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Abstract: Cloud Computing (CC) provides a combination of technologies that allows the user to use
the most resources in the least amount of time and with the least amount of money. CC semantics play
a critical role in ranking heterogeneous data by using the properties of different cloud services and
then achieving the optimal cloud service. Regardless of the efforts made to enable simple access to this
CC innovation, in the presence of various organizations delivering comparative services at varying
cost and execution levels, it is far more difficult to identify the ideal cloud service based on the user’s
requirements. In this research, we propose a Cloud-Services-Ranking Agent (CSRA) for analyzing
cloud services using end-users’ feedback, including Platform as a Service (PaaS), Infrastructure as a
Service (IaaS), and Software as a Service (SaaS), based on ontology mapping and selecting the optimal
service. The proposed CSRA possesses Machine-Learning (ML) techniques for ranking cloud services
using parameters such as availability, security, reliability, and cost. Here, the Quality of Web Service
(QWS) dataset is used, which has seven major cloud services categories, ranked from 0–6, to extract
the required persuasive features through Sequential Minimal Optimization Regression (SMOreg).
The classification outcomes through SMOreg are capable and demonstrate a general accuracy of
around 98.71% in identifying optimum cloud services through the identified parameters. The main
advantage of SMOreg is that the amount of memory required for SMO is linear. The findings show
that our improved model in terms of precision outperforms prevailing techniques such as Multilayer
Perceptron (MLP) and Linear Regression (LR).

Keywords: cloud services; PaaS; IaaS; SaaS; ranking; machine learning; prediction; classification;
sequential minimal optimization regression (SMOreg); multilayer perceptron (MLP); linear regression
(LR)

1. Introduction

Cloud Computing (CC) is a form of internet-based computing in which shared, con-
figurable resources are made accessible to computers and other devices as a service. With
the increasing popularity of CC, the development of high-quality cloud applications has
become a crucial area of research. CC is an architectural style that provides cloud users
with on-demand or pay-per-use access to a shared pool of services and computational
resources [1,2]. Consumers and businesses can save money on capital expenditures and
operating expenses owing to CC. It offers users a network-based environment that enables
the sharing of computations and services independent of location [3].
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With the increasing popularity of service-computing technologies, cloud services have
emerged as essential resources that are commonly employed in the context of software
systems. Using a pay-as-you-go concept, customers can select services that are stored in
cloud data centers [4]. When selecting a service, users usually prioritize their own unique
functional needs. With the increasing scope of services offered by cloud data centers, there
may be multiple potential services that meet the customer’s requirements. Due to the fact
that these candidate services may all match the functional requirements, the user may be
required to evaluate them from a non-functional perspective (considering characteristics
such as availability, security, reliability, and cost, etc.) before making a choice. Among all
the non-functional indicators of cloud services, reliability is arguably the most important
and should thus be the primary factor when selecting services [5–7].

CC is a business model that enables convenient, on-demand network access to a shared
pool of configurable computing resources (e.g., networks, servers, storage, applications,
and services) that can be rapidly provisioned and released with little management effort or
interaction from service providers [8]. Through virtualization, CC can support a huge cus-
tomer base with varying computation needs on the same physical infrastructure. Contrary
to prior paradigms, such as clusters and grid computing, CC is service-oriented; it offers
virtualized resources on demand as quantifiable and billable utilities [9,10]. Consider one’s
experience with email as an example of CC. The email client, whether it be Yahoo!, Gmail,
or Hotmail, manages the hardware and software required to operate one’s personal email
account. Emails are not stored on someone’s physical computer; they are accessed via an
internet connection, which means they are accessible from any location [11,12].

Figure 1 illustrates how, in a CC environment, various accessories such as mobile
phones, personal computers/laptops, and servers are used to share information via frame
relays, routers, and switches [13,14]. Any subscriber with an internet connection can access
the public cloud, as shown in Figure 2. In the simplest terms, public cloud services are
those that are made available to clients via the internet by a third-party service provider.
The moniker ‘public’ does not always imply that it is free, even if it is possible to utilize
it for free or at a low cost. A public cloud does not imply that a user’s data is publicly
accessible; public cloud companies often provide means for their users to manage access to
their own data [15].
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Figure 2. Public cloud computing.

Figure 3 depicts a private cloud that is created for a specific group or organization
and restricts access to that group or organization. A private CC environment shares many
characteristics with a public CC environment, including adaptability and a service-oriented
architecture. The difference between a private cloud and a public cloud is that, with a
private-cloud-based service, data and processes are maintained within the organization,
without the network capacity, security risks, and regulatory requirements that are associated
with public cloud services [16].
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Figure 3. Private cloud computing.

As depicted in Figure 4, a community cloud is a cloud that is shared by two or more
enterprises with comparable cloud requirements. A set of organizations with common
interests, such as specialized security requirements or a shared mission, will manage and
use a community cloud [17].
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PaaS, IaaS, and SaaS are the three service types that comprise the CC concept. PaaS
is a model in which a third-party provider provides hardware and software tools to
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customers via the internet. These tools are typically necessary during the application
development process. PaaS offers an application’s execution environment, such as the
Google App Engine, with point-and-click capabilities that allow non-developers to create
their own web applications [18,19]. Second, in IaaS, online services that provide high-level
Application Programing Interfaces (APIs) are used to access numerous low-level aspects of
the underlying network infrastructure, such as physical computer resources, location, data
partitioning, scaling, security, and backup. Thirdly, SaaS enables consumers to access cloud
service providers’ applications via a web browser that runs on cloud infrastructure. As
a result, end users are not required to download, install, configure, and operate software
applications on their personal computing terminals [20–22].

Providing rankings involves assigning a value to each option and then arranging
them according to that value, with the lowest value representing the best choice. The rank
increases as the value decreases. Rankings of cloud services have been gaining popularity
over time. However, ranking is subtly different, due to the naming convention and existing
cloud infrastructure [23,24]. When there are numerous service providers, selecting a single
CC service can be challenging. It is essential to select the optimal ranking methodology
and to evaluate all qualitative aspects of the services [25].

In Artificial Intelligence (AI), the creation of a precise prediction model requires the
collection of input characteristics that influence cloud-service rankings. However, a signifi-
cant portion of the required data is inaccessible or incomplete, due to data source retrieval
or significant data loss. Therefore, a model with a high degree of accuracy must be created
using a limited number of input parameters [26,27]. Various methodologies, including de-
terministic and probabilistic approaches, have been utilized to estimate the global ranking
of cloud services. Few studies have employed LR for estimating cloud service rankings,
with multiple LR being the most common technique. This model lacks the ability to com-
prehend the nonlinearity and complexity of the system’s configuration. To determine the
ranking of cloud services, it is preferable to use cutting-edge ML algorithms, which are far
more effective and require much less computing time and fewer resources [28,29].

