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ABSTRACT Designing a profitable trading strategy plays a critical role in algorithmic trading, where the 

algorithm can manage and execute automated trading decisions. Determining a specific trading rule for 

trading at a particular time is a critical research problem in financial market trading. However, an intelligent, 

and a dynamic algorithmic trading driven by the current patterns of price time-series data may help deal with 

this issue. Thus, Reinforcement Learning (RL) can achieve optimal dynamic algorithmic trading by 

considering the price time-series as its environment. A comprehensive representation of the environment 

states is indeed vital for proposing a dynamic algorithmic trading using RL. Therefore, we propose a 

representation of the environment states using the Directional Change (DC) event approach with a dynamic 

DC threshold. We refer to the proposed algorithmic trading approach as the DCRL trading strategy. In 

addition, the proposed DCRL trading strategy was trained using the Q-learning algorithm to find an optimal 

trading rule. We evaluated the DCRL trading strategy on real stock market data (S&P500, NASDAQ, and 

Dow Jones, for five years period from 2015-2020), and the results demonstrate that the DCRL state 

representation policies obtained more substantial trading returns and improved the Sharpe Ratios in a volatile 

stock market. A series of performance analyses demonstrate the robust performance and extensive 

applicability of the proposed DCRL trading strategy. 

INDEX TERMS Machine learning; reinforcement learning; Q-learning; directional change event; 

algorithmic trading; stock market. 

I. INTRODUCTION 

Developing algorithmic trading strategies that can make 

timely stock trading decisions has always been a subject of 

interest for investors and financial analysts. The decision-

making problem for financial trading remains particularly 

challenging given the variety of factors that can influence 

stock prices. The design challenge of algorithmic trading 

primarily emerges from the continuous evolution of price 

time-series and thus the dynamic cycle of making trading 

action decisions. Algorithmic trading is based on computer 

algorithms to produce automated trading decisions and place 

orders in the market and manage the portfolio. Recent 

advancements in information technologies and machine 

learning techniques have led to the creation of algorithmic 

trading, which is also referred to as quantitative trading [1]. 

Decision-making in financial trading requires the trading 

algorithm to explore the environment and make appropriate 

and timely decisions without supervised information.  

Classic algorithmic trading strategy models include 

trend-following and mean reversion strategies [2]. Early 

works include the use of filter trading rules to control when 

to buy or sell a stock [3]. Several studies have investigated 
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algorithmic trading, including algorithms based on 

fundamental and technical analysis indicators and algorithms 

based on machine learning techniques [1]. Machine learning 

algorithms learn from historical data and interacts with the 

environment to generate profitable trading rules. Machine 

learning techniques for algorithmic trading can be divided 

into supervised learning and RL algorithm-based methods 

[4]. Supervised learning methods examine and analyze 

training data (structured data) to predict stock prices or 

trends. The RL algorithm recognizes different environmental 

states, and it performs an action and receives feedback (i.e., 

a reward). Thus, RL methods learn to change actions to 

maximize future rewards [5].  In this study, we develop an 

algorithmic trading strategy using a machine learning 

technique, i.e., a hybrid of Reinforcement Learning (RL) and 

Q-learning algorithms. 

RL is a machine learning method used for sequential 

decision-making problems [5]. It achieves policy 

improvement throughout continuous interaction with and 

ongoing evaluation of its environment. A RL agent performs 

a sequence of actions based on the environment states to 

receive a predefined reward. In contrast to supervised machine 

learning, which requires historical labeled data, the RL agent 

learns the environment's states and performs actions through 

continuous evaluation of the dynamic environment. The RL 

algorithm has several advantages, e.g., self-learning, ongoing 

behavior enhancements, and adaptivity to the environment 

states. RL has been applied effectively in different domains, 

e.g., job scheduling [6], pattern recognition [7], and 

algorithmic trading [8-11]. 

Despite the effectiveness and robustness of the RL 

algorithm, employing an algorithmic trading strategy remains 

a challenge in real-world trading for three reasons. First, using 

a physically fixed time interval (e.g., hourly data) to represent 

the environment states make the flow of price time-series 

irregularly spaced because prices are transacted at irregular 

times and at different magnitudes and directions [12]. Physical 

time employs a point-based system, where a single time unit 

for observing price changes in range from seconds to hours or 

even days; thus, time is homogeneous. Under intrinsic time, 

the Directional Change (DC) event approach emerges as an 

alternative approach for price time-series analysis that can 

capture periodic patterns in price time-series. Second, 

selecting appropriate features and data to represent the 

environment states can be difficult. For example, manual 

selection of features and data is challenging due to the large 

search space (e.g., fundamental, and technical indicator data) 

[9]. Finally, machine learning algorithms have a complex 

structure and a large number of different parameters [4]. 

Reducing the number of parameters results in simplifying the 

tracking and interruption of the trading performance results. 

This study extends the Alkhamees and Aloud [7], 

where a DCRL model was introduced to detect directional 

price changes in price time-series. The proposed DCRL model 

is considered an alternative approach to the traditional time-

series analytical approaches for environment state 

representation. Basically, these traditional approaches are 

based on fixed time interval analysis, in contrast, the DCRL 

model samples price time-series under intrinsic time. The 

DCRL model also learns the states of the price time-series to 

find the optimal dynamic threshold for DC event analysis. The 

dynamic DC threshold was introduced [13] to replace the fixed 

DC threshold, which is used to identify DC events (e.g., 

directional price changes). 

This paper develops an intelligent and dynamic 

algorithmic trading strategy using the proposed DCRL model, 

specifically, we present two algorithmic trading strategies 

where the first is a direct RL approach and the second 

additionally incorporates a RL Q-learning algorithm. 

