
Planning and Choosing: Augmenting HTN-Based Agents with Mental Attitudes∗

Gerhard Wickler, Stephen Potter, Austin Tate
AIAI, School of Informatics, University of Edinburgh
g.wickler|s.potter|a.tate@ed.ac.uk

Michal Pěchouček, Eduard Semsch
Agent Technology Group, Department of Cybernetics, Czech Technical University

pechouc|semsch@labe.felk.cvut.cz

Abstract

This paper describes a new agent framework that fuses
an HTN planner, through its underlying conceptual model,
with the mental attitudes of the BDI agent architecture, thus
exploiting the strengths of each. On the one hand, the prac-
tical and proven ability to reason about actions that is the
strength of HTN planning fleshes out the option generation
function in the inference loop of the BDI model; on the other
hand, the mental attitudes make explicit the knowledge that
plays an essential role in plan selection, an important as-
pect that is not considered in the traditional formulation of
the planning problem. The result is a coherent framework
that allows for the design and implementation of activity-
centric rational agents.

1. Introduction

I-X [11] is an agent framework based on the HTN (Hi-
erarchical Task Networks) planning paradigm [7, 10]. HTN
planners have been successfully used in a number of real-
world applications [4] and agents based on this framework
inherit the advantages of this approach. I-X agents have
an internal state which is essentially a plan. The concep-
tual model used for the representation of the agent’s internal
state as a plan is called <I-N-C-A> [12] and a formalization
of this model will be described here.

However, lacking in the <I-N-C-A> representation are

∗Sponsored in part by the European Research Office of the US Army
under grant number N62558-06-P-0353 and in part by Czech Ministry of
Education grant 6840770038. The authors’ organizations and research
sponsors are authorized to reproduce and distribute reprints and on-line
copies for their purposes notwithstanding any copyright annotation hereon.
The views and conclusions contained herein are those of the authors and
should not be interpreted as necessarily representing the official policies or
endorsements, either expressed or implied, of other parties. The authors
would like to thank the anonymous reviewers for their helpful comments.

the mental attitudes that define the BDI agent architecture,
namely an agent’s beliefs, desires and intentions [6, 15].
This paper presents a refinement of the <I-N-C-A> model,
incorporating the mental attitudes that constitute the BDI
model into <I-N-C-A>. In this elaborated model, beliefs
and intentions can be represented quite naturally and explic-
itly as constraints and activities respectively in <I-N-C-A>.
Desires are contained implicitly in the decision-making
knowledge of the agent. The result is an agent framework
that combines the strengths of both approaches: it fuses the
option generation capability of a powerful HTN planner and
its underlying representation with the mental attitudes of the
BDI model that are utilized for choosing the best possible of
the generated options as the course of action to be followed.

A similar approach is described in [8], where the CAN
agent programming language has been extended to include
behaviour produced by an HTN planner. In contrast, the
starting point of the research reported here is a planning
formalism, which, by the incorporation of BDI mental at-
titudes, results in a general activity-centric agent model,
thereby providing a complementary account of the relation-
ship between mental state and future action.

The remainder of this paper is organized as follows. A
brief summary of the well-known BDI model is followed
by a formalization of the <I-N-C-A> model and its main
components. We then describe how <I-N-C-A> has been
augmented using the mental attitudes from the BDI model.
This is followed by an operational semantics of the resulting
model that can be seen as the basis for an agent interpreter
that renders the knowledge-level specification executable.

2. The BDI Agent Model

The BDI model is one of an agent that fulfills three key
qualities: autonomy, reactivity and intentionality [16]. The
BDI model does not explicitly support the social properties
of an agent: the ability to communicate, cooperate and rea-

son about other agents in a multi-agent community.
A BDI agent is distinguished by the organization of its

knowledge, which governs its behaviour, into three distinct
knowledge structures based on the mental state modalities:
beliefs, desires and intentions [6]. Beliefs represent the
agent’s current knowledge about itself and its environment,
desires represent its longer term goals and objectives of its
behaviour, and intentions represent the agent’s local deci-
sions about the actions it intends to perform.

