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ABSTRACT With the tremendous growth of smart mobile devices, the Content-Based Image Retrieval

(CBIR) becomes popular and has great market potentials. Secure image retrieval has attracted considerable

interests recently due to users’ security concerns. However, it still suffers from the challenges of relieving

mobile devices of excessive computation burdens, such as data encryption, feature extraction, and image

similarity scoring. In this paper, we propose and implement an IND-CPA secure CBIR framework that

performs image retrieval on the cloudwithout the user’s constant interaction. A pre-trained deep CNNmodel,

i.e., VGG-16, is used to extract the deep features of an image. The information about the neural network

is strictly concealed by utilizing the lattice-based homomorphic scheme. We implement a real number

computation mechanism and a divide-and-conquer CNN evaluation protocol to enable our framework to

securely and efficiently evaluate the deep CNN with a large number of inputs. We further propose a secure

image similarity scoring protocol, which enables the cloud servers to compare two images without knowing

any information about their deep features. The comprehensive experimental results show that our framework

is efficient and accurate.

INDEX TERMS Content-based image retrieval, convolutional neural network (CNN), lattice-based homo-

morphic scheme.

I. INTRODUCTION

It might be a cost-effective way to provide efficient and

intelligent Content-Based Image Retrieval (CBIR) services

that smart mobile users outsource their images onto cloud

servers. This is due to its tremendous advantages, such as

on-demand self-service, ubiquitous network access, loca-

tion independent resource pooling, rapid resource elasticity,

usage-based pricing, and transference of risks. Despite the

fact that the cloud-based CBIR has tremendous business and

technical advantages to handle large-scale image reposito-

ries, new challenges regarding image data security have also

arisen. These commercially operated cloud services are still

struggling to handle the issue of efficient image retrieval

with user’s security concerns. For example, automatic face

and object recognition functionality in Facebook photo man-

agement system has brought users excellent experience in

the year 2011. Unfortunately, the community worried about

The associate editor coordinating the review of this manuscript and
approving it for publication was Gianluigi Ciocca.

their personal privacy when they knew that anyone could

easily stalk and track anyone else by utilizing Facebook and

various image search engines such as Google and Bing. This

functionality had to be removed from their system after the

prolonged controversy of one year. Awkwardly, Facebook

recovered this functionality once again due to the require-

ment of intelligent image searching despite significant dis-

approval of community. Similar example came from Google

glasses.

The primary reason for such dilemma is that the com-

munity is afraid of being stalked and illegally searched by

malicious hackers from anywhere, especially if the image

retrieval is performed by the system automatically. How-

ever, the system can generate image searching results more

intelligently with the help of the modern machine-learning-

based features, such as the automatic face recognition service

can retrieve a list of images being captured with a specific

friend. Bymodifying only the access controlmechanism from

public to private does not guarantee that the uploaded image

is totally safe on a cloud platform. Furthermore, disabling

VOLUME 7, 2019 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ 119209

https://orcid.org/0000-0002-0422-5691


F. Liu et al.: Intelligent and Secure CBIR for Mobile Users

the automatic object recognition or encrypting the sensitive

contents of images are not proper solutions, because both of

them decrease the usability and efficiency of image searching.

Although users prefer systems to offer both functionalities,

i.e. intelligent and secure image retrieval, the challenging

task is to outsource the image retrieval onto a cloud without

letting the cloud know anything about the image contents

during the processing phase. In recent years, Convolutional

Neural Networks (CNN), as a class of complex and power-

ful machine learning models, have demonstrated better-than-

human accuracy across a variety of image retrieval tasks such

as Approximate Nearest Neighbor (ANN) search [1]. A pre-

trained CNN can be used as a feature extractor for intelli-

gent and secure image retrieval, which requires both secure

addition and multiplication operations. Fully homomorphic

encryption techniques such as Lattice-based schemes [2] can

potentially handle such issue, but are not easily adoptable due

to their large computational complexity. Another approach is

Secure Multi-party Computation (SMC) that supports secure

image similarity calculation. However, it requires both parties

i.e., the cloud and the client to interact constantly, which is not

always possible for the mobile user.

