zp

Choose A randomly

between 1 and p

Transmit g
A

 mod p

Choose B randomly

between 1 and p

Compute g
B

 mod p

Receive g
A

 mod pg
A

 mod p

Shared key K =

= (g
A

 mod p)
B

 =

= g
AB

 mod p

Compute g
A

 mod p

Transmit g
B

 mod pReceive g
B

 mod p g
B

 mod p

Shared key K =

= (g
B

 mod p)
A

 =

= g
AB

 mod p

Figure 51: In the Diffie-Hellman Key Exchange (DKE) protocol,

Alice and Bob agree on a shared secret key K = gAB
mod p. An

adversary who observes gA mod p and gB mod p cannot compute

K.

for an eavesdropper Eve to determine K, because effi-

ciently solving for x in gx mod p is an open problem

assumed to be very difficult.

Key agreement protocols require a communication

channel with integrity guarantees. If an active adversary

Eve can tamper with the messages transmitted by Alice

and Bob, she can perform a man-in-the-middle (MITM)

attack, as illustrated in Figure 52.

Alice BobEve

g
A

 mod pg
A

 mod p

g
E1

 mod p

g
E2

 mod p

g
B

 mod p

K1 = g
AE1

 mod p K2 = g
BE2

 mod p

Figure 52: Any key agreement protocol is vulnerable to a man-

in-the-middle (MITM) attack. The active attacker performs key

agreements and establishes shared secrets with both parties. The

attacker can then forward messages between the victims, in order

to observe their communication. The attacker can also send its own

messages to either, impersonating the other victim.

In a MITM attack, Eve intercepts Alice’s first key

exchange message, and sends Bob her own message. Eve

then intercepts Bob’s response and replaces it with her

own, which she sends to Alice. Eve effectively performs

key exchanges with both Alice and Bob, establishing a

shared secret with each of them, with neither Bob nor

Alice being aware of her presence.

After establishing shared keys with both Alice and

Bob, Eve can choose to observe the communication be-

tween Alice and Bob, by forwarding messages between

them. For example, when Alice transmits a message, Eve

can decrypt it using K1, the shared key between herself

and Alice. Eve can then encrypt the message with K2,

the key established between Bob and herself. While Bob

still receives Alice’s message, Eve has been able to see

its contents.

Furthermore, Eve can impersonate either party in the

communication. For example, Eve can create a message,

encrypt it with K2, and then send it to Bob. As Bob

thinks that K2 is a shared secret key established between

himself and Alice, he will believe that Eve’s message

comes from Alice.

MITM attacks on key agreement protocols can be

foiled by authenticating the party who sends the last mes-

sage in the protocol (in our examples, Bob) and having

them sign the key agreement messages. When a CA

system is in place, Bob uses his public key to sign the

messages in the key agreement and also sends Alice his

certificate, along with the certificates for any intermedi-

ate CAs. Alice validates Bob’s certificate, ensures that

the subject identified by the certificate is whom she ex-

pects (Bob), and verifies that the key agreement messages

exchanged between herself and Bob match the signature

provided by Bob.

In conclusion, a key agreement protocol can be used to

bootstrap symmetric key primitives from an asymmetric

key signing scheme, where only one party needs to be

able to sign messages.

3.3 Software Attestation Overview

The security of systems that employ trusted processors

hinges on software attestation. The software running

inside an isolated container established by trusted hard-

ware can ask the hardware to sign (§ 3.1.3) a small piece

of attestation data, producing an attestation signature.

Asides from the attestation data, the signed message

includes a measurement that uniquely identifies the soft-

ware inside the container. Therefore, an attestation signa-

ture can be used to convince a verifier that the attestation

data was produced by a specific piece of software, which

is hosted inside a container that is isolated by trusted

hardware from outside interference.

Each hardware platform discussed in this section uses

a slightly different software attestation scheme. Plat-

forms differ by the amount of software that executes

40

inside an isolated container, by the isolation guarantees

provided to the software inside a container, and by the

process used to obtain a container’s measurement. The

threat model and security properties of each trusted hard-

ware platform follow directly from the design choices

outlined above, so a good understanding of attestation

is a prerequisite to discussing the differences between

existing platforms.

3.3.1 Authenticated Key Agreement

Software attestation can be combined with a key agree-

ment protocol (§ 3.2.2), as software attestation provides

the authentication required by the key agreement pro-

tocol. The resulting protocol can assure a verifier that

it has established a shared secret with a specific piece

of software, hosted inside an isolated container cre-

ated by trusted hardware. The next paragraph outlines

the augmented protocol, using Diffie-Hellman Key Ex-

change (DKE) [43] as an example of the key exchange

protocol.

The verifier starts executing the key exchange protocol,

and sends the first message, gA, to the software inside

the secure container. The software inside the container

produces the second key exchange message, gB , and asks

the trusted hardware to attest the cryptographic hash of

both key exchange messages, h(gA||gB). The verifier re-

ceives the second key exchange and attestation signature,

and authenticates the software inside the secure container

by checking all the signatures along the attestation chain

of trust shown in Figure 53.

The chain of trust used in software attestation is rooted

at a signing key owned by the hardware manufacturer,

which must be trusted by the verifier. The manufacturer

acts as a Certificate Authority (CA, § 3.2.1), and provi-

sions each secure processor that it produces with a unique

attestation key, which is used to produce attestation sig-

natures. The manufacturer also issues an endorsement

certificate for each secure processor’s attestation key.

The certificate indicates that the key is meant to be used

for software attestation. The certification policy gener-

ally states that, at the very least, the private part of the

attestation key be stored in tamper-resistant hardware,

and only be used to produce attestation signatures.

A secure processor identifies each isolated container

by storing a cryptographic hash of the code and data

loaded inside the container. When the processor is asked

to sign a piece of attestation data, it uses the crypto-

graphic hash associated with the container as the mea-

surement in the attestation signature. After a verifier

Tamper-Resistant

Hardware

Attestation Key

Manufacturer Root Key

Endorsement

Certificate

PrivAKPubAK Attestation

Signature

Manufacturer

Certificate Authority

PrivRKPubRK

Signs

Signs

Key Exchange

Message 1

Measurement

Data

Secure

Container

Verifier

Trusts

Hash of

Hash of

Key Exchange

Message 2

Figure 53: The chain of trust in software attestation. The root of

trust is a manufacturer key, which produces an endorsement certificate

for the secure processor’s attestation key. The processor uses the

attestation key to produce the attestation signature, which contains a

cryptographic hash of the container and a message produced by the

software inside the container.

validates the processor’s attestation key using its endorse-

ment certificate, the verifier ensures that the signature is

valid, and that the measurement in the signature belongs

to the software with which it expects to communicate.

Having checked all the links in the attestation chain, the

verifier has authenticated the other party in the key ex-

change, and is assured that it now shares a secret with the

software that it expects, running in an isolated container

on hardware that it trusts.

3.3.2 The Role of Software Measurement

The measurement that identifies the software inside a

secure container is always computed using a secure hash-

ing algorithm (§ 3.1.3). Trusted hardware designs differ

in their secure hash function choices, and in the data

provided to the hash function. However, all the designs

share the principle that each step taken to build a secure

container contributes data to its measurement hash.

The philosophy behind software attestation is that the

computer’s owner can load any software she wishes in

a secure container. However, the computer owner is as-

sumed to have an incentive to participate in a distributed

system where the secure container she built is authenti-

cated via software attestation. Without the requirement

to undergo software attestation, the computer owner can

build any container without constraints, which would

make it impossible to reason about the security proper-

ties of the software inside the container.

41

By the argument above, a trusted hardware design

based on software attestation must assume that each con-

tainer is involved in software attestation, and that the re-

mote party will refuse to interact with a container whose

reported measurement does not match the expected value

set by the distributed system’s author.

For example, a cloud infrastructure provider should

be able to use the secure containers provided by trusted

hardware to run any software she wishes on her com-

puters. However, the provider makes money by renting

her infrastructure to customers. If security savvy cus-

tomers are only willing to rent containers provided by

trusted hardware, and use software attestation to authen-

ticate the containers that they use, the cloud provider will

have a strong financial incentive to build the customers’

containers according to their specifications, so that the

containers pass the software attestation.

A container’s measurement is computed using a se-

cure hashing algorithm, so the only method of building

a container that matches an expected measurement is to

follow the exact sequence of steps specified by the dis-

tributed system’s author. The cryptographic properties of

the secure hash function guarantee that if the computer’s

owner strays in any way from the prescribed sequence

of steps, the measurement of the created container will

not match the value expected by the distributed system’s

author, so the container will be rejected by the software

attestation process.

Therefore, it makes sense to state that a trusted hard-

ware design’s measurement scheme guarantees that a

property has a certain value in a secure container. The

precise meaning of this phrase is that the property’s value

determines the data used to compute the container’s mea-

surement, so an expected measurement hash effectively

specifies an expected value for the property. All contain-

ers in a distributed system that correctly uses software

attestation will have the desired value for the given prop-

erty.

For example, the measuring scheme used by trusted

hardware designed for cloud infrastructure should guar-

antee that the container’s memory was initialized using

the customer’s content, often referred to as an image.

3.4 Physical Attacks

Physical attacks are generally classified according to

their cost, which factors in the equipment needed to carry

out the attack and the attack’s complexity. Joe Grand’s

DefCon presentation [69] provides a good overview with

a large number of intuition-building figures and photos.

The simplest type of physical attack is a denial of

service attack performed by disconnecting the victim

computer’s power supply or network cable. The threat

models of most secure architectures ignore this attack,

because denial of service can also be achieved by soft-

ware attacks that compromise system software such as

the hypervisor.

3.4.1 Port Attacks

Slightly more involved attacks rely on connecting a de-

vice to an existing port on the victim computer’s case or

motherboard (§ 2.9.1). A simple example is a cold boot

attack, where the attacker plugs in a USB flash drive into

the victim’s case and causes the computer to boot from

the flash drive, whose malicious system software receives

unrestricted access to the computer’s peripherals.

More expensive physical attacks that still require rela-

tively little effort target the debug ports of various periph-

erals. The cost of these attacks is generally dominated

by the expense of acquiring the development kits needed

to connect to the debug ports. For example, recent Intel

processors include the Generic Debug eXternal Connec-

tion (GDXC) [126, 199], which collects and filters the

data transferred by the uncore’s ring bus (§ 2.11.3), and

reports it to an external debugger.

The threat models of secure architectures generally

ignore debug port attacks, under the assumption that de-

vices sold for general consumption have their debug ports

irreversibly disabled. In practice, manufacturers have

strong incentives to preserve debugging ports in produc-

tion hardware, as this facilitates the diagnosis and repair

of defective units. Due to insufficient documentation

on this topic, we ignore the possibility of GDXC-based

attacks.

3.4.2 Bus Tapping Attacks

More complex physical attacks consist of installing a

device that taps a bus on the computer’s motherboard

(§ 2.9.1). Passive attacks are limited to monitoring the

bus traffic, whereas active attacks can modify the traf-

fic, or even place new commands on the bus. Replay

attacks are a notoriously challenging class of active at-

tacks, where the attacker first records the bus traffic, and

then selectively replays a subset of the traffic. Replay

attacks bypass systems that rely on static signatures or

HMACs, and generally aim to double-spend a limited

resource.

The cost of bus tapping attacks is generally dominated

by the cost of the equipment used to tap the bus, which

42

increases with bus speed and complexity. For example,

the flash chip that stores the computer’s firmware is con-

nected to the PCH via an SPI bus (§ 2.9.1), which is

simpler and much slower than the DDR bus connecting

DRAM to the CPU. Consequently, tapping the SPI bus is

much cheaper than tapping the DDR bus. For this reason,

systems whose security relies on a cryptographic hash

of the firmware will first copy the firmware into DRAM,

hash the DRAM copy of the firmware, and then execute

the firmware from DRAM.

Although the speed of the DDR bus makes tapping

very difficult, there are well-publicized records of suc-

cessful attempts. The original Xbox console’s booting

process was reverse-engineered, thanks to a passive tap

on the DRAM bus [82], which showed that the firmware

used to boot the console was partially stored in its south-

bridge. The protection mechanisms of the PlayStation 3

hypervisor were subverted by an active tap on its memory

bus [81] that targeted the hypervisor’s page tables.

The Ascend secure processor (§ 4.10) shows that con-

cealing the addresses of the DRAM cells accessed by

a program is orders of magnitude more expensive than

protecting the memory’s contents. Therefore, we are

interested in analyzing attacks that tap the DRAM bus,

but only use the information on the address lines. These

attacks use the same equipment as normal DRAM bus

tapping attacks, but require a significantly more involved

analysis to learn useful information. One of the dif-

ficulties of such attacks is that the memory addresses

observed on the DRAM bus are generally very different

from the application’s memory access patterns, because

of the extensive cache hierarchies in modern processors

(§ 2.11).

We are not aware of any successful attack based on

tapping the address lines of a DRAM bus and analyzing

the sequence of memory addresses.

3.4.3 Chip Attacks

The most equipment-intensive physical attacks involve

removing a chip’s packaging and directly interacting with

its electrical circuits. These attacks generally take advan-

tage of equipment and techniques that were originally

developed to diagnose design and manufacturing defects

in chips. [22] covers these techniques in depth.

The cost of chip attacks is dominated by the required

equipment, although the reverse-engineering involved

is also non-trivial. This cost grows very rapidly as the

circuit components shrink. At the time of this writing,

the latest Intel CPUs have a 14nm feature size, which

requires ion beam microscopy.

The least expensive classes of chip attacks are destruc-

tive, and only require imaging the chip’s circuitry. These

attacks rely on a microscope capable of capturing the

necessary details in each layer, and equipment for me-

chanically removing each layer and exposing the layer

below it to the microscope.

Imaging attacks generally target global secrets shared

by all the chips in a family, such as ROM masks that store

global encryption keys or secret boot code. They are also

used to reverse-engineer undocumented functionality,

such as debugging backdoors. E-fuses and polyfuses are

particularly vulnerable to imaging attacks, because of

their relatively large sizes.

Non-destructive passive chip attacks require measur-

ing the voltages across a module at specific times, while

the chip is operating. These attacks are orders of magni-

tude more expensive than imaging attacks, because the

attacker must maintain the integrity of the chip’s circuitry,

and therefore cannot de-layer the chip.

The simplest active attacks on a chip create or destroy

an electric connection between two components. For

example, the debugging functionality in many chips is

disabled by “blowing” an e-fuse. Once this e-fuse is

located, an attacker can reconnect its two ends, effec-

tively undoing the “blowing” operation. More expensive

attacks involve changing voltages across a component as

the chip is operating, and are typically used to reverse-

engineer complex circuits.

Surprisingly, active attacks are not significantly more

expensive to carry out than passive non-destructive at-

tacks. This is because the tools used to measure the

voltage across specific components are not very different

from the tools that can tamper with the chip’s electric

circuits. Therefore, once an attacker develops a process

for accessing a module without destroying the chip’s

circuitry, the attacker can use the same process for both

passive and active attacks.

At the architectural level, we cannot address physical

attacks against the CPU’s chip package. Active attacks

on the CPU change the computer’s execution semantics,

leaving us without any hardware that can be trusted to

make security decisions. Passive attacks can read the

private data that the CPU is processing. Therefore, many

secure computing architectures assume that the processor

chip package is invulnerable to physical attacks.

Thankfully, physical attacks can be deterred by reduc-

ing the value that an attacker obtains by compromising

an individual chip. As long as this value is below the cost

43

of carrying out the physical attack, a system’s designer

can hope that the processor’s chip package will not be

targeted by the physical attacks.

Architects can reduce the value of compromising an

individual system by avoiding shared secrets, such as

global encryption keys. Chip designers can increase the

cost of a physical attack by not storing a platform’s se-

crets in hardware that is vulnerable to destructive attacks,

such as e-fuses.

3.4.4 Power Analysis Attacks

An entirely different approach to physical attacks con-

sists of indirectly measuring the power consumption of a

computer system or its components. The attacker takes

advantage of a known correlation between power con-

sumption and the computed data, and learns some prop-

erty of the data from the observed power consumption.

The earliest power analysis attacks have directly mea-

sured the processor chip’s power consumption. For ex-

ample, [122] describes a simple power analysis (SPA)

attack that exploits the correlation between the power

consumed by a smart card chip’s CPU and the type of

instruction it executed, and learned a DSA key that the

smart card was supposed to safeguard.

While direct power analysis attacks necessitate some

equipment, their costs are dominated by the complexity

of the analysis required to learn the desired informa-

tion from the observed power trace which, in turn, is

determined by the complexity of the processor’s circuitry.

Today’s smart cards contain special circuitry [179] and

use hardened algorithms [77] designed to frustrate power

analysis attacks.

Recent work demonstrated successful power analysis

attacks against full-blown out-of-order Intel processors

using inexpensive off-the-shelf sensor equipment. [60]

extracts an RSA key from GnuPG running on a laptop

using a microphone that measures its acoustic emissions.

[59] and [58] extract RSA keys from power analysis-

resistant implementations using a voltage meter and a

radio. All these attacks can be performed quite easily by

a disgruntled data center employee.

Unfortunately, power analysis attacks can be extended

to displays and human input devices, which cannot be

secured in any reasonable manner. For example, [182]

documented a very early attack that measures the radia-

tion emitted by a CRT display’s ion beam to reconstitute

the image on a computer screen in a different room. [125]

extended the attack to modern LCD displays. [201] used

a directional microphone to measure the sound emitted

by a keyboard and learn the password that its operator

typed. [148] applied similar techniques to learn a user’s

input on a smartphone’s on-screen keyboard, based on

data from the device’s accelerometer.

In general, power attacks cannot be addressed at the

architectural level, as they rely on implementation de-

tails that are decided during the manufacturing process.

Therefore, it is unsurprising that the secure computing ar-

chitectures described in § 4 do not protect against power

analysis attacks.

3.5 Privileged Software Attacks

The rest of this section points to successful exploits that

execute at each of the privilege levels described in § 2.3,

motivating the SGX design decision to assume that all

the privileged software on the computer is malicious.

[163] describes all the programmable hardware inside

Intel computers, and outlines the security implications of

compromising the software running it.

SMM, the most privileged execution level, is only used

to handle a specific kind of interrupts (§ 2.12), namely

System Management Interrupts (SMI). SMIs were ini-

tially designed exclusively for hardware use, and were

only triggered by asserting a dedicated pin (SMI#) in the

CPU’s chip package. However, in modern systems, sys-

tem software can generate an SMI by using the LAPIC’s

IPI mechanism. This opens up the avenue for SMM-

based software exploits.

The SMM handler is stored in System Manage-

ment RAM (SMRAM) which, in theory, is not acces-

sible when the processor isn’t running in SMM. How-

ever, its protection mechanisms were bypassed multi-

ple times [44, 114, 164, 189], and SMM-based rootk-

its [49, 186] have been demonstrated. Compromising

the SMM grants an attacker access to all the software on

the computer, as SMM is the most privileged execution

mode.

Xen [200] is a very popular representative of the fam-

ily of hypervisors that run in VMX root mode and use

hardware virtualization. At 150,000 lines of code [11],

Xen’s codebase is relatively small, especially when com-

pared to a kernel. However, Xen still has had over 40

security vulnerabilities patched in each of the last three

years (2012-2014) [10].

[136] proposes using a very small hypervisor together

with Intel TXT’s dynamic root of trust for measurement

(DRTM) to implement trusted execution. [183] argues

that a dynamic root of trust mechanism, like Intel TXT,

is necessary to ensure a hypervisor’s integrity. Unfor-

44

tunately, the TXT design requires an implementation

complex enough that exploitable security vulnerabilities

have creeped in [190, 191]. Furthermore, any SMM

attack can be used to compromise TXT [188].

The monolithic kernel design leads to many opportu-

nities for security vulnerabilities in kernel code. Linux

is by far the most popular kernel for IaaS cloud environ-

ments. Linux has 17 million lines of code [16], and has

had over 100 security vulnerabilities patched in each of

the last three years (2012-2014) [8, 33].

3.6 Software Attacks on Peripherals

Threat models for secure architectures generally only

consider software attacks that directly target other com-

ponents in the software stack running on the CPU. This

assumption results in security arguments with the very

desirable property of not depending on implementation

details, such as the structure of the motherboard hosting

the processor chip.

The threat models mentioned above must classify at-

tacks from other motherboard components as physical

attacks. Unfortunately, these models would mis-classify

all the attacks described in this section, which can be

carried out solely by executing software on the victim

processor. The incorrect classification matters in cloud

computing scenarios, where physical attacks are signifi-

cantly more expensive than software attacks.

3.6.1 PCI Express Attacks

The PCIe bus (§ 2.9.1) allows any device connected to

the bus to perform Direct Memory Access (DMA), read-

ing from and writing to the computer’s DRAM without

the involvement of a CPU core. Each device is assigned

a range of DRAM addresses via a standard PCI config-

uration mechanism, but can perform DMA on DRAM

addresses outside of that range.

Without any additional protection mechanism, an at-

tacker who compromises system software can take ad-

vantage of programmable devices to access any DRAM

region, yielding capabilities that were traditionally asso-

ciated with a DRAM bus tap. For example, an early im-

plementation of Intel TXT [70] was compromised by pro-

gramming a PCIe NIC to read TXT-reserved DRAM via

DMA transfers [190]. Recent versions have addressed

this attack by adding extra security checks in the DMA

bus arbiter. § 4.5 provides a more detailed description of

Intel TXT.

3.6.2 DRAM Attacks

The rowhammer DRAM bit-flipping attack [72, 119,

166] is an example of a different class of software attacks

that exploit design defects in the computer’s hardware.

Rowhammer took advantage of the fact that some mobile

DRAM chips (§ 2.9.1) refreshed the DRAM’s contents

slowly enough that repeatedly changing the contents of a

memory cell could impact the charge stored in a neigh-

boring cell, which resulted in changing the bit value

obtained from reading the cell. By carefully targeting

specific memory addresses, the attackers caused bit flips

in the page tables used by the CPU’s address translation

(§ 2.5) mechanism, and in other data structures used to

make security decisions.

The defect exploited by the rowhammer attack most

likely stems from an incorrect design assumption.

The DRAM engineers probably only thought of non-

malicious software and assumed that an individual

DRAM cell cannot be accessed too often, as repeated ac-

cesses to the same memory address would be absorbed by

the CPU’s caches (§ 2.11). However, malicious software

can take advantage of the CLFLUSH instruction, which

flushes the cache line that contains a given DRAM ad-

dress. CLFLUSH is intended as a method for applications

to extract more performance out of the cache hierarchy,

and is therefore available to software running at all priv-

ilege levels. Rowhammer exploited the combination of

CLFLUSH’s availability and the DRAM engineers’ in-

valid assumptions, to obtain capabilities that are normally

associated with an active DRAM bus attack.

3.6.3 The Performance Monitoring Side Channel

Intel’s Software Development Manual (SDM) [101] and

Optimization Reference Manual [96] describe a vast ar-

ray of performance monitoring events exposed by recent

Intel processors, such as branch mispredictions (§ 2.10).

The SDM also describes digital temperature sensors em-

bedded in each CPU core, whose readings are exposed

using Model-Specific Registers (MSRs) (§ 2.4) that can

be read by system software.

An attacker who compromises a computer’s system

software and gains access to the performance monitoring

events or the temperature sensors can obtain the informa-

tion needed to carry out a power analysis attack, which

normally requires physical access to the victim computer

and specialized equipment.

45

3.6.4 Attacks on the Boot Firmware and Intel ME

Virtually all motherboards store the firmware used to boot

the computer in a flash memory chip (§ 2.9.1) that can be

written by system software. This implementation strategy

provides an inexpensive avenue for deploying firmware

bug fixes. At the same time, an attack that compromises

the system software can subvert the firmware update

mechanism to inject malicious code into the firmware.

The malicious code can be used to carry out a cold boot

attack, which is typically considered a physical attack.

Furthermore, malicious firmware can run code at the

highest software privilege level, System Management

Mode (SMM, § 2.3). Last, malicious firmware can mod-

ify the system software as it is loaded during the boot

process. These avenues give the attacker capabilities

that have traditionally been associated with DRAM bus

tapping attacks.

The Intel Management Engine (ME) [162] loads its

firmware from the same flash memory chip as the main

computer, which opens up the possibility of compromis-

ing its firmware. Due to its vast management capabilities

(§ 2.9.2), a compromised ME would leak most of the pow-

ers that come with installing active probes on the DRAM

bus, the PCI bus, and the System Management bus (SM-

Bus), as well as power consumption meters. Thanks to

its direct access to the motherboard’s Ethernet PHY, the

probe would be able to communicate with the attacker

while the computer is in the Soft-Off state, also known

as S5, where the computer is mostly powered off, but is

still connected to a power source. The ME has signifi-

cantly less computational power than probe equipment,

however, as it uses low-power embedded components,

such as a 200-400MHz execution core, and about 600KB

of internal RAM.

The computer and ME firmware are protected by a

few security measures. The first line of defense is a

security check in the firmware’s update service, which

only accepts firmware updates that have been digitally

signed by a manufacturer key that is hard-coded in the

firmware. This protection can be circumvented with

relative ease by foregoing the firmware’s update services,

and instead accessing the flash memory chip directly, via

the PCH’s SPI bus controller.

The deeper, more powerful, lines of defense against

firmware attacks are rooted in the CPU and ME’s hard-

ware. The bootloader in the ME’s ROM will only load

flash firmware that contains a correct signature generated

by a specific Intel RSA key. The ME’s boot ROM con-

tains the SHA-256 cryptographic hash of the RSA public

key, and uses it to validate the full Intel public key stored

in the signature. Similarly, the microcode bootstrap pro-

cess in recent CPUs will only execute firmware in an

Authenticated Code Module (ACM, § 2.13.2) signed by

an Intel key whose SHA-256 hash is hard-coded in the

microcode ROM.

However, both the computer firmware security checks

[54, 192] and the ME security checks [178] have been

subverted in the past. While the approaches described

above are theoretically sound, the intricate details and

complex interactions in Intel-based systems make it very

likely that security vulnerabilities will creep into im-

plementations. Further proving this point, a security

analysis [185] found that early versions of Intel’s Active

Management Technology (AMT), the flagship ME appli-

cation, contained an assortment of security issues that

allowed an attacker to completely take over a computer

whose ME firmware contained the AMT application.

3.6.5 Accounting for Software Attacks on Peripherals

The attacks described in this section show that a system

whose threat model assumes no software attacks must

be designed with an understanding of all the system’s

buses, and the programmable devices that may be at-

tached to them. The system’s security analysis must

argue that the devices will not be used in physical-like

attacks. The argument will rely on barriers that prevent

untrusted software running on the CPU from communi-

cating with other programmable devices, and on barriers

that prevent compromised programmable devices from

tampering with sensitive buses or DRAM.

Unfortunately, the ME, PCH and DMI are Intel-

proprietary and largely undocumented, so we cannot

assess the security of the measures set in place to pro-

tect the ME from being compromised, and we cannot

reason about the impact of a compromised ME that runs

malicious software.

3.7 Address Translation Attacks

§ 3.5 argues that today’s system software is virtually

guaranteed to have security vulnerabilities. This suggests

that a cautious secure architecture should avoid having

the system software in the TCB.

However, removing the system software from the TCB

requires the architecture to provide a method for isolat-

ing sensitive application code from the untrusted system

software. This is typically accomplished by designing

a mechanism for loading application code in isolated

containers whose contents can be certified via software

46

attestation (§ 3.3). One of the more difficult problems

these designs face is that application software relies on

the memory management services provided by the sys-

tem software, which is now untrusted.

Intel’s SGX [14, 139], leaves the system software in

charge of setting up the page tables (§ 2.5) used by ad-

dress translation, inspired by Bastion [31], but instanti-

ates access checks that prevent the system software from

directly accessing the isolated container’s memory.

This section discusses some attacks that become rel-

evant when the application software does not trust the

system software, which is in charge of the page tables.

Understanding these attacks is a prerequisite to reasoning

about the security properties of architectures with this

threat model. For example, many of the mechanisms in

SGX target a subset of the attacks described here.

3.7.1 Passive Attacks

System software uses the CPU’s address translation fea-

ture (§ 2.5) to implement page swapping, where infre-

quently used memory pages are evicted from DRAM

to a slower storage medium. Page swapping relies the

accessed (A) and dirty (D) page table entry attributes

(§ 2.5.3) to identify the DRAM pages to be evicted, and

on a page fault handler (§ 2.8.2) to bring evicted pages

back into DRAM when they are accessed.

Unfortunately, the features that support efficient page

swapping turn into a security liability, when the system

software managing the page tables is not trusted by the

application software using the page tables. The system

software can be prevented from reading the application’s

memory directly by placing the application in an iso-

lated container. However, potentially malicious system

software can still infer partial information about the ap-

plication’s memory access patterns, by observing the

application’s page faults and page table attributes.

We consider this class of attacks to be passive attacks

that exploit the CPU’s address translation feature. It

may seem that the page-level memory access patterns

provided by these attacks are not very useful. However,

[195] describes how this attack can be carried out against

Intel’s SGX, and implements the attack in a few practical

settings. In one scenario, which is particularly concern-

ing for medical image processing, the outline of a JPEG

image is inferred while the image is decompressed inside

a container protected by SGX’s isolation guarantees.

3.7.2 Straightforward Active Attacks

We define active address translation attacks to be the

class of attacks where malicious system software modi-

fies the page tables used by an application in a way that

breaks the virtual memory abstraction (§ 2.5). Memory

mapping attacks do not include scenarios where the sys-

tem software breaks the memory abstraction by directly

writing to the application’s memory pages.

We begin with an example of a straight-forward active

attack. In this example, the application inside a protected

container performs a security check to decide whether to

disclose some sensitive information. Depending on the

security check’s outcome, the enclave code either calls

a errorOut procedure, or a disclose procedure.

The simplest version of the attack assumes that each

procedure’s code starts at a page boundary, and takes up

less than a page. These assumptions are relaxed in more

complex versions of the attack.

In the most straightforward setting, the malicious sys-

tem software directly modifies the page tables of the

application inside the container, as shown in Figure 54,

so the virtual address intended to store the errorOut

procedure is actually mapped to a DRAM page that con-

tains the disclose procedure. Without any security

measures in place, when the application’s code jumps

to the virtual address of the errorOut procedure, the

CPU will execute the code of the disclose procedure

instead.

Application code written by

developer

Application code seen by CPU

errorOut():

write error

return

disclose():

write data

return

Security

Check

FAIL

PASS

Page

tables

0x41000

0x42000

errorOut():

write error

return

disclose():

write data

return

Security

Check

FAIL

PASS

0x41000

0x42000

Virtual

addresses DRAM pages

Figure 54: An example of an active memory mapping attack. The

application’s author intends to perform a security check, and only

call the procedure that discloses the sensitive information if the check

passes. Malicious system software maps the virtual address of the

procedure that is called when the check fails, to a DRAM page that

contains the disclosing procedure.

47

3.7.3 Active Attacks Using Page Swapping

The most obvious active attacks on memory mapping

can be defeated by tracking the correct virtual address

for each DRAM page that belongs to a protected con-

tainer. However, a naive protection measure based on

address tracking can be defeated by a more subtle ac-

tive attack that relies on the architectural support for

page swapping. Figure 55 illustrates an attack that does

not modify the application’s page tables, but produces

the same corrupted CPU view of the application as the

straight-forward attack described above.

errorOut

Contents

disclose

Virtual Physical

0x1A000

0x19000

0x42000

0x41000

disclose

Contents

errorOut

Virtual Physical

0x1A000

0x19000

0x42000

0x41000

HDD / SSD

errorOut

disclose

Page tables and DRAM before swapping

Page tables and DRAM after swapping

Figure 55: An active memory mapping attack where the system

software does not modify the page tables. Instead, two pages are

evicted from DRAM to a slower storage medium. The malicious

system software swaps the two pages’ contents then brings them back

into DRAM, building the same incorrect page mapping as the direct

attack shown in Figure 54. This attack defeats protection measures

that rely on tracking the virtual and disk addresses for DRAM pages.

In the swapping attack, malicious system soft-

ware evicts the pages that contain the errorOut

and disclose procedures from DRAM to a slower

medium, such as a hard disk. The system software ex-

changes the hard disk bytes storing the two pages, and

then brings the two pages back into DRAM. Remarkably,

all the steps taken by this attack are indistinguishable

from legitimate page swapping activity, with the excep-

tion of the I/O operations that exchange the disk bytes

storing evicted pages.

The subtle attack described in this section can be de-

feated by cryptographically binding the contents of each

page that is evicted from DRAM to the virtual address

to which the page should be mapped. The cryptographic

primitive (§ 3.1) used to perform the binding must ob-

viously guarantee integrity. Furthermore, it must also

guarantee freshness, in order to foil replay attacks where

the system software “undoes” an application’s writes by

evicting one of its DRAM pages to disk and bringing in

an older version of the same page.

3.7.4 Active Attacks Based on TLBs

Today’s multi-core architectures can be subjected to an

even more subtle active attack, illustrated in Figure 56,

which can bypass any protection measures that solely

focus on the integrity of the page tables.

DRAM

disclose

Contents

0x19000

0x1A000

Physical

errorOut0x41000

0x1A0000x42000

Physical

0x19000

Virtual

Page tables and TLB

before swapping

HDD / SSD

errorOut

disclose

DRAM

errorOut

Contents

0x19000

0x1A000

Physical

disclose0x41000

0x1A0000x42000

Physical

0x19000

Virtual

Stale TLB after swapping

0x41000

0x190000x42000

Physical

0x1A000

Virtual

Page tables after swapping

Figure 56: An active memory mapping attack where the system

software does not invalidate a core’s TLBs when it evicts two pages

from DRAM and exchanges their locations when reading them back

in. The page tables are updated correctly, but the core with stale TLB

entries has the same incorrect view of the protected container’s code

as in Figure 54.

For performance reasons, each execution core caches

address translation results in its own translation look-

aside buffer (TLB, § 2.11.5). For simplicity, the TLBs

are not covered by the cache coherence protocol that

synchronizes data caches across cores. Instead, the sys-

tem software is responsible for invalidating TLB entries

across all the cores when it modifies the page tables.

Malicious system software can take advantage of the

design decisions explained above by carrying out the fol-

lowing attack. While the same software used in the previ-

ous examples is executing on a core, the system software

executes on a different core and evicts the errorOut

and disclose pages from DRAM. As in the previous

attack, the system software loads the disclose code

in the DRAM page that previously held errorOut. In

this attack, however, the system software also updates

the page tables.

The core where the system software executed sees the

code that the application developer intended. Therefore,

the attack will pass any security checks that rely upon

cryptographic associations between page contents and

page table data, as long as the checks are performed by

the core used to load pages back into DRAM. However,

the core that executes the protected container’s code still

48

uses the old page table data, because the system software

did not invalidate its TLB entries. Assuming the TLBs

are not subjected to any additional security checks, this

attack causes the same private information leak as the

previous examples.

In order to avoid the attack described in this sec-

tion, the trusted software or hardware that implements

protected containers must also ensure that the system

software invalidates the relevant TLB entries on all the

cores when it evicts a page from a protected container to

DRAM.

3.8 Cache Timing Attacks

Cache timing attacks [19] are a powerful class of soft-

ware attacks that can be mounted entirely by application

code running at ring 3 (§ 2.3). Cache timing attacks do

not learn information by reading the victim’s memory,

so they bypass the address translation-based isolation

measures (§ 2.5) implemented in today’s kernels and

hypervisors.

3.8.1 Theory

Cache timing attacks exploit the unfortunate dependency

between the location of a memory access and the time

it takes to perform the access. A cache miss requires

at least one memory access to the next level cache, and

might require a second memory access if a write-back

occurs. On the Intel architecture, the latency between

a cache hit and a miss can be easily measured by the

RDTSC and RDTSCP instructions (§ 2.4), which read a

high-resolution time-stamp counter. These instructions

have been designed for benchmarking and optimizing

software, so they are available to ring 3 software.

The fundamental tool of a cache timing attack is an

attacker process that measures the latency of accesses to

carefully designated memory locations in its own address

space. The memory locations are chosen so that they

map to the same cache lines as those of some interesting

memory locations in a victim process, in a cache that is

shared between the attacker and the victim. This requires

in-depth knowledge of the shared cache’s organization

(§ 2.11.2).

Armed with the knowledge of the cache’s organization,

the attacker process sets up the attack by accessing its

own memory in such a way that it fills up all the cache

sets that would hold the victim’s interesting memory lo-

cations. After the targeted cache sets are full, the attacker

allows the victim process to execute. When the victim

process accesses an interesting memory location in its

own address space, the shared cache must evict one of

the cache lines holding the attacker’s memory locations.

As the victim is executing, the attacker process repeat-

edly times accesses to its own memory locations. When

the access times indicate that a location was evicted from

the cache, the attacker can conclude that the victim ac-

cessed an interesting memory location in its own cache.

Over time, the attacker collects the results of many mea-

surements and learns a subset of the victim’s memory

access pattern. If the victim processes sensitive informa-

tion using data-dependent memory fetches, the attacker

may be able to deduce the sensitive information from the

learned memory access pattern.

3.8.2 Practical Considerations

Cache timing attacks require control over a software pro-

cess that shares a cache memory with the victim process.

Therefore, a cache timing attack that targets the L2 cache

would have to rely on the system software to schedule

a software thread on a logical processor in the same

core as the target software, whereas an attack on the L3

cache can be performed using any logical processor on

the same CPU. The latter attack relies on the fact that

the L3 cache is inclusive, which greatly simplifies the

processor’s cache coherence implementation (§ 2.11.3).

The cache sharing requirement implies that L3 cache

attacks are feasible in an IaaS environment, whereas L2

cache attacks become a significant concern when running

sensitive software on a user’s desktop.

Out-of-order execution (§ 2.10) can introduce noise in

cache timing attacks. First, memory accesses may not

be performed in program order, which can impact the

lines selected by the cache eviction algorithms. Second,

out-of-order execution may result in cache fills that do

not correspond to executed instructions. For example, a

load that follows a faulting instruction may be scheduled

and executed before the fault is detected.

Cache timing attacks must account for speculative ex-

ecution, as mispredicted memory accesses can still cause

cache fills. Therefore, the attacker may observe cache

fills that don’t correspond to instructions that were actu-

ally executed by the victim software. Memory prefetch-

ing adds further noise to cache timing attacks, as the

attacker may observe cache fills that don’t correspond

to instructions in the victim code, even when accounting

for speculative execution.

49

3.8.3 Known Cache Timing Attacks

Despite these difficulties, cache timing attacks are known

to retrieve cryptographic keys used by AES [25, 146],

RSA [28], Diffie-Hellman [123], and elliptic-curve cryp-

tography [27].

Early attacks required access to the victim’s CPU core,

but more sophisticated recent attacks [131, 196] are able

to use the L3 cache, which is shared by all the cores on

a CPU die. L3-based attacks can be particularly dev-

astating in cloud computing scenarios, where running

software on the same computer as a victim application

only requires modest statistical analysis skills and a small

amount of money [157]. Furthermore, cache timing at-

tacks were recently demonstrated using JavaScript code

in a page visited by a Web browser [145].

Given this pattern of vulnerabilities, ignoring cache

timing attacks is dangerously similar to ignoring the

string of demonstrated attacks which led to the depreca-

tion of SHA-1 [3, 6, 9].

3.8.4 Defending against Cache Timing Attacks

Fortunately, invalidating any of the preconditions for

cache timing attacks is sufficient for defending against

them. The easiest precondition to focus on is that the

attacker must have access to memory locations that map

to the same sets in a cache as the victim’s memory. This

assumption can be invalidated by the judicious use of a

cache partitioning scheme.

Performance concerns aside, the main difficulty asso-

ciated with cache partitioning schemes is that they must

be implemented by a trusted party. When the system

software is trusted, it can (for example) use the prin-

ciples behind page coloring [117, 177] to partition the

caches [129] between mutually distrusting parties. This

comes down to setting up the page tables in such a way

that no two mutually distrusting software module are

stored in physical pages that map to the same sets in

any cache memory. However, if the system software

is not trusted, the cache partitioning scheme must be

implemented in hardware.

The other interesting precondition is that the victim

must access its memory in a data-dependent fashion that

allows the attacker to infer private information from the

observed memory access pattern. It becomes tempting

to think that cache timing attacks can be prevented by

eliminating data-dependent memory accesses from all

the code handling sensitive data.

However, removing data-dependent memory accesses

is difficult to accomplish in practice because instruction

fetches must also be taken into consideration. [115]

gives an idea of the level of effort required to remove

data-dependent accesses from AES, which is a relatively

simple data processing algorithm. At the time of this

writing, we are not aware of any approach that scales to

large pieces of software.

While the focus of this section is cache timing at-

tacks, we would like to point out that any shared re-

source can lead to information leakage. A worrying

example is hyper-threading (§ 2.9.4), where each CPU

core is represented as two logical processors, and the

threads executing on these two processors share execu-

tion units. An attacker who can run a process on a logical

processor sharing a core with a victim process can use

RDTSCP [152] to learn which execution units are in use,

and infer what instructions are executed by the victim

process.

4 RELATED WORK

This section describes the broader picture of trusted hard-

ware projects that SGX belongs to. Table 12 summarizes

the security properties of SGX and the other trusted hard-

ware presented here.

4.1 The IBM 4765 Secure Coprocessor

Secure coprocessors [198] encapsulate an entire com-

puter system, including a CPU, a cryptographic accel-

erator, caches, DRAM, and an I/O controller within a

tamper-resistant environment. The enclosure includes

hardware that deters attacks, such as a Faraday cage, as

well as an array of sensors that can detect tampering

attempts. The secure coprocessor destroys the secrets

that it stores when an attack is detected. This approach

has good security properties against physical attacks,

but tamper-resistant enclosures are very expensive [15],

relatively to the cost of a computer system.

The IBM 4758 [172], and its most current-day suc-

cessor, the IBM 4765 [2] (shown in Figure 57) are rep-

resentative examples of secure coprocessors. The 4758

was certified to withstand physical attacks to FIPS 140-1

Level 4 [171], and the 4765 meets the rigors of FIPS

140-2 Level 4 [1].