A BDI agent executes its behaviour by manipulating its
internal knowledge and data according to the standard BDI
inference loop:

function BDI-inference-loop(Bel, Des, Int)
while true do

p← getNextPercept()
Bel← beliefRevision(Bel, p)
Int← generateOptions(Bel, Des)
Int← filterIntentions(Bel, Des, Int)
plan← generatePlan(Bel, Int)
execute(plan)

A BDI agent first processes the next external percept
(such as an incoming message). As a result the agent revises
its beliefs. Then, based on the new beliefs, it generates sev-
eral different intentional options out of which one is adopted
by means of the filterIntention function. Next, the gener-
atePlan function elaborates a plan for the adopted intentions
that is then executed. In applications of the BDI model this
planning process is often based on pattern-matching against
a library of predefined plans.

3. The <I-N-C-A> Model

<I-N-C-A> is a generic model for synthesis tasks [12].
While its level of abstraction makes it possible to apply
the generic model to a wide variety of tasks, it assumes
a more specific meaning in the I-X framework where an
<I-N-C-A> object is synonymous with a plan—the course
of action the I-X agent intends to follow—and the planning
task can be thought of as one of synthesizing an appropriate
object. A plan can be partial in the sense that it is not (yet)
an actionable solution to the problem in question. The plan-
ning agent must refine a partial plan into a solution plan.

We can formally define an <I-N-C-A> object in I-X as
a 4-tuple (I,N, C, A) consisting of: a set of issues I; a set
of activity nodes N ; a set of constraints C; and a set of
annotations A.

3.1. Issues

Informally, issues with the current plan can be thought
of as indicating flaws in the plan or opportunities that the

planner might exploit. An <I-N-C-A> object is considered
to be a solution to a planning problem only if the set of
issues is empty, that is, all flaws have been rectified, and all
opportunities considered.

More formally, I is the set of unresolved issues in
the current plan, i.e., in this <I-N-C-A> object. An is-
sue is represented by a syntactic expression of the form
l : M(O1, . . . , On), where:

• l is a unique label for this issue,

• M is a symbol denoting a primitive plan modification
activity, and

• O1, . . . , On are plan-space objects, i.e. issues, nodes,
constraints or annotations. The number of objects, n,
and the interpretation of each object in the context of
the issue, will depend on the particular primitive plan
modification activity represented by this issue.

Issues can be seen as primitive meta-level activities,
i.e. things that need to be done to the plan before it be-
comes a solution to a given planning problem. This ap-
proach is inherited from O-Plan [2, 13] and is also seen
in planners such as OPIS [9]. The most commonly found
primitive meta-level activities carried out by planners, but
usually only implicit in their underlying implementation or
internal plan representation, are:

• Achieving a goal (in classical planning): Let p be a
world-state proposition and τ be a time point, then the
primitive meta-level activity of achieving p at τ can be
represented as the issue:

l : achieve(p, τ)

• Accomplishing a complex activity (in HTN planning):
Let a ∈ N be a complex activity. Then the primitive
meta-level activity of accomplishing a can be repre-
sented as the issue:

l : refine(a)

Here, achieve and refine are examples of symbols
denoting primitive plan modification activities. Note that
these symbols are not domain specific but specific to the
planning process by which these types of issue are handled.

3.2. Nodes

N is the set of activities (nodes) to be performed in the
current plan, i.e., in this <I-N-C-A> object. An activity is a
syntactic expression of the form l : α(o1, . . . , on)@[τb, τe],
where:

• l is a unique label for this activity,

• α is a symbol denoting an activity name,

• o1, . . . , on are object-level terms, i.e. they are either
constant symbols describing objects in the domain, or
they are as yet uninstantiated variables standing for
such objects, and

• τb and τe are time points representing the beginning
and the end of the activity.

Time points could be seen as another pair of parameters
on+1, on+2 of an activity but are given a special place in the
syntax here due to the importance of time in planning. In
the context of I-X, nodes represent the object-level activities
in the plan, i.e., things that need to be performed by some
agent to execute the plan. Activities can be of two types
from the perspective of the planner:

• Primitive activities: primitive activities can be carried
out directly by an agent executing the plan. For ex-
ample, in a search and rescue domain, the primitive
activity of flying the aircraft ac1 from location loc1
to location loc2 may be represented as:

l : fly(ac1,loc1,loc2)@[t1, t2]

• Complex activities: complex activities cannot be ac-
complished directly by the agent executing the plan but
need to be refined into primitive activities. For exam-
ple, the complex activity of rescuing an isolated person
ip may be represented as:

l : rescue(ip)@[t1, t2]

In this example, fly is a primitive activity symbol and
rescue is a complex activity symbol in some domain. Ac-
tivity symbols have to be domain specific. It follows that
there has to be an activity schema defined for the domain
that has the name fly and describes when this activity
schema is applicable and how it will change the world when
applied, and there has to be a refinement defined in the do-
main that accomplishes a complex activity with the name
rescue and describes how exactly it can be accomplished.