The Machine Learning (ML) tool Waikato Environment for Knowledge Analysis
(WEKA) includes an abundance of learning and mining tools. WEKA also makes it easy
to test and modify individual learning algorithms to determine which combination of
parameters produces the best results [30]. Sequential Minimal Optimization (SMO) is a
novel training method for Support Vector Machines (SVM) that divides large problems
into as many minor Quadratic Programming (QP) optimization problems as possible [31].
These minor QP issues are resolved analytically, eliminating the requirement for a time-
consuming numerical QP optimization in the inner loop. The memory requirements of
SMO are proportional to the size of the training set, allowing it to process extremely
large training sets, because matrix computation is avoided. SMO scales between linear
and quadratic in the training set size for various test problems, whereas the typical SVM
technique scales between linear and cubic. SMO can be over a thousand times faster
than the typical SVM technique on sparse datasets [32]. For preprocessing, another study
utilized wavelet analysis (specifically, the Haar wavelet). It then employed a Support Vector
Machine (SVM) via Sequential Minimum Optimization (SMOreg) with Poly kernel function
on the updated Quality of Web Service (QWS) dataset to predict cloud-service rankings
and model building [33].

The study is organized as follows: Section 1 presents a brief overview of CC, types
and uses of CC architectures, developments in the field of CC, and ML techniques for
cloud-service ranking using the WEKA tool; Section 2 presents a literature review; Section 3
presents material and methods, Section 4 defines the mathematical modelling, Section 5
includes the experimental results and discussion; Section 6 contains the comparative
analysis; and Section 7 concludes the study and results.
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1.1. Problem Statement

If a user chooses a cloud service from a resource pool of functionally identical services
to establish an infrastructure, the service’s credibility is an essential attribute to evaluate,
and its rank in the pool reflects the same. However, determining the credibility ranking of a
service is not always straightforward. Although user feedback can be used to evaluate the
credibility of a service and develop a ranking system, it is heavily influenced by subjective
criteria and is quite often biased. Monitoring a service’s QoS, which is represented by its
Quality of Service (QoS) properties, is another method for predicting its reliability. Existing
methods fall short in terms of generating a good ranking environment for cloud services
based on stated factors, necessitating the development of novel validation mechanisms to
maintain the system’s transparency and efficiency.

1.2. Contribution

A new ranking prediction framework for cloud services is proposed, which integrates
a subset of solutions for QP optimization problems. An algorithm for ranking predictions
based on the SMOreg method is provided with extensive experiments (on a widely used
public QWS dataset of services), which were conducted to validate the framework and
techniques presented.

2. Literature Review

In this section, a literature review is conducted to shed light on the efforts of various
researchers to improve the understanding of CC and related concepts. Several pieces
of research on CC and ML algorithms highlight their applications in a variety of fields;
these have proven to be an invaluable source of guidance for the presented approach of
cloud-service ranking.

According to the study, CC is an internet-centric software model that represents
a shift from traditional single-tenant software development to a flexible, multi-tenant,
multi-platform, multi-network, global program. This could be as straightforward as a
web-based email service or as complex as a globally-distributed load-balanced content-
delivery platform. Moreover, the PaaS, SaaS, and IaaS techniques all aim to solve the same
scaling issues [34]. Data centers are typically comprised of a large number of interconnected
servers that are clustered in densely populated areas where the risk of a catastrophic event
is reduced [35].

According to another study, there are only three types of cloud services: SaaS, PaaS,
and IaaS, and enormous scalability is required to fit into any of these categories [36].
According to another study, the cloud concept now encompasses what is possible when
using web-scale infrastructure on demand, including: managed services, application
services, grid computing, software as a service, platform as a service, and anything as a
service [37].

Another study developed a cloud business ontology to aid businesses in locating and
selecting suitable cloud services. The development of a paradigm that connects a unified
business service and cloud ontology enables enterprises to query for the appropriate cloud
service. A unified ontology facilitated the cataloging of desired cloud services and the
establishment of a connection between business functions and accessible cloud services.
This framework could also be utilized as a service repository [38].

In the presented study, the authors propose a ranking-based collaborative filtering
strategy for rating movies. Another research group proposed a ranking-oriented strat-
egy for rating books in digital libraries. That study, unlike previous efforts, provided a
comprehensive examination of how to accurately rank cloud services, a novel and ur-
gently required research challenge [39]. In a separate study, an agent- and ontology-based
technique for discovering optimal cloud services was proposed. Due to the fact that the
proposed method is executed before matching the query with the retrieved services, the
online search slowed down the process of discovery [40].
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A research group presented a prototype for an intelligent cloud-service-discovery
system that combines ontology and the mobile agent. Crawlers with knowledge of the
structure, location, schema, and other aspects of the cloud data center were anticipated to
have direct access. The test has a high degree of precision but a low degree of recall [41].
In another study, researchers created a cloud crawler engine that crawls through various
cloud data centers using cloud ontology. The properties of cloud services are documented,
and a dataset is established to contain cloud service descriptions. The evaluation indicated,
however, that some cloud service information in the dataset, such as name and URL, was
not related to semantic meaning [42].

According to the authors, one of the primary objectives of service selection was to
provide a fair analogy between the available services so that users could compare and select
the services that best meet their needs based on the functional and technical requirements
that the services must fulfill. Examples of functional specifications include completed
tasks, pricing policies, and services’ domains [43]. Operating system catalogues, single
and multiple operating systems support, and cloud services model are all included in the
technical specifications [44].

A study explained that Multiple-Attribute Decision Making (MADM) solutions could
be applied to ranking predictions and service selections due to their frequent reliance on
numerous QoS factors. Resultantly, numerous management and operation science decision
models can be applied to the discovery of trusted services [45]. Another study described
that, before presenting a comprehensive best-service decision, the Analytic Hierarchy
Process (AHP) relied on a survey form to allow various experts to assign weights to QoS
criteria for services. AHP, on the other hand, is still susceptible to subjective factors and
difficult to automate [46].

