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Abstract: Despite substantial evidence for the link between an individual’s intelligence and successful
life outcomes, questions about what defines intelligence have remained the focus of heated dispute.
The most common approach to understanding intelligence has been to investigate what performance
on tests of intellect is and is not associated with. This psychometric approach, based on correlations
and factor analysis is deficient. In this review, we aim to substantiate why classic psychometrics which
focus on between-person accounts will necessarily provide a limited account of intelligence until
theoretical considerations of within-person accounts are incorporated. First, we consider the impact
of entrenched psychometric presumptions that support the status quo and impede alternative views.
Second, we review the importance of process-theories, which are critical for any serious attempt to
build a within-person account of intelligence. Third, features of dynamic tasks are reviewed, and
we outline how static tasks can be modified to target within-person processes. Finally, we explain
how multilevel models are conceptually and psychometrically well-suited to building and testing
within-individual notions of intelligence, which at its core, we argue is cognitive flexibility. We
conclude by describing an application of these ideas in the context of microworlds as a case study.

Keywords: cognitive flexibility; ergodic assumption; formative models; multilevel models; complex
problem-solving

1. Introduction

One of the least disputed claims in psychology is the link between an individual’s
intelligence and successful life outcomes, particularly in academia and work (Gottfredson
1997, 2018; Mackintosh 2011; Sternberg et al. 2000). Paradoxically, some of the most disputed
claims in psychology concern how to define and operationalise intelligence (Gottfredson
2018; Horn and Noll 1994). The solution to the definition-operationalisation problem has
less to do with filling some sparsity of theorising, there is much to draw from (Sternberg
2020). Instead, we are hamstrung by psychometric methods that are at once too flexible, too
constrained, and too disconnected from substantive theory. We advocate for approaches
to intelligence that are directed at within-individual processes, rather than at between-
individual comparisons because they are fundamentally closer to the conceptual notion of
adaptivity. Adaptivity in complex and novel situations requires rapid and flexible encoding,
representation, and manipulation of relations between aspects of the physical and mental
world (Beckmann 2014). Our aim in this review is first to explicate a notion of intelligence
in which the conceptualisation and operationalisation are jointly integrated, aligned, and
directly related to how one successfully adapts to changing demands of the environment
or task from one situation to the next. Second, we aim to demonstrate why a multilevel,
analytic framework is critical to achieve this. To distinguish our notion from the status
quo, particularly ‘g’ and Fluid Intelligence (Gf ), we use the term “intelligence as cognitive
flexibility”. We do so more as a placeholder because if it had not already lost most of its
meaning (Gottfredson 2018), the term intelligence would better serve our intentions.
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The focus on managing changing demand is consistent with common definitions
of fluid intelligence, defined as entailing “deliberate but flexible control of attention to
solve novel ‘on the spot’ problems that cannot be performed by relying exclusively on
previously learned habits, schemas, and scripts” (Schneider and McGrew 2012, p. 111). Yet,
whether one accepts this definition or another, in practice it is primarily between-individual
accounts which dominate the operationalisation of virtually all variants of intelligence, Gf
included. As we will argue, this first serves to relegate the identification of flexibility to
unnecessarily indirect inference from tests that do not require adaptation whatsoever, and
second, as demonstrated by others, it relies on a somewhat dubious extrapolation of the
ergodic assumption, that causal inferences from between-individual models map directly on
to within-individual mechanisms (Borsboom et al. 2003; Molenaar 2004, 2013).

The mechanisms of intelligence most theories draw on relates to those extensively
studied by cognitive psychologists, such as memory, attention, switching, inhibitory con-
trol, and relational binding, as well as higher-order concepts such as working memory
and reasoning. De Boeck et al. (2020) argue that while there was early promise in the
decomposition of reasoning tasks into such component processes to investigate process
correlates of intelligence (for instance, Sternberg 1977a, 1977b), these innovations were ulti-
mately not pursued, in part because of the emerging domination of factor analysis in theory
development. That is, while these cognitive psychology constructs tend to have articulated
process accounts, they were not the panacea to the conceptualisation-operationalisation
misalignment of intelligence hoped for. Translating these process-focused constructs into
assessments, sometimes referred to as elementary cognitive tasks (ECTs), has psychometric
challenges which the traditional latent variable (psychometric) approach to intellectual
abilities cannot resolve alone (Goecke et al. 2021).

Overview

In this review, we aim to substantiate why the classic psychometric approach will
always necessarily provide a limited account of intelligence and what might be done to
redress this. The paper is structured in four parts. In Part 1 we consider the implications of
three common but theoretically dubious practices that have become entrenched and serve
to reinforce the status quo while impeding alternative views and potential progress. In Part
2 we review the importance of process-theories, which are critical for any serious attempt to
build a within-person account of intelligence. In Part 3 we explicate the distinction between
typical static tasks and dynamic tasks, which are by design focused on within-individual
processes, and outline how the former can be modified to approximate the latter. Finally, in
Part 4 we explain how multilevel, mixed effects analytic approaches both are conceptually
and psychometrically well-suited to building and testing within-individual notions of
intelligence—to narrowing the theory-operationalisation gap. We conclude by describing
an application of these ideas as a case study.

We reflect on these four aspects because they are relevant to any proposition that aims
to explicate a more authentic and dynamic definition of intelligence. There is a subtle
but important difference between a proposition that we should take dynamic processes
seriously, and a claim that traditional psychometrics are not well suited to achieve this. We
necessarily address these psychometric issues in Part 1 because they are, or at least should
be, the pillars of operationalisation and measurement (Birney et al. 2022; Michell 1990).

2. Part 1: Building a Case for Intelligence as Cognitive Flexibility
2.1. Entrenched Assumptions

Across the course of the history of intelligence theorising, a number of presumptions
have worked their way into the collective consciousness and are now considered “knowns”
(Neisser et al. 1996). Many of these, we believe, have become largely dogmatic, unques-
tionable “facts”. We consider three; (a) the supposition of stability, (b) the belief that factor
analysis of correlations alone can reveal true latent processes and attributes within the
individual, and (c) the view that observed variables (i.e., test scores) must be manifestations
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of these latent processes, rather than seriously considering that tests scores are formative
causes of latent variables. That these are typically assumptions necessary to simplify psy-
chometric modelling, rather than being core, testable theoretical tenets, has been known for
some time. A small but increasingly vocal collective are questioning not only the validity of
these “knowns”, but also critically reflecting on the limitations of their utility in providing
a greater understanding of intelligence (e.g., Bollen and Diamantopoulos 2017; Borsboom
2015; Conway et al. 2021; De Boeck et al. 2020; Kovacs and Conway 2016; Molenaar 2013;
van der Maas et al. 2017).

2.1.1. Supposition of Stability

Whereas personality assessments tend to focus on typical levels, intelligence tests aim
at assessing maximal performance levels (Neisser et al. 1996). From this, Goff and Ackerman
(1992, p. 538) suggested that the use of intelligence tests actually implies “the existence of a
stable or permanent capability”. We are not arguing against the goal of assessing maximal
performance, because it largely reflects what researchers and educators intentionally set
out to assess going at least as far back as Binet (1905)—a correlate of a nascent aptitude
or cognitive potential. However, the assumption of inherent stability as a psychometric
criterion, realised by concepts like test–retest reliability, is ostensibly antithetical to the
notion of within-individual variability, including learning and development, and over
time this has led to a set of psychometric practices well-suited to stable attributes but not
systematically varying ones. In other words, if the starting assumption for mapping the
assessment of a given set of intellectual attributes is that there is no or minimal within-
individual variability, then stability-focused assessment and validation methods will evolve
accordingly. As a result, “successful” measurement, so defined, not only risks becoming
dissociated from the conceptual understanding of cognitive capabilities, our conceptual
understanding may be skewed to fit our measurement assumptions.

These types of limitations of traditional psychometrics have long been recognized
as overly restrictive in areas where assessment of dynamic processes is of interest, for
instance, Dynamic Testing (Grigorenko and Sternberg 1998; Guthke and Beckmann 2000),
complex-problem solving (Beckmann et al. 2017; Dörner and Funke 2017), and more recently
cognitive flexibility (Beckmann 2014). The point here is that the extant psychometric
principles of best-test design are often challenged by constructs that are by definition
dynamic, fluid, and complexly determined by transient or volatile contextual and intra-
personal factors. This is what needs to be redressed.

2.1.2. The Ergodic Assumption: History Tells Us Correlations Are Not Enough; Logic Tells
Us They Never Were

The individual-differences approach to the investigation of psychological attributes
generally, and intellectual abilities specifically, has long been known to be incomplete
without a consideration of process-oriented accounts (Cronbach 1957; Deary 2001; van der
Maas et al. 2017). Lohman and Ippel (1993, p. 41) citing Cronbach (1957), McNemar (1964),
Spearman (1927) and others, concluded that a major reason why the individual differences
approach to the study of intelligence “ . . . was unable to achieve one of its central goals:
the identification of mental processes that underlie intelligent functioning”, was because “
. . . a research program dominated by factor analysis of test intercorrelations was incapable
of producing an explanatory theory of human intelligence”.

In his presidential address to the annual meeting of the Psychometric Society, Guttman
(1971) contrasted the purpose of observation in the psychometric testing tradition, which
was (and generally still is) to compare individuals, with his proposed, amended purpose
which was to assess the structure of relationships among observations. In effect, Guttman
was arguing that if one wishes to better understand the processes of intelligence, one
needs to take a distinctively within-individual perspective. Lohman and Ippel (1993,
p. 42) went further and suggested that the general idea of test theory as applied statistics
(i.e., psychometrics) has not only hampered the development of structural theories for
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the measurement of processes, but actually precluded it (see also, Deary 2001; Molenaar
2004). Borsboom et al. (2003) later made the compelling argument “that between-subjects
models do not imply, test, or support causal accounts that are valid at the individual level.”
(p. 214). Additionally, that therefore, within-individual level processing must be explicitly
incorporated in measurement models in order to substantively link between-subject models
of intellect with what is happening at the level of the individual (Borsboom et al. 2004). As
we will elaborate on in a later section (Part 4), like others (e.g., De Boeck et al. 2020), we see
promise in multilevel (mixed-effects) models (MLM) for linking theory and measurement.