Essentially, the proposed DCRL algorithmic trading employs 

the DC event approach with the dynamic DC threshold to 

derive the state representation in RL. In addition, it uses the 

RL decision-making algorithm to make decisions and take the 

most appropriate trading action. 

The DCRL algorithmic trading strategies were 

evaluated using real financial market data for stock trading. 

We conducted a series of systematic experiments to confirm 

the effectiveness and interpretability of the trading 

performance results. Therefore, we selected three common US 

stock indices to evaluate the performance of the DCRL 

algorithmic trading strategies (with and without Q-learning) 

and compare their performance against zero-intelligence (ZI) 

trading agents. The experimental results demonstrate that the 

DCRL algorithmic trading strategies are effective in different 

market situations and can potentially generate profits. 

Our primary contributions are summarized as 

follows. First, we contribute to the financial market literature 

by designing and developing an algorithmic trading strategy 

that is suitable for stock markets by improving the RL 

environment state representation and action decision-making 

to ensure stable trading returns even in the case of volatile 

price time-series. Second, we contribute to the application of 

the DC event approach for the representation of the 

environmental states in RL. The proposed algorithmic trading 

considers sequential DC event recognition in the price time-

series process using the dynamic DC threshold. This model 

can support decision-makers to determine optimal trading 

opportunities to maximize profits. Finally, we contribute to the 

literature by using the Q-learning algorithm to improve the 

learning process via the prior gained experience, and we 

capture long-term learning and continuous improvements via 

the Q-learning algorithm to achieve optimal policies under 

different market states. 

The remainder of this paper organized as follows. 

Section 2 presents a brief discussion of literature related to the 

RL algorithm in financial trading. Section 3 provides a brief 

description of the DC event approach and the definition of the 

dynamic DC threshold. Section 4 describes DCRL algorithmic 

trading and the Q-learning algorithm. Section 5 presents the 
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datasets, experiment settings, profitability results, and 

discusses the empirical results. Section 6 concludes the paper 

and presents suggestions for potential future work. 

 
II. RELATED WORKS 
 

Several works in financial and machine learning 

literature have exploited RL in different financial market 

studies, e.g., financial signal representation [4,7,14], 

building algorithmic trading [4,8-10, 15, 16], portfolio 

management [11, 17, 18], optimizing trade execution [19], 

Foreign Exchange (FX) asset allocations [20], changes in 

market regimes [11], and stock market modelling [21, 22]. 

Building algorithmic trading using RL has been the focus of 

many studies for a range of market settings. Some studies 

have used direct RL [23], while others have employed a 

value-based RL approach with a Q-Learning matrix to 

realize algorithmic trading [15, 23,24]. In addition, other 

studies have used Recurrent RL (RRL) approach [10, 11, 25] 

or applied a Q-learning algorithm to the design of trading 

strategies [9, 26, 27].  Furthermore, several recent studies 

have employed deep RL for financial portfolio management 

[17, 18]. 

Serving the literature on algorithmic trading using direct 

RL. Bertsimas and Lo [23] examined an application of the 

RL algorithm for trading a large block of equity over a fixed 

time horizon to minimize the expected cost of executing 

trades. They identify optimal trading rules (i.e., executed 

actions) as a strategy that evolves over a few days. Their 

experimental results demonstrated that the RL strategy saved 

between 25% and 40% of execution costs compared to the 

naïve strategy. However, this study's main drawback was the 

assumption that the quantity of each buy order is 

significantly high to increase the price of the traded security. 

The work by [22] designed a next-generation multi-agent 

systems (MAS) stock market simulator.  Each agent learns 

price forecasting and stock trading autonomously via RL.  

The results demonstrate that agent learning allows accurate 

simulation of the market microstructure. 

Several studies in the literature utilized a value-based RL 

approach with a Q-Learning matrix for algorithmic trading.  

Gao and Chan [24] and Pendharkar and Cusatis [15] 

employed a value-based RL approach with a Q-Learning 

matrix to develop algorithmic trading methods. Here, the 

core idea is to approximately calculate each state's value 

function (or state-action pair) and subsequently select the 

greedy trading action based on the value function. [24] used 

two performance functions, i.e., absolute profit and relative 

risk-adjusted profit, to train the algorithmic trading model. 

The authors in [15] proposed several RL agents for trading 

portfolio assets. They designed on-policy (SARSA (λ)) and 

off-policy (Q-learning) discrete state and discrete action 

agents. Here, the goal is to maximize one of the two values 

the portfolio returns or differential Sharpe ratios. They 

examined the impact of RL and trading frequencies. The 

results demonstrate that a continuous adaptive action RL 

trading strategy consistently performs the best in forecasting 

portfolio allocations in the following period. The learning 

frequency of RL algorithmic trading is essential in 

determining trading performance. The work by [9] and [20] 

demonstrated the effectiveness of the policy-based model 

over the value-based function model relative to performance 

and applicability. 

