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Arid region characterizes more than 30% of the Earth’s total land surface area and the area is still increasing due to the trends of
deserti	cation, yet the extent to which it modulates the global C balance has been inadequately studied. As an emerging technology,
IoT monitoring can combine researchers, instruments, and 	eld sites and generate archival data for a better understanding of soil
abiotic CO2 uptake in arid region. Images’ similarity analyses based on IoT monitoring can help ecologists to 	nd sites where the
abiotic uptake can temporally dominate and how the negative soil respiration 
uxes were produced, while IoT monitoring with
a set of intelligent video recognition algorithms enables ecologists to revisit these sites and the experiments details through the
videos. �erefore, IoT monitoring of geospatial images, videos, and associated optimization and control algorithms should be a
research priority towards expanding insights for soil abiotic CO2 uptake and a better understanding of how the uptake happens
in arid region. Nevertheless, there are still considerable uncertainties and di�culties in determining the overall perspective of IoT
monitoring for insights into the missing CO2 sink.

1. Introduction

Largely because of human activities a�er the Industrial
Revolution and the produced substantial climate changes,
atmospheric CO2 levels have increased more than 30% in
the past century [1]. �is major environmental issue has
motivated scientists to carry out a huge e
ort to quantify the
sources and sinks of the atmospheric CO2, and the existence
of a “missing CO2 sink” is 	nally concluded [1–7]. Numerous
scientists ever claimed to have located the “missing sink,”
but each of them was 	nally denied [8–20]. Location of the
missing CO2 sink has become a long-sought challenge in
ecology.

Recent studies of the arid and semiarid ecosystems
suggest that the missing CO2 sink can be partly attributed to
unneglectable soil abiotic CO2 uptake in arid region [21–24].
Such uptake has been long-term overlooked in estimating the
net ecosystem exchange of CO2 [NEE] around the world.�e
global “CO2 
ux towers” employed in current micrometeo-
rological measurements interpret NEE as biological 
uxes,
exactly de	ned as the direct sum of photosynthetic and
respiratory components [20]. Arid region characterizes more
than 30% of the Earth’s total land surface area and the area
is still increasing due to the trends of global deserti	cation,
yet the extent to which it modulates the global C balance has
been inadequately studied [25–33].
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Estimates of the overall contribution of such abiotic
CO2 uptake are essentially emergent for expanding insights
into the missing CO2 sink, which further requires common
huge e
orts of the world scienti	c communities [23]. �e
current estimates based on very limited data collected from
a few sites within several typical desert ecosystems were
thought to be not convincing and even problematic [24].
Ecologists were cautioned to keep discreet minds in both
data collection and the determination of the whole story of
soil abiotic CO2 uptake in arid region. Such abiotic uptake
can be varying with predominant processes, site location,
and climatic conditions.�ese are important factors a
ecting
experimental designs because spatial-temporal heterogeneity
must be taken into account. To treat these disturbances
and simplify experimental designs, it is hence imperative to
implement intelligent methods for ecologists to collect both
convincing data and further evidences.

In previous publications for insights into themissing CO2
sink and especially for insights into soil abiotic CO2 uptake
in arid regions, the utilized technologies are rather old. �e
emerging information technologies were hardly employed.
�ese unemployed technologies include the wireless sensing
networks [34–36], Internet of �ings (IoT) [37–40], and
cloud computing [41–46]. Particularly, IoT has been further
integrated with the surveillance systems and the integrated
system was termed as IoT monitoring [47–50]. Since IoT
monitoring can generate images, videos, and other archival
data, it is necessary to investigatewhether IoTmonitoring can
serve for a better understanding of soil abiotic CO2 uptake in
arid region. �e currently published studies are very limited
and were thought to be not convincing. Geospatial images
and videos from IoT monitoring help us to explain at which
sites soil abiotic CO2 uptake was observed and present more
details of the whole experimental process.

Our objectives in this study were to examine the poten-
tials of IoTmonitoring as an emerging technology for insights
into soil abiotic CO2 uptake and in turn for expanding
insights into the missing CO2 sink in the unneglectable arid
region. Utilizing geospatial, archival data, intelligent algo-
rithms on videos and images were performed to theoretically
expand insights into soil abiotic CO2 uptake in unneglectable
arid region, which has been overlooked for a long period.
Additionally, the existing uncertainties and unresolved issues
to develop such a thematic IoT monitoring system are also
discussed.