The claim that the structure observed at a between-individual level exists at the
level of an individual is referred to as the Ergodic Assumption (Molenaar 2004, 2013). As
explicated formally by Molenaar (2004, 2013), when there is substantial heterogeneity
across individuals, or in other words, when stationarity of means and covariances does
not exist across time/occasions, as is true for biological systems, including that of humans,
the likelihood of the ergodic assumption being true is vanishingly low. The implication
of this for the current discussion (and the field in general) is that the majority of between-
individual conceptualisations of intelligence, such as that represented by the Cattell-Horn-
Carroll (CHC) hierarchical taxonomy (Carroll 1993; Schneider and McGrew 2012) of human
abilities, probably do not hold for most individuals. It is conceivable to say, Damian’s
inductive, quantitative, and verbal attributes (narrow CHC factors) covary differently
relative to Jens’; that is, their CHC “factor structures” are different. When we assess
between-person CHC factors, such as inductive reasoning, quantitative reasoning, and
verbal comprehension, we are making the unstated supposition that each of these attributes
exists uniquely within the person we are assessing. We are certainly doing so when we
plot the person’s profile of derived scores as indices of CHC factors, and then interpret
their strengths and weaknesses. This is precisely the ergodic assumption as it is realised in
practice. In fact, Molenaar (2004, p. 215) concludes that for nonergodic processes “there is
no scientifically respectable alternative but to study the structures of [within-individual
variability] and [between-individual variability] for their own sake”. Of course, there are
subdisciplines of researchers who have devoted considerable energies to each. Cronbach
(1957) referred to them as experimentalists and correlationalists and argued that there will
always remain questions that “Nature will never answer until our two disciplines ask
[them] in a single voice” (p. 683).

2.1.3. Ontological Status of Reflective vs. Causal- and Composite-Formative Concepts

The common factor-analytic/SEM model on which CHC is based is a reflective one,
where individual differences in observed variables (and latent variables in hierarchical
models) are considered effect-indicators of the latent attribute of interest1. That is, the
variance in scores on the observed indicators represents effects that are caused by the latent
variable. An alternative is to consider causal formative models, where observed variables
(and latent variables) are cause-indicators. Here, variation in the resulting latent variable
is caused by the indicators. Thus in formative models, the latent variable represents the
indicators’ shared contribution in some collective way (Bollen and Diamantopoulos 2017;
Kovacs and Conway 2016).

Formative models have typically not been broadly adopted by intelligence researchers
(cf., Kovacs and Conway 2016), in spite of the fact they have been known since at least
the 1960s (see Blalock, H.M, 1963, cited in Bollen and Diamantopoulos 2017). Bollen
and Diamantopoulos (2017) suggest this is in part due to an historical entrenchment of
thinking in terms of reflective models. This is not particularly surprising since theori-
sation is typically targeted at individual-centred processes that are intuitively reflective
in nature, but such claims should be tested, not assumed. Bollen and Diamantopoulos
review seven common criticism presented against the appropriateness of using formative
indicators. They conclude each criticism is either invalid or represents issues shared by
reflective indicators. Importantly for our purposes, the authors demarcate the difference
between causal-formative and composite-formative indicators in terms of conceptual-unity,
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a distinction they argue is often ignored or misunderstood. When corrected, this leads
to a straightforward discounting of the core criticisms and their basic tenets. Bollen and
Diamantopoulos (2017) demonstrate that latent variables derived from models of causal-
formative indicators which have what they refer to as conceptual unity, can be considered
as measures2, analogous to reflective latent variables. Conceptual unity exists when each
indicator matches “the idea embodied by the concept” (p. 584). How precisely this is
achieved is not clear; it is an aspect of the theorising needing further explication. However,
according to Bollen and Diamantopoulos, composite-formative indicators do not require
conceptual unity, and therefore composite variables are not measures, they are not latent
variables, and neither are the indicators causes of the composite variable. Composite
variables may have utility as a summary of the multiple variables in a predictive sense but
not an explanatory one.

The demarcation between a composite vs. causal indicator is difficult to resolve. The
identification of trait-complexes (Ackerman et al. 2013) present a potentially illustrative
case in point. Ackerman and Heggestad (1997) proposed that there are four trait-complexes,
two of which are represented in Figure 1 (left panel), that each encompass an overlapping
set of different traits from the domains of personality, abilities, and interests (additional
trait-complexes were subsequently included, see Ackerman et al. 2013). “Validity” of
trait-complexes is purportedly evidenced by their differential prediction of domain-specific
knowledge acquisition. For instance, the intellectual/cultural trait-complex was captured
by Gc and ideational fluency abilities, artistic and investigative interests, and absorption,
openness, and typical-intellectual engagement personality dimensions.
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Figure 1. Schematic representation of the Intellectual/Cultural and Social trait-complexes proposed
by Ackerman and Heggestad (1997). Left panel describes theoretical account; Right panel represents
a reflective model of the intellectual/cultural trait-complex.

For instance, indicators of Openness (i.e., items) have conceptual unity necessary (but
not sufficient) for measurement, because they are bound by the definition of the openness
concept. However, although Ackerman et al. (2013) modelled trait-complexes as reflective
latent traits as represented in Figure 1, it is reasonable to question whether they are forma-
tive (and therefore the purple arrows in Figure 1 should point to the trait-complex, rather
than from it). If they are formative, then the next question is whether the indicators (i.e.,
personality, interests, and ability factors) together have sufficient conceptual unity neces-
sary for the resulting trait-complexes to serve as latent variables (i.e., are causal-formative)
or not (i.e., are composite-formative).

According to Bollen and Diamantopoulos (2017), while there are tests to determine
whether a concept is likely reflective or formative, whether one treats a concept (such as a
trait-complex) as causal- or composite-formative is an ex ante decision the researcher makes
via an empirically substantiated theoretical claim3.
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Our previous attempts at conceptualising cognitive flexibility as a meta-competency
(Yu et al. 2019) has similar formative features. In this work, we surmised that there is a case
for considering cognitive flexibility as a meta-competency to unify cognitive, conative (e.g.,
meta-cognitive) and situational dependencies, rather than thinking of cognitive flexibility
simply as a facet of a broader flexibility attribute, as it is frequently conceived. Like the
argument for trait-complexes, flexibility as a meta-competency is framed as a formative
concept, but one that is probably composite in nature. The reason for classifying it as such,
is that the theoretical boundaries for the meta-competency are still to be fully mapped and
measurement properties still need to be better understood. Currently as it stands, while its
indicators are internally coherent and (historically) considered reflective, as a set they lack
sufficient conceptual unity.

The notion of Complex Problem Solving (Dörner and Funke 2017) also has many
features of a composite-formative model. This is evident when one considers how it is
conceptually defined, as demonstrated in the excerpt from Dörner and Funke (2017, p. 6) in
Figure 2. We highlight 13 distinct components that relate to the theory of complex problem
solving. Whether these components have sufficient conceptual unity to be anything other
than composite-formative is not a statistical question, but rather intrinsically a theoretical
and empirical one. That is, the ontological status cannot be assumed.

J. Intell. 2022, 10, x FOR PEER REVIEW 6 of 30 
 

 

the resulting trait-complexes to serve as latent variables (i.e., are causal-formative) or not 
(i.e., are composite-formative). 

According to Bollen and Diamantopoulos (2017), while there are tests to determine 
whether a concept is likely reflective or formative, whether one treats a concept (such as 
a trait-complex) as causal- or composite-formative is an ex ante decision the researcher 
makes via an empirically substantiated theoretical claim3. 

Our previous attempts at conceptualising cognitive flexibility as a meta-competency 
(Yu et al. 2019) has similar formative features. In this work, we surmised that there is a 
case for considering cognitive flexibility as a meta-competency to unify cognitive, conative 
(e.g., meta-cognitive) and situational dependencies, rather than thinking of cognitive flex-
ibility simply as a facet of a broader flexibility attribute, as it is frequently conceived. Like 
the argument for trait-complexes, flexibility as a meta-competency is framed as a forma-
tive concept, but one that is probably composite in nature. The reason for classifying it as 
such, is that the theoretical boundaries for the meta-competency are still to be fully 
mapped and measurement properties still need to be better understood. Currently as it 
stands, while its indicators are internally coherent and (historically) considered reflective, 
as a set they lack sufficient conceptual unity. 

The notion of Complex Problem Solving (Dörner and Funke 2017) also has many fea-
tures of a composite-formative model. This is evident when one considers how it is con-
ceptually defined, as demonstrated in the excerpt from Dörner and Funke (2017, p. 6) in 
Figure 2. We highlight 13 distinct components that relate to the theory of complex problem 
solving. Whether these components have sufficient conceptual unity to be anything other 
than composite-formative is not a statistical question, but rather intrinsically a theoretical 
and empirical one. That is, the ontological status cannot be assumed. 

 
Figure 2. Excerpt from Dörner and Funke (2017, p. 6) showing distinct components (our enumera-
tion and underlining) likely to define a composite-formative variable in the Bollen and Diaman-
topoulos (2017) framework. 

Thinking more broadly, one might further postulate that other “intelligences”, like 
practical intelligence or cultural intelligence, or even operational intelligence, coined by 
Dörner (1986, p. 290) in relation to complex problem-solving competencies, and defined 
as “the factors that determine the cognitive processes commonly labelled as flexibility, 
foresight, circumspection, systematic planning…”, are similarly defined conceptually 
with formative characteristics. This is not to disparage these or our own theories and mod-
els as being of lesser worth, it is simply being true to our understanding of the nature of 
the concept under investigation4. In summing up their commentary, Bollen and Diaman-
topoulos (2017) conclude that it does not matter too much whether the ontological basis 
of our theories are reflective or formative, the important scientific point is that researchers 

Complex problem solving is a collection of [1] self-regulated psychological 

processes and [2] activities necessary in [3] dynamic environments to achieve [4] ill-

defined goals that cannot be reached by routine actions. [5] Creative combinations of 

knowledge and a [6] broad set of strategies are needed. Solutions are often more [7] 

bricolage than perfect or optimal. The problem-solving process combines [8] 

cognitive, [9] emotional, and [10] motivational aspects, particularly in [11] high-

stakes situations. Complex problems usually involve [12] knowledge-rich

requirements and [13] collaboration among different people.
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(2017) framework.