With regard to the adoption of Q-learning, Neuneier [26] 

applied a Q-learning algorithm to optimize a trading 

portfolio. Neuneier constructed an Artificial Neural Network 

(ANN) to forecast price movement and then used the Q-

learning algorithm to find an optimal policy. Another study 

[27] proposed a portfolio optimization technique using the 

RL Q-learning approach. This method improved the Q-

learning algorithm for optimal asset allocation introduced 

[26]. This model simplifies the previous model [26] by using 

one value function for several assets, facilitating model-free 

policy iteration. Another study [9] used direct RL alteration 

and compared their algorithm to Q-learning and temporal 

difference algorithms using real data. Their results 

demonstrated that the deferential Sharpe ratio RRL system 

outperformed the Q-learning algorithm. Carapuço et al. [28] 

developed an RL trading system to trade in the foreign 

exchange market. They used ANNs with three hidden layers, 

where the neurons were trained as RL agents under the Q-

learning algorithm using a simulated market environment 

framework. The framework was tested using EUR/USD 

market data from 2010 to 2017 with more than 10 tests with 

different initial conditions, and an average total profit of 

114.0% ± 19.6% was achieved. 

Other literature studies have used the Recurrent RL 

(RRL) approach.  Moody et al. [10] proposed an application 

of the RRL approach. RRL is an unconstrained RL algorithm 

that solves the problem of dimensionality. Several studies 

have extended the RRL model. For example, Zhang and 

Maringer [25] used technical analysis indicators, 

fundamental analysis, and econometric study with RRL to 

improve trading decisions. The analytical indicators were 

filtered using the genetic algorithm evolutionary process. [8] 

combined RRL and a particle swarm with a Calmar ratio-

based objective function for portfolio trading. They 

evaluated their method using S&P100 index stocks, and the 

results demonstrated that the proposed portfolio trading 

system outperformed benchmark trading strategies, 

particularly under high transaction cost conditions. In 
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addition, the results demonstrated that the Calmar ratio was 

the best fitness function for particle swarm algorithms. 

In recent years, RL research has clustered around deep 

learning RL.   [17] used a financial-model-free RL 

framework to deliver a deep RL solution to the portfolio 

management problem.  The central part of the deep RL 

framework is the Ensemble of Identical Independent 

Evaluators (EIIE) topology. An EIIE is a neural network 

designed to examine the historical data of an asset and 

evaluate its potential growth.  In their work, the portfolio 

weights identify the action for the RL agent.  The reward of 

the RL agent is the explicit average value of the recurring 

logarithmic returns.  In a similar context, [18] offers a 

portfolio management approach using deep RL on markets 

with a dynamic number of assets.  The neural network 

architecture is employed and trained using deep RL.  Their 

design was tested on a historical dataset of one of the largest 

world cryptocurrency markets.  The results outperform state-

of-the-art methods in the literature, accomplishing average 

daily returns of over 24%. 

The main advantage of the algorithmic trading strategies 

proposed in this paper is their continuous adaptability to new 

market conditions using a learning process resulting from 

dynamic DC events. In addition, existing RL algorithmic 

trading modules does not consider an event-based system, 

where an event is the basic unit for studying price time-

series. Thus, the representation of environmental states (i.e., 

market states) in RL algorithmic trading must be improved 

to realize adaptability to market behaviours continuous 

changes. 

III. Dynamic DC Event Approach  

DC is an event approach for price time series analysis in 

financial markets [29]. The DC summarizes price 

movements using intrinsic time, which is an event-based 

timing system (irregularly spaced in time), rather than 

physical time, which is a point-based timing system that 

depends on fixed time intervals (e.g., hourly). DC identifies 

significant price movements (i.e., DC events) if the price 

change between two points satisfies a fixed given threshold 

value. DC has two types of events, i.e., upturn events, which 

are identified once the price change is greater than or equal 

to the fixed threshold value, and downturn events, which are 

identified once the price change is less than or equal to the 

fixed threshold value. A DC event detection algorithm with 

a comprehensive description of DC can be found in the 

literature [29]. The potential of DC event approaches has 

been proven in many studies for different financial markets, 

and they have been used for event detection [7, 13], 

forecasting models [30, 31], designing trading strategies [30, 

32-40], profiling price time-series [31], and time-series 

analysis [41, 42]. 

A dynamic threshold definition method that replaces the 

DC fixed given threshold value has been proposed in [13]. 

The dynamic threshold is applicable to financial markets that 

operate over specific opening and closing times, e.g., stock 

markets. The dynamic threshold is a flexible value that can 

identify significant price movements (i.e., DC events) of 

different magnitudes in continuously changing and dynamic 

environments. Setting the dynamic threshold value depends 

on the previous day’s price behaviors (i.e., the short-term 

price history) and additional data sources (e.g., news outlets) 

[13]. In general, the dynamic threshold is set depending on 

the previous day (between opening and closing price) price 

changes, and the overnight (between previous day closing 

price and current day opening price) price changes. In 

addition to the rate of change in price between the current 

day opening price and the reached trend price. The dynamic 

threshold definition equations can be found in [13].  

In the work by [7], we were able to set the dynamic 

threshold value-based on only financial market data (without 

any additional data sources) using RL. In this study, to 

identify an actionable trading opportunity, we use the DC 

event approach and the dynamic threshold definition method 

[7]. 

 

IV. DCRL Algorithmic Trading 

The proposed DCRL algorithmic trading comprises two 

main components. First, the DC event approach with the 

dynamic DC threshold is used to identify and represent the 

market's environmental states. Second, the RL decision-

making algorithm is used to make decisions and take 

appropriate trading actions. In this section, the DCRL 

algorithmic trading strategy is described in detail. In 

addition, a rigorous formalization of this algorithmic trading 

approach and its associated characteristics are presented. 

Algorithm 1 depicts the core mechanism of the DCRL 

algorithmic trading. 

 

 
Algorithm 1.  The core mechanism of the DCRL algorithmic Trading. 