The research described that the Preference Ranking Organization Method for Enrich-
ment of Evaluations (PROMETHEE) technique calculated the weight associated with each
attribute using the AHP or the Analytical Network Process (ANP), and then ranked the
services based on the weights and preferences of the services related to each attribute.
PROMETHEE, on the other hand, demanded a number of pairwise comparisons between
services and incorporated subjective weights [47]. Similarly, TOPSIS (Technique for Or-
der Preference by Similarity to an Ideal Solution) has sparked a lot of interest in MADM,
since it employed entropy to describe the weight of objective QoS features while also
taking consumers’ subjective trust preferences into account. Due to its lower uncertainty,
PROMETHEE has been found to be superior to AHP and TOPSIS in experiments [48].

Authors described that numerous decision-making techniques conventionally rank
cloud service trust preferences. Even if they could predict the creditability of a service, they
only employed static criteria or formulas to calculate the trust rate. However, it is some-
times impossible to adequately characterize the extremely complex nonlinear relationship
between a service’s reliability and its strengths using simple mathematical models [49]. In
addition, the majority of decision-making models struggle to adapt to these dynamic and
shifting conditions. AI has been highlighted as a viable solution for subjective, complex,
and dynamic problems [50]. Several AI models, such as the Bayes Network, Classification
and Regression Trees (CART), and SVM, have poor predictive capabilities, because the link
between QoS attributes and trustworthiness in real-world applications is often complex [51].
The improved SVM-r model has more benchmark features that may enhance prediction
outcomes [52].

A research group identified that Artificial Neural Networks (ANNs), can effectively
represent complex non-linear relationships and thus have the ability to more accurately
predict the reliability of cloud services [51,53]. Over the years, advancements in the ANN
model have been achieved to deliver a solid prediction method. Recurrent design has
substantially improved the effectiveness of neural predictors by only using influential
factors as input data. The self-adaptive neuro-fuzzy weighted extreme-learning machine
was investigated in order to improve prediction performance [54–56].
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3. Materials and Methods

In the past, the cloud services measurement index was the subject of extensive re-
search and analysis regarding cloud-service ranking. Numerous studies employing diverse
methodologies, such as ontology models and agent technology, have been conducted
to determine cloud-service ranking. The International Organization for Standardization
(ISO) developed the Cloud-Service Ranking Index (CSRI) characteristics, which include
accountability, agility, service assurance, cost, performance, security, privacy, and usability.
Existing processing methods include pattern matching, which is used to rank cloud services
according to functional and non-functional criteria. All relevant sets are retrieved from the
cloud storage site and then ranked by the learning module. This study identifies availability,
security, reliability, and cost as the most important aspects of cloud-service evaluation. To
ensure the long-term viability of the ranking system, cloud service providers must provide
both high-performance cloud services and technologically focused features.

Figure 5 depicts a CSRA model that identifies the predictors used for comparative
cloud-service evaluation. Customers can utilize these metrics to compare various cloud
services. The current infrastructure uses the internet to connect various components, but the
majority of internet connections are unreliable. Different levels of service quality have been
assigned to different customers due to unpredictability, which is one of the primary reasons
for the development of a ranking system. CSRA evaluates various cloud services based on
user requirements; it is also responsible for quickly and precisely locating and retrieving
relevant services based on predefined criteria such as availability, security, reliability, and
pricing.
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The CSRA receives requests from numerous external users, which may vary based on
the requirements of the users, and then examines the requests to identify any abnormalities.
If an anomalous request is noticed, it must be sent to the Risk Manager. Otherwise, the
agent can search for the user’s requested services and assign a possible service based on
the Ranking Parameters if the user’s request is legitimate. The Ranking Parameters must
be considered by the Ranking Controller in order to provide the optimal service based on
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user requirements. The Ranking Controller’s responsibilities include collecting distinctive
features for ranking, monitoring the feature’s value, and determining the ranking result.

3.1. Memory Module

The memory module is essential, since all other modules and their knowledge patterns
are linked to store iteration outputs. All properties and analyses of properties of customers’
homogeneous and heterogeneous QoS requests are retrieved from the memory module,
along with the most recent patterns. Memory is a crucial component of cloud-service
ranking architecture, since it maintains service classifications, cloud categories, and learning
results. This study examined three forms of memory: Episodic Memory (EM), Semantic
Memory (SM), and Associative Memory (AM).

3.1.1. Episodic Memory

Every module’s cloud-service-ranking-related actions are saved in EM, which is orga-
nized in an episodic fashion. EM describes all of the intended CSRA’s operations and all
of the cloud services’ descriptions in episodic stuff, and it is used to record the temporal
component of an event.

3.1.2. Semantic Memory

SM is used to record the details of cloud-service patterns, as well as user questions
concerning services quality. Availability, flexibility, cost, and security are among the
attributes and their functionalities and semantics in QoS. An autonomous system cannot
exist until it understands the circumstance, responds appropriately, and moves toward
a goal using a strategy. All of these aspects require semantics, and, while the level of
expertise of any CSRA is based on time and experience, better and more refined semantics
become available as experience accumulated, allowing for a better comprehension of a
given circumstance.

3.1.3. Semantic Memory

AM is also required when an agent cannot comprehend the semantics of information
and is a crucial component for building relationships between multiple entities, objects,
and events. AM examines the specifics of an information pattern and makes associations
between various sections of the pattern based on the semantic association of each instance.

3.2. Pattern Recognition

Pattern Recognition (PR) is a technique that employs sensory memory to identify
data patterns and regularities. Basically, it is the identification of patterns using ML
algorithms and sorts of data based on statistical information obtained from patterns and
their representation.

3.3. Data Analyzer

A Data Analyzer (DA) is a module for analyzing, transforming, and modeling data to
unearth pertinent information, make conclusions, and aid in decision making. A DA mod-
ule can be divided into three categories: segregation, clustering, and anomaly detection.

3.3.1. Segregation

The numerous inputs from online users are collected by our anticipated CSRA. Fixed
data-header labels (QoS) and runtime data labels provided by users can both be used to
request data input. The CSRA performs a pattern-matching process once the users submit
their inputs. Every data label for every piece of user data is checked by the PR unit, which is
a separate unit. When every data label has the same data head, the data are homogeneous.
On the other hand, the heterogeneous data label provided by the user is compared to
known patterns, and their probabilities of match are computed.
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3.3.2. Clustering

Clustering is a crucial data-mining and analysis tool for examining online user data
trends. Clustering is the process of merging items so that objects within the same group
are more similar to one another than objects within other groups. Our CSRA’s objective is
to monitor the trend of user inquiries regarding QoS characteristics, such as security, cost,
reliability, and availability, and then group these queries based on their similarities.

