
This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3105259, IEEE Access

VOLUME XX, 2021 1

Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2021.Doi Number

Intelligent Algorithmic Trading Strategy using
Reinforcement Learning and Directional
Change

Monira Aloud and Nora Alkhamees

Department of Management Information System, College of Business Administration, King Saud University, Saudi Arabia

Corresponding author: Monira Aloud (e-mail: mealoud@ksu.edu.sa).

Department of Management Information System, King Saud University

P. O. Box 75879, Riyadh 11588

Phone No: +966535704040

ORCID: https://orcid.org/0000-0002-0472-5151

The author thanks Researchers Supporting Project, number (RSP-2020/213), King Saud University, Riyadh, Saudi Arabia for supporting the research project.

ABSTRACT Designing a profitable trading strategy plays a critical role in algorithmic trading, where the

algorithm can manage and execute automated trading decisions. Determining a specific trading rule for

trading at a particular time is a critical research problem in financial market trading. However, an intelligent,

and a dynamic algorithmic trading driven by the current patterns of price time-series data may help deal with

this issue. Thus, Reinforcement Learning (RL) can achieve optimal dynamic algorithmic trading by

considering the price time-series as its environment. A comprehensive representation of the environment

states is indeed vital for proposing a dynamic algorithmic trading using RL. Therefore, we propose a

representation of the environment states using the Directional Change (DC) event approach with a dynamic

DC threshold. We refer to the proposed algorithmic trading approach as the DCRL trading strategy. In

addition, the proposed DCRL trading strategy was trained using the Q-learning algorithm to find an optimal

trading rule. We evaluated the DCRL trading strategy on real stock market data (S&P500, NASDAQ, and

Dow Jones, for five years period from 2015-2020), and the results demonstrate that the DCRL state

representation policies obtained more substantial trading returns and improved the Sharpe Ratios in a volatile

stock market. A series of performance analyses demonstrate the robust performance and extensive

applicability of the proposed DCRL trading strategy.

INDEX TERMS Machine learning; reinforcement learning; Q-learning; directional change event;

algorithmic trading; stock market.

I. INTRODUCTION

Developing algorithmic trading strategies that can make

timely stock trading decisions has always been a subject of

interest for investors and financial analysts. The decision-

making problem for financial trading remains particularly

challenging given the variety of factors that can influence

stock prices. The design challenge of algorithmic trading

primarily emerges from the continuous evolution of price

time-series and thus the dynamic cycle of making trading

action decisions. Algorithmic trading is based on computer

algorithms to produce automated trading decisions and place

orders in the market and manage the portfolio. Recent

advancements in information technologies and machine

learning techniques have led to the creation of algorithmic

trading, which is also referred to as quantitative trading [1].

Decision-making in financial trading requires the trading

algorithm to explore the environment and make appropriate

and timely decisions without supervised information.

Classic algorithmic trading strategy models include

trend-following and mean reversion strategies [2]. Early

works include the use of filter trading rules to control when

to buy or sell a stock [3]. Several studies have investigated

mailto:mealoud@ksu.edu.sa

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3105259, IEEE Access

VOLUME XX, 2021 9

algorithmic trading, including algorithms based on

fundamental and technical analysis indicators and algorithms

based on machine learning techniques [1]. Machine learning

algorithms learn from historical data and interacts with the

environment to generate profitable trading rules. Machine

learning techniques for algorithmic trading can be divided

into supervised learning and RL algorithm-based methods

[4]. Supervised learning methods examine and analyze

training data (structured data) to predict stock prices or

trends. The RL algorithm recognizes different environmental

states, and it performs an action and receives feedback (i.e.,

a reward). Thus, RL methods learn to change actions to

maximize future rewards [5]. In this study, we develop an

algorithmic trading strategy using a machine learning

technique, i.e., a hybrid of Reinforcement Learning (RL) and

Q-learning algorithms.

RL is a machine learning method used for sequential

decision-making problems [5]. It achieves policy

improvement throughout continuous interaction with and

ongoing evaluation of its environment. A RL agent performs

a sequence of actions based on the environment states to

receive a predefined reward. In contrast to supervised machine

learning, which requires historical labeled data, the RL agent

learns the environment's states and performs actions through

continuous evaluation of the dynamic environment. The RL

algorithm has several advantages, e.g., self-learning, ongoing

behavior enhancements, and adaptivity to the environment

states. RL has been applied effectively in different domains,

e.g., job scheduling [6], pattern recognition [7], and

algorithmic trading [8-11].

Despite the effectiveness and robustness of the RL

algorithm, employing an algorithmic trading strategy remains

a challenge in real-world trading for three reasons. First, using

a physically fixed time interval (e.g., hourly data) to represent

the environment states make the flow of price time-series

irregularly spaced because prices are transacted at irregular

times and at different magnitudes and directions [12]. Physical

time employs a point-based system, where a single time unit

for observing price changes in range from seconds to hours or

even days; thus, time is homogeneous. Under intrinsic time,

the Directional Change (DC) event approach emerges as an

alternative approach for price time-series analysis that can

capture periodic patterns in price time-series. Second,

selecting appropriate features and data to represent the

environment states can be difficult. For example, manual

selection of features and data is challenging due to the large

search space (e.g., fundamental, and technical indicator data)

[9]. Finally, machine learning algorithms have a complex

structure and a large number of different parameters [4].

Reducing the number of parameters results in simplifying the

tracking and interruption of the trading performance results.

This study extends the Alkhamees and Aloud [7],

where a DCRL model was introduced to detect directional

price changes in price time-series. The proposed DCRL model

is considered an alternative approach to the traditional time-

series analytical approaches for environment state

representation. Basically, these traditional approaches are

based on fixed time interval analysis, in contrast, the DCRL

model samples price time-series under intrinsic time. The

DCRL model also learns the states of the price time-series to

find the optimal dynamic threshold for DC event analysis. The

dynamic DC threshold was introduced [13] to replace the fixed

DC threshold, which is used to identify DC events (e.g.,

directional price changes).

This paper develops an intelligent and dynamic

algorithmic trading strategy using the proposed DCRL model,

specifically, we present two algorithmic trading strategies

where the first is a direct RL approach and the second

additionally incorporates a RL Q-learning algorithm.

Essentially, the proposed DCRL algorithmic trading employs

the DC event approach with the dynamic DC threshold to

derive the state representation in RL. In addition, it uses the

RL decision-making algorithm to make decisions and take the

most appropriate trading action.

The DCRL algorithmic trading strategies were

evaluated using real financial market data for stock trading.