A. RL 

RL comprises an agent, an environment represented by a 

set of states st 𝜖 S, and a set of actions at 𝜖 A. By performing 

an action at time t, the agent receives reward rt and 
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transforms from state st to state st+1. Here, the goal of the 

agent is to maximize its current reward. The RL algorithm 

creates models using the Markov decision process (MDP); 

thus, RL can be represented by a state, action, and reward 

sequence (st, at, rt, st+1, at+1, rt+2,…). The RL algorithm 

designs policies (π) that associate an environment state s with 

action a to maximize the immediate reward r received over a 

specified time. In a trading algorithm, a trading rule can be 

considered a programmed policy π (s, a) that yields a trading 

action according to the available state data st at time t. As 

shown in Figure 1, the RL algorithm is based on the 

sequential interactions between the agent and its 

environment. 

The RL algorithm includes two value functions, i.e., the 

function of states and the function of state-action pairs [5]. 

These functions estimate the effectiveness of an agent's 

action in a given state. The notion of "effectiveness" in RL is 

defined according to future rewards, i.e., the expected return 

in a financial trading context. Thus, these value functions are 

determined based on specified policies. The value of state s 

following policy π (denoted vπ(s) is the expected return when 

starting in s and following π through the specified period. For 

the MDP, we can define the state-value function vπ(s) for 

policy π as follows in Eq.  1: 

 

𝑣𝜋(𝑠) =  𝐸𝜋[𝐺𝑡|𝑆𝑡 = 𝑠]  (1) 

 

where Eπ[.] is the expected value following policy π, and t is 

any time. Here, Gt is the cumulative discount rate for state s 

at time t, which is defined as follows in Eq. 2: 

 

𝐺𝑡(𝑠) =  [∑ 𝛾𝑘𝑅𝑡+𝑘+1| 𝑆𝑡 = 𝑠∞
𝑘=0 ]   (2) 

 

where gamma (γ) is a discount factor that takes a value 

between 0 and 1. Discount factor (γ) defines the importance 

of future rewards and weighs recent rewards more heavily. 

In algorithmic trading, a higher discount factor value implies 

that the agent will become more long-term investment 

oriented. For example, in the ultimate case of γ = 1, the agent 

considers each reward equally through the market run. In 

contrast, for γ=0, the agent is biased because it only reflects 

the current reward and discards future rewards. 

Similarly, we define the function of a state-action pair 

Q(s, a). The value of taking action a in state s following 

policy π (denoted Qπ(s, a)) is defined as the expected return 

starting from s, taking action a, and subsequently following 

policy π. The action value function for policy π is expressed 

as follows: 

 

𝑄𝜋(𝑠, 𝑎) =  𝐸𝜋[𝐺𝑡|𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎]  (3) 

 

where Gt is the cumulative discount rate for all actions in 

state s at time t, which is defined as follows. 

 

𝐺𝑡(𝑠) =  [∑ 𝛾𝑘𝑅𝑡+𝑘+1| 𝑆𝑡 = 𝑠∞
𝑘=0 , 𝐴𝑡 = 𝑎]   (4) 

 

In RL, there are two main algorithms designed to find 

optimal action at+1 to take given current state st+1. The first 

algorithm is the off-policy algorithm, where the Q(s,a) 

function does not depend on the agent’s learning policy: thus, 

it learns from taking different actions (e.g., random actions). 

The second algorithm is an on-policy algorithm, where the 

Q(s,a) function is dependent on the agent’s learning policy; 

thus, the agent learns from actions it has taken using the 

current policy π(a|s). 

B. DCRL States 

The principle of RL is that an agent continuously interacts 

with the environment and learns the optimal trading rule to 

improve its trading strategy. For stock market trading, the 

environment comprises the current stock price data and 

historical price series, including a variety of fundamental 

data and technical analysis indicators. Therefore, selecting 

the set of data inputs is a prerequisite for trading agents to 

learn the stock market environment and discover trading 

rules. The underlying challenge of stock market trading is 

capturing market states at a specific time. For price time-

series, commonly employed data in financial forecasting 

literature represent the price sequence at regular time 

intervals (e.g., daily data). In this study, we used the daily 

data of stock market indexes, i.e., the opening, closing, high, 

and low prices for each day. 

The market state variable of each trading day is 

represented by a pair of the DC price trend direction (an 

upward or downward trend) and the type of detected event 

(overnight or previous day event). This gives six states for 

our research problem. A lookup table (Table I) is established 

for state representation of the environment, where each state 

is signified with a single action associated with an expected 

reward.  

The agent uses an RL algorithm to change from state st 

to st+1, which is based on learning the dynamics of the 

environment. Thus, if state st were Overnight or PreviousDay 

with an Upward trend, the action would be Sell because we 

think that the price increase that occurred due to an overnight 

or previous day price change was high. The same applies if 

st was Overnight or PreviousDay with a Downward trend, 

i.e., the action would be Buy because we think that prices 

have fallen sharply due to a sudden overnight or previous day 

change in price. The Overnight or Previous Day states are 

satisfied if the five-day moving average is greater than the 

overnight or previous day’s price change. However, if the 

detected state is Neutral, which indicates no significant event 
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was identified in the price time-series between time t-1 and 

t, we use the optimal state-action value function to select the 

optimal policy for t+1. 

C. DCRL Actions 

At each time step t, the agent observes the environment's 

state st and executes a trading action following policy π (s, 

a). Here, the agent actions are buy, sell, or hold, i.e., A= 

{Buy, Sell, Hold}. An agent receives a reward after it takes 

an action. An action at may have an impact on the agent's 

portfolio value, specifically, the cash and share values giving 

that a trading action executes at the current market closure 

price pt.  