The 4765 relies heavily on physical isolation for its

security properties. Its system software is protected from

attacks by the application software by virtue of using

a dedicated service processor that is completely sepa-

rate from the application processor. Special-purpose bus

logic prevents the application processor from accessing

50

A
tta

ck
Tr

us
tZ

on
e

TP
M

TP
M

+T
X

T
S

G
X

X
O

M
A

eg
is

B
as

tio
n

A
sc

en
d,

P
ha

nt
om

S
an

ct
um

M
al

ic
io

us
co

nt
ai

ne
rs

 (d
ire

ct
pr

ob
in

g)

N
/A

 (s
ec

ur
e

w
or

ld
 is

 tr
us

te
d)

N
/A

 (T
he

 w
ho

le
co

m
pu

te
r i

s
on

e
co

nt
ai

ne
r)

N
/A

 (D
oe

s
no

t
al

lo
w

 c
on

cu
rr

en
t

co
nt

ai
ne

rs
)

A
cc

es
s

ch
ec

ks
 o

n
TL

B
 m

is
se

s
Id

en
tif

ie
r t

ag
ch

ec
ks

S
ec

ur
ity

 k
er

ne
l

se
pa

ra
te

s
co

nt
ai

ne
rs

A
cc

es
s

ch
ec

ks
on

 e
ac

h
m

em
or

y
ac

ce
ss

O
S

 s
ep

ar
at

es
co

nt
ai

ne
rs

A
cc

es
s

ch
ec

ks
on

 T
LB

 m
is

se
s

M
al

ic
io

us
 O

S
(d

ire
ct

 p
ro

bi
ng

)
A

cc
es

s
ch

ec
ks

on
 T

LB
 m

is
se

s
N

/A
 (O

S
m

ea
su

re
d

an
d

tru
st

ed
)

H
os

t O
S

pr
ee

m
pt

ed
 d

ur
in

g
la

te
 la

un
ch

A
cc

es
s

ch
ec

ks
 o

n
TL

B
 m

is
se

s
O

S
 h

as
 it

s
ow

n
id

en
tif

ie
r

S
ec

ur
ity

 k
er

ne
l

m
ea

su
re

d
an

d
is

ol
at

ed

M
em

or
y

en
cr

yp
tio

n
an

d
H

M
A

C

X
A

cc
es

s
ch

ec
ks

on
 T

LB
 m

is
se

s

M
al

ic
io

us
hy

pe
rv

is
or

 (d
ire

ct
pr

ob
in

g)

A
cc

es
s

ch
ec

ks
on

 T
LB

 m
is

se
s

N
/A

 (H
yp

er
vi

so
r

m
ea

su
re

d
an

d
tru

st
ed

)

H
yp

er
vi

so
r

pr
ee

m
pt

ed
 d

ur
in

g
la

te
 la

un
ch

A
cc

es
s

ch
ec

ks
 o

n
TL

B
 m

is
se

s
N

/A
 (N

o
hy

pe
rv

is
or

su
pp

or
t)

N
/A

 (N
o

hy
pe

rv
is

or
su

pp
or

t)

H
yp

er
vi

so
r

m
ea

su
re

d
an

d
tru

st
ed

N
/A

 (N
o

hy
pe

rv
is

or
su

pp
or

t)

A
cc

es
s

ch
ec

ks
on

 T
LB

 m
is

se
s

M
al

ic
io

us
fir

m
w

ar
e

N
/A

 (f
irm

w
ar

e
is

a
pa

rt
of

 th
e

se
cu

re
 w

or
ld

)

C
P

U
 m

ic
ro

co
de

m
ea

su
re

s
P

E
I

fir
m

w
ar

e

S
IN

IT
 A

C
M

 s
ig

ne
d

by
 In

te
l k

ey
 a

nd
m

ea
su

re
d

S
M

M
 h

an
dl

er
 is

su
bj

ec
t t

o
TL

B
ac

ce
ss

 c
he

ck
s

N
/A

 (F
irm

w
ar

e
is

 n
ot

 a
ct

iv
e

af
te

r b
oo

tin
g)

N
/A

 (F
irm

w
ar

e
is

 n
ot

 a
ct

iv
e

af
te

r b
oo

tin
g)

H
yp

er
vi

so
r

m
ea

su
re

d
af

te
r

bo
ot

N
/A

 (F
irm

w
ar

e
is

 n
ot

 a
ct

iv
e

af
te

r b
oo

tin
g)

Fi
rm

w
ar

e
is

m
ea

su
re

d
an

d
tru

st
ed

M
al

ic
io

us
co

nt
ai

ne
rs

 (c
ac

he
tim

in
g)

N
/A

 (s
ec

ur
e

w
or

ld
 is

 tr
us

te
d)

N
/A

 (D
oe

s
no

t
al

lo
w

 c
on

cu
rr

en
t

co
nt

ai
ne

rs
)

N
/A

 (D
oe

s
no

t
al

lo
w

 c
on

cu
rr

en
t

co
nt

ai
ne

rs
)

X
X

X
X

X
E

ac
h

en
cl

av
e

its
 g

et
s

ow
n

ca
ch

e
pa

rti
tio

n
M

al
ic

io
us

 O
S

(p
ag

e
fa

ul
t

re
co

rd
in

g)

S
ec

ur
e

w
or

ld
ha

s
ow

n
pa

ge
ta

bl
es

N
/A

 (O
S

m
ea

su
re

d
an

d
tru

st
ed

)

H
os

t O
S

pr
ee

m
pt

ed
 d

ur
in

g
la

te
 la

un
ch

X
N

/A
 (P

ag
in

g
no

t
su

pp
or

te
d)

X
X

X
P

er
-e

nc
la

ve
pa

ge
 ta

bl
es

M
al

ic
io

us
 O

S
(c

ac
he

 ti
m

in
g)

X
N

/A
 (O

S
m

ea
su

re
d

an
d

tru
st

ed
)

H
os

t O
S

pr
ee

m
pt

ed
 d

ur
in

g
la

te
 la

un
ch

X
X

X
X

X
N

on
-e

nc
la

ve
so

ftw
ar

e
us

es
 a

se
pa

ra
te

 c
ac

he
pa

rti
tio

n
D

M
A

 fr
om

m
al

ic
io

us
pe

rip
he

ra
l

O
n-

ch
ip

 b
us

bo
un

ce
s

se
cu

re
w

or
ld

 a
cc

es
se

s

X
IO

M
M

U
 b

ou
nc

es
D

M
A

 in
to

 T
X

T
m

em
or

y
ra

ng
e

IO
M

M
U

 b
ou

nc
es

D
M

A
 in

to
 P

R
M

E
qu

iv
al

en
t t

o
ph

ys
ic

al
 D

R
A

M
ac

ce
ss

E
qu

iv
al

en
t t

o
ph

ys
ic

al
 D

R
A

M
ac

ce
ss

E
qu

iv
al

en
t t

o
ph

ys
ic

al
 D

R
A

M
ac

ce
ss

E
qu

iv
al

en
t t

o
ph

ys
ic

al
 D

R
A

M
ac

ce
ss

M
C

 b
ou

nc
es

D
M

A
 o

ut
si

de
al

lo
w

ed
 ra

ng
e

P
hy

si
ca

l D
R

A
M

re
ad

S
ec

ur
e

w
or

ld
lim

ite
d

to
 o

n-
ch

ip
 S

R
A

M

X
X

U
nd

oc
um

en
te

d
m

em
or

y
en

cr
yp

tio
n

en
gi

ne

D
R

A
M

en
cr

yp
tio

n
D

R
A

M
en

cr
yp

tio
n

D
R

A
M

en
cr

yp
tio

n
D

R
A

M
en

cr
yp

tio
n

X

P
hy

si
ca

l D
R

A
M

w
rit

e
S

ec
ur

e
w

or
ld

lim
ite

d
to

 o
n-

ch
ip

 S
R

A
M

X
X

U
nd

oc
um

en
te

d
m

em
or

y
en

cr
yp

tio
n

en
gi

ne

H
M

A
C

 o
f

ad
dr

es
s

an
d

da
ta

H
M

A
C

 o
f

ad
dr

es
s,

 d
at

a,
tim

es
ta

m
p

M
er

kl
e

tre
e

ov
er

D
R

A
M

H
M

A
C

 o
f

ad
dr

es
s,

 d
at

a,
tim

es
ta

m
p

X

P
hy

si
ca

l D
R

A
M

ro
llb

ac
k

w
rit

e
S

ec
ur

e
w

or
ld

lim
ite

d
to

 o
n-

ch
ip

 S
R

A
M

X
X

U
nd

oc
um

en
te

d
m

em
or

y
en

cr
yp

tio
n

en
gi

ne

X
M

er
kl

e
tre

e
ov

er
 H

M
A

C
tim

es
ta

m
ps

M
er

kl
e

tre
e

ov
er

D
R

A
M

M
er

kl
e

tre
e

ov
er

 H
M

A
C

tim
es

ta
m

ps

X

P
hy

si
ca

l D
R

A
M

ad
dr

es
s

re
ad

s
S

ec
ur

e
w

or
ld

 in
on

-c
hi

p
S

R
A

M
X

X
X

X
X

X
O

R
A

M
X

H
ar

dw
ar

e
TC

B
si

ze
C

P
U

 c
hi

p
pa

ck
ag

e
M

ot
he

rb
oa

rd
(C

P
U

, T
P

M
,

D
R

A
M

, b
us

es
)

M
ot

he
rb

oa
rd

(C
P

U
, T

P
M

,
D

R
A

M
, b

us
es

)

C
P

U
 c

hi
p

pa
ck

ag
e

C
P

U
 c

hi
p

pa
ck

ag
e

C
P

U
 c

hi
p

pa
ck

ag
e

C
P

U
 c

hi
p

pa
ck

ag
e

C
P

U
 c

hi
p

pa
ck

ag
e

C
P

U
 c

hi
p

pa
ck

ag
e

S
of

tw
ar

e
TC

B
si

ze
S

ec
ur

e
w

or
ld

(fi
rm

w
ar

e,
 O

S
,

ap
pl

ic
at

io
n)

A
ll

so
ftw

ar
e

on
th

e
co

m
pu

te
r

S
IN

IT
 A

C
M

 +
 V

M
(O

S
, a

pp
lic

at
io

n)
A

pp
lic

at
io

n
m

od
ul

e
+

pr
iv

ile
ge

d
co

nt
ai

ne
rs

A
pp

lic
at

io
n

m
od

ul
e

+
hy

pe
rv

is
or

A
pp

lic
at

io
n

m
od

ul
e

+
se

cu
rit

y
ke

rn
el

A
pp

lic
at

io
n

m
od

ul
e

+
hy

pe
rv

is
or

A
pp

lic
at

io
n

pr
oc

es
s

+
tru

st
ed

 O
S

A
pp

lic
at

io
n

m
od

ul
e

+
se

cu
rit

y
m

on
ito

r

Table 12: Security features overview for the trusted hardware projects related to Intel’s SGX

51

PCI Express Card

Tamper-Resistant Enclosure

Application

CPU

Application

CPU

Random

Number

Generator

Real-Time

Clock

Crypto

Accelerator

Tamper

Detection and

Response

Battery-Backed

RAM

SDRAM

System Bus

Module Interface

I/O

Controller

Service

CPU

Hardware Access Control Logic

Battery-

Backed

RAM

Flash

NVRAM

Boot

Loader

ROM

PCIe I/O Controller Batteries

PCI Express Interface

Figure 57: The IBM 4765 secure coprocessor consists of an entire

computer system placed inside an enclosure that can deter and de-

tect physical attacks. The application and the system use separate

processors. Sensitive memory can only be accessed by the system

code, thanks to access control checks implemented in the system bus’

hardware. Dedicated hardware is used to clear the platform’s secrets

and shut down the system when a physical attack is detected.

privileged resources, such as the battery-backed memory

that stores the system software’s secrets.

The 4765 implements software attestation. The co-

processor’s attestation key is stored in battery-backed

memory that is only accessible to the service processor.

Upon reset, the service processor executes a first-stage

bootloader stored in ROM, which measures and loads the

system software. In turn, the system software measures

the application code stored in NVRAM and loads it into

the DRAM chip accessible to the application processor.

The system software provides attestation services to the

application loaded inside the coprocessor.

4.2 ARM TrustZone

ARM’s TrustZone [13] is a collection of hardware mod-

ules that can be used to conceptually partition a system’s

resources between a secure world, which hosts a secure

container, and a normal world, which runs an untrusted

software stack. The TrustZone documentation [18] de-

scribes semiconductor intellectual property cores (IP

blocks) and ways in which they can be combined to

achieve certain security properties, reflecting the fact that

ARM is an IP core provider, not a chip manufacturer.

Therefore, the mere presence of TrustZone IP blocks in a

system is not sufficient to determine whether the system

is secure under a specific threat model. Figure 58 illus-

trates a design for a smartphone System-on-Chip (SoC)

design that uses TrustZone IP blocks.

System-on-Chip Package

4G ModemProcessor

without

Secure

Extensions

DMA

Controller

Memory

Controller

Memory

Controller

Display

Controller

OTP

Polyfuses

TZMA
Boot ROM

AMBA AXI On-Chip Bus

L3 Cache

AMBA AXI Bus

DRAM Flash Display

L2 Cache

Processor

with

Secure

Extensions

Interrupt Controller

APB Bus

AXI to APB

Bridge

ADC / DAC
Keypad

Controller

Audio Keypad

Real-Time

Clock

SRAM

TZASC

Figure 58: Smartphone SoC design based on TrustZone. The

red IP blocks are TrustZone-aware. The red connections ignore

the TrustZone secure bit in the bus address. Defining the system’s

security properties requires a complete understanding of all the red

elements in this figure.

TrustZone extends the address lines in the AMBA AXI

system bus [17] with one signal that indicates whether

an access belongs to the secure or normal (non-secure)

world. ARM processor cores that include TrustZone’s

“Security Extensions” can switch between the normal

world and the secure world when executing code. The

address in each bus access executed by a core reflects the

world in which the core is currently executing.

The reset circuitry in a TrustZone processor places

it in secure mode, and points it to the first-stage boot-

loader stored in on-chip ROM. TrustZone’s TCB includes

this bootloader, which initializes the platform, sets up

the TrustZone hardware to protect the secure container

from untrusted software, and loads the normal world’s

bootloader. The secure container must also implement

a monitor that performs the context switches needed to

transition an execution core between the two worlds. The

monitor must also handle hardware exceptions, such as

interrupts, and route them to the appropriate world.

The TrustZone design gives the secure world’s monitor

unrestricted access to the normal world, so the monitor

can implement inter-process communication (IPC) be-

tween the software in the two worlds. Specifically, the

monitor can issue bus accesses using both secure and non-

secure addresses. In general, the secure world’s software

can compromise any level in the normal world’s software

52

stack. For example, the secure container’s software can

jump into arbitrary locations in the normal world by flip-

ping a bit in a register. The untrusted software in the

normal world can only access the secure world via an

instruction that jumps into a well-defined location inside

the monitor.

Conceptually, each TrustZone CPU core provides sep-

arate address translation units for the secure and normal

worlds. This is implemented by two page table base

registers, and by having the page walker use the page

table base corresponding to the core’s current world. The

physical addresses in the page table entries are extended

to include the values of the secure bit to be issued on the

AXI bus. The secure world is protected from untrusted

software by having the CPU core force the secure bit in

the address translation result to zero for normal world

address translations. As the secure container manages its

own page tables, its memory accesses cannot be directly

observed by the untrusted OS’s page fault handler.

TrustZone-aware hardware modules, such as caches,

are trusted to use the secure address bit in each bus access

to enforce the isolation between worlds. For example,

TrustZone’s caches store the secure bit in the address

tag for each cache line, which effectively provides com-

pletely different views of the memory space to the soft-

ware running in different worlds. This design assumes

that memory space is partitioned between the two worlds,

so no aliasing can occur.

The TrustZone documentation describes two TLB con-

figurations. If many context switches between worlds

are expected, the TLB IP blocks can be configured to

include the secure bit in the address tag. Alternatively,

the secure bit can be omitted from the TLBs, as long as

the monitor flushes the TLBs when switching contexts.

The hardware modules that do not consume Trust-

Zone’s address bit are expected to be connected to the

AXI bus via IP cores that implement simple partition-

ing techniques. For example, the TrustZone Memory

Adapter (TZMA) can be used to partition an on-chip

ROM or SRAM into a secure region and a normal region,

and the TrustZone Address Space Controller (TZASC)

partitions the memory space provided by a DRAM con-

troller into secure and normal regions. A TrustZone-

aware DMA controller rejects DMA transfers from the

normal world that reference secure world addresses.

It follows that analyzing the security properties of a

TrustZone system requires a precise understanding of

the behavior and configuration of all the hardware mod-

ules that are attached to the AXI bus. For example, the

caches described in TrustZone’s documentation do not

enforce a complete separation between worlds, as they al-

low a world’s memory accesses to evict the other world’s

cache lines. This exposes the secure container software

to cache timing attacks from the untrusted software in the

normal world. Unfortunately, hardware manufacturers

that license the TrustZone IP cores are reluctant to dis-

close all the details of their designs, making it impossible

for security researchers to reason about TrustZone-based

hardware.

The TrustZone components do not have any counter-

measures for physical attacks. However, a system that

follows the recommendations in the TrustZone documen-

tation will not be exposed to physical attacks, under a

threat model that trusts the processor chip package. The

AXI bus is designed to connect components in an SoC

design, so it cannot be tapped by an attacker. The Trust-

Zone documentation recommends having all the code

and data in the secure world stored in on-chip SRAM,

which is not subject to physical attacks. However, this ap-

proach places significant limits on the secure container’s

functionality, because on-chip SRAM is many orders of

magnitude more expensive than a DRAM chip of the

same capacity.

TrustZone’s documentation does not describe any soft-

ware attestation implementation. However, it does out-

line a method for implementing secure boot, which

comes down to having the first-stage bootloader verify a

signature in the second-stage bootloader against a public

key whose cryptographic hash is burned into on-chip

One-Time Programmable (OTP) polysilicon fuses. A

hardware measurement root can be built on top of the

same components, by storing a per-chip attestation key

in the polyfuses, and having the first-stage bootloader

measure the second-stage bootloader and store its hash

in an on-chip SRAM region allocated to the secure world.

The polyfuses would be gated by a TZMA IP block that

makes them accessible only to the secure world.

4.3 The XOM Architecture

The execute-only memory (XOM) architecture [128] in-

troduced the approach of executing sensitive code and

data in isolated containers managed by untrusted host

software. XOM outlined the mechanisms needed to iso-

late a container’s data from its untrusted software envi-

ronment, such as saving the register state to a protected

memory area before servicing an interrupt.

XOM supports multiple containers by tagging every

cache line with the identifier of the container owning it,

53

and ensures isolation by disallowing memory accesses

to cache lines that don’t match the current container’s

identifier. The operating system and the untrusted appli-

cations are considered to belong to a container with a

null identifier.

XOM also introduced the integration of encryption

and HMAC functionality in the processor’s memory con-

troller to protect container memory from physical attacks

on DRAM. The encryption and HMAC functionality is

used for all cache line evictions and fetches, and the

ECC bits in DRAM chips are repurposed to store HMAC

values.

XOM’s design cannot guarantee DRAM freshness, so

the software in its containers is vulnerable to physical

replay attacks. Furthermore, XOM does not protect a

container’s memory access patterns, meaning that any

piece of malicious software can perform cache timing

attacks against the software in a container. Last, XOM

containers are destroyed when they encounter hardware

exceptions, such as page faults, so XOM does not support

paging.

XOM predates the attestation scheme described above,

and relies on a modified software distribution scheme

instead. Each container’s contents are encrypted with

a symmetric key, which also serves as the container’s

identity. The symmetric key, in turn, is encrypted with

the public key of each CPU that is trusted to run the

container. A container’s author can be assured that the

container is running on trusted software by embedding a

secret into the encrypted container data, and using it to

authenticate the container. While conceptually simpler

than software attestation, this scheme does not allow the

container author to vet the container’s software environ-

ment.

4.4 The Trusted Platform Module (TPM)

The Trusted Platform Module (TPM) [71] introduced

the software attestation model described at the beginning

of this section. The TPM design does not require any

hardware modifications to the CPU, and instead relies

on an auxiliary tamper-resistant chip. The TPM chip

is only used to store the attestation key and to perform

software attestation. The TPM was widely deployed on

commodity computers, because it does not rely on CPU

modifications. Unfortunately, the cost of this approach

is that the TPM has very weak security guarantees, as

explained below.

The TPM design provides one isolation container, cov-

ering all the software running on the computer that has

the TPM chip. It follows that the measurement included

in an attestation signature covers the entire OS kernel and

all the kernel modules, such as device drivers. However,

commercial computers use a wide diversity of devices,

and their system software is updated at an ever-increasing

pace, so it is impossible to maintain a list of acceptable

measurement hashes corresponding to a piece of trusted

software. Due to this issue, the TPM’s software attes-

tation is not used in many security systems, despite its

wide deployment.

The TPM design is technically not vulnerable to any

software attacks, because it trusts all the software on the

computer. However, a TPM-based system is vulnerable

to an attacker who has physical access to the machine,

as the TPM chip does not provide any isolation for the

software on the computer. Furthermore, the TPM chip

receives the software measurements from the CPU, so

TPM-based systems are vulnerable to attackers who can

tap the communication bus between the CPU and the

TPM.

Last, the TPM’s design relies on the software running

on the CPU to report its own cryptographic hash. The

TPM chip resets the measurements stored in Platform

Configuration Registers (PCRs) when the computer is

rebooted. Then, the TPM expects the software at each

boot stage to cryptographically hash the software at the

next stage, and send the hash to the TPM. The TPM up-

dates the PCRs to incorporate the new hashes it receives,

as shown in Figure 59. Most importantly, the PCR value

at any point reflects all the software hashes received by

the TPM up to that point. This makes it impossible for

software that has been measured to “remove” itself from

the measurement.

For example, the firmware on most modern comput-

ers implements the platform initialization process in the

Unified Extensible Firmware Interface (UEFI) specifi-

cation [180]. Each platform initialization phase is re-

sponsible for verifying or measuring the firmware that

implements the next phase. The SEC firmware initializes

the TPM PCR, and then stores the PEI’s measurement

into a measurement register. In turn, the PEI imple-

mentation measures the DXE firmware and updates the

measurement register that stores the PEI hash to account

for the DXE hash. When the OS is booted, the hash in

the measurement register accounts for all the firmware

that was used to boot the computer.

Unfortunately, the security of the whole measurement

scheme hinges on the requirement that the first hash sent

to the TPM must reflect the software that runs in the first

54

)SHA-1(

Boot Loader

0 (zero)

)SHA-1(

sent to TPM

)SHA-1(

OS Kernel

)SHA-1(

sent to TPM

TPM MR

after reboot

TPM MR when

boot loader

executes

)SHA-1(

Kernel module

)SHA-1(

sent to TPM

TPM MR when

OS kernel

executes

TPM MR when

Kernel Module executes

Figure 59: The measurement stored in a TPM platform configura-

tion register (PCR). The PCR is reset when the system reboots. The

software at every boot stage hashes the next boot stage, and sends

the hash to the TPM. The PCR’s new value incorporates both the old

PCR value, and the new software hash.

boot stage. The TPM threat model explicitly acknowl-

edges this issue, and assumes that the firmware respon-

sible for loading the first stage bootloader is securely

embedded in the motherboard. However, virtually ev-

ery TPM-enabled computer stores its firmware in a flash

memory chip that can be re-programmed in software

(§ 2.9.1), so the TPM’s measurement can be subverted

by an attacker who can reflash the computer’s firmware

[29].

On very recent Intel processors, the attack described

above can be defeated by having the initialization mi-

crocode (§ 2.14.4) hash the computer’s firmware (specifi-

cally, the PEI code in UEFI [180] firwmare) and commu-

nicate the hash to the TPM chip. This is marketed as the

Measured Boot feature of Intel’s Boot Guard [162].

Sadly, most computer manufacturers use Verified Boot

(also known as “secure boot”) instead of Measured Boot

(also known as “trusted boot”). Verified Boot means that

the processor’s microcode only boots into PEI firmware

that contains a signature produced by a key burned into

the chip’s e-fuses. Verified Boot does not impact the

measurements stored on the TPM, so it does not improve

the security of software attestation.

4.5 Intel’s Trusted Execution Technology (TXT)

Intel’s Trusted Execution Technology (TXT) [70] uses

the TPM’s software attestation model and auxiliary

tamper-resistant chip, but reduces the software inside the

secure container to a virtual machine (guest operating

system and application) hosted by the CPU’s hardware

virtualization features (VMX [181]).

TXT isolates the software inside the container from

untrusted software by ensuring that the container has

exclusive control over the entire computer while it is

active. This is accomplished by a secure initialization

authenticated code module (SINIT ACM) that effectively

performs a warm system reset before starting the con-

tainer’s VM.

TXT requires a TPM chip with an extended register

set. The registers used by the measured boot process de-

scribed in § 4.4 are considered to make up the platform’s

Static Root of Trust Measurement (SRTM). When a TXT

VM is initialized, it updates TPM registers that make

up the Dynamic Root of Trust Measurement (DRTM).

While the TPM’s SRTM registers only reset at the start of

a boot cycle, the DRTM registers are reset by the SINIT

ACM, every time a TXT VM is launched.

TXT does not implement DRAM encryption or

HMACs, and therefore is vulnerable to physical DRAM

attacks, just like TPM-based designs. Furthermore, early

TXT implementations were vulnerable to attacks where

a malicious operating system would program a device,

such as a network card, to perform DMA transfers to the

DRAM region used by a TXT container [188, 191]. In

recent Intel CPUs, the memory controller is integrated

on the CPU die, so the SINIT ACM can securely set

up the memory controller to reject DMA transfers tar-

geting TXT memory. An Intel chipset datasheet [105]

documents an “Intel TXT DMA Protected Range” IIO

configuration register.

Early TXT implementations did not measure the

SINIT ACM. Instead, the microcode implementing the

TXT launch instruction verified that the code module

contained an RSA signature by a hard-coded Intel key.

SINIT ACM signatures cannot be revoked if vulnerabili-

ties are found, so TXT’s software attestation had to be

revised when SINIT ACM exploits [190] surfaced. Cur-

rently, the SINIT ACM’s cryptographic hash is included

in the attestation measurement.

Last, the warm reset performed by the SINIT ACM

does not include the software running in System Manage-

ment Mode (SMM). SMM was designed solely for use

by firmware, and is stored in a protected memory area

(SMRAM) which should not be accessible to non-SMM

software. However, the SMM handler was compromised

on multiple occasions [44, 49, 164, 186, 189], and an

attacker who obtains SMM execution can access the

55

memory used by TXT’s container.

4.6 The Aegis Secure Processor

The Aegis secure processor [174] relies on a security

kernel in the operating system to isolate containers, and

includes the kernel’s cryptographic hash in the measure-

ment reported by the software attestation signature. [176]

argued that Physical Unclonable Functions (PUFs) [56]

can be used to endow a secure processor with a tamper-

resistant private key, which is required for software attes-

tation. PUFs do not have the fabrication process draw-

backs of EEPROM, and are significantly more resilient

to physical attacks than e-fuses.

Aegis relies on a trusted security kernel to isolate each

container from the other software on the computer by

configuring the page tables used in address translation.

The security kernel is a subset of a typical OS kernel,

and handles virtual memory management, processes, and

hardware exceptions. As the security kernel is a part of

the trusted code base (TCB), its cryptographic hash is

included in the software attestation measurement. The

security kernel uses processor features to isolate itself

from the untrusted part of the operating system, such as

device drivers.

The Aegis memory controller encrypts the cache lines

in one memory range, and HMACs the cache lines in one

other memory range. The two memory ranges can over-

lap, and are configurable by the security kernel. Thanks

to the two ranges, the memory controller can avoid the

latency overhead of cryptographic operations for the

DRAM outside containers. Aegis was the first secure

processor not vulnerable to physical replay attacks, as it

uses a Merkle tree construction [57] to guarantee DRAM

freshness. The latency overhead of the Merkle tree is

greatly reduced by augmenting the L2 cache with the

tree nodes for the cache lines.

Aegis’ security kernel allows the OS to page out con-

tainer memory, but verifies the correctness of the paging

operations. The security kernel uses the same encryption

and Merkle tree algorithms as the memory controller to

guarantee the confidentiality and integrity of the con-

tainer pages that are swapped out from DRAM. The OS

is free to page out container memory, so it can learn a

container’s memory access patterns, at page granular-

ity. Aegis containers are also vulnerable to cache timing

attacks.

4.7 The Bastion Architecture

The Bastion architecture [31] introduced the use of a

trusted hypervisor to provide secure containers to appli-

cations running inside unmodified, untrusted operating

systems. Bastion’s hypervisor ensures that the operating

system does not interfere with the secure containers. We

only describe Bastion’s virtualization extensions to ar-

chitectures that use nested page tables, like Intel’s VMX

[181].

The hypervisor enforces the containers’ desired mem-

ory mappings in the OS page tables, as follows. Each

Bastion container has a Security Segment that lists the

virtual addresses and permissions of all the container’s

pages, and the hypervisor maintains a Module State Table

that stores an inverted page map, associating each physi-

cal memory page to its container and virtual address. The

processor’s hardware page walker is modified to invoke

the hypervisor on every TLB miss, before updating the

TLB with the address translation result. The hypervisor

checks that the virtual address used by the translation

matches the expected virtual address associated with the

physical address in the Module State Table.

Bastion’s cache lines are not tagged with container

identifiers. Instead, only TLB entries are tagged. The

hypervisor’s TLB miss handler sets the container iden-

tifier for each TLB entry as it is created. Similarly to

XOM and Aegis, the secure processor checks the TLB

tag against the current container’s identifier on every

memory access.

Bastion offers the same protection against physical

DRAM attacks as Aegis does, without the restriction that

a container’s data must be stored inside a continuous

DRAM range. This is accomplished by extending cache

lines and TLB entries with flags that enable memory

encryption and HMACing. The hypervisor’s TLB miss

handler sets the flags on TLB entries, and the flags are

propagated to cache lines on memory writes.

The Bastion hypervisor allows the untrusted operat-

ing system to evict secure container pages. The evicted

pages are encrypted, HMACed, and covered by a Merkle

tree maintained by the hypervisor. Thus, the hypervisor

ensures the confidentiality, authenticity, and freshness

of the swapped pages. However, the ability to freely

evict container pages allows a malicious OS to learn a

container’s memory accesses with page granularity. Fur-

thermore, Bastion’s threat model excludes cache timing

attacks.

Bastion does not trust the platform’s firmware, and

computes the cryptographic hash of the hypervisor af-

ter the firmware finishes playing its part in the booting

process. The hypervisor’s hash is included in the mea-

surement reported by software attestation.

56

4.8 Intel SGX in Context

Intel’s Software Guard Extensions (SGX) [14, 79, 139]

implements secure containers for applications without

making any modifications to the processor’s critical ex-

ecution path. SGX does not trust any layer in the com-

puter’s software stack (firmware, hypervisor, OS). In-

stead, SGX’s TCB consists of the CPU’s microcode and

a few privileged containers. SGX introduces an approach

to solving some of the issues raised by multi-core pro-

cessors with a shared, coherent last-level cache.

SGX does not extend caches or TLBs with container

identity bits, and does not require any security checks

during normal memory accesses. As suggested in the

TrustZone documentation, SGX always ensures that a

core’s TLBs only contain entries for the container that

it is executing, which requires flushing the CPU core’s

TLBs when context-switching between containers and

untrusted software.

SGX follows Bastion’s approach of having the un-

trusted OS manage the page tables used by secure con-

tainers. The containers’ security is preserved by a TLB

miss handler that relies on an inverted page map (the

EPCM) to reject address translations for memory that

does not belong to the current container.

Like Bastion, SGX allows the untrusted operating sys-

tem to evict secure container pages, in a controlled fash-

ion. After the OS initiates a container page eviction,

it must prove to the SGX implementation that it also

switched the container out of all cores that were execut-

ing its code, effectively performing a very coarse-grained

TLB shootdown.

SGX’s microcode ensures the confidentiality, authen-

ticity, and freshness of each container’s evicted pages,

like Bastion’s hypervisor. However, SGX relies on a

version-based Merkle tree, inspired by Aegis [174], and

adds an innovative twist that allows the operating system

to dynamically shape the Merkle tree. SGX also shares

Bastion’s and Aegis’ vulnerability to memory access pat-

tern leaks, namely a malicious OS can directly learn a

container’s memory accesses at page granularity, and any

piece of software can perform cache timing attacks.

SGX’s software attestation is implemented using

Intel’s Enhanced Privacy ID (EPID) group signature

scheme [26], which is too complex for a microcode

implementation. Therefore, SGX relies on an assort-

ment of privileged containers that receive direct access

to the SGX processor’s hardware keys. The privileged

containers are signed using an Intel private key whose

corresponding public key is hard-coded into the SGX

microcode, similarly to TXT’s SINIT ACM.

As SGX does not protect against cache timing at-

tacks, the privileged enclave’s authors cannot use data-

dependent memory accesses. For example, cache attacks

on the Quoting Enclave, which computes attestation sig-

natures, would provide an attack with a processor’s EPID

signing key and completely compromise SGX.

Intel’s documentation states that SGX guarantees

DRAM confidentiality, authentication, and freshness by

virtue of a Memory Encryption Engine (MEE). The MEE

is informally described in an ISCA 2015 tutorial [103],

and appears to lack a formal specification. In the absence

of further information, we assume that SGX provides

the same protection against physical DRAM attacks that

Aegis and Bastion provide.

4.9 Sanctum

Sanctum [38] introduced a straightforward software/hard-

ware co-design that yields the same resilience against

software attacks as SGX, and adds protection against

memory access pattern leaks, such as page fault monitor-

ing attacks and cache timing attacks.

Sanctum uses a conceptually simple cache partitioning

scheme, where a computer’s DRAM is split into equally-

sized continuous DRAM regions, and each DRAM re-

gion uses distinct sets in the shared last-level cache

(LLC). Each DRAM region is allocated to exactly one

container, so containers are isolated in both DRAM and

the LLC. Containers are isolated in the other caches by

flushing on context switches.

Like XOM, Aegis, and Bastion, Sanctum also consid-

ers the hypervisor, OS, and the application software to

conceptually belong to a separate container. Containers

are protected from the untrusted outside software by the

same measures that isolate containers from each other.

Sanctum relies on a trusted security monitor, which

is the first piece of firmware executed by the processor,

and has the same security properties as those of Aegis’

security kernel. The monitor is measured by bootstrap

code in the processor’s ROM, and its cryptographic hash

is included in the software attestation measurement. The

monitor verifies the operating system’s resource alloca-

tion decisions. For example, it ensures that no DRAM

region is ever accessible to two different containers.

Each Sanctum container manages its own page tables

mapping its DRAM regions, and handles its own page

faults. It follows that a malicious OS cannot learn the

virtual addresses that would cause a page fault in the

container. Sanctum’s hardware modifications work in

57

conjunction with the security monitor to make sure that

a container’s page tables only reference memory inside

the container’s DRAM regions.

The Sanctum design focuses completely on software

attacks, and does not offer protection from any physical

attack. The authors expect Sanctum’s hardware modifica-

tions to be combined with the physical attack protections

in Aegis or Ascend.

4.10 Ascend and Phantom

The Ascend [52] and Phantom [132] secure processors

introduced practical implementations of Oblivious RAM

[65] techniques in the CPU’s memory controller. These

processors are resilient to attackers who can probe the

DRAM address bus and attempt to learn a container’s

private information from its DRAM memory access pat-

tern.

Implementing an ORAM scheme in a memory con-

troller is largely orthogonal to the other secure archi-

tectures described above. It follows, for example, that

Ascend’s ORAM implementation can be combined with

Aegis’ memory encryption and authentication, and with

Sanctum’s hardware extensions and security monitor,

yielding a secure processor that can withstand both soft-

ware attacks and physical DRAM attacks.

5 SGX PROGRAMMING MODEL

The central concept of SGX is the enclave, a protected

environment that contains the code and data pertaining

to a security-sensitive computation.

SGX-enabled processors provide trusted computing by

isolating each enclave’s environment from the untrusted

software outside the enclave, and by implementing a soft-

ware attestation scheme that allows a remote party to au-

thenticate the software running inside an enclave. SGX’s

isolation mechanisms are intended to protect the confi-

dentiality and integrity of the computation performed

inside an enclave from attacks coming from malicious

software executing on the same computer, as well as

from a limited set of physical attacks.

This section summarizes the SGX concepts that make

up a mental model which is sufficient for programmers

to author SGX enclaves and to add SGX support to ex-

isting system software. Unless stated otherwise, the

information in this section is backed up by Intel’s Soft-

ware Developer Manual (SDM). The following section

builds on the concepts introduced here to fill in some of

the missing pieces in the manual, and analyzes some of

SGX’s security properties.

5.1 SGX Physical Memory Organization

The enclaves’ code and data is stored in Processor Re-

served Memory (PRM), which is a subset of DRAM that

cannot be directly accessed by other software, including

system software and SMM code. The CPU’s integrated

memory controllers (§ 2.9.3) also reject DMA transfers

targeting the PRM, thus protecting it from access by

other peripherals.

The PRM is a continuous range of memory whose

bounds are configured using a base and a mask regis-

ter with the same semantics as a variable memory type

range (§ 2.11.4). Therefore, the PRM’s size must be

an integer power of two, and its start address must be

aligned to the same power of two. Due to these restric-

tions, checking if an address belongs to the PRM can be

done very cheaply in hardware, using the circuit outlined

in § 2.11.4.

The SDM does not describe the PRM and the PRM

range registers (PRMRR). These concepts are docu-

mented in the SGX manuals [95, 99] and in one of

the SGX papers [139]. Therefore, the PRM is a micro-

architectural detail that might change in future implemen-

tations of SGX. Our security analysis of SGX relies on

implementation details surrounding the PRM, and will

have to be re-evaluated for SGX future implementations.

5.1.1 The Enclave Page Cache (EPC)

The contents of enclaves and the associated data struc-

tures are stored in the Enclave Page Cache (EPC), which

is a subset of the PRM, as shown in Figure 60.

EPCDRAM

4kb page

4kb page

⋮

4kb page

4kb page

4kb page

Entry

Entry

⋮

Entry

Entry

Entry

EPCM

PRM

PRM

EPC

Figure 60: Enclave data is stored into the EPC, which is a subset of

the PRM. The PRM is a contiguous range of DRAM that cannot be

accessed by system software or peripherals.

The SGX design supports having multiple enclaves

on a system at the same time, which is a necessity in

multi-process environments. This is achieved by having

the EPC split into 4 KB pages that can be assigned to

different enclaves. The EPC uses the same page size as

the architecture’s address translation feature (§ 2.5). This

is not a coincidence, as future sections will reveal that the

SGX implementation is tightly coupled with the address

translation implementation.

58

The EPC is managed by the same system software

that manages the rest of the computer’s physical mem-

ory. The system software, which can be a hypervisor or

an OS kernel, uses SGX instructions to allocate unused

pages to enclaves, and to free previously allocated EPC

pages. The system software is expected to expose en-

clave creation and management services to application

software.

Non-enclave software cannot directly access the EPC,

as it is contained in the PRM. This restriction plays a key

role in SGX’s enclave isolation guarantees, but creates an

obstacle when the system software needs to load the ini-

tial code and data into a newly created enclave. The SGX

design solves this problem by having the instructions

that allocate an EPC page to an enclave also initialize the

page. Most EPC pages are initialized by copying data

from a non-PRM memory page.

5.1.2 The Enclave Page Cache Map (EPCM)

The SGX design expects the system software to allocate

the EPC pages to enclaves. However, as the system soft-

ware is not trusted, SGX processors check the correctness

of the system software’s allocation decisions, and refuse

to perform any action that would compromise SGX’s

security guarantees. For example, if the system software

attempts to allocate the same EPC page to two enclaves,

the SGX instruction used to perform the allocation will

fail.

In order to perform its security checks, SGX records

some information about the system software’s allocation

decisions for each EPC page in the Enclave Page Cache

Map (EPCM). The EPCM is an array with one entry

per EPC page, so computing the address of a page’s

EPCM entry only requires a bitwise shift operation and

an addition.

The EPCM’s contents is only used by SGX’s security

checks. Under normal operation, the EPCM does not

generate any software-visible behavior, and enclave au-

thors and system software developers can mostly ignore

it. Therefore, the SDM only describes the EPCM at a

very high level, listing the information contained within

and noting that the EPCM is “trusted memory”. The

SDM does not disclose the storage medium or memory

layout used by the EPCM.

The EPCM uses the information in Table 13 to track

the ownership of each EPC page. We defer a full discus-

sion of the EPCM to a later section, because its contents

is intimately coupled with all of SGX’s features, which

will be described over the next few sections.

Field Bits Description

VALID 1 0 for un-allocated EPC

pages

PT 8 page type

ENCLAVESECS identifies the enclave own-

ing the page

Table 13: The fields in an EPCM entry that track the ownership of

pages.

The SGX instructions that allocate an EPC page set

the VALID bit of the corresponding EPCM entry to 1,

and refuse to operate on EPC pages whose VALID bit is

already set.

The instruction used to allocate an EPC page also

determines the page’s intended usage, which is recorded

in the page type (PT) field of the corresponding EPCM

entry. The pages that store an enclave’s code and data

are considered to have a regular type (PT REG in the

SDM). The pages dedicated to the storage of SGX’s

supporting data structures are tagged with special types.

For example, the PT SECS type identifies pages that

hold SGX Enclave Control Structures, which will be

described in the following section. The other EPC page

types will be described in future sections.

Last, a page’s EPCM entry also identifies the enclave

that owns the EPC page. This information is used by

the mechanisms that enforce SGX’s isolation guarantees

to prevent an enclave from accessing another enclave’s

private information. As the EPCM identifies a single

owning enclave for each EPC page, it is impossible for

enclaves to communicate via shared memory using EPC

pages. Fortunately, enclaves can share untrusted non-

EPC memory, as will be discussed in § 5.2.3.

5.1.3 The SGX Enclave Control Structure (SECS)

SGX stores per-enclave metadata in a SGX Enclave

Control Structure (SECS) associated with each enclave.

Each SECS is stored in a dedicated EPC page with the

page type PT SECS. These pages are not intended to

be mapped into any enclave’s address space, and are

exclusively used by the CPU’s SGX implementation.