3.3.3. Anomaly Detection

Theoretically, all security-related attacks are applicable in CC, just as they are in
traditional computing. Multiple studies have demonstrated that successful attacks on the
infrastructure of Cloud-Service Providers (CSPs) are possible. The proposed CSRA aims to
detect heterogeneous data from a large variety of data in a fraction of the time required by
current methods. Security entails personal and operational environmental factors that are
generally beyond the control of development teams; as a result, a danger must be evaluated
and contained through the use of appropriate preventive measures. After successfully
detecting heterogeneous data, the CSRA checks for contaminated data and sends it to the
Risk Manager (RM) for debugging, if any bugs are found.

3.4. Risk Manager

Risks are the potential negative repercussions of using cloud services that could
exceed the advantages. The Risk Manager (RM) module uses algorithms to safeguard
heterogeneous data, ensuring data privacy and reliability. The Algorithm 1 demonstrates
how the risk can be analyzed and managed using diverse security features:

Algorithm 1. Risk Analysis

1. Ri = Identified Risks
2. rf = Risk Factor
3. Rnetval = Monitored Risk Net Value
4. For Each Identified Risk Ri to be Monitored rf
5. Monitor the occurrence of related Risk Factor r1, r2 . . . rf For Each rf
6. P (rf) = Number of Occurrence/Monitored Time
7. If (Rnetval ≥ Ri) Then
8. Revised the existing Control Strategy with Immediate Action
9. If (Rnetval < Ri) Then no Immediate Action is required

The above task monitors existing risks to ensure they are under control and identifies
new risks once the cloud deployment is complete. As user-migrated entities enter the
operational phase of risk monitoring, new risk factors may emerge, or the likelihood of
existing risk factors may change due to the evolution of cloud platforms, user requirements,
or modifications to the CSP’s terms and conditions. As shown in the preceding algorithm,
the probability of each Rf is determined by its incidence per monitored period. The
monitored Risk Net Value (Rnetval) is then determined in the same way as the above-
mentioned net-risk computation. If Rnetval is more than Rf, we must immediately alter the
control strategy; otherwise, we should wait until the next monitoring phase to do so. This
is a continuous task that checks in on the status of recognized risks and takes management
actions at regular intervals.

3.5. Cloud-Service-Ranking Parameter Identification

When a product service is available in the cloud, it means it may be accessed through
an interface that links as many users as possible. Cloud security is concerned with net-
work, information, and computer security. To safeguard the data and applications, many
strategies and procedures have been implemented. Data protection, identity management,
application security, and privacy can all be used to achieve security management. Reliabil-
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ity refers to the system’s capacity to perform the required functionality over a set length
of time and the system’s ability to revert to its previous state once a problem occurs. The
cloud’s cost approach is more flexible and metered, with users paying only for what they
use. Users of cloud services can compare the multiple parameters of CSPs in terms of
performance. Algorithm 2 describes the procedure of CSR by utilizing the information
regarding main categories, sub-categories, users’ queries, and optimized parameters for
ranking the cloud services in an existing category or developing a new category.

Algorithm 2. Categorization of Cloud Services

Input: Customer Cloud Services Preferences with their Queries
Output: Cloud Services Ranking
Cloud Services Provider Main Categories [] = x1, x2, x3, . . . xi . . . , xn
Sub-Categories = cij ∈ xi
Cloud Services Ranking System [xi] = Nil
Main Categories (mc) ∈ PaaS, IaaS, SaaS
Sub Category [sc] ∈ Business Application Platform, Raw Computing Platform, Web Hosting,
Databases, Open Cloud Platform, Web Application Platform, Application Hosting, Storage,
Networking and Infrastructure Service Management.
Cloud Services Mapping [xi] = yi
Learning Category [lc] ∈ New Category [nc]

1. Begin
2. Extract queries (Customer Cloud Preferences)
3. For each CSP List [xi] do //CSP = Cloud Services Provider
4. For each CSP Category [i] go
5. If EQ = CSP Description [i] //EQ = Extract Query
6. Bind Service Sub Category [ij] = EQ
7. Bind Cloud Services Ranking [xi] ∈ Service Main Category [mc]
8. Bind Service Sub-Category [sc] ∈ Service Main Category [mc]
9. Else
10. CSM //Cloud Services Mapping
11. Function Cloud Services Mapping [xi]
12. For each in Cloud Category [xi]
13. Mapping Cloud Services [yi]
14. End For
15. If Service Sub-Category [ij] = match Then
16. CSRA [xi] For each Service Sub-Category [ij] //Cloud Services

Ranking
17. Else
18. Learning Category [lc] 3 [sc]
19. Function Learning Category [lc]
20. End If
21. End For
22. If threshold > Max Sim [lc] Then
23. Bind CSRA [xi] ∈ Service Main Category [i]
24. Bind Main Category [xi] ∈ Service Sub-Category [ij]
25. Else
26. If Threshold > Max Sim (nc) Then
27. Bind Register New Category [nc] ∈ Service Sub-Category [ij]
28. Bind Service Sub-Category [ij] ∈ Service Main Category [xi]
29. Else
30. Learning New Cloud Category (nc)
31. Hold Learned Cloud Category (lc)
32. End If

3.6. Learning Module

CSRA is created through iterations, with each iteration involving the extraction and
optimization of new attributes. The Learning Module (LM) is a ML-based technique that
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generates an ontology for patterns using specified parameters. During the initial iteration,
supervised learning occurs, and the number of events increases until a certain threshold is
reached, at which point semi-supervised learning takes place, followed by unsupervised
learning. If such patterns are rich enough to classify a service using similarity analysis,
the threshold for adding new cloud services to the LM can be validated. In the LM, all
extracted cloud services can be compared, and a predetermined threshold can be used to
determine the primary categories of SaaS, PaaS, and IaaS. After identifying the primary
category, the LM checks for sub-categories. The process of detecting and validating cloud
services is carried out by the LM using the learning algorithm. Each set in the LM contains
the cloud semantic concept, its description, service-level-agreement (SLA) information,
similarity terms, and source information for the purposes of building and mapping.