Two experimental design constraints are assumed 

regarding the quantity of traded shares Qt at time t. First, for 

the Buy action, the amount of shares to be bought by the 

trading agent is based on all available cash that agent has at 

time t. For the Sell action, the agent sells all of available 

shares at time t. In other words, the agent spends 100% of its 

cash when buying and 100% of its shares when selling. 

Second, there is no transaction cost in this simulation. By 

making these simplified assumptions, the complexity of the 

trading strategy is reduced to a level that can be explored and 

examined within the scope of this study. Simplicity is 

essential to understand an agents' trading behaviors and the 

trading rules generated by the agent because assigning 

variable quantities may result in a more complicated 

analysis. Note that relaxation of these assumptions does not 

affect generality or the accuracy of the obtained results. 

Nevertheless, we are aware of share quantity's critical role as 

a choice variable for the generated trading rules (especially 

with risk aversion). 

D. Reward Function 

An agent designed based on the RL algorithm learns the 

optimal policy to trade to achieve maximum profit; therefore, 

the reward function design is critical when designing trading 

strategies based on the RL algorithm. In stock market trading 

literature, several studies have used the Rate of Return (RoR) 

as a reward function [15]. 

In this study, we used two immediate reward criteria for 

the DCRL agent. The first criterion is Buy action, where the 

Relative Return (RR) is used (Eq. 5). Here, pSell and pBuy are 

the selling and buying prices, respectively. The RR defined 

as the difference between the absolute price return at time t 

and the return reached by the target time. The second 

immediate reward criterion is for the Sell action, where the 

RoR is used (Eq. 6). The RoR is the net gain (or loss) of a 

single trade over a particular period based on the trade's 

initial cost. 

 

𝑅𝑅 =   (𝑝𝑡 − 𝑝𝑡−1)/𝑝𝑡−1  (5) 

 

 

𝑅𝑜𝑅 =   (𝑝𝑆𝑒𝑙𝑙 − 𝑝𝐵𝑢𝑦)/𝑝𝐵𝑢𝑦     (6) 

 

Here, pt and pt−1 are the current price at time t and time t−1, 

respectively. To assess the action taken (i.e., the executed 

trading action), we employ two reward functions so that we 

can consider the different impact of both the Sell and Buy 

actions. The authors of [28] used two reward functions, i.e., 

the trade profit was used for closing a position (sell action), 

and the variation of unrealized profit was employed for 

opening (buy action) or holding a position. 

E. Q-Learning Algorithm 

Q-learning is an off-policy RL algorithm that seeks to 

maximize the total reward. Quality in the RL approach 

signifies how effective an executed action at at time t was 

relative to achieving a particular future reward. In the Q-

learning algorithm, we create a Q-table or matrix that follows 

policy π(s, a) and randomly initialize the values in the matrix. 

Then, for each iteration of the market run, the Q-values are 

updated and stored in the matrix. Accordingly, the Q-matrix 

turn into a reference matrix for the agent to determine the 

optimal action based on the maximum Q-value. The Q-

function uses the Bellman equation, which takes two inputs, 

i.e., state st and an action under policy π(s, a). Given the 

current state st of the environment at time t and the taken 

action at+1, we can formulate the action value function 

following policy π as follows: 

 

𝑄(𝑠, 𝑎) = 𝑄(𝑎, 𝑠) +  𝛼[𝑅(𝑠, 𝑎) + 𝛾 max 𝑄 (𝑠′, 𝑎′) −

𝑄(𝑠, 𝑎)]  (7) 

 

where Q(s,a) is the new Q-value for state st and action at, α 

is the learning rate satisfying 0 ≤ α ≤ 1, R(s, a) is the reward 

for taking action at at state st, γ is the discount factor (also 

referred to as the discount rate) satisfying 0 ≤ γ≤ 1, and max 

Q' (s', a') is the maximum expected reward for new state s' 

and all possible actions at state s'. Low alpha (α) values 

imply a slower learning rate, while higher alpha values 

indicate more rapidly learning of Q -value updates. 

 For simplicity, we refer to DCRL with Q-learning 

algorithm as QDCRL. A QDCRL agent learns an optimal 

state-action value function Q* for the Neutral state, where an 

update process considers a quintuple Q(st, at, rt, st+1, at+1) of 

the environment. For the six states and three actions, we 

create a matrix Q ∈ R6x3 initialized with random values. 

Therefore, Q(s,a) represents the Q-value for state s and 

action a. The Q(s,a) initial random values are subsequently 

updated in the simulation run by identifying new states and 

actions using the dataset, where reward r(s,a) is assigned for 
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each selected action. The structure of QDCRL algorithmic 

trading is shown in Figure 2. 

V. Experiment and Results 

In this section, we discuss a series of experiments 

conducted with the proposed DCRL (with and without Q-

learning) algorithmic trading strategies, including the 

datasets used, performance evaluation metrics, benchmarks, 

experimental settings, and trading performance results. 

We evaluated three aspects of the proposed DCRL and 

QDCRL algorithmic trading strategies, i.e., trading 

performance profitability and effectiveness, as well as 

adaptability and efficiency of the dynamic threshold DC 

event approach for the RL environment state representation. 

Finally, we confirmed the efficacy of the Q-learning 

algorithm in RL for algorithmic trading. 

A. Datasets 

We performed several experiments to confirm the 

effectiveness and robustness of DCRL algorithmic trading 

using three different stock indices, i.e., S&P500, NASDAQ, 

and Dow Jones. These stocks were downloaded from Yahoo! 

Finance for the period July 2015 to July 2020 (five years, i.e., 

1260 days of daily price data). 