We conducted a series of systematic experiments to confirm

the effectiveness and interpretability of the trading

performance results. Therefore, we selected three common US

stock indices to evaluate the performance of the DCRL

algorithmic trading strategies (with and without Q-learning)

and compare their performance against zero-intelligence (ZI)

trading agents. The experimental results demonstrate that the

DCRL algorithmic trading strategies are effective in different

market situations and can potentially generate profits.

Our primary contributions are summarized as

follows. First, we contribute to the financial market literature

by designing and developing an algorithmic trading strategy

that is suitable for stock markets by improving the RL

environment state representation and action decision-making

to ensure stable trading returns even in the case of volatile

price time-series. Second, we contribute to the application of

the DC event approach for the representation of the

environmental states in RL. The proposed algorithmic trading

considers sequential DC event recognition in the price time-

series process using the dynamic DC threshold. This model

can support decision-makers to determine optimal trading

opportunities to maximize profits. Finally, we contribute to the

literature by using the Q-learning algorithm to improve the

learning process via the prior gained experience, and we

capture long-term learning and continuous improvements via

the Q-learning algorithm to achieve optimal policies under

different market states.

The remainder of this paper organized as follows.

Section 2 presents a brief discussion of literature related to the

RL algorithm in financial trading. Section 3 provides a brief

description of the DC event approach and the definition of the

dynamic DC threshold. Section 4 describes DCRL algorithmic

trading and the Q-learning algorithm. Section 5 presents the

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3105259, IEEE Access

VOLUME XX, 2021 9

datasets, experiment settings, profitability results, and

discusses the empirical results. Section 6 concludes the paper

and presents suggestions for potential future work.

II. RELATED WORKS

Several works in financial and machine learning

literature have exploited RL in different financial market

studies, e.g., financial signal representation [4,7,14],

building algorithmic trading [4,8-10, 15, 16], portfolio

management [11, 17, 18], optimizing trade execution [19],

Foreign Exchange (FX) asset allocations [20], changes in

market regimes [11], and stock market modelling [21, 22].

Building algorithmic trading using RL has been the focus of

many studies for a range of market settings. Some studies

have used direct RL [23], while others have employed a

value-based RL approach with a Q-Learning matrix to

realize algorithmic trading [15, 23,24]. In addition, other

studies have used Recurrent RL (RRL) approach [10, 11, 25]

or applied a Q-learning algorithm to the design of trading

strategies [9, 26, 27]. Furthermore, several recent studies

have employed deep RL for financial portfolio management

[17, 18].

Serving the literature on algorithmic trading using direct

RL. Bertsimas and Lo [23] examined an application of the

RL algorithm for trading a large block of equity over a fixed

time horizon to minimize the expected cost of executing

trades. They identify optimal trading rules (i.e., executed

actions) as a strategy that evolves over a few days. Their

experimental results demonstrated that the RL strategy saved

between 25% and 40% of execution costs compared to the

naïve strategy. However, this study's main drawback was the

assumption that the quantity of each buy order is

significantly high to increase the price of the traded security.

The work by [22] designed a next-generation multi-agent

systems (MAS) stock market simulator. Each agent learns

price forecasting and stock trading autonomously via RL.

The results demonstrate that agent learning allows accurate

simulation of the market microstructure.

Several studies in the literature utilized a value-based RL

approach with a Q-Learning matrix for algorithmic trading.

Gao and Chan [24] and Pendharkar and Cusatis [15]

employed a value-based RL approach with a Q-Learning

matrix to develop algorithmic trading methods. Here, the

core idea is to approximately calculate each state's value

function (or state-action pair) and subsequently select the

greedy trading action based on the value function. [24] used

two performance functions, i.e., absolute profit and relative

risk-adjusted profit, to train the algorithmic trading model.

The authors in [15] proposed several RL agents for trading

portfolio assets. They designed on-policy (SARSA (λ)) and

off-policy (Q-learning) discrete state and discrete action

agents. Here, the goal is to maximize one of the two values

the portfolio returns or differential Sharpe ratios. They

examined the impact of RL and trading frequencies. The

results demonstrate that a continuous adaptive action RL

trading strategy consistently performs the best in forecasting

portfolio allocations in the following period. The learning

frequency of RL algorithmic trading is essential in

determining trading performance. The work by [9] and [20]

demonstrated the effectiveness of the policy-based model

over the value-based function model relative to performance

and applicability.

With regard to the adoption of Q-learning, Neuneier [26]

applied a Q-learning algorithm to optimize a trading

portfolio. Neuneier constructed an Artificial Neural Network

(ANN) to forecast price movement and then used the Q-

learning algorithm to find an optimal policy. Another study

[27] proposed a portfolio optimization technique using the

RL Q-learning approach. This method improved the Q-

learning algorithm for optimal asset allocation introduced

[26]. This model simplifies the previous model [26] by using

one value function for several assets, facilitating model-free

policy iteration. Another study [9] used direct RL alteration

and compared their algorithm to Q-learning and temporal

difference algorithms using real data. Their results

demonstrated that the deferential Sharpe ratio RRL system

outperformed the Q-learning algorithm. Carapuço et al. [28]

developed an RL trading system to trade in the foreign

exchange market. They used ANNs with three hidden layers,

where the neurons were trained as RL agents under the Q-

learning algorithm using a simulated market environment

framework. The framework was tested using EUR/USD

market data from 2010 to 2017 with more than 10 tests with

different initial conditions, and an average total profit of

114.0% ± 19.6% was achieved.

Other literature studies have used the Recurrent RL

(RRL) approach. Moody et al. [10] proposed an application

of the RRL approach. RRL is an unconstrained RL algorithm

that solves the problem of dimensionality. Several studies

have extended the RRL model. For example, Zhang and

Maringer [25] used technical analysis indicators,

fundamental analysis, and econometric study with RRL to

improve trading decisions. The analytical indicators were

filtered using the genetic algorithm evolutionary process. [8]

combined RRL and a particle swarm with a Calmar ratio-

based objective function for portfolio trading. They

evaluated their method using S&P100 index stocks, and the

results demonstrated that the proposed portfolio trading

system outperformed benchmark trading strategies,

particularly under high transaction cost conditions. In

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3105259, IEEE Access

VOLUME XX, 2021 9

addition, the results demonstrated that the Calmar ratio was

the best fitness function for particle swarm algorithms.