Thinking more broadly, one might further postulate that other “intelligences”, like
practical intelligence or cultural intelligence, or even operational intelligence, coined by
Dörner (1986, p. 290) in relation to complex problem-solving competencies, and defined
as “the factors that determine the cognitive processes commonly labelled as flexibility,
foresight, circumspection, systematic planning . . . ”, are similarly defined conceptually
with formative characteristics. This is not to disparage these or our own theories and
models as being of lesser worth, it is simply being true to our understanding of the
nature of the concept under investigation4. In summing up their commentary, Bollen and
Diamantopoulos (2017) conclude that it does not matter too much whether the ontological
basis of our theories are reflective or formative, the important scientific point is that
researchers carefully “define their concept, choose corresponding indicators, and consider
whether the indicators depend on or influence the latent variable” (p. 594, our emphasis). In
our view ontological considerations are critical. This is because the proliferation of new
latent variables unthinkingly assumed to be reflective, has obscured rather than illuminated
our understanding of underlying processes.
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To conclude this section, we make note of Process Overlap Theory (POT), a recent
causal-formative account of intelligence (Kovacs and Conway 2016). According to Con-
way et al. (2021, p. 1) much of the motivation for POT is a growing dissatisfaction with
the impediment to theory building caused by the disconnect between psychometrics and
psychological theories, and problematic inferences related to the status of latent variables.
Their argument is that the typical latent variable account, based in reflective SEM models
where the latent variable is assumed to causally determine (i.e., is manifested in) individual
differences in observed test scores, overlooks the real possibility that the emergence of a
latent variable from such statistical approaches is an epiphenomenon of the fact that differ-
ent tasks share different common processes, as represented statistically by causal-formative
models. This is consistent with the work of van der Maas et al. (2006) who demonstrated
that reciprocal mutualism between processes sufficiently explains positive manifold with-
out the need to introduce a reflective latent attribute, such as ‘g’. Importantly however,
Fried (2020) has demonstrated that network models are not necessarily differentiable from
reflective models in terms of explained variance. Thus, simply moving to a formative
account (or even a network one) is not sufficient. The burden now rests with the researcher
to explicate the specific processes entailed.

2.2. Summary of Part 1: Why Intelligence Theorising Has Survived However, Failed to Thrive

In Part 1 we have presented a review of a small selection of entrenched assumptions
that have stymied intelligence theorizing. In doing so, the central point of our argument is
that we have focused for too long on between-individual comparisons and too willingly
tolerated inconsideration of within-person accounts.

Psychometric tests of intelligence have great utility in predicting interesting (and
important) outcomes, and pragmatically the common-factor analyses of correlations works
well in this regard. One might be tempted to therefore ask, what are the implications of not
redressing the limitations reviewed in Part 1? This is our response so far. First, if we do
not question the supposition of stability, we risk over-looking (and not assessing) adaptive,
situation-contingent, within-person differences. This risks limiting our understanding of
the dynamic features of intelligent behaviour in applied settings, such as work and educa-
tion. Second, we reviewed analyses that demonstrate assuming within-person accounts
follow from between-person theories, that is, assuming ergodicity, is logically untenable.
The ergodic claim assumes stationarity of means and covariances across time within the
individual, and this is largely untenable in practice, further contributing to the argument
for testing the supposition of stability. Third, we reminded readers that the between-person
theories themselves are often based on an untested assumption of reflective models, that
differences in the indicators are caused by differences in the latent variable (arrows going
from the latent variable to the indicators). The alternative, formative claim, that indicators
are causing differences in the latent variable (arrows going to the latent variable from the
indicators) is rarely tested, and when it is, the respective models often account for as much
variance as reflective models, so the choice can easily be driven by pragmatism and inertia.

When we scratch the surface, it is apparent that between-person models of intellect
have little explanatory value and thus their pragmatic benefit and descriptive utility rests
on a theoretically shallow house of cards. To address the challenges presented by these and
other types of entrenched assumptions, we need a grounded process theory of intelligence.
In the following we map out some of the requirements needed for a within-person approach,
admittedly in somewhat of a selective way.

3. Part 2: Requirements for A Within-Person Approach to Intelligence

“It is true that the components of individual differences have often been interpreted
in terms of cognitive processes, but such an interpretation does not logically follow.
The interpretation is necessarily a post hoc interpretation based on the assumptions
that processes are directly reflected in individual differences in performances and that
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correlation between performances defining a factor indicates that a common process is
involved.” (De Boeck et al. 2020, p. 58)

3.1. Process-Oriented Accounts

Following the arguments of Molenaar (2004, 2013) and Borsboom et al. (2003, 2004),
the ergodic assumption in psychology is tenuous at best, and all between-person models
are variously imperfect accounts of what is likely to be occurring within an individual.
Taking the call for the study of within-individual variability in its own right seriously
(Molenaar 2004), where does one begin to map out a process-oriented account? The obvious
choice is with working memory, and we will consider what current conceptualisations of
working-memory theory have to offer. However, it turns out the notion of complexity is a
compelling first place to start because of its already deep links with intelligence theory.

3.1.1. Complexity as the “Ingredient” Process of Intelligence

Theorising within the psychometric intelligence tradition is not completely devoid of
attempts to understand processes. Arguably the most developed is based on the notion of
complexity, and the observation that performances on tasks, occupations, and work that are
more complex, broadly defined, tend to be more highly correlated with intelligence. The en-
suing supposition is that intelligence entails a capacity to deal with complexity (Gottfredson
2018). Following from this, an independent indicator of complexity is changes in correla-
tions with, or loadings on, measures of intelligence that are concomitant with changes in
task complexity (Arend et al. 2003; Spilsbury et al. 1990; Stankov and Cregan 1993), but all
else being equal, not with changes in difficulty generated by other task features (Birney
and Bowman 2009; Stankov 2000). Birney (2002) referred to this criterion as psychometric
complexity.

Complexity vs. Difficulty

To understand why complexity is of such value in the conceptualisation and assess-
ment of intelligence, it is necessary to take a brief diversion to distinguish it from difficulty
(Beckmann et al. 2017). Difficulty is atheoretical, in that a rank-ordering of test items that
are solved by fewer and fewer people tells us little about what make items difficult, just
as correlations alone, we will argue, tell us little about complexity. Difficulty is a statistical
concept captured by indices such as the proportion of people who answer an intelligence
test item correctly. Complexity is a cause for the difficulty one experiences, in that it is a
consequence of the cognitive processes demanded of the task at hand.

While complexity is often equated to difficulty, there are certainly tasks that are not
difficult yet predictive of intelligence. For instance, the well-known, perceptual inspection
time task (Deary 2001) appears to impose minimal storage or processing load, yet is a
good predictor of Gf. Similarly, performance on the relational monitoring task (Bateman
et al. 2019; Chuderski 2014) is highly predictive of Gf, but the reasoning and memory
demands are ostensibly minimal. Complexity is more nuanced and entails systematic
manipulations based on a structural process hypothesis regarding differential demand
on ability (Lohman and Ippel 1993). That is, complexity is a causal-formative concept
that is indexed by performance across task manipulations that have conceptual unity.
It is conceptualised first and foremost as a quality that is determined by the cognitive
demands that characteristics of the task and the situation impose, and because of this,
it is psychologically substantive. Accordingly, manipulations monotonically ordered by
complexity are manipulations of monotonically increasing demand on the psychological
attribute (Birney et al. 2019). Only in a truly pure, unidimensional task will the complexity
continuum coincide with the difficulty continuum. Of course, such tasks do not exist.
However, with careful, theory-driven task analyses, the parameters of complexity can be
formalised and investigated (Beckmann 2010; Birney and Bowman 2009; Ecker et al. 2010;
Goecke et al. 2021; Halford et al. 1998).
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Differential complexity correlations are a plausible, necessary criterion of an increase
in cognitive demand. However, there are some statistical and theoretical challenges to be
flagged. Statistically, by definition, the magnitude of a correlation coefficient is influenced
by the upper-bound variance of their component measures, and variances in ability tasks
are influenced by statistical difficulty. Due to restrictions of range, all else equal, tasks
that are of average statistical difficulty will have a higher upper-bound variance than both
easier or more difficult tasks, attenuating correlations in both the latter cases. In practice,
easier and harder tasks may appear “less” complex than they really are. Whether the
“shrinkage” of random-effects in multilevel models (which we describe in Part 4) serves
to bring extreme observations toward the fixed-effect (i.e., toward the mean intercept or
slope), or the “task purification” of latent variable SEM models are useful ways to address
this statistical limitation needs further investigation.

Theoretically, once again, appropriateness of complexity correlations assume we have
a sufficiently detailed process-account of the latent attribute to inform a causal statement
of how the complexity manipulation demands a concomitant investment of concordant
intellectual processes (Sternberg 1977b, 1980). That is, while we have a theoretical cause
(complexity) and a way to assess its effect (correlations), alone it provides little under-
standing of antecedents—anything that leads to increased correlations with intelligence
is presumably a complexity manipulation. In response to this ambiguity, an early ap-
proach to incorporate theory was to consider performance under competing task conditions
(Fogarty and Stankov 1982) or by increasing the number of mental permutations required
to successfully solve a set of reasoning tasks (e.g., Schweizer 1996; Schweizer and Koch
2002; Stankov 2000; Stankov and Crawford 1993). Such manipulations were shown to also
lead to increases in correlations with Gf, and hence was presented as further evidence of
the importance of complexity.

Birney et al. (2019) defined psychometric complexity more formally and generally as
the extent to which within-individual differences in task performance across theoretically
substantive complexity manipulations differ as a function of between-individual differences
in that attribute. In multilevel models, this is a cross-level interaction. That this is the
case, explicates a possible conceptual definition, operationalisation, and assessment of
intelligence as cognitive flexibility that is formally aligned and testable within a common
methodological framework. We discuss this further in Part 4.

3.1.2. Working-Memory Accounts of Intelligence

Investigations of processes in individual differences research has had a strong focus
on understanding mechanisms underlying working memory (WM) in and of itself (e.g.,
Ecker et al. 2010; Goecke et al. 2021; Oberauer and Lewandowsky 2016), or as a set of
processes common to both WM and Gf (e.g., Ackerman et al. 2005; Engle et al. 1999;
Oberauer et al. 2007; Shipstead et al. 2016). What is common in many of the studies and
approaches described in the rest of this section is the combined experimental-correlational
methodology—basic processes are proposed, operationalised as individual differences
variables and “measured”, and then “validated” as incremental predictors of the latent
attribute (e.g., WMC or Gf ). The latent variables representing these attributes are defined
and operationalised using the traditional reflective procedures we have described. The
supposition is that the more variance the proposed processes predict in the latent WM or Gf
variable, the more we know about working memory or intelligence. The view we advocate
is that this approach, while rightminded in explicating process accounts, is incomplete.