The movement of the three stock indices and their 

detailed price curve evolution is shown in Figure 2, and 

Table II shows a descriptive statistics analysis (mean (µ), 

standard deviations (σ), skewness, kurtosis, minimum, and 

maximum price values) of the investigated stock indices. 

B. Experimental Settings 

Here, we define the set of parameters used in our 

experiments. We examined different parameters settings for 

the QDCRL trading strategy systematically through several 

rounds of tuning. The parameter settings are summarized in 

Table III. 

We executed several independent simulation runs using 

the same configuration values with different random seeds to 

confirm that the obtained results are consistent. This allowed 

us to verify the effectiveness and accuracy of the results. 

Therefore, the experimental results are averaged over 20 

independent simulation runs. 

 For the learning rate (α) and discount factor (γ) 

parameters in QDCRL, we conducted a series of systematic 

experiments to explain the effect of these two parameters on 

the Q-learning algorithm and the profitability of QDCRL 

algorithmic trading. Here, we examined values between 

0.85–0.99 for the discount factor and 0.0001, 0.001, 0.05, 

and 0.1 for the learning rate (these values are in line with 

previous studies [15, 28, 43]). The Return On Investment 

(ROI) and Sharpe Ratio (SR) results of the different γ and α 

values are given in Table IV. The objective is to find the 

optimal parameter set to be used for the QDCRL. Higher 

ROI and SR values indicate that a set of parameters achieved 

the best performance; thus, we selected these parameter sets 

in our experiments. We found that different discount factor 

(γ) values do not affect performance significantly. In 

contrast, small learning rate (α) values demonstrated slightly 

better performance than higher values, which implies the 

importance of a slower learning rate for the Q-value updates 

in the Q-learning algorithm. 

C. Evaluation metrics 

We used four metrics to evaluate the trading strategies' 

effectiveness and robustness: profit curve, ROI, SR, and the 

number of trading signals. In the literature, two commonly 

used performance criteria are portfolio returns and 

differential SR [15]. The four-evaluation metrics are defined 

as follows. 

i. The profit curve is a qualitative metric to evaluate 

the profitability of trading strategies. The goal is to 

demonstrate the change in the agent's portfolio 

profit over time, which can signify the cumulative 

gain (profit or loss) of the trading strategies at each 

time point. 

ii. The ROI is the ratio between the net trading gains 

(profit or loss) and trading cost. It is a quantitative 

evaluation indicator that measures portfolio 

profitability. Maximizing the ROI is simple, and it 

reflects a risk-neutral utility function [15]. 

iii. SR is a quantitative evaluation indicator to measure 

the risk-adjusted return of the agent's portfolio. The 

SR considers both the benefits and risks of an 

investment. Thus, it removes undesirable effects of 

risk factors on trading performance evaluation. As 

a result, the SR shows how to fit returns to the risk 

taken. Here, a higher SR value indicates a higher 

risk-adjusted RoR. Several studies into RL 

algorithmic trading have used SRs as a performance 

measure [8]. However, the SR penalizes price 

returns that are greater than a specific amount, 

weighs recent price returns higher than the past 

returns, and does not differentiate between the 

upside and downside possible growth of a portfolio 

[14]. The SR is expressed as follows: 

             𝑆𝑅 =
𝐸(𝑅)−𝑅𝑓

𝜎(𝑅)
 √𝑛   (8) 

        where E(R) is the expected accumulated return of 

investments over trading period T, σ(R) is the standard 

deviation of the return, Rf is the risk-free factor, and n is the 

number of observations. 

iv. The number of trading signals refers to the number 

of times a Buy or Sell trading action was executed 
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during the trading period, which is measured to 

avoid exceedingly frequent trading resulting in 

extremely high risk. 

D. Benchmark Trading Strategy 

To further evaluate the performance the proposed DCRL and 

QDCRL trading strategies, we compare them to the ZI agent 

with a budget constraint for stock trading.  The ZI is a 

benchmark widely used to evaluate an intelligent algorithmic 

trading model.  It is a naïve approach that allows to assess 

the intelligence and learning effectiveness of the DCRL and 

QDCRL.   In addition, we benchmark with the Direct RL 

designed by [9], which is a classical RL model for 

algorithmic trading.  The reason behind choosing the Direct 

RL model as a baseline benchmark is to provide a rational 

comparison of the minimum level of supervised learning.  

Besides, this will allow us to evaluate the dynamic DC event 

approach's effectiveness in representing the environment's 

state. Furthermore, we compare the performance of DCRL 

and QDCRL with a classic DC event approach -fixed 

threshold- introduced by [12]. The DC approach provides a 

pattern detection for price time-series with no utilization of 

any machine learning techniques. We employed the DC 

approach using a variety of fixed thresholds ranging from 

[0.01,0.001]. The average performance of the different 

simulation runs was reported. 

A ZI with a constraint trading agent was established [44] 

to trade in a continuous double auction market. Thus, the ZI 

agent has no intelligence and does not observe states in the 

market (i.e., it does not employ a learning process from 

historical data). As a result, the ZI agent is not informed of 

the current market conditions and does not have any beliefs 

about future price movements. The ZI agent places an order 

based on a random probability defined from a uniform 

distribution subject to budget constraints. Therefore, the ZI 

agent decides to either submit a buy or a sell order (or hold) 

with equal probability. Here, we examined the effect of the 

ZI trading strategy's randomness compared to the DCRL and 

QDCRL trading strategies. 