In recent years, RL research has clustered around deep

learning RL. [17] used a financial-model-free RL

framework to deliver a deep RL solution to the portfolio

management problem. The central part of the deep RL

framework is the Ensemble of Identical Independent

Evaluators (EIIE) topology. An EIIE is a neural network

designed to examine the historical data of an asset and

evaluate its potential growth. In their work, the portfolio

weights identify the action for the RL agent. The reward of

the RL agent is the explicit average value of the recurring

logarithmic returns. In a similar context, [18] offers a

portfolio management approach using deep RL on markets

with a dynamic number of assets. The neural network

architecture is employed and trained using deep RL. Their

design was tested on a historical dataset of one of the largest

world cryptocurrency markets. The results outperform state-

of-the-art methods in the literature, accomplishing average

daily returns of over 24%.

The main advantage of the algorithmic trading strategies

proposed in this paper is their continuous adaptability to new

market conditions using a learning process resulting from

dynamic DC events. In addition, existing RL algorithmic

trading modules does not consider an event-based system,

where an event is the basic unit for studying price time-

series. Thus, the representation of environmental states (i.e.,

market states) in RL algorithmic trading must be improved

to realize adaptability to market behaviours continuous

changes.

III. Dynamic DC Event Approach

DC is an event approach for price time series analysis in

financial markets [29]. The DC summarizes price

movements using intrinsic time, which is an event-based

timing system (irregularly spaced in time), rather than

physical time, which is a point-based timing system that

depends on fixed time intervals (e.g., hourly). DC identifies

significant price movements (i.e., DC events) if the price

change between two points satisfies a fixed given threshold

value. DC has two types of events, i.e., upturn events, which

are identified once the price change is greater than or equal

to the fixed threshold value, and downturn events, which are

identified once the price change is less than or equal to the

fixed threshold value. A DC event detection algorithm with

a comprehensive description of DC can be found in the

literature [29]. The potential of DC event approaches has

been proven in many studies for different financial markets,

and they have been used for event detection [7, 13],

forecasting models [30, 31], designing trading strategies [30,

32-40], profiling price time-series [31], and time-series

analysis [41, 42].

A dynamic threshold definition method that replaces the

DC fixed given threshold value has been proposed in [13].

The dynamic threshold is applicable to financial markets that

operate over specific opening and closing times, e.g., stock

markets. The dynamic threshold is a flexible value that can

identify significant price movements (i.e., DC events) of

different magnitudes in continuously changing and dynamic

environments. Setting the dynamic threshold value depends

on the previous day’s price behaviors (i.e., the short-term

price history) and additional data sources (e.g., news outlets)

[13]. In general, the dynamic threshold is set depending on

the previous day (between opening and closing price) price

changes, and the overnight (between previous day closing

price and current day opening price) price changes. In

addition to the rate of change in price between the current

day opening price and the reached trend price. The dynamic

threshold definition equations can be found in [13].

In the work by [7], we were able to set the dynamic

threshold value-based on only financial market data (without

any additional data sources) using RL. In this study, to

identify an actionable trading opportunity, we use the DC

event approach and the dynamic threshold definition method

[7].

IV. DCRL Algorithmic Trading

The proposed DCRL algorithmic trading comprises two

main components. First, the DC event approach with the

dynamic DC threshold is used to identify and represent the

market's environmental states. Second, the RL decision-

making algorithm is used to make decisions and take

appropriate trading actions. In this section, the DCRL

algorithmic trading strategy is described in detail. In

addition, a rigorous formalization of this algorithmic trading

approach and its associated characteristics are presented.

Algorithm 1 depicts the core mechanism of the DCRL

algorithmic trading.

Algorithm 1. The core mechanism of the DCRL algorithmic Trading.

A. RL

RL comprises an agent, an environment represented by a

set of states st 𝜖 S, and a set of actions at 𝜖 A. By performing

an action at time t, the agent receives reward rt and

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3105259, IEEE Access

VOLUME XX, 2021 9

transforms from state st to state st+1. Here, the goal of the

agent is to maximize its current reward. The RL algorithm

creates models using the Markov decision process (MDP);

thus, RL can be represented by a state, action, and reward

sequence (st, at, rt, st+1, at+1, rt+2,…). The RL algorithm

designs policies (π) that associate an environment state s with

action a to maximize the immediate reward r received over a

specified time. In a trading algorithm, a trading rule can be

considered a programmed policy π (s, a) that yields a trading

action according to the available state data st at time t. As

shown in Figure 1, the RL algorithm is based on the

sequential interactions between the agent and its

environment.

The RL algorithm includes two value functions, i.e., the

function of states and the function of state-action pairs [5].

These functions estimate the effectiveness of an agent's

action in a given state. The notion of "effectiveness" in RL is

defined according to future rewards, i.e., the expected return

in a financial trading context. Thus, these value functions are

determined based on specified policies. The value of state s

following policy π (denoted vπ(s) is the expected return when

starting in s and following π through the specified period. For

the MDP, we can define the state-value function vπ(s) for

policy π as follows in Eq. 1:

𝑣𝜋(𝑠) = 𝐸𝜋[𝐺𝑡|𝑆𝑡 = 𝑠] (1)

where Eπ[.] is the expected value following policy π, and t is

any time. Here, Gt is the cumulative discount rate for state s

at time t, which is defined as follows in Eq. 2:

𝐺𝑡(𝑠) = [∑ 𝛾𝑘𝑅𝑡+𝑘+1| 𝑆𝑡 = 𝑠∞
𝑘=0] (2)

where gamma (γ) is a discount factor that takes a value

between 0 and 1. Discount factor (γ) defines the importance

of future rewards and weighs recent rewards more heavily.

In algorithmic trading, a higher discount factor value implies

that the agent will become more long-term investment

oriented. For example, in the ultimate case of γ = 1, the agent

considers each reward equally through the market run. In

contrast, for γ=0, the agent is biased because it only reflects

the current reward and discards future rewards.

Similarly, we define the function of a state-action pair

Q(s, a). The value of taking action a in state s following

policy π (denoted Qπ(s, a)) is defined as the expected return

starting from s, taking action a, and subsequently following

policy π. The action value function for policy π is expressed

as follows:

𝑄𝜋(𝑠, 𝑎) = 𝐸𝜋[𝐺𝑡|𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎] (3)

where Gt is the cumulative discount rate for all actions in

state s at time t, which is defined as follows.

𝐺𝑡(𝑠) = [∑ 𝛾𝑘𝑅𝑡+𝑘+1| 𝑆𝑡 = 𝑠∞
𝑘=0 , 𝐴𝑡 = 𝑎] (4)

In RL, there are two main algorithms designed to find

optimal action at+1 to take given current state st+1. The first

algorithm is the off-policy algorithm, where the Q(s,a)

function does not depend on the agent’s learning policy: thus,

it learns from taking different actions (e.g., random actions).