An enclave’s identity is almost synonymous to its

SECS. The first step in bringing an enclave to life al-

locates an EPC page to serve as the enclave’s SECS, and

the last step in destroying an enclave deallocates the page

holding its SECS. The EPCM entry field identifying the

enclave that owns an EPC page points to the enclave’s

SECS. The system software uses the virtual address of

an enclave’s SECS to identify the enclave when invoking

59

SGX instructions.

All SGX instructions take virtual addresses as their in-

puts. Given that SGX instructions use SECS addresses to

identify enclaves, the system software must create entries

in its page tables pointing to the SECS of the enclaves it

manages. However, the system software cannot access

any SECS page, as these pages are stored in the PRM.

SECS pages are not intended to be mapped inside their

enclaves’ virtual address spaces, and SGX-enabled pro-

cessors explicitly prevent enclave code from accessing

SECS pages.

This seemingly arbitrary limitation is in place so that

the SGX implementation can store sensitive information

in the SECS, and be able to assume that no potentially

malicious software will access that information. For ex-

ample, the SDM states that each enclave’s measurement

is stored in its SECS. If software would be able to modify

an enclave’s measurement, SGX’s software attestation

scheme would provide no security assurances.

The SECS is strongly coupled with many of SGX’s

features. Therefore, the pieces of information that make

up the SECS will be gradually introduced as the different

aspects of SGX are described.

5.2 The Memory Layout of an SGX Enclave

SGX was designed to minimize the effort required to

convert application code to take advantage of enclaves.

History suggests this is a wise decision, as a large factor

in the continued dominance of the Intel architecture is

its ability to maintain backward compatibility. To this

end, SGX enclaves were designed to be conceptually

similar to the leading software modularization construct,

dynamically loaded libraries, which are packaged as .so

files on Unix, and .dll files on Windows.

For simplicity, we describe the interaction between

enclaves and non-enclave software assuming that each

enclave is used by exactly one application process, which

we shall refer to as the enclave’s host process. We do

note, however, that the SGX design does not explicitly

prohibit multiple application processes from sharing an

enclave.

5.2.1 The Enclave Linear Address Range (ELRANGE)

Each enclave designates an area in its virtual address

space, called the enclave linear address range (EL-

RANGE), which is used to map the code and the sensi-

tive data stored in the enclave’s EPC pages. The virtual

address space outside ELRANGE is mapped to access

non-EPC memory via the same virtual addresses as the

enclave’s host process, as shown in Figure 61.

Page Tables

managed by

system software

ELRANGE

Enclave Virtual

Memory View

DRAM

Abort Page

Host Application

Virtual Memory

View

EPC

Figure 61: An enclave’s EPC pages are accessed using a dedicated

region in the enclave’s virtual address space, called ELRANGE. The

rest of the virtual address space is used to access the memory of the

host process. The memory mappings are established using the page

tables managed by system software.

The SGX design guarantees that the enclave’s mem-

ory accesses inside ELRANGE obey the virtual memory

abstraction (§ 2.5.1), while memory accesses outside EL-

RANGE receive no guarantees. Therefore, enclaves must

store all their code and private data inside ELRANGE,

and must consider the memory outside ELRANGE to be

an untrusted interface to the outside world.

The word “linear” in ELRANGE references the linear

addresses produced by the vestigial segmentation fea-

ture (§ 2.7) in the 64-bit Intel architecture. For most

purposes, “linear” can be treated as a synonym for “vir-

tual”.

ELRANGE is specified using a base (the BASEADDR

field) and a size (the SIZE) in the enclave’s

SECS (§ 5.1.3). ELRANGE must meet the same con-

straints as a variable memory type range (§ 2.11.4) and as

the PRM range (§ 5.1), namely the size must be a power

of 2, and the base must be aligned to the size. These

restrictions are in place so that the SGX implementation

can inexpensively check whether an address belongs to

an enclave’s ELRANGE, in either hardware (§ 2.11.4) or

software.

When an enclave represents a dynamic library, it is

natural to set ELRANGE to the memory range reserved

for the library by the loader. The ability to access non-

enclave memory from enclave code makes it easy to

reuse existing library code that expects to work with

pointers to memory buffers managed by code in the host

process.

Non-enclave software cannot access PRM memory. A

memory access that resolves inside the PRM results in

an aborted transaction, which is undefined at an archi-

tectural level, On current processors, aborted writes are

60

ignored, and aborted reads return a value whose bits are

all set to 1. This comes into play in the scenario described

above, where an enclave is loaded into a host application

process as a dynamically loaded library. The system soft-

ware maps the enclave’s code and data in ELRANGE

into EPC pages. If application software attempts to ac-

cess memory inside ELRANGE, it will experience the

abort transaction semantics. The current semantics do

not cause the application to crash (e.g., due to a Page

Fault), but also guarantee that the host application will

not be able to tamper with the enclave or read its private

information.

5.2.2 SGX Enclave Attributes

The execution environment of an enclave is heavily in-

fluenced by the value of the ATTRIBUTES field in the

enclave’s SECS (§ 5.1.3). The rest of this work will refer

to the field’s sub-fields, shown in Table 14, as enclave

attributes.

Field Bits Description

DEBUG 1 Opts into enclave debugging

features.

XFRM 64 The value of XCR0 (§ 2.6)

while this enclave’s code is

executed.

MODE64BIT 1 Set for 64-bit enclaves.

Table 14: An enclave’s attributes are the sub-fields in the AT-

TRIBUTES field of the enclave’s SECS. This table shows a subset of

the attributes defined in the SGX documentation.

The most important attribute, from a security perspec-

tive, is the DEBUG flag. When this flag is set, it enables

the use of SGX’s debugging features for this enclave.

These debugging features include the ability to read and

modify most of the enclave’s memory. Therefore, DE-

BUG should only be set in a development environment,

as it causes the enclave to lose all the SGX security guar-

antees.

SGX guarantees that enclave code will always run

with the XCR0 register (§ 2.6) set to the value indicated

by extended features request mask (XFRM). Enclave au-

thors are expected to use XFRM to specify the set of

architectural extensions enabled by the compiler used to

produce the enclave’s code. Having XFRM be explicitly

specified allows Intel to design new architectural exten-

sions that change the semantics of existing instructions,

such as Memory Protection Extensions (MPX), without

having to worry about the security implications on en-

clave code that was developed without an awareness of

the new features.

The MODE64BIT flag is set to true for enclaves that

use the 64-bit Intel architecture. From a security stand-

point, this flag should not even exist, as supporting a

secondary architecture adds unnecessary complexity to

the SGX implementation, and increases the probability

that security vulnerabilities will creep in. It is very likely

that the 32-bit architecture support was included due to

Intel’s strategy of offering extensive backwards compati-

bility, which has paid off quite well so far.

In the interest of mental sanity, this work does

not analyze the behavior of SGX for enclaves whose

MODE64BIT flag is cleared. However, a security re-

searcher who wishes to find vulnerabilities in SGX might

study this area.

Last, the INIT flag is always false when the enclave’s

SECS is created. The flag is set to true at a certain point

in the enclave lifecycle, which will be summarized in

§ 5.3.

5.2.3 Address Translation for SGX Enclaves

Under SGX, the operating system and hypervisor are

still in full control of the page tables and EPTs, and

each enclave’s code uses the same address translation

process and page tables (§ 2.5) as its host application.

This minimizes the amount of changes required to add

SGX support to existing system software. At the same

time, having the page tables managed by untrusted sys-

tem software opens SGX up to the address translation

attacks described in § 3.7. As future sections will reveal,

a good amount of the complexity in SGX’s design can

be attributed to the need to prevent these attacks.

SGX’s active memory mapping attacks defense mech-

anisms revolve around ensuring that each EPC page

can only be mapped at a specific virtual address (§ 2.7).

When an EPC page is allocated, its intended virtual ad-

dress is recorded in the EPCM entry for the page, in the

ADDRESS field.

When an address translation (§ 2.5) result is the physi-

cal address of an EPC page, the CPU ensures6 that the

virtual address given to the address translation process

matches the expected virtual address recorded in the

page’s EPCM entry.

SGX also protects against some passive memory map-

ping attacks and fault injection attacks by ensuring that

the access permissions of each EPC page always match

the enclave author’s intentions. The access permissions

6A mismatch triggers a general protection fault (#GP, § 2.8.2).

61

for each EPC page are specified when the page is allo-

cated, and recorded in the readable (R), writable (W),

and executable (X) fields in the page’s EPCM entry,

shown in Table 15.

Field Bits Description

ADDRESS 48 the virtual address used to ac-

cess this page

R 1 allow reads by enclave code

W 1 allow writes by enclave code

X 1 allow execution of code inside

the page, inside enclave

Table 15: The fields in an EPCM entry that indicate the enclave’s

intended virtual memory layout.

When an address translation (§ 2.5) resolves into an

EPC page, the corresponding EPCM entry’s fields over-

ride the access permission attributes (§ 2.5.3) specified in

the page tables. For example, the W field in the EPCM

entry overrides the writable (W) attribute, and the X field

overrides the disable execution (XD) attribute.

It follows that an enclave author must include mem-

ory layout information along with the enclave, in such

a way that the system software loading the enclave will

know the expected virtual memory address and access

permissions for each enclave page. In return, the SGX

design guarantees to the enclave authors that the sys-

tem software, which manages the page tables and EPT,

will not be able to set up an enclave’s virtual address

space in a manner that is inconsistent with the author’s

expectations.

The .so and .dll file formats, which are SGX’s

intended enclave delivery vehicles, already have provi-

sions for specifying the virtual addresses that a software

module was designed to use, as well as the desired access

permissions for each of the module’s memory areas.

Last, a SGX-enabled CPU will ensure that the virtual

memory inside ELRANGE (§ 5.2.1) is mapped to EPC

pages. This prevents the system software from carry-

ing out an address translation attack where it maps the

enclave’s entire virtual address space to DRAM pages

outside the PRM, which do not trigger any of the checks

above, and can be directly accessed by the system soft-

ware.

5.2.4 The Thread Control Structure (TCS)

The SGX design fully embraces multi-core processors.

It is possible for multiple logical processors (§ 2.9.3) to

concurrently execute the same enclave’s code at the same

time, via different threads.

The SGX implementation uses a Thread Control Struc-

ture (TCS) for each logical processor that executes an

enclave’s code. It follows that an enclave’s author must

provision at least as many TCS instances as the maxi-

mum number of concurrent threads that the enclave is

intended to support.

Each TCS is stored in a dedicated EPC page whose

EPCM entry type is PT TCS. The SDM describes the

first few fields in the TCS. These fields are considered

to belong to the architectural part of the structure, and

therefore are guaranteed to have the same semantics on

all the processors that support SGX. The rest of the TCS

is not documented.

The contents of an EPC page that holds a TCS cannot

be directly accessed, even by the code of the enclave that

owns the TCS. This restriction is similar to the restric-

tion on accessing EPC pages holding SECS instances.

However, the architectural fields in a TCS can be read by

enclave debugging instructions.

The architectural fields in the TCS lay out the context

switches (§ 2.6) performed by a logical processor when

it transitions between executing non-enclave and enclave

code.

For example, the OENTRY field specifies the value

loaded in the instruction pointer (RIP) when the TCS is

used to start executing enclave code, so the enclave au-

thor has strict control over the entry points available to en-

clave’s host application. Furthermore, the OFSBASGX

and OFSBASGX fields specify the base addresses loaded

in the FS and GS segment registers (§ 2.7), which typi-

cally point to Thread Local Storage (TLS).

5.2.5 The State Save Area (SSA)

When the processor encounters a hardware excep-

tion (§ 2.8.2), such as an interrupt (§ 2.12), while exe-

cuting the code inside an enclave, it performs a privilege

level switch (§ 2.8.2) and invokes a hardware exception

handler provided by the system software. Before ex-

ecuting the exception handler, however, the processor

needs a secure area to store the enclave code’s execution

context (§ 2.6), so that the information in the execution

context is not revealed to the untrusted system software.

In the SGX design, the area used to store an enclave

thread’s execution context while a hardware exception is

handled is called a State Save Area (SSA), illus-

trated in Figure 62. Each TCS references a contiguous se-

quence of SSAs. The offset of the SSA array (OSSA) field

specifies the location of the first SSA in the enclave’s

virtual address space. The number of SSAs (NSSA) field

62

indicates the number of available SSAs.

TCS 1

001000

SECS

SSA 1 Page 1

SSA 1 Page 2

SSA 1 Page 3

SSA 2 Page 1

SSA 2 Page 2

SSA 2 Page 3

NSSA 2

OSSA

OENTRY

OFSBASGX

OGSBASGX

01D038

Thread 1 TLS

008000

SSAFRAMESIZE 3

TCS 2

⋮

Code Pages

Data Pages

_main

RWC3F000 PT_REG

⋮⋮ ⋮

RWXC1D000 PT_REG

RWX

RWX

RW

RW

⋮

RW

R

RW

RW

RW

RW

PTADDRESS

PT_SECS0

C04000

C02000

C05000

C01000

⋮

C1C000

C00000

C03000

C09000

C06000

C08000

C07000

PT_REG

PT_TCS

⋮

PT_REG

PT_REG

PT_REG

PT_REG

PT_REG

PT_REG

PT_REG

PT_TCS

PT_REG

BASEADDR C00000

SIZE 40000

EPCM entries

Enclave virtual

address space

ELF / PE Header

Figure 62: A possible layout of an enclave’s virtual address space.

Each enclave has a SECS, and one TCS per supported concurrent

thread. Each TCS points to a sequence of SSAs, and specifies initial

values for RIP and for the base addresses of FS and GS.

Each SSA starts at the beginning of an EPC page, and

uses up the number of EPC pages that is specified in the

SSAFRAMESIZE field of the enclave’s SECS. These

alignment and size restrictions most likely simplify the

SGX implementation by reducing the number of special

cases that it needs to handle.

An enclave thread’s execution context consists of

the general-purpose registers (GPRs) and the result of

the XSAVE instruction (§ 2.6). Therefore, the size of

the execution context depends on the requested-feature

bitmap (RFBM) used by to XSAVE. All the code in an

enclave uses the same RFBM, which is declared in the

XFRM enclave attribute (§ 5.2.2). The number of EPC

pages reserved for each SSA, specified in SSAFRAME-

SIZE, must7 be large enough to fit the XSAVE output for

the feature bitmap specified by XFRM.

SSAs are stored in regular EPC pages, whose EPCM

page type is PT REG. Therefore, the SSA contents is

accessible to enclave software. The SSA layout is archi-

7ECREATE (§ 5.3.1) fails if SSAFRAMESIZE is too small.

tectural, and is completely documented in the SDM. This

opens up possibilities for an enclave exception handler

that is invoked by the host application after a hardware

exception occurs, and acts upon the information in a

SSA.

5.3 The Life Cycle of an SGX Enclave

An enclave’s life cycle is deeply intertwined with re-

source management, specifically the allocation of EPC

pages. Therefore, the instructions that transition between

different life cycle states can only be executed by the

system software. The system software is expected to

expose the SGX instructions described below as enclave

loading and teardown services.

The following subsections describe the major steps in

an enclave’s lifecycle, which is illustrated by Figure 63.

Uninitialized

Initialized

Not in use

Non-

existing
ECREATE

Initialized

In use

EINIT

EENTER

ERESUME

EEXIT

AEX

EREMOVE

EADD

EEXTEND

EBLOCK

ETRACK

ELDU, ELDB

EWB

EBLOCK

ETRACK

ELDU, ELDB

EGETKEY

EREPORT

Figure 63: The SGX enclave life cycle management instructions

and state transition diagram

5.3.1 Creation

An enclave is born when the system software issues the

ECREATE instruction, which turns a free EPC page into

the SECS (§ 5.1.3) for the new enclave.

ECREATE initializes the newly created SECS using

the information in a non-EPC page owned by the system

software. This page specifies the values for all the SECS

fields defined in the SDM, such as BASEADDR and

SIZE, using an architectural layout that is guaranteed to

be preserved by future implementations.

While is very likely that the actual SECS layout used

by initial SGX implementations matches the architec-

tural layout quite closely, future implementations are

free to deviate from this layout, as long as they main-

tain the ability to initialize the SECS using the archi-

tectural layout. Software cannot access an EPC page

that holds a SECS, so it cannot become dependent on

an internal SECS layout. This is a stronger version of

63

the encapsulation used in the Virtual Machine Control

Structure (VMCS, § 2.8.3).

ECREATE validates the information used to initialize

the SECS, and results in a page fault (#PF, § 2.8.2) or

general protection fault (#GP, § 2.8.2) if the information

is not valid. For example, if the SIZE field is not a

power of two, ECREATE results in #GP. This validation,

combined with the fact that the SECS is not accessible

by software, simplifies the implementation of the other

SGX instructions, which can assume that the information

inside the SECS is valid.

Last, ECREATE initializes the enclave’s INIT attribute

(sub-field of the ATTRIBUTES field in the enclave’s

SECS, § 5.2.2) to the false value. The enclave’s code

cannot be executed until the INIT attribute is set to true,

which happens in the initialization stage that will be

described in § 5.3.3.

5.3.2 Loading

ECREATE marks the newly created SECS as uninitial-

ized. While an enclave’s SECS is in this state, the system

software can use EADD instructions to load the initial

code and data into the enclave. EADD is used to create

both TCS pages (§ 5.2.4) and regular pages.

EADD reads its input data from a Page Informa-

tion (PAGEINFO) structure, illustrated in Figure 64. The

structure’s contents are only used to communicate in-

formation to the SGX implementation, so it is entirely

architectural and documented in the SDM.

PAGEINFO

SECINFO

SRCPGE

LINADDR

SECS

Enclave and Host Application

Virtual Address Space

SECINFO

R, W, X

FLAGS

PAGE_TYPE

Initial Page Contents

SIZE

SECS

BASEADDR

ELRANGE

New EPC Page

EPCM Entry

ENCLAVESECS

PT

R, W, X

ADDRESS

Figure 64: The PAGEINFO structure supplies input data to SGX

instructions such as EADD.

Currently, the PAGEINFO structure contains the vir-

tual address of the EPC page that will be allocated

(LINADDR), the virtual address of the non-EPC page

whose contents will be copied into the newly allocated

EPC page (SRCPGE), a virtual address that resolves to

the SECS of the enclave that will own the page (SECS),

and values for some of the fields of the EPCM entry asso-

ciated with the newly allocated EPC page (SECINFO).

The SECINFO field in the PAGEINFO structure is ac-

tually a virtual memory address, and points to a Security

Information (SECINFO) structure, some of which is also

illustrated in Figure 64. The SECINFO structure contains

the newly allocated EPC page’s access permissions (R,

W, X) and its EPCM page type (PT REG or PT TCS).

Like PAGEINFO, the SECINFO structure is solely used

to communicate data to the SGX implementation, so its

contents are also entirely architectural. However, most

of the structure’s 64 bytes are reserved for future use.

Both the PAGEINFO and the SECINFO structures

are prepared by the system software that invokes the

EADD instruction, and therefore must be contained in

non-EPC pages. Both structures must be aligned to their

sizes – PAGEINFO is 32 bytes long, so each PAGEINFO

instance must be 32-byte aligned, while SECINFO has 64

bytes, and therefore each SECINFO instance must be 64-

byte aligned. The alignment requirements likely simplify

the SGX implementation by reducing the number of

special cases that must be handled.

EADD validates its inputs before modifying the newly

allocated EPC page or its EPCM entry. Most importantly,

attempting to EADD a page to an enclave whose SECS is

in the initialized state will result in a #GP. Furthermore,

attempting to EADD an EPC page that is already allocated

(the VALID field in its EPCM entry is 1) results in a #PF.

EADD also ensures that the page’s virtual address falls

within the enclave’s ELRANGE, and that all the reserved

fields in SECINFO are set to zero.

While loading an enclave, the system software will

also use the EEXTEND instruction, which updates the

enclave’s measurement used in the software attestation

process. Software attestation is discussed in § 5.8.

5.3.3 Initialization

After loading the initial code and data pages into the

enclave, the system software must use a Launch En-

clave (LE) to obtain an EINIT Token Structure, via an

under-documented process that will be described in more

detail in § 5.9.1. The token is then provided to the EINIT

instruction, which marks the enclave’s SECS as initial-

64

ized.

The LE is a privileged enclave provided by Intel, and

is a prerequisite for the use of enclaves authored by

parties other than Intel. The LE is an SGX enclave,

so it must be created, loaded and initialized using the

processes described in this section. However, the LE is

cryptographically signed (§ 3.1.3) with a special Intel

key that is hard-coded into the SGX implementation, and

that causes EINIT to initialize the LE without checking

for a valid EINIT Token Structure.

When EINIT completes successfully, it sets the en-

clave’s INIT attribute to true. This opens the way for ring

3 (§ 2.3) application software to execute the enclave’s

code, using the SGX instructions described in § 5.4. On

the other hand, once INIT is set to true, EADD cannot be

invoked on that enclave anymore, so the system software

must load all the pages that make up the enclave’s initial

state before executing the EINIT instruction.

5.3.4 Teardown

After the enclave has done the computation it was de-

signed to perform, the system software executes the

EREMOVE instruction to deallocate the EPC pages used

by the enclave.

EREMOVE marks an EPC page as available by setting

the VALID field of the page’s EPCM entry to 0 (zero).

Before freeing up the page, EREMOVE makes sure that

there is no logical processor executing code inside the

enclave that owns the page to be removed.

An enclave is completely destroyed when the EPC

page holding its SECS is freed. EREMOVE refuses to

deallocate a SECS page if it is referenced by any other

EPCM entry’s ENCLAVESECS field, so an enclave’s

SECS page can only be deallocated after all the enclave’s

pages have been deallocated.

5.4 The Life Cycle of an SGX Thread

Between the time when an enclave is initialized (§ 5.3.3)

and the time when it is torn down (§ 5.3.4), the enclave’s

code can be executed by any application process that has

the enclave’s EPC pages mapped into its virtual address

space.

When executing the code inside an enclave, a logical

processor is said to be in enclave mode, and the code

that it executes can access the regular (PT REG, § 5.1.2)

EPC pages that belong to the currently executing en-

clave. When a logical process is outside enclave mode,

it bounces any memory accesses inside the Processor

Reserved Memory range (PRM, § 5.1), which includes

the EPC.

Each logical processor that executes enclave code uses

a Thread Control Structure (TCS, § 5.2.4). When a TCS

is used by a logical processor, it is said to be busy, and it

cannot be used by any other logical processor. Figure 65

illustrates the instructions used by a host process to ex-

ecute enclave code and their interactions with the TCS

that they target.

Logical Processor in

Enclave Mode

TCS Busy

CSSA = 0

TCS Available

CSSA = 0 EENTER

TCS Busy

CSSA = 1

TCS Available

CSSA = 1

EEXIT

AEXERESUME

EENTER

EEXIT

TCS Available

CSSA = 2

AEX
ERESUME

Figure 65: The stages of the life cycle of an SGX Thread Control

Structure (TCS) that has two State Save Areas (SSAs).

Assuming that no hardware exception occurs, an en-

clave’s host process uses the EENTER instruction, de-

scribed in § 5.4.1, to execute enclave code. When the en-

clave code finishes performing its task, it uses the EEXIT

instruction, covered in § 5.4.2, to return the execution

control to the host process that invoked the enclave.

If a hardware exception occurs while a logical proces-

sor is in enclave mode, the processor is taken out of en-

clave mode using an Asynchronous Enclave Exit (AEX),

summarized in § 5.4.3, before the system software’s ex-

ception handler is invoked. After the system software’s

handler is invoked, the enclave’s host process can use

the ERESUME instruction, described in § 5.4.4, to re-

enter the enclave and resume the computation that it was

performing.

5.4.1 Synchronous Enclave Entry

At a high level, EENTER performs a controlled jump into

enclave code, while performing the processor configura-

tion that is needed by SGX’s security guarantees. Going

through all the configuration steps is a tedious exercise,

but it a necessary prerequisite to understanding how all

data structures used by SGX work together. For this

reason, EENTER and its siblings are described in much

more detail than the other SGX instructions.

EENTER, illustrated in Figure 66 can only be exe-

65

cuted by unprivileged application software running at

ring 3 (§ 2.3), and results in an undefined instruction

(#UD) fault if is executed by system software.

OENTRY

OFSBASGX

TCS

Reserved

OSSA

CSSA

OGSBASGX

FSLIMIT

GSLIMIT

XFRM

BASEADDR

SSAFRAMESIZE

SECS

PT

TCS EPCM Entry

ENCLAVESECS

R, W, X, PT

XCR0

RCX

RBP

GS

FS

RBX

RIP

RSP

Input Register File

GPRSGX

XSAVE

AEP

U_RBP

U_RSP

SSA

+

x

RCX

FS

GS

RIP

XCR0

Output

Register File

Limit Base

+

+

Limit Base

SelectorTypeBase Limit

CR_SAVE_XCR0

CR_SAVE_FS

CR_SAVE_GS

SelectorTypeBase Limit

+

WriteRead

Figure 66: Data flow diagram for a subset of the logic in EENTER.

The figure omits the logic for disabling debugging features, such as

hardware breakpoints and performance monitoring events.

EENTER switches the logical processor to en-

clave mode, but does not perform a privilege level

switch (§ 2.8.2). Therefore, enclave code always exe-

cutes at ring 3, with the same privileges as the application

code that calls it. This makes it possible for an infras-

tructure owner to allow user-supplied software to create

and use enclaves, while having the assurance that the OS

kernel and hypervisor can still protect the infrastructure

from buggy or malicious software.

EENTER takes the virtual address of a TCS as its input,

and requires that the TCS is available (not busy), and that

at least one State Save Area (SSA, § 5.2.5) is available

in the TCS. The latter check is implemented by making

sure that the current SSA index (CSSA) field in the TCS

is less than the number of SSAs (NSSA) field. The SSA

indicated by the CSSA, which shall be called the current

SSA, is used in the event that a hardware exception occurs

while enclave code is executed.

EENTER transitions the logical processor into enclave

mode, and sets the instruction pointer (RIP) to the value

indicated by the entry point offset (OENTRY) field in

the TCS that it receives. EENTER is used by an un-

trusted caller to execute code in a protected environment,

and therefore has the same security considerations as

SYSCALL (§ 2.8), which is used to call into system soft-

ware. Setting RIP to the value indicated by OENTRY

guarantees to the enclave author that the enclave code

will only be invoked at well defined points, and prevents

a malicious host application from bypassing any security

checks that the enclave author may perform.

EENTER also sets XCR0 (§ 2.6), the register that con-

trols which extended architectural features are in use, to

the value of the XFRM enclave attribute (§ 5.2.2). En-

suring that XCR0 is set according to the enclave author’s

intentions prevents a malicious operating system from

bypassing an enclave’s security by enabling architectural

features that the enclave is not prepared to handle.

Furthermore, EENTER loads the bases of the segment

registers (§ 2.7) FS and GS using values specified in the

TCS. The segments’ selectors and types are hard-coded

to safe values for ring 3 data segments. This aspect of

the SGX design makes it easy to implement per-thread

Thread Local Storage (TLS). For 64-bit enclaves, this is

a convenience feature rather than a security measure, as

enclave code can securely load new bases into FS and

GS using the WRFSBASE and WRGSBASE instructions.

The EENTER implementation backs up the old val-

ues of the registers that it modifies, so they can be re-

stored when the enclave finishes its computation. Just

like SYSCALL, EEENTER saves the address of the fol-

lowing instruction in the RCX register.

Interestingly, the SDM states that the old values of the

XCR0, FS, and GS registers are saved in new registers

dedicated to the SGX implementation. However, given

that they will only be used on an enclave exit, we expect

that the registers are saved in DRAM, in the reserved

area in the TCS.

Like SYSCALL, EENTER does not modify the stack

pointer register (RSP). To avoid any security exploits,

enclave code should set RSP to point to a stack area

that is entirely contained in EPC pages. Multi-threaded

enclaves can easily implement per-thread stack areas by

setting up each thread’s TLS area to include a pointer

to the thread’s stack, and by setting RSP to the value

obtained by reading the TLS area at which the FS or GS

segment points.

66

Last, when EENTER enters enclave mode, it suspends

some of the processor’s debugging features, such as

hardware breakpoints and Precise Event Based Sam-

pling (PEBS). Conceptually, a debugger attached to the

host process sees the enclave’s execution as one single

processor instruction.

5.4.2 Synchronous Enclave Exit

EEXIT can only be executed while the logical processor

is in enclave mode, and results in a (#UD) if executed

in any other circumstances. In a nutshell, the instruction

returns the processor to ring 3 outside enclave mode

and restores the registers saved by EENTER, which were

described above.

Unlike SYSRET, EEXIT sets RIP to the value read

from RBX, after exiting enclave mode. This is inconsis-

tent with EENTER, which saves the RIP value to RCX.

Unless this inconsistency stems from an error in the

SDM, enclave code must be sure to note the difference.

The SDM explicitly states that EEXIT does not mod-

ify most registers, so enclave authors must make sure to

clear any secrets stored in the processor’s registers before

returning control to the host process. Furthermore, en-

clave software will most likely cause a fault in its caller

if it doesn’t restore the stack pointer RSP and the stack

frame base pointer RBP to the values that they had when

EENTER was called.

It may seem unfortunate that enclave code can induce

faults in its caller. For better or for worse, this perfectly

matches the case where an application calls into a dynam-

ically loaded module. More specifically, the module’s

code is also responsible for preserving stack-related reg-

isters, and a buggy module might jump anywhere in the

application code of the host process.

This section describes the EENTER behavior for 64-

bit enclaves. The EENTER implementation for 32-bit

enclaves is significantly more complex, due to the extra

special cases introduced by the full-fledged segmentation

model that is still present in the 32-bit Intel architecture.

As stated in the introduction, we are not interested in

such legacy aspects.

5.4.3 Asynchronous Enclave Exit (AEX)

If a hardware exception, like a fault (§ 2.8.2) or an in-

terrupt (§ 2.12), occurs while a logical processor is ex-

ecuting an enclave’s code, the processor performs an

Asynchronous Enclave Exit (AEX) before invoking the

system software’s exception handler, as shown in Fig-

ure 67.

 ERESUME

 return SUCCESS;

}

 store call results

Application Code

 store call results

 }

 return ERROR;

 try {

int call() {

 prepare call arguments

 EENTER

 } catch (AEX e) {

Resumable

exception?

RCX: AEP RBX: TCS

RCX: AEP RBX: TCS

Yes

 perform enclave

 computation

 PUSH RCX

}

Enclave Code

 POP RBX

void entry() {

 read ESP from

 FS:TLS

 EEXIT

RCX set by

 EENTER

CSSA

TCS

OENTRY

XSAVE

U_RSP

AEP

SSA

GPRSGX

U_RBP

AEX

Code

SS

RSP

RFLAGS

CS

RIP

GPRs

Ring 0

Stack

No

 restore GPRs

 handle exception

}

System Software

Hardware Exception Handler

void handler() {

 save GPRs

 IRET

Synchronous

Execution Path

AEX Path

Registers

cleared

by AEX

Figure 67: If a hardware exception occurs during enclave execution,

the synchronous execution path is aborted, and an Asynchronous

Enclave Exit (AEX) occurs instead.

The AEX saves the enclave code’s execution con-

text (§ 2.6), restores the state saved by EENTER, and

sets up the processor registers so that the system soft-

ware’s hardware exception handler will return to an asyn-

chronous exit handler in the enclave’s host process. The

exit handler is expected to use the ERESUME instruction

to resume the enclave computation that was interrupted

by the hardware exception.

Asides from the behavior described in § 5.4.1,

EENTER also writes some information to the current

SSA, which is only used if an AEX occurs. As shown

in Figure 66, EENTER stores the stack pointer register

RSP and the stack frame base pointer register RBP into

the U RSP and U RBP fields in the current SSA. Last,

EENTER stores the value in RCX in the Asynchronous

Exit handler Pointer (AEP) field in the current SSA.

When a hardware exception occurs in enclave mode,

the SGX implementation performs a sequence of steps

that takes the logical processor out of enclave mode and

invokes the hardware exception handler in the system

software. Conceptually, the SGX implementation first

67

performs an AEX to take the logical processor out of en-

clave mode, and then the hardware exception is handled

using the standard Intel architecture’s behavior described

in § 2.8.2. Actual Intel processors may interleave the

AEX implementation with the exception handling imple-

mentation. However, for simplicity, this work describes

AEX as a separate process that is performed before any

exception handling steps are taken.

In the Intel architecture, if a hardware exception oc-

curs, the application code’s execution context can be read

and modified by the system software’s exception handler

(§ 2.8.2). This is acceptable when the system software

is trusted by the application software. However, under

SGX’s threat model, the system software is not trusted

by enclaves. Therefore, the AEX step erases any secrets

that may exist in the execution state by resetting all its

registers to predefined values.

Before the enclave’s execution state is reset, it is

backed up inside the current SSA. Specifically, an AEX

backs up the general purpose registers (GPRs, § 2.6)

in the GPRSGX area in the SSA, and then performs

an XSAVE (§ 2.6) using the requested-feature bitmap

(RFBM) specified in the XFRM field in the enclave’s

SECS. As each SSA is entirely stored in EPC pages al-

located to the enclave, the system software cannot read

or tamper with the backed up execution state. When an

SSA receives the enclave’s execution state, it is marked

as used by incrementing the CSSA field in the current

TCS.

After clearing the execution context, the AEX process

sets RSP and RBP to the values saved by EENTER in

the current SSA, and sets RIP to the value in the current

SSA’s AEP field. This way, when the system software’s

hardware exception handler completes, the processor

will execute the asynchronous exit handler code in the

enclave’s host process. The SGX design makes it easy

to set up the asynchronous handler code as an exception

handler in the routine that contains the EENTER instruc-

tion, because the RSP and RBP registers will have the

same values as they had when EENTER was executed.

Many of the actions taken by AEX to get the logical

processor outside of enclave mode match EEXIT. The

segment registers FS and GS are restored to the values

saved by EENTER, and all the debugging facilities that

were suppressed by EENTER are restored to their previ-

ous states.

5.4.4 Recovering from an Asynchronous Exit

When a hardware exception occurs inside enclave mode,

the processor performs an AEX before invoking the ex-

ception’s handler set up by the system software. The

AEX sets up the execution context in such a way that

when the system software finishes processing the excep-

tion, it returns into an asynchronous exit handler in the

enclave’s host process. The asynchronous exception han-

dler usually executes the ERESUME instruction, which

causes the logical processor to go back into enclave mode

and continue the computation that was interrupted by the

hardware exception.

ERESUME shares much of its functionality with

EENTER. This is best illustrated by the similarity be-

tween Figures 68 and 67.

 ERESUME

 return SUCCESS;

}

 store call results

Application Code

 store call results

 }

 return ERROR;

 try {

int call() {

 prepare call arguments

 EENTER

 } catch (AEX e) {

Resumable

exception?

RCX: AEP RBX: TCS

RCX: AEP RBX: TCS

Yes

 perform enclave

 computation

 PUSH RCX

}

Enclave Code

 POP RBX

void entry() {

 read ESP from

 FS:TLS

 EEXIT

RCX set by

 ERESUME

CSSA

TCS

OENTRY

XSAVE

U_RSP

AEP

SSA

GPRSGX

U_RBP

AEX

Code

SS

RSP

RFLAGS

CS

RIP

GPRs

Ring 0

Stack

No

 restore GPRs

 handle exception

}

System Software

Hardware Exception Handler

void handler() {

 save GPRs

 IRET

Synchronous

Execution Path

AEX Path

Registers

cleared

by AEX

Figure 68: If a hardware exception occurs during enclave execution,

the synchronous execution path is aborted, and an Asynchronous

Enclave Exit (AEX) occurs instead.

EENTER and ERESUME receive the same inputs,

namely a pointer to a TCS, described in § 5.4.1, and

an AEP, described in § 5.4.3. The most common appli-

cation design will pair each EENTER instance with an

asynchronous exit handler that invokes ERESUME with

exactly the same arguments.

68

The main difference between ERESUME and EENTER

is that the former uses an SSA that was “filled out” by

an AEX (§ 5.4.3), whereas the latter uses an empty SSA.

Therefore, ERESUME results in a #GP fault if the CSSA

field in the provided TCS is 0 (zero), whereas EENTER

fails if CSSA is greater than or equal to NSSA.

When successful, ERESUME decrements the CSSA

field of the TCS, and restores the execution context

backed up in the SSA pointed to by the CSSA field

in the TCS. Specifically, the ERESUME implementation

restores the GPRs (§ 2.6) from the GPRSGX field in

the SSA, and performs an XRSTOR (§ 2.6) to load the

execution state associated with the extended architectural

features used by the enclave.

ERESUME shares the following behavior with

EENTER (§ 5.4.1). Both instructions write the U RSP,

U RBP, and AEP fields in the current SSA. Both instruc-

tions follow the same process for backing up XCR0 and

the FS and GS segment registers, and set them to the

same values, based on the current TCS and its enclave’s

SECS. Last, both instructions disable the same subset of

the logical processor’s debugging features.

An interesting edge case that ERESUME handles cor-

rectly is that it sets XCR0 to the XFRM enclave at-

tribute before performing an XRSTOR. It follows that

ERESUME fails if the requested feature bitmap (RFBM)

in the SSA is not a subset of XFRM. This matters be-

cause, while an AEX will always use the XFRM value

as the RFBM, enclave code executing on another thread

is free to modify the SSA contents before ERESUME is

called.

The correct sequencing of actions in the ERESUME im-

plementation prevents a malicious application from using

an enclave to modify registers associated with extended

architectural features that are not declared in XFRM.

This would break the system software’s ability to provide

thread-level execution context isolation.

5.5 EPC Page Eviction

Modern OS kernels take advantage of address transla-

tion (§ 2.5) to implement page swapping, also referred

to as paging (§ 2.5). In a nutshell, paging allows the OS

kernel to over-commit the computer’s DRAM by evicting

rarely used memory pages to a slower storage medium

called the disk.

Paging is a key contributor to utilizing a computer’s

resources effectively. For example, a desktop system

whose user runs multiple programs concurrently can

evict memory pages allocated to inactive applications

without a significant degradation in user experience.

Unfortunately, the OS cannot be allowed to evict an

enclave’s EPC pages via the same methods that are used

to implement page swapping for DRAM memory outside

the PRM range. In the SGX threat model, enclaves do

not trust the system software, so the SGX design offers

an EPC page eviction method that can defend against

a malicious OS that attempts any of the active address

translation attacks described in § 3.7.

The price of the security afforded by SGX is that an

OS kernel that supports evicting EPC pages must use

a modified page swapping implementation that inter-

acts with the SGX mechanisms. Enclave authors can

mostly ignore EPC evictions, similarly to how today’s

application developers can ignore the OS kernel’s paging

implementation.

As illustrated in Figure 69, SGX supports evicting

EPC pages to DRAM pages outside the PRM range. The

system software is expected to use its existing page swap-

ping implementation to evict the contents of these pages

out of DRAM and onto a disk.

HDD / SSD

DRAM DRAM

EWB

ELDU,
ELDB

classical
page

swapping

Enclave

Memory
Non-PRM

Memory

Disk

EPC

Figure 69: SGX offers a method for the OS to evict EPC pages into

non-PRM DRAM. The OS can then use its standard paging feature

to evict the pages out of DRAM.

SGX’s eviction feature revolves around the EWB in-

struction, described in detail in § 5.5.4. Essentially, EWB

evicts an EPC page into a DRAM page outside the EPC

and marks the EPC page as available, by zeroing the

VALID field in the page’s EPCM entry.

The SGX design relies on symmetric key cryp-

tograpy 3.1.1 to guarantee the confidentiality and in-

tegrity of the evicted EPC pages, and on nonces (§ 3.1.4)

to guarantee the freshness of the pages brought back

into the EPC. These nonces are stored in Version Ar-

rays (VAs), covered in § 5.5.2, which are EPC pages

dedicated to nonce storage.

Before an EPC page is evicted and freed up for use

by other enclaves, the SGX implementation must ensure

that no TLB has address translations associated with the

69

evicted page, in order to avoid the TLB-based address

translation attack described in § 3.7.4.

As explained in § 5.1.1, SGX leaves the system soft-

ware in charge of managing the EPC. It naturally follows

that the SGX instructions described in this section, which

are used to implement EPC paging, are only available to

system software, which runs at ring 0 § 2.3.

In today’s software stacks (§ 2.3), only the OS ker-

nel implements page swapping in order to support the

over-committing of DRAM. The hypervisor is only used

to partition the computer’s physical resources between

operating systems. Therefore, this section is written with

the expectation that the OS kernel will also take on the

responsibility of EPC page swapping. For simplicity,

we often use the term “OS kernel” instead of “system

software”. The reader should be aware that the SGX

design does not preclude a system where the hypervisor

implements its own EPC page swapping. Therefore, “OS

kernel” should really be read as “the system software

that performs EPC paging”.

5.5.1 Page Eviction and the TLBs

One of the least promoted accomplishments of SGX is

that it does not add any security checks to the memory

execution units (§ 2.9.4, § 2.10). Instead, SGX’s access

control checks occur after an address translation (§ 2.5)

is performed, right before the translation result is written

into the TLBs (§ 2.11.5). This aspect is generally down-

played throughout the SDM, but it becomes visible when

explaining SGX’s EPC page eviction mechanism.

A full discussion of SGX’s memory access protections

checks merits its own section, and is deferred to § 6.2.

The EPC page eviction mechanisms can be explained

using only two requirements from SGX’s security model.

First, when a logical processor exits an enclave, either

via EEXIT (§ 5.4.2) or via an AEX (§ 5.4.3), its TLBs

are flushed. Second, when an EPC page is deallocated

from an enclave, all logical processors executing that

enclave’s code must be directed to exit the enclave. This

is sufficient to guarantee the removal of any TLB entry

targeting the deallocated EPC.

System software can cause a logical processor to exit

an enclave by sending it an Inter-Processor Interrupt

(IPI, § 2.12), which will trigger an AEX when received.

Essentially, this is a very coarse-grained TLB shootdown.

SGX does not trust system software. Therefore, be-

fore marking an EPC page’s EPCM entry as free, the

SGX implementation must ensure that the OS kernel has

flushed all the TLBs that might contain translations for

the page. Furthermore, performing IPIs and TLB flushes

for each page eviction would add a significant overhead

to a paging implementation, so the SGX design allows

a batch of pages to be evicted using a single IPI / TLB

flush sequence.

The TLB flush verification logic relies on a 1-bit

EPCM entry field called BLOCKED. As shown in Fig-

ure 70, the VALID and BLOCKED fields yield three

possible EPC page states. A page is free when both bits

are zero, in use when VALID is one and BLOCKED is

zero, and blocked when both bits are one.