2. Materials and Methods

2.1. Collection of Geospatial Data. Analyses of the potentials
of IoT monitoring for insights into the missing CO2 sink
in the present study are based on the collected geospatial
images and videos from the 	eld sites at the south edge of
the Gurbantunggut Desert in the north of Xinjiang Uygur
Autonomous Region, China (Figure 1).

�ese 	eld sites were chosen because it has been con-
	rmed that soil abiotic CO2 uptake can temporally dominate
and cause the apparent negative soil respiration 
uxes at these
sites [51–53]. Collecting the geospatial images of these sites
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Figure 1: Distribution of the 	eld sites where geospatial images and
videos are collected in this study.

from IoT monitoring helps us to explain at which sites soil
abiotic CO2 uptake was observed and present more details of
the experimental sites. Overall, geospatial images and videos
were collected from 19 	eld sites, 18 of which are distributed
within the Manas River Basin. �ese sites are close to each
other. Another 	eld site is located in the Sangong River Basin
[51, 52].

A mobile communication tool (Redmi Note 4, with
MATLAB so�ware installed to operate the algorithms) was
employed for the collection of geospatial images and videos.
In total 70 geospatial images of these 	eld sites were collected
and 36 images were chosen to build the 	rst database of
geospatial images for the sites where soil abiotic CO2 uptake
can temporally dominate (Figure 2). As a 	rst example of the
utilization of geospatial videos in analyzing soil abiotic CO2
uptake, a special experiment was designed to expand insights
into soil texture at those sites where abiotic CO2 uptake can
temporally dominate in soil respiration 
uxes.

�e details of this experimental design are as follows. We
aim to collect a video to record the process when one inserts
the WET sensors of HH2 Moisture meter (Delta-T Devices
Ltd., Cambridge, UK) into the soil and then utilize video
tracking algorithms to analyze the movements of the sensors
beneath the soil surface. �is is really a challenge because we
realized that the time of the collected video may be too short.
However, the soil texture cannot be objectively displayed if we
deliberately slowly insert the sensors.�erefore, the daughter
of the 	rst author (Wenfeng Wang), who is 6 years old and
named YanboWang, was invited to join the “scienti	c game.”
She saw this as an interesting game and naturally tried her
best. A short video was collected when she was inserting the
WET sensors into the soil.

2.2. Optimization and Control. A histogram-based image
similarity algorithm [54–56] was further optimized and
employed to analyze thematch degree between the test image
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Figure 2: �e 	rst images database of the sites where soil abiotic CO2 uptake can temporally dominate.

and each image from the 	rst database of geospatial images
of the sites where soil abiotic CO2 uptake can temporally
dominate. �is helps in 	nding the best match of the test
image in the database. In a previous publication [54], to
optimize the performance of the algorithm, the histograms
of the Red-band H(R), the Green-band H(G), and the Blue-
band H(B), respectively, were used. In the present study,
the algorithm was further optimized by taking into account
the weights of H(R), H(G), and H(B) to each image, where
the weights/contributions were determined by calculating
the information entropy [57–59]. R-G-B-weighted average
correlation-e�cient parameters that were employed to eval-
uate the histogram-based image similarity between the test
image and each image from the database were calculated.

In order to objectively evaluate the potentials of IoTmon-
itoring for insights into themissing CO2 sink, a real challenge
was carried out. �e video object tracking algorithm was
performed on the collected short video for the real-time video
tracking of the WET sensors. Traditional algorithms, such
as the mean-shi� algorithm [60–62], are unsuitable for this
video object tracking. �erefore, we previously specialized
the video target for tracking by morphological segmentation
[63], which helps to improve the performance of mean-shi�
algorithm.

3. Results and Discussions

3.1. Images’ Similarity Analyses Based on IoT Monitoring.
�e further optimized histogram-based images similarity

algorithm was applied to search 	eld sites where soil abiotic
CO2 uptake can temporally dominate. �e performance of
the similarity detection algorithm worked out the best match
of the test image among images in the 	rst images database
of the sites where the abiotic CO2 uptake can temporally
dominate. Results show that the match degree between test
image and best match is approximated to 90%. �erefore,
the histogram-based image similarity analyses based on IoT
monitoring con	rmed that the test image represents a site
where soil abiotic CO2 uptake can temporally dominate in
soil respiration and cause negative soil respiration 
uxes.