The second algorithm is an on-policy algorithm, where the

Q(s,a) function is dependent on the agent’s learning policy;

thus, the agent learns from actions it has taken using the

current policy π(a|s).

B. DCRL States

The principle of RL is that an agent continuously interacts

with the environment and learns the optimal trading rule to

improve its trading strategy. For stock market trading, the

environment comprises the current stock price data and

historical price series, including a variety of fundamental

data and technical analysis indicators. Therefore, selecting

the set of data inputs is a prerequisite for trading agents to

learn the stock market environment and discover trading

rules. The underlying challenge of stock market trading is

capturing market states at a specific time. For price time-

series, commonly employed data in financial forecasting

literature represent the price sequence at regular time

intervals (e.g., daily data). In this study, we used the daily

data of stock market indexes, i.e., the opening, closing, high,

and low prices for each day.

The market state variable of each trading day is

represented by a pair of the DC price trend direction (an

upward or downward trend) and the type of detected event

(overnight or previous day event). This gives six states for

our research problem. A lookup table (Table I) is established

for state representation of the environment, where each state

is signified with a single action associated with an expected

reward.

The agent uses an RL algorithm to change from state st

to st+1, which is based on learning the dynamics of the

environment. Thus, if state st were Overnight or PreviousDay

with an Upward trend, the action would be Sell because we

think that the price increase that occurred due to an overnight

or previous day price change was high. The same applies if

st was Overnight or PreviousDay with a Downward trend,

i.e., the action would be Buy because we think that prices

have fallen sharply due to a sudden overnight or previous day

change in price. The Overnight or Previous Day states are

satisfied if the five-day moving average is greater than the

overnight or previous day’s price change. However, if the

detected state is Neutral, which indicates no significant event

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3105259, IEEE Access

VOLUME XX, 2021 9

was identified in the price time-series between time t-1 and

t, we use the optimal state-action value function to select the

optimal policy for t+1.

C. DCRL Actions

At each time step t, the agent observes the environment's

state st and executes a trading action following policy π (s,

a). Here, the agent actions are buy, sell, or hold, i.e., A=

{Buy, Sell, Hold}. An agent receives a reward after it takes

an action. An action at may have an impact on the agent's

portfolio value, specifically, the cash and share values giving

that a trading action executes at the current market closure

price pt.

Two experimental design constraints are assumed

regarding the quantity of traded shares Qt at time t. First, for

the Buy action, the amount of shares to be bought by the

trading agent is based on all available cash that agent has at

time t. For the Sell action, the agent sells all of available

shares at time t. In other words, the agent spends 100% of its

cash when buying and 100% of its shares when selling.

Second, there is no transaction cost in this simulation. By

making these simplified assumptions, the complexity of the

trading strategy is reduced to a level that can be explored and

examined within the scope of this study. Simplicity is

essential to understand an agents' trading behaviors and the

trading rules generated by the agent because assigning

variable quantities may result in a more complicated

analysis. Note that relaxation of these assumptions does not

affect generality or the accuracy of the obtained results.

Nevertheless, we are aware of share quantity's critical role as

a choice variable for the generated trading rules (especially

with risk aversion).

D. Reward Function

An agent designed based on the RL algorithm learns the

optimal policy to trade to achieve maximum profit; therefore,

the reward function design is critical when designing trading

strategies based on the RL algorithm. In stock market trading

literature, several studies have used the Rate of Return (RoR)

as a reward function [15].

In this study, we used two immediate reward criteria for

the DCRL agent. The first criterion is Buy action, where the

Relative Return (RR) is used (Eq. 5). Here, pSell and pBuy are

the selling and buying prices, respectively. The RR defined

as the difference between the absolute price return at time t

and the return reached by the target time. The second

immediate reward criterion is for the Sell action, where the

RoR is used (Eq. 6). The RoR is the net gain (or loss) of a

single trade over a particular period based on the trade's

initial cost.

𝑅𝑅 = (𝑝𝑡 − 𝑝𝑡−1)/𝑝𝑡−1 (5)

𝑅𝑜𝑅 = (𝑝𝑆𝑒𝑙𝑙 − 𝑝𝐵𝑢𝑦)/𝑝𝐵𝑢𝑦 (6)

Here, pt and pt−1 are the current price at time t and time t−1,

respectively. To assess the action taken (i.e., the executed

trading action), we employ two reward functions so that we

can consider the different impact of both the Sell and Buy

actions. The authors of [28] used two reward functions, i.e.,

the trade profit was used for closing a position (sell action),

and the variation of unrealized profit was employed for

opening (buy action) or holding a position.

E. Q-Learning Algorithm

Q-learning is an off-policy RL algorithm that seeks to

maximize the total reward. Quality in the RL approach

signifies how effective an executed action at at time t was

relative to achieving a particular future reward. In the Q-

learning algorithm, we create a Q-table or matrix that follows

policy π(s, a) and randomly initialize the values in the matrix.

Then, for each iteration of the market run, the Q-values are

updated and stored in the matrix. Accordingly, the Q-matrix

turn into a reference matrix for the agent to determine the

optimal action based on the maximum Q-value. The Q-

function uses the Bellman equation, which takes two inputs,

i.e., state st and an action under policy π(s, a). Given the

current state st of the environment at time t and the taken

action at+1, we can formulate the action value function

following policy π as follows:

𝑄(𝑠, 𝑎) = 𝑄(𝑎, 𝑠) + 𝛼[𝑅(𝑠, 𝑎) + 𝛾 max 𝑄 (𝑠′, 𝑎′) −

𝑄(𝑠, 𝑎)] (7)

where Q(s,a) is the new Q-value for state st and action at, α

is the learning rate satisfying 0 ≤ α ≤ 1, R(s, a) is the reward

for taking action at at state st, γ is the discount factor (also

referred to as the discount rate) satisfying 0 ≤ γ≤ 1, and max

Q' (s', a') is the maximum expected reward for new state s'

and all possible actions at state s'. Low alpha (α) values

imply a slower learning rate, while higher alpha values

indicate more rapidly learning of Q -value updates.

 For simplicity, we refer to DCRL with Q-learning

algorithm as QDCRL. A QDCRL agent learns an optimal

state-action value function Q* for the Neutral state, where an

update process considers a quintuple Q(st, at, rt, st+1, at+1) of

the environment. For the six states and three actions, we

create a matrix Q ∈ R6x3 initialized with random values.