Blocked

BLOCKED = 1

VALID = 1

In Use

BLOCKED = 0

VALID = 1

EBLOCK

Free

BLOCKED = 0

VALID = 0

EWBEREMOVE

ELDU

EREMOVE

ECREATE,

EADD, EPA

ELDB

Figure 70: The VALID and BLOCKED bits in an EPC page’s

EPCM entry can be in one of three states. EADD and its siblings

allocate new EPC pages. EREMOVE permanently deallocates an EPC

page. EBLOCK blocks an EPC page so it can be evicted using EWB.

ELDB and ELDU load an evicted page back into the EPC.

Blocked pages are not considered accessible to en-

claves. If an address translation results in a blocked EPC

page, the SGX implementation causes the translation to

result in a Page Fault (#PF, § 2.8.2). This guarantees that

once a page is blocked, the CPU will not create any new

TLB entries pointing to it.

Furthermore, every SGX instruction makes sure that

the EPC pages on which it operates are not blocked. For

example, EENTER ensures that the TCS it is given is not

blocked, that its enclave’s SECS is not blocked, and that

every page in the current SSA is not blocked.

In order to evict a batch of EPC pages, the OS kernel

must first issue EBLOCK instructions targeting them. The

OS is also expected to remove the EPC page’s mapping

from page tables, but is not trusted to do so.

After all the desired pages have been blocked, the OS

kernel must execute an ETRACK instruction, which di-

rects the SGX implementation to keep track of which log-

ical processors have had their TLBs flushed. ETRACK re-

quires the virtual address of an enclave’s SECS (§ 5.1.3).

If the OS wishes to evict a batch of EPC pages belonging

to multiple enclaves, it must issue an ETRACK for each

enclave.

70

Following the ETRACK instructions, the OS kernel

must induce enclave exits on all the logical processors

that are executing code inside the enclaves that have been

ETRACKed. The SGX design expects that the OS will

use IPIs to cause AEXs in the logical processors whose

TLBs must be flushed.

The EPC page eviction process is completed when the

OS executes an EWB instruction for each EPC page to be

evicted. This instruction, which will be fully described

in § 5.5.4, writes an encrypted version of the EPC page

to be evicted into DRAM, and then frees the page by

clearing the VALID and BLOCKED bits in its EPCM

entry. Before carrying out its tasks, EWB ensures that the

EPC page that it targets has been blocked, and checks the

state set up by ETRACK to make sure that all the relevant

TLBs have been flushed.

An evicted page can be loaded back into the EPC via

the ELDU and ELDB instructions. Both instructions start

up with a free EPC page and a DRAM page that has the

evicted contents of an EPC page, decrypt the DRAM

page’s contents into the EPC page, and restore the cor-

responding EPCM entry. The only difference between

ELDU and ELDB is that the latter sets the BLOCKED bit

in the page’s EPCM entry, whereas the former leaves it

cleared.

ELDU and ELDB resemble ECREATE and EADD, in

the sense that they populate a free EPC page. Since

the page that they operate on was free, the SGX secu-

rity model predicates that no TLB entries can possibly

target it. Therefore, these instructions do not require a

mechanism similar to EBLOCK or ETRACK.

5.5.2 The Version Array (VA)

When EWB evicts the contents of an EPC, it creates an

8-byte nonce (§ 3.1.4) that Intel’s documentation calls a

page version. SGX’s freshness guarantees are built on the

assumption that nonces are stored securely, so EWB stores

the nonce that it creates inside a Version Array (VA).

Version Arrays are EPC pages that are dedicated to

storing nonces generated by EWB. Each VA is divided

into slots, and each slot is exactly large enough to store

one nonce. Given that the size of an EPC page is 4KB,

and each nonce occupies 8 bytes, it follows that each VA

has 512 slots.

VA pages are allocated using the EPA instruction,

which takes in the virtual address of a free EPC page, and

turns it into a Version Array with empty slots. VA pages

are identified by the PT VA type in their EPCM entries.

Like SECS pages, VA pages have the ENCLAVEAD-

DRESS fields in their EPCM entries set to zero, and

cannot be accessed directly by any software, including

enclaves.

Unlike the other page types discussed so far, VA pages

are not associated with any enclave. This means they

can be deallocated via EREMOVE without any restriction.

However, freeing up a VA page whose slots are in use ef-

fectively discards the nonces in those slots, which results

in losing the ability to load the corresponding evicted

pages back into the EPC. Therefore, it is unlikely that a

correct OS implementation will ever call EREMOVE on a

VA with non-free slots.

According to the pseudo-code for EPA and EWB in the

SDM, SGX uses the zero value to represent the free slots

in a VA, implying that all the generated nonces have to

be non-zero. This also means that EPA initializes a VA

simply by zeroing the underlying EPC page. However,

since software cannot access a VA’s contents, neither the

use of a special value, nor the value itself is architectural.

5.5.3 Enclave IDs

The EWB and ELDU / ELDB instructions use an en-

clave ID (EID) to identify the enclave that owns an

evicted page. The EID has the same purpose as the EN-

CLAVESECS (§ 5.1.2) field in an EPCM entry, which is

also used to identify the enclave that owns an EPC page.

This section explains the need for having two values rep-

resent the same concept by comparing the two values

and their uses.

The SDM states that ENCLAVESECS field in an

EPCM entry is used to identify the SECS of the enclave

owning the associated EPC page, but stops short of de-

scribing its format. In theory, the ENCLAVESECS field

can change its representation between SGX implemen-

tations since SGX instructions never expose its value to

software.

However, we will later argue that the most plausible

representation of the ENCLAVESECS field is the phys-

ical address of the enclave’s SECS. Therefore, the EN-

CLAVESECS value associated with a given enclave will

change if the enclave’s SECS is evicted from the EPC

and loaded back at a different location. It follows that the

ENCLAVESECS value is only suitable for identifying

an enclave while its SECS remains in the EPC.

According to the SDM, the EID field is a 64-bit field

stored in an enclave’s SECS. ECREATE’s pseudocode

in the SDM reveals that an enclave’s ID is generated

when the SECS is allocated, by atomically incrementing

a global counter. Assuming that the counter does not roll

71

over8, this process guarantees that every enclave created

during a power cycle has a unique EID.

Although the SDM does not specifically guarantee

this, the EID field in an enclave’s SECS does not appear

to be modified by any instruction. This makes the EID’s

value suitable for identifying an enclave throughout its

lifetime, even across evictions of its SECS page from the

EPC.

5.5.4 Evicting an EPC Page

The system software evicts an EPC page using the EWB

instruction, which produces all the data needed to restore

the evicted page at a later time via the ELDU instruction,

as shown in Figure 71.

Untrusted DRAM

⋮

VA page

nonce

⋮

EWB

Encrypted

EPC Page

Page

Metadata

MAC

Tag

⋮

VA page

⋮

EWB source page

⋮

EPC

ELDB target page

⋮

⋮

VA page metadata

⋮

EWB source metadata

⋮

EPCM

ELDB target metadata

⋮

ELDU /

ELDB

Figure 71: The EWB instruction outputs the encrypted contents of

the evicted EPC page, a subset of the fields in the page’s EPCM entry,

a MAC tag, and a nonce. All this information is used by the ELDB or

ELDU instruction to load the evicted page back into the EPC, with

confidentiality, integrity and freshness guarantees.

EWB’s output consists of an encrypted version of the

evicted EPC page’s contents, a subset of the fields in

the EPCM entry corresponding to the page, the nonce

discussed in § 5.5.2, and a message authentication

8A 64-bit counter incremented at 4Ghz would roll over in slightly

more than 136 years

code (MAC, § 3.1.3) tag. With the exception of the

nonce, EWB writes its output in DRAM outside the PRM

area, so the system software can choose to further evict

it to disk.

The EPC page contents is encrypted, to protect the

confidentiality of the enclave’s data while the page is

stored in the untrusted DRAM outside the PRM range.

Without the use of encryption, the system software could

learn the contents of an EPC page by evicting it from the

EPC.

The page metadata is stored in a Page Informa-

tion (PAGEINFO) structure, illustrated in Figure 72. This

structure is similar to the PAGEINFO structure described

in § 5.3.2 and depicted in Figure 64, except that the

SECINFO field has been replaced by a PCMD field,

which contains the virtual address of a Page Crypto Meta-

data (PCMD) structure.

PAGEINFO

PCMD

SRCPGE

LINADDR

SECS

Enclave and Host Application

Virtual Address Space

MAC

ENCLAVEID

PCMD

Encrypted EPC Page

EID

SIZE

SECS

BASEADDR

ELRANGE

EPC Page

EPCM Entry

ENCLAVESECS

PT

R, W, X

ADDRESS

SECINFO

R, W, X

FLAGS

PAGE_TYPE

=

Figure 72: The PAGEINFO structure used by the EWB and ELDU /

ELDB instructions

The LINADDR field in the PAGEINFO structure is

used to store the ADDRESS field in the EPCM entry,

which indicates the virtual address intended for accessing

the page. The PCMD structure embeds the Security Infor-

mation (SECINFO) described in § 5.3.2, which is used

to store the page type (PT) and the access permission

flags (R, W, X) in the EPCM entry. The PCMD structure

72

also stores the enclave’s ID (EID, § 5.5.3). These fields

are later used by ELDU or ELDB to populate the EPCM

entry for the EPC page that is reloaded.

The metadata described above is stored unencrypted,

so the OS has the option of using the information inside

as-is for its own bookkeeping. This has no negative im-

pact on security, because the metadata is not confidential.

In fact, with the exception of the enclave ID, all the meta-

data fields are specified by the system software when

ECREATE is called. The enclave ID is only useful for

identifying the enclave that the EPC page belongs to, and

the system software already has this information as well.

Asides from the metadata described above, the PCMD

structure also stores the MAC tag generated by EWB.

The MAC tag covers the authenticity of the EPC page

contents, the metadata, and the nonce. The MAC tag is

checked by ELDU and ELDB, which will only load an

evicted page back into the EPC if the MAC verification

confirms the authenticity of the page data, metadata, and

nonce. This security check protects against the page

swapping attacks described in § 3.7.3.

Similarly to EREMOVE, EWB will only evict the EPC

page holding an enclave’s SECS if there is no other

EPCM entry whose ENCLAVESECS field references

the SECS. At the same time, as an optimization, the

SGX implementation does not perform ETRACK-related

checks when evicting a SECS. This is safe because a

SECS is only evicted if the EPC has no pages belonging

to the SECS’ enclave, which implies that there isn’t any

TCS belonging to the enclave in the EPC, so no processor

can be executing enclave code.

The pages holding Version Arrays can be evicted, just

like any other EPC page. VA pages are never accessible

by software, so they can’t have any TLB entries point-

ing to them. Therefore, EWB evicts VA pages without

performing any ETRACK-related checks. The ability to

evict VA pages has profound implications that will be

discussed in § 5.5.6.

EWB’s data flow, shown in detail in Figure 73, has

an aspect that can be confusing to OS developers. The

instruction reads the virtual address of the EPC page to

be evicted from a register (RBX) and writes it to the

LINADDR field of the PAGEINFO structure that it is

provided. The separate input (RBX) could have been

removed by providing the EPC page’s address in the

LINADDR field.

TRACKING

SECS

EID

AES-GCM

PCMD (Output)

MAC

reserved fields

ENCLAVEID

SECINFO

reserved fields

PAGE_TYPE

FLAGS

R, W, X

PAGEINFO

(Input/Output)

SECS

PCMD

SRCPGE

LINADDR

LINADDR

MAC_HDR

(Temporary)

EID

EPC Page Address

(Input)

LINADDR

ENCLAVESECS

BLOCKED

VALID

EPCM entry

PT

R, W, X

EPC Page

SECINFO

reserved fields

R, W, X

FLAGS

PAGE_TYPE

non-EPC

Page

MAC

ciphertext

plaintext

Page Version

(Generated)
VA slot address

(Input)

⋮

VA page

target VA slot

⋮

counter

MAC data

zero

points to

copied to

Figure 73: The data flow of the EWB instruction that evicts an EPC

page. The page’s content is encrypted in a non-EPC RAM page. A

nonce is created and saved in an empty slot inside a VA page. The

page’s EPCM metadata and a MAC are saved in a separate area in

non-EPC memory.

5.5.5 Loading an Evicted Page Back into EPC

After an EPC page belonging to an enclave is evicted, any

attempt to access the page from enclave code will result

in a Page Fault (#PF, § 2.8.2). The #PF will cause the

logical processor to exit enclave mode via AEX (§ 5.4.3),

and then invoke the OS kernel’s page fault handler.

Page faults receive special handling from the AEX

process. While leaving the enclave, the AEX logic specif-

ically checks if the hardware exception that triggered the

AEX was #PF. If that is the case, the AEX implementa-

tion clears the least significant 12 bits of the CR2 register,

which stores the virtual address whose translation caused

a page fault.

In general, the OS kernel’s page handler needs to be

able to extract the virtual page number (VPN, § 2.5.1)

73

from CR2, so that it knows which memory page needs

to be loaded back into DRAM. The OS kernel may also

be able to use the 12 least significant address bits, which

are not part of the VPN, to better predict the application

software’s memory access patterns. However, unlike the

bits that make up the VPN, the bottom 12 bits are not

absolutely necessary for the fault handler to carry out its

job. Therefore, SGX’s AEX implementation clears these

12 bits, in order to limit the amount of information that

is learned by the page fault handler.

When the OS page fault handler examines the address

in the CR2 register and determines that the faulting ad-

dress is inside the EPC, it is generally expected to use the

ELDU or ELDB instruction to load the evicted page back

into the EPC. If the outputs of EWB have been evicted

from DRAM to a slower storage medium, the OS kernel

will have to read the outputs back into DRAM before

invoking ELDU / ELDB.

ELDU and ELDB verify the MAC tag produced by

EWB, described in § 5.5.4. This prevents the OS kernel

from performing the page swapping-based active address

translation attack described in § 3.7.3.

5.5.6 Eviction Trees

The SGX design allows VA pages to be evicted from

the EPC, just like enclave pages. When a VA page is

evicted from EPC, all the nonces stored by the VA slots

become inaccessible to the processor. Therefore, the

evicted pages associated with these nonces cannot be

restored by ELDB until the OS loads the VA page back

into the EPC.

In other words, an evicted page depends on the VA

page storing its nonce, and cannot be loaded back into

the EPC until the VA page is reloaded as well. The de-

pendency graph created by this relationship is a forest

of eviction trees. An eviction tree, shown in Fig-

ure 74, has enclave EPC pages as leaves, and VA pages

as inner nodes. A page’s parent is the VA page that holds

its nonce. Since EWB always outputs a nonce in a VA

page, the root node of each eviction tree is always a VA

page in the EPC.

A straightforward inductive argument shows that when

an OS wishes to load an evicted enclave page back into

the EPC, it needs to load all the VA pages on the path

from the eviction tree’s root to the leaf corresponding to

the enclave page. Therefore, the number of page loads

required to satisfy a page fault inside the EPC depends

on the shape of the eviction tree that contains the page.

The SGX design leaves the OS in complete control

Encrypted VA

Page

⋮

⋮

Encrypted

EPC Page

Page

Metadata

MAC

Tag

Page

Metadata

MAC

Tag

Encrypted VA

Page

⋮

⋮

⋮

Encrypted

EPC Page

Page

Metadata

MAC

Tag

Page

Metadata

MAC

Tag

Encrypted

EPC Page

Page

Metadata

MAC

Tag

VA Page

⋮

⋮

Figure 74: A version tree formed by evicted VA pages and enclave

EPC pages. The enclave pages are leaves, and the VA pages are

inner nodes. The OS controls the tree’s shape, which impacts the

performance of evictions, but not their correctness.

of the shape of the eviction trees. This has no negative

impact on security, as the tree shape only impacts the

performance of the eviction scheme, and not its correct-

ness.

5.6 SGX Enclave Measurement

SGX implements a software attestation scheme that fol-

lows the general principles outlined in § 3.3. For the

purposes of this section, the most relevant principle is

that a remote party authenticates an enclave based on

its measurement, which is intended to identify the soft-

ware that is executing inside the enclave. The remote

party compares the enclave measurement reported by

the trusted hardware with an expected measurement, and

only proceeds if the two values match.

74

§ 5.3 explains that an SGX enclave is built us-

ing the ECREATE (§ 5.3.1), EADD (§ 5.3.2) and

EEXTEND instructions. After the enclave is initialized

via EINIT (§ 5.3.3), the instructions mentioned above

cannot be used anymore. As the SGX measurement

scheme follows the principles outlined in § 3.3.2, the

measurement of an SGX enclave is obtained by com-

puting a secure hash (§ 3.1.3) over the inputs to the

ECREATE, EADD and EEXTEND instructions used to

create the enclave and load the initial code and data into

its memory. EINIT finalizes the hash that represents the

enclave’s measurement.

Along with the enclave’s contents, the enclave author

is expected to specify the sequence of instructions that

should be used in order to create an enclave whose mea-

surement will match the expected value used by the re-

mote party in the software attestation process. The .so

and .dll dynamically loaded library file formats, which

are SGX’s intended enclave delivery methods, already

include informal specifications for loading algorithms.

We expect the informal loading specifications to serve

as the starting points for specifications that prescribe the

exact sequences of SGX instructions that should be used

to create enclaves from .so and .dll files.

As argued in § 3.3.2, an enclave’s measurement is

computed using a secure hashing algorithm, so the sys-

tem software can only build an enclave that matches an

expected measurement by following the exact sequence

of instructions specified by the enclave’s author.

The SGX design uses the 256-bit SHA-2 [21] secure

hash function to compute its measurements. SHA-2 is

a block hash function (§ 3.1.3) that operates on 64-byte

blocks, uses a 32-byte internal state, and produces a 32-

byte output. Each enclave’s measurement is stored in

the MRENCLAVE field of the enclave’s SECS. The 32-

byte field stores the internal state and final output of the

256-bit SHA-2 secure hash function.

5.6.1 Measuring ECREATE

The ECREATE instruction, overviewed in § 5.3.1, first

initializes the MRENCLAVE field in the newly created

SECS using the 256-bit SHA-2 initialization algorithm,

and then extends the hash with the 64-byte block depicted

in Table 16.

The enclave’s measurement does not include the

BASEADDR field. The omission is intentional, as it

allows the system software to load an enclave at any

virtual address inside a host process that satisfies the

ELRANGE restrictions (§ 5.2.1), without changing the

Offset Size Description

0 8 ”ECREATE\0”

8 8 SECS.SSAFRAMESIZE (§ 5.2.5)

16 8 SECS.SIZE (§ 5.2.1)

32 8 32 zero (0) bytes

Table 16: 64-byte block extended into MRENCLAVE by ECREATE

enclave’s measurement. This feature can be combined

with a compiler that generates position-independent en-

clave code to obtain relocatable enclaves.

The enclave’s measurement includes the

SSAFRAMESIZE field, which guarantees that

the SSAs (§ 5.2.5) created by AEX and used by

EENTER (§ 5.4.1) and ERESUME (§ 5.4.4) have the

size that is expected by the enclave’s author. Leaving

this field out of an enclave’s measurement would

allow a malicious enclave loader to attempt to attack

the enclave’s security checks by specifying a bigger

SSAFRAMESIZE than the enclave’s author intended,

which could cause the SSA contents written by an AEX

to overwrite the enclave’s code or data.

5.6.2 Measuring Enclave Attributes

The enclave’s measurement does not include the en-

clave attributes (§ 5.2.2), which are specified in the AT-

TRIBUTES field in the SECS. Instead, it is included

directly in the information that is covered by the attesta-

tion signature, which will be discussed in § 5.8.1.

The SGX software attestation definitely needs to cover

the enclave attributes. For example, if XFRM (§ 5.2.2,

§ 5.2.5) would not be covered, a malicious enclave loader

could attempt to subvert an enclave’s security checks

by setting XFRM to a value that enables architectural

extensions that change the semantics of instructions used

by the enclave, but still produces an XSAVE output that

fits in SSAFRAMESIZE.

The special treatment applied to the ATTRIBUTES

SECS field seems questionable from a security stand-

point, as it adds extra complexity to the software attesta-

tion verifier, which translates into more opportunities for

exploitable bugs. This decision also adds complexity to

the SGX software attestation design, which is described

in § 5.8.

The most likely reason why the SGX design decided to

go this route, despite the concerns described above, is the

wish to be able to use a single measurement to represent

an enclave that can take advantage of some architectural

extensions, but can also perform its task without them.

Consider, for example, an enclave that performs image

75

processing using a library such as OpenCV, which has

routines optimized for SSE and AVX, but also includes

generic fallbacks for processors that do not have these

features. The enclave’s author will likely wish to allow

an enclave loader to set bits 1 (SSE) and 2 (AVX) to

either true or false. If ATTRIBUTES (and, by extension,

XFRM) was a part of the enclave’s measurement, the

enclave author would have to specify that the enclave has

4 valid measurements. In general, allowing n architec-

tural extensions to be used independently will result in

2n valid measurements.

5.6.3 Measuring EADD

The EADD instruction, described in § 5.3.2, extends the

SHA-2 hash in MRENCLAVE with the 64-byte block

shown in Table 17.

Offset Size Description

0 8 ”EADD\0\0\0\0”

8 8 ENCLAVEOFFSET

16 48 SECINFO (first 48 bytes)

Table 17: 64-byte block extended into MRENCLAVE by EADD. The

ENCLAVEOFFSET is computed by subtracting the BASEADDR

in the enclave’s SECS from the LINADDR field in the PAGEINFO

structure.

The address included in the measurement is the ad-

dress where the EADDed page is expected to be mapped

in the enclave’s virtual address space. This ensures that

the system software sets up the enclave’s virtual memory

layout according to the enclave author’s specifications.

If a malicious enclave loader attempts to set up the en-

clave’s layout incorrectly, perhaps in order to mount an

active address translation attack (§ 3.7.2), the loaded en-

clave’s measurement will differ from the measurement

expected by the enclave’s author.

The virtual address of the newly created page is mea-

sured relatively to the start of the enclave’s ELRANGE.

In other words, the value included in the measurement

is LINADDR - BASEADDR. This makes the enclave’s

measurement invariant to BASEADDR changes, which

is desirable for relocatable enclaves. Measuring the rel-

ative addresses still preserves all the information about

the memory layout inside ELRANGE, and therefore has

no negative security impact.

EADD also measures the first 48 bytes of the SECINFO

structure (§ 5.3.2) provided to EADD, which contain the

page type (PT) and access permissions (R, W, X) field

values used to initialize the page’s EPCM entry. By the

same argument as above, including these values in the

measurement guarantees that the memory layout built

by the system software loading the enclave matches the

specifications of the enclave author.

The EPCM field values mentioned above take up less

than one byte in the SECINFO structure, and the rest of

the bytes are reserved and expected to be initialized to

zero. This leaves plenty of expansion room for future

SGX features.

The most notable omission from Table 17 is the data

used to initialize the newly created EPC page. Therefore,

the measurement data contributed by EADD guarantees

that the enclave’s memory layout will have pages allo-

cated with prescribed access permissions at the desired

virtual addresses. However, the measurements don’t

cover the code or data loaded in these pages.

For example, EADD’s measurement data guarantees

that an enclave’s memory layout consists of three exe-

cutable pages followed by five writable data pages, but it

does not guarantee that any of the code pages contains

the code supplied by the enclave’s author.

5.6.4 Measuring EEXTEND

The EEXTEND instruction exists solely for the reason of

measuring data loaded inside the enclave’s EPC pages.

The instruction reads in a virtual address, and extends the

enclave’s measurement hash with the five 64-byte blocks

in Table 18, which effectively guarantee the contents of

a 256-byte chunk of data in the enclave’s memory.

Offset Size Description

0 8 ”EEXTEND\0”

8 8 ENCLAVEOFFSET

16 48 48 zero (0) bytes

64 64 bytes 0 - 64 in the chunk

128 64 bytes 64 - 128 in the chunk

192 64 bytes 128 - 192 in the chunk

256 64 bytes 192 - 256 in the chunk

Table 18: 64-byte blocks extended into MRENCLAVE by

EEXTEND. The ENCLAVEOFFSET is computed by subtracting the

BASEADDR in the enclave’s SECS from the LINADDR field in the

PAGEINFO structure.

Before examining the details of EEXTEND, we note

that SGX’s security guarantees only hold when the con-

tents of the enclave’s key pages is measured. For ex-

ample, EENTER (§ 5.4.1) is only guaranteed to perform

controlled jumps inside an enclave’s code if the contents

of all the Thread Control Structure (TCS, § 5.2.4) pages

are measured. Otherwise, a malicious enclave loader

can change the OENTRY field (§ 5.2.4, § 5.4.1) in a

TCS while building the enclave, and then a malicious

76

OS can use the TCS to perform an arbitrary jump inside

enclave code. By the same argument, all the enclave’s

code should be measured by EEXTEND. Any code frag-

ment that is not measured can be replaced by a malicious

enclave loader.

Given these pitfalls, it is surprising that the SGX de-

sign opted to decouple the virtual address space layout

measurements done by EADD from the memory content

measurements done by EEXTEND.

At a first pass, it appears that the decoupling only has

one benefit, which is the ability to load un-measured user

input into an enclave while it is being built. However, this

benefit only translates into a small performance improve-

ment, because enclaves can alternatively be designed to

copy the user input from untrusted DRAM after being

initialized. At the same time, the decoupling opens up

the possibility of relying on an enclave that provides no

meaningful security guarantees, due to not measuring all

the important data via EEXTEND calls.

However, the real reason behind the EADD / EEXTEND

separation is hinted at by the EINIT pseudo-code in the

SDM, which states that the instruction opens an inter-

rupt (§ 2.12) window while it performs a computationally

intensive RSA signature check. If an interrupt occurs

during the check, EINIT fails with an error code, and

the interrupt is serviced. This very unusual approach for

a processor instruction suggests that the SGX implemen-

tation was constrained in respect to how much latency its

instructions were allowed to add to the interrupt handling

process.

In light of the concerns above, it is reasonable to con-

clude that EEXTEND was introduced because measur-

ing an entire page using 256-bit SHA-2 is quite time-

consuming, and doing it in EADD would have caused the

instruction to exceed SGX’s latency budget. The need to

hit a certain latency goal is a reasonable explanation for

the seemingly arbitrary 256-byte chunk size.

The EADD / EEXTEND separation will not cause secu-

rity issues if enclaves are authored using the same tools

that build today’s dynamically loaded modules, which

appears to be the workflow targeted by the SGX design.

In this workflow, the tools that build enclaves can easily

identify the enclave data that needs to be measured.

It is correct and meaningful, from a security perspec-

tive, to have the message blocks provided by EEXTEND

to the hash function include the address of the 256-byte

chunk, in addition to the contents of the data. If the

address were not included, a malicious enclave loader

could mount the memory mapping attack described in

§ 3.7.2 and illustrated in Figure 54.

More specifically, the malicious loader would EADD

the errorOut page contents at the virtual address in-

tended for disclose, EADD the disclose page con-

tents at the virtual address intended for errorOut,

and then EEXTEND the pages in the wrong order. If

EEXTEND would not include the address of the data

chunk that is measured, the steps above would yield the

same measurement as the correctly constructed enclave.

The last aspect of EEXTEND worth analyzing is its

support for relocating enclaves. Similarly to EADD,

the virtual address measured by EEXTEND is relative

to the enclave’s BASEADDR. Furthermore, the only

SGX structure whose content is expected to be mea-

sured by EEXTEND is the TCS. The SGX design has

carefully used relative addresses for all the TCS fields

that represent enclave addresses, which are OENTRY,

OFSBASGX and OGSBASGX.

5.6.5 Measuring EINIT

The EINIT instruction (§ 5.3.3) concludes the enclave

building process. After EINIT is successfully invoked

on an enclave, the enclave’s contents are “sealed”, mean-

ing that the system software cannot use the EADD instruc-

tion to load code and data into the enclave, and cannot

use the EEXTEND instruction to update the enclave’s

measurement.

EINIT uses the SHA-2 finalization algorithm (§ 3.1.3)

on the MRENCLAVE field of the enclave’s SECS. Af-

ter EINIT, the field no longer stores the intermediate

state of the SHA-2 algorithm, and instead stores the final

output of the secure hash function. This value remains

constant after EINIT completes, and is included in the

attestation signature produced by the SGX software at-

testation process.

5.7 SGX Enclave Versioning Support

The software attestation model (§ 3.3) introduced by

the Trusted Platform Module (§ 4.4) relies on a mea-

surement (§ 5.6), which is essentially a content hash, to

identify the software inside a container. The downside

of using content hashes for identity is that there is no

relation between the identities of containers that hold

different versions of the same software.

In practice, it is highly desirable for systems based

on secure containers to handle software updates without

having access to the remote party in the initial software

attestation process. This entails having the ability to

migrate secrets between the container that has the old

version of the software and the container that has the

77

updated version. This requirement translates into a need

for a separate identity system that can recognize the

relationship between two versions of the same software.

SGX supports the migration of secrets between en-

claves that represent different versions of the same soft-

ware, as shown in Figure 75.

Enclave A

SECS

Enclave B

Non-volatile memory

Encrypted

Secret

Secret

Authenticated

Encryption

Authenticated

Decryption

Secret

Symmetric

Key

Secret

Key

SGX

EGETKEY

SGX

EGETKEY

SIGSTRUCT A

SGX EINIT

Certificate-Based Identity

SECS

SIGSTRUCT B

SGX EINIT

Certificate-Based Identity

Enclave A Identity

Figure 75: SGX has a certificate-based enclave identity scheme,

which can be used to migrate secrets between enclaves that contain

different versions of the same software module. Here, enclave A’s

secrets are migrated to enclave B.

The secret migration feature relies on a one-level cer-

tificate hierarchy (§ 3.2.1), where each enclave author

is a Certificate Authority, and each enclave receives a

certificate from its author. These certificates must be for-

matted as Signature Structures (SIGSTRUCT), which are

described in § 5.7.1. The information in these certificates

is the basis for an enclave identity scheme, presented in

§ 5.7.2, which can recognize the relationship between

different versions of the same software.

The EINIT instruction (§ 5.3.3) examines the target

enclave’s certificate and uses the information in it to pop-

ulate the SECS (§ 5.1.3) fields that describe the enclave’s

certificate-based identity. This process is summarized in

§ 5.7.4.

Last, the actual secret migration process is based on

the key derivation service implemented by the EGETKEY

instruction, which is described in § 5.7.5. The sending

enclave uses the EGETKEY instruction to obtain a sym-

metric key (§ 3.1.1) based on its identity, encrypts its

secrets with the key, and hands off the encrypted secrets

to the untrusted system software. The receiving enclave

passes the sending enclave’s identity to EGETKEY, ob-

tains the same symmetric key as above, and uses the key

to decrypt the secrets received from system software.

The symmetric key obtained from EGETKEY can be

used in conjunction with cryptographic primitives that

protect the confidentiality (§ 3.1.2) and integrity (§ 3.1.3)

of an enclave’s secrets while they are migrated to another

enclave by the untrusted system software. However, sym-

metric keys alone cannot be used to provide freshness

guarantees (§ 3.1), so secret migration is subject to re-

play attacks. This is acceptable when the secrets being

migrated are immutable, such as when the secrets are

encryption keys obtained via software attestation

5.7.1 Enclave Certificates

The SGX design requires each enclave to have a certifi-

cate issued by its author. This requirement is enforced by

EINIT (§ 5.3.3), which refuses to operate on enclaves

without valid certificates.

The SGX implementation consumes certificates for-

matted as Signature Structures (SIGSTRUCT), which are

intended to be generated by an enclave building toolchain,

as shown in Figure 76.

A SIGSTRUCT certificate consists of metadata fields,

the most interesting of which are presented in Table 19,

and an RSA signature that guarantees the authenticity

of the metadata, formatted as shown in Table 20. The

semantics of the fields will be revealed in the following

sections.

Field Bytes Description

ENCLAVEHASH 32 Must equal the

enclave’s measure-

ment (§ 5.6).

ISVPRODID 32 Differentiates mod-

ules signed by the

same private key.

ISVSVN 32 Differentiates ver-

sions of the same

module.

VENDOR 4 Differentiates Intel

enclaves.

ATTRIBUTES 16 Constrains the en-

clave’s attributes.

ATTRIBUTEMASK 16 Constrains the en-

clave’s attributes.

Table 19: A subset of the metadata fields in a SIGSTRUCT enclave

certificate

78

RFC

3447

Enclave Contents

SIGSTRUCT

MODULUS

Q2

SIGNATURE

RSA Signature

EXPONENT (3)

Q1

VENDOR

DATE

ENCLAVEHASH

ATTRIBUTEMASK

ISVSVN

ATTRIBUTES

ISVPRODID

Signed Fields

SGX

Measurement

Simulation

BASEADDR

SIZE

SECS

SSAFRAMESIZE

ATTRIBUTES

Other EPC

Pages

AND

Enclave Author’s

 Public RSA Key

Build Toolchain

Configuration 256-bit SHA-2

PKCS #1 v1.5

Padding

RSA

Exponentiation

Enclave Author’s

 Private RSA Key

zero (not Intel)

Figure 76: An enclave’s Signature Structure (SIGSTRUCT) is

intended to be generated by an enclave building toolchain that has

access to the enclave author’s private RSA key.

The enclave certificates must be signed by RSA signa-

tures (§ 3.1.3) that follow the method described in RFC

3447 [111], using 256-bit SHA-2 [21] as the hash func-

tion that reduces the input size, and the padding method

described in PKCS #1 v1.5 [112], which is illustrated in

Figure 45.

The SGX implementation only supports 3072-bit RSA

keys whose public exponent is 3. The key size is

likely chosen to meet FIPS’ recommendation [20], which

makes SGX eligible for use in U.S. government applica-

tions. The public exponent 3 affords a simplified signa-

ture verification algorithm, which is discussed in § 6.5.

The simplified algorithm also requires the fields Q1 and

Q2 in the RSA signature, which are also described in

§ 6.5.

5.7.2 Certificate-Based Enclave Identity

An enclave’s identity is determined by three fields in its

certificate (§ 5.7.1): the modulus of the RSA key used

Field Bytes Description

MODULUS 384 RSA key modulus

EXPONENT 4 RSA key public exponent

SIGNATURE 384 RSA signature (See § 6.5)

Q1 384 Simplifies RSA signature

verification. (See § 6.5)

Q2 384 Simplifies RSA signature

verification. (See § 6.5)

Table 20: The format of the RSA signature used in a SIGSTRUCT

enclave certificate

to sign the certificate (MODULUS), the enclave’s prod-

uct ID (ISVPRODID) and the security version number

(ISVSVN).

The public RSA key used to issue a certificate iden-

tifies the enclave’s author. All RSA keys used to issue

enclave certificates must have the public exponent set to

3, so they are only differentiated by their moduli. SGX

does not use the entire modulus of a key, but rather a

256-bit SHA-2 hash of the modulus. This is called a

signer measurement (MRSIGNER), to parallel the name

of enclave measurement (MRENCLAVE) for the SHA-2

hash that identifies an enclave’s contents.

The SGX implementation relies on a hard-coded MR-

SIGNER value to recognize certificates issued by Intel.

Enclaves that have an Intel-issued certificate can receive

additional privileges, which are discussed in § 5.8.

An enclave author can use the same RSA key to issue

certificates for enclaves that represent different software

modules. Each module is identified by a unique Product

ID (ISVPRODID) value. Conversely, all the enclaves

whose certificates have the same ISVPRODID and are

issued by the same RSA key (and therefore have the

same MRENCLAVE) are assumed to represent different

versions of the same software module. Enclaves whose

certificates are signed by different keys are always as-

sumed to contain different software modules.

Enclaves that represent different versions of a module

can have different security version numbers (SVN). The

SGX design disallows the migration of secrets from an

enclave with a higher SVN to an enclave with a lower

SVN. This restriction is intended to assist with the distri-

bution of security patches, as follows.

If a security vulnerability is discovered in an enclave,

the author can release a fixed version with a higher SVN.

As users upgrade, SGX will facilitate the migration of

secrets from the vulnerable version of the enclave to the

fixed version. Once a user’s secrets have migrated, the

SVN restrictions in SGX will deflect any attack based on

79

building the vulnerable enclave version and using it to

read the migrated secrets.

Software upgrades that add functionality should not be

accompanied by an SVN increase, as SGX allows secrets

to be migrated freely between enclaves with matching

SVN values. As explained above, a software module’s

SVN should only be incremented when a security vulner-

ability is found. SIGSTRUCT only allocates 2 bytes to

the ISVSVN field, which translates to 65,536 possible

SVN values. This space can be exhausted if a large team

(incorrectly) sets up a continuous build system to allocate

a new SVN for every software build that it produces, and

each code change triggers a build.

5.7.3 CPU Security Version Numbers

The SGX implementation itself has a security version

number (CPUSVN), which is used in the key derivation

process implemented [138] by EGETKEY, in addition to

the enclave’s identity information. CPUSVN is a 128-bit

value that, according to the SDM, reflects the processor’s

microcode update version.

The SDM does not describe the structure of CPUSVN,

but it states that comparing CPUSVN values using inte-

ger comparison is not meaningful, and that only some

CPUSVN values are valid. Furthermore, CPUSVNs

admit an ordering relationship that has the same seman-

tics as the ordering relationship between enclave SVNs.

Specifically, an SGX implementation will consider all

SGX implementations with lower SVNs to be compro-

mised due to security vulnerabilities, and will not trust

them.

An SGX patent [138] discloses that CPUSVN is a con-

catenation of small integers representing the SVNs of the

various components that make up SGX’s implementation.

This structure is consistent with all the statements made

in the SDM.

5.7.4 Establishing an Enclave’s Identity

When the EINIT (§ 5.3.3) instruction prepares an en-

clave for code execution, it also sets the SECS (§ 5.1.3)

fields that make up the enclave’s certificate-based iden-

tity, as shown in Figure 77.

EINIT requires the virtual address of the

SIGSTRUCT certificate issued to the enclave,

and uses the information in the certificate to initial-

ize the certificate-based identity information in the

enclave’s SECS. Before using the information in the

certificate, EINIT first verifies its RSA signature. The

SIGSTRUCT fields Q1 and Q2, along with the RSA

Enclave ContentsSIGSTRUCT

EXPONENT (3)

Q2

SIGNATURE

RSA Signature

MODULUS

Q1

VENDOR

ATTRIBUTES

ENCLAVEHASH

ISVSVN

ATTRIBUTEMASK

DATE

ISVPRODID

Signed Fields

256-bit SHA-2

PADDING

BASEADDR

SSAFRAMESIZE

SIZE

ATTRIBUTES

ISVPRODID

ISVSVN

SECS

MRSIGNER

MRENCLAVEMust be equal

AND

Must be equal

Other EPC

Pages

RSA Signature

Verification

Privileged attribute check

Intel’s

MRSIGNER

Equality check

Figure 77: EINIT verifies the RSA signature in the enclave’s

certificate. If the certificate is valid, the information in it is used to

populate the SECS fields that make up the enclave’s certificate-based

identity.

exponent 3, facilitate a simplified verification algorithm,

which is discussed in § 6.5.

If the SIGSTRUCT certificate is found to be properly

signed, EINIT follows the steps discussed in the fol-

lowing few paragraphs to ensure that the certificate was

issued to the enclave that is being initialized. Once the

checks have completed, EINIT computes MRSIGNER,

the 256-bit SHA-2 hash of the MODULUS field in the

SIGSTRUCT, and writes it into the enclave’s SECS.

EINIT also copies the ISVPRODID and ISVSVN fields

from SIGSTRUCT into the enclave’s SECS. As ex-

plained in § 5.7.2, these fields make up the enclave’s

certificate-based identity.

After verifying the RSA signature in SIGSTRUCT,

EINIT copies the signature’s padding into the

PADDING field in the enclave’s SECS. The PKCS #1

v1.5 padding scheme, outlined in Figure 45, does not

involve randomness, so PADDING should have the same

value for all enclaves.

EINIT performs a few checks to make sure that the

enclave undergoing initialization was indeed authorized

by the provided SIGSTRUCT certificate. The most obvi-

ous check involves making sure that the MRENCLAVE

value in SIGSTRUCT equals the enclave’s measurement,

which is stored in the MRENCLAVE field in the en-

clave’s SECS.

However, MRENCLAVE does not cover the enclave’s

80

attributes, which are stored in the ATTRIBUTES field

of the SECS. As discussed in § 5.6.2, omitting AT-

TRIBUTES from MRENCLAVE facilitates writing en-

claves that have optimized implementations that can use

architectural extensions when present, and also have fall-

back implementations that work on CPUs without the ex-

tensions. Such enclaves can execute correctly when built

with a variety of values in the XFRM (§ 5.2.2, § 5.2.5)

attribute. At the same time, allowing system software

to use arbitrary values in the ATTRIBUTES field would

compromise SGX’s security guarantees.

When an enclave uses software attestation (§ 3.3) to

gain access to secrets, the ATTRIBUTES value used

to build it is included in the SGX attestation signa-

ture (§ 5.8). This gives the remote party in the attestation

process the opportunity to reject an enclave built with

an undesirable ATTRIBUTES value. However, when se-

crets are obtained using the migration process facilitated

by certificate-based identities, there is no remote party

that can check the enclave’s attributes.

The SGX design solves this problem by having en-

clave authors convey the set of acceptable attribute

values for an enclave in the ATTRIBUTES and AT-

TRIBUTEMASK fields of the SIGSTRUCT certificate

issued for the enclave. EINIT will refuse to initialize

an enclave using a SIGSTRUCT if the bitwise AND be-

tween the ATTRIBUTES field in the enclave’s SECS

and the ATTRIBUTESMASK field in the SIGSTRUCT

does not equal the SIGSTRUCT’s ATTRIBUTES field.

This check prevents enclaves with undesirable attributes

from obtaining and potentially leaking secrets using the

migration process.

Any enclave author can use SIGSTRUCT to request

any of the bits in an enclave’s ATTRIBUTES field to

be zero. However, certain bits can only be set to one

for enclaves that are signed by Intel. EINIT has a

mask of restricted ATTRIBUTES bits, discussed in § 5.8.

The EINIT implementation contains a hard-coded MR-

SIGNER value that is used to identify Intel’s privileged

enclaves, and only allows privileged enclaves to be built

with an ATTRIBUTES value that matches any of the

bits in the restricted mask. This check is essential to the

security of the SGX software attestation process, which

is described in § 5.8.