An already defined cloud service category or generating a new category exit in both
cases; if the learning trend is less than a threshold level throughout the learning process, it
can be held for any future learning. The hold category must be trained enough to select an
already-defined category or a new category in the cloud evaluation system once it reaches
the threshold level. The implementation of the LM is described in Algorithm 3, i.e., how it
learns the similarity among the specific cloud services and assigned them existing or new
categories as well as sub-categories:

Algorithm 3. Learning Management for Cloud Services Categorization

Learning for Main Category

1. Check Similarity← Sim (Provider1, Provider2, Providern)
2. Max Similarity α (SM1, SM2, SMn) ε Main Category Cloud Relevance
3. SM (IaaS, SaaS, PaaS) ∈Max Similarity
4. Update Cloud Repository ← |Category|+ |Max Similarity|

Learning for Sub Category

5. Check Similarity← Sub-Category (Storage, Compute, Network . . . n)
6. Max Similarity α (SM1, SM2, SMn) ∈Main Category Cloud Relevance
7. Sub-Category ∈Max Similarity Sub-Category
8. Update Cloud Repository← | Sub-Category|+| Max Similarity|

In summary, the anticipated CSRA model receives inputs regarding cloud services
via users’ feedback, identifies some dynamically optimized parameters, and predicts the
relative ranking of the available cloud services. The CSRA can assist in providing real-time
and trustworthy options to users based on their needs.

4. Mathematical Modelling for Sequential Minimal Optimization

Using ML approaches for ranking prediction aims to create a model automatically,
based on the training dataset. SVM was utilized to implement the learning method. Using
data-mining techniques, datasets can be effortlessly preprocessed, classified, and predicted.
In this research, the learning algorithm employs a unique approach of SVM using SMOreg
and Poly kernel (PolyKernel). With considerable success, the SMOreg learning algorithm is
used to accumulate knowledge in expert systems. This method reduces the RMSE so that
the projected ranking of cloud services is identical to the observed ranking.

Sequential Minimal Optimization (SMO) is a simple approach for quickly solving the
SVM Quadratic Programming (QP) problem without the need for any additional matrix
storage or numerical QP optimization steps. SMO decomposes the overall QP problem into
QP sub-problems, ensuring convergence with Osuna’s theorem. Unlike earlier methods,
SMO chooses to address the smallest optimization problem possible at each phase. Due
to the fact that the Lagrange multipliers must follow a linear equality requirement, the
shortest possible optimization issue for the basic SVM QP problem contains two Lagrange
multipliers. SMO selects two Lagrange multipliers to jointly optimize at each step, discovers
their optimal values, and updates the SVM to reflect the new optimal values. The advantage
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of SMO is that it does not require any additional matrix storage. As a result, even very large
SVM training problems can fit into the RAM of a standard computer or workstation. SMO is
less prone to numerical precision issues, because it does not employ matrix methods. SMO
consists of two parts: an analytic method for determining the two Lagrange multipliers
and a heuristic for determining which multipliers to optimize.

SMO solves for the two Lagrange Multipliers (LMP) by first computing the constraints
on them and then solving for the constrained minimum. All quantities referring to the first
multiplier have a subscript a, and all quantities referring to the second multiplier also have
a subscript b for ease. The limitations may simply be shown in two dimensions, because
there are only two LMPs.

The extremities of the diagonal-line segment are easily generated. The algorithm
computes the second LMP αb and the extremities of the diagonal line segment in terms of
αb without losing generality. The following constraints apply to αb if the target ta does not
equal the target tb:

LMP(low) = max(0, αb − αa) LMP(high) = min(D, D + αb − αa) (1)

If the target ta equals the target tb, then the following constraints apply to αb:

LMP(low) = max(0, αb + αa − D) LMP(high) = min(D, αb + αa) (2)

The objective function’s second derivative along the diagonal line can be represented
as:

µ = Ker
(→

ya,
→
ya

)
+ Ker

(→
yb,
→
yb

)
− 2Ker

(→
ya,
→
yb

)
, (3)

where he goal function must be positive and have a minimum along the direction of the
linear equality constraint, and µ must be greater than zero in normal situations. In this
scenario, SMO calculates the minimum along the constraint’s direction:

αnew
b = αb +

tb(Era − Erb)

µ
, (4)

where Eri is the error on the ith iteration. Then constrained minimum is found by extracting
the unconstrained minimum to the ends of the line segment:

αnew,extracted
b =


LMP(high) i f αnew

b ≥ LMP(high)
αnew

b i f LMP(low) < αnew
b < LMP(high)

LMP(low) i f αnew
b ≤ LMP(low)

(5)

Now, let v = t1t2 then the value of αa is computed from the αnew,extracted
b :

αnew
a = αa + v

(
αb − αnew,extracted

b

)
(6)

µ might not be positive in unusual cases. If the kernel Ker does not obey Mercer’s
condition, a negative µ might occur, causing the objective function to become indefinite. If
more than one training sample has the same input vector x, a zero µ can occur even with
a valid kernel. In any instance, SMO can operate even if µ is negative, in which case the
objective function σ should be evaluated at each line segment’s end:

g1 = ta(Era + ε)− αaKer
(→

ya,
→
ya

)
− vαbKer

(→
ya,
→
yb

)
(7)

g2 = tb(Erb + ε)− vαaKer
(→

ya,
→
yb

)
− αbKer

(→
yb,
→
yb

)
(8)

LMP(low)a = αa + v(αb − LMP(low)) (9)

LMP(high)a = αa + v(αb − LMP(high)) (10)
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σLMP(low) = LMP(low)a.g1 + LMP(low)g2 +
1
2 LMP(low)2

a Ker
(→

ya,
→
ya

)
+ 1

2 LMP(low)2 Ker
(→

yb,
→
yb

)
+ vLMP(low)LMP(low)aKer

(→
ya,
→
yb

) (11)

σLMP(high) = LMP(high)a.g1 + LMP(high)g2 +
1
2 LMP(high)2

a Ker
(→

ya,
→
ya

)
+ 1

2 LMP(high)2 Ker
(→

yb,
→
yb

)
+ vLMP(high)LMP(high)aKer

(→
ya,
→
yb

) (12)

The Lagrange multipliers can be moved by SMO to the end point with the lowest
objective function value. The joint minimization cannot progress if the objective function is
the same at both ends with minimum ε error and the kernel obeys Mercer’s requirements.

5. Experimental Results and Discussion

Experiments were carried out on a Lenovo Mobile Workstation equipped with the
Processor: 11th Generation Intel Core i9, Operating System: Windows 10 Pro 64, Memory:
128 GB DDR4, Hard Drive: 1 TB SSD, Graphics: NVIDIA RTX A4000. We used the Prism-
GraphPad 9.4.0 and WEKA 3.9.6 tools for the explanation and results of our proposed
scheme, and the language used in it is Java. Two traditional methods (MLP and LR) were
also evaluated and compared to the SMOreg method.