Therefore, Q(s,a) represents the Q-value for state s and

action a. The Q(s,a) initial random values are subsequently

updated in the simulation run by identifying new states and

actions using the dataset, where reward r(s,a) is assigned for

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3105259, IEEE Access

VOLUME XX, 2021 9

each selected action. The structure of QDCRL algorithmic

trading is shown in Figure 2.

V. Experiment and Results

In this section, we discuss a series of experiments

conducted with the proposed DCRL (with and without Q-

learning) algorithmic trading strategies, including the

datasets used, performance evaluation metrics, benchmarks,

experimental settings, and trading performance results.

We evaluated three aspects of the proposed DCRL and

QDCRL algorithmic trading strategies, i.e., trading

performance profitability and effectiveness, as well as

adaptability and efficiency of the dynamic threshold DC

event approach for the RL environment state representation.

Finally, we confirmed the efficacy of the Q-learning

algorithm in RL for algorithmic trading.

A. Datasets

We performed several experiments to confirm the

effectiveness and robustness of DCRL algorithmic trading

using three different stock indices, i.e., S&P500, NASDAQ,

and Dow Jones. These stocks were downloaded from Yahoo!

Finance for the period July 2015 to July 2020 (five years, i.e.,

1260 days of daily price data).

The movement of the three stock indices and their

detailed price curve evolution is shown in Figure 2, and

Table II shows a descriptive statistics analysis (mean (µ),

standard deviations (σ), skewness, kurtosis, minimum, and

maximum price values) of the investigated stock indices.

B. Experimental Settings

Here, we define the set of parameters used in our

experiments. We examined different parameters settings for

the QDCRL trading strategy systematically through several

rounds of tuning. The parameter settings are summarized in

Table III.

We executed several independent simulation runs using

the same configuration values with different random seeds to

confirm that the obtained results are consistent. This allowed

us to verify the effectiveness and accuracy of the results.

Therefore, the experimental results are averaged over 20

independent simulation runs.

 For the learning rate (α) and discount factor (γ)

parameters in QDCRL, we conducted a series of systematic

experiments to explain the effect of these two parameters on

the Q-learning algorithm and the profitability of QDCRL

algorithmic trading. Here, we examined values between

0.85–0.99 for the discount factor and 0.0001, 0.001, 0.05,

and 0.1 for the learning rate (these values are in line with

previous studies [15, 28, 43]). The Return On Investment

(ROI) and Sharpe Ratio (SR) results of the different γ and α

values are given in Table IV. The objective is to find the

optimal parameter set to be used for the QDCRL. Higher

ROI and SR values indicate that a set of parameters achieved

the best performance; thus, we selected these parameter sets

in our experiments. We found that different discount factor

(γ) values do not affect performance significantly. In

contrast, small learning rate (α) values demonstrated slightly

better performance than higher values, which implies the

importance of a slower learning rate for the Q-value updates

in the Q-learning algorithm.

C. Evaluation metrics

We used four metrics to evaluate the trading strategies'

effectiveness and robustness: profit curve, ROI, SR, and the

number of trading signals. In the literature, two commonly

used performance criteria are portfolio returns and

differential SR [15]. The four-evaluation metrics are defined

as follows.

i. The profit curve is a qualitative metric to evaluate

the profitability of trading strategies. The goal is to

demonstrate the change in the agent's portfolio

profit over time, which can signify the cumulative

gain (profit or loss) of the trading strategies at each

time point.

ii. The ROI is the ratio between the net trading gains

(profit or loss) and trading cost. It is a quantitative

evaluation indicator that measures portfolio

profitability. Maximizing the ROI is simple, and it

reflects a risk-neutral utility function [15].

iii. SR is a quantitative evaluation indicator to measure

the risk-adjusted return of the agent's portfolio. The

SR considers both the benefits and risks of an

investment. Thus, it removes undesirable effects of

risk factors on trading performance evaluation. As

a result, the SR shows how to fit returns to the risk

taken. Here, a higher SR value indicates a higher

risk-adjusted RoR. Several studies into RL

algorithmic trading have used SRs as a performance

measure [8]. However, the SR penalizes price

returns that are greater than a specific amount,

weighs recent price returns higher than the past

returns, and does not differentiate between the

upside and downside possible growth of a portfolio

[14]. The SR is expressed as follows:

 𝑆𝑅 =
𝐸(𝑅)−𝑅𝑓

𝜎(𝑅)
 √𝑛 (8)

 where E(R) is the expected accumulated return of

investments over trading period T, σ(R) is the standard

deviation of the return, Rf is the risk-free factor, and n is the

number of observations.

iv. The number of trading signals refers to the number

of times a Buy or Sell trading action was executed

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3105259, IEEE Access

VOLUME XX, 2021 9

during the trading period, which is measured to

avoid exceedingly frequent trading resulting in

extremely high risk.

D. Benchmark Trading Strategy

To further evaluate the performance the proposed DCRL and

QDCRL trading strategies, we compare them to the ZI agent

with a budget constraint for stock trading. The ZI is a

benchmark widely used to evaluate an intelligent algorithmic

trading model. It is a naïve approach that allows to assess

the intelligence and learning effectiveness of the DCRL and

QDCRL. In addition, we benchmark with the Direct RL

designed by [9], which is a classical RL model for

algorithmic trading. The reason behind choosing the Direct

RL model as a baseline benchmark is to provide a rational

comparison of the minimum level of supervised learning.

Besides, this will allow us to evaluate the dynamic DC event

approach's effectiveness in representing the environment's

state. Furthermore, we compare the performance of DCRL

and QDCRL with a classic DC event approach -fixed

threshold- introduced by [12]. The DC approach provides a

pattern detection for price time-series with no utilization of

any machine learning techniques. We employed the DC

approach using a variety of fixed thresholds ranging from

[0.01,0.001]. The average performance of the different

simulation runs was reported.

A ZI with a constraint trading agent was established [44]

to trade in a continuous double auction market. Thus, the ZI

agent has no intelligence and does not observe states in the

market (i.e., it does not employ a learning process from

historical data). As a result, the ZI agent is not informed of

the current market conditions and does not have any beliefs

about future price movements. The ZI agent places an order

based on a random probability defined from a uniform

distribution subject to budget constraints. Therefore, the ZI

agent decides to either submit a buy or a sell order (or hold)

with equal probability. Here, we examined the effect of the

ZI trading strategy's randomness compared to the DCRL and

QDCRL trading strategies.