In this paper, we study the problem of intelligent and

secure CBIR for mobile users. The main contributions are

summarized as follows:
• We propose and implement a CBIR framework that

shifts excessive computations onto the cloud servers,

such as IND-CPA secure image re-encryption, deep fea-

ture extraction, and image similarity scoring. In this

way, a mobile user only needs to encrypt his/her image

with a lightweight encryption algorithm and upload the

encryption onto the cloud. The latter performs ANN

image retrieval without the user’s anymore interaction.

Our framework supports dynamic updating of image

databases and indexes.

• We use a pre-trained deep CNN model, i.e., VGG-16,

to extract the deep features of an image. The information

about the neural network is strictly concealed by utiliz-

ing lattice-based homomorphic scheme. We implement

a real number computation mechanism to achieve better

accuracy than previous works such as Gazelle frame-

work without loss of its efficiency.

• We propose and implement a divide-and-conquer CNN

evaluation protocol to deal with the problem of noise

growth in the homomorphic scheme. Compared with

previous works such as Gazelle, the protocol makes it

possible to homomorphically evaluate very deep CNN

with a large number of inputs.

• We further propose a secure image similarity scoring

protocol, which enables the cloud servers to compare

two imageswithout knowing any information about their

deep features. We apply our framework into three public

image datasets. The experimental results show that our

framework is efficient and accurate.

The rest of the article is organized as follows. We review

the related works in Section II. Section III explains the

preliminaries. In Section IV and Section V, we described

our framework and protocols in detail. The experimental

evaluations are shown in Section VI. Finally, we draw some

brief conclusions in Section VII.

II. RELATED WORK

Homomorphic Encryption (HE) allows anyone to compute

an arbitrary or a specific function (e.g., addition) f on an

encryption of x, without decrypting it [3]–[5]. Homomorphic

encryptions allowing only one type of operations (addition or

multiplication) are called partially homomorphic encryptions

such as Paillier cryptosystem [1] for additive homomorphic

encryption (AHE), and ElGamal cryptosystem [6] for multi-

plicative homomorphic encryption.

Fully homomorphic encryption (FHE) performs both addi-

tion and multiplication, which was first introduced by Craig

Gentry [4]. This scheme is based on ideal lattices and its

construction contains two steps. It starts with a somewhat

homomorphic encryption (SWHE) scheme which performs

a fixed number of additive and multiplicative operations in

the encrypted domain. A bootstrapping operation is added to

the SWHE which results in fully homomorphic encryption,

i.e., the number of operations is unlimited. Unfortunately, this

scheme is inefficient for practical applications due to its high

computation and memory cost.

In recent years, numerous lattice-based FHE schemes

have been introduced in order to make it practical, such

as Brakerski and Vaikuntanathans schemes [7], [8] and

their famous optimization BrakerskiGentry-Vaikuntanathan

(BGV) [9]. Their corresponding efficient implementations

include Seal [10], TFHE [11], and HElib [12]. They are

dramatically more efficient than conventional Paillier AHE.

These libs enable us to design an efficient solution for secure

CBIR on deep neural networks. The BGV encryption scheme

consists in hiding the plaintext message with noise in order

to create the ciphertext message. The decryption consists in

removing the noise from the ciphertext message. The noise

level increases with each homomorphic operation. If the noise

level exceeds a certain threshold, it is no longer possible to

correctly decrypt the message. The noise growth is much

more important with multiplication as opposed to addition.

This limits their applicability because deep neural networks

need more operations.