Note that the set N of activities in the plan may contain
both complex activities and the primitive activities that have
been chosen to implement them.

3.3. Constraints

C is the set of constraints that must be satisfied by the
current plan (<I-N-C-A> object). A constraint is a syntactic
expression of the form l : c(v1, . . . , vn), where:

• l is a unique label for this constraint,

• c is a symbol denoting a constraint relation, and

• v1, . . . , vn are constraint variables, i.e., they can repre-
sent domain objects (including time points), variables
in activities (which may have binding constraints at-
tached).

Constraints represent the relations that must hold be-
tween the different objects related in the constraints for the
plan to be executable. In the context of planning, the most
commonly used constraints are of the following types:

• Ordering constraints: Let v1, v2 be variables in the
plan representing time points. Then the constraint that
v1 has to be before v2 can be represented as:

l : before(v1, v2)

• World-state constraints: Let p be a world-state propo-
sition and v a variable representing a time point in the
plan. Then the fact that p is a condition that has to hold
at the time point represented by v, or the fact that p is
an effect of an activity that holds at time point v can be
represented respectively as:

l : cond(p, v)
l : effect(p, v)

• Variable binding constraints: Let v be a variable men-
tioned in some activity a ∈ N and s be a constant
symbol in the planning domain. Then the fact that v
must take the value s can be represented as:

l : value(v, s)

These are just some of the constraint types that can be
defined. The objects related to each other can be of differ-
ent types. This is reflected by the domains of the constraint
variables representing them. They can be world state propo-
sitions as in conditions and effects, or they can be variables
used in activities representing time points or other domain
objects in the plan as in ordering and variable binding con-
straints.

3.4. Annotations

Annotations are used to capture contextual information
surrounding the current task. For more formal details on
annotations and their use as a representation for rationale
see [14].

4. Mental Attitudes in <I-N-C-A>

The idea behind augmenting <I-N-C-A> with mental at-
titudes is to focus on generating and executing the activities
the agent performs. In essence, we want to define an agent
that maintains an internal state [15] where the state can be
represented by an <I-N-C-A> object, that is, a plan. As
for all state-based agents, the state is updated based on the
percepts the agent receives and the state determines the ac-
tions the agent performs. Given the above description of the
state of an agent as an <I-N-C-A> object, in this section we
shall describe how the components of this object relate to
the components of the BDI view of agent state.

4.1. Beliefs/Constraints

The set of beliefs that an agent maintains corresponds
reasonably directly to the constraints that hold in its cur-
rent <I-N-C-A> object. The set of constraints includes facts
about the agent’s environment (including facts about other
agents in that environment); it also includes task and do-
main knowledge in the form of ontological constraints on
the environment and valid activity refinements. Also in-
cluded among the beliefs is reasoning knowledge directly
related to the planning task itself.

A set of issue update rules RI are used to add new is-
sues to the current plan following a revision to the set of
beliefs/constraints. An issue update rule rI ∈ RI is a triple
(b, S, I) where:

• b is a newly asserted belief;

• S is an <I-N-C-A> description consisting of issues, ac-
tivities, constraints and annotations, and;

• I is a set of issues that is to be added if the rule fires.

The idea here is that the belief b can be used to index rel-
evant rules that may add issues when a new belief has been
asserted. The <I-N-C-A> description S acts in effect as a
precondition for the rule: all the components in S must be
present in the agent’s current plan for the rule to be applica-
ble. Finally, if the rule fires the issue I will be added to the
set of issues in the <I-N-C-A> model/plan of the agent.

4.2. Desires

There are a number of conflicting views of what consti-
tutes a desire in the literature on BDI agents. For example,
[15] describes them as the options the agent has, with the
chosen option, the one to which it commits becoming an
intention. This is not the view we will take here.