E. Trading Performance Results

Our core focus is the profitability performance and

effectiveness of the proposed DCRL and QDCRL

algorithmic trading strategies; therefore, standard

performance evaluations were conducted on three stock

indices. Table V summarizes the results of the quantitative

assessment using the ROI and SR. We identify three main

findings from the results.

First, the QDCRL and DCRL trading strategies generate

substantial profits for the three stock indices compared to the

Direct RL, ZI and classic DC -fixed threshold- trading

strategies. This observation confirms that the dynamic DC

threshold effectively contributes to the algorithmic trading

design. This is because the dynamic DC event approach

summarizes patterns in the price time series. These patterns

represent environmental states for the RL algorithm. Instead

of employing discrete price values during training of the RL

algorithm (e.g., Direct RL), a continuous environmental state

signal is fed to the DCRL and QDCRL. The DC

environmental states can provide more detailed information

regarding the dynamic of price time series. This is also clear

in the results of the classic DC trading strategy (as it comes

in third place of the trading strategies performance), which

also confirms the potential of employing an event based

approach for summarizing price time series.

 Second, generally, the QDCRL trading strategy

outperformed the DCRL trading strategy without Q-learning.

The QDCRL trading strategy generally outperformed DCRL

on the S&P500 and Dow Jones stock indices in relation to

ROI and SR, which indicates the Q-learning algorithm can

potentially improve the trading performance resulting on

good profits contained by an acceptable level of risk (for

NASDAQ, the DCRL trading strategy was only slightly

higher than QDCRL ROI).

Third, the QDCRL trading strategy SR values were

significantly higher than those for the DCRL, ZI, Direct RL

and the classic DC (except for NASDAQ the classic DC SR

was slightly higher). Thereby confirming the validity of the

trading actions taken by QDCRL, which avoids risk while

securing profit especially when the price curve increases

sharply. In addition, the high SR values for QDCRL implies

that the risk of the QDCRL is more controllable, and that the

trading performance results are more effective.

The number of trading signals generated by the QDCRL,

DCRL, ZI, Direct RL and the classic DC trading agents for

the different stock indices is plotted in Figure 3. For the three

trading strategies designed based on the DC event approach

(DCRL, QDCRL, and classic DC algorithmic trading), the

number of trading signals indicates its sensitivity to price

fluctuations in the market as a result of the learning process

and adaptability to market changes. Figure 3 shows that the

total number of trading signals generated by the QDCRL,

DCRL and classic DC trading agents for the three stock

indices was significantly less than that for the ZI and Direct

RL agents. The average number of trading signals generated

by the ZI trading agent for all the three stock indices

represents approximately 42% of the total available trading

time. As for the Direct RL trading agent, the average number

of trading signals represents approximately 50% of the total

available trading time. The higher the number of trading

signals taking place the more likely its leading to negative

investment results.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3105259, IEEE Access

VOLUME XX, 2021 9

Figure 4 shows the daily portfolio return for the QDCRL,

DCRL, and ZI trading agents during the target period (1260

days) for the S&P500, NASDAQ, and Dow Jones indices.

We have excluded the portfolio return for the Direct RL

given the massive negative returns during the vast of trading

periods. For the S&P500, the DCRL and ZI initially

outperformed the QDCRL. After that, we can clearly see

how the learning is well reflected in the QDCRL

performance, and hence, how the QDCRL has significantly

outperformed both DCRL and ZI. The same applies to the

Dow Jones (in the third chart), where, initially, ZI and DCRL

outperformed QDCRL. However, as learning goes on, the

QDCRL significantly outperformed both DCRL and ZI. The

same also applies to NASDAQ, where learning has proven

to be effective when used with RL and DC. Finally, learning

had remarkably effect on QDCRL performance, and

QDCRL generally outperformed both DCRL and ZI.

VI. CONCLUSION

In this paper, we have proposed two algorithmic trading

strategies based on the DCRL model. Our main focus was to

improve the environment state representations for the RL

algorithm. The dynamic DC threshold event approach was

able to precisely represent the environment states. In

addition, it was able efficiently capture stable market states,

which led to achieving profitable trading returns under

acceptable risk levels in several stock indices. The

effectiveness and robustness of the DCRL trading strategies

were verified on real stock market data, and the experimental

results demonstrate that the proposed DCRL algorithmic

trading outperformed the ZI, Direct RL and classic DC

trading strategies with higher total profits and SR, as well as

more consistent profit curves.

Our primary contributions are summarized as follows.

We defined the environment states in the RL algorithm using

the dynamic DC threshold event approach, we developed a

simple lookup table for RL algorithmic stock trading, and we

employed the Q-learning algorithm to select the optimal

policy under the Natural market state.

Given the dynamic nature of the price time-series, trained

and adaptive algorithmic trading must be retrained when the

environment states changes based on specified

preconditions. The learning mechanism based on the

dynamic DC threshold event approach is effective relative to

improving the market's states' representation. The DCRL

agents' trading performance (with and without Q-learning)

were generally significant and turned a profit within an

appropriate level of risk. These results indicate that, to

generate proper trading rules and high-performance returns,

learning the environment states is required (i.e., adaptive and

non-static representations of the price time-series is needed).

We used two reward functions for the DCRL agents,

where each reward is associated with a specific action (either

a buy or sell action). The relative return reward function was

sued for the buy action, and the rate of return reward function

was used for sell action. We found that using these reward

functions (rather than a single reward function) improved the

Q-learning matrix's performance.

There are two reasons why the QDCRL trading

algorithm outperformed DCRL. The first is the learning

process for the optimal trading policy under specific market

conditions. As stated previously, the performance of

QDCRL agents depends on the selection of the optimal

policy. The learning frequency of algorithmic trading plays

a critical role in influencing the agent's trading analytical

performance; however, we did not find that large learning

rate (α) values are always effective. We consider the

difference between loss and reward in the Neutral state was

caused by the fact that Q-learning may effectively model the

long-term discounted returns of a particular state. In

addition, we restricted the agent to select from a finite action

set based on the optimal policy, which may permit the agent

to submit more trading signals. The results of this study

suggest that adaptive QDCRL agents with Q-learning

provide the best performance based on investment

profitability and are more promising in practical

applications.

This paper can be further extended in several research

directions. For example, in the future, we can examine

DCRL (with and without Q-learning) on high-frequency

trading to explore and confirm the effectiveness of DCRL

algorithmic trading, thus further improving and optimising

DCRL to fit that trading context. In addition, we can evaluate

applying DCRL algorithmic trading to different emerging

markets, e.g., the Forex market and cryptocurrencies.