In HE-based CBIR schemes, users encrypt images pixel by

pixel by utilizing a homomorphic cryptosystem (e.g., Paillier

[13], ElGamal [6], or Lattice-based AHE [11]), which allows

the cloud to index and process their images in the encrypted

domain. Hsu et al. [14] proposed a high-precision CBIR algo-

rithm by adopting Paillier cryptosystem to encrypt images.

This approach is suffered from significative ciphertext expan-

sion, which leads to slow encryption and decryption and

scalability issues. Hu et al. [15] further proposed an efficient

scheme for SIFT feature extraction by utilizing the ring-

Learn-With-Error (r-LWE) homomorphic cryptosystem [8].

Different from their previous scheme proposed in [14], their

batched secure multiplication protocol is built on Some-What
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Homomorphic Encryption (SWHE) scheme that enables the

two parties to securely compute the products of multiple

pairs of integers simultaneously, with computation and com-

munication costs greatly reduced. Zheng and Huang [16]

replaced Paillier ciphertexts with pointers to a ciphertext

table. It reduced the number of encryption operations and

minimized ciphertext expansion. Li et al. [17] proposed a

double-decryption SIFT feature extraction scheme based on

the BCP cryptosystem, which is an additively homomor-

phic scheme with two independent decryption algorithms.

Although HE-based schemes allow the cloud server to pro-

cess and index their encrypted images, which is semantically

secure. Unfortunately, they present much higher time and

space complexity [18]. More importantly, these schemes nat-

urally are facing with ciphertext expansion and noise growth

problems [7], [11], [19]–[22]. These have potentially negative

effects on the scalability and accuracy. For example, schemes

in [15]–[17] can only deal with the integer values of SIFT vec-

tors and accept limited additive homomorphic operations. It is

hardly applicable when considering CBIRwith deep features,

such as features extracted by convolutional neural networks

(CNNs), because these schemes perform very poorly due to

the large multiplicative depth in a CNN.

Others aim to improve image search efficiency and reduce

storage requirement for massive image data retrieval. Qin

Zou et al. [23] used Locality Sensitive Hashing (LSH)

and constructed an index for SIFT feature vectors, which

greatly reduced computational overhead on the client side

because of avoiding the usage of the homomorphic encryp-

tion. Xia et al. [24] proposed a two-stage CBIR scheme

that achieved constant search time by utilizing LSH. The

scheme supports SIFT feature CBIR with the earth mover’s

distance (MED) as similarity metric.

We discuss the closely related works in detail here.

Juvekar et al. [25] designed Gazelle, a secure neural network

inference, using a combination of fully homomorphic encryp-

tion (FHE) and traditional two-party computation techniques.

In their scheme, the user can acquire the classification results

without revealing their input to the server, while guaranteeing

the security of the server’s neural network. Due to Gazelle

is based on a two-party secure computation (2PC) scheme,

the generated feature vectors are carefully distributed onto

the two PCs. Specifically, the user keeps the noise-added

feature vector, and the server keeps the corresponding noise.

Gazelle provides scalable and efficient homomorphic opera-

tions for secure evaluation of convolutional neural networks.

However, it requires constant communication between the

user and the server, which is hardly acceptable by mobile

users. On the other hand, Gazelle uses 64-bit word (a sin-

gle machine word) to represent an integer, which improves

the efficiency of homomorphic operations. However, CNN

models are parameterized by real numbers in reality. In addi-

tion, when the number of homomorphic operations becomes

large, Gazelle consumes huge memory spaces. These disable

Gazelle be applied into the homomorphic evaluation of deep

CNN models such as VGG-16, which are often used in

CBIR due to their high accuracy. To address these problems,

we propose a CBIR scheme that supports efficient homo-

morphic evaluation of the deep CNN model and releases

mobile users from heavy computation and communication

burdens.