E. Trading Performance Results 

Our core focus is the profitability performance and 

effectiveness of the proposed DCRL and QDCRL 

algorithmic trading strategies; therefore, standard 

performance evaluations were conducted on three stock 

indices. Table V summarizes the results of the quantitative 

assessment using the ROI and SR. We identify three main 

findings from the results. 

First, the QDCRL and DCRL trading strategies generate 

substantial profits for the three stock indices compared to the 

Direct RL, ZI and classic DC -fixed threshold- trading 

strategies. This observation confirms that the dynamic DC 

threshold effectively contributes to the algorithmic trading 

design.   This is because the dynamic DC event approach 

summarizes patterns in the price time series.   These patterns 

represent environmental states for the RL algorithm.  Instead 

of employing discrete price values during training of the RL 

algorithm (e.g., Direct RL), a continuous environmental state 

signal is fed to the DCRL and QDCRL. The DC 

environmental states can provide more detailed information 

regarding the dynamic of price time series.  This is also clear 

in the results of the classic DC trading strategy (as it comes 

in third place of the trading strategies performance), which 

also confirms the potential of employing an event based 

approach for summarizing price time series. 

  Second, generally, the QDCRL trading strategy 

outperformed the DCRL trading strategy without Q-learning.  

The QDCRL trading strategy generally outperformed DCRL 

on the S&P500 and Dow Jones stock indices in relation to 

ROI and SR, which indicates the Q-learning algorithm can 

potentially improve the trading performance resulting on 

good profits contained by an acceptable level of risk (for 

NASDAQ, the DCRL trading strategy was only slightly 

higher than QDCRL ROI).  

Third, the QDCRL trading strategy SR values were 

significantly higher than those for the DCRL, ZI,  Direct RL 

and the classic DC (except for NASDAQ the classic DC SR 

was slightly higher). Thereby confirming the validity of the 

trading actions taken by QDCRL, which avoids risk while 

securing profit especially when the price curve increases 

sharply. In addition, the high SR values for QDCRL implies 

that the risk of the QDCRL is more controllable, and that the 

trading performance results are more effective. 

The number of trading signals generated by the QDCRL, 

DCRL, ZI, Direct RL and the classic DC trading agents for 

the different stock indices is plotted in Figure 3. For the three 

trading strategies designed based on the DC event approach 

(DCRL, QDCRL, and classic DC algorithmic trading), the 

number of trading signals indicates its sensitivity to price 

fluctuations in the market as a result of the learning process 

and adaptability to market changes. Figure 3 shows that the 

total number of trading signals generated by the QDCRL, 

DCRL and classic DC trading agents for the three stock 

indices was significantly less than that for the ZI and Direct 

RL agents. The average number of trading signals generated 

by the ZI trading agent for all the three stock indices 

represents approximately 42% of the total available trading 

time.  As for the Direct RL trading agent, the average number 

of trading signals represents approximately 50% of the total 

available trading time. The higher the number of trading 

signals taking place the more likely its leading to negative 

investment results.   
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Figure 4 shows the daily portfolio return for the QDCRL, 

DCRL, and ZI trading agents during the target period (1260 

days) for the S&P500, NASDAQ, and Dow Jones indices. 

We have excluded the portfolio return for the Direct RL 

given the massive negative returns during the vast of trading 

periods. For the S&P500, the DCRL and ZI initially 

outperformed the QDCRL. After that, we can clearly see 

how the learning is well reflected in the QDCRL 

performance, and hence, how the QDCRL has significantly 

outperformed both DCRL and ZI. The same applies to the 

Dow Jones (in the third chart), where, initially, ZI and DCRL 

outperformed QDCRL. However, as learning goes on, the 

QDCRL significantly outperformed both DCRL and ZI. The 

same also applies to NASDAQ, where learning has proven 

to be effective when used with RL and DC. Finally, learning 

had remarkably effect on QDCRL performance, and 

QDCRL generally outperformed both DCRL and ZI. 

VI. CONCLUSION  

In this paper, we have proposed two algorithmic trading 

strategies based on the DCRL model. Our main focus was to 

improve the environment state representations for the RL 

algorithm. The dynamic DC threshold event approach was 

able to precisely represent the environment states. In 

addition, it was able efficiently capture stable market states, 

which led to achieving profitable trading returns under 

acceptable risk levels in several stock indices. The 

effectiveness and robustness of the DCRL trading strategies 

were verified on real stock market data, and the experimental 

results demonstrate that the proposed DCRL algorithmic 

trading outperformed the ZI, Direct RL and classic DC 

trading strategies with higher total profits and SR, as well as 

more consistent profit curves. 

Our primary contributions are summarized as follows. 

We defined the environment states in the RL algorithm using 

the dynamic DC threshold event approach, we developed a 

simple lookup table for RL algorithmic stock trading, and we 

employed the Q-learning algorithm to select the optimal 

policy under the Natural market state. 

Given the dynamic nature of the price time-series, trained 

and adaptive algorithmic trading must be retrained when the 

environment states changes based on specified 

preconditions. The learning mechanism based on the 

dynamic DC threshold event approach is effective relative to 

improving the market's states' representation. The DCRL 

agents' trading performance (with and without Q-learning) 

were generally significant and turned a profit within an 

appropriate level of risk. These results indicate that, to 

generate proper trading rules and high-performance returns, 

learning the environment states is required (i.e., adaptive and 

non-static representations of the price time-series is needed). 

We used two reward functions for the DCRL agents, 

where each reward is associated with a specific action (either 

a buy or sell action). The relative return reward function was 

sued for the buy action, and the rate of return reward function 

was used for sell action. We found that using these reward 

functions (rather than a single reward function) improved the 

Q-learning matrix's performance. 