Finally, DCRL algorithmic trading can only trade one asset

at a time; thus, we can also extend our investigations to

managing portfolios involving multiple assets.

Acknowledgments

We would like to thank the anonymous reviewers for their

useful comments and suggestions. The author thanks

Researchers Supporting Project, number (RSP-2020/212),

King Saud University, Riyadh, Saudi Arabia for supporting

the research project.

Declaration of interest

The authors report no conflicts of interest. The authors

alone are responsible for the content and writing of the paper.

FIGURE CAPTIONS
 Fig. 1. Interactive process of the RL Algorithm.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3105259, IEEE Access

VOLUME XX, 2021 9

Fig. 2. Structure of QDCRL algorithmic trading.
Fig. 3. Price curve movement of S&P500, NASDAQ, and Dow Jones

stock indices during target period.

Fig. 4. Comparison of number of trading signals of QDCRL, DCRL, ZI,

Direct RL, and classic DC for S&P500, NASDAQ, and Dow Jones.

Fig. 5. Profit curves of QDCRL, DCRL, and ZI trading strategies for three

stock indices.

TABLES

TABLE I

LOOKUP TABLE FOR DCRL ALGORITHMIC TRADING

s a s' r(s, a, s')

(Overnight,

Upward

trend)

Sell Overnightt+1, Previous t+1,

Neutral t+1

Rate of

return

(Overnight,

Downward

trend)

Buy Overnight t+1, Previous t+1,

Neutral t+1

Relative

return

(Previous

Day, Upward

trend)

Sell Overnight t+1, Previous t+1,

Neutral t+1

Rate of

return

(Previous

Day,

Downward

trend)

Buy Overnight t+1, Previous t+1,

Neutral t+1

Relative

return

(Neutral,

Upward

trend)

Hold Overnight t+1, Previous t+1,

Neutral t+1

0

(Neutral,

Downward

trend)

Hold Overnight t+1, Previous t+1,

Neutral t+1

0

TABLE II

DESCRIPTIVE STATISTICS OF STOCK INDICES

Index µ σ Skewn

ess

Kurto

sis

Min. Max.

S&P50

0

2553.0

9

379.8

8

−0.005

5

−1.06 1829.0

8

3386.1

5

NASD

AQ

6775.4

5

1478.

26

0.235 −0.766 4266.8

4

10767.

09

Dow

Jones

22608.

29

3726.

28

−0.227 −1.28 15660.

18

29551.

42

TABLE III

QDCRL PARAMETERS USED AT TIME T

Parameter Value Description

Cash 100,000 Initial account size (cash)

Shares 0 The number of units invested per trade

(shares)

γ 0.99 Discount factor.

α 0.0001 Q-learning rate.

TABLE IV

ROI AND SHARPE RATIO (SR) FOR DIFFERENT PARAMETERS SETTINGS

(DISCOUNT FACTOR (Γ) AND LEARNING RATE (Α)). RESULTS FOR THE

S&P500 STOCK INDEX ARE SHOWN.

γ α ROI SR

0.85 0.0001 56.83 2.16

0.85 0.001 55.26 1.93

0.85 0. 05 47.55 1.62

0.85 0.10 53.89 2.16

0.90 0.0001 55.36 1.93

0.90 0.001 53.89 1.7

0.90 0. 05 44 1.59

0.90 0.10 54.9 2.12

0.95 0.0001 58.69 2.4

0.95 0.001 56.83 2.17

0.95 0. 05 38.25 2.13

0.95 0.10 48.81 1.86

0.99 0.0001 60.39 2.63

0.99 0.001 56.83 2.17

0.99 0. 05 50.36 1.6

0.99 0.10 54.29 1.79

TABLE V.

 ROI AND SR OF QDCRL, DCRL, CLASSIC DC, ZI AND DIRECT RL

TRADING STRATEGIES ON DIFFERENT STOCK INDICES.

 S&P500 NASDAQ Dow Jones

 ROI

(%)
SR ROI

(%)
SR ROI

(%)
SR

ZI 15.32 −1.7 36.06 −1.28 14.89 −1.46

Classic

DC

36.33 0.11 40.68 2.36 24.33 0.35

Direct

RL

-

22.29

- -

32.01

- -8.77 -

DCRL 47.23 0.77 57.6 1.47 9.16 −0.023

QDCRL 60.36 2.63 53.82 1.96 37.34 2.48

REFERENCES

[1] P. Treleaven, M. Galas and V. Lalchand, Algorithmic trading review,

Commun. ACM. 56 (2013) 76–85

[2] B. Bruce. Trading Algorithms, Student-Managed Investment Funds. 2nd
ed. Cambridge: Academic Press; (2020):285–315

[3] E. Fama and M. Blume, Filter rules and stock market trading profits, J.

Bus. 39 (1966) 226–41

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3105259, IEEE Access

VOLUME XX, 2021 9

[4] K. Lei, B. Zhang, Y. Li, M. Yang and Y. Shen, Time-driven feature-

aware jointly deep reinforcement learning for financial signal representation

and algorithmic trading, Expert Syst. Appl. 140 (2020)
[5] R. Sutton and A. Barto. Reinforcement Learning: an Introduction.

Cambridge, MA: MIT Press; (1998)

[6] S. Chinchali, P. Hu, T. Chu, M. Sharma, M. Bansal, R. Misra, M. Pavone
and S. Katti, Cellular network traffic scheduling with deep reinforcement

learning. Thirty-Second AAAI Conference on Artificial Intelligence;

(2018):766–74
[7] N. Alkhamees and M. Aloud, DCRL: approach to identify financial

events from time series using directional change and reinforcement learning,

Manuscript submitted for publication; (2020)
[8] F. Bertoluzzo and M. Corazza. Reinforcement Learning for Automatic

Financial Trading: Introduction and Some Applications. Department of

Economics, Ca' Foscari University of Venice, (2012) working Paper
2012:33.

[9] J. Moody and M. Saffell, Learning to trade via direct reinforcement,

IEEE Trans. Neural Netw. 12 (2001) 875–89
[10] J. Moody, L. Wu, Y. Liao and M. Saffell, Performance functions and

reinforcement learning for trading systems and portfolios, J. Forecast. 17

(1998) 441–70
[11] S. Almahdi and S.Y. Yang, An adaptive portfolio trading system: A

risk-return portfolio optimization using recurrent reinforcement learning

with expected maximum drawdown, Expert Syst. Appl. 87 (2017) 267–79
[12] J.B. Glattfelder, A. Dupuis and R.B. Olsen, Patterns in high-frequency

FX data: discovery of 12 empirical scaling laws, Quant. Fin. 11 (2011) 599–
614

[13] N. Alkhamees and M. Fasli, Event detection from time-series streams

using directional change and dynamic thresholds. IEEE International
Conference on Big Data (Big Data), Boston, MA; (2017):1882–91

[14] Y. Deng and F. Bao and Y. Kong and Z. Ren and Q. Dai, Deep direct

reinforcement learning for financial signal representation and trading. IEEE
transactions on neural networks and learning systems, (2017) 28(3), 653-

664.