�rough further reviews of the details of the test image,
it is easy to 	nd an obvious salt accumulation on the soil
surface at the test site (Figure 3). �e test image can be
joined to the database and the extended information can
be utilized. Exactly, some previous reports of negative soil
respiration 
uxes in arid region do not emphasize the role of
salt accumulation [21].

�is helps in convincing the ecologists who were not
convinced by the previous reports since they may realize that
the soil and groundwater are alkaline, which is advantageous
to the subterranean 	xation of CO2. Taking into account the
abiotic 
ux components, the soil CO2 
ux can be further
reconciled as

�s = � − �DIC − �SIC = �� − ��,
�� = �,
�� = �DIC + �SIC,

(1)
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Figure 3: To 	nd the best match for test image in the 	rst images
database of the sites where soil abiotic CO2 uptake can temporally
dominate, utilizing the image analysis algorithm referred to in this
study.

where � is the CO2 release from roots and soil microbial
respiration and �DIC and �SIC are the net CO2 	xation in the
groundwater and the soil [in inorganic forms], respectively.��
and �� are the net soil CO2 in
ux and the net soil CO2 e�ux,
respectively [52].

A sketch of soil CO2 
ux formation in arid region can
be hence expanded by further mathematical analyses. First,
review the mechanism of how the soil CO2 analyzer (e.g., LI-
8100; see [53]) works. Assume that, a�er per unit time �, the
CO2 analyzer abstracts air of volume �1 from a gas room of
volume � and then supplies air of the same volume sampled
from atmosphere for the CO2 pressure balance in the gas
room. Go round and begin again. To compute CO2 
ux, the
following is used:

�� = �� (�)�� , (2)

where �(�) is the CO2 concentration in the gas room at time
� [64].

Let 	 be CO2 concentration in the atmosphere. For the

th measured value, the input and output of CO2 are �input =�� and �output/�� = ��, respectively, taking average within

th time interval [
�, (
 + 1)�]. �e dynamic of CO2
concentration in the gas room should be as follows.

Input-output balance equation:

� (
� + �) − � (
�)

= (�1	 + ��) ⋅ � − ∫
��+�
�� �1 ⋅ � (�) + ������
� ,

� (0) = �0,

(3)

where �0 is the CO2 concentration at starting time point.

�us the 
th measured value of soil CO2 
ux is

��-�th = � (
� + �) − � (
�)�
= �1	 + �� (1 − ��) − � (��) ⋅ �1� ,

(4)

where �(��) is the CO2 concentration from mean value
theorem of integrals.

Negative soil respiration CO2 
uxes are observed if

�� > �1 [	 − � (��)]�� + 1. (5)

Finally, it must be cautioned that in	mum of the negative
values of soil CO2 
ux may exist. Let � → 0; we obtain
�� (�)
�� =
�1	 + �� − ����
� − �1� ⋅ � (�) , � (0) = �0. (6)

Hence,

� (�) = �1	 + ���1 + (�0 −
�1	 + ��
�1 ) ⋅ �

−�1�/�. (7)

Stable negative 
uxes may happen within a small mea-
surement interval � when

�1	 + ��
�1 > �0. (8)

Let � → ∞; we get
lim
�→∞
� (�) = �1� + ��1 . (9)

�is is the in	mum of the CO2 concentration.

3.2. IoT Monitoring with Intelligent Video Recognition Algo-
rithm. �e trajectory analysis of soil sensors is realized
in performance of IoT monitoring with intelligent video
recognition algorithm. Such video object tracking algorithm
not only enables ecologists to revisit these sites and the
experiments details by geospatial videos, but also helps
ecologists to further understand the compact soil texture so
that the whole process costs 21 seconds. �e footprint of the
WET sensors revealed that the process is di�cult for this little
girl (Figure 4).

Consequently, a part of soil respiration (�) temporally
gathers in soil (��) or is ventilated in subterranean cavity
(�

V
) and contributes to the abiotic release later. �is also

is advantageous for a chemical 	xation of CO2 in the soil-
groundwater system (Figure 5).