Last, EINIT also inspects the VENDOR field in

SIGSTRUCT. The SDM description of the VENDOR

field in the section dedicated to SIGSTRUCT suggests

that the field is essentially used to distinguish between

special enclaves signed by Intel, which use a VENDOR

value of 0x8086, and everyone else’s enclaves, which

should use a VENDOR value of zero. However, the

EINIT pseudocode seems to imply that the SGX imple-

mentation only checks that VENDOR is either zero or

0x8086.

5.7.5 Enclave Key Derivation

SGX’s secret migration mechanism is based on the sym-

metric key derivation service that is offered to enclaves

by the EGETKEY instruction, illustrated in Figure 78.

Key Derivation Material

PADDING

SSAFRAME

SIZE

MRENCLAVE

ISVSVN

MRSIGNER

ATTRIBUTES

SIZE

BASEADDR

ISVPRODID

SECS

MRSIGNER

ISVSVN

KEYNAME

ATTRIBUTEMASK

CPUSVN

KEYREQUEST

KEYID

AND

01

zero

KEYPOLICY

MRSIGNER

MRENCLAVE

MRENCLAVE

MASKEDATTRIBUTES

ISVSVN

ISVPRODID CPUSVN

zero

KEYNAME

KEYID

Must be >=

Current

CPUSVN
Must be >=

01

AES-CMAC

Key Derivation

OWNEPOCH

OWNEREPOCH

SGX Register

SGX Master

Derivation Key

128-bit

symmetric key

SEAL_FUSES

SEAL_FUSES

PADDING

Figure 78: EGETKEY implements a key derivation service that is

primarily used by SGX’s secret migration feature. The key derivation

material is drawn from the SECS of the calling enclave, the informa-

tion in a Key Request structure, and secure storage inside the CPU’s

hardware.

The keys produced by EGETKEY are derived based on

the identity information in the current enclave’s SECS

and on two secrets stored in secure hardware inside the

SGX-enabled processor. One of the secrets is the input

to a largely undocumented series of transformations that

yields the symmetric key for the cryptographic primitive

underlying the key derivation process. The other secret,

referred to as the CR SEAL FUSES in the SDM, is one

of the pieces of information used in the key derivation

material.

The SDM does not specify the key derivation algo-

rithm, but the SGX patents [110, 138] disclose that the

81

keys are derived using the method described in FIPS

SP 800-108 [34] using AES-CMAC [46] as a Pseudo-

Random Function (PRF). The same patents state that the

secrets used for key derivation are stored in the CPU’s

e-fuses, which is confirmed by the ISCA 2015 SGX tuto-

rial [103].

This additional information implies that all EGETKEY

invocations that use the same key derivation material will

result in the same key, even across CPU power cycles.

Furthermore, it is impossible for an adversary to obtain

the key produced from a specific key derivation material

without access to the secret stored in the CPU’s e-fuses.

SGX’s key hierarchy is further described in § 5.8.2.

The following paragraphs discuss the pieces of data

used in the key derivation material, which are selected

by the Key Request (KEYREQUEST) structure shown

in in Table 21,

Field Bytes Description

KEYNAME 2 The desired key

type; secret mi-

gration uses Seal

keys

KEYPOLICY 2 The identity informa-

tion (MRENCLAVE

and/or MRSIGNER)

ISVSVN 2 The enclave SVN

used in derivation

CPUSVN 16 SGX implementa-

tion SVN used in

derivation

ATTRIBUTEMASK 16 Selects enclave at-

tributes

KEYID 32 Random bytes

Table 21: A subset of the fields in the KEYREQUEST structure

The KEYNAME field in KEYREQUEST always par-

ticipates in the key generation material. It indicates the

type of the key to be generated. While the SGX design

defines a few key types, the secret migration feature al-

ways uses Seal keys. The other key types are used by the

SGX software attestation process, which will be outlined

in § 5.8.

The KEYPOLICY field in KEYREQUEST has two

flags that indicate if the MRENCLAVE and MRSIGNER

fields in the enclave’s SECS will be used for key deriva-

tion. Although the fields admits 4 values, only two seem

to make sense, as argued below.

Setting the MRENCLAVE flag in KEYPOLICY ties

the derived key to the current enclave’s measurement,

which reflects its contents. No other enclave will be able

to obtain the same key. This is useful when the derived

key is used to encrypt enclave secrets so they can be

stored by system software in non-volatile memory, and

thus survive power cycles.

If the MRSIGNER flag in KEYPOLICY is set, the

derived key is tied to the public RSA key that issued

the enclave’s certificate. Therefore, other enclaves is-

sued by the same author may be able to obtain the same

key, subject to the restrictions below. This is the only

KEYPOLICY value that allows for secret migration.

It makes little sense to have no flag set in KEYPOL-

ICY. In this case, the derived key has no useful security

property, as it can be obtained by other enclaves that are

completely unrelated to the enclave invoking EGETKEY.

Conversely, setting both flags is redundant, as setting

MRENCLAVE alone will cause the derived key to be

tied to the current enclave, which is the strictest possible

policy.

The KEYREQUEST structure specifies the enclave

SVN (ISVSVN, § 5.7.2) and SGX implementation

SVN (CPUSVN, § 5.7.3) that will be used in the key

derivation process. However, EGETKEY will reject the

derivation request and produce an error code if the de-

sired enclave SVN is greater than the current enclave’s

SVN, or if the desired SGX implementation’s SVN is

greater than the current implementation’s SVN.

The SVN restrictions prevent the migration of secrets

from enclaves with higher SVNs to enclaves with lower

SVNs, or from SGX implementations with higher SVNs

to implementations with lower SVNs. § 5.7.2 argues that

the SVN restrictions can reduce the impact of security

vulnerabilities in enclaves and in SGX’s implementation.

EGETKEY always uses the ISVPRODID value from

the current enclave’s SECS for key derivation. It fol-

lows that secrets can never flow between enclaves whose

SIGSTRUCT certificates assign them different Product

IDs.

Similarly, the key derivation material always includes

the value of an 128-bit Owner Epoch (OWNEREPOCH)

SGX configuration register. This register is intended to

be set by the computer’s firmware to a secret generated

once and stored in non-volatile memory. Before the

computer changes ownership, the old owner can clear

the OWNEREPOCH from non-volatile memory, making

it impossible for the new owner to decrypt any enclave

secrets that may be left on the computer.

Due to the cryptographic properties of the key deriva-

tion process, outside observers cannot correlate keys

82

derived using different OWNEREPOCH values. This

makes it impossible for software developers to use the

EGETKEY-derived keys described in this section to track

a processor as it changes owners.

The EGETKEY derivation material also includes a 256-

bit value supplied by the enclave, in the KEYID field.

This makes it possible for an enclave to generate a col-

lection of keys from EGETKEY, instead of a single key.

The SDM states that KEYID should be populated with

a random number, and is intended to help prevent key

wear-out.

Last, the key derivation material includes the bitwise

AND of the ATTRIBUTES (§ 5.2.2) field in the enclave’s

SECS and the ATTRIBUTESMASK field in the KEYRE-

QUEST structure. The mask has the effect of removing

some of the ATTRIBUTES bits from the key derivation

material, making it possible to migrate secrets between

enclaves with different attributes. § 5.6.2 and § 5.7.4

explain the need for this feature, as well as its security

implications.

Before adding the masked attributes value to the

key generation material, the EGETKEY implementation

forces the mask bits corresponding to the INIT and DE-

BUG attributes (§ 5.2.2) to be set. From a practical

standpoint, this means that secrets will never be migrated

between enclaves that support debugging and production

enclaves.

Without this restriction, it would be unsafe for an en-

clave author to use the same RSA key to issue certificates

to both debugging and production enclaves. Debugging

enclaves receive no integrity guarantees from SGX, so

it is possible for an attacker to modify the code inside a

debugging enclave in a way that causes it to disclose any

secrets that it has access to.

5.8 SGX Software Attestation

The software attestation scheme implemented by SGX

follows the principles outlined in § 3.3. An SGX-enabled

processor computes a measurement of the code and data

that is loaded in each enclave, which is similar to the mea-

surement computed by the TPM (§ 4.4). The software

inside an enclave can start a process that results in an

SGX attestation signature, which includes the enclave’s

measurement and an enclave message.

The cryptographic primitive used in SGX’s attestation

signature is too complex to be implemented in hardware,

so the signing process is performed by a privileged Quot-

ing Enclave, which is issued by Intel, and can access the

SGX attestation key. This enclave is discussed in § 5.8.2.

(Licensing)

Enclave Launch

Software Attestation

Enclave

Loading

Launch

Policy

Enclave

Authoring

Enclave Environment

Enclave

Contents

Compiler

Linker

Source

Files

Enclave

Runtime
Enclave Author

Public Key

Enclave Author

Private Key

Enclave Build

Toolchain

SIGSTRUCT

SGX Launch

Enclave

EINITTOKEN

SGX EINIT

SGX ECREATE

SGX EADD

SGX EEXTEND

MRENCLAVE

SGX EREPORT

REPORT

INITIALIZED

SGX Quoting

Enclave

Attestation

Signature

Attestation

Challenge

MRSIGNER

Figure 79: Setting up an SGX enclave and undergoing the soft-

ware attestation process involves the SGX instructions EINIT and

EREPORT, and two special enclaves authored by Intel, the SGX

Launch Enclave and the SGX Quoting Enclave.

Pushing the signing functionality into the Quoting

Enclave creates the need for a secure communication

path between an enclave undergoing software attestation

and the Quoting Enclave. The SGX design solves this

problem with a local attestation mechanism that can be

used by an enclave to prove its identity to any other

enclave hosted by the same SGX-enabled CPU. This

scheme, described in § 5.8.1, is implemented by the

EREPORT instruction.

The SGX attestation key used by the Quoting Enclave

does not exist at the time SGX-enabled processors leave

the factory. The attestation key is provisioned later, using

a process that involves a Provisioning Enclave issued by

Intel, and two special EGETKEY (§ 5.7.5) key types. The

publicly available details of this process are summarized

in § 5.8.2.

The SGX Launch Enclave and EINITTOKEN struc-

ture will be discussed in § 5.9.

83

5.8.1 Local Attestation

An enclave proves its identity to another target enclave

via the EREPORT instruction shown in Figure 80. The

SGX instruction produces an attestation Report (RE-

PORT) that cryptographically binds a message sup-

plied by the enclave with the enclave’s measurement-

based (§ 5.6) and certificate-based (§ 5.7.2) identities.

The cryptographic binding is accomplished by a MAC

tag (§ 3.1.3) computed using a symmetric key that is

only shared between the target enclave and the SGX

implementation.

MAC

EREPORT

KEYID

CPUSVN

ATTRIBUTES

MRENCLAVE

ISVPRODID

MACed Fields

MRSIGNER

ISVSVN

REPORTDATA

ATTRIBUTES

TARGETINFO

MEASUREMENT

BASEADDR

ISVSVN

MRSIGNER

MRENCLAVE

SSAFRAMESIZE

ATTRIBUTES

SIZE

ISVPRODID

SECS

CR_EREPORT_KEYID

Input Register File

RDX

RBX

RCX

REPORTDATA

Key Derivation Material

zero MRENCLAVE

MASKEDATTRIBUTES

zero

zero CPUSVNKEYNAME

KEYID

AES-CMAC

Key Derivation

OWNEPOCH

OWNEREPOCH

SGX Register

SGX Master

Derivation Key

128-bit

Report key

Current

CPUSVN

Report Key

AES-CMAC

PADDING

Hard-coded PKCS

#1 v1.5 Padding

SEAL_FUSES

SEAL_FUSES

Figure 80: EREPORT data flow

The EREPORT instruction reads the current enclave’s

identity information from the enclave’s SECS (§ 5.1.3),

and uses it to populate the REPORT structure. Specifi-

cally, EREPORT copies the SECS fields indicating the en-

clave’s measurement (MRENCLAVE), certificate-based

identity (MRSIGNER, ISVPRODID, ISVSVN), and at-

tributes (ATTRIBUTES). The attestation report also in-

cludes the SVN of the SGX implementation (CPUSVN)

and a 64-byte (512-bit) message supplied by the enclave.

The target enclave that receives the attestation re-

port can convince itself of the report’s authenticity as

shown in Figure 81. The report’s authenticity proof

is its MAC tag. The key required to verify the MAC

can only be obtained by the target enclave, by asking

EGETKEY (§ 5.7.5) to derive a Report key. The SDM

states that the MAC tag is computed using a block cipher-

based MAC (CMAC, [46]), but stops short of specifying

the underlying cipher. One of the SGX papers [14] states

that the CMAC is based on 128-bit AES.

The Report key returned by EGETKEY is derived from

a secret embedded in the processor (§ 5.7.5), and the

key material includes the target enclave’s measurement.

The target enclave can be assured that the MAC tag in

the report was produced by the SGX implementation,

for the following reasons. The cryptographic properties

of the underlying key derivation and MAC algorithms

ensure that only the SGX implementation can produce

the MAC tag, as it is the only entity that can access

the processor’s secret, and it would be impossible for

an attacker to derive the Report key without knowing

the processor’s secret. The SGX design guarantees that

the key produced by EGETKEY depends on the calling

enclave’s measurement, so only the target enclave can

obtain the key used to produce the MAC tag in the report.

EREPORT uses the same key derivation process as

EGETKEY does when invoked with KEYNAME set to

the value associated with Report keys. For this rea-

son, EREPORT requires the virtual address of a Report

Target Info (TARGETINFO) structure that contains the

measurement-based identity and attributes of the target

enclave.

When deriving a Report key, EGETKEY behaves

slightly differently than it does in the case of seal keys,

as shown in Figure 81. The key generation material

never includes the fields corresponding to the enclave’s

certificate-based identity (MRSIGNER, ISVPRODID,

ISVSVN), and the KEYPOLICY field in the KEYRE-

QUEST structure is ignored. It follows that the report

can only be verified by the target enclave.

Furthermore, the SGX implementation’s

SVN (CPUSVN) value used for key generation is

determined by the current CPUSVN, instead of being

read from the Key Request structure. Therefore, SGX

implementation upgrades that increase the CPUSVN

84

EGETKEY

Key Derivation Material

ATTRIBUTES

SSAFRAME

SIZE

MRENCLAVE

ISVSVN

MRSIGNER

PADDING

SIZE

BASEADDR

ISVPRODID

SECS

zero

ISVSVN

KEYNAME

ATTRIBUTEMASK

CPUSVN

KEYREQUEST

KEYID

KEYPOLICY

MRSIGNER

MRENCLAVE

MRENCLAVE

MASKEDATTRIBUTES

zeroPADDING

CPUSVNKEYNAME

KEYID

Current

CPUSVN

AES-CMAC

Key Derivation

OWNEPOCH

OWNEREPOCH

SGX Register

SGX Master

Derivation Key

128-bit

Report key

MAC

EREPORT

KEYID

CPUSVN

ATTRIBUTES

MRENCLAVE

ISVPRODID

MACed Fields

MRSIGNER

ISVSVN

REPORTDATA

AES-CMAC

Equal?

Trust Report

Reject Report

Yes

No

Report Key

SEAL_FUSES

SEAL_FUSES

zero

Figure 81: The authenticity of the REPORT structure created by

EREPORT can and should be verified by the report’s target enclave.

The target’s code uses EGETKEY to obtain the key used for the MAC

tag embedded in the REPORT structure, and then verifies the tag.

invalidate all outstanding reports. Given that CPUSVN

increases are associated with security fixes, the argument

in § 5.7.2 suggests that this restriction may reduce the

impact of vulnerabilities in the SGX implementation.

Last, EREPORT sets the KEYID field in the key gen-

eration material to the contents of an SGX configuration

register (CR REPORT KEYID) that is initialized with

a random value when SGX is initialized. The KEYID

value is also saved in the attestation report, but it is not

covered by the MAC tag.

5.8.2 Remote Attestation

The SDM paints a complete picture of the local attesta-

tion mechanism that was described in § 5.8.1. The remote

attestation process, which includes the Quoting Enclave

and the underlying keys, is covered at a high level in an

Intel publication [109]. This section’s contents is based

on the SDM, on one [14] of the SGX papers, and on the

ISCA 2015 SGX tutorial [103].

SGX’s software attestation scheme, which is illus-

trated in Figure 82, relies on a key generation facility and

on a provisioning service, both operated by Intel.

CPU e-fuses

Provisioning

Enclave

Provisioning

Secret

Seal

Secret

Intel

Key Generation

Facility

Intel

Provisioning

Service

Provisioned

Keys

Proof of

Provisioning Key

ownership

Attestation Key

Provisioning

Key

Attestation

Key

Provisioning

Seal Key

Authenticated

Encryption

Quoting Enclave

Attestation

Key

Provisioning

Seal Key

Authenticated

Encryption

Encrypted

Attestation Key

Attested Enclave

Remote

Party in

Software

Attestation

Key Agreement

Message 1

EREPORT

Key Agreement

Message 2

Report Data

Challenge

Report

Attestation

Signature

Reporting

Key

Report

Verification

Response

Figure 82: SGX’s software attestation is based on two secrets stored

in e-fuses inside the processor’s die, and on a key received from

Intel’s provisioning service.

During the manufacturing process, an SGX-enabled

processor communicates with Intel’s key generation fa-

cility, and has two secrets burned into e-fuses, which

are a one-time programmable storage medium that can

85

be economically included on a high-performance chip’s

die. We shall refer to the secrets stored in e-fuses as the

Provisioning Secret and the Seal Secret.

The Provisioning Secret is the main input to a largely

undocumented process that outputs the SGX master

derivation key used by EGETKEY, which was referenced

in Figures 78, 79, 80, and 81.

The Seal Secret is not exposed to software by any of

the architectural mechanisms documented in the SDM.

The secret is only accessed when it is included in the

material used by the key derivation process implemented

by EGETKEY (§ 5.7.5). The pseudocode in the SDM

uses the CR SEAL FUSES register name to refer to the

Seal Secret.

The names “Seal Secret” and “Provisioning Secret”

deviate from Intel’s official documents, which confus-

ingly use the “Seal Key” and “Provisioning Key” names

to refer to both secrets stored in e-fuses and keys derived

by EGETKEY.

The SDM briefly describes the keys produced by

EGETKEY, but no official documentation explicitly de-

scribes the secrets in e-fuses. The description below is

is the only interpretation of all the public information

sources that is consistent with all the SDM’s statements

about key derivation.

The Provisioning Secret is generated at the key gener-

ation facility, where it is burned into the processor’s e-

fuses and stored in the database used by Intel’s provision-

ing service. The Seal Secret is generated inside the pro-

cessor chip, and therefore is not known to Intel. This ap-

proach has the benefit that an attacker who compromises

Intel’s facilities cannot derive most keys produced by

EGETKEY, even if the attacker also compromises a vic-

tim’s firmware and obtains the OWNEREPOCH (§ 5.7.5)

value. These keys include the Seal keys (§ 5.7.5) and

Report keys (§ 5.8.1) introduced in previous sections.

The only documented exception to the reasoning above

is the Provisioning key, which is effectively a shared se-

cret between the SGX-enabled processor and Intel’s pro-

visioning service. Intel has to be able to derive this key,

so the derivation material does not include the Seal Secret

or the OWNEREPOCH value, as shown in Figure 83.

EGETKEY derives the Provisioning key using the cur-

rent enclave’s certificate-based identity (MRSIGNER,

ISVPRODID, ISVSVN) and the SGX implementation’s

SVN (CPUSVN). This approach has a few desirable se-

curity properties. First, Intel’s provisioning service can

be assured that it is authenticating a Provisioning Enclave

signed by Intel. Second, the provisioning service can use

Key Derivation Material

PADDING

SSAFRAME

SIZE

MRENCLAVE

ISVSVN

MRSIGNER

ATTRIBUTES

SIZE

BASEADDR

ISVPRODID

SECS

MRSIGNER

ISVSVN

KEYNAME

ATTRIBUTEMASK

CPUSVN

KEYREQUEST

KEYID

AND

KEYPOLICY

MRSIGNER

MRENCLAVE

zero

MASKEDATTRIBUTES

ISVSVN

ISVPRODID CPUSVNKEYNAME

zero

Must be >=

Current

CPUSVN
Must be >=

AES-CMAC

Key Derivation

zero

SGX Master

Derivation Key

128-bit

Provisioning Key

zero

PADDING

Provisioning Key

PROVISIONKEY

must be true

Figure 83: When EGETKEY is asked to derive a Provisioning key,

it does not use the Seal Secret or OWNEREPOCH. The Provisioning

key does, however, depend on MRSIGNER and on the SVN of the

SGX implementation.

the CPUSVN value to reject SGX implementations with

known security vulnerabilities. Third, this design admits

multiple mutually distrusting provisioning services.

EGETKEY only derives Provisioning keys for enclaves

whose PROVISIONKEY attribute is set to true. § 5.9.3

argues that this mechanism is sufficient to protect the

computer owner from a malicious software provider that

attempts to use Provisioning keys to track a CPU chip

across OWNEREPOCH changes.

After the Provisioning Enclave obtains a Provision-

ing key, it uses the key to authenticate itself to Intel’s

provisioning service. Once the provisioning service is

convinced that it is communicating to a trusted Provi-

sioning enclave in the secure environment provided by

a SGX-enabled processor, the service generates an At-

testation Key and sends it to the Provisioning Enclave.

The enclave then encrypts the Attestation Key using a

Provisioning Seal key, and hands off the encrypted key

to the system software for storage.

Provisioning Seal keys, are the last publicly docu-

mented type of special keys derived by EGETKEY, using

the process illustrated in Figure 84. As their name sug-

gests, Provisioning Seal keys are conceptually similar to

86

the Seal Keys (§ 5.7.5) used to migrate secrets between

enclaves.

Key Derivation Material

PADDING

SSAFRAME

SIZE

MRENCLAVE

ISVSVN

MRSIGNER

ATTRIBUTES

SIZE

BASEADDR

ISVPRODID

SECS

MRSIGNER

ISVSVN

KEYNAME

ATTRIBUTEMASK

CPUSVN

KEYREQUEST

KEYID

AND

KEYPOLICY

MRSIGNER

MRENCLAVE

zero

MASKEDATTRIBUTES

ISVSVN

ISVPRODID CPUSVNKEYNAME

zero

Must be >=

Current

CPUSVN
Must be >=

AES-CMAC

Key Derivation

zero

SGX Master

Derivation Key

128-bit

Provisioning

Seal key

SEAL_FUSES

SEAL_FUSES

PADDING

Provisioning Seal Key

Figure 84: The derivation material used to produce Provisioning

Seal keys does not include the OWNEREPOCH value, so the keys

survive computer ownership changes.

The defining feature of Provisioning Seal keys is that

they are not based on the OWNEREPOCH value, so they

survive computer ownership changes. Since Provisioning

Seal keys can be used to track a CPU chip, their use is

gated on the PROVISIONKEY attribute, which has the

same semantics as for Provisioning keys.

Like Provisioning keys, Seal keys are based on the

current enclave’s certificate-based identity (MRSIGNER,

ISVPROD, ISVSVN), so the Attestation Key encrypted

by Intel’s Provisioning Enclave can only be decrypted

by another enclave signed with the same Intel RSA key.

However, unlike Provisioning keys, the Provisioning Seal

keys are based on the Seal Secret in the processor’s e-

fuses, so they cannot be derived by Intel.

When considered independently from the rest of the

SGX design, Provisioning Seal keys have desirable se-

curity properties. The main benefit of these keys is that

when a computer with an SGX-enabled processor ex-

changes owners, it does not need to undergo the provi-

sioning process again, so Intel does not need to be aware

of the ownership change. The confidentiality issue that

stems from not using OWNEREPOCH was already intro-

duced by Provisioning keys, and is mitigated using the

access control scheme based on the PROVISIONKEY

attribute that will be discussed in § 5.9.3.

Similarly to the Seal key derivation process, both the

Provisioning and Provisioning Seal keys depend on the

bitwise AND of the ATTRIBUTES (§ 5.2.2) field in the

enclave’s SECS and the ATTRIBUTESMASK field in

the KEYREQUEST structure. While most attributes can

be masked away, the DEBUG and INIT attributes are

always used for key derivation.

This dependency makes it safe for Intel to use its pro-

duction RSA key to issue certificates for Provisioning

or Quoting Enclaves with debugging features enabled.

Without the forced dependency on the DEBUG attribute,

using the production Intel signing key on a single de-

bug Provisioning or Quoting Enclave could invalidate

SGX’s security guarantees on all the CPU chips whose

attestation-related enclaves are signed by the same key.

Concretely, if the issued SIGSTRUCT would be leaked,

any attacker could build a debugging Provisioning or

Quoting enclave, use the SGX debugging features to

modify the code inside it, and extract the 128-bit Pro-

visioning key used to authenticated the CPU to Intel’s

provisioning service.

After the provisioning steps above have been com-

pleted, the Quoting Enclave can be invoked to perform

SGX’s software attestation. This enclave receives lo-

cal attestation reports (§ 5.8.1) and verifies them using

the Report keys generated by EGETKEY. The Quoting

Enclave then obtains the Provisioning Seal Key from

EGETKEY and uses it to decrypt the Attestation Key,

which is received from system software. Last, the en-

clave replaces the MAC in the local attestation report

with an Attestation Signature produced with the Attesta-

tion Key.

The SGX patents state that the name “Quoting Enclave”

was chosen as a reference to the TPM (§ 4.4)’s quoting

feature, which is used to perform software attestation on

a TPM-based system.

The Attestation Key uses Intel’s Enhanced Privacy

ID (EPID) cryptosystem [26], which is a group signature

scheme that is intended to preserve the anonymity of the

signers. Intel’s key provisioning service is the issuer in

the EPID scheme, so it publishes the Group Public Key,

while securely storing the Master Issuing Key. After a

Provisioning Enclave authenticates itself to the provision-

ing service, it generates an EPID Member Private Key,

which serves as the Attestation Key, and executes the

87

EPID Join protocol to join the group. Later, the Quoting

Enclave uses the EPID Member Private Key to produce

Attestation Signatures.

The Provisioning Secret stored in the e-fuses of each

SGX-enabled processor can be used by Intel to trace

individual chips when a Provisioning Enclave authen-

ticates itself to the provisioning service. However, if

the EPID Join protocol is blinded, Intel’s provisioning

service cannot trace an Attestation Signature to a spe-

cific Attestation Key, so Intel cannot trace Attestation

Signatures to individual chips.

Of course, the security properties of the description

above hinge on the correctness of the proofs behind the

EPID scheme. Analyzing the correctness of such cryp-

tographic schemes is beyond the scope of this work, so

we defer the analysis of EPID to the crypto research

community.

5.9 SGX Enclave Launch Control

The SGX design includes a launch control process,

which introduces an unnecessary approval step that is

required before running most enclaves on a computer.

The approval decision is made by the Launch Enclave

(LE), which is an enclave issued by Intel that gets to

approve every other enclave before it is initialized by

EINIT (§ 5.3.3). The officially documented information

about this approval process is discussed in § 5.9.1.

The SGX patents [110, 138] disclose in no uncertain

terms that the Launch Enclave was introduced to ensure

that each enclave’s author has a business relationship

with Intel, and implements a software licensing system.

§ 5.9.2 briefly discusses the implications, should this turn

out to be true.

The remainder of the section argues that the Launch

Enclave should be removed from the SGX design. § 5.9.3

explains that the LE is not required to enforce the com-

puter owner’s launch control policy, and concludes that

the LE is only meaningful if it enforces a policy that is

detrimental to the computer owner. § 5.9.4 debunks the

myth that an enclave can host malware, which is likely to

be used to justify the LE. § 5.9.5 argues that Anti-Virus

(AV) software is not fundamentally incompatible with

enclaves, further disproving the theory that Intel needs

to actively police the software that runs inside enclaves.

5.9.1 Enclave Attributes Access Control

The SGX design requires that all enclaves be vetted by a

Launch Enclave (LE), which is only briefly mentioned

in Intel’s official documentation. Neither its behavior

nor its interface with the system software is specified.

We speculate that Intel has not been forthcoming about

the LE because of its role in enforcing software licens-

ing, which will be discussed in § 5.9.2. This section

abstracts away the licensing aspect and assumes that the

LE enforces a black-box Launch Control Policy.

The LE approves an enclave by issuing an EINIT

Token (EINITTOKEN), using the process illustrated

in Figure 85. The EINITTOKEN structure contains

the approved enclave’s measurement-based (§ 5.6) and

certificate-based (§ 5.7.2) identities, just like a local at-

testation REPORT (§ 5.8.1). This token is inspected by

EINIT (§ 5.3.3), which refuses to initialize enclaves

with incorrect tokens.

While an EINIT token is handled by untrusted system

software, its integrity is protected by a MAC tag (§ 3.1.3)

that is computed using a Launch Key obtained from

EGETKEY. The EINIT implementation follows the

same key derivation process as EGETKEY to convince

itself that the EINITTOKEN provided to it was indeed

generated by an LE that had access to the Launch Key.

The SDM does not document the MAC algorithm

used to confer integrity guarantees to the EINITTOKEN

structure. However, the EINIT pseudocode verifies the

token’s MAC tag using the same function that the ERE-

PORT pseudocode uses to create the REPORT structure’s

MAC tag. It follows that the reasoning in § 5.8.1 can

be reused to conclude that EINITTOKEN structures are

MACed using AES-CMAC with 128-bit keys.

The EGETKEY instruction only derives the Launch

Key for enclaves that have the LAUNCHKEY attribute

set to true. The Launch Key is derived using the same

process as the Seal Key (§ 5.7.5). The derivation mate-

rial includes the current enclave’s versioning information

(ISVPRODID and ISVSVN) but it does not include the

main fields that convey an enclave’s identity, which are

MRSIGNER and MRENCLAVE. The rest of the deriva-

tion material follows the same rules as the material used

for Seal Keys.

The EINITTTOKEN structure contains the identi-

ties of the approved enclave (MRENCLAVE and MR-

SIGNER) and the approved enclave attributes (AT-

TRIBUTES). The token also includes the information

used for the Launch Key derivation, which includes the

LE’s Product ID (ISVPRODIDLE), SVN (ISVSVNLE),

and the bitwise AND between the LE’s ATTRIBUTES

and the ATTRIBUTEMASK used in the KEYREQUEST

(MASKEDATTRIBUTESLE).

The EINITTOKEN information used to derive the

Launch Key can also be used by EINIT for damage

88

EGETKEY

MASKED

ATTRIBUTESLE

ISVPRODIDLE

CPUSVNLE

KEYID

ISVSVNLE

MAC

EINITTOKEN

VALID

MRSIGNER

MRENCLAVE

MACed Fields

ATTRIBUTES

Vetted Enclave

SIGSTRUCT

EXPONENT (3)

Q2

SIGNATURE

RSA Signature

MODULUS

Q1

VENDOR

ENCLAVEHASH

ATTRIBUTES

DATE

ISVSVN

ATTRIBUTEMASK

ISVPRODID

Signed Fields

256-bit

SHA-2

RDRAND

1

Signed by Enclave

Author’s RSA Key

Desired ATTRIBUTES

PADDING

ATTRIBUTES

BASEADDR

ISVSVN

MRSIGNER

MRENCLAVE

SSAFRAMESIZE

SIZE

ISVPRODID

Launch Enclave

SECS

ISVSVN

KEYNAME

ATTRIBUTEMASK

CPUSVN

KEYREQUEST

KEYID

KEYPOLICY

MRSIGNER

MRENCLAVE

Current

CPUSVN
Must be >=

AND

Launch

Control

Policy

Checks

Key Derivation Material

zero zero

MASKEDATTRIBUTES

ISVSVN

ISVPRODID CPUSVNKEYNAME

KEYID

AES-CMAC

Key Derivation

OWNEPOCH

OWNEREPOCH

SGX Register

SGX Master

Derivation Key

128-bit

Launch Key

Launch Key

AND

AES-CMAC

Must be >=

PADDING

SEAL_FUSES

SEAL_FUSES

Figure 85: The SGX Launch Enclave computes the EINITTOKEN.

control, e.g. to reject tokens issued by Launch Enclaves

with known security vulnerabilities. The reference pseu-

docode supplied in the SDM states that EINIT checks

the DEBUG bit in the MASKEDATTRIBUTESLE field,

and will not initialize a production enclave using a to-

ken issued by a debugging LE. It is worth noting that

MASKEDATTRIBUTESLE is guaranteed to include

the LE’s DEBUG attribute, because EGETKEY forces

the DEBUG attribute’s bit in the attributes mask to 1

(§ 5.7.5).

The check described above make it safe for Intel to

supply SGX enclave developers with a debugging LE that

has its DEBUG attribute set, and performs minimal or

no security checks before issuing an EINITTOKEN. The

DEBUG attribute disables SGX’s integrity protection,

so the only purpose of the security checks performed in

the debug LE would be to help enclave development by

mimicking its production counterpart. The debugging LE

can only be used to launch any enclave with the DEBUG

attribute set, so it does not undermining Intel’s ability to

enforce a Launch Control Policy on production enclaves.

The enclave attributes access control system described

above relies on the LE to reject initialization requests

that set privileged attributes such as PROVISIONKEY

on unauthorized enclaves. However, the LE cannot vet

itself, as there will be no LE available when the LE itself

needs to be initialized. Therefore, the Launch Key access

restrictions are implemented in hardware.

EINIT accepts an EINITTOKEN whose VALID bit is

set to zero, if the enclave’s MRSIGNER (§ 5.7.1) equals

a hard-coded value that corresponds to an Intel public

key. For all other enclave authors, an invalid EINIT token

causes EINIT to reject the enclave and produce an error

code.

This exemption to the token verification policy pro-

vides a way to bootstrap the enclave attributes access

control system, namely using a zeroed out EINITTO-

KEN to initialize the Launch Enclave. At the same time,

the cryptographic primitives behind the MRSIGNER

check guarantee that only Intel-provided enclaves will

be able to bypass the attribute checks. This does not

change SGX’s security properties because Intel is already

a trusted party, as it is responsible for generating the Pro-

visioning Keys and Attestation Keys used by software

attestation (§ 5.8.2).

Curiously, the EINIT pseudocode in the SDM states

that the instruction enforces an additional restriction,

which is that all enclaves with the LAUNCHKEY at-

tribute must have its certificate issued by the same Intel

public key that is used to bypass the EINITTTOKEN

checks. This restriction appears to be redundant, as the

same restriction could be enforced in the Launch En-

clave.

5.9.2 Licensing

The SGX patents [110, 138] disclose that EINIT To-

kens and the Launch Enclave (§ 5.9.1) were introduced

to verify that the SIGSTRUCT certificates associated

89

with production enclaves are issued by enclave authors

who have a business relationship with Intel. In other

words, the Launch Enclave is intended to be an enclave

licensing mechanism that allows Intel to force itself

as an intermediary in the distribution of all enclave

software.

The SGX patents are likely to represent an early ver-

sion of the SGX design, due to the lengthy timelines

associated with patent application approval. In light of

this consideration, we cannot make any claims about In-

tel’s current plans. However, given that we know for sure

that Intel considered enclave licensing at some point, we

briefly discuss the implications of implementing such a

licensing plan.

Intel has a near-monopoly on desktop and server-class

processors, and being able to decide which software ven-

dors are allowed to use SGX can effectively put Intel in

a position to decide winners and losers in many software

markets.

Assuming SGX reaches widespread adoption, this is-

sue is the software security equivalent to the Net Neutral-

ity debates that have pitted the software industry against

telecommunication giants. Given that virtually all com-

petent software development companies have argued that

losing Net Neutrality will stifle innovation, it is fairly

safe to assume that Intel’s ability to regulate access to

SGX will also stifle innovation.

Furthermore, from a historical perspective, the enclave

licensing scheme described in the SGX patents is very

similar to Verified Boot, which was briefly discussed

in § 4.4. Verified Boot has mostly received negative

reactions from software developers, so it is likely that

an enclave licensing scheme would meet the same fate,

should the developer community become aware of it.

5.9.3 System Software Can Enforce a Launch Policy

§ 5.3 explains that the SGX instructions used to load and

initialize enclaves (ECREATE, EADD, EINIT) can only

be issued by privileged system software, because they

manage the EPC, which is a system resource.

A consequence on the restriction that only privileged

software can issue ECREATE and EADD instructions is

that the system software is able to track all the public

contents that is loaded into each enclave. The privilege

requirements of EINIT mean that the system software

can also examine each enclave’s SIGSTRUCT. It follows

that the system software has access to a superset of the

information that the Launch Enclave might use.

Furtheremore, EINIT’s privileged instruction status

means that the system software can perform its own

policy checks before allowing application software to

initialize an enclave. So, the system software can enforce

a Launch Control Policy set by the computer’s owner.

For example, an IaaS cloud service provider may use its

hypervisor to implement a Launch Control Policy that

limits what enclaves its customers are allowed to execute.

Given that the system software has access to a superset

of the information that the Launch Enclave might use,

it is easy to see that the set of policies that can be en-

forced by system software is a superset of the policies

that can be supported by an LE. Therefore, the only ra-

tional explanation for the existence of the LE is that it

was designed to implement a Launch Control Policy that

is not beneficial to the computer owner.

As an illustration of this argument, we consider the

case of restricting access to EGETKEY’s Provisioning

keys (§ 5.8.2). The derivation material for Provisioning

keys does not include OWNEREPOCH, so malicious

enclaves can potentially use these keys to track a CPU

chip package as it exchanges owners. For this reason, the

SGX design includes a simple access control mechanism

that can be used by system software to limiting enclave

access to Provisioning keys. EGETKEY refuses to derive

Provisioning keys for enclaves whose PROVISIONKEY

attribute is not set to true.

It follows that a reasonable Launch Control Policy

would only allow the PROVISIONKEY attribute to be

set for the enclaves that implement software attestation,

such as Intel’s Provisioning Enclave and Quoting En-

clave. This policy can easily be implemented by system

software, given its exclusive access to the EINIT instruc-

tion.

The only concern with the approach outlined above is

that a malicious system software might abuse the PRO-

VISIONKEY attribute to generate a unique identifier for

the hardware that it runs on, similar to the much ma-

ligned Intel Processor Serial Number [86]. We dismiss

this concern by pointing out that system software has

access to many unique identifiers, such as the Media

Access Control (MAC) address of the Ethernet adapter

integrated into the motherboard’s chipset (§ 2.9.1).

5.9.4 Enclaves Cannot Damage the Host Computer

SGX enclaves execute at the lowest privilege level (user

mode / ring 3), so they are subject to the same security

checks as their host application. For example, modern

operating systems set up the I/O maps (§ 2.7) to pre-

vent application software from directly accessing the I/O

90

address space (§ 2.4), and use the supervisor (S) page

table attribute (§ 2.5.3) to deny application software di-

rect access to memory-mapped devices (§ 2.4) and to

the DRAM that stores the system software. Enclave

software is subject to I/O privilege checks and address

translation checks, so a malicious enclave cannot directly

interact with the computer’s devices, and cannot tamper

the system software.

It follows that software running in an enclave has the

same means to compromise the system software as its

host application, which come down to exploiting a secu-

rity vulnerability. The same solutions used to mitigate

vulnerabilities exploited by application software (e.g.,

seccomp/bpf [118]) apply to enclaves.

The only remaining concern is that an enclave can per-

form a denial of service (DoS) attack against the system

software. The rest of this section addresses the concern.

The SGX design provides system software the tools

it needs to protect itself from enclaves that engage in

CPU hogging and DRAM hogging. As enclaves cannot

perform I/O directly, these are the only two classes of

DoS attacks available to them.

An enclave that attempts to hog an LP assigned to it

can be preempted by the system software via an Inter-

Processor Interrupt (IPI, § 2.12) issued from another

processor. This method is available as long as the sys-

tem software reserves at least one LP for non-enclave

computation.

Furthermore, most OS kernels use tick schedulers,

which use a real-time clock (RTC) configured to issue pe-

riodical interrupts (ticks) to all cores. The RTC interrupt

handler invokes the kernel’s scheduler, which chooses

the thread that will get to use the logical processor until

the next RTC interrupt is received. Therefore, kernels

that use tick schedulers always have the opportunity to

de-schedule enclave threads, and don’t need to rely on

the ability to send IPIs.

In SGX, the system software can always evict an en-

clave’s EPC pages to non-EPC memory, and then to disk.

The system software can also outright deallocate an en-

clave’s EPC pages, though this will probably cause the

enclave code to encounter page faults that cannot be re-

solved. The only catch is that the EPC pages that hold

metadata for running enclave threads cannot be evicted

or removed. However, this can easily be resolved, as

the system software can always preempt enclave threads,

using one of the methods described above.

5.9.5 Interaction with Anti-Virus Software

Today’s anti-virus (AV) systems are glorified pattern

matchers. AV software simply scans all the executable

files on the system and the memory of running processes,

looking for bit patterns that are thought to only occur

in malicious software. These patterns are somewhat

pompously called “virus signatures”.

SGX (and TXT, to some extent) provides a method for

executing code in an isolated container that we refer to

as an enclave. Enclaves are isolated from all the other

software on the computer, including any AV software

that might be installed.

The isolation afforded by SGX opens up the possibility

for bad actors to structure their attacks as a generic loader

that would end up executing a malicious payload without

tripping the AV’s pattern matcher. More specifically, the

attack would create an enclave and initialize it with a

generic loader that looks innocent to an AV. The loader

inside the enclave would obtain an encrypted malicious

payload, and would undergo software attestation with

an Internet server to obtain the payload’s encryption key.

The loader would then decrypt the malicious payload and

execute it inside the enclave.

In the scheme suggested here, the malicious payload

only exists in a decrypted form inside an enclave’s mem-

ory, which cannot be accessed by the AV. Therefore, the

AV’s pattern matcher will not trip.

This issue does not have a solution that maintains the

status-quo for the AV vendors. The attack described

above would be called a protection scheme if the payload

would be a proprietary image processing algorithm, or a

DRM scheme.

On a brighter note, enclaves do not bring the com-

plete extinction of AV, they merely require a change in

approach. Enclave code always executes at the lowest

privilege mode (ring 3 / user mode), so it cannot perform

any I/O without invoking the services of system software.

For all intents and purposes, this effectively means that

enclave software cannot perform any malicious action

without the complicity of system software. Therefore,

enclaves can be policed effectively by intelligent AV

software that records and filters the I/O performed by

software, and detects malicious software according to

the actions that it performs, rather than according to bit

patterns in its code.