There is no explicit analogue to desires in this activity-
centric model: desires are not explicitly represented in the
<I-N-C-A> object state description of an agent. Instead, the
desires of the agent can be considered implicit in elements
of its reasoning about its current plan:

• the issue update rules described above are formulated
according to the agent’s desires. For example, if a new
belief suggests a state of affairs counter to the agent’s
desires, an appropriate rule will cause an issue to be
raised—this is a ‘flaw’ in the agent’s plan.

• in a similar vein, the agent’s desires are manifest in the
‘utility function’ which indicates which of a number
of optional revisions to the plan should be selected to
resolve a particular issue.

It is in these forms that desires appear in the algorithm
that renders the agent specification executable (see section
5.4 below). One corollary of this notion of desires as la-
tent in the agent’s reasoning mechanisms is that any change
in its desires can only be effected through the alteration of
these mechanisms.

4.3. Intentions/Activities

Intentions in BDI are the actions an agent is committed
to executing. In our activity-centric view, activity schemata
instances (that is, the set of <I-N-C-A> activity nodes) in
the agent’s current state (<I-N-C-A> object) correspond di-
rectly to the BDI intentions of the agent—these are the
activities that the agent is committed to performing. We
shall now describe how these activity schemata and their
instances are represented in our model.

We use the term activity schema to denote a type or class
of activity, as distinct from instances of that activity. An
activity schema A is a triple (s, C,E) where:

• s, the signature of the activity schema, is an expression
of the form n(v1, . . . , vn)@[τb, τe], where:

– n is the unique name of the activity schema;

– v1, . . . , vn are variables representing parameters
of the activity schema, and;

– τb and τe are time points representing the begin-
ning and end of an activity;

• C is the set of (pre-)conditions of the activity schema,
where each ci ∈ C is either a state-variable expres-
sion of the form S(vi,1, . . . , vi,k) = oi@τi for state-
variable S(vi,1, . . . , vi,k), vi,1, . . . , vi,k ⊆ v1, . . . , vn,
object constant oi and relative time point τi, or it is a
first-order literal ±P (vi,1, . . . , vi,k)@τi, and;

• E is the set of effects of the activity schema, where
each ei ∈ E is either a state-variable assignment of the
form S(vi,1, . . . , vi,k) ← oi@τi or it is a first-order
literal ±P (vi,1, . . . , vi,k)@τi.

Thus, an activity schema corresponds to an operator
schema in a STRIPS-like planning formalism. We desig-
nate an activity to be a partially instantiated activity schema;
hence, an activity A is a pair (l, s) where:

• l is a unique label for this activity, and;

• s is an expression of the form n(t1, . . . , tn)@[τb, τe]
such that there exists an activity schema A with signa-
ture (n(v1, . . . , vn)@[τ ′

b, τ
′
e] and a substitution σ such

that for all i, 1 ≤ i ≤ n: σ(vi) = ti.

Hence, each activity is an instance of some activity
schema, and the activities in an agent’s current <I-N-C-A>
object correspond to its intentions. (Note that the unique
label associated with an activity is necessary to distinguish
between multiple instances of the same activity schema that
may appear in the same <I-N-C-A> object.)

Finally, an action is a fully instantiated activity that can
be executed by the agent. Hence, actions too correspond to
the (subset of grounded) BDI intentions of the agent. Usu-
ally the performance of an action does not require further
planning, with procedural knowledge available whose exe-
cution constitutes the performance of the action.

5. Interpreting <I-N-C-A> with BDI

In this section we shall describe the algorithms that take a
specification of an activity-centric agent and produce the be-
haviour of that agent, i.e. they choose the actions the agent
will perform. This description fits into the general “agent
with state” model described in [15], in which an agent re-
ceives percepts, modifies its internal state accordingly, and
chooses an action to execute based on its current state.