[15] P. Pendharkar and P. Cusatis, Trading financial indices with
reinforcement learning agents, Expert Syst. Appl. 103 (2018) 1–13

[16] L. Weng and X. Sun and M. Xia and J. Liu and Y. Xu, Portfolio trading

system of digital currencies: A deep reinforcement learning with
multidimensional attention gating mechanism, Neurocomputing. 402 (2020)

171–82

[17] Z. Jiang, D. Xu and J. Liang, A deep reinforcement learning framework
for the financial portfolio management problem. arXiv preprint arXiv:

(2017)1706.10059.

[18] C. Betancourt and W. Chen, Deep reinforcement learning for portfolio
management of markets with a dynamic number of assets. Expert Systems

with Applications, (2021) 164, 114002.

[19] Y. Nevmyvaka, Y. Feng and M. Kearns, Reinforcement learning for
optimized trade execution. Proceedings of the Twenty-third International

Conference on Machine Learning, Pittsburgh; (2006):1–8

[20] M. Dempster and V. Leemans, An automated FX trading system using
adaptive reinforcement learning, Expert Syst. Appl. 30 (2006) 543–52

[21] C. Kuo and C. Chen and S. Lin and S. Huang, Improving generalization

in reinforcement learning–based trading by using a generative adversarial
market model. IEEE Access, (2021) 9, 50738-50754.

[22] J. Lussange, I. Lazarevich and S. Bourgeois-Gironde and S. Palminteri

and B. Gutkin, Modelling stock markets by multi-agent reinforcement
learning. Computational Economics, (2021) 57(1), 113-147.

[23] D. Bertsimas and A.W. Lo, Optimal control of execution costs, J.

Financ. Markets. 1 (1998) 1–50
[24] X. Gao and C. Laiwan, An algorithm for trading and portfolio

management using Q-learning and Sharpe ratio maximization. Proceedings

of the International Conference on Neural Information Processing;
(2000):832–7

[25] J. Zhang and D. Maringer, Indicator selection for daily equity trading

with recurrent reinforcement learning. Proceedings of the 15th Annual
Conference Companion on Genetic and Evolutionary Computation, Ac.M.

(2013) (1757–8)

[26] R. Neuneier. Optimal Asset Allocation Using Adaptive Dynamic
Programming. In Proceeding of Advances in Neural Information Processing

Systems. Cambridge: MIT Press; (1996):952–8

[27] R. Neuneier, Enhancing Q-learning for optimal asset allocation, Adv.
Neural Inf. Process. Syst. (1998) 936–42

[28] J. Carapuço, R. Neves and N. Horta, Reinforcement learning applied to

Forex trading, Appl. Soft Comput. 73 (2018) 783–94

[29] M. Aloud, E. Tsang, R. Olsen and A. Dupuis, A directional-change
events approach for studying financial time series, Econ. Open Access Open

Assess. E-Journal. 6 (2012) 2012–36.

[30] A. Bakhach, E. Tsang and H. Jalalian, Forecasting directional changes
in FX markets. IEEE Symposium on Computational Intelligence for

Financial Engineering and Economics (IEEE CIFEr’16), Athens, Greece;

(2016)
[31] E. Tsang, R. Tao, A. Serguieva and S. Ma, Profiling high-frequency

equity price movements in directional changes, Quant. Fin. 17 (2017) 217–

25
[32] Ao and E. Tsang, Trading algorithms built with direction changes.

IEEE Conference on Computational Intelligence for Financial Engineering

and Economics (CIFEr) Conference, Shenzhen, China; (2019)
[33] A. Bakhach, E. Tsang and V.L. Raju Chinthalapati, TSFDC: A trading

strategy based on forecasting directional change, Intell. Syst. Acc. Fin.

Manag. 25 (2018b) 105–23
[34] N. Alkhamees and M. Fasli, An exploration of the Directional Change

Based Trading strategy with dynamic thresholds on variable frequency data

streams IEEE International Conference on the Frontiers and Advances in
Data Science (FADS), Xi’an, 2017 2017; (2017a):108–13

[35] N. Alkhamees and M. Fasli, A Directional Change Based Trading

strategy with dynamic thresholds. IEEE International Conference on Data
Science and Advanced Analytics (DSAA), Tokyo, 2017; (2017):283–92

[36] M. Aloud, Directional-Change Event Trading strategy: profit-
maximizing learning strategy, in the Seventh International Conference on

Advanced Cognitive Technologies and Applications; (2015), F. Nice,

ISBN: 978-1-61208-390-2:123–9
[37] M. Aloud, Profitability of Directional Change Based Trading strategies:

the case of Saudi stock market, Int. J. Econ. Financ. Issues. 6 (2016) 87–95

[38] M. Aloud, Investment opportunities forecasting: GP-Based Dynamic
Portfolio Trading system under directional-change framework, J. Comp.

Fin. 22 (2017) 1–35

[39] M. Aloud and M. Fasli, Exploring trading strategies and their effects in
the Foreign Exchange market, Comp. Intell. 33 (2017) 280–307

[40] M. Kampouridis and F.E.B. Otero, Evolving trading strategies using

directional changes, Expert Syst. Appl. 73 (2017) 145–60
[41] M. Aloud, Time series analysis indicators under directional changes:

the case of Saudi stock market, Int. J. Econ. Financ. Issues. 6 (2016) 55–64

[42] J. Ma, X. Xiong, F. He and W. Zhang, Volatility measurement with
directional change in Chinese stock market: statistical property and

investment strategy, Phys. A. 471 (2017) 169–80

[43] Jeong and H.Y. Kim, Improving financial trading decisions using deep
Q-learning: predicting the number of shares, action strategies, and transfer

learning, Expert Syst. Appl. 117 (2019) 125–38

[44] D.K. Gode and S. Sunder, Allocative efficiency of markets with zero
intelligence traders: market as a partial substitute for individual rationality,

J. Pol. Econ. 101 (1993) 119–37.