In terms of WM-focused studies, consider for instance Ecker et al. (2010), who sought
to map processes underlying working memory updating. Following a task analysis of a set
of commonly used updating tasks, they identified three component processes, retrieval,
transformation, and substitution. Using a modified version of the memory updating task,
they manipulated the absence or presence of each component experimentally, and used
multilevel, mixed-effects modelling to test theoretically specified contrast hypotheses (this
is similar to the costs approach used by Bateman and Birney (2019) to identify a link
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between relational integration demand and Gf, which we will describe shortly). Ecker
et al. first demonstrated that the WM updating components were distinct and additive in
predicting task response times and accuracy (there were no observed interactions between
the components). In the second part of the Ecker et al. study, a bi-factor SEM model tested
and confirmed differential associations of the three WM updating components with an
independently defined (reflective) latent WMC factor.

In a recent study investigating the role of the working-memory binding hypothesis,
Goecke et al. (2021) combined an experimental manipulation of complexity of elementary
cognitive tasks (ECTs), also using a bi-factor SEM approach to identify the mechanisms
underlying binding demands (e.g., more stimulus-response mappings = greater binding
demand) on working memory capacity. This was achieved in a three-step process. First,
given ECT performance is typically differentiated more by response latency rather than
accuracy, performance indices were derived using drift diffusion modelling. In total,
standardized drift rates were derived for 12 indicators, 3 speed tasks (change-detection,
stimulus comparison, substitution) by 2 modalities (selected from either letter, figure, or
number modality) by two binding complexity levels (low and high). Second, a bi-factor
SEM was run where all 12 indicators were freely allowed to load on a general speed factor,
and only the six high complexity binding indicators defined the specific binding factor.
Third, these two process factors were then regressed on an independently derived WMC
latent factor. The results suggest that both the general and high-binding factors were
comparable and significant unique predictors of WMC, together explaining 66.5% of the
variance in the latent WMC factor.

In terms of combined Gf and WM studies, Unsworth and Engle (2007b) for instance
reported a complexity effect with Gf in simple-span tasks using a combined experimental/
individual-differences approach. The authors demonstrated that as the number of to-be-
recalled elements increases in simple-span memory tasks to supra-span levels, determinants
of performance become more like complex-span WM tasks, in that there was an emergence
of a monotonic increase in correlations with Gf as a function of list-length. Shipstead
et al. (2016), building on this and other extensive theorising (e.g., Engle 2002; Engle et al.
1999; Unsworth and Engle 2007a), proposed that the link between WM and Gf has to do
with the engagement of executive attention for maintenance and disengagement processes
of information held in the focus of attention. Importantly in the Shipstead et al. (2016)
conceptualisation, these executive processes do not simply covary with Gf, but rather are
ontological to both WM and Gf. This is such that Gf and WM tasks require executive
attention of both maintenance and disengagement, but to different degrees. They argue
disengagement is more critical to Gf tasks, whereas maintenance is more critical for WM
tasks. Additional work has investigated a range of different WM tasks and their relations
to Gf, such as inhibition of lure trials in the updating n-back task (Burgess et al. 2011;
Gray et al. 2003).

While WM processes are important aspects in Gf tasks, they are not the only aspects
important to intelligence. For instance, Sternberg (1977a) identified encoding, mapping,
and application processes (“components” in his parlance) underlying analogical reasoning.
From a task analysis perspective, understanding reasoning and novelty processing is also
important, and theories of complexity in terms of processing capacity limits (e.g., Halford et al.
1998) are well positioned to progress further investigations (Birney and Bowman 2009).

3.1.3. Relational Binding and Integration Accounts of Intelligence

One way of thinking about how processing capacity limits are related to complexity is
in terms of relational binding and relational integration demand. Oberauer and colleagues
(e.g., Oberauer 2021; Oberauer et al. 2000) suggest a set of working-memory mechanisms by
which a coordinate system binds relational information between content (say, for instance,
a mountain and mole hill) and contextual information (a size comparison) to facilitate
action on a specific mental representation to derive a response (e.g., the mountain is larger).
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Limitation on accessibility of chunks is determined by constraints on the capacity of the
focus of attention and priming in the region of direct access (Oberauer 2013).

Relational integration and precursor processes associated with relational binding are
also thought to underly the associations between WM and Gf. We have used relational
complexity (RC) theory to parameterise the cognitive demand of relational integration
(Bateman and Birney 2019; Bateman et al. 2019; Birney and Bowman 2009; Birney et al.
2012; Gabales and Birney 2011). RC theory is based on the premise that the limits of WM
can be understood in terms of the complexity of to-be-instantiated relations (Birney and
Halford 2002; Halford and Wilson 1980; Halford et al. 1998; Halford et al. 2010). A binary
relation entails two arguments, as in the relational concept: LARGER-THAN(mountain,
mole hill). A relation is instantiated through the binding of a value to an argument-slot,
such as “mountain” to the larger-than argument; and separately “mole hill” to the implied
smaller-than argument-slot. The relation exists only in its integrated form. It is thought that
the typical limit of human capacity is a quaternary relation, an example of which according
to Halford et al. (2007), are proportional analogies in the form of A:B :: C:?.

Application of RC theory led to the development and validation of a class of relational
integration measures known as Latin Square Tasks (LST) (Birney et al. 2006). A Latin
Square entails a k × k matrix with k different element types distributed such that each
element exists only once in each row and column. Experimental manipulations of partially
completed LS are in terms of (a) relational complexity (relational integration of 2, 3, or 4
dimensions) and storage load (number of interim solutions to be maintained) (Birney and
Bowman 2009; Birney et al. 2006); (b) presentation format (with and without time-limits)
(Hearne et al. 2019) (c) dynamic-completion (recording of non-target-cells as external-memory
aid to mitigate memory demand and isolate binding) (Bateman et al. 2017); and LST
dimensionality (4 × 4 LST, requiring only a shape response, and a 5 × 5 Greco-LST which
superimposes two LSTs integrating shape and colour) (Birney et al. 2012; Gabales and
Birney 2011). Each of these within-task manipulations were theoretically designed to
tap specific aspects of Gf ; they have been shown to be differentially and incrementally
predictive to varying extents.

RC has also been useful to inform manipulations of relational binding in cognitive
processing load in the Arithmetic Chain Task (ACT) (Bateman and Birney 2019) and the
Swaps task (Bateman 2020; Stankov 2000), where systematicity plays out differently in
each, giving further insights into underlying within-individual mechanisms. For each
trial in the experimental conditions of the ACT, participants are given 6s to study a to-
be-recalled mapping of letters to numbers (Screen1: A = 2, B = 4, C = 1). They are then
given new mappings that are either in a systematic order (Screen2: X = A, Y = B, Z = C)
or a random order (e.g., X = B, Y = C, Z = A), and need to use this derived mapping of
numbers on to X, Y and Z to complete a chain of simple arithmetic (Screen3:, e.g., 5 − 4
+ X + 2 − Y + Z = ?). Systematicity inherent in natural-ordering facilitates chunking of
relationally bound elements (ABC = 241 = XYZ), which aids number recall to complete the
arithmetic. Random (or non-systematic) ordering stymies chunking (ABC = 241 = ZXY).
Using multilevel models, the within-individual cost of performance in the non-systematic
condition (relative to a control condition with no mappings) was shown to be moderated
by Gf, but not for the systematic condition (Bateman and Birney 2019). The interpretation is
that sensitivity to systematicity and capacity to build strong flexible bindings in disordered
contexts (ABC = 241 = ZXY) is an important Gf process.

The Swaps task requires mental permutation and updating and presents participants
with a letter triplet (e.g., JKL) with instructions to mentally rearrange or ‘swap’ the positions
of letters (e.g., Swap 1 and 2; then Swap 3 and 2) and report the final ordering (i.e., KLJ). As
indicated previously, Stankov and Cregan (1993) have demonstrated the greater the number
of mental permutations the higher the correlation with Gf. Bateman (2020) modified the
Swaps task to target binding systematicity designed to emerge over the multiple swaps
required within items. For example, given [TQXBL] the required solution path with swap
instructions is: Initial order [TQXBL]; Swap 1 with 2 = [QTXBL]; swap 3 with 2 = [QXTBL];
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swap 1 with 3 = final order [TXQBL]. The intended systematicity is that B and L can be
chunked because they are never swapped and this is not pointed out to participants; and
sensitivity to this facilitates performance. Based on the ACT findings of Bateman and Birney
(2019), one might predict that performance in the intuitively more difficult, non-systematic
condition would be more predictive of Gf. However, preliminary data provided by Bateman
(2020) indicated the opposite—performance was moderated by Gf when systematicity was
present, but not when it was absent. This suggests that sensitivity to systematicity over time
is also a feature of Gf.

As a relevant aside, the notion of fluid intelligence comprising the ability to utilise
structure (where and when available) in conjunction with the result of poorer performance
in the non-systematic condition resonates with findings in relation to the so-called seman-
ticity effect in complex problem solving (Beckmann 1994; Beckmann et al. 2017; Beckmann
and Goode 2013). Here, the presence of semantically laden labels for system variables
negatively affects knowledge acquisition as well as system control performance. This
effect is caused by relying on a false sense of familiarity which is triggered by the variable
labels rather than systematically testing assumptions. In other words, the apparent lack
of systematicity when interacting with the system results in not utilising available cogni-
tive resources, which is reflected in lower correlations between Gf and CPS performance
shown under high semanticity conditions in contrast to CPS performance shown under
low semanticity conditions.

Together, the ACT and the Swaps data support conceptual definitions of Gf as entailing
both a capacity for binding sensitivity to systematicity and managing disorder through
building and maintaining strong yet flexible bindings. The standard between-person
approach tells us that both tasks correlate with Gf to the same extent (r ~ 0.40); the within-
individual approach provides additional insights by suggesting they do so for different
reasons, supporting our argument that understanding within-individual processes is critical
to intelligence as cognitive flexibility.