In our model of activity-centric agency, at any time τ the
dynamic aspect of the internal state of an agent is described
by the plan the agent intends to follow, where a plan is an
<I-N-C-A> object as described above. Further knowledge
of the agent includes its static desires that need not be in-
cluded in the state. Let SA be the current internal state of
the agent A (I in [15]) and p the newly received percept.
Then the overall algorithm the agent follows to compute the
next internal state and executable action is as follows:
function actions(p) : 2A

∆Bel← changedBeliefs(p, SA)
BelA ← assert(∆Bel, BelA)
IssA ← propagateBeliefs(∆Bel, SA)
Opts← handleIssues(SA)
SA ← selectOption(Opts, DesA)
Acts← getExecutables(SA)
return Acts

The first difference between this function and the stan-
dard action-function is that it returns a set of actions (2A

denotes the powerset of all possible actions). This is sim-
ply because the I-X planner, like most planners, generates
plans that may contain parallel actions. The executing agent
may also be able to perform actions in parallel. If the agent
cannot execute the returned actions concurrently, it needs
to perform them sequentially. For independent actions this
should not change the eventual world state.

The first step of the algorithm computes the changes to
the current set of beliefs that result from the new percept p
and stores them in ∆Bel, a local variable. Next the changed

beliefs are asserted into the current state, at this stage only
modifying the beliefs. The next step then uses the issue
update rules RI and updates the current state of the agent
using the function propagateBeliefs. This may create new
issues in the current plan of the agent which need to be ad-
dressed before further action can be taken. The function
handleIssues does this using the HTN planner, which cre-
ates at least one new plan. If there is more than one plan, the
function selectOption chooses the one that will be adopted
based on the desires of the agent. Finally, the set of cur-
rently executable actions is extracted from the current plan
and returned.

5.1. Updating the Beliefs

The first two steps in the algorithm above are concerned
with the updating of the set of beliefs currently held by the
agent. There is little that can be said at this level about the
implementation of the functions changedBeliefs and assert.
The first function computes the set of atoms in the dynamic
belief set that will have their value changed. This may be
different from the percepts (which include communication
with other agents) as trust needs to be taken into account and
inconsistencies with other knowledge must be prevented.
Asserting the changed beliefs simply modifies the current
beliefs BelA according to the computed changes.

The resulting state of the agent at this point is that its
beliefs have been modified according to the given percept
and a trace of the changes is available in ∆Bel.

5.2. Applying Issue Update Rules

Now the function propagateBeliefs uses the new beliefs
to check whether any of the issue update rules will add new
issues to the current plan. This can be done as follows:

function propagateBeliefs(∆Bel, SA) : IssA

issues← ∅
for every bnew ∈ ∆Bel do

if ∃r = (br, Sr, Ir) ∈ RI and ∃σ : substitution
and σ(br) = bnew

and σ(Sr) ⊆ SA then
issues← issues ∪ σ(Ir)

return issues

This function accumulates the new issues that are gener-
ated by all the newly asserted beliefs in the variable issues
which is returned at the end. Each new belief is considered
in turn. If there is an issue update rule that has a match-
ing belief and the <I-N-C-A> components of that rule are
part of the current state then a new issue is added to the
result. The new issue is instantiated using the same sub-
stitution that was the result of matching the belief and the
<I-N-C-A> preconditions.

The resulting state of the agent at this point is that its be-
liefs are updated and new issues with the current plan aris-
ing from these modified beliefs have been identified.

5.3. Handling Issues

As mentioned in section 3.1, issues can be seen as meta-
level activities, things that need to be done to the current
plan before it becomes a solution to the current planning
problem. Hence the function handleIssues modifies the cur-
rent plan such that it will not contain issues. Since there
may be more than one way of achieving this, this function
returns a set of possible plans. The function that does this
works as follows:
function handleIssues(SA) : 2SA

options← getP lans(SA)
if options = ∅ then

S′ ← resetProblem(SA)
options← getP lans(S′)

while options = ∅ do
S′ ← dropIntention(S′)
options← getP lans(S′)

return options

This function first attempts to add <I-N-C-A> compo-
nents to the current plan that will resolve all issues. This is
achieved by calling the function getPlans which is the main
function of the HTN refinement planner in I-X. This will
use specific issue handlers that remove the issue they are
addressing from the plan and add other <I-N-C-A> compo-
nents to to it, including new issues. Often there is more than
one specific issue handler applicable, or a handler may be
applicable in multiple ways. As a result, the planner gen-
erates a set of plans that constitute the options at this point.
Ideally, the planner would generate a small, but interest-
ingly different set of options.