The scheme proposed in [26] also supports secure CBIR

with deep convolutional neural networks. In their scheme,

the deep features are extracted by a VGG-16 model, which

are then transformed into compact hash codes by a deep

auto-encoder. Although it has very high CBIR accuracy,

the scheme assumes the communication channels are not

secure but the server is trusted. Hence, the query is processed

on the server side in plaintext, and the user’s input (user’s

image) is revealed to the server. In our scheme, we consider

the security issues on the server side, which assumes that the

server follows Honest-But-Curious (HBC) threat model (see

Section IV).

In this work, we do not consider the problem of secure

data mining, intended as training a neural network over

encrypted data, which can be addressed, e.g., with the

approach of [20]. Instead, we assume that the neural network

is trained with data in the clear and we focus on the evaluation

part.

III. PRELIMINARIES

A. CONVOLUTIONAL NEURAL NETWORK (CNN)

Convolutional Neural Network (CNN) [27] is a deep artificial

neural network, which has been proven very effective in

areas such as image classification and objects recognition.

A CNN is usually composed of linear layers each of which

can be a convolutional (Conv) layer, or a fully-connected

(FC) layer, and non-linear layers each of which applies a

non-linear function, a activation function, that acts on each

element of the input, or a pooling function that reduces the

output size. Typical non-linear functions can be one of several

types: the most common in the convolutional setting are

MaxPool function and ReLU function. A CNN has several

layers of non-linearities, which allows extracting increasingly

complex features of the input and can lead to a better ability

to generalize.

The Visual Geometry Group network (VGG-16) [28] can

serve as a high accurate feature extractor. Its architecture is

shown in Figure.1. The input image to the VGG-16 network

is of fixed size, i.e., 3×224×224. It is passed through a stack
of various convolutional layers of different receptive fields.

The stride rate for convolutional layers and pooling layers

remains the same throughout the VGG-16 network which is

3×3 with stride 1 in convolutional layer and 2×2 with stride
2 in pooling layer. The first two convolutional layers have

64 and 128 filters, respectively. The rest of the convolutional

layers include 256, 512 and 512 filters, respectively. Border

pixels are padded before each convolutional operation, which

can preserve the features maps size same to the input. The

VGG-16 is ended with three fully connected layers. The first

two FC layers consist of 4096 neurons while the final FC

layer compresses the features to 1000 dimensions.
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FIGURE 1. VGG-16 network architecture for feature extraction.

B. HOMOMORPHIC EVALUATION OF CNN

Gazelle [25] is a scalable and low latency system for secure

evaluation of convolutional neural networks. It provides three

basic homomorphic operations: Single Instrument Multi-

ple Data (SIMD) addition (SIMDAdd), SIMD scalar multi-

plication (SIMDScMult), and permuting the plaintext slots

(Perm). It also supports advanced homomorphic operations:

homomorphic matrix-vector multiplications and homomor-

phic convolution. The homomorphic operations are based

on packed additive homomorphic encryption (PAHE). The

encryption scheme includes an encryption algorithm, a deter-

ministic decryption algorithm, and a homomorphic evalua-

tion algorithm. The encryption algorithm takes a plaintext

message vector Eu from some message space and encrypts it

using a private key sk into a ciphertext denoted as [Eu]. The
decryption algorithm takes the ciphertext [Eu] and the key sk
and recovers the message vector Eu. The homomorphic eval-

uation algorithm takes as input one or more ciphertexts that

encrypt messages Eu0, Eu1, · · · , and outputs another ciphertext

that encrypts a message Eu = f (Eu0, Eu1, · · · ) for some function

f constructed using the SIMDAdd, SIMDScMult and Perm

operations. The PAHE constructions are parameterized by

four constants that are the cyclotomic order m, the cipher-

text modulus q, the plaintext modulus p, and the standard

deviation σ of a symmetric discrete Gaussian noise distribu-

tion (χ ). The framework satisfies IND-CPA security, which

requires that ciphertexts of any two messages Eu and Eu′ be
computationally indistinguishable.