This study included 2283 instances that contain information about different CSPs
found in the QWS dataset. The services are ranked into seven different categories based on
their performance obtained through the selected parameters, as listed in Table 1.

Table 1. Ranking Distribution with Percentages.

Rank Number of Instances Percentage

0 7 0.31%
2 72 3.15%
3 63 2.76%
4 526 23.04%
5 1239 54.27%
6 376 16.47%

Total 2283 100.00%
This table shows that most of the cloud services are ranked into the category of 5.

The results of independent Student’s t-test indicate significant mean differences for
availability, reliability, security, and cost according to the ranking of cloud services as shown
in Figure 6. Rank 0 has lowest mean for all these variables, and rank 6 shows the highest
means, as presented in the above graph. The anticipated CSRA behaves differently and
dynamically due to the identified significant difference, which cannot be accepted as a
normal variation.

Correlation analysis was performed to evaluate if there any significant relationships
among the identified variables obtained through the end-users’ feedback, as shown in
Table 2. The results of our analysis indicate a strong relationship between security and
availability (r = 0.98, p < 0.01). However, a significant but weak relationship was observed
between cost and availability (r = 0.24, p < 0.01). Similar findings were observed for cost
with security, reliability and security. A positive correlation coefficient denotes that the
value of one variable is directly dependent on the value of the other variable. The results
are indicated in the Figure 7.
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Figure 6. Cloud-service ranking for identified parameters using Student’s t-test.

Table 2. Correlation Analysis.

Cost Reliability Security Availability

Availability PC 0.244 0.13 0.98 1
p-value <0.001 <0.001 <0.001

Security PC 0.26 0.12 1
p-value <0.001 0.01

Reliability PC −0.03 1
p-value 0.13

Cost PC 1
p-value
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5.1. Cloud-Service Ranking
5.1.1. Sequential Minimal Optimization Regression (SMOreg)

The SMOreg scheme is employed to rank cloud services based on the identified
attributes. SVM for regression is implemented in SMOreg. The parameters are learnable
through a variety of methods. The focus of the SMOreg is cloud-service ranking for
competitiveness prediction. The RegOptimizer controls which algorithm is used. SMOreg
used a dataset: {(x1, y1), . . . , (xn, yn)}, where xi are input vectors and yi are the scalar target
outputs denoting ranking classes (R1, R2, . . . , R7). The two-layer architecture contains an
input layer of four inputs. Then, there are a total of seven SVMs in SMOreg dented by
Sg, each one learning to extract one latent variable f(x|l)g from an input pattern x. Here
l denotes the trainable parameters in the hidden-layer SVMs. Finally, there is the main
SVM in SMOreg denoted by Mg that learns to approximate the target function using the
extracted feature vector as an input. The total number of correct instances divided by the
total number of instances provides the accuracy of the anticipated model SMOreg. This
technique is only applicable if the amount of labeled data is insufficient or if application or
device-specific solutions are required to improve the accuracy of detection. Table 3 shows
an optimized SMOreg characterization for cloud-service classification. The accuracy rate
obtained is 98.71 per cent. The prediction speed was roughly 110 observations per second,
and the training time was 3.138 s. We made a comparison of two of the most widely used
and well-known algorithms versus multiclass classification (i.e., the MLP and LR).

Table 3. Sequential minimal optimization regression characterization.

Parameter Value

Correlation Coefficient 0.9656
Mean Absolute Error 1.2524

Root Mean Squared Error 1.2948
Relative Absolute Error 28.9933%

Root Relative Squared Error 26.0872%
Total Number of Instances 852 (60%)

Accuracy Rate 98.71%
Prediction Speed ~110 Obs/S

Training Time 3.138 S
Model Type Regsmoimprove

Function Sequential Minimal Optimization Regression

The disparity between the estimates and the actual results is measured using the Mean
Absolute Error (MAE):

MAE =
1
n

n

∑
i=1
|oi − ti| (13)
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The MAE is an average of the absolute errors, where oi is the estimate and ti the true
value as shown in (13).

The sample standard deviation of the variations between anticipated and true values
is represented by the Root Mean Squared Error (RMSE) in (14):

RMSE =

√
1
n

n

∑
i=1

(oi − ti)
2 (14)

We utilized C = 1 to evaluate the RegSMOImprove model type and tweak its respective
parameters, achieving a minimum MAE and RMSE. Due to the fact that the minimum MAE
and RMSE are determined for the exponent of 1, the performance of the RegSMOImprove
model and adjustment of the exponent parameter revealed that cloud-service data are
simple in nature. This means that lines can be used to segregate data. The MAE and RMSE
did not change much when the parameter of the PolyKernel function was changed. We
came to the conclusion that the performance parameters of the various kernel models
differ slightly. PolyKernel outperforms the other two by a small margin. As a result, the
PolyKernel function was employed for the SMOreg classifier.

5.1.2. Multilayer Perceptron (MLP)

The MLP is used to make detailed predictions of the input parameters. Table 4 shows
the MLP characterization, which shows that a precision rate of 98.02 % was achieved. The
MLP is used with a 2.5 scaling rate and a one-to-many criterion.

Table 4. Multilayer Perceptron Characterization.

Parameter Value

Correlation coefficient 0.5697
Mean absolute error 1.9282

Root mean squared error 1.9765
Relative absolute error 36.2153%

Root relative squared error 34.4743%
Total Number of Instances 852(60%)

Accuracy 98.02%
Prediction Speed ~111 obs/s

Training Time 0.8658 s
Model Type Feedforward Neural Network

Function Multilayer Perceptron

5.1.3. Linear Regression (LR)

Here, the LR with M5 technique is used, which may yield a more precise rate (based
on the data). The LR details are listed in Table 5, which includes a precision rate of 71.4%.

Table 5. Linear Regression Characterization.