3.2. Summary of Part 2: Why WM Theory Is Important to Within-Person Process Accounts

In Part 2, we outlined the historical importance of the concept of “complexity” in
intelligence theorising and made a distinction between difficulty as a statistical entity and
complexity as a theoretical concept. While there are pragmatic challenges in operational-
ising this distinction, we alluded to the promise of MLM, when clearly specified process
accounts are incorporated into the operationalisation. In this respect, we reviewed seminal
process accounts of WM in relation to fluid intelligence, and more recent advances in terms
of the cognitive models that formalise the role of relational binding and integration. In
particular, we highlighted exemplar research that has incorporated process-accounts in
SEM modelling (e.g., bi-factor analyses). The core point is that because of the limitations
outlined in Part 1, process accounts are needed for any theory that wishes to take within-
individual differences seriously. In our view, the process accounts reviewed in this section
provide an excellent place to start.

4. Part 3: Theory through Task Analysis

While the work so far presented certainly takes a process account, there are two issues
left unaddressed. First, the tasks investigated are not dynamic and nor do they necessarily
allow for within-task adaptation to changing conditions. Second, the “validity” criterion
used are predominantly non-dynamic measures of WM and Gf. To validate an operational-
isation of intelligence as cognitive flexibility in a traditional way (i.e., through statistical
associations), one needs an appropriate dynamic criterion measure. The standard approach
would be to predict a real-world outcome where “cognitive flexibility” is assumed to be re-
quired, and to then check for incremental prediction of this outcome over and above classic
measures of Gf. This is the approach used for validating CPS tasks, and other “alternative”
measures of intelligence. This seems conceptually the right thing to do, however defining
what is appropriate is not straightforward, although the necessary steps are clear. First, one
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must resist the pragmatics of relying on readily available quantified criteria (i.e., statistical
association) without reflection on their conceptual and operational quality. If one relies
on such atheoretical approaches there are two possible outcomes: (1) there is a correlation
of some size and we happily conclude we have valid “measurement”, or (2) there is no
(or unsatisfactory) correlation, and conclude the criterion was not good enough, but that
our “measurement” might be saved from negative evidence while we search for the right
criterion. A more systematic approach is needed. In response to these sort of challenges,
we begin by distinguishing between features and dimensions that differentiate static vs.
dynamic tasks, and consider how the former might be modified to emulate the latter.

4.1. Static Tasks

Static assessment tasks have several common characteristics. They (a) focus on the
accuracy or speed of a one-off response; (b) follow classic psychometric principles closely,
particularly the notion of item stability as the foundation of measurement consistency and
test development; (c) assume local independence of items, whereby items are ostensibly
interchangeable (Pedhazuer and Schmelkin 1991), and (d) item-specific feedback is not
provided (as this would jeopardise (b) and (c)). Due to these properties, performance in
static tests is typically operationalised as an aggregate of item accuracy (e.g., proportion
of correct items) or response time. Whilst static tasks may be psychometrically desirable,
they are conceptually inadequate when it comes to dynamic concepts such as intelligence
as cognitive flexibility. Static tasks can be made dynamic by focussing on the variability (in
accuracy/speed) caused by systematic within-task manipulations. This can be achieved in
a number of ways, we discuss two general approaches that entail (a) redesigning tasks to
entail structured within-task manipulations, and (b) through interposition of idiosyncratic
information to the existing task.

4.1.1. Theoretically Substantiated Within-Task Manipulation

When items are designed to be differentially sensitive to the structure of specific un-
derlying cognitive processes, they are fundamental and not interchangeable in relation to
items of a specifically, different type. Performance is conceptualised as a function of this
predefined structural relationship, the simplest being a relation of difference. This is a stan-
dard approach for identifying processes as we have already outlined (e.g., Ecker et al. 2010).
One’s capacity to learn can also be modelled as changes in performance from one item to
the next in linear and non-linear ways, controlling for other task and person characteristics—
that is, item-order is the relational structure. Using an MLM approach, Birney et al. (2017)
investigated correlates of performance and item-order experience trajectories across the 36
items of Raven’s Advanced Progressive Matrices test. Similar approaches to item-order
effects have been conducted by Schweizer and colleagues (e.g., Schweizer 2009; Schweizer
et al. 2015). The relational structure can also be variable and nuanced. For instance, using
Bayesian methods, Cripps et al. (2016) separately and jointly modelled the probability of
an individual to spiral monotonically into poorer performance during a natural decision-
making task, which are sometimes referred to as microworlds, if and when they reached
an idiosyncratic motivational threshold (as opposed to an ability threshold). Birney et al.
(2021) report on preliminary work extending Cripps et al.’s to model spiral and recovery
trajectories in the n-back task.

4.1.2. Within-Task “Interposition”

Static tests can also be made more dynamic through interposition of information
during a task that intentionally serves to focus problem solving on one or more item char-
acteristics. This can be in the form of feedback, such as simple accuracy feedback, or a
more specific strategy/hint, such as “consider how colours change” in a series-completion
task. Provision of feedback designed to change performance is one of the defining fea-
tures of the dynamic testing paradigm (Guthke and Beckmann 2000), but other forms of
prompting may also change the way people approach problems. While the intention of
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such manipulations is to focus assessment on dynamic processes rather than static ones, an
important theoretical implication of interpositions is that they may impact the validity of
the assessment in unintended ways (Birney et al. 2022; Double and Birney 2019). Careful
theorising and experimentation are necessary to ensure validity claims can be defended.
Our approach is to base interposition manipulations on a process account of intelligence as
cognitive flexibility.

4.2. Dynamic Tasks

The main characteristic of dynamic tasks—as they have been employed in the context
of complex problem-solving research and the assessment of learning ability—is their opera-
tional focus on within-person performance variability. The definition of Dynamic Testing,
for instance, characterises it as a methodological approach to psychometric assessment
that uses systematic variations of task characteristics or situational characteristics in the
presentation of test items with the intention to evoke intra-individual variability in test
performance (Beckmann 2014; Elliott et al. 2018; Guthke and Beckmann 2000). In so-called
learning tests the dynamic nature of assessment is realised by providing test takers with
the opportunity to demonstrate their receptiveness to scaffolded, error-specific thinking
prompts after an incorrect response to a test item. Complex problem solving can also be
conceptualised as dynamic testing (Beckmann 2014) as it also embodies various forms of
dynamics. These include (a) the feature of system feedback (e.g., whether the system state
changes towards the set goal state as a consequence of the problem solver’s intervention),
(b) the implementation of so-called autonomic changes in the system behaviour (i.e., the
state of system variables changes independently from the problem solvers inputs), but also
(c) the necessity for knowledge-acquisition (rule-learning) on which subsequent system
control (rule application) relies (Goode and Beckmann 2010).

In short, dynamic tasks have two or more dimensions of performance, entail fluid
and divergent processes, and are multi-phasic (rather than multi-dimensional) across
time/occasion and across the external (task context) and internal (cognitive process)
problem-space. Dynamic processes are present to some extent in existing flexibility and
switching tasks (Miyake and Friedman 2012), but as we have just outlined, are arguably
better represented in complex problem solving (CPS) and microworld tasks (Dörner and
Funke 2017; Funke et al. 2017), which as also argued above, may have a formative nature
as complex-problem solving competencies. We consider each of these paradigms next.

4.2.1. Set-Switching and Card Sorting

The well-known set-switching paradigm entails learning and applying a set of condi-
tional rules. For instance, the screen location of a stimulus (left/right) might be associated
with a Y/N response conditional on a particular stimulus feature (colour/shape), for exam-
ple: “Y if stimulus is on left and green, else N; Y if stimulus is on right and circle, else N”.
Performance requires rule-set acquisition, conditional response-switching, and inhibition
(e.g., not pressing Y when a green square is on the right). Performance is a function of a
response-latency cost for switch trials relative to repeat trials. While the basic cognitive
psychology switching research tends not to consider individual differences (cf., Ravizza
and Carter 2008), it has been useful as a metaphor of higher level shifting of perspectives, as
might be necessary in novelty processing (Beckmann 2014; Diamond 2013), or as formative
indicators for higher level flexibility concepts. The Wisconsin Card Sorting Task requires one
to sort cards one at a time based on a core attribute (colour, shape, numerosity). Unlike
set-switching, the sorting rule is not known in advance, rather it needs to be deduced from
feedback. This rule (say, sort by colour) will persist across multiple trials and then change
without forewarning to a different rule (say, sort by shape). Preservative sorting in the face of
negative feedback indicates a lack of cognitive flexibility. Recent computational modelling
research has shown the diagnostic value of deriving alternative assessment metrics from
well-known neuropsychological tasks, such as these. For instance, Steinke and Kopp (2020)
demonstrated that a reconceptualisation of Wisconsin Card Sorting Test metrics show
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promise in clinically differentiating Parkinson and ALS conditions. It is important to note
that while parameterizing task performance using computational methods can lead to
effective prediction/diagnosis, it is not given they will also lead to sufficient theoretical
understanding necessary to design interventions.

4.2.2. Complex Problem Solving (CPS) and Microworlds

CPS tasks present participants with an explicit opportunity to acquire knowledge and
to control and manage changes in a complex system by allowing direct experimentation
(Dörner and Funke 2017; Funke 1998). CPS tasks vary from high-fidelity microworld simula-
tions with many inputs and outputs (e.g., flight simulators), to “minimal complex systems”
(MCS) which present the simplest possible interaction of variables (ie, deterministic and
linear) (Funke et al. 2017). CPS tasks having conceptual links with intelligence and decades
of successful application in training and education (Wood et al. 2009). However, they are
often discounted as intelligence measures because of the challenge in extracting psychome-
trically reliable and valid performance indicators that correlate sufficiently with static tests of
intelligence (Beckmann and Guthke 1995; Greiff et al. 2015; Stadler et al. 2015). Consistent
with others (Funke et al. 2017), we argue that emphasis on classic psychometric qualities
has led to an advocacy for MCS-like tasks, a reduction in multi-phasic task complexity, and
questionable validity as tests of “true” CPS ability (Beckmann et al. 2017). As indicated pre-
viously, it is feasible that typical summary scores from CPS represent a composite-formative
concept, and according to Bollen and Diamantopoulos (2017) are not measures. This is not
necessarily an insurmountable problem. We have argued that a sufficiently detailed task
analysis and experimental manipulations, causal and effect-based concepts can be specified
and extracted as measures (Beckmann 2019; Birney et al. 2018).