In the worst case the set of generated options is empty,
meaning the planner was unable to find a way to address all
the issues in the current plan and come up with a workable
course of action. In this case the function attempts to replan,
rather than modify the existing plan. To do this, it first needs
to create a new planning problem that consists of the current
state and only the most abstract intentions in the current task
network with their constraints. New issues that express the
need for refinement must be added before the planner can
again be invoked to attempt to find a plan.

Again, this may not succeed. That is, neither plan mod-
ification nor replanning can be used to generate a plan that
implements all the current intentions. In this case the only
way to continue is to start dropping intentions until a work-
able plan can be found, and this is what the while-loop in
the above procedure does. It takes the same planning prob-
lem that was used for replanning and selects an intention to

remove. This can be done by priority and analyzing the rea-
sons for failure. Eventually, the planner has a problem that
contains activities that can be refined into one or more solu-
tion plans. At this point the generated options are returned.

The resulting state of the agent is that its beliefs are up-
dated and resulting issues have been addressed giving the
agent a number of plans as options.

5.4. Selecting an Option

The function selectOption now has to choose the pre-
ferred option for the agent to adopt as its next internal state.

function selectOption(Opts, DesA) : SA

best← −∞
for every p ∈ Opts do

ws← project(BelA, p)
util← evaluate(ws, p,DesA)
if util > best then

plan← p
best← util

return plan

Essentially, what this function does is project the out-
come of every option that is currently being considered into
a new world state that would be the result of executing that
plan. This projected world state is stored in the variable ws.
Then the function computes the utility of that state, also tak-
ing into account the plan that produced it, and the desires as
described in section 4.2, i.e. in form of a utility function.
The result is a projected utility of the option with respect
to the agent’s desires. The function then simply remembers
the best option (in the variable plan) and its utility (in the
variable best) and returns this best option.

The resulting state of the agent at this point is that both
its beliefs and its plan are updated.

5.5. Executable Actions

The function that computes the next executable actions
is quite simple for activity-centric agents. Since the internal
state already represents the plan the agent intends to follow,
the next executable actions are simply those that have no
predecessors in the current plan and for which the current
time lies within the time interval in which the actions are
intended to be performed. The result is a set of executable
actions. Since there are no ordering constraints between
these actions they must also be independent, meaning they
can be executed in any order. The reason why they are not
serialized here is simply that we do not want to assume that
the agent can only perform one of them at a time.

Now the agent can execute the chosen actions and this
concludes the perceive-deliberate-act cycle for activity-
centric agents.

6. Conclusions and Future Work

In this paper we have presented a new agent frame-
work that reconciles I-X, with its powerful HTN planner
and its underlying <I-N-C-A> representation, with the men-
tal attitudes of the BDI model. Agents conforming to this
new framework adopt an activity-centric view of a situa-
tion, focusing on what needs to be done, a natural conse-
quence of the origins of the framework in planning and,
more specifically, of the representation of the agent’s in-
ternal state as a plan. With the introduction of BDI attitudes
into <I-N-C-A>, intentions are now represented as activi-
ties at various levels of abstraction, while desires are not
merely another type of activity (as e.g. in [3]) but instead
are used to decide which of a number of possible courses
of action the agent will adopt. Thus, they are part of the
decision-making knowledge of the agent. The semantics of
this representation is defined through procedures that de-
scribe how the specification of the agent, together with the
percepts received, result in executable actions.

The augmentation of the <I-N-C-A> model with be-
liefs, desires and intentions results in a new activity-centric
framework that combines the advantages of both HTN plan-
ning and BDI agency. Virtually all practical planners are
based on the HTN approach to which the <I-N-C-A>model
conforms. Given a set of activity refinements, which cor-
respond naturally to procedural domain expertise, and a
high-level task specification, HTN planners are capable of
generating plausible, annotated (e.g., with rationale) task
networks consisting of executable actions that achieve the
specified tasks. This ability to reason about actions is the
strength of HTN planning. From a BDI perspective, this
provides a practical and proven mechanism for the genera-
tion of options that is a vital step in the BDI agent’s infer-
ence loop. The BDI model has become the de facto standard
for representing the mental state of an agent. It provides
a clear delineation of the different types of knowledge an
agent requires, and the role each type plays in the agent’s
inference mechanisms. While HTN planners are capable of
generating activity options, the mental attitudes of the BDI
approach, as manifest in its knowledge structures, provide
the means of selecting among these options, and commit-
ting to a particular course of action. In this way, these atti-
tudes provide a decision-making level that is not considered
in the traditional formulation of the planning problem.