Furthermore, SGX’s enclave loading model allows

the possibility of performing static analysis on the en-

clave’s software. For simplicity, assume the existence

91

of a standardized static analysis framework. The initial

enclave contents is not encrypted, so the system software

can easily perform static analysis on it. Dynamically

loaded code or Just-In-Time code generation (JIT) can

be handled by requiring that all enclaves that use these

techniques embed the static analysis framework and use

it to analyze any dynamically loaded code before it is

executed. The system software can use static verification

to ensure that enclaves follow these rules, and refuse to

initialize any enclaves that fail verification.

In conclusion, enclaves in and of themselves don’t

introduce new attack vectors for malware. However, the

enclave isolation mechanism is fundamentally incompati-

ble with the approach employed by today’s AV solutions.

Fortunately, it is possible (though non-trivial) to develop

more intelligent AV software for enclave software.

6 SGX ANALYSIS

6.1 SGX Implementation Overview

An under-documented and overlooked feat achieved by

the SGX design is that implementing it on an Intel pro-

cessor has a very low impact on the chip’s hardware

design. SGX’s modifications to the processor’s execu-

tion cores (§ 2.9.4) are either very small or completely

inexistent. The CPU’s uncore (§ 2.9.3, § 2.11.3) receives

a new module, the Memory Encryption Engine, which

appears to be fairly self-contained.

The bulk of the SGX implementation is relegated to

the processor’s microcode (§ 2.14), which supports a

much higher development speed than the chip’s electrical

circuitry.

6.1.1 Execution Core Modifications

At a minimum, the SGX design requires a very small

modification to the processor’s execution cores (§ 2.9.4),

in the Page Miss Handler (PMH, § 2.11.5).

The PMH resolves TLB misses, and consists of a fast

path that relies on an FSM page walker, and a microcode

assist fallback that handles the edge cases (§ 2.14.3).

The bulk of SGX’s memory access checks, which are

discussed in § 6.2, can be implemented in the microcode

assist.

The only modification to the PMH hardware that is

absolutely necessary to implement SGX is developing an

ability to trigger the microcode assist for all address trans-

lations when a logical processor (§ 2.9.4) is in enclave

mode (§ 5.4), or when the physical address produced by

the page walker FSM matches the Processor Reserved

Memory (PRM, § 5.1) range.

The PRM range is configured by the PRM Range Reg-

isters (§ 5.1), which have exactly the same semantics as

the Memory Type Range Registers (MTRRs, § 2.11.4)

used to configure a variable memory range. The page

walker FSM in the PMH is already configured to issue a

microcode assist when the page tables are in uncacheable

memory (§ 2.11.4). Therefore, the PRMRR can be repre-

sented as an extra MTRR pair.

6.1.2 Uncore Modifications

The SDM states that DMA transactions (§ 2.9.1) that

target the PRM range are aborted by the processor. The

SGX patents disclose that the PRMRR protection against

unauthorized DMA is implemented by having the SGX

microcode set up entries in the Source Address De-

coder (SAD) in the uncore CBoxes and in the Target

Address Decoder (TAD) in the integrated Memory Con-

troller (MC).

§ 2.11.3 mentions that Intel’s Trusted Execution Tech-

nology (TXT) [70] already takes advantage of the inte-

grated MC to protect a DRAM range from DMA. It is

highly likely that the SGX implementation reuses the

mechanisms brought by TXT, and only requires the ex-

tension of the SADs and TADs by one entry.

SGX’s major hardware modification is the Memory

Encryption Engine (MEE) that is added to the processor’s

uncore (§ 2.9.3, § 2.11.3) to protect SGX’s Enclave Page

Cache (EPC, § 5.1.1) against physical attacks.

The MEE was first briefly described in the ISCA 2015

SGX tutorial [103]. According to the information pre-

sented there, the MEE roughly follows the approach intro-

duced by Aegis [174] [176], which relies on a variation

of Merkle trees to provide the EPC with confidentiality,

integrity, and freshness guarantees (§ 3.1). Unlike Aegis,

the MEE uses non-standard cryptographic primitives that

include a slightly modified AES operating mode (§ 3.1.2)

and a Carter-Wegman [30, 187] MAC (§ 3.1.3) construc-

tion. The MEE was further described in [74].

Both the ISCA SGX tutorial and the patents state that

the MEE is connected to to the Memory Controller (MC)

integrated in the CPU’s uncore. However, all sources are

completely silent on further implementation details. The

MEE overview slide states that “the Memory Controller

detects [the] address belongs to the MEE region, and

routes transaction to MEE”, which suggests that the MEE

is fairly self-contained and has a narrow interface to the

rest of the MC.

Intel’s SGX patents use the name Crypto Memory

Aperture (CMA) to refer to the MEE. The CMA descrip-

92

tion matches the MEE and PRM concepts, as follows.

According to the patents, the CMA is used to securely

store the EPC, relies on crypto controllers in the MC,

and loses its keys during deep sleep. These details align

perfectly with the SDM’s statements regarding the MEE

and PRM.

The Intel patents also disclose that the EPCM (§ 5.1.2)

and other structures used by the SGX implementation

are also stored in the PRM. This rules out the possibility

that the EPCM requires on-chip memory resembling the

last-level cache (§ 2.11, § 2.11.3).

Last, the SGX patents shine a bit of light on an area

that the official Intel documentation is completely silent

about, namely the implementation concerns brought by

computer systems with multiple processor chips. The

patents state that the MEE also protects the Quick-Path

Interconnect (QPI, § 2.9.1) traffic using link-layer en-

cryption.

6.1.3 Microcode Modifications

According to the SGX patents, all the SGX instructions

are implemented in microcode. This can also be de-

duced by reading the SDM’s pseuodocode for all the

instructions, and realizing that it is highly unlikely that

any SGX instruction can be implemented in 4 or fewer

micro-ops (§ 2.10), which is the most that can be handled

by the simple decoders used in the hardware fast paths

(S 2.14.1).

The Asynchronous Enclave Exit (AEX, § 5.4.3) behav-

ior is also implemented in microcode. § 2.14.2 draws on

an assortment of Intel patents to conclude that hardware

exceptions (§ 2.8.2), including both faults and interrupts,

trigger microcode events (§ 2.14.2). It follows that the

SGX implementation can implement AEX by modifying

the hardware exception handlers in the microcode.

The SGX initialization sequence is also implemented

in microcode. SGX is initialized in two phases. First, it is

very likely that the boot sequence in microcode (§ 2.14.4)

was modified to initialize the registers associated with

the SGX microcode. The ISCA SGX tutorial states that

the MEE’ keys are initialized during the boot process.

Second, SGX instructions are enabled by setting a bit

in a Model-Specific Register (MSR, § 2.4). This second

phase involves enabling the MEE and configuring the

SAD and TAD to protect the PRM range. Both tasks are

amenable to a microcode implementation.

The SGX description in the SDM implies that the SGX

implementation uses a significant number of new regis-

ters, which are only exposed to microcode. However,

the SGX patents reveal that most of these registers are

actually stored in DRAM.

For example, the patents state that each TCS (§ 5.2.4)

has two fields that receive the values of the DR7 and

IA32 DEBUGCTL registers when the processor enters

enclave mode (§ 5.4.1), and are used to restore the

original register values during enclave exit (§ 5.4.2).

The SDM documents these fields as “internal CREGs”

(CR SAVE DR7 and CR SAVE DEBUGCTL), which

are stated to be “hardware specific registers”.

The SGX patents document a small subset of the

CREGs described in the SDM, summarized in Table 22,

as microcode registers. While in general we trust offi-

cial documentation over patents, in this case we use the

CREG descriptions provided by the patents, because they

appear to be more suitable for implementation purposes.

From a cost-performance standpoint, the cost of regis-

ter memory only seems to be justified for the state used

by the PMH to implement SGX’s memory access checks,

which will be discussed in § 6.2). The other pieces of

state listed as CREGs are accessed so infrequently that

storing them in dedicated SRAM would make very little

sense.

The SGX patents state that SGX requires very few

hardware changes, and most of the implementation is in

microcode, as a positive fact. We therefore suspect that

minimizing hardware changes was a high priority in the

SGX design, and that any SGX modification proposals

need to be aware of this priority.

6.2 SGX Memory Access Protection

SGX guarantees that the software inside an enclave is

isolated from all the software outside the enclave, includ-

ing the software running in other enclaves. This isolation

guarantee is at the core of SGX’s security model.

It is tempting to assume that the main protection

mechanism in SGX is the Memory Encryption Engine

(MEE) described in § 6.1.2, as it encrypts and MACs

the DRAM’s contents. However, the MEE sits in the

processor’s memory controller, which is at the edge of

the on-chip memory hierarchy, below the caches (§ 2.11).

Therefore, the MEE cannot protect an enclave’s memory

from software attacks.

The root of SGX’s protections against software attacks

is a series of memory access checks which prevents the

currently running software from accessing memory that

does not belong to it. Specifically, non-enclave software

is only allowed to access memory outside the PRM range,

while the code inside an enclave is allowed to access non-

93

SDM Name Bits Scope Description

CSR SGX OWNEREPOCH 128 CPU Chip Package Used by EGETKEY (§ 5.7.5)

CR ENCLAVE MODE 1 Logical Processor 1 when executing code inside an enclave

CR ACTIVE SECS 16 Logical Processor The index of the EPC page storing the current en-

clave’s SECS

CR TCS LA 64 Logical Processor The virtual address of the TCS (§ 5.2.4) used to en-

ter (§ 5.4.1) the current enclave

CR TCS PH 16 Logical Processor The index of the EPC page storing the TCS used to

enter the current enclave

CR XSAVE PAGE 0 16 Logical Processor The index of the EPC page storing the first page of

the current SSA (§ 5.2.5)

Table 22: The fields in an EPCM entry.

PRM memory, and the EPC pages owned by the enclave.

Although it is believed [50] that SGX’s access checks

are performed on every memory access check, Intel’s

patents disclose that the checks are performed in the

Page Miss Handler (PMH, § 2.11.5), which only handles

TLB misses.

6.2.1 Functional Description

The intuition behind SGX’s memory access protections

can be built by considering what it would take to imple-

ment the same protections in a trusted operating system

or hypervisor, solely by using the page tables that direct

the CPU’s address translation feature (§ 2.5).

The hypothetical trusted software proposed above can

implement enclave entry (§ 5.4.1) as a system call § 2.8.1

that creates page table entries mapping the enclave’s

memory. Enclave exit (§ 5.4.2) can be a symmetric

system call that removes the page table entries created

during enclave entry. When modifying the page tables,

the system software has to consider TLB coherence is-

sues (§ 2.11.5) and perform TLB shootdowns when ap-

propriate.

SGX leaves page table management under the sys-

tem software’s control, but it cannot trust the software

to set up the page tables in any particular way. There-

fore, the hypothetical design described above cannot be

used by SGX as-is. Instead, at a conceptual level, the

SGX implementation approximates the effect of hav-

ing the page tables set up correctly by inspecting every

address translation that comes out of the Page Miss Han-

dler (PMH, § 2.11.5). The address translations that do

not obey SGX’s access control restrictions are rejected

before they reach the TLBs.

SGX’s approach relies on the fact that software al-

ways references memory using virtual addresses, so all

the micro-ops (§ 2.10) that reach the memory execu-

tion units (§ 2.10.1) use virtual addresses that must be

resolved using the TLBs before the actual memory ac-

cesses are carried out. By contrast, the processor’s mi-

crocode (§ 2.14) has the ability to issue physical memory

accesses, which bypass the TLBs. Conveniently, SGX

instructions are implemented in microcode (§ 6.1.3), so

they can bypass the TLBs and access memory that is

off limits to software, such as the EPC page holding an

enclave’s SECS(̃§ 5.1.3).

The SGX address translation checks use the informa-

tion in the Enclave Page Cache Map (EPCM, § 5.1.2),

which is effectively an inverted page table that covers the

entire EPC. This means that each EPC page is accounted

for by an EPCM entry, using the structure is summarized

in Table 23. The EPCM fields were described in detail

in § 5.1.2, § 5.2.3, § 5.2.4, § 5.5.1, and § 5.5.2.

Field Bits Description

VALID 1 0 for un-allocated EPC

pages

BLOCKED 1 page is being evicted

R 1 enclave code can read

W 1 enclave code can write

X 1 enclave code can execute

PT 8 page type (Table 24)

ADDRESS 48 the virtual address used to

access this page

ENCLAVESECS the EPC slot number for

the SECS of the enclave

owning the page

Table 23: The fields in an EPCM entry.

Conceptually, SGX adds the access control logic il-

lustrated in Figure 86 to the PMH. SGX’s security

checks are performed after the page table attributes-based

checks (§ 2.5.3) defined by the Intel architecture. It fol-

94

Type Allocated by Contents

PT REG EADD enclave code and data

PT SECS ECREATE SECS (§ 5.1.3)

PT TCS EADD TCS (§ 5.2.4)

PT VA EPA VA (§ 5.5.2)

Table 24: Values of the PT (page type) field in an EPCM entry.

lows that SGX’s access control logic has access to the

physical address produced by the page walker FSM.

SGX’s security checks depend on whether the logi-

cal processor (§ 2.9.4) is in enclave mode (§ 5.4) or not.

While the processor is outside enclave mode, the PMH al-

lows any address translation that does not target the PRM

range (§ 5.1). When the processor is inside enclave mode,

the PMH performs the checks described below, which

provide the security guarantees described in § 5.2.3.

First, virtual addresses inside the enclave’s virtual

memory range (ELRANGE, § 5.2.1) must always trans-

late into physical addresses inside the EPC. This way,

an enclave is assured that all the code and data stored

in ELRANGE receives SGX’s confidentiality, integrity,

and freshness guarantees. Since the memory outside

ELRANGE does not enjoy these guarantees, the SGX de-

sign disallows having enclave code outside ELRANGE.

This is most likely accomplished by setting the disable

execution (XD, § 2.5.3) attribute on the TLB entry.

Second, an EPC page must only be accessed by

the code of the enclave who owns the page. For the

purpose of this check, each enclave is identified by

the index of the EPC page that stores the enclave’s

SECS (§ 5.1.3). The current enclave’s identifier is stored

in the CR ACTIVE SECS microcode register during en-

clave entry. This register is compared against the enclave

identifier stored in the EPCM entry corresponding to the

EPC page targeted by the address translation.

Third, some EPC pages cannot be accessed by soft-

ware. Pages that hold SGX internal structures, such as

a SECS, a TCS (§ 5.2.4), or a VA (§ 5.5.2) must only

be accessed by SGX’s microcode, which uses physical

addresses and bypasses the address translation unit, in-

cluding the PMH. Therefore, the PMH rejects address

translations targeting these pages.

Blocked (§ 5.5.1) EPC pages are in the process of

being evicted (§ 5.5), so the PMH must not create new

TLB entries targeting them.

Next, an enclave’s EPC pages must always be accessed

using the virtual addresses associated with them when

they were allocated to the enclave. Regular EPC pages,

which can be accessed by software, are allocated to en-

Prepare TLB entry

Physical

address

in PRM?
Yes

Insert new entry

in TLB

No

Perform Address Translation using FSM

Physical

address in

EPC?

Page Fault

No

Yes

No

Modify TLB entry flags

according to EPCM entry

EPCM

entry EID equals

current enclave’s

ID?

Read EPCM entry for

the physical address

Page Fault

No

EPCM entry

ADDRESS equals translated

virtual address?

Yes

Page Fault

No Yes

Insert new entry in TLB

EPCM entry

blocked?

Page Fault

Yes

EPCM

entry type is

PT_REG?
Yes

Page Fault

No

Executing

enclave

code?

Physical

address

in PRM? Yes

Insert new entry

in TLB

No
Replace TLB

entry address

with abort

page

No

Virtual address

in ELRANGE?

Yes

Page Fault

YesNo

Set XD attribute

on TLB entry

Figure 86: SGX adds a few security checks to the PMH. The checks

ensure that all the TLB entries created by the address translation unit

meet SGX’s memory access restrictions.

95

claves using the EADD (§ 5.3.2) instruction, which reads

in the page’s address in the enclave’s virtual address

space. This address is stored in the LINADDR field in

the corresponding EPCM entry. Therefore, all the PMH

has to do is to ensure that LINADDR in the address trans-

lation’s target EPCM entry equals the virtual address that

caused the TLB miss which invoked the PMH.

At this point, the PMH’s security checks have com-

pleted, and the address translation result will definitely

be added to the TLB. Before that happens, however, the

SGX extensions to the PMH apply the access restrictions

in the EPCM entry for the page to the address translation

result. While the public SGX documentation we found

did not describe this process, there is a straightforward

implementation that fulfills SGX’s security requirements.

Specifically, the TLB entry bits P, W, and XD can be

AND-ed with the EPCM entry bits R, W, and X.

6.2.2 EPCM Entry Representation

Most EPCM entry fields have obvious representations.

The exception is the LINADDR and ENCLAVESECS

fields, described below. These representations explain

SGX’s seemingly arbitrary limit on the size of an en-

clave’s virtual address range (ELRANGE).

The SGX patents disclose that the LINADDR field

in an EPCM entry stores the virtual page num-

ber (VPN, § 2.5.1) of the corresponding EPC page’s

expected virtual address, relative to the ELRANGE base

of the enclave that owns the page.

The representation described above reduces the num-

ber of bits needed to store LINADDR, assuming that the

maximum ELRANGE size is significantly smaller than

the virtual address size supported by the CPU. This desire

to save EPCM entry bits is the most likely motivation for

specifying a processor model-specific ELRANGE size,

which is reported by the CPUID instruction.

The SDM states that the ENCLAVESECS field of an

ECPM entry corresponding to an EPC page indicates

the SECS of belonging to the enclave that owns the

page. Intel’s patents reveal that the SECS address in

ENCLAVESECS is represented as a physical page num-

ber (PPN, § 2.5.1) relative to the start of the EPC. Effec-

tively, this relative PPN is the 0-based EPC page index.

The EPC page index representation saves bits in the

ECPM entry, assuming that the EPCM size is signifi-

cantly smaller than the physical address space supported

by the CPU. The ISCA 2015 SGX tutorial slides men-

tion an EPC size of 96MB, which is significantly smaller

than the physical addressable space on today’s typical

processors, which is 236 - 240 bytes.

6.2.3 PMH Hardware Modifications

The SDM describes the memory access checks per-

formed after SGX is enabled, but does not provide any

insight into their implementation. Intel’s patents hint

at three possible implementations that make different

cost-performance tradeoffs. This section summarizes the

three approaches and argues in favor of the implementa-

tion that requires the fewest hardware modifications to

the PMH.

All implementations of SGX’s security checks en-

tail adding a pair of memory type range regis-

ters (MTRRs, § 2.11.4) to the PMH. These registers are

named the Secure Enclave Range Registers (SERR) in

Intel’s patents. Enabling SGX on a logical processor ini-

tializes the SERR to the values of the Protected Memory

Range Registers (PMRR, § 5.1).

Furthermore, all implementations have the same be-

havior when a logical processor is outside enclave mode.

The memory type range described by the SERR is en-

abled, causing a microcode assist to trigger for every

address translation that resolves inside the PRM. SGX’s

implementation uses the microcode assist to replace the

address translation result with an address that causes

memory access transactions to be aborted.

The three implementations differ in their behavior

when the processor enters enclave mode (§ 5.4) and starts

executing enclave code.

The alternative that requires the least amount of hard-

ware changes sets up the PMH to trigger a microcode

assist for every address translation. This can be done

by setting the SERR to cover all the physical memory

(e.g., by setting both the base and the mask to zero). In

this approach, the microcode assist implements all the

enclave mode security checks illustrated in Figure 86.

A speedier alternative adds a pair of registers to the

PMH that represents the current enclave’s ELRANGE

and modifies the PMH so that, in addition to checking

physical addresses against the SERR, it also checks the

virtual addresses going into address translations against

ELRANGE. When either check is true, the PMH in-

vokes the microcode assist used by SGX to implement

its memory access checks. Assuming the ELRANGE reg-

isters use the same base / mask representation as variable

MTRRs, enclave exists can clear ELRANGE by zeroing

both the base and the mask. This approach uses the same

microcode assist implementation, minus the ELRANGE

check that moves into the PMH hardware.

96

The second alternative described above has the ben-

efit that the microcode assist is not invoked for enclave

mode accesses outside ELRANGE. However, § 5.2.1

argues that an enclave should treat all the virtual mem-

ory addresses outside ELRANGE as untrusted storage,

and only use that memory to communicate with soft-

ware outside the enclave. Taking this into considera-

tion, well-designed enclaves would spend relatively little

time performing memory accesses outside ELRANGE.

Therefore, this second alternative is unlikely to obtain

performance gains that are worth its cost.

The last and most performant alternative would entail

implementing all the access checks shown in Figure 86 in

hardware. Similarly to the address translation FSM, the

hardware would only invoke a microcode assist when a

security check fails and a Page Fault needs to be handled.

The high-performance implementation described

above avoids the cost of microcode assists for all

TLB misses, assuming well-behaved system software.

In this association, a microcode assist results in a

Page Fault, which triggers an Asynchronous Enclave

Exit (AEX, § 5.4.3). The cost of the AEX dominates the

performance overhead of the microcode assist.

While this last implementation looks attractive, one

needs to realize that TLB misses occur quite infrequently,

so a large improvement in the TLB miss speed trans-

lates into a much less impressive improvement in overall

enclave code execution performance. Taking this into

consideration, it seems unwise to commit to extensive

hardware modifications in the PMH before SGX gains

adoption.

6.3 SGX Security Check Correctness

In § 6.2.1, we argued that SGX’s security guarantees

can be obtained by modifying the Page Miss Han-

dler (PMH, § 2.11.5) to block undesirable address trans-

lations from reaching the TLB. This section builds on the

result above and outlines a correctness proof for SGX’s

memory access protection.

Specifically, we outline a proof for the following in-

variant. At all times, all the TLB entries in every log-

ical processor will be consistent with SGX’s security

guarantees. By the argument in § 6.2.1, the invariant

translates into an assurance that all the memory accesses

performed by software obey SGX’s security model. The

high-level proof structure is presented because it helps

understand how the SGX security checks come together.

By contrast, a detailed proof would be incredibly tedious,

and would do very little to boost the reader’s understand-

ing of SGX.

6.3.1 Top-Level Invariant Breakdown

We first break down the above invariant into specific

cases based on whether a logical processor (LP) is ex-

ecuting enclave code or not, and on whether the TLB

entries translate virtual addresses in the current enclave’s

ELRANGE (§ 5.2.1). When the processor is outside en-

clave mode, ELRANGE can be considered to be empty.

This reasoning yields the three cases outlined below.

1. At all times when an LP is outside enclave mode, its

TLB may only contain physical addresses belonging

to DRAM pages outside the PRM.

2. At all times when an LP is inside enclave mode,

the TLB entries for virtual addresses outside the

current enclave’s ELRANGE must contain physical

addresses belonging to DRAM pages outside the

PRM.

3. At all times when an LP is in enclave mode, the

TLB entries for virtual addresses inside the current

enclave’s ELRANGE must match the virtual mem-

ory layout specified by the enclave author.

The first two invariant cases can be easily proven in-

dependently for each LP, by induction over the sequence

of instructions executed by the LP. For simplicity, the

reader can assume that instructions are executed in pro-

gram mode. While the assumption is not true on proces-

sors with out-of-order execution (§ 2.10), the arguments

presented here also hold when the executed instruction

sequence is considered in retirement order, for reasons

that will be described below.

An LP will only transition between enclave mode and

non-enclave mode at a few well-defined points, which are

EENTER (§ 5.4.1), ERESUME (§ 5.4.4), EEXIT (§ 5.4.2),

and Asynchronous Enclave Exits (AEX, § 5.4.3). Ac-

cording to the SDM, all the transition points flush the

TLBs and the out-of-order execution pipeline. In other

words, the TLBs are guaranteed to be empty after every

transition between enclave mode and non-enclave mode,

so we can consider all these transitions to be trivial base

cases for our induction proofs.

While SGX initialization is not thoroughly discussed,

the SDM mentions that loading some Model-Specific

Registers (MSRs, § 2.4) triggers TLB flushes, and that

system software should flush TLBs when modifying

Memory Type Range Registers (MTRRs, § 2.11.4).

97

Given that all the possible SGX implementations de-

scribed in § 6.2.3 entail adding a MTRR, it is safe to

assume that enabling SGX mode also results in a TLB

flush and out-of-order pipeline flush, and can be used by

our induction proof as well.

All the base cases in the induction proofs are serializa-

tion points for out-of-order execution, as the pipeline is

flushed during both enclave mode transitions and SGX

initialization. This makes the proofs below hold when

the program order instruction sequence is replaced with

the retirement order sequence.

The first invariant case holds because while the LP is

outside enclave mode, the SGX security checks added to

the PMH (§ 6.2.1, Figure 86) reject any address transla-

tion that would point into the PRM before it reaches the

TLBs. A key observation for proving the induction step

of this invariant case is that the PRM never changes after

SGX is enabled on an LP.

The second invariant case can be proved using a simi-

lar argument. While an LP is executing an enclave’s code,

the SGX memory access checks added to the PMH reject

any address translation that resolves to a physical address

inside the PRM, if the translated virtual address falls out-

side the current enclave’s ELRANGE. The induction step

for this invariant case can be proven by observing that a

change in an LP’s current ELRANGE is always accom-

panied by a TLB flush, which results in an empty TLB

that trivially satisfies the invariant. This follows from the

constraint that an enclave’s ELRANGE never changes

after it is established, and from the observation that the

LP’s current enclave can only be changed by an enclave

entry, which must be preceded by an enclave exit, which

triggers a TLB flush.

The third invariant case is best handled by recognizing

that the Enclave Page Cache Map (EPCM, § 5.1.2) is

an intermediate representation for the virtual memory

layout specified by the enclave authors. This suggests

breaking down the case into smaller sub-invariants cen-

tered around the EPCM, which will be proven in the

sub-sections below.

1. At all times, each EPCM entry for a page that is

allocated to an enclave matches the virtual memory

layout desired by the enclave’s author.

2. Assuming that the EPCM contents is constant, at

all times when an LP is in enclave mode, the TLB

entries for virtual addresses inside the current en-

clave’s ELRANGE must match EPCM entries that

belong to the enclave.

3. An EPCM entry is only modified when there is no

mapping for it in any LP’s TLB.

The second and third invariant combined prove that

all the TLBs in an SGX-enabled computer always reflect

the contents of the EPCM, as the third invariant essen-

tially covers the gaps in the second invariant. This result,

in combination with the first invariant, shows that the

EPCM is a bridge between the memory layout specifi-

cations of the enclave authors and the TLB entries that

regulate what memory can be accessed by software ex-

ecuting on the LPs. When further combined with the

reasoning in § 6.2.1, the whole proof outlined here re-

sults in an end-to-end argument for the correctness of

SGX’s memory protection scheme.

6.3.2 EPCM Entries Reflect Enclave Author Design

This sub-section outlines the proof for the following in-

variant. At all times, each EPCM entry for a page that

is allocated to an enclave matches the virtual mem-

ory layout desired by the enclave’s author.

A key observation, backed by the SDM pseudocode for

SGX instructions, is that all the instructions that modify

the EPCM pages allocated to an enclave are synchro-

nized using a lock in the enclave’s SECS. This entails the

existence of a time ordering of the EPCM modifications

associated with an enclave. We prove the invariant stated

above using a proof by induction over this sequence of

EPCM modifications.

EPCM entries allocated to an enclave are created

by instructions that can only be issued before the en-

clave is initialized, specifically ECREATE (§ 5.3.1) and

EADD (§ 5.3.2). The contents of the EPCM entries cre-

ated by these instructions contributes to the enclave’s

measurement (§ 5.6), together with the initial data loaded

into the corresponding EPC pages.

§ 3.3.2 argues that we can assume that enclaves with

incorrect measurements do not exist, as they will be re-

jected by software attestation. Therefore, we can assume

that the attributes used to initialize EPCM pages match

the enclave authors’ memory layout specifications.

EPCM entries can be evicted to untrusted DRAM,

together with their corresponding EPC pages, by the

EWB (§ 5.5.4) instruction. The ELDU / ELDB (§ 5.5) in-

structions re-load evicted page contents and metadata

back into the EPC and EPCM. By induction, we can

assume that an EPCM entry matches the enclave au-

thor’s specification when it is evicted. Therefore, if we

can prove that the EPCM entry that is reloaded from

DRAM is equivalent to the entry that was evicted, we

98

can conclude that the reloaded entry matches the author’s

specification.

A detailed analysis of the cryptographic primitives

used by the SGX design to protect the evicted EPC

page contents and its associated metadata is outside the

scope of this work. Summarizing the description in § 5.5,

the contents of evicted pages is encrypted using AES-

GMAC (§ 3.1.3), which is an authenticated encryption

mechanism. The MAC tag produced by AES-GMAC

covers the EPCM metadata as well as the page data, and

includes a 64-bit version that is stored in a version tree

whose nodes are Version Array (VA, (§ 5.5.2) pages.

Assuming no cryptographic weaknesses, SGX’s

scheme does appear to guarantee the confidentiality, in-

tegrity, and freshness of the EPC page contents and asso-

ciated metadata while it is evicted in untrusted memory.

It follows that EWB will only reload an EPCM entry if

the contents is equivalent to the contents of an evicted

entry.

The equivalence notion invoked here is slightly dif-

ferent from perfect equality, in order to account for the

allowable operation of evicting an EPC page and its asso-

ciated EPCM entry, and then reloading the page contents

to a different EPC page and a different EPCM entry, as

illustrated in Figure 69. Loading the contents of an EPC

page at a different physical address than it had before

does not break the virtual memory abstraction, as long

as the contents is mapped at the same virtual address

(the LINEARADDRESS EPCM field), and has the same

access control attributes (R, W, X, PT EPCM fields) as it

had when it was evicted.

The rest of this section enumerates the address trans-

lation attacks prevented by the MAC verification that

occurs in ELDU / ELDB. This is intended to help the

reader develop some intuition for the reasoning behind

using the page data and all the EPCM fields to compute

and verify the MAC tag.

The most obvious attack is prevented by having the

MAC cover the contents of the evicted EPC page, so the

untrusted OS cannot modify the data in the page while it

is stored in untrusted DRAM. The MAC also covers the

metadata that makes up the EPCM entry, which prevents

the more subtle attacks described below.

The enclave ID (EID) field is covered by the MAC tag,

so the OS cannot evict an EPC page belonging to one

enclave, and assign the page to a different enclave when

it is loaded back into the EPC. If EID was not covered by

authenticity guarantees, a malicious OS could read any

enclave’s data by evicting an EPC page belonging to the

victim enclave, and loading it into a malicious enclave

that would copy the page’s contents to untrusted DRAM.

The virtual address (LINADDR) field is covered by

the MAC tag, so the OS cannot modify the virtual mem-

ory layout of an enclave by evicting an EPC page and

specifying a different LINADDR when loading it back.

If LINADDR was not covered by authenticity guarantees,

a malicious OS could perform the exact attack shown in

Figure 55 and described in § 3.7.3.

The page access permission flags (R, W, X) are also

covered by the MAC tag. This prevents the OS from

changing the access permission bits in a page’s EPCM

entry by evicting the page and loading it back in. If

the permission flags were not covered by authenticity

guarantees, the OS could use the ability to change EPCM

access permissions to facilitate exploiting vulnerabilities

in enclave code. For example, exploiting a stack overflow

vulnerability is generally easier if OS can make the stack

pages executable.

The nonce stored in the VA slot is also covered by

the MAC. This prevents the OS from mounting a replay

attack that reverts the contents of an EPC page to an

older version. If the nonce would not be covered by

integrity guarantees, the OS could evict the target EPC

page at different times t1 and t2 in the enclave’s life, and

then provide the EWB outputs at t1 to the ELDU / ELDB

instruction. Without the MAC verification, this attack

would successfully revert the contents of the EPC page

to its version at t1.

While replay attacks look relatively benign, they can

be quite devastating when used to facilitate double spend-

ing.

6.3.3 TLB Entries for ELRANGE Reflect EPCM Con-
tents

This sub-section sketches a proof for the following invari-

ant. At all times when an LP is in enclave mode, the

TLB entries for virtual addresses inside the current

enclave’s ELRANGE must match EPCM entries that

belong to the enclave. The argument makes the assump-

tion that the EPCM contents is constant, which will be

justified in the following sub-section.

The invariant can be proven by induction over the

sequence of TLB insertions that occur in the LP. This

sequence is well-defined because an LP has a single

PMH, so the address translation requests triggered by

TLB misses must be serialized to be processed by the

PMH.

The proof’s induction step depends on the fact that the

99

TLB on hyper-threaded cores (§ 2.9.4) is dynamically

partitioned between the two LPs that share the core, and

no TLB entry is shared between the LPs. This allows

our proof to consider the TLB insertions associated with

one LP independently from the other LP’s insertions,

which means we don’t have to worry about the state (e.g.,

enclave mode) of the other LP on the core.

The proof is further simplified by observing that when

an LP exits enclave mode, both its TLB and its out-of-

order instruction pipeline are flushed. Therefore, the

enclave mode and current enclave register values used by

address translations are guaranteed to match the values

obtained by performing the translations in program order.

Having eliminated all the complexities associated with

hyper-threaded (§ 2.9.4) out-of-order (§ 2.10) execution

cores, it is easy to see that the security checks outlined in

Figure 86 and § 6.2.1 ensure that TLB entries that target

EPC pages are guaranteed to reflect the constraints in the

corresponding EPCM entries.

Last, the SGX access checks implemented in the PMH

reject any address translation for a virtual address in

ELRANGE that does not resolve to an EPC page. It

follows that memory addresses inside ELRANGE can

only map to EPC pages which, by the argument above,

must follow the constraints of the corresponding EPCM

entries.

6.3.4 EPCM Entries are Not In TLBs When Modified

In this sub-section, we outline a proof that an EPCM

entry is only modified when there is no mapping for

it in any LP’s TLB.. This proof analyzes each of the

instructions that modify EPCM entries.

For the purposes of this proof, we consider that setting

the BLOCKED attribute does not count as a modification

to an EPCM entry, as it does not change the EPC page

that the entry is associated with, or the memory layout

specification associated with the page.

The instructions that modify EPCM entries in such a

way that the resulting EPCM entries have the VALID

field set to true require that the EPCM entries were in-

valid before they were modified. These instructions are

ECREATE (§ 5.3.1), EADD (§ 5.3.2), EPA (§ 5.5.2), and

ELDU / ELDB (§ 5.5). The EPCM entry targeted by any

these instructions must have had its VALID field set to

false, so the invariant proved in the previous sub-section

implies that the EPCM entry had no TLB entry associ-

ated with it.

Conversely, the instructions that modify EPCM en-

tries and result in entries whose VALID field is false

start out with valid entries. These instructions are

EREMOVE (§ 5.3.4) and EWB (§ 5.5.4).

The EPCM entries associated with EPC pages that

store Version Arrays (VA, § 5.5.2) represent a special

case for both instructions mentioned above, as these

pages are not associated with any enclave. As these

pages can only be accessed by the microcode used to im-

plement SGX, they never have TLB entries representing

them. Therefore, both EREMOVE and EWB can invalidate

EPCM entries for VA pages without additional checks.

EREMOVE only invalidates an EPCM entry associated

with an enclave when there is no LP executing in enclave

mode using a TCS associated with the same enclave. An

EPCM entry can only result in TLB translations when an

LP is executing code from the entry’s enclave, and the

TLB translations are flushed when the LP exits enclave

mode. Therefore, when EREMOVE invalidates an EPCM

entry, any associated TLB entry is guaranteed to have

been flushed.

EWB’s correctness argument is more complex, as it

relies on the EBLOCK / ETRACK sequence described in

§ 5.5.1 to ensure that any TLB entry that might have been

created for an EPCM entry is flushed before the EPCM

entry is invalidated.

Unfortunately, the SDM pseudocode for the instruc-

tions mentioned above leaves out the algorithm used to

verify that the relevant TLB entries have been flushed.

Thus, we must base our proof on the assumption that

the SGX implementation produced by Intel’s engineers

matches the claims in the SDM. In § 6.4, we propose a

method for ensuring that EWB will only succeed when

all the LPs executing an enclave’s code at the time when

ETRACK is called have exited enclave mode at least once

between the ETRACK call and the EWB call. Having

proven the existence of a correct algorithm by construc-

tion, we can only hope that the SGX implementation uses

our algorithm, or a better algorithm that is still correct.

6.4 Tracking TLB Flushes

This section proposes a straightforward method that the

SGX implementation can use to verify that the system

software plays its part correctly in the EPC page evic-

tion (§ 5.5) process. Our method meets the SDM’s spec-

ification for EBLOCK (§ 5.5.1), ETRACK (§ 5.5.1) and

EWB (§ 5.5.4).

The motivation behind this section is that, at least at

the time of this writing, there is no official SGX doc-

umentation that contains a description of the mecha-

nism used by EWB to ensure that all the Logical Pro-

100

cessors (LPs, § 2.9.4) running an enclave’s code exit

enclave mode (§ 5.4) between an ETRACK invocation

and a EWB invocation. Knowing that there exists a cor-

rect mechanism that has the same interface as the SGX

instructions described in the SDM gives us a reason to

hope that the SGX implementation is also correct.

Our method relies on the fact that an enclave’s

SECS (§ 5.1.3) is not accessible by software, and is

already used to store information used by the SGX mi-

crocode implementation (§ 6.1.3). We store the follow-

ing fields in the SECS. tracking and done-tracking are

Boolean variables. tracked -threads and active-threads
are non-negative integers that start at zero and must

store numbers up to the number of LPs in the computer.

lp-mask is an array of Boolean flags that has one mem-

ber per LP in the computer. The fields are initialized as

shown in Figure 87.

ECREATE(SECS)

✄ Initialize the SECS state used for tracking.

1 SECS . tracking ← FALSE

2 SECS . done-tracking ← FALSE

3 SECS . active-threads ← 0
4 SECS . tracked -threads ← 0
5 SECS . lp-mask ← 0

Figure 87: The algorithm used to initialize the SECS fields used by

the TLB flush tracking method presented in this section.

The active-threads SECS field tracks the number of

LPs that are currently executing the code of the enclave

who owns the SECS. The field is atomically incremented

by EENTER (§ 5.4.1) and ERESUME (§ 5.4.4) and is

atomically decremented by EEXIT (§ 5.4.2) and Asyn-

chronous Enclave Exits (AEXs, § 5.4.3). Asides from

helping track TLB flushes, this field can also be used by

EREMOVE (§ 5.3.4) to decide when it is safe to free an

EPC page that belongs to an enclave.

As specified in the SDM, ETRACK activates TLB flush

tracking for an enclave. In our method, this is accom-

plished by setting the tracking field to TRUE and the

done-tracking field to FALSE.

When tracking is enabled, tracked -threads is the num-

ber of LPs that were executing the enclave’s code when

the ETRACK instruction was issued, and have not yet ex-

ited enclave mode. Therefore, executing ETRACK atom-

ically reads active-threads and writes the result into

tracked -threads . Also, lp-mask keeps track of the LPs

that have exited the current enclave after the ETRACK

instruction was issued. Therefore, the ETRACK imple-

mentation atomically zeroes lp-mask . The full ETRACK

algorithm is listed in Figure 88.

ETRACK(SECS)

✄ Abort if tracking is already active.

1 if SECS . tracking = TRUE

2 then return SGX-PREV-TRK-INCMPL

✄ Activate TLB flush tracking.

3 SECS . tracking ← TRUE

4 SECS . done-tracking ← FALSE

5 SECS . tracked -threads ←
ATOMIC-READ(SECS . active-threads)

6 for i← 0 to MAX-LP-ID

7 do ATOMIC-CLEAR(SECS . lp-mask [i])

Figure 88: The algorithm used by ETRACK to activate TLB flush

tracking.

When an LP exits an enclave that has TLB flush

tracking activated, we atomically test and set the cur-

rent LP’s flag in lp-mask . If the flag was not previ-

ously set, it means that an LP that was executing the

enclave’s code when ETRACK was invoked just exited

enclave mode for the first time, and we atomically decre-

ment tracked -threads to reflect this fact. In other words,

lp-mask prevents us from double-counting an LP when

it exits the same enclave while TLB flush tracking is

active.

Once active-threads reaches zero, we are assured that

all the LPs running the enclave’s code when ETRACK

was issued have exited enclave mode at least once, and

can set the done-tracking flag. Figure 89 enumerates all

the steps taken on enclave exit.

ENCLAVE-EXIT(SECS)

✄ Track an enclave exit.

1 ATOMIC-DECREMENT(SECS . active-threads)
2 if ATOMIC-TEST-AND-SET(

SECS . lp-mask [LP-ID])
3 then ATOMIC-DECREMENT(

SECS . tracked -threads)
4 if SECS . tracked -threads = 0
5 then SECS . done-tracking ← TRUE

Figure 89: The algorithm that updates the TLB flush tracking state

when an LP exits an enclave via EEXIT or AEX.

Without any compensating measure, the method above

101

will incorrectly decrement tracked -threads , if the LP ex-

iting the enclave had entered it after ETRACK was issued.

We compensate for this with the following trick. When

an LP starts executing code inside an enclave that has

TLB flush tracking activated, we set its corresponding

flag in lp-mask . This is sufficient to avoid counting the

LP when it exits the enclave. Figure 90 lists the steps

required by our method when an LP enters an enclave.

ENCLAVE-ENTER(SECS)

✄ Track an enclave entry.

1 ATOMIC-INCREMENT(SECS . active-threads)
2 ATOMIC-SET(SECS . lp-mask [LP-ID])

Figure 90: The algorithm that updates the TLB flush tracking state

when an LP enters an enclave via EENTER or ERESUME.

With these algorithms in place, EWB can simply verify

that both tracking and done-tracking are TRUE. This

ensures that the system software has triggered enclave

exits on all the LPs that were running the enclave’s code

when ETRACK was executed. Figure 91 lists the algo-

rithm used by the EWB tracking verification step.

EWB-VERIFY(virtual -addr)

1 physical -addr ← TRANSLATE(virtual -addr)
2 epcm-slot ← EPCM-SLOT(physical -addr)
3 if EPCM [slot].BLOCKED = FALSE

4 then return SGX-NOT-BLOCKED

5 SECS ← EPCM-ADDR(
EPCM [slot].ENCLAVESECS)

✄ Verify that the EPC page can be evicted.