4.3. Summary of Part 3: Why Task-Analysis Is Important

A tacit “known” we have not previously mentioned is the mantra that one should
“validate” new measures of intelligence by assessing how well they correlate with existing
ones. This not only leads to new tests functioning much like old ones, but also results
in theoretical inertia; our understanding of intelligence and how to measure it does not
progress as rapidly as it could. To bring operationalisations of intelligence in line with
conceptualisations, we must stretch beyond the status quo (which we have outlined in
Parts 1 and 2). With this as our overarching goal, in Part 3 we reviewed features common to
existing static and dynamic assessment tasks. We surmised that static tasks are, inter-alia,
characterised by one-off measures and local independence of items, whereas dynamic tasks
are characterised by having multiple dimensions of performance across items that have
dependences across multiple occasions, and often entail feedback. The latter is conceptual
closer to our proposed within-individual conceptualisation of intelligence, however, as
we pointed out, dynamic tasks present challenges to standard psychometric methods that
seems to have reinforced pragmatism and inaction. In the next section we describe how
multilevel models (also known as latent-growth models) can address these challenges.

5. Part 4: A Case for Multilevel Models in Intelligence Research

As we have suggested above, with careful, theory-driven task analyses, the parameters
of complexity can be formalised and investigated (Birney and Bowman 2009; Ecker et al.
2010; Goecke et al. 2021; Halford et al. 1998). Multilevel models (MLM) are well-suited
for this in that they provide a means to explicate a definition, operationalisation, and
assessment of cognitive flexibility that is formally aligned and testable within a common
model. Such formalisations facilitate statistical analyses, but are also a priori critical for
theoretical developments (Navarro 2021). The goal of this final section is to explain how
MLM might be used as a theoretical framework for intelligence as cognitive flexibility.
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5.1. Cognitive Flexibility as Contingent Level 1 Variability in MLM Models

In considering a within-person account of intelligence, there are a number of sources of
variability to consider. Variability at the level of the sample (as a proxy for the population,
i.e., Level 2 between individuals), variability at the level of the individual (Level 1, within-
individual), and cross-level variability. These can be represented as random effects in a
multilevel model. An example of a regression approach is represented below, although
SEM formalisations are of course comparable (Brose et al. 2021).

Level 1:
Yij = π0j + π1j·Xij + π2j·Zi + eij (1)

Level 2:
π0j = β00 + β01·Wj + β02·Vj + r0j (2)

π1j = β10 + β11·Wj + r1j (3)

π2j = β20 + β21·Wj + r2j (4)

where, Yij = observation i for individual j.
In this two-level model, π0j represents the mean score (i.e., an intercept) for individual

j across all occasions i (when X and Z are centred); whereas π1j and π2j represent the
change in Y, as a function of X and Z, respectively, also observed at level 1 (i.e., slopes).
Here, we make a distinction between two different types of level 1 variables, X and Z. X
is a variable that varies by occasion (i) and individual (j), such as a participant’s rating
of confidence or perceived task demand for the given occasion, hence the subscripting,
Xij. Z on the other hand, is a variable that changes by occasion (i) only; it is constant
for all individuals for that occasion and accordingly subscripted as Zi. An example is
an item feature, such as item complexity manipulation, presented in a constant order
for everyone, or a variable such as time. While in practice these variables are typically
treated as equivalent statistically, in terms of cognitive flexibility they are conceptually
different. The model could be extended (with subscripts updated) to capture person × task
× situation interactions (Beckmann 2010) by adding a clustering level, such that we have
observation Yijk, where individual i (now at level 3) under situation j (Z, now at level 2)
attempts task manipulation k (X, now at level 1), but for illustrative purposes we stay with
the two-level conceptualisation.

Variability in the individuals’ π0j, π1j, and π2j parameters is considered at level 2 (in
Equations (2)–(4), respectively). β01 represents the change in the individuals’ mean scores
as a function of W, a variable that differs between people; and β11 and β21, respectively
represent the change in the individuals’ X and Z slope parameters, also as a function of
W. Accordingly, β11 and β21 are cross-level interaction parameters. For completeness, β00,
β10, and β20 represent the sample’s average mean and slope (conditional on level 1 and
level 2 variables). One might also be tempted to make a distinction between types of level 2
variables analogous to that made between X and Z. For instance, W might reflect inherent
individual differences, such as age or conscientiousness, whereas V (Equation (2)) might
represent a factor external to the individual, such as a between-condition manipulation
(e.g., group 1 gets contextualised feedback, and group 2 gets generic feedback). While the
latter is of potential scientific interest and allows for experimental group comparisons for
the purpose of, say, validating an operationalisation of cognitive flexibility, our focus here
is specifically on within-person processes and how they might differ from one person to
another. Accordingly, this type of between-condition comparison is not a factor directly of
relevance in building a conceptualisation and measure of cognitive flexibility.

5.1.1. Within- and Between-Individual Parameters of Intelligence as Flexibility

We postulate that cognitive flexibility can be conceived as level 1 variability in (intel-
lectual) behaviour (Yij) that has level 1 contingency. That is, as a behavioural response to X
and Z factors as just described. Π1 and π2 are contingency parameters, potentially condi-
tional on level 2 influences. The contingency parameters represent how one’s responses
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change as a function of variation in the problem-space (broadly defined in terms of X and
Z factors). X and Z are exemplar triggers in the problem-space for a dynamic response. The
magnitude of such responses is indexed by the contingency parameters, and these might
be moderated by specific characteristics of the individual. For instance, someone already
predisposed to novelty (such as someone high in the openness personality dimension) may
not require an as extreme contingent response as someone low in openness; their higher
levels of openness might mitigate the flexibility needed when confronted with X and Z
factors. This between-person moderation of level 1 contingencies is represented by W
parameters, specifically in our representation by β11 and β21. The β0 intercept parameters
reflect group/population mean levels of the contingency parameters. However, simply
because the βs are between-person parameters, this does not mean they are not relevant
to a conceptualisation of within-person flexibility. The moderation effect just described,
demonstrates that these between-person parameters are critical because they serve to con-
textualise individual responses, the Yij, more fully. Table 1 presents a selection of possibly
relevant level 1 contingent factors and level 2 moderators of these.

Table 1. Examples contingent (Level 1) and moderating (Level 2) indicators of cognitive flexibility.

Level 1 X Factors
Vary across Occasion and
Individuals

Level 1 Z Factors
Vary across Occasion, Constant
across Individuals

Level 2 Moderators
Invariant across Occasion, Vary
across Individual

• Metacognitive processes
• Confidence in item response
• State personality
• Perception of task/situation

demands
• Perception of feedback
• etc.

• Time (chronological)
• item-sequence (as an

experiential factor)
• Item complexity (RI demand)
• Presence of feedback
• Situation5

• etc.

• Personality traits
• Working-memory
• Relational integration ability
• Age
• Knowledge/experience
• etc.

The contingent variables can be conceived as either person-centred (X) or task/situation
centred (Z), although each idiosyncratically impact the person’s response. The X factors
are contemporaneous to the response in some way, but conceptually distinct from it. For
instance, confidence in accuracy ratings are retrospective to a response, whereas state per-
sonality is antecedent to a response, but in both cases, they are distinct and idiosyncratically
experienced by the individual. On the other hand, the Z factors are germane to the required
response, and while they might differ from one occasion to another, they are objectively the
same for all people, such as the binding complexity of an item. People are likely to differ in
their response to the complexity (i.e., between-individual differences), and this variability
is captured in the random-effects of the respective π contingency parameter.

5.1.2. Statistical Advantages of MLM

Multilevel models are considered to resolve reliability concerns about using difference
scores (Draheim et al. 2021), allowing contrasts between conditions of, say, higher vs.
lower complexity (Birney et al. 2017; Conway et al. 2021; Frischkorn and von Bastian 2021).
There are also other methodological concerns related to using correlation-based criteria
that MLM is well positioned to address. Low complexity tends to be associated with
higher accuracy (indicating lower levels of experienced difficulty) and a small number
of potential solution paths, which by definition lead to ceiling effects and consequently
to lower reliability. Higher complexity items tend to have lower accuracy, and a larger
number of potential (and perceived) solution paths, which might introduce a combination
of floor effects and multidimensionality6, also resulting in lower reliability. Having the
basis for the correlation-criterion of psychometric complexity to “work” across more than
a small range of complexity levels is challenging, particularly since the extremes often
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define the scope of interest. Within LMER models, shrinkage of random-effects toward
fixed-effects (Gelman et al. 2012) has the potential to address this to some extent, although
more research is needed to understand the boundaries. An alternative approach is to adopt
a binary perspective, where the process is required (present) or not (absent). Ecker et al.
(2010), Bateman and Birney (2019), and Birney et al. (2018) have each used this effectively
under different conditions.

5.2. Microworld Contingency Parameters as Indicators of Cognitive Flexibility: A Case Study

Using multilevel models, our previous work (Birney et al. 2018) suggests that judicious
manipulations of microworld parameters offer potential to derive indicators of decisional
and reasoning processes underlying intelligence, that can be isolated from other factors.
Although the study was not designed to operationalise intelligence as cognitive flexibility in
the way we conceive of it here, the LMER application of parameters derived from this work
exemplifies our current approach. In this study, participants were tasked with maintaining
a dynamic (changing) inventory at an ideal level by managing outflow via staffing decisions
over 30 simulated weeks (see Figure 3).
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perimental manipulations (E1 and E2) with exemplar trial-by-trial inventory level feedback across
30 decision periods (which defined a single “attempt”).