In summary, this fusion of HTN planning and the mental
attitudes of BDI results in a new agent framework in which
the two paradigms are seen to be complementary: HTN
planning provides a competence required in the BDI infer-
ence loop, and BDI provides a description of the knowledge
necessary to move from planning to acting. In the future,
we intend to extend our framework to include agent social
abilities (interaction, cooperation, etc.), and to investigate

the concept of commitments [5] and their representation in
<I-N-C-A>. The aim in extending the work in this direction
is to support distributed planning among a collective of de-
centralized and fully autonomous yet collaborating entities.

References

[1] J. Allen, J. Hendler, and A. Tate, eds. Readings in Planning.
Morgan Kaufman, 1990.

[2] K. Currie and A. Tate. O-Plan: The open planning archite-
ture. Artificial Intelligence, 52:49–86, 1991.

[3] M. Georgeff and A. Lansky. Reactive reasoning and plan-
ning. In Proc. National Conf. of the American Association
of Artificial Intelligence (AAAI), pp. 677–682. AAAI Press,
1987.

[4] M. Ghallab, D. Nau, and P. Traverso. Automated Planning.
Morgan Kaufmann, 2004.

[5] N. R. Jennings. Commitments and conventions: The founda-
tion of coordination in multi-agent systems. The Knowledge
Engineering Review, 8(3):223–250, 1993.

[6] A. Rao and M. Georgeff. Modeling rational agents within
a BDI-architecture. In Proc. 2nd Int. Conf. on Knowledge
Representation and Reasoning (KR), pp. 473–484. Morgan
Kaufmann, 1991.

[7] E. D. Sacerdoti. The nonlinear nature of plans. In Proc. 4th
Int. Joint Conf. on Artificial Intelligence (IJCAI), pp. 206–
214. Morgan Kaufmann, 1975. Reprinted in [1, pp. 162–
170].

[8] S. Sardina, L. de Silva, and L. Padgham. Hierarchical plan-
ning in BDI agent programming languages: A formal ap-
proach. In Proc. 5th Int. Joint Conf. on Autonomous Agents
and Multiagent Systems (AAMAS), pp. 1001–1008. ACM
Press, 2006.

[9] S. Smith. OPIS: A methodology and architecture for reac-
tive scheduling. In M. Zweben and M. Fox, eds, Intelligent
Scheduling. Morgan Kaufmann, 1994.

[10] A. Tate. Generating project networks. In Proc. 5th Int. Joint
Conf. on Artificial Intelligence (IJCAI), pp. 888–893. Mor-
gan Kaufmann, 1977. Reprinted in [1, pp. 291–296].

[11] A. Tate. Intelligible AI planning. In M. Bramer, A. Preece,
and F. Coenen, eds, Research and Development in Intelligent
Systems XVII (Proc. 20th ES), pp. 3–16. Springer, 2000.

[12] A. Tate. <I-N-C-A>: A shared model for mixed-initiative
synthesis tasks. In G. Tecuci, editor, Proc. IJCAI Workshop
on Mixed-Initiative Intelligent Systems, pp. 125–130, 2003.

[13] A. Tate, J. Dalton, and J. Levine. O-Plan: A web-based
AI planning agent. In Proc. National Conf. of the American
Association of Artificial Intelligence (AAAI), pp. 1131–1132.
AAAI Press, 2000.

[14] G. Wickler, S. Potter, and A. Tate. Recording rationale in
<I-N-C-A> for plan analysis. In L. McCluskey, K. My-
ers, and B. Srivastava, eds, Proc. ICAPS Workshop on Plan
Analysis and Management, pp. 5–11, 2006.

[15] M. Wooldridge. Intelligent agents. In G. Weiss, editor, Mul-
tiagent Systems: A Modern Approach to Distributed Artifi-
cial Intelligence, pp. 27–77. The MIT Press, 1999.

[16] M. Wooldridge and N. Jennings. Intelligent agents: The-
ory and practice. The Knowledge Engineering Review,
10(2):115–152, 1995.