The Gazelle framework is based on the alternating use

of PAHE and Yao’s garbled circuits (GC), which can effi-

ciently and securely convert between the data representations

required for the two cryptographic primitives. As is shown

in Figure 2, a linear layer is evaluated by utilizing homo-

morphic operations. The server A and the client B posses an

additive share sy and cy respectively of the client’s input y,

that y = sy + cy. The client B first encrypts its share using

the PAHE scheme and sends it to the server A. A in turn

homomorphically adds its share sy to obtain an encryption

of the client input y, that [cy] + [sy] = [y]. The security

of the homomorphic encryption scheme guarantees that B

cannot recover y from this encryption. The server A then uses

homomorphic matrix-vector multiplications and homomor-

phic convolution to evaluate linear layer (which is eitherConv

or FC). The result is a packed ciphertext that contains the

FIGURE 2. Gazelle: A low latency library for secure neural network
inference.

input to a non-linear layer. The homomorphic scheme ensures

that A learns nothing about B’s input. B has not received any

input from A yet and thus has no way of learning the model

parameters.

For any non-linear layer, the serverA keeps a ciphertext [Ex].
It generates a random vector Er1 and add it to ciphertext

homomorphically, after that, A obtains an encryption [Ex+Er1]
and sends it to the client B. B recovers the plaintext Ex + Er1
with private key sk . Yao’s garbled circuits [29] is used for

non-linear functions f (Ex), which typically are ReLU and

MaxPool. Taking the boolean circuits of ReLU as an example

in Figure 2, the inputs are three vectors: randomvectors Er1 and
Er2 from server A, and Ex+Er1 from the client B. The output is a

pair of shares f (Ex)+Er2 for the client B and Er2 for the server A.

IV. THE SECURE CBIR FRAMEWORK

A. SYSTEM ARCHITECTURE

Our system architecture is illustrated in Figure 3. It consists

of two entities, i.e, the cloud servers (S1 and S2), and the (mul-

tiple) users (User). The authorized users can encrypt and

store their images onto the cloud servers, as well as issue a

content-based image query with a query image.

• The cloud servers store encrypted images and per-

form content-based image retrieval by utilizing their

huge storage capacity and computation power. We use

two cloud servers, S1 and S2, to store the encrypted

sub-images respectively. Specifically, S2 holds the

pre-trained CNNmodel (e.g., VGG-16 model) and takes

on the homomorphic operations of linear layers. S1
keeps its private key sk and runs Yao’s GC protocols with

S2 to carry out the secure computations of the non-linear

layers. S1 and S2 hold a share of the deep features

extracted from the encrypted images respectively. They

answer the user’s approximate nearest neighbor (ANN)

query over the encrypted images together.
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FIGURE 3. The system architecture with the VGG-16 model.

• The users can both encrypt and upload their own images

onto the cloud servers and/or search with a query image.

For any image I , a user obtains the encrypted image

Ia by adding a random matrix Ib onto it. Then, Ia is

uploaded onto the cloud server S1, and Ib is sent to

S2. When searching ANN images, a user generates the

query trapdoor in the same way. After received Ia, S1
carries out Proxy Re-Encryption (PRE) protocols [30]

with S2 to convert the encrypted image with key Ib to

the encrypted image with key sk .

The primary functionalities of our system are as follows.

• (Ia, Ib) ← ImgEnc(I ). Given an image I , it can be

regarded as a matrix each element of which is repre-

sented with 8-bit. A random matrix Ib of the same shape

is selected to encrypt I , the encrypted result Ia = I + Ib.
Each element in Ib is randomly chosen from the integer

interval [0, 255]. I ← ImgDec(Ia, Ib) is the inverse

operation of ImgEnc(I ). Note that the potential overflow

can be ignored because Ib will be replaced by sk when

invoking Proxy Re-Encryption (PRE) protocols between

S1 and S2.