Complexity was experimentally manipulated along two independent dimensions
intrinsic to solution, delays and outflow (these would be Z factors in Table 1). Delays
(Figure 3, E1) occurred with regard to hiring and firing staff and have a knowable fixed,
relational structure. A greater delay between decisions and their impact was expected to
generate a concomitant increase in working memory demand. Outflow (Figure 3, E2) was
either constant or variable (random). Variable outflow resulted in less predictable deviations
from the ideal inventory level than when outflow was at a constant rate. Due to the inherent
uncertainty, variable outflow was expected to make the task difficult to manage. However,
for the same reasons (i.e., uncertainty), reasoning ability was expected to be less effective in
mitigating this type of challenge, although we argued that there may be some strategies that
might help, given sufficient motivation to attend to detail. Dynamic trial-by-trial feedback
across a given block was presented to participants in graphical format (e.g., Figure 3, right
panel). The penalty score analysed as the dependent variable was calculated as a function
of the trial-by-trial discrepancies between the impact of participants decisions and the ideal
inventory level accumulated by the end of the block. Participants had multiple attempts
under different delay and outflow conditions, and therefore experience (attempt number)
was an additional performance parameter (which would also be a Z factor in Table 1).

Using MLM (specifically, linear mixed-effects regression), we modelled four level 1
random-effects, each conditional on the other; as represented in Figure 4, π0 = the intercept
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(mean performance), and three slopes, π1 = attempt number (experience), π2 = delay-effect
(present vs. absent), and π3 = outflow-effect (constant vs. variable), and considered a range
of level 2 moderators of these effects as cross-level interactions. These are schematically
represented in Figure 4 (full details of the analyses can be found in Birney et al. 2018).
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Figure 4. Intercorrelations and graphical representation of fixed-effects from MLM analysis of mi-
croworld performance indexed by accumulated block penalty (adapted from Birney et al. 2018,
with permission from Elsevier; ref: 5356931314753). The model was of the following general
form: Level 1: [Yij = π0j + π1j·Attemptj + π2j·Delayi + π3j·Out f lowi + eij]; Level 2: [π0j =

β00 + β01·Moderatorj + r0j]; [π1j = β10 + β11·Moderatorj + r1j]; [π2j = β20 + β21·Moderatorj + r2j];
[π3j = β30 + β31·Moderatorj + r3j]. The values by the ovals are standardized regression coefficients
of the fixed-effects for each parameter (β00, β10, β20, and β30), averaged across the separate moderator
analyses. The values by the curved arrows are the correlations between fixed-effects in a baseline
model (i.e., without moderator variables). Moderators (cross-level interactions; β01, β11, β21, and
β31) included reasoning (verbal, numerical, abstract), personality (five-factor model), mindsets (goal
orientations and implicit theories), and emotional intelligence (MSCEIT branches). See Birney et al.
(2018) for details of additional covariates that were included.

For current purposes, there are a number of points that would benefit from some
explication. First, while we could have used a SEM approach (e.g., Brose et al. 2021), we
used a regression model. Attempts, delay, and outflow conditions were regressed on to the
penalty score. Thus, the effects estimated for a given variable are conditional on all other
variables in the model (as is standard for regression). Second, the fixed effects component of
the analysis (i.e., β parameters, which, all else equal, are means of respective π parameters
across individuals) provide weights for a linear composite which best predicts the DV (i.e.,
the penalty score). However, when these variables are included as random effects, the
individuals’ deviations around each fixed effect is explicitly modelled as reflective latent
variables, represented as ovals in Figure 4, although in light of our current argumentation,
their ontological status as such remains a supposition (Bollen and Diamantopoulos 2017).

Third, in the parlance presented in this paper, π1, π2, and π3 are within-individual
contingency variables (of attempts, delay, and outflow, respectively). To explicate, consider
the Attempts variable. β10 represents the mean within-person change in penalty score
contingent on number of blocks attempted, averaged across individuals and controlling
for level of delay and outflow7. A standard interpretation is implied. The standardised
regression coefficient, b10 = −0.31 (as reported in Figure 4) indicates that on average,
penalty scores tended to decrease with repeated attempts. Substantively, we interpreted
this as a learning or experience effect. Importantly, in MLM π1j represents the within-
individual experience contingency for each of the J individuals; and the average of these is
the fixed-effect, β10, as just described. In this study we also considered between-individual
differences variables as moderators. Although not represented in Figure 4 for simplicity, in
the case of the experience contingency, verbal reasoning ability was a statistically significant
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moderator; the contingency effect of experience was more pronounced for those with higher
verbal reasoning scores. Further details of the significant moderators of these parameters
are reported in Birney et al. (2018).

If we assume for a moment that we had set this study up to operationalise cognitive
flexibility, what aspect of the model would we expect cognitive flexibility to equate to? The
traditional approach would suggest that performance after controlling for differences in
conditions (e.g., number of attempts, and the delay/outflow effects) would best represent
the essence of what is required by the task; this would be the respective mean for each
person (π0j). However, the notion of cognitive flexibility that we advocate is not framed in
terms of averaging across conditions or holding them constant, rather it is defined in terms
of idiosyncratic (within-individual) responses to changing conditions. Thus, a model of
intelligence as cognitive flexibility indexed in some way by π contingency parameters is
needed. There might also be a temptation to define cognitive flexibility as the higher-order
reflective factor common to all four latent variables, but this would be short-sighted and
premature for the reasons we outline in this paper.

5.3. Summary of Part 4: Why Multilevel Models Are Important

The addition of within-individual process accounts of intelligence as cognitive flexibil-
ity introduces the stringent requirement for validity to be established using experimental-
psychology methods. First and foremost, we should aim to develop theories for, and seek
evidence of a dissociation of level 1 (within-person) process parameters based on theoreti-
cally grounded manipulations (e.g., costs and trajectories). Second, evidence of systematic
level 2 variability (between-individual) in the theoretically validated level 1 parameters
should be obtained. Using this MLM framework, the distinctiveness in processes and
the importance of cognitive flexibility is evidenced by four effects. (1) Substantial within-
individual variability in trial/item performance; (2) Systematic within-individual effects
as a function of process manipulations; (3) Substantial between-individual variability in
process-effects; and (4) Systematic between-individual effects of within-individual effects
as a function of real-world factors where adaptivity is important. In lieu of real-world tasks,
appropriately designed dynamic microworlds may be effective (Funke et al. 2018), yet an
arbitrary artificialness in even these tasks persists. Evidence in favour of these effects will
support our supposition that our understanding of the processes underlying intelligence as
cognitive flexibility can be enhanced if it is operationalised how it is conceptualised.

6. Implications and Final Considerations

During the peer-review process, anonymous reviewers, to whom we express our
deep gratitude, raised some interesting discussion points, which we would like to take the
opportunity to paraphrase, share, and comment on. As a caveat, and possibly case in point
to the challenges our call for reform presents, the attentive reader will notice that in our
responses we may have drifted into interpretations and explanations that perpetuate some
of the poor practices we have criticised in this paper. For instance, we will discuss CHC
factors without questioning their reflective or formative status, and in doing so, we might
also be pulled up for assuming ergodicity. For the purpose of communication, we risk this
inconsistency.

6.1. Beyond Fluid Intelligence: Why Flexibility Is Relevant to Intelligence Generally, and Other
CHC Factors

We have framed much of our thinking in terms of fluid intelligence, so a reason-
able question is whether our model of within-individual flexibility is limited to Gf, and
therefore does not apply to intelligence generally? In response, we would argue that
broader constructs of intelligence likely have similar within-individual conceptualisations.
For instance, if one were to consider intelligence constructs such as Practical Intelligence
(Sternberg et al. 2000), Cultural Intelligence (Sternberg et al. 2021), or even Emotional Intel-
ligence (Mayer and Salovey 1993), the notion of within-individual, contingent adaptation
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is central to their conceptualisation. In fact, the cognitive notion of relational integration
extends quite naturally to meaning making from adaptive contingencies (i.e., relational
bindings) between goals however defined in a given context and non-cognitive content
(emotions, affect), possibly filtered through individual differences in personality disposi-
tions, self-concepts, attitudes and value, and the like (as described in Section 5.1).

In terms of other CHC factors, some are functionally closer to elementary processes
that define features of a process account (i.e., as inputs to flexibility). For instance, Jewsbury
et al. (2016) demonstrated that processing (mental) speed is largely indistinguishable
from the Inhibition process conceptualised in the executive function literature (Miyake
and Friedman 2012). Although it might be disputed, the conceptual groupings of broad
factors proposed by Schneider et al. (2016, p. 5, Figure 2)—Perceptual Processing (e.g., Ga,
Gv, etc.), Controlled Attention (e.g., Gf, Gwm, Gs), Acquired Knowledge (e.g., Gc, Gq, Grw,
Gr, Gl), and Psychomotor Abilities (e.g., Gp, Gps)—further justify our expectation that the
flexibility framework is not relevant to all CHC factors (see Schneider et al. for explanations
of abbreviations). For instance, we can set aside Schneider et al.’s Psychomotor Abilities as
outside of scope. The Controlled Attention and Perceptual Processing factors are largely
process-focused as just described, or Gf which we have addressed. This leaves the Acquired
Knowledge factors.

Crystalized intelligence (Gc) may be seen to presents an interesting challenge to our
flexibility account, although if one were to accept the tenets of the Gf-Gc Investment Theory,
even here the development of Gc can be mapped as a series of dynamic, within-person (goal-
directed) interactions between the environment and the cognitive and affective resources
(processes) one has at their disposal to deal with everyday challenges (Ackerman 1996;
Ziegler et al. 2012). The extent to which general encoding (Gl) and retrieval (Gr) factors
draw on historical Gf and Gc, the same account can be applied. Thus, prima facie, we see
no reason to constrain our within-person account to just fluid intelligence at this point,
although this is an area ripe for investigations.

6.2. Beyond Novelty Processing: Why Flexibility Is Relevant to Routine Reasoning and
Cognitive-Capacity

While our case for flexibility is relevant to the novelty aspects common to many
definitions of fluid intelligence, it is reasonable to question whether the MLM-contingency
framework applies to features/facets of Gf that are not inherently to do with novelty,
such as routine reasoning in predictable situations, and general cognitive capability. In
response, we would argue that in the scheme of one’s overall problem-solving exposure,
even routine problems are opportunities to observe flexibility. First, it is interesting to note
that we tend not to think of intelligence as a propensity to plod through solving routine,
algorithmic problems in routine ways. In such situations we do however give credit for
efficiency (e.g., quickly recognising problems are routine), coming up with better (novel)
strategies, and doing so with minimal waste of resources. Recognising that a problem is
a familiar one (rather than a novel one), drawing on a previously proven solution path
(rather than investing effort to create a novel one), and monitoring for possible changes
along the way all entails rudimentary adaptation to changing circumstances. Thus, even
solution of routine, predictable problems, entails some level of flexibility.