There are two reasons why the QDCRL trading 

algorithm outperformed DCRL. The first is the learning 

process for the optimal trading policy under specific market 

conditions. As stated previously, the performance of 

QDCRL agents depends on the selection of the optimal 

policy. The learning frequency of algorithmic trading plays 

a critical role in influencing the agent's trading analytical 

performance; however, we did not find that large learning 

rate (α) values are always effective. We consider the 

difference between loss and reward in the Neutral state was 

caused by the fact that Q-learning may effectively model the 

long-term discounted returns of a particular state. In 

addition, we restricted the agent to select from a finite action 

set based on the optimal policy, which may permit the agent 

to submit more trading signals. The results of this study 

suggest that adaptive QDCRL agents with Q-learning 

provide the best performance based on investment 

profitability and are more promising in practical 

applications. 

This paper can be further extended in several research 

directions. For example, in the future, we can examine 

DCRL (with and without Q-learning) on high-frequency 

trading to explore and confirm the effectiveness of DCRL 

algorithmic trading, thus further improving and optimising 

DCRL to fit that trading context. In addition, we can evaluate 

applying DCRL algorithmic trading to different emerging 

markets, e.g., the Forex market and cryptocurrencies. 

Finally, DCRL algorithmic trading can only trade one asset 

at a time; thus, we can also extend our investigations to 

managing portfolios involving multiple assets. 
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FIGURE CAPTIONS 
     Fig. 1.  Interactive process of the RL Algorithm. 
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Fig. 2.  Structure of QDCRL algorithmic trading. 
Fig. 3.  Price curve movement of S&P500, NASDAQ, and Dow Jones 

stock indices during target period. 

Fig. 4.  Comparison of number of trading signals of QDCRL, DCRL, ZI, 

Direct RL, and classic DC for S&P500, NASDAQ, and Dow Jones. 

Fig. 5. Profit curves of QDCRL, DCRL, and ZI trading strategies for three 

stock indices. 

TABLES 

TABLE I 

LOOKUP TABLE FOR DCRL ALGORITHMIC TRADING 

s a s' r(s, a, s') 

(Overnight, 

Upward 

trend) 

Sell Overnightt+1, Previous t+1, 

Neutral t+1 

Rate of 

return 

(Overnight, 

Downward 

trend) 

Buy Overnight t+1, Previous t+1, 

Neutral t+1 

Relative 

return 

(Previous 

Day, Upward 

trend) 

Sell Overnight t+1, Previous t+1, 

Neutral t+1 

Rate of 

return 

(Previous 

Day, 

Downward 

trend) 

Buy Overnight t+1, Previous t+1, 

Neutral t+1 

Relative 

return 

(Neutral, 

Upward 

trend) 

Hold Overnight t+1, Previous t+1, 

Neutral t+1 

0 

(Neutral, 

Downward 

trend) 

Hold Overnight t+1, Previous t+1, 

Neutral t+1 

0 

 
 

 

TABLE II 

DESCRIPTIVE STATISTICS OF STOCK INDICES 

Index µ σ Skewn

ess 

Kurto

sis 

Min. Max. 

S&P50

0 

2553.0

9 

379.8

8 

−0.005

5 

−1.06 1829.0

8 

3386.1

5 

NASD

AQ 

6775.4

5 

1478.

26 

0.235 −0.766 4266.8

4 

10767.

09 

Dow 

Jones 

22608.

29 

3726.

28 

−0.227 −1.28 15660.

18 

29551.

42 

 
 

 

 

TABLE III 

QDCRL PARAMETERS USED AT TIME T 

Parameter Value  Description  

Cash 100,000 Initial account size (cash) 

Shares 0 The number of units invested per trade 

(shares) 

γ 0.99 Discount factor. 

α 0.0001 Q-learning rate. 

 
 

 

TABLE IV 

ROI AND SHARPE RATIO (SR) FOR DIFFERENT PARAMETERS SETTINGS 

(DISCOUNT FACTOR (Γ) AND LEARNING RATE (Α)). RESULTS FOR THE 

S&P500 STOCK INDEX ARE SHOWN. 

γ α ROI SR 

0.85 0.0001 56.83 2.16 

0.85 0.001 55.26 1.93 

0.85 0. 05 47.55 1.62 

0.85 0.10 53.89 2.16 

0.90 0.0001 55.36 1.93 

0.90 0.001 53.89 1.7 

0.90 0. 05 44 1.59 

0.90 0.10 54.9 2.12 

0.95 0.0001 58.69 2.4 

0.95 0.001 56.83 2.17 

0.95 0. 05 38.25 2.13 

0.95 0.10 48.81 1.86 

0.99 0.0001 60.39 2.63 

0.99 0.001 56.83 2.17 

0.99 0. 05 50.36 1.6 

0.99 0.10 54.29 1.79 

 

TABLE V. 

 ROI AND SR OF QDCRL, DCRL, CLASSIC DC, ZI AND DIRECT RL 

TRADING STRATEGIES ON DIFFERENT STOCK INDICES. 

 

 S&P500 NASDAQ Dow Jones 

 ROI 

(%) 
SR ROI 

(%) 
SR ROI 

(%) 
SR 

ZI 15.32 −1.7 36.06 −1.28 14.89 −1.46 

Classic 

DC 

36.33 0.11 40.68 2.36 24.33 0.35 

Direct 

RL 

-

22.29 

- -

32.01 

- -8.77 - 

DCRL 47.23 0.77 57.6 1.47 9.16 −0.023 

QDCRL 60.36 2.63 53.82 1.96 37.34 2.48 
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