Parameter Value

Correlation coefficient 0.9658
Mean absolute error 13.253

Root mean squared error 3.2931
Relative absolute error 29.067%

Root relative squared error 25.9384%
Total Number of Instances 852(60%)

Accuracy 71.4%
Prediction Speed ~881 obs/s

Training Time 0.5868 s
Model Type M5 Method

Function Linear Regression
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Figure 8 shows the parametric distribution of the dataset with the same scale. In addi-
tion, Figure 9 illustrates the combined matrix plot to indicate the relationships among the
identified parameters. The error plots from Figure 10a–e were acquired through SMOreg
after performing the cloud-service-ranking prediction via the defined input parameters.
There were 2283 instances in the dataset, as shown in Figure 9, comprising availability
(7–100), security (8–100), reliability (33–89), and cost (33–100) for cloud-service ranking
(0–6) data samples. The SMOreg results reveal that the accuracy rate for the 5.0 services
ranking is the best, with 1127 samples with 6 misclassified cases. The 6.0 services ranking
places it in the second tier (819 correctly classified samples and 4 misclassified cases). The
4.0 services ranking is now in third place (112 correctly classified cases and 3 misclassi-
fied cases). The 3.0 services ranking is now in fourth place (105 correctly classified cases
and 4 misclassified cases). The 1.0 services ranking is currently ranked fifth (40 correctly
classified cases and 3 misclassified cases). The 2.0 services ranking is now at sixth place
(35 correctly classified cases and 2 misclassified cases). Finally, with 1 correctly identified,
the 0.0 services ranking is in last place. In the 5.0 services ranking, the MLP had the best ac-
curacy rate, with 1096 correctly categorized cases and seven misclassified samples, although
the overall misclassification rate was higher than that for SMOreg. Similarly, the 5.0 services
ranking obtained the highest accuracy rate in the LR, with 988 correctly categorized cases
and eight misclassified cases, but the overall misclassification rate was significantly higher
than the previous two MLP and LR. In addition, Figures 11a–e and 12a–e were acquired
through MLP and LR, respectively, after performing the cloud-service ranking prediction
using the identified input parameters.

Using the abovementioned parameters, different visualizations of cloud-service rank-
ing can be achieved. In (a), Availability (X) and Reliability (Y) remain static, and Ranking
(Z) is dynamic. In (b), Availability (X) and Security (Y) remain static, and Ranking (Z) is
dynamic. In (c), Reliability (X) and Security (Y) remain static, and Ranking (Z) is dynamic.
In (d), Cost (X) and Security (Y) remain static, and Ranking (Z) is dynamic.

To improve the performance of the chosen technique, SMOreg, various hyperparam-
eters such as batch size, C value, filter type, kernel size, and regression optimizer were
investigated. On the training set, the model was trained using the cross-validation setup.
As a performance metric, the accuracy of each set of hyperparameters in the SMOreg model
was employed. The input layer had four nodes, while the output layer had seven nodes,
one for each of the seven classes.
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When assessing the effect of the SMOreg model on classification performance, five
factors were taken into account: batch size, C value, filter type, kernel size, and regression
optimizer. The numbers 1 to 21 in the first column represent 21 possibilities, while the
second column reflects the selected configuration, as shown in Table 6. The five factors are
represented by the third to seventh columns. An instance is represented by a row in the
table. The batch size is 100, the C value is 1.0, the filter type is normalization, the kernel is
PolyKernel, and the repression optimizer is RegSMO-optimized in the fifth configuration,
for example. The observed and predicted rankings in the seventh and eighth columns
represent the model’s classification performance using the provided hyperparameters.

It is evident from Table 6 that the classifier SMOreg perform well, as the accuracy
measure is ideal and consistent throughout. When the network depth is increased within
the defined range, the accuracy improves. However, as the network moves further away
from the defined range, the accuracy drops, indicating that too many parameters in the
network may cause overfitting and reduce generality. With increasing kernel size, the
accuracy measure rises considerably before falling. When the batch size is 100, the highest
accuracy measure appears, and the accuracy measure rises as the learning rate rises from
0.00001 to 0.0005. As a result, Table 6 displays the optimal configuration combination.
Table 3 lists the optimal settings based on the previous work. These hyperparameters were
used to train a new SMOreg model. The classification accuracy of the model is 98.71%,
indicating that this choice of hyperparameters is the best. Furthermore, the suggested
SMOreg framework takes 3.138 s, which is quick and suitable for real-time applications.
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Figure 10. (a). Sequential minimal optimization regression error (X: Availability vs. Y: Predicted
Ranking). (b). Sequential minimal optimization regression error (X: Security vs. Y: Predicted Ranking).
(c). Sequential minimal optimization regression error (X: Reliability vs. Y: Predicted Ranking. (d).
Sequential minimal optimization regression error (X: Cost vs. Y: Predicted Ranking). (e). Sequential
minimal optimization regression error (X: Ranking vs. Y: Predicted Ranking).
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Figure 11. (a). Multilayer Perceptron error (X: Availability vs. Y: Predicted Ranking). (b). Multilayer
Perceptron error (X: Security vs. Y: Predicted Ranking). (c). Multilayer Perceptron error (X: Reliability
vs. Y: Predicted Ranking). (d). Multilayer Perceptron error (X: Cost vs. Y: Predicted Ranking). (e).
Multilayer Perceptron error (X: Ranking vs. Y: Predicted Ranking).
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Figure 12. (a). Linear regression error (X: Availability vs. Y: Predicted Ranking). (b). Linear regression
error (X: Security vs. Y: Predicted Ranking). (c). Linear regression error (X: Reliability vs. Y: Predicted
Ranking). (d). Linear regression error (X: Cost vs. Y: Predicted Ranking). (e). Linear regression error
(X: Ranking vs. Y: Predicted Ranking).

The exploratory findings illustrate that the SMOreg approach is more precise and
resilient than existing prediction models, and that it can subvert the dataset’s latent feature
characterizations and aptly categorize them. As mentioned above, the ranking of cloud
services was accomplished using the identified characteristics and the SMOreg classifier.
Remarkably, the accuracy rate was 98.71 percent, which may be due to the exact nature of
the values found in QWS dataset.

Table 6. Comparison of the Configuration Results.

Configuration
Number

Instance
Number

Batch
Size C Filter Type Kernel Regression

Optimizer
Observed
Ranking

Predicted
Ranking

1 88 100 1.0 Normalization PolyKernel RegSMOOptimized 0.0 ~0.02
2 121 100 1.0 Normalization PolyKernel RegSMOOptimized 0.0 ~−0.09
3 71 100 1.0 Normalization PolyKernel RegSMOOptimized 0.0 ~−0.21
4 287 100 1.0 Normalization PolyKernel RegSMOOptimized 1.0 ~0.67
5 212 100 1.0 Normalization PolyKernel RegSMOOptimized 1.0 ~0.68
6 113 100 1.0 Normalization PolyKernel RegSMOOptimized 1.0 ~0.65
7 426 100 1.0 Normalization PolyKernel RegSMOOptimized 2.0 ~1.85
8 315 100 1.0 Normalization PolyKernel RegSMOOptimized 2.0 ~1.80
9 270 100 1.0 Normalization PolyKernel RegSMOOptimized 2.0 ~1.65

10 89 100 1.0 Normalization PolyKernel RegSMOOptimized 3.0 ~2.77
—————————————————-

11 46 100 1.0 Normalization PolyKernel RegSMOOptimized 3.0 ~2.84
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Table 6. Cont.