• [I ] ← ProxyReEnc(Ia, Ib, sk ). Given the encrypted

sub-images Ia holding by S1 and Ib holding by S2, S1
encrypts Ia with its private key sk , denoted as [Ia],

and sends it to S2. The latter executes homomorphic

subtraction to get the ciphertext of I , denoted as [I ] =
[Ia]− Ib = [Ia − Ib].

• (Eva, Evb) ← FeatureExt([I ]). Given the proxy

re-encrypted ciphertext [I ] of the image I , it returns a

pair of vectors (Eva, Evb) that Eva is holding by S1 and Evb is
holding by S2. For the deep feature vector of an image I

that is extracted by a deep CNN model (e.g., VGG-16),

Ev, we have Ev = Eva − Evb.
• md ← SecureIndex(Eva, Evb). Given the deep feature

vector pair (Eva, Evb) that returned by invoking the function

FeatureExt([I ]), it generates the n-bit hash code that

represents Ev, Ev = Eva − Evb. Similar images have similar

hash codes, i.e., their Euclidean distances are close.

• (ER,KR) ← ImgQuery(Evqa, Evqb). Given the deep

feature Evqa and Evqb of a query image Iq, it finds the

ANN results according to the image similarity scoring

function. Here, we use Euclidean distance between the

deep features Evq of Iq and Ev of I . ER is the set of

encrypted sub-images returned by S1, and KR is the set

of corresponding image decryption keys returned by S2.

The query user recovers the plaintext images by invoking

the function I ← ImgDec(Ia, Ib) that Ia ∈ ER and

Ib ∈ KR.
An authorized user encrypts image I by invoking the

function ImgEnc(I ), and sends the encrypted sub-images

(Ia, Ib) to the cloud server S1 and S2, respectively. The proxy

re-encryption protocols are carried out by calling the func-

tion ProxyReEnc(Ia, Ib, sk ) which converts (Ia, Ib) into the

encrypted image [I ] by subtracting Ib homomorphically from

[Ia]. S1 and S2 cooperatively extract the deep feature Ev of the
image I by utilizing a deep CNN model. After which, S2 gets

[Ev] and sends [Ev+ Evb] = [Ev]+ Evb to S1, where Evb is a random
sequence generated and kept by S2. When received [Ev + Evb],
S1 decrypts it with its private key sk to get Ev+Evb and keeps it
as Eva. An query user generates the query trapdoor (Iqa, Iqb) by
invoking the function ImgEnc(Iq). Iqa and Iqb are submitted

to S1 and S2, respectively. S1 and S2 cooperatively finds the

matched images and return the results (ER and KR) to the

query user respectively.

B. ADVERSARY MODEL AND DESIGN GOALS

Following the works done in [31], [32], we adopt the

semi-honest adversary model for both the cloud servers,

S1 and S2, i.e, they follow the protocol specifications and

the algorithms exactly, but may attempt to learn additional

information by analyzing intermediate computations. In gen-

eral, secure protocols under the semi-honest model are more

efficient than those under malicious adversary model, and

most of the practical SMC protocols are secure under the

semi-honest model. We refer the readers to [33] for more

details about the security definitions and models. By the

semi-honest model, we implicitly assume that the cloud

servers do not collude. This model is realistic in the current

cloud market. S1 and S2 could be cloud servers which are

provided by legitimate, well-known companies (e.g., Ama-

zon, Google, and Microsoft). Collusion between any of them

is highly unlikely. We also assume that the users are hon-

est, which could be easily guaranteed by access control and

authorization mechanisms. At the same time, SSL, TLS, and

other secure communication methods can be used to ensure

channel security.

Similar to the work in [34], given the common private key

sk , consider the following game between an adversaryA and

a challenger C. The game consists of the following steps.

• The adversary A chooses two plaintext m0 and m1, and

sends them to the challenger C.
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• The challenger C chooses a random bit b ∈ {0, 1},
and executes the protocol to obtain the ciphertext Cb =
P(sk ,mb), and then sends Cb back to the adversary A.