6 if SECS . tracking = FALSE

7 then return SGX-NOT-TRACKED

8 if SECS . done-tracking = FALSE

9 then return SGX-NOT-TRACKED

Figure 91: The algorithm that ensures that all LPs running an

enclave’s code when ETRACK was executed have exited enclave

mode at least once.

Last, EBLOCK marks the end of a TLB flush tracking

cycle by clearing the tracking flag. This ensures that sys-

tem software must go through another cycle of ETRACK

and enclave exits before being able to use EWB on the

page whose BLOCKED EPCM field was just set to TRUE

by EBLOCK. Figure 92 shows the details.

Our method’s correctness can be easily proven by ar-

guing that each SECS field introduced in this section has

EBLOCK(virtual -addr)

1 physical -addr ← TRANSLATE(virtual -addr)
2 epcm-slot ← EPCM-SLOT(physical -addr)
3 if EPCM [slot].BLOCKED = TRUE

4 then return SGX-BLKSTATE

5 if SECS . tracking = TRUE

6 then if SECS . done-tracking = FALSE

7 then return SGX-ENTRYEPOCH-LOCKED

8 SECS . tracking ← FALSE

9 EPCM [slot].BLOCKED ← TRUE

Figure 92: The algorithm that marks the end of a TLB flushing

cycle when EBLOCK is executed.

its intended value throughout enclave entries and exits.

6.5 Enclave Signature Verification

Let m be the public modulus in the enclave author’s

RSA key, and s be the enclave signature. Since the

SGX design fixes the value of the public exponent e to

3, verifying the RSA signature amounts to computing

the signed message M = s3 mod m, checking that the

value meets the PKCS v1.5 padding requirements, and

comparing the 256-bit SHA-2 hash inside the message

with the value obtained by hashing the relevant fields in

the SIGSTRUCT supplied with the enclave.

This section describes an algorithm for computing the

signed message while only using subtraction and multi-

plication on large non-negative integers. The algorithm

admits a significantly simpler implementation than the

typical RSA signature verification algorithm, by avoiding

the use of long division and negative numbers. The de-

scription here is essentially the idea in [73], specialized

for e = 3.

The algorithm provided here requires the signer to

compute the q1 and q2 values shown below. The values

can be computed from the public information in the sig-

nature, so they do not leak any additional information

about the private signing key. Furthermore, the algorithm

verifies the correctness of the values, so it does not open

up the possibility for an attack that relies on supplying

incorrect values for q1 and q2.

q1 =

⌊

s2

m

⌋

q2 =

⌊

s3 − q1 × s×m

m

⌋

102

Due to the desirable properties mentioned above, it is

very likely that the algorithm described here is used by

the SGX implementation to verify the RSA signature in

an enclave’s SIGSTRUCT (§ 5.7.1).

The algorithm in Figure 93 computes the signed mes-

sage M = s3 mod m, while also verifying that the given

values of q1 and q2 are correct. The latter is necessary

because the SGX implementation of signature verifica-

tion must handle the case where an attacker attempts

to exploit the signature verification implementation by

supplying invalid values for q1 and q2.

1. Compute u← s× s and v ← q1 ×m

2. If u < v, abort. q1 must be incorrect.

3. Compute w ← u− v

4. If w ≥ m, abort. q1 must be incorrect.

5. Compute x← w × s and y ← q2 ×m

6. If x < y, abort. q2 must be incorrect.

7. Compute z ← x− y.

8. If z ≥ m, abort. q2 must be incorrect.

9. Output z.

Figure 93: An RSA signature verification algorithm specialized for

the case where the public exponent is 3. s is the RSA signature and

m is the RSA key modulus. The algorithm uses two additional inputs,

q1 and q2.

The rest of this section proves the correctness of the

algorithm in Figure 93.

6.5.1 Analysis of Steps 1 - 4

Steps 1− 4 in the algorithm check the correctness of q1
and use it to compute s2 mod m. The key observation

to understanding these steps is recognizing that q1 is the

quotient of the integer division s2/m.

Having made this observation, we can use elementary

division properties to prove that the supplied value for q1
is correct if and only if the following property holds.

0 ≤ s2 − q1 ×m < m

We observe that the first comparison, 0 ≤ s2−q1×m,

is equivalent to q1 × m ≤ s2, which is precisely the

check performed by step 2. We can also see that the

second comparison, s2−q1×m < m corresponds to the

condition verified by step 4. Therefore, if the algorithm

passes step 4, it must be the case that the value supplied

for q1 is correct.

We can also plug s2, q1 and m into the integer division

remainder definition to obtain the identity s2 mod m =
s2 − q1 ×m. However, according to the computations

performed in steps 1 and 3, w = s2− q1×m. Therefore,

we can conclude that w = s2 mod m.

6.5.2 Analysis of Steps 5 - 8

Similarly, steps 5− 8 in the algorithm check the correct-

ness of q2 and use it to compute w × s mod m. The key

observation here is that q2 is the quotient of the integer

division (w × s)/m.

We can convince ourselves of the truth of this obser-

vation by using the fact that w = s2 mod m, which was

proven above, by plugging in the definition of the re-

mainder in integer division, and by taking advantage of

the distributivity of integer multiplication with respect to

addition.

⌊

w × s

m

⌋

=

⌊

(s2 mod m)× s

m

⌋

=

⌊

(s2 − ⌊ s
2

m
⌋ ×m)× s

m

⌋

=

⌊

s3 − ⌊ s
2

m
⌋ ×m× s

m

⌋

=

⌊

s3 − q1 ×m× s

m

⌋

=

⌊

s3 − q1 × s×m

m

⌋

= q2

By the same argument used to analyze steps 1 − 4,

we use elementary division properties to prove that q2 is

correct if and only if the equation below is correct.

0 ≤ w × s− q2 ×m < m

The equation’s first comparison, 0 ≤ w× s− q2 ×m,

is equivalent to q2 ×m ≤ w × s, which corresponds to

the check performed by step 6. The second comparison,

w × s− q2 ×m < m, matches the condition verified by

step 8. It follows that, if the algorithm passes step 8, it

must be the case that the value supplied for q2 is correct.

By plugging w × s, q2 and m into the integer division

remainder definition, we obtain the identity w × s mod
m = w×s−q2×m. Trivial substitution reveals that the

103

computations in steps 5 and 7 result in z = w×s−q2×m,

which allows us to conclude that z = w × s mod m.

In the analysis for steps 1 − 4, we have proven that

w = s2 mod m. By substituting this into the above

identity, we obtain the proof that the algorithm’s output

is indeed the desired signed message.

z = w × s mod m

= (s2 mod m)× s mod m

= s2 × s mod m

= s3 mod m

6.5.3 Implementation Requirements

The main advantage of the algorithm in Figure 93 is that

it relies on the implementation of very few arithmetic

operations on large integers. The maximum integer size

that needs to be handled is twice the size of the modulus

in the RSA key used to generate the signature.

Steps 1 and 5 use large integer multiplication. Steps

3 and 7 use integer subtraction. Steps 2, 4, 6, and 8 use

large integer comparison. The checks in steps 2 and 6

guarantee that the results of the subtractions performed

in steps 3 and 7 will be non-negative. It follows that the

algorithm will never encounter negative numbers.

6.6 SGX Security Properties

We have summarized SGX’s programming model and

the implementation details that are publicly documented

in Intel’s official documentation and published patents.

We are now ready to bring this the information together

in an analysis of SGX’s security properties. We start

the analysis by restating SGX’s security guarantees, and

spend the bulk of this section discussing how SGX fares

when pitted against the attacks described in § 3. We

conclude the analysis with some troubling implications

of SGX’s lack of resistance to software side-channel

attacks.

6.6.1 Overview

Intel’s Software Guard Extensions (SGX) is Intel’s latest

iteration of a trusted hardware solution to the secure re-

mote computation problem. The SGX design is centered

around the ability to create an isolated container whose

contents receives special hardware protections that are

intended to translate into confidentiality, integrity, and

freshness guarantees.

An enclave’s initial contents is loaded by the system

software on the computer, and therefore cannot contain

secrets in plain text. Once initialized, an enclave is ex-

pected to participate in a software attestation process,

where it authenticates itself to a remote server. Upon suc-

cessful authentication, the remote server is expected to

disclose some secrets to an enclave over a secure commu-

nication channel. The SGX design attempts to guarantee

that the measurement presented during software attesta-

tion accurately represents the contents loaded into the

enclave.

SGX also offers a certificate-based identity system that

can be used to migrate secrets between enclaves that have

certificates issued by the same authority. The migration

process involves securing the secrets via authenticated

encryption before handing them off to the untrusted sys-

tem software, which passes them to another enclave that

can decrypt them.

The same mechanism used for secret migration can

also be used to cache the secrets obtained via software

attestation in an untrusted storage medium managed by

system software. This caching can reduce the number

of times that the software attestation process needs to

be performed in a distributed system. In fact, SGX’s

software attestation process is implemented by enclaves

with special privileges that use the certificate-based iden-

tity system to securely store the CPU’s attestation key in

untrusted memory.

6.6.2 Physical Attacks

We begin by discussing SGX’s resilience to the physical

attacks described in § 3.4. Unfortunately, this section

is set to disappoint readers expecting definitive state-

ments. The lack of publicly available details around the

hardware implementation aspects of SGX precludes any

rigorous analysis. However, we do know enough about

SGX’s implementation to point out a few avenues for

future exploration.

Due to insufficient documentation, one can only hope

that the SGX security model is not trivially circum-

vented by a port attack (§ 3.4.1). We are particularly

concerned about the Generic Debug eXternal Connec-

tion (GDXC) [126, 199], which collects and filters the

data transferred by the uncore’s ring bus (§ 2.11.3), and

reports it to an external debugger.

The SGX memory protection measures are imple-

mented at the core level, in the Page Miss Han-

dler (PMH, § 2.11.5) (§ 6.2) and at the chip die level,

in the memory controller (§ 6.1.2). Therefore, the code

and data inside enclaves is stored in plaintext in on-chip

caches (§ 2.11), which entails that the enclave contents

104

travels without any cryptographic protection on the un-

core’s ring bus (§ 2.11.3).

Fortunately, a recent Intel patent [167] indicates that

Intel engineers are tackling at least some classes of at-

tacks targeting debugging ports.

The SDM and SGX papers discuss the most obvi-

ous class of bus tapping attacks (§ 3.4.2), which is the

DRAM bus tapping attack. SGX’s threat model con-

siders DRAM and the bus connecting it to the CPU

chip to be untrusted. Therefore, SGX’s Memory En-

cryption Engine (MEE, § 6.1.2) provides confidentiality,

integrity and freshness guarantees to the Enclave Page

Cache (EPC, § 5.1.1) data while it is stored in DRAM.

However, both the SGX papers and the ISCA 2015

tutorial on SGX admit that the MEE does not protect the

addresses of the DRAM locations accessed when cache

lines holding EPC data are evicted or loaded. This pro-

vides an opportunity for a malicious computer owner to

observe an enclave’s memory access patterns by combin-

ing a DRAM address line bus tap with carefully crafted

system software that creates artificial pressure on the last-

level cache (LLC ,§ 2.11) lines that hold the enclave’s

EPC pages.

On a brighter note, as mentioned in § 3.4.2, we are not

aware of any successful DRAM address line bus tapping

attack. Furthermore, SGX is vulnerable to cache timing

attacks that can be carried out completely in software, so

malicious computer owners do not need to bother setting

up a physical attack to obtain an enclave’s memory access

patterns.

While the SGX documentation addresses DRAM bus

tapping attacks, it makes no mention of the System Man-

agement bus (SMBus, § 2.9.2) that connects the Intel

Management Engine (ME, § 2.9.2) to various compo-

nents on the computer’s motherboard.

In § 6.6.5, we will explain that the ME needs to be

taken into account when evaluating SGX’s memory pro-

tection guarantees. This makes us concerned about the

possibility of an attack that taps the SMBus to reach into

the Intel ME. The SMBus is much more accessible than

the DRAM bus, as it has fewer wires that operate at a

significantly lower speed. Unfortunately, without more

information about the role that the Intel ME plays in a

computer, we cannot move beyond speculation on this

topic.

The threat model stated by the SGX design excludes

physical attacks targeting the CPU chip (§ 3.4.3). Fortu-

nately, Intel’s patents disclose an array of countermea-

sures aimed at increasing the cost of chip attacks.

For example, the original SGX patents [110, 138] dis-

close that the Fused Seal Key and the Provisioning Key,

which are stored in e-fuses (§ 5.8.2), are encrypted with

a global wrapping logic key (GWK). The GWK is a

128-bit AES key that is hard-coded in the processor’s

circuitry, and serves to increase the cost of extracting the

keys from an SGX-enabled processor.

As explained in § 3.4.3, e-fuses have a large feature

size, which makes them relatively easy to “read” using a

high-resolution microscope. In comparison, the circuitry

on the latest Intel processors has a significantly smaller

feature size, and is more difficult to reverse engineer.

Unfortunately, the GWK is shared among all the chip dies

created from the same mask, so it has all the drawbacks

of global secrets explained in § 3.4.3.

Newer Intel patents [67, 68] describe SGX-enabled

processors that employ a Physical Unclonable Func-

tion (PUF), e.g., [175], [133], which generates a symmet-

ric key that is used during the provisioning process.

Specifically, at an early provisioning stage, the PUF

key is encrypted with the GWK and transmitted to the

key generation server. At a later stage, the key generation

server encrypts the key material that will be burned into

the processor chip’s e-fuses with the PUF key, and trans-

mits the encrypted material to the chip. The PUF key

increases the cost of obtaining a chip’s fuse key material,

as an attacker must compromise both provisioning stages

in order to be able to decrypt the fuse key material.

As mentioned in previous sections, patents reveal de-

sign possibilities considered by the SGX engineers. How-

ever, due to the length of timelines involved in patent ap-

plications, patents necessarily describe earlier versions of

the SGX implementation plans, which might not match

the shipping implementation. We expect this might be

the case with the PUF provisioning patents, as it makes

little sense to include a PUF in a chip die and rely on

e-fuses and a GWK to store SGX’s root keys. Deriving

the root keys from the PUF would be more resilient to

chip imaging attacks.

SGX’s threat model excludes power analysis at-

tacks (§ 3.4.4) and other side-channel attacks. This is

understandable, as power attacks cannot be addressed at

the architectural level. Defending against power attacks

requires expensive countermeasures at the lowest levels

of hardware implementation, which can only be designed

by engineers who have deep expertise in both system se-

curity and Intel’s manufacturing process. It follows that

defending against power analysis attacks has a very high

cost-to-benefit ratio.

105

6.6.3 Privileged Software Attacks

The SGX threat model considers system software to be

untrusted. This is a prerequisite for SGX to qualify as

a solution to the secure remote computation problem

encountered by software developers who wish to take ad-

vantage of Infrastructure-as-a-Service (IaaS) cloud com-

puting.

SGX’s approach is also an acknowledgement of the

realities of today’s software landscape, where the sys-

tem software that runs at high privilege levels (§ 2.3)

is so complex that security researchers constantly find

vulnerabilities in it (§ 3.5).

The SGX design prevents malicious software from

directly reading or from modifying the EPC pages that

store an enclave’s code and data. This security property

relies on two pillars in the SGX design.

First, the SGX implementation (§ 6.1) runs in the pro-

cessor’s microcode (§ 2.14), which is effectively a higher

privilege level that system software does not have access

to. Along the same lines, SGX’s security checks (§ 6.2)

are the last step performed by the PMH, so they cannot

be bypassed by any other architectural feature.

This implementation detail is only briefly mentioned

in SGX’s official documentation, but has a large impact

on security. For context, Intel’s Trusted Execution Tech-

nology (TXT, [70]), which is the predecessor of SGX,

relied on Intel’s Virtual Machine Extensions (VMX) for

isolation. The approach was unsound, because software

running in System Management Mode (SMM, § 2.3)

could bypass the restrictions used by VMX to provide

isolation.

The security properties of SGX’s memory protection

mechanisms are discussed in detail in § 6.6.4.

Second, SGX’s microcode is always involved when a

CPU transitions between enclave code and non-enclave

code (§ 5.4), and therefore regulates all interactions be-

tween system software and an enclave’s environment.

On enclave entry (§ 5.4.1), the SGX implementation

sets up the registers (§ 2.2) that make up the execution

state (§ 2.6) of the logical processor (LP § 2.9.4), so

a malicious OS or hypervisor cannot induce faults in

the enclave’s software by tampering with its execution

environment.

When an LP transitions away from an enclave’s code

due to a hardware exception (§ 2.8.2), the SGX imple-

mentation stashes the LP’s execution state into a State

Save Area (SSA, § 5.2.5) area inside the enclave and

scrubs it, so the system software’s exception handler can-

not access any enclave secrets that may be stored in the

execution state.

The protections described above apply to the all the

levels of privileged software. SGX’s transitions between

an enclave’s code and non-enclave code place SMM

software on the same footing as the system software

at lower privilege levels. System Management Inter-

rupts (SMI, § 2.12, § 3.5), which cause the processor to

execute SMM code, are handled using the same Asyn-

chronous Enclave Exit (AEX, § 5.4.3) process as all other

hardware exceptions.

Reasoning about the security properties of SGX’s tran-

sitions between enclave mode and non-enclave mode is

very difficult. A correctness proof would have to take

into account all the CPU’s features that expose registers.

Difficulty aside, such a proof would be very short-lived,

because every generation of Intel CPUs tends to intro-

duce new architectural features. The paragraph below

gives a taste of what such a proof would look like.

EENTER (§ 5.4.1) stores the RSP and RBP register

values in the SSA used to enter the enclave, but stores

XCR0 (§ 2.6), FS and GS (§ 2.7) in the non-architectural

area of the TCS (§ 6.1.3). At first glance, it may seem

elegant to remove this inconsistency and have EENTER

store the contents of the XCR0, FS, and GS registers

in the current SSA, along with RSP and RBP. However,

this approach would break the Intel architecture’s guar-

antees that only system software can modify XCR0, and

application software can only load segment registers us-

ing selectors that index into the GDT or LDT set up by

system software. Specifically, a malicious application

could modify these privileged registers by creating an

enclave that writes the desired values to the current SSA

locations backing up the registers, and then executes

EEXIT (§ 5.4.2).

Unfortunately, the following sections will reveal that

while SGX offers rather thorough guarantees against

straightforward attacks on enclaves, its guarantees are

almost non-existent when it comes to more sophisticated

attacks, such as side-channel attacks. This section con-

cludes by describing what might be the most egregious

side-channel vulnerability in SGX.

Most modern Intel processors feature hyper-threading.

On these CPUs, the execution units (§ 2.10) and

caches (§ 2.11) on a core (§ 2.9.4) are shared by two

LPs, each of which has its own execution state. SGX

does not prevent hyper-threading, so malicious system

software can schedule a thread executing the code of a

victim enclave on an LP that shares the core with an LP

106

executing a snooping thread. This snooping thread can

use the processor’s high-resolution performance counter

[152], in conjunction with microarchitectural knowledge

of the CPU’s execution units and out-of-order scheduler,

to learn the instructions executed by the victim enclave,

as well as its memory access patterns.

This vulnerability can be fixed using two approaches.

The straightforward solution is to require cloud comput-

ing providers to disable hyper-threading when offering

SGX. The SGX enclave measurement would have to

be extended to include the computer’s hyper-threading

configuration, so the remote parties in the software at-

testation process can be assured that their enclaves are

hosted by a secure environment.

A more complex approach to fixing the hyper-

threading vulnerability would entail having the SGX

implementation guarantee that when an LP is executing

an enclave’s code, the other LP sharing its core is either

inactive, or is executing the same enclave’s code. While

this approach is possible, its design would likely be quite

cumbersome.

6.6.4 Memory Mapping Attacks

§ 5.4 explained that the code running inside an enclave

uses the same address translation process (§ 2.5) and

page tables as its host application. While this design

approach makes it easy to retrofit SGX support into ex-

isting codebases, it also enables the address translation

attacks described in § 3.7.

The SGX design protects the code inside enclaves

against the active attacks described in § 3.7. These pro-

tections have been extensively discussed in prior sections,

so we limit ourselves to pointing out SGX’s answer to

each active attack. We also explain the lack of protec-

tions against passive attacks, which can be used to learn

an enclave’s memory access pattern at 4KB page granu-

larity.

SGX uses the Enclave Page Cache

Map (EPCM, § 5.1.2) to store each EPC page’s

position in its enclave’s virtual address space. The

EPCM is consulted by SGX’s extensions to the Page

Miss Handler (PMH, § 6.2.1), which prevent straight-

forward active address translation attacks (§ 3.7.2) by

rejecting undesirable address translations before they

reach the TLB (§ 2.11.5).

SGX allows system software to evict (§ 5.5) EPC

pages into untrusted DRAM, so that the EPC can be

over-subscribed. The contents of the evicted pages and

the associated EPCM metadata are protected by cryp-

tographic primitives that offer confidentiality, integrity

and freshness guarantees. This protects against the active

attacks using page swapping described in § 3.7.3.

When system software wishes to evict EPC pages,

it must follow the process described in § 5.5.1, which

guarantees to the SGX implementation that all the LPs

have invalidated any TLB entry associated with pages

that will be evicted. This defeats the active attacks based

on stale TLB entries described in § 3.7.4.

§ 6.3 outlines a correctness proof for the memory pro-

tection measures described above.

Unfortunately, SGX does not protect against passive

address translation attacks (§ 3.7.1), which can be used

to learn an enclave’s memory access pattern at page gran-

ularity. While this appears benign, recent work [195]

demonstrates the use of these passive attacks in a few

practical settings, which are immediately concerning for

image processing applications.

The rest of this section describes the theory behind

planning a passive attack against an SGX enclave. The

reader is directed to [195] for a fully working system.

Passive address translation attacks rely on the fact that

memory accesses issued by SGX enclaves go through

the Intel architecture’s address translation process (§ 2.5),

including delivering page faults (§ 2.8.2) and setting the

accessed (A) and dirty (D) attributes (§ 2.5.3) on page

table entries.

A malicious OS kernel or hypervisor can obtain the

page-level trace of an application executing inside an

enclave by setting the present (P) attribute to 0 on all

the enclave’s pages before starting enclave execution.

While an enclave executes, the malicious system software

maintains exactly one instruction page and one data page

present in the enclave’s address space.

When a page fault is generated, CR2 contains the

virtual address of a page accessed by enclave, and the

error code indicates whether the memory access was a

read or a write (bit 1) and whether the memory access is

a data access or an instruction fetch access (bit 4). On a

data access, the kernel tracing the enclave code’s memory

access pattern would set the P flag of the desired page to

1, and set the P flag of the previously accessed data page

to 0. Instruction accesses can be handled in a similar

manner.

For a slightly more detailed trace, the kernel can set

a desired page’s writable (W) attribute to 0 if the page

fault’s error code indicates a read access, and only set

it to 1 for write accesses. Also, applications that use

a page as both code and data (self-modifying code and

107

just-in-time compiling VMs) can be handled by setting a

page’s disable execution (XD) flag to 0 for a data access,

and by carefully accounting for the case where the last

accessed data page is the same as the last accessed code

page.

Leaving an enclave via an Asynchronous Enclave

Exit (AEX, § 5.4.3) and re-entering the enclave via

ERESUME (§ 5.4.4) causes the CPU to flush TLB en-

tries that contain enclave addresses, so a tracing kernel

would not need to worry about flushing the TLB. The

tracing kernel does not need to flush the caches either,

because the CPU needs to perform address translation

even for cached data.

A straightforward way to reduce this attack’s power

is to increase the page size, so the trace contains less

information. However, the attack cannot be completely

prevented without removing the kernel’s ability to over-

subscribe the EPC, which is a major benefit of paging.

6.6.5 Software Attacks on Peripherals

Since the SGX design does not trust the system software,

it must be prepared to withstand the attacks described in

§ 3.6, which can be carried out by the system software

thanks to its ability to control peripheral devices on the

computer’s motherboard (§ 2.9.1). This section summa-

rizes the security properties of SGX when faced with

these attacks, based on publicly available information.

When SGX is enabled on an LP, it configures the mem-

ory controller (MC, § 2.11.3) integrated on the CPU chip

die to reject any DMA transfer that falls within the Pro-

cessor Reserved Memory (PRM, § 5.1) range. The PRM

includes the EPC, so the enclaves’ contents is protected

from the PCI Express attacks described in § 3.6.1. This

protection guarantee relies on the fact that the MC is

integrated on the processor’s chip die, so the MC con-

figuration commands issued by SGX’s microcode imple-

mentation (§ 6.1.3) are transmitted over a communication

path that never leaves the CPU die, and therefore can be

trusted.

SGX regards DRAM as an untrusted storage medium,

and uses cryptographic primitives implemented in the

MEE to guarantee the confidentiality, integrity and fresh-

ness of the EPC contents that is stored into DRAM. This

protects against software attacks on DRAM’s integrity,

like the rowhammer attack described in § 3.6.2.

The SDM describes an array of measures that SGX

takes to disable processor features intended for debug-

ging when a LP starts executing an enclave’s code. For

example, enclave entry (§ 5.4.1) disables Precise Event

Based Sampling (PEBS) for the LP, as well as any hard-

ware breakpoints placed inside the enclave’s virtual ad-

dress range (ELRANGE, § 5.2.1). This addresses some

of the attacks described in § 3.6.3, which take advantage

of performance monitoring features to get information

that typically requires access to hardware probes.

At the same time, the SDM does not mention any-

thing about uncore PEBS counters, which can be used

to learn about an enclave’s LLC activity. Furthermore,

the ISCA 2015 tutorial slides mention that SGX does

not protect against software side-channel attacks that

rely on performance counters.

This limitation in SGX’s threat model leaves security-

conscious enclave authors in a rather terrible situation.

These authors know that SGX does not protect their

enclaves against a class of software attacks. At the same

time, they cannot even contemplate attempting to defeat

these attacks on their own, due to lack of information.

Specifically, the documentation that is publicly available

from Intel does not provide enough information to model

the information leakage due to performance counters.

For example, Intel does not document the mapping

implemented in CBoxes (§ 2.11.3) between physical

DRAM addresses and the LLC slices used to cache the

addresses. This mapping impacts several uncore per-

formance counters, and the impact is strong enough to

allow security researches to reverse-engineer the map-

ping [85, 135, 197]. Therefore, it is safe to assume that

a malicious computer owner who knows the CBox map-

ping can use the uncore performance counters to learn

about an enclave’s memory access patterns.

The SGX papers mention that SGX’s threat model

includes attacks that overwrite the flash memory chip

that stores the computer’s firmware, which result in ma-

licious code running in SMM. However, all the official

SGX documentation is silent about the implications of

an attack that compromises the firmware executed by the

Intel ME.

§ 3.6.4 states that the ME’s firmware is stored in the

same flash memory as the boot firmware, and enumer-

ates some of ME’s special privileges that enable it to help

system administrators remotely diagnose and fix hard-

ware and software issues. Given that the SGX design is

concerned about the possibility of malicious computer

firmware, it is reasonable to be concerned about mali-

cious ME firmware.

§ 3.6.4 argues that an attacker who compromises the

ME can carry out actions that are usually classified as

physical attacks. An optimistic security researcher can

108

observe that the most scary attack vector afforded by

an ME takeover appears to be direct DRAM access,

and SGX already assumes that the DRAM is untrusted.

Therefore, an ME compromise would be equivalent to

the DRAM attacks analyzed in § 6.6.2.

However, we are troubled by the lack of documenta-

tion on the ME’s implementation, as certain details are

critical to SGX’s security analysis. For example, the

ME is involved in the computer’s boot process (§ 2.13,

§ 2.14.4), so it is unclear if it plays any part in the SGX

initialization sequence. Furthermore, during the security

boot stage (SEC, § 2.13.2), the bootstrap LP (BSP) is

placed in Cache-As-Ram (CAR) mode so that the PEI

firmware can be stored securely while it is measured.

This suggests that it would be convenient for the ME

to receive direct access to the CPU’s caches, so that the

ME’s TPM implementation can measure the firmware

directly. At the same time, a special access path from the

ME to the CPU’s caches might sidestep the MEE, allow-

ing an attacker who has achieved ME code execution to

directly read the EPC’s contents.

6.6.6 Cache Timing Attacks

The SGX threat model excludes the cache timing attacks

described in § 3.8. The SGX documentation bundles

these attacks together with other side-channel attacks and

summarily dismisses them as complex physical attacks.

However, cache timing attacks can be mounted entirely

by unprivileged software running at ring 3. This section

describes the implications of SGX’s environment and

threat model on cache timing attacks.

The main difference between SGX and a standard

architecture is that SGX’s threat model considers the sys-

tem software to be untrusted. As explained earlier, this

accurately captures the situation in remote computation

scenarios, such as cloud computing. SGX’s threat model

implies that the system software can be carrying out a

cache timing attack on the software inside an enclave.

A malicious system software translates into signifi-

cantly more powerful cache timing attacks, compared to

those described in § 3.8. The system software is in charge

of scheduling threads on LPs, and also in charge of set-

ting up the page tables used by address translation (§ 2.5),

which control cache placement (§ 2.11.5).

For example, the malicious kernel set out to trace an

enclave’s memory access patterns described in § 6.6.4

can improve the accuracy of a cache timing attack by

using page coloring [117] principles to partition [129]

the cache targeted by the attack. In a nutshell, the kernel

divides the cache’s sets (§ 2.11.2) into two regions, as

shown in Figure 94.

Cache

…

RAM

OS

…

Enclave

…

Cache Line

Page

Figure 94: A malicious OS can partition a cache between the

software running inside an enclave and its own malicious code. Both

the OS and the enclave software have cache sets dedicated to them.

When allocating DRAM to itself and to the enclave software, the

malicious OS is careful to only use DRAM regions that map to the

appropriate cache sets. On a system with an Intel CPU, the the OS

can partition the L2 cache by manipulating the page tables in a way

that is completely oblivious to the enclave’s software.

The system software stores all the victim enclave’s

code and data in DRAM addresses that map to the cache

sets in one of the regions, and stores its own code and

data in DRAM addresses that map to the other region’s

cache sets. The snooping thread’s code is assumed to be

a part of the OS. For example, in a typical 256 KB (per-

core) L2 cache organized as 512 8-way sets of 64-byte

lines, the tracing kernel could allocate lines 0-63 for the

enclave’s code page, lines 64-127 for the enclave’s data

page, and use lines 128-511 for its own pages.

To the best of our knowledge, there is no minor modifi-

cation to SGX that would provably defend against cache

timing attacks. However, the SGX design could take a

few steps to increase the cost of cache timing attacks.

For example, SGX’s enclave entry implementation could

flush the core’s private caches, which would prevent

cache timing attacks from targeting them. This measure

would defeat the cache timing attacks described below,

109

and would only be vulnerable to more sophisticated at-

tacks that target the shared LLC, such as [131, 196]. The

description above assumes that hyper-threading has been

disabled, for the reasons explained in § 6.6.3.

Barring the additional protection measures described

above, a tracing kernel can extend the attack described in

§ 6.6.4 with the steps outlined below to take advantage

of cache timing and narrow down the addresses in an ap-

plication’s memory access trace to cache line granularity.

Right before entering an enclave via EENTER or

ERESUME, the kernel would issue CLFLUSH instruc-

tions to flush the enclave’s code page and data page from

the cache. The enclave could have accessed a single code

page and a single data page, so flushing the cache should

be reasonably efficient. The tracing kernel then uses 16

bogus pages (8 for the enclave’s code page, and 8 for

the enclave’s data page) to load all the 8 ways in the 128

cache sets allocated by enclave pages. After an AEX

gives control back to the tracing kernel, it can read the

16 bogus pages, and exploit the time difference between

an L2 cache hit and a miss to see which cache lines were

evicted and replaced by the enclave’s memory accesses.

An extreme approach that can provably defeat cache

timing attacks is disabling caching for the PRM range,

which contains the EPC. The SDM is almost com-

pletely silent about the PRM, but the SGX manuals that

it is based on state that the allowable caching behav-

iors (§ 2.11.4) for the PRM range are uncacheable (UC)

and write-back (WB). This could become useful if the

SGX implementation would make sure that the PRM’s

caching behavior cannot be changed while SGX is en-

abled, and if the selected behavior would be captured by

the enclave’s measurement (§ 5.6).

6.6.7 Software Side-Channel Attacks and SGX

The SGX design reuses a few terms from the Trusted Plat-

form Module (TPM, § 4.4) design. This helps software

developers familiar with TPM understand SGX faster.

At the same time, the term reuse invites the assump-

tion that SGX’s software attestation is implemented in

tamper-resistant hardware, similarly to the TPM design.

§ 5.8 explains that, in fact, the SGX design delegates

the creation of attestation signatures to software that runs

inside a Quoting Enclave with special privileges that

allows it to access the processor’s attestation key. Re-

stated, SGX includes an enclave whose software reads

the attestation key and produces attestation signatures.

Creating the Quoting Enclave is a very elegant way of

reducing the complexity of the hardware implementation

of SGX, assuming that the isolation guarantees provided

by SGX are sufficient to protect the attestation key. How-

ever, the security analysis in § 6.6 reveals that enclaves

are vulnerable to a vast array of software side-channel

attacks, which have been demonstrated effective in ex-

tracting a variety of secrets from isolated environments.

The gaps in the security guarantees provided to en-

claves place a large amount of pressure on Intel’s soft-

ware developers, as they must attempt to implement the

EPID signing scheme used by software attestation with-

out leaking any information. Intel’s ISCA 2015 SGX

tutorial slides suggest that the SGX designers will ad-

vise developers to write their code in a way that avoids

data-dependent memory accesses, as suggested in § 3.8.4,

and perhaps provide analysis tools that detect code that

performs data-dependent memory accesses.

The main drawback of the approach described above

is that it is extremely cumbersome. § 3.8.4 describes

that, while it may be possible to write simple pieces of

software in such a way that they do not require data-

dependent memory accesses, there is no known process

that can scale this to large software systems. For example,

each virtual method call in an object-oriented language

results in data-dependent code fetches.

The ISCA 2015 SGX tutorial slides also suggest that

the efforts of removing data-dependent memory accesses

should focus on cryptographic algorithm implementa-

tions, in order to protect the keys that they handle. This

is a terribly misguided suggestion, because cryptographic

key material has no intrinsic value. Attackers derive ben-

efits from obtaining the data that is protected by the keys,

such as medical and financial records.

Some security researchers focus on protecting cryp-

tographic keys because they are the target of today’s

attacks. Unfortunately, it is easy to lose track of the fact

that keys are being attacked simply because they are the

lowest hanging fruit. A system that can only protect

the keys will have a very small positive impact, as the

attackers will simply shift their focus on the algorithms

that process the valuable information, and use the same

software side-channel attacks to obtain that information

directly.

The second drawback of the approach described to-

wards the beginning of this section is that while eliminat-

ing data-dependent memory accesses should thwart the

attacks described in § 6.6.4 and § 6.6.6, the measure may

not be sufficient to prevent the hyper-threading attacks

described in § 6.6.3. The level of sharing between the

two logical processors (LP, § 2.9.4) on the same CPU

110

core is so high that it is possible that a snooping LP can

learn more than the memory access pattern from the other

LP on the same core.

For example, if the number of cycles taken by an inte-

ger ALU to execute a multiplication or division micro-

op (§ 2.10) depends on its inputs, the snooping LP could

learn some information about the numbers multiplied

or divided by the other LP. While this may be a simple

example, it is safe to assume that the Quoting Enclave

will be studied by many motivated attackers, and that any

information leak will be exploited.

7 CONCLUSION

Shortly after we learned about Intel’s Software Guard

Extensions (SGX) initiative, we set out to study it in the

hope of finding a practical solution to its vulnerability

to cache timing attacks. After reading the official SGX

manuals, we were left with more questions than when we

started. The SGX patents filled some of the gaps in the

official documentation, but also revealed Intel’s enclave

licensing scheme, which has troubling implications.

After learning about the SGX implementation and

inferring its design constraints, we discarded our draft

proposals for defending enclave software against cache

timing attacks. We concluded that it would be impossi-

ble to claim to provide this kind of guarantee given the

design constraints and all the unknowns surrounding the

SGX implementation. Instead, we applied the knowledge

that we gained to design Sanctum [38], which is briefly

described in § 4.9.

This paper describes our findings while studying SGX.

We hope that it will help fellow researchers understand

the breadth of issues that need to be considered before

accepting a trusted hardware design as secure. We also

hope that our work will prompt the research community

to expect more openness from the vendors who ask us to

trust their hardware.

8 ACKNOWLEDGEMENTS

Funding for this research was partially provided by the

National Science Foundation under contract number

CNS-1413920.

REFERENCES

[1] FIPS 140-2 Consolidated Validation Certificate No.

0003. 2011.

[2] IBM 4765 Cryptographic Coprocessor Security Module

- Security Policy. Dec 2012.

[3] Sha1 deprecation policy. http://blogs.

technet.com/b/pki/archive/2013/11/

12/sha1-deprecation-policy.aspx, 2013.

[Online; accessed 4-May-2015].

[4] 7-zip lzma benchmark: Intel haswell. http://www.

7-cpu.com/cpu/Haswell.html, 2014. [On-

line; accessed 10-Februrary-2015].

[5] Bios freedom status. https://puri.sm/posts/

bios-freedom-status/, Nov 2014. [Online; ac-

cessed 2-Dec-2015].

[6] Gradually sunsetting sha-1. http://

googleonlinesecurity.blogspot.com/

2014/09/gradually-sunsetting-sha-1.

html, 2014. [Online; accessed 4-May-2015].

[7] Ipc2 hardware specification. http://fit-pc.

com/download/intense-pc2/documents/

ipc2-hw-specification.pdf, Sep 2014.

[Online; accessed 2-Dec-2015].

[8] Linux kernel: Cve security vulnerabilities, versions

and detailed reports. http://www.cvedetails.

com/product/47/Linux-Linux-Kernel.

html?vendor_id=33, 2014. [Online; accessed

27-April-2015].

[9] Nist’s policy on hash functions. http://csrc.

nist.gov/groups/ST/hash/policy.html,

2014. [Online; accessed 4-May-2015].

[10] Xen: Cve security vulnerabilities, versions and de-

tailed reports. http://www.cvedetails.com/

product/23463/XEN-XEN.html?vendor_

id=6276, 2014. [Online; accessed 27-April-2015].

[11] Xen project software overview. http:

//wiki.xen.org/wiki/Xen_Project_

Software_Overview, 2015. [Online; accessed

27-April-2015].

[12] Seth Abraham. Time to revisit rep;movs -

comment. https://software.intel.com/

en-us/forums/topic/275765, Aug 2006. [On-

line; accessed 23-January-2015].

[13] Tiago Alves and Don Felton. Trustzone: Integrated

hardware and software security. Information Quarterly,

3(4):18–24, 2004.

[14] Ittai Anati, Shay Gueron, Simon P Johnson, and Vin-

cent R Scarlata. Innovative technology for cpu based

attestation and sealing. In Proceedings of the 2nd In-

ternational Workshop on Hardware and Architectural

Support for Security and Privacy, HASP, volume 13,

2013.

[15] Ross Anderson. Security engineering: A guide to build-

ing dependable distributed systems. Wiley, 2001.

[16] Sebastian Anthony. Who actually develops

linux? the answer might surprise you. http:

//www.extremetech.com/computing/

175919-who-actually-develops-linux,

2014. [Online; accessed 27-April-2015].

[17] ARM Limited. AMBA R© AXI Protocol, Mar 2004. Ref-

erence no. IHI 0022B, IHI 0024B, AR500-DA-10004.

111

http://blogs.technet.com/b/pki/archive/2013/11/12/sha1-deprecation-policy.aspx
http://blogs.technet.com/b/pki/archive/2013/11/12/sha1-deprecation-policy.aspx
http://blogs.technet.com/b/pki/archive/2013/11/12/sha1-deprecation-policy.aspx
http://www.7-cpu.com/cpu/Haswell.html
http://www.7-cpu.com/cpu/Haswell.html
https://puri.sm/posts/bios-freedom-status/
https://puri.sm/posts/bios-freedom-status/
http://googleonlinesecurity.blogspot.com/2014/09/gradually-sunsetting-sha-1.html
http://googleonlinesecurity.blogspot.com/2014/09/gradually-sunsetting-sha-1.html
http://googleonlinesecurity.blogspot.com/2014/09/gradually-sunsetting-sha-1.html
http://googleonlinesecurity.blogspot.com/2014/09/gradually-sunsetting-sha-1.html
http://fit-pc.com/download/intense-pc2/documents/ipc2-hw-specification.pdf
http://fit-pc.com/download/intense-pc2/documents/ipc2-hw-specification.pdf
http://fit-pc.com/download/intense-pc2/documents/ipc2-hw-specification.pdf
http://www.cvedetails.com/product/47/Linux-Linux-Kernel.html?vendor_id=33
http://www.cvedetails.com/product/47/Linux-Linux-Kernel.html?vendor_id=33
http://www.cvedetails.com/product/47/Linux-Linux-Kernel.html?vendor_id=33
http://csrc.nist.gov/groups/ST/hash/policy.html
http://csrc.nist.gov/groups/ST/hash/policy.html
http://www.cvedetails.com/product/23463/XEN-XEN.html?vendor_id=6276
http://www.cvedetails.com/product/23463/XEN-XEN.html?vendor_id=6276
http://www.cvedetails.com/product/23463/XEN-XEN.html?vendor_id=6276
http://wiki.xen.org/wiki/Xen_Project_Software_Overview
http://wiki.xen.org/wiki/Xen_Project_Software_Overview
http://wiki.xen.org/wiki/Xen_Project_Software_Overview
https://software.intel.com/en-us/forums/topic/275765
https://software.intel.com/en-us/forums/topic/275765
http://www.extremetech.com/computing/175919-who-actually-develops-linux
http://www.extremetech.com/computing/175919-who-actually-develops-linux
http://www.extremetech.com/computing/175919-who-actually-develops-linux

[18] ARM Limited. ARM Security Technology Building

a Secure System using TrustZone R© Technology, Apr

2009. Reference no. PRD29-GENC-009492C.

[19] Sebastian Banescu. Cache timing attacks. 2011. [On-

line; accessed 26-January-2014].