�is expands a perspective frame of IoT for insights into
the missing CO2 sink (Figure 6).

�erefore, the potentials of IoT monitoring for insights
into soil abiotic CO2 uptake and hence for the insights into
the missing CO2 sink are highlighted. A part of soil inorganic
CO2 (SIC) remained in soil layers [SR] and a part of DIC
is carried away and might go out at the terminal of the
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Figure 4: Trajectory analysis of soil sensors by the video object
tracking algorithm referred to in this study.
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Figure 5: Integrated story of soil abiotic CO2 uptake/release, where
parts of soil respiration (�) temporally gather in soil (��) or are
ventilated in subterranean cavity (�

V
) and then contribute to abiotic

release later.

groundwater-soil system [TO], while the other parts of SIC
and DIC form the 	nal absorption in groundwater [GA].
SR falls into three phases, solid SR [SSR forms hydrogen
carbonate and changes molar number of carbon atoms],
liquid SR [LSR dissolved part of SR], and gaseous SR [GSR
increases the CO2 concentration in soil pores]; GA is a
single phase: liquid phase [consisting of liquor diverse carbon
species]; TO falls into two phases: liquid TO [LTO recharged
DIC] and gaseous TO [GTO released CO2]. Assignment of
missing carbon should be formulated as follows:

�missing = SR + GA + TO
= SSR + LSR + GA + GSR + LTO + GTO. (10)

�e carbon assignment equation can be further hypo-
thetically expanded. We can classify soil pores as three types:
dry pore [DP], small water pore [SWSP], and big water
pore [BWSP] according to their size and water content. DP
is distributed in shallow soil layers and can absorb CO2 if
coupled with the condensing of vapor or the in	ltration of
precipitation; SWSP is distributed in moist layers around

the roots system, dissolving CO2 in it; BWSP is distributed
in deep layers, dissolving CO2 and then migrating it into
groundwater. Note that these three types of soil pores may
convert to each other with the changes or movements of soil
water.

�e balance equations can be represented as

ΔGSR = ΔDP,
ΔSSR = ΔSWSP,

(11)

where the groundwater recharge/discharge is the major regu-
lator of the balance.

4. Conclusions and Outstanding Remarks

As an emerging technology, IoT monitoring combines
researchers, instruments, and 	eld sites and generates
archival data for a better understanding of soil abiotic CO2
uptake in arid region and in turn has great potentials for
insights into the missing CO2 sink. By histogram-based
image similarity analyses of image data collected from IoT
monitoring, ecologists can easily 	nd 	eld sites where soil
abiotic uptake of CO2 can temporally dominate and further
improve their understanding of the negative soil respiration

ux values. Video object tracking algorithms based on IoT
monitoring not only enable ecologists to revisit these sites
and the experiments details by geospatial videos, but also help
the ecologists to further understand other details, such as the
footprint of soil sensors, which in turn can help ecologists to
understand the integrated story of soil abiotic CO2 uptake.
In subsequent studies, the employed algorithms can be more
and more complex and the uncertainties of the presented
algorithms must be explicitly discussed.

Nevertheless, it must be pointed out that there are still
considerable uncertainties and di�culties in developing such
a thematic IoT monitoring system. One major challenge is
how to conceptualize ecosystem as a volume with explicitly
de	ned top, bottom, and sides. �e other major challenge is
how to estimate the SIC/DIC assignment proportion of the
carbon 
uxes in soil layers and groundwater, which should be
also analyzed in complicated cases due to great di
erence in
soil types and the groundwater levels. �e possible scheme is
relating the 	eld sites, instruments, and researchers together
by a stable IoT monitoring system and conceptualizing each
block of terrestrial ecosystem. In this case, net ecosystem
carbon balance equals the total C input minus the total C
output from the ecosystem over a speci	ed time interval.

To reduce the increased complexity, one can analyze the
situation in the di
erent layers of the local groundwater-soil
system. A research priority is the explicit characterization
of the situation in di
erent layers of the local groundwater-
soil system, which deserves subsequent studies on the 	eld
collection of geospatial data for soil abiotic CO2 uptake [65–
73], the visualization of CO2 footprints [74], and 2D-3D video
treatments technology to enhance the visualization e
ect
[75].
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