Explanations of reasoning proper (i.e., independent of context) and general cognitive
capability (i.e., what it is and how it happens) beyond descriptive accounts remains frustrat-
ingly elusive to both experimental and differential psychology. We have already outlined
reasons why alone the between-person approach will not help in this regard. Cognitive psy-
chology models, some of which we have reviewed here, go part of the way in presenting a
process account of reasoning and general cognitive capability. The lazy (but likely) response
is to define reasoning as an emergent property of a system of interacting basic, attentional
control, relational binding, and memory processes, with cognitive capability reflected in the
efficiency of such a system, often presented as a source of individual differences. Notwith-
standing the myriad challenges of this account (or maybe because of them), the need for a
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within-individual framework of reasoning seems to be amplified rather than diminished.
It is our expectation that a formalized, integrated MLM of structurally informed within-
and between-person aspects of reasoning, such as the one we have proposed, may provide
impetus for a renewed line of investigative efforts.

6.3. Beyond Factor-Analysis: Why Methods Matter When Studying Flexibility

While we have critiqued the use of between-person methods, we are not disputing fac-
tor analysis as a pragmatic data reduction tool, nor as a measurement tool (especially when
framed as a tau equivalent measurement model). We make a distinction between factor
analysis as a data-reduction tool, and structural-equation modelling (SEM) generally as a
theory testing tool. Multilevel modelling of within- and between-individual differences can
be achieved using a range of comparable methods and procedures, including SEM growth-
curve models (e.g., ML-SEM, Brose et al. 2021), fixed-link SEM models (Schweizer 2009),
or linear mixed-effects regression procedures (Birney et al. 2017; Birney et al. 2018). For
those less familiar with the nuance of factor-analytic approaches underlying SEM (e.g.,
cognitive psychologist interested in individual differences), multilevel regression may be
more palatable.

However, we do take issue with the dominant tendency of researchers to use reflective
models as the default position without considering alternatives (as evidenced by the status
quo, despite compelling arguments of their critical limitation). Furthermore, in our view,
the speculation that factor analysis can purify observed test scores from error, and therefore
allow one to arrive at an estimate of the supposed-to-be “true” attribute and magnitude
of an effect is an unfortunate overuse of factor analysis. The same criticism would apply
to an overuse of “shrinkage” in MLM regression models if this was observed to occur.
Relying on sophisticated statistical tools to “purify” our measures from what are ultimately
method-effects (Birney et al. 2022) reflects how little we understand about the sources
of impurity (e.g., unreliability or multidimensionality) in our measures (van der Maas
et al. 2017). We would do better to improve our measures using strong theory and better
linked conceptual and empirical models, rather than make dubiously justified statistical
adjustments. Doing so, we argue, requires building structural hypotheses (Lohman and
Ippel 1993) and taking within-person process accounts seriously. In sum, we do not have
issues with correlations per se, we have issue with between-person correlations being
portrayed (and then interpreted) as the only foundation for the conceptualisation and
measurement of intelligence conceived as cognitive flexibility.

Finally, while we are not disputing the pragmatic utility of factor analysis, it is im-
portant to understand its mathematical foundations, even if we intend only to use the
identified structure merely as a description of the covariation of some set of low-level
processes. When we talk about the narrow facets of fluid ability, such as (1) induction, (2)
deduction, or (3) sequential reasoning, it is easy to assume that the resulting latent variable
reflects an aggregation or accumulation of the separate processes. However, mathematically,
this is not the case. When each facet is added to a factor analysis, the derived common
factor, which we might label Gf, is formally a statistical distillation of what is common
in the facets. It is not an aggregation or accumulation of the separate facets. Therefore,
when we say fluid intelligence entails, induction, deduction, and sequential reasoning,
because they are the indicators (tasks) we have used to “define” the common factor, we
have erred. That might be our theoretical explanation, but the common factor is nothing
more and nothing less than the very precise thing these three attributes have in common.
Our point is, the mathematical derivation of a Gf factor is as much an integral part of its
operationalisation as are the tasks chosen. If we think otherwise, even as a first step, our
methodological basis will be disconnected from the theory to an unknown extent.

6.4. Beyond the Status Quo: The Implications of Getting It Wrong

One of the implications of getting it wrong is highlighted by Fried (2020) and also by
Protzko (2017). The gist of what is argued by both is that because reflective models assume
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the components (indicators, markers, manifest variables) are caused by the latent attribute,
then the pathway to intervention by targeting indicators is logically precluded. From this
sense, the latent variable is an inherent characteristic of the individual. Formative models
(specifically causal-formative ones) on the other hand, where the latent variable is caused by
the indicators, provide a pathway for intervention. Change the components, and the latent
variable will change (that is, in formative models, the latent variable does not exist as an
attribute independent of its indicators). For Fried, the impact is on indicators (symptoms)
of pathology. If pathology is inherent in the individual, intervening on the symptoms
is unlikely to be helpful. For Protzko, the impact is in regard to cognitive training. If
intelligence is a reflective latent attribute, with WMC (say) as a reflective indicator (of the
impact of intelligence on it), then training WMC is logically precluded from having an
impact on intelligence.

It is interesting to note the relatively recent shift from talking about elementary cog-
nitive tasks to elementary cognitive processes. Refined process theories are a good thing
for intraindividual accounts. However, we need to be careful that we do not introduce
these “processes” simply as a means to take the heat off reflective assumptions made at
higher levels. In CHC framing, ECTs serve as indicators of narrow factors. If they are
now processes (fundaments) in their own right, evidence for their status as reflective latent
variables need to be demonstrated. Additionally, if these fundaments are reflective latent
attributes, what is now the status of assumed-to-be reflective latent variables higher in the
hierarchy, that is the “broad-factors”. For instance, what is the status of Gf (an abstraction
of narrow ability factors) in models already made up of reflective latent processes defined
at the lowest level, keeping in mind the variance distillation that occurs in factor analysis
we have just pointed out. The notion of Gf as a causal-formative umbrella of lower-order
reflective attributes becomes not only plausible, but possibly, logically necessary. For many,
framing Gf as a formative variable is a step too far. It seems an elegant resolution may be
to move beyond the simple common-process account of factor analysis, and instead invest
resources into further investigations and development of time-varying network models
and directed acyclic graphs (Fried 2020).

6.5. Conclusion

We accept as historical fact the dominant, foundational psychometric approach to
intellectual abilities as that which started more or less around the time of Charles Spearman
(circa 1900) and led to the Cattell-Horn-Carroll (CHC) hierarchical taxonomy. As noted
by Conway et al. (2021, p. 6), CHC is a “model of the covariance structure of cognitive
abilities . . . but it is not a psychological theory”. Historically, establishing the validity of
constructs like intelligence has been dominated by considerations of a nomological network
of convergent and divergent correlations. In this conceptual analysis and review, we first
considered implications of the supposition of stability as antithetical to variability, along
with the ergodic claim that between-person models can be extended to within-person
processes. We also considered the dominance of reflective common-factor conceptualisa-
tions and the neglect and subsequent dismissal of formative ones (Kovacs and Conway
2016; van der Maas et al. 2006; van der Maas et al. 2017). We explicated causal-formative
accounts, in contrast to composite-formative ones (Bollen and Diamantopoulos 2017), as
relevant to our goal to explicate a within-individual perspective of intelligence. This is
because causal accounts put process and mechanism within the realm of direct observation
through experimental manipulation and explicit process accounts, rather than leaving
them to be inferred and reified from patterns of discriminant and convergent correlations
after data have been collected. However, regardless of whether one studies formative or
reflective concepts, or even network models, the burden of process identification is the
responsibility of the researcher and cannot be delegated to statistics, no matter their levels
of sophistication (Birney et al. 2022).

The promise of working memory theory to provide an explanatory account of in-
telligence (or at least intelligence test performance) has not been missed by intelligence
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researchers (Carpenter et al. 1990; Daneman and Carpenter 1980). There has been consid-
erable debate regarding the dissociation of WM and intelligence (Ackerman et al. 2005;
Blair 2006; Guthke et al. 2003; Kyllonen and Christal 1990). While more and more refined
accounts of WM processes have been developed (Oberauer 2021), some we have reviewed
here, these have not been matched by similarly well-honed accounts of intelligence. If any-
thing, the limitations of traditional ways to conceptualise processes underlying intelligence
and the inertial resistance to new approaches have only been amplified over time. We are of
the view that much can be achieved by advancing the alignment of conceptual definitions
and methodological considerations which build on modelling within-person variability.

In sum, we have four recommendations, (1) do not assume stationarity, test for it, (2)
recognize within-individual (process) accounts are critical to understanding individual
differences, (3) be wary of using reflective models as a starting point for theory development,
and (4) multilevel models are a good for theory development, and for specifying and testing
structural hypotheses regarding within-individual and between-individual differences and
their moderators.
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Notes
1 The (typically) unquestioned use of the term “manifest variables” to label observed variables is testament to the assumption

that individual differences in scores on these variables are the outward manifestation of concomitant individual differences in the
latent attribute.

2 While we prefer to reserve the term “measure” for variables where fundamental measurement properties have been demonstrated
(see Michell 1990), in our view, conceiving them as latent variables that happen to have a useful coding metric is more appropriate
(see Birney et al. 2022).

3 The trait-complex example also serves to demonstrate a second point made by Bollen and Diamantopoulos (2017), that reflective
latent variables (e.g., extraversion, when appropriately conceived of) can act as composite-formative indicators in other models
(such as of trait-complexes).

4 This is also not to say that with greater understanding, the status of concepts will necessarily move from formative to reflective.
Some concepts, maybe most, are by nature and definition, formative.

5 According to Beckmann (2010; see also Birney et al. 2016) within the framework of person-task-situation interactions, the situation
refers to the context or circumstances in which a task is performed. It constitutes a source of complexity in addition to the
processing demands posed by the task itself and therefore contributes to the overall complexity and consequently impacts
performance. The user-interface, the clarity of instructions, time pressure, or the semanticity of variable labels in a CPS system
are examples for such situation components.

6 Of course, multidimensionality introduces other challenges to measurement that would need to be explicated in the theoreti-
cal model.

7 As well as covariates, as mentioned previously.
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