[20] Elaine Barker, William Barker, William Burr, William

Polk, and Miles Smid. Recommendation for key man-

agement part 1: General (revision 3). Federal Informa-

tion Processing Standards (FIPS) Special Publications

(SP), 800-57, Jul 2012.

[21] Elaine Barker, William Barker, William Burr, William

Polk, and Miles Smid. Secure hash standard (shs).

Federal Information Processing Standards (FIPS) Pub-

lications (PUBS), 180-4, Aug 2015.

[22] Friedrich Beck. Integrated Circuit Failure Analysis: a

Guide to Preparation Techniques. John Wiley & Sons,

1998.

[23] Daniel Bleichenbacher. Chosen ciphertext attacks

against protocols based on the rsa encryption standard

pkcs# 1. In Advances in Cryptology CRYPTO’98,

pages 1–12. Springer, 1998.

[24] D.D. Boggs and S.D. Rodgers. Microprocessor with

novel instruction for signaling event occurrence and

for providing event handling information in response

thereto, 1997. US Patent 5,625,788.

[25] Joseph Bonneau and Ilya Mironov. Cache-collision

timing attacks against aes. In Cryptographic Hardware

and Embedded Systems-CHES 2006, pages 201–215.

Springer, 2006.

[26] Ernie Brickell and Jiangtao Li. Enhanced privacy id

from bilinear pairing. IACR Cryptology ePrint Archive,

2009.

[27] Billy Bob Brumley and Nicola Tuveri. Remote tim-

ing attacks are still practical. In Computer Security–

ESORICS 2011, pages 355–371. Springer, 2011.

[28] David Brumley and Dan Boneh. Remote timing at-

tacks are practical. Computer Networks, 48(5):701–716,

2005.

[29] John Butterworth, Corey Kallenberg, Xeno Kovah, and

Amy Herzog. Bios chronomancy: Fixing the core root

of trust for measurement. In Proceedings of the 2013

ACM SIGSAC conference on Computer & Communica-

tions Security, pages 25–36. ACM, 2013.

[30] J Lawrence Carter and Mark N Wegman. Universal

classes of hash functions. In Proceedings of the 9th an-

nual ACM Symposium on Theory of Computing, pages

106–112. ACM, 1977.

[31] David Champagne and Ruby B Lee. Scalable architec-

tural support for trusted software. In High Performance

Computer Architecture (HPCA), 2010 IEEE 16th Inter-

national Symposium on, pages 1–12. IEEE, 2010.

[32] Daming D Chen and Gail-Joon Ahn. Security analysis

of x86 processor microcode. 2014. [Online; accessed

7-January-2015].

[33] Haogang Chen, Yandong Mao, Xi Wang, Dong Zhou,

Nickolai Zeldovich, and M Frans Kaashoek. Linux

kernel vulnerabilities: State-of-the-art defenses and

open problems. In Proceedings of the Second Asia-

Pacific Workshop on Systems, page 5. ACM, 2011.

[34] Lily Chen. Recommendation for key derivation using

pseudorandom functions. Federal Information Pro-

cessing Standards (FIPS) Special Publications (SP),

800-108, Oct 2009.

[35] Coreboot. Developer manual, Sep 2014. [Online; ac-

cessed 4-March-2015].

[36] M.P. Cornaby and B. Chaffin. Microinstruction pointer

stack including speculative pointers for out-of-order

execution, 2007. US Patent 7,231,511.

[37] Intel Corporation. Intel R© Xeon R© Processor E5 v3

Family Uncore Performance Monitoring Reference

Manual, Sep 2014. Reference no. 331051-001.

[38] Victor Costan, Ilia Lebedev, and Srinivas Devadas.

Sanctum: Minimal hardware extensions for strong soft-

ware isolation. Cryptology ePrint Archive, Report

2015/564, 2015.

[39] J. Daemen and V. Rijmen. Aes proposal: Rijndael, aes

algorithm submission, Sep 1999.

[40] S.M. Datta and M.J. Kumar. Technique for providing

secure firmware, 2013. US Patent 8,429,418.

[41] S.M. Datta, V.J. Zimmer, and M.A. Rothman. System

and method for trusted early boot flow, 2010. US Patent

7,752,428.

[42] Pete Dice. Booting an intel architecture system, part

i: Early initialization. Dr. Dobb’s, Dec 2011. [Online;

accessed 2-Dec-2015].

[43] Whitfield Diffie and Martin E Hellman. New directions

in cryptography. Information Theory, IEEE Transac-

tions on, 22(6):644–654, 1976.

[44] Loı̈c Duflot, Daniel Etiemble, and Olivier Grumelard.

Using cpu system management mode to circumvent op-

erating system security functions. CanSecWest/core06,

2006.

[45] Morris Dworkin. Recommendation for block cipher

modes of operation: Methods and techniques. Fed-

eral Information Processing Standards (FIPS) Special

Publications (SP), 800-38A, Dec 2001.

[46] Morris Dworkin. Recommendation for block cipher

modes of operation: The cmac mode for authentica-

tion. Federal Information Processing Standards (FIPS)

Special Publications (SP), 800-38B, May 2005.

[47] Morris Dworkin. Recommendation for block cipher

modes of operation: Galois/counter mode (gcm) and

gmac. Federal Information Processing Standards

(FIPS) Special Publications (SP), 800-38D, Nov 2007.

[48] D. Eastlake and P. Jones. RFC 3174: US Secure Hash

Algorithm 1 (SHA1). Internet RFCs, 2001.

[49] Shawn Embleton, Sherri Sparks, and Cliff C Zou. Smm

rootkit: a new breed of os independent malware. Secu-

112

rity and Communication Networks, 2010.

[50] Dmitry Evtyushkin, Jesse Elwell, Meltem Ozsoy,

Dmitry Ponomarev, Nael Abu Ghazaleh, and Ryan

Riley. Iso-x: A flexible architecture for hardware-

managed isolated execution. In Microarchitecture (MI-

CRO), 2014 47th annual IEEE/ACM International Sym-

posium on, pages 190–202. IEEE, 2014.

[51] Niels Ferguson, Bruce Schneier, and Tadayoshi Kohno.

Cryptography Engineering: Design Principles and

Practical Applications. John Wiley & Sons, 2011.

[52] Christopher W Fletcher, Marten van Dijk, and Srinivas

Devadas. A secure processor architecture for encrypted

computation on untrusted programs. In Proceedings

of the Seventh ACM Workshop on Scalable Trusted

Computing, pages 3–8. ACM, 2012.

[53] Agner Fog. Instruction tables - lists of instruction laten-

cies, throughputs and micro-operation breakdowns for

intel, amd and via cpus. Dec 2014. [Online; accessed

23-January-2015].

[54] Andrew Furtak, Yuriy Bulygin, Oleksandr Bazhaniuk,

John Loucaides, Alexander Matrosov, and Mikhail

Gorobets. Bios and secure boot attacks uncovered.

The 10th ekoparty Security Conference, 2014. [Online;

accessed 22-October-2015].

[55] William Futral and James Greene. Intel R© Trusted

Execution Technology for Server Platforms. Apress

Open, 2013.

[56] Blaise Gassend, Dwaine Clarke, Marten Van Dijk, and

Srinivas Devadas. Silicon physical random functions.

In Proceedings of the 9th ACM Conference on Com-

puter and Communications Security, pages 148–160.

ACM, 2002.

[57] Blaise Gassend, G Edward Suh, Dwaine Clarke, Marten

Van Dijk, and Srinivas Devadas. Caches and hash

trees for efficient memory integrity verification. In

Proceedings of the 9th International Symposium on

High-Performance Computer Architecture, pages 295–

306. IEEE, 2003.

[58] Daniel Genkin, Lev Pachmanov, Itamar Pipman, and

Eran Tromer. Stealing keys from pcs using a radio:

Cheap electromagnetic attacks on windowed exponen-

tiation. Cryptology ePrint Archive, Report 2015/170,

2015.

[59] Daniel Genkin, Itamar Pipman, and Eran Tromer. Get

your hands off my laptop: Physical side-channel key-

extraction attacks on pcs. Cryptology ePrint Archive,

Report 2014/626, 2014.

[60] Daniel Genkin, Adi Shamir, and Eran Tromer. Rsa key

extraction via low-bandwidth acoustic cryptanalysis.

Cryptology ePrint Archive, Report 2013/857, 2013.

[61] Craig Gentry. A fully homomorphic encryption scheme.

PhD thesis, Stanford University, 2009.

[62] R.T. George, J.W. Brandt, K.S. Venkatraman, and S.P.

Kim. Dynamically partitioning pipeline resources,

2009. US Patent 7,552,255.

[63] A. Glew, G. Hinton, and H. Akkary. Method and ap-

paratus for performing page table walks in a micropro-

cessor capable of processing speculative instructions,

1997. US Patent 5,680,565.

[64] A.F. Glew, H. Akkary, R.P. Colwell, G.J. Hinton, D.B.

Papworth, and M.A. Fetterman. Method and apparatus

for implementing a non-blocking translation lookaside

buffer, 1996. US Patent 5,564,111.

[65] Oded Goldreich. Towards a theory of software protec-

tion and simulation by oblivious rams. In Proceedings

of the 19th annual ACM symposium on Theory of Com-

puting, pages 182–194. ACM, 1987.

[66] J.R. Goodman and H.H.J. Hum. Mesif: A two-hop

cache coherency protocol for point-to-point intercon-

nects. 2009.

[67] K.C. Gotze, G.M. Iovino, and J. Li. Secure provisioning

of secret keys during integrated circuit manufacturing,

2014. US Patent App. 13/631,512.

[68] K.C. Gotze, J. Li, and G.M. Iovino. Fuse attestation to

secure the provisioning of secret keys during integrated

circuit manufacturing, 2014. US Patent 8,885,819.

[69] Joe Grand. Advanced hardware hacking techniques, Jul

2004.

[70] David Grawrock. Dynamics of a Trusted Platform: A

building block approach. Intel Press, 2009.

[71] Trusted Computing Group. Tpm

main specification. http://www.

trustedcomputinggroup.org/resources/

tpm_main_specification, 2003.

[72] Daniel Gruss, Clémentine Maurice, and Stefan Man-

gard. Rowhammer. js: A remote software-induced fault

attack in javascript. CoRR, abs/1507.06955, 2015.

[73] Shay Gueron. Quick verification of rsa signatures. In

8th International Conference on Information Technol-

ogy: New Generations (ITNG), pages 382–386. IEEE,

2011.

[74] Shay Gueron. A memory encryption engine suitable for

general purpose processors. Cryptology ePrint Archive,

Report 2016/204, 2016.

[75] Ben Hawkes. Security analysis of x86 processor mi-

crocode. 2012. [Online; accessed 7-January-2015].

[76] John L Hennessy and David A Patterson. Computer

Architecture - a Quantitative Approach (5 ed.). Mogran

Kaufmann, 2012.

[77] Christoph Herbst, Elisabeth Oswald, and Stefan Man-

gard. An aes smart card implementation resistant to

power analysis attacks. In Applied cryptography and

Network security, pages 239–252. Springer, 2006.

[78] G. Hildesheim, I. Anati, H. Shafi, S. Raikin, G. Gerzon,

U.R. Savagaonkar, C.V. Rozas, F.X. McKeen, M.A.

Goldsmith, and D. Prashant. Apparatus and method

for page walk extension for enhanced security checks,

2014. US Patent App. 13/730,563.

113

http://www.trustedcomputinggroup.org/resources/tpm_main_specification
http://www.trustedcomputinggroup.org/resources/tpm_main_specification
http://www.trustedcomputinggroup.org/resources/tpm_main_specification

[79] Matthew Hoekstra, Reshma Lal, Pradeep Pappachan,

Vinay Phegade, and Juan Del Cuvillo. Using innovative

instructions to create trustworthy software solutions.

In Proceedings of the 2nd International Workshop on

Hardware and Architectural Support for Security and

Privacy, HASP, volume 13, 2013.

[80] Gael Hofemeier. Intel manageability firmware recovery

agent. Mar 2013. [Online; accessed 2-Dec-2015].

[81] George Hotz. Ps3 glitch hack. 2010. [Online; accessed

7-January-2015].

[82] Andrew Huang. Hacking the Xbox: an Introduction to

Reverse Engineering. No Starch Press, 2003.

[83] C.J. Hughes, Y.K. Chen, M. Bomb, J.W. Brandt, M.J.

Buxton, M.J. Charney, S. Chennupaty, J. Corbal, M.G.

Dixon, M.B. Girkar, et al. Gathering and scattering

multiple data elements, 2013. US Patent 8,447,962.

[84] IEEE Computer Society. IEEE Standard for Ethernet,

Dec 2012. IEEE Std. 802.3-2012.

[85] Mehmet Sinan Inci, Berk Gulmezoglu, Gorka Irazoqui,

Thomas Eisenbarth, and Berk Sunar. Seriously, get off

my cloud! cross-vm rsa key recovery in a public cloud.

Cryptology ePrint Archive, Report 2015/898, 2015.

[86] Intel Corporation. Intel R© Processor Serial Number,

Mar 1999. Order no. 245125-001.

[87] Intel Corporation. Intel R© architecture Platform Basics,

Sep 2010. Reference no. 324377.

[88] Intel Corporation. Intel R© Core 2 Duo and Intel R© Core

2 Solo Processor for Intel R© Centrino R© Duo Processor

Technology Intel R© Celeron R© Processor 500 Series -

Specification Update, Dec 2010. Reference no. 314079-

026.

[89] Intel Corporation. Intel R© Trusted Execution Technol-

ogy (Intel R© TXT) LAB Handout, 2010. [Online; ac-

cessed 2-July-2015].

[90] Intel Corporation. Intel R© Xeon R© Processor 7500 Se-

ries Uncore Programming Guide, Mar 2010. Reference

no. 323535-001.

[91] Intel Corporation. An Introduction to the Intel R© Quick-

Path Interconnect, Mar 2010. Reference no. 323535-

001.

[92] Intel Corporation. Minimal Intel R© Architecture Boot

LoaderBare Bones Functionality Required for Booting

an Intel R© Architecture Platform, Jan 2010. Reference

no. 323246.

[93] Intel Corporation. Intel R© 7 Series Family - Intel R©
Management Engine Firmware 8.1 - 1.5MB Firmware

Bring Up Guide, Jul 2012. Revision 8.1.0.1248 - PV

Release.

[94] Intel Corporation. Intel R© Xeon R© Processor E5-2600

Product Family Uncore Performance Monitoring Guide,

Mar 2012. Reference no. 327043-001.

[95] Intel Corporation. Software Guard Extensions Program-

ming Reference, 2013. Reference no. 329298-001US.

[96] Intel Corporation. Intel R© 64 and IA-32 Architectures

Optimization Reference Manual, Sep 2014. Reference

no. 248966-030.

[97] Intel Corporation. Intel R© Xeon R© Processor 7500 Se-

ries Datasheet - Volume Two, Mar 2014. Reference no.

329595-002.

[98] Intel Corporation. Intel R© Xeon R© Processor E7 v2

2800/4800/8800 Product Family Datasheet - Volume

Two, Mar 2014. Reference no. 329595-002.

[99] Intel Corporation. Software Guard Extensions Program-

ming Reference, 2014. Reference no. 329298-002US.

[100] Intel Corporation. Intel R© 100 Series Chipset Family

Platform Controller Hub (PCH) Datasheet - Volume

One, Aug 2015. Reference no. 332690-001EN.

[101] Intel Corporation. Intel R© 64 and IA-32 Architectures

Software Developer’s Manual, Sep 2015. Reference no.

325462-056US.

[102] Intel Corporation. Intel R© C610 Series Chipset and

Intel R© X99 Chipset Platform Controller Hub (PCH)

Datasheet, Oct 2015. Reference no. 330788-003.

[103] Intel Corporation. Intel R© Software Guard Extensions

(Intel R© SGX), Jun 2015. Reference no. 332680-002.

[104] Intel Corporation. Intel R© Xeon R© Processor 5500 Se-

ries - Specification Update, 2 2015. Reference no.

321324-018US.

[105] Intel Corporation. Intel R© Xeon R© Processor E5-1600,

E5-2400, and E5-2600 v3 Product Family Datasheet -

Volume Two, Jan 2015. Reference no. 330784-002.

[106] Intel Corporation. Intel R© Xeon R© Processor E5 Prod-

uct Family - Specification Update, Jan 2015. Reference

no. 326150-018.

[107] Intel Corporation. Mobile 4th Generation Intel R©
Core R© Processor Family I/O Datasheet, Feb 2015.

Reference no. 329003-003.

[108] Bruce Jacob and Trevor Mudge. Virtual memory: Is-

sues of implementation. Computer, 31(6):33–43, 1998.

[109] Simon Johnson, Vinnie Scarlata, Carlos Rozas,

Ernie Brickell, and Frank Mckeen. Intel R© soft-

ware guard extensions: Epid provisioning and

attestation services. https://software.

intel.com/en-us/blogs/2016/03/09/

intel-sgx-epid-provisioning-and-attestation-services

Mar 2016. [Online; accessed 21-Mar-2016].

[110] Simon P Johnson, Uday R Savagaonkar, Vincent R

Scarlata, Francis X McKeen, and Carlos V Rozas. Tech-

nique for supporting multiple secure enclaves, Dec

2010. US Patent 8,972,746.

[111] Jakob Jonsson and Burt Kaliski. RFC 3447: Public-Key

Cryptography Standards (PKCS) #1: RSA Cryptogra-

phy Specifications Version 2.1. Internet RFCs, Feb

2003.

[112] Burt Kaliski. RFC 2313: PKCS #1: RSA Encryption

Version 1.5. Internet RFCs, Mar 1998.

[113] Burt Kaliski and Jessica Staddon. RFC 2437: PKCS

#1: RSA Encryption Version 2.0. Internet RFCs, Oct

114

https://software.intel.com/en-us/blogs/2016/03/09/intel-sgx-epid-provisioning-and-attestation-services
https://software.intel.com/en-us/blogs/2016/03/09/intel-sgx-epid-provisioning-and-attestation-services
https://software.intel.com/en-us/blogs/2016/03/09/intel-sgx-epid-provisioning-and-attestation-services

1998.

[114] Corey Kallenberg, Xeno Kovah, John Butterworth, and

Sam Cornwell. Extreme privilege escalation on win-

dows 8/uefi systems, 2014.

[115] Emilia Käsper and Peter Schwabe. Faster and timing-

attack resistant aes-gcm. In Cryptographic Hard-

ware and Embedded Systems-CHES 2009, pages 1–17.

Springer, 2009.

[116] Jonathan Katz and Yehuda Lindell. Introduction to

modern cryptography. CRC Press, 2014.

[117] Richard E Kessler and Mark D Hill. Page placement

algorithms for large real-indexed caches. ACM Trans-

actions on Computer Systems (TOCS), 10(4):338–359,

1992.

[118] Taesoo Kim and Nickolai Zeldovich. Practical and

effective sandboxing for non-root users. In USENIX

Annual Technical Conference, pages 139–144, 2013.

[119] Yoongu Kim, Ross Daly, Jeremie Kim, Chris Fallin,

Ji Hye Lee, Donghyuk Lee, Chris Wilkerson, Konrad

Lai, and Onur Mutlu. Flipping bits in memory with-

out accessing them: An experimental study of dram

disturbance errors. In Proceeding of the 41st annual

International Symposium on Computer Architecuture,

pages 361–372. IEEE Press, 2014.

[120] L.A. Knauth and P.J. Irelan. Apparatus and method

for providing eventing ip and source data address in

a statistical sampling infrastructure, 2014. US Patent

App. 13/976,613.

[121] N. Koblitz. Elliptic curve cryptosystems. Mathematics

of Computation, 48(177):203–209, 1987.

[122] Paul Kocher, Joshua Jaffe, and Benjamin Jun. Dif-

ferential power analysis. In Advances in Cryptology

(CRYPTO), pages 388–397. Springer, 1999.

[123] Paul C Kocher. Timing attacks on implementations of

diffie-hellman, rsa, dss, and other systems. In Advances

in CryptologyCRYPTO96, pages 104–113. Springer,

1996.

[124] Hugo Krawczyk, Ran Canetti, and Mihir Bellare.

Hmac: Keyed-hashing for message authentication.

1997.

[125] Markus G Kuhn. Electromagnetic eavesdropping risks

of flat-panel displays. In Privacy Enhancing Technolo-

gies, pages 88–107. Springer, 2005.

[126] Tsvika Kurts, Guillermo Savransky, Jason Ratner, Eilon

Hazan, Daniel Skaba, Sharon Elmosnino, and Gee-

yarpuram N Santhanakrishnan. Generic debug external

connection (gdxc) for high integration integrated cir-

cuits, 2011. US Patent 8,074,131.

[127] David Levinthal. Performance analysis guide for

intel R© core i7 processor and intel R© xeon 5500

processors. https://software.intel.com/

sites/products/collateral/hpc/vtune/

performance_analysis_guide.pdf, 2010.

[Online; accessed 26-January-2015].

[128] David Lie, Chandramohan Thekkath, Mark Mitchell,

Patrick Lincoln, Dan Boneh, John Mitchell, and Mark

Horowitz. Architectural support for copy and tamper

resistant software. ACM SIGPLAN Notices, 35(11):168–

177, 2000.

[129] Jiang Lin, Qingda Lu, Xiaoning Ding, Zhao Zhang,

Xiaodong Zhang, and P Sadayappan. Gaining in-

sights into multicore cache partitioning: Bridging the

gap between simulation and real systems. In 14th In-

ternational IEEE Symposium on High Performance

Computer Architecture (HPCA), pages 367–378. IEEE,

2008.

[130] Barbara Liskov and Stephen Zilles. Programming with

abstract data types. In ACM Sigplan Notices, volume 9,

pages 50–59. ACM, 1974.

[131] Fangfei Liu, Yuval Yarom, Qian Ge, Gernot Heiser, and

Ruby B Lee. Last-level cache side-channel attacks are

practical. In Security and Privacy (SP), 2015 IEEE

Symposium on, pages 143–158. IEEE, 2015.

[132] Martin Maas, Eric Love, Emil Stefanov, Mohit Tiwari,

Elaine Shi, Krste Asanovic, John Kubiatowicz, and

Dawn Song. Phantom: Practical oblivious computation

in a secure processor. In Proceedings of the 2013 ACM

SIGSAC conference on Computer & communications

security, pages 311–324. ACM, 2013.

[133] R. Maes, P. Tuyls, and I. Verbauwhede. Low-Overhead

Implementation of a Soft Decision Helper Data Algo-

rithm for SRAM PUFs. In Cryptographic Hardware

and Embedded Systems (CHES), pages 332–347, 2009.

[134] James Manger. A chosen ciphertext attack on rsa op-

timal asymmetric encryption padding (oaep) as stan-

dardized in pkcs# 1 v2.0. In Advances in Cryptology

CRYPTO 2001, pages 230–238. Springer, 2001.

[135] Clmentine Maurice, Nicolas Le Scouarnec, Christoph

Neumann, Olivier Heen, and Aurlien Francillon. Re-

verse engineering intel last-level cache complex ad-

dressing using performance counters. In Proceedings

of the 18th International Symposium on Research in

Attacks, Intrusions and Defenses (RAID), 2015.

[136] Jonathan M McCune, Yanlin Li, Ning Qu, Zongwei

Zhou, Anupam Datta, Virgil Gligor, and Adrian Perrig.

Trustvisor: Efficient tcb reduction and attestation. In

Security and Privacy (SP), 2010 IEEE Symposium on,

pages 143–158. IEEE, 2010.

[137] David McGrew and John Viega. The galois/counter

mode of operation (gcm). 2004. [Online; accessed

28-December-2015].

[138] Francis X McKeen, Carlos V Rozas, Uday R Sava-

gaonkar, Simon P Johnson, Vincent Scarlata, Michael A

Goldsmith, Ernie Brickell, Jiang Tao Li, Howard C Her-

bert, Prashant Dewan, et al. Method and apparatus to

provide secure application execution, Dec 2009. US

Patent 9,087,200.

[139] Frank McKeen, Ilya Alexandrovich, Alex Berenzon,

115

https://software.intel.com/sites/products/collateral/hpc/vtune/performance_analysis_guide.pdf
https://software.intel.com/sites/products/collateral/hpc/vtune/performance_analysis_guide.pdf
https://software.intel.com/sites/products/collateral/hpc/vtune/performance_analysis_guide.pdf

Carlos V Rozas, Hisham Shafi, Vedvyas Shanbhogue,

and Uday R Savagaonkar. Innovative instructions and

software model for isolated execution. HASP, 13:10,

2013.

[140] Michael Naehrig, Kristin Lauter, and Vinod Vaikun-

tanathan. Can homomorphic encryption be practical?

In Proceedings of the 3rd ACM workshop on Cloud

computing security workshop, pages 113–124. ACM,

2011.

[141] National Institute of Standards and Technology (NIST).

The advanced encryption standard (aes). Federal In-

formation Processing Standards (FIPS) Publications

(PUBS), 197, Nov 2001.

[142] National Institute of Standards and Technology (NIST).

The digital signature standard (dss). Federal Informa-

tion Processing Standards (FIPS) Processing Standards

Publications (PUBS), 186-4, Jul 2013.

[143] National Security Agency (NSA) Central Security Ser-

vice (CSS). Cryptography today on suite b phase-

out. https://www.nsa.gov/ia/programs/

suiteb_cryptography/, Aug 2015. [Online; ac-

cessed 28-December-2015].

[144] M.S. Natu, S. Datta, J. Wiedemeier, J.R. Vash, S. Kotta-

palli, S.P. Bobholz, and A. Baum. Supporting advanced

ras features in a secured computing system, 2012. US

Patent 8,301,907.

[145] Yossef Oren, Vasileios P Kemerlis, Simha Sethumadha-

van, and Angelos D Keromytis. The spy in the sandbox

– practical cache attacks in javascript. arXiv preprint

arXiv:1502.07373, 2015.

[146] Dag Arne Osvik, Adi Shamir, and Eran Tromer. Cache

attacks and countermeasures: the case of aes. In Topics

in Cryptology–CT-RSA 2006, pages 1–20. Springer,

2006.

[147] Scott Owens, Susmit Sarkar, and Peter Sewell. A better

x86 memory model: x86-tso (extended version). Uni-

versity of Cambridge, Computer Laboratory, Technical

Report, (UCAM-CL-TR-745), 2009.

[148] Emmanuel Owusu, Jun Han, Sauvik Das, Adrian Perrig,

and Joy Zhang. Accessory: password inference using

accelerometers on smartphones. In Proceedings of the

Twelfth Workshop on Mobile Computing Systems &

Applications, page 9. ACM, 2012.

[149] D.B. Papworth, G.J. Hinton, M.A. Fetterman, R.P. Col-

well, and A.F. Glew. Exception handling in a processor

that performs speculative out-of-order instruction exe-

cution, 1999. US Patent 5,987,600.

[150] David A Patterson and John L Hennessy. Computer

Organization and Design: the hardware/software inter-

face. Morgan Kaufmann, 2013.

[151] P. Pessl, D. Gruss, C. Maurice, M. Schwarz, and S. Man-

gard. Reverse engineering intel dram addressing and

exploitation. ArXiv e-prints, Nov 2015.

[152] Stefan M Petters and Georg Farber. Making worst case

execution time analysis for hard real-time tasks on state

of the art processors feasible. In Sixth International

Conference on Real-Time Computing Systems and Ap-

plications, pages 442–449. IEEE, 1999.

[153] S.A. Qureshi and M.O. Nicholes. System and method

for using a firmware interface table to dynamically load

an acpi ssdt, 2006. US Patent 6,990,576.

[154] S. Raikin, O. Hamama, R.S. Chappell, C.B. Rust, H.S.

Luu, L.A. Ong, and G. Hildesheim. Apparatus and

method for a multiple page size translation lookaside

buffer (tlb), 2014. US Patent App. 13/730,411.

[155] S. Raikin and R. Valentine. Gather cache architecture,

2014. US Patent 8,688,962.

[156] Stefan Reinauer. x86 intel: Add firmware interface

table support. http://review.coreboot.org/

#/c/2642/, 2013. [Online; accessed 2-July-2015].

[157] Thomas Ristenpart, Eran Tromer, Hovav Shacham, and

Stefan Savage. Hey, you, get off of my cloud: Exploring

information leakage in third-party compute clouds. In

Proceedings of the 16th ACM Conference on Computer

and Communications Security, pages 199–212. ACM,

2009.

[158] RL Rivest, A. Shamir, and L. Adleman. A method for

obtaining digital signatures and public-key cryptosys-

tems. Communications of the ACM, 21(2):120–126,

1978.

[159] S.D. Rodgers, K.K. Tiruvallur, M.W. Rhodehamel, K.G.

Konigsfeld, A.F. Glew, H. Akkary, M.A. Karnik, and

J.A. Brayton. Method and apparatus for performing op-

erations based upon the addresses of microinstructions,

1997. US Patent 5,636,374.

[160] S.D. Rodgers, R. Vidwans, J. Huang, M.A. Fetterman,

and K. Huck. Method and apparatus for generating

event handler vectors based on both operating mode

and event type, 1999. US Patent 5,889,982.

[161] M. Rosenblum and T. Garfinkel. Virtual machine mon-

itors: current technology and future trends. Computer,

38(5):39–47, May 2005.

[162] Xiaoyu Ruan. Platform Embedded Security Technology

Revealed. Apress, 2014.

[163] Joanna Rutkowska. Intel x86 considered harmful. Oct

2015. [Online; accessed 2-Nov-2015].

[164] Joanna Rutkowska and Rafał Wojtczuk. Preventing

and detecting xen hypervisor subversions. Blackhat

Briefings USA, 2008.

[165] Jerome H Saltzer and M Frans Kaashoek. Principles

of Computer System Design: An Introduction. Morgan

Kaufmann, 2009.

[166] Mark Seaborn and Thomas Dullien. Exploit-

ing the dram rowhammer bug to gain kernel

privileges. http://googleprojectzero.

blogspot.com/2015/03/

exploiting-dram-rowhammer-bug-to-gain.

html, Mar 2015. [Online; accessed 9-March-2015].

116

https://www.nsa.gov/ia/programs/suiteb_cryptography/
https://www.nsa.gov/ia/programs/suiteb_cryptography/
http://review.coreboot.org/#/c/2642/
http://review.coreboot.org/#/c/2642/
http://googleprojectzero.blogspot.com/2015/03/exploiting-dram-rowhammer-bug-to-gain.html
http://googleprojectzero.blogspot.com/2015/03/exploiting-dram-rowhammer-bug-to-gain.html
http://googleprojectzero.blogspot.com/2015/03/exploiting-dram-rowhammer-bug-to-gain.html
http://googleprojectzero.blogspot.com/2015/03/exploiting-dram-rowhammer-bug-to-gain.html

[167] V. Shanbhogue, J.W. Brandt, and J. Wiedemeier. Pro-

tecting information processing system secrets from de-

bug attacks, 2015. US Patent 8,955,144.

[168] V. Shanbhogue and S.J. Robinson. Enabling virtu-

alization of a processor resource, 2014. US Patent

8,806,104.

[169] Stephen Shankland. Itanium: A cautionary tale. Dec

2005. [Online; accessed 11-February-2015].

[170] Alan Jay Smith. Cache memories. ACM Computing

Surveys (CSUR), 14(3):473–530, 1982.

[171] Sean W Smith, Ron Perez, Steve Weingart, and Vernon

Austel. Validating a high-performance, programmable

secure coprocessor. In 22nd National Information Sys-

tems Security Conference. IBM Thomas J. Watson Re-

search Division, 1999.

[172] Sean W Smith and Steve Weingart. Building a high-

performance, programmable secure coprocessor. Com-

puter Networks, 31(8):831–860, 1999.

[173] Marc Stevens, Pierre Karpman, and Thomas Peyrin.

Free-start collision on full sha-1. Cryptology ePrint

Archive, Report 2015/967, 2015.

[174] G Edward Suh, Dwaine Clarke, Blaise Gassend, Marten

Van Dijk, and Srinivas Devadas. Aegis: architecture for

tamper-evident and tamper-resistant processing. In Pro-

ceedings of the 17th annual international conference

on Supercomputing, pages 160–171. ACM, 2003.

[175] G Edward Suh and Srinivas Devadas. Physical unclon-

able functions for device authentication and secret key

generation. In Proceedings of the 44th annual Design

Automation Conference, pages 9–14. ACM, 2007.

[176] G. Edward Suh, Charles W. O’Donnell, Ishan Sachdev,

and Srinivas Devadas. Design and Implementation of

the AEGIS Single-Chip Secure Processor Using Phys-

ical Random Functions. In Proceedings of the 32nd

ISCA’05. ACM, June 2005.

[177] George Taylor, Peter Davies, and Michael Farmwald.

The tlb slice - a low-cost high-speed address translation

mechanism. SIGARCH Computer Architecture News,

18(2SI):355–363, 1990.

[178] Alexander Tereshkin and Rafal Wojtczuk. Introducing

ring-3 rootkits. Master’s thesis, 2009.

[179] Kris Tiri, Moonmoon Akmal, and Ingrid Verbauwhede.

A dynamic and differential cmos logic with signal in-

dependent power consumption to withstand differential

power analysis on smart cards. In Proceedings of the

28th European Solid-State Circuits Conference (ESS-

CIRC), pages 403–406. IEEE, 2002.

[180] UEFI Forum. Unified Extensible Firmware Interface

Specification, Version 2.5, 2015. [Online; accessed

1-Jul-2015].

[181] Rich Uhlig, Gil Neiger, Dion Rodgers, Amy L Santoni,

Fernando CM Martins, Andrew V Anderson, Steven M

Bennett, Alain Kagi, Felix H Leung, and Larry Smith.

Intel virtualization technology. Computer, 38(5):48–56,

2005.

[182] Wim Van Eck. Electromagnetic radiation from video

display units: an eavesdropping risk? Computers &

Security, 4(4):269–286, 1985.

[183] Amit Vasudevan, Jonathan M McCune, Ning Qu, Leen-

dert Van Doorn, and Adrian Perrig. Requirements for

an integrity-protected hypervisor on the x86 hardware

virtualized architecture. In Trust and Trustworthy Com-

puting, pages 141–165. Springer, 2010.

[184] Sathish Venkataramani. Advanced Board Bring Up -

Power Sequencing Guide for Embedded Intel Archi-

tecture. Intel Corporation, Apr 2011. Reference no.

325268.

[185] Vassilios Ververis. Security evaluation of intel’s active

management technology. 2010.

[186] Filip Wecherowski. A real smm rootkit: Reversing and

hooking bios smi handlers. Phrack Magazine, 13(66),

2009.

[187] Mark N Wegman and J Lawrence Carter. New hash

functions and their use in authentication and set equality.

Journal of Computer and System Sciences, 22(3):265–

279, 1981.

[188] Rafal Wojtczuk and Joanna Rutkowska. Attacking intel

trusted execution technology. Black Hat DC, 2009.

[189] Rafal Wojtczuk and Joanna Rutkowska. Attacking smm

memory via intel cpu cache poisoning. Invisible Things

Lab, 2009.

[190] Rafal Wojtczuk and Joanna Rutkowska. Attacking intel

txt via sinit code execution hijacking, 2011.

[191] Rafal Wojtczuk, Joanna Rutkowska, and Alexander

Tereshkin. Another way to circumvent intel R© trusted

execution technology. Invisible Things Lab, 2009.

[192] Rafal Wojtczuk and Alexander Tereshkin. Attacking

intel R© bios. Invisible Things Lab, 2010.

[193] Y. Wu and M. Breternitz. Genetic algorithm for mi-

crocode compression, 2008. US Patent 7,451,121.

[194] Y. Wu, S. Kim, M. Breternitz, and H. Hum. Compress-

ing and accessing a microcode rom, 2012. US Patent

8,099,587.

[195] Yuanzhong Xu, Weidong Cui, and Marcus Peinado.

Controlled-channel attacks: Deterministic side chan-

nels for untrusted operating systems. In Proceedings

of the 36th IEEE Symposium on Security and Privacy

(Oakland). IEEE Institute of Electrical and Electronics

Engineers, May 2015.

[196] Yuval Yarom and Katrina E Falkner. Flush+ reload: a

high resolution, low noise, l3 cache side-channel attack.

IACR Cryptology ePrint Archive, 2013:448, 2013.

[197] Yuval Yarom, Qian Ge, Fangfei Liu, Ruby B. Lee, and

Gernot Heiser. Mapping the intel last-level cache. Cryp-

tology ePrint Archive, Report 2015/905, 2015.

[198] Bennet Yee. Using secure coprocessors. PhD thesis,

Carnegie Mellon University, 1994.

[199] Marcelo Yuffe, Ernest Knoll, Moty Mehalel, Joseph

117

Shor, and Tsvika Kurts. A fully integrated multi-cpu,

gpu and memory controller 32nm processor. In Solid-

State Circuits Conference Digest of Technical Papers

(ISSCC), 2011 IEEE International, pages 264–266.

IEEE, 2011.

[200] Xiantao Zhang and Yaozu Dong. Optimizing xen vmm

based on intel R© virtualization technology. In Inter-

net Computing in Science and Engineering, 2008. ICI-

CSE’08. International Conference on, pages 367–374.

IEEE, 2008.

[201] Li Zhuang, Feng Zhou, and J Doug Tygar. Keyboard

acoustic emanations revisited. ACM Transactions on

Information and System Security (TISSEC), 13(1):3,

2009.

[202] V.J. Zimmer and S.H. Robinson. Methods and systems

for microcode patching, 2012. US Patent 8,296,528.

[203] V.J. Zimmer and J. Yao. Method and apparatus for

sequential hypervisor invocation, 2012. US Patent

8,321,931.

118

	Overview
	SGX Lightning Tour
	Outline and Troubling Findings

	Computer Architecture Background
	Overview
	Computational Model
	Software Privilege Levels
	Address Spaces
	Address Translation
	Address Translation Concepts
	Address Translation and Virtualization
	Page Table Attributes

	Execution Contexts
	Segment Registers
	Privilege Level Switching
	System Calls
	Faults
	VMX Privilege Level Switching

	A Computer Map
	The Motherboard
	The Intel Management Engine (ME)
	The Processor Die
	The Core

	Out-of-Order and Speculative Execution
	Out-of-Order Execution
	Speculative Execution

	Cache Memories
	Caching Principles
	Cache Organization
	Cache Coherence
	Caching and Memory-Mapped Devices
	Caches and Address Translation

	Interrupts
	Platform Initialization (Booting)
	The UEFI Standard
	SEC on Intel Platforms
	PEI on Intel Platforms

	CPU Microcode
	The Role of Microcode
	Microcode Structure
	Microcode and Address Translation
	Microcode and Booting
	Microcode Updates

	Security Background
	Cryptographic Primitives
	Cryptographic Keys
	Confidentiality
	Integrity
	Freshness

	Cryptographic Constructs
	Certificate Authorities
	Key Agreement Protocols

	Software Attestation Overview
	Authenticated Key Agreement
	The Role of Software Measurement

	Physical Attacks
	Port Attacks
	Bus Tapping Attacks
	Chip Attacks
	Power Analysis Attacks

	Privileged Software Attacks
	Software Attacks on Peripherals
	PCI Express Attacks
	DRAM Attacks
	The Performance Monitoring Side Channel
	Attacks on the Boot Firmware and Intel ME
	Accounting for Software Attacks on Peripherals

	Address Translation Attacks
	Passive Attacks
	Straightforward Active Attacks
	Active Attacks Using Page Swapping
	Active Attacks Based on TLBs

	Cache Timing Attacks
	Theory
	Practical Considerations
	Known Cache Timing Attacks
	Defending against Cache Timing Attacks

	Related Work
	The IBM 4765 Secure Coprocessor
	ARM TrustZone
	The XOM Architecture
	The Trusted Platform Module (TPM)
	Intel's Trusted Execution Technology (TXT)
	The Aegis Secure Processor
	The Bastion Architecture
	Intel SGX in Context
	Sanctum
	Ascend and Phantom

	SGX Programming Model
	SGX Physical Memory Organization
	The Enclave Page Cache (EPC)
	The Enclave Page Cache Map (EPCM)
	The SGX Enclave Control Structure (SECS)

	The Memory Layout of an SGX Enclave
	The Enclave Linear Address Range (ELRANGE)
	SGX Enclave Attributes
	Address Translation for SGX Enclaves
	The Thread Control Structure (TCS)
	The State Save Area (SSA)

	The Life Cycle of an SGX Enclave
	Creation
	Loading
	Initialization
	Teardown

	The Life Cycle of an SGX Thread
	Synchronous Enclave Entry
	Synchronous Enclave Exit
	Asynchronous Enclave Exit (AEX)
	Recovering from an Asynchronous Exit

	EPC Page Eviction
	Page Eviction and the TLBs
	The Version Array (VA)
	Enclave IDs
	Evicting an EPC Page
	Loading an Evicted Page Back into EPC
	Eviction Trees

	SGX Enclave Measurement
	Measuring ECREATE
	Measuring Enclave Attributes
	Measuring EADD
	Measuring EEXTEND
	Measuring EINIT

	SGX Enclave Versioning Support
	Enclave Certificates
	Certificate-Based Enclave Identity
	CPU Security Version Numbers
	Establishing an Enclave's Identity
	Enclave Key Derivation

	SGX Software Attestation
	Local Attestation
	Remote Attestation

	SGX Enclave Launch Control
	Enclave Attributes Access Control
	Licensing
	System Software Can Enforce a Launch Policy
	Enclaves Cannot Damage the Host Computer
	Interaction with Anti-Virus Software

	SGX Analysis
	SGX Implementation Overview
	Execution Core Modifications
	Uncore Modifications
	Microcode Modifications

	SGX Memory Access Protection
	Functional Description
	EPCM Entry Representation
	PMH Hardware Modifications

	SGX Security Check Correctness
	Top-Level Invariant Breakdown
	EPCM Entries Reflect Enclave Author Design
	TLB Entries for ELRANGE Reflect EPCM Contents
	EPCM Entries are Not In TLBs When Modified

	Tracking TLB Flushes
	Enclave Signature Verification
	Analysis of Steps 1 - 4
	Analysis of Steps 5 - 8
	Implementation Requirements

	SGX Security Properties
	Overview
	Physical Attacks
	Privileged Software Attacks
	Memory Mapping Attacks
	Software Attacks on Peripherals
	Cache Timing Attacks
	Software Side-Channel Attacks and SGX

	Conclusion
	Acknowledgements