Configuration
Number

Instance
Number

Batch
Size C Filter Type Kernel Regression

Optimizer
Observed
Ranking

Predicted
Ranking

12 3 100 1.0 Normalization PolyKernel RegSMOOptimized 3.0 ~2.74
13 251 100 1.0 Normalization PolyKernel RegSMOOptimized 4.0 ~3.56
14 217 100 1.0 Normalization PolyKernel RegSMOOptimized 4.0 ~3.85
15 164 100 1.0 Normalization PolyKernel RegSMOOptimized 4.0 ~3.95
16 10 100 1.0 Normalization PolyKernel RegSMOOptimized 5.0 ~5.19
17 39 100 1.0 Normalization PolyKernel RegSMOOptimized 5.0 ~5.43
18 63 100 1.0 Normalization PolyKernel RegSMOOptimized 5.0 ~5.19
19 9 100 1.0 Normalization PolyKernel RegSMOOptimized 6.0 ~5.64
20 28 100 1.0 Normalization PolyKernel RegSMOOptimized 6.0 ~5.78
21 47 100 1.0 Normalization PolyKernel RegSMOOptimized 6.0 ~5.76

5.1.4. Cloud-Service Ranking through K-Means Clustering

Figure 13a–e shows the result of the SOM, which represents the classification of cloud
services based on the identified criteria while operating in a cloud environment, assuming
that one parameter remains constant. The small clusters, represented with different colors,
show different categorizations of services with specific clusters. The K-means method was
used to partition the clusters, resulting in the formation of five clusters, as shown in Table 7.
Cluster membership is shown by different colors. A great degree of the availability, security,
and reliability states with low costs indicates high-ranked cloud services. In contrast,
a low degree of the availability, security, and reliability states with high costs indicates
low-ranked cloud services. However, a moderate degree of the availability, security, and
reliability states with moderate costs indicates moderate-ranked cloud services. The maps
depict different categorizations of cloud services based on fluctuations in the identified
parameters. Clusters’ density characterizations are shown in Table 8.

Table 7. Clustering Based on Characterization.

Attributes
Cluster

0
(0.05)

1
(0.23)

2
(0.33)

3
(0.14)

4
(0.25)

Availability Mean 24.6357 64.3322 90.0137 89.2023 92.525
Standard Deviation 9.8794 9.8177 5.6642 5.105 4.7042

Security Mean 25.156 64.7868 93.19281 92.6511 96.927
Standard Deviation 9.9211 9.76 6.2042 6.0099 2.8871

Reliability Mean 62.4887 71.9445 73.9896 56.0163 72.1656
Standard Deviation 10.8032 6.9778 5.294 4.3846 3.4046

Cost
Mean 81.7683 84.6921 81.9717 91.47 99.959

Standard Deviation 8.6451 8.2057 7.554 8.0368 0.6703

Ranking Mean 1.3519 3.6184 4.9949 4.5839 5.5569
Standard Deviation 0.6497 0.5367 0.2777 0.4943 0.5017
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Table 8. Clusters’ Density Characterization.

Clustered Instances Percentage

0 48 (6%)
1 200 (23%)
2 269 (32%)
3 124 (15%)
4 212 (25%)

Log likelihood: −14.30591

6. Comparative Analysis

Table 9 provides a comparison of the proposed effort with a few previous similar types
of research.

Table 9. Comparative Analysis.

Research Accuracy

[5] 90.71%
[57] 73.02%
[58] 93.40%

Proposed (SMOreg) 98.71%.
Multilayer Perceptron 98.02%

Linear Regression 71.4%.

7. Conclusions, Limitations, and Future Work

CC has emerged as a key paradigm for enterprises to outsource their different IT
needs. CC, also known as PaaS, IaaS, SaaS, and other services, is a technology that provides
everything as a service on demand over the internet. There is currently a plethora of CSPs
offering various cloud services with varying functionalities. Due to the fact that there is no
standard for describing cloud services, each cloud provider describes and expresses cloud
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services in its own manner. With the increasing number of cloud-based services, each one
enables users to access the cloud’s nearly limitless computing resources. It has become
increasingly difficult for cloud consumers to identify the best cloud services that meet their
QoS requirements. In order to choose between various cloud services, customers must have
a method for identifying and measuring the critical performance characteristics of their
applications. It is challenging to locate cloud services represented by numerous concepts.
As a result, the CSRA established a paradigm based on the functional characteristics of
cloud services. The goal of this CSRA is to identify the QoS ranking parameters such as
availability, security, reliability, and cost that can be used to compare different cloud services.
In this context, the work presented for cloud-service ranking systematically identifies all
of the QoS parameters and ranks cloud services based on these identified parameters. We
presented a ranking mechanism based on comparisons that may evaluate cloud services via
several ranking metrics. By offering a uniform mechanism to evaluate the relative ranking
of cloud services, our anticipated CSRA also tackles the difficulty of varying dimensional
units of multiple QoS ranking metrics. We also provided a comparison of our proposed
CSRA with currently utilized cloud-service ranking systems. The results of the evaluation
reveal that our proposed CSRA is both feasible and consistent. We conducted extensive
experiments on a well-known, publicly available QoS-based QWS dataset to validate the
efficacy of the anticipated strategies. The experimental results demonstrate that the SMOreg
technique is more accurate and robust than existing estimation methods and can exploit the
dataset’s latent feature descriptions and accurately classify them. Cloud-service ranking
was achieved using the identified attributes and the SMOreg classifier. Surprisingly, the
accuracy rate was 98.71%, which is higher than the other two approaches, LR and MLP,
which had accuracies of 71.4% and 98.02%, respectively.

Despite the fact that our proposed SMOreg method has a high prediction rate of
98.71 percent, there are still unresolved concerns that necessitate further study. Our current
model applies only objective and exact QWS values, despite the fact that QWS measures
may be more subjective in certain real-life situations.

In the future, we can also investigate methods to forecast rankings based on mixed
forms of QWS values. Moreover, because the QoS of a service may change over time, it is
necessary to dynamically assess the service’s ranking.
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