P(sk ,mb) is used to denote the execution of the protocol

with common public sk and plaintext mb.

• The adversary A can experiment with the code of Cb in

an arbitrary non-black-box way, and finally outputs a bit

b′ ∈ {0, 1}.
The adversary wins the game if b′ = b and loses otherwise.

We define the adversary A’s advantage in this game to be

AdvA(k) = |Pr(b′ = b)− 1/2|
where k is the security parameter.

Then we give our design goals as follows.

• Image data confidentiality. The image data confiden-

tiality is guaranteed if for any probabilistic polynomial

time (PPT) adversary, the advantage AdvA(k) is a neg-

ligible function, where the probability is taken over

coin-tosses of the challenger and the adversary. That is,

the cloud server S1 (or S2), as an adversary, knows noth-

ing about the exact image data and its features except its

shape.

• Query security. The query security is guaranteed if

for any probabilistic polynomial time (PPT) adversary,

the advantage AdvA(k) is a negligible function, where

the probability is taken over coin-tosses of the challenger

and the adversary. In other words, the cloud server S1
(or S2), as an adversary, knows nothing about the query

image Iq or the search results of Iq.

• Model security. The model security is guaranteed if

for any probabilistic polynomial time (PPT) adversary,

the advantage AdvA(k) is a negligible function, where

the probability is taken over coin-tosses of the challenger

and the adversary. In other words, the cloud server S1 (or

S2), as an adversary, knows nothing about the weights,

the filter size, and the stride rate of the CNN model.

• Efficiency. The linear search is quite inefficient and

computationally impracticable for a large database.

The proposed scheme aims to achieve a better-than-

linear search efficiency through constructing an efficient

index.

In our framework, the encrypted sub-image Ia is purely

random because Ib is random. If it has the size of 256 ×
256 and each pixel has 8 bits, the adversary has to use

brute-force approach to recover the image I which needs

256256×256 operations. It is computationally infeasible in

practice. We adopt proxy re-encryption to convert encrypted

sub-images Ia and Ib to IND-CPA secure ciphertext [I ].

The conjunctive use of the IND-CPA secure PAHE scheme

and garbled circuits for evaluation of convolutional neural

networks guarantees the image data confidentiality, Query

security, and Model security.

V. THE IMPLEMENTATION OF OUR FRAMEWORK

We use the libs provided by Gazelle [25] to implement

the secure deep feature extractor in FeatureExt(·) function.

Gazelle satisfies IND-CPA security which guarantees our

security goals described in Section IV. It has shown its very

high efficiency, however, considering the operations of deep

CNN models such as VGG-16, several technical improve-

ments are necessary. These can help us implement a secure

and accurate CBIR framework.

A. REAL NUMBERS COMPUTATION

Gazelle does not support real number computation because

it uses 64-bit word (a single machine word) to represent an

integer in order to achieve high efficiency. Unfortunately,

the weights of the CNN model are real numbers in reality.

Typically, we can solve this problem by encoding the digits

after the decimal point as the highest degree coefficients of

the polynomial [10].

More precisely, a real number y = y+.y−, where y+

denotes the binary digits bI+bI+−1...b1b0, and y− denotes

the binary digits b−1b−2...b−I− , is encoded as the plaintext

polynomial:
∑

i≤I+
X ibi −

∑

1≤i≤I−
Xn−ib−i (1)

This technique was adopted by several sys-

tems [20], [35]–[37]. However, Gazelle uses the PAHE

scheme as an efficient and secure implementation, which

supports packing multiple plaintexts into a single ciphertext

and performing SIMD homomorphic additions. Since a real

number is represented by a sequence of coefficients of a

polynomial, when carrying out homomorphic operations,

real numbers have to be encoded beforehand. The previous

evaluations [25] showed that it dramatically slowed down the

speed. For example, CryptoNets [20] cost around 297.5 sec-

onds to carry out the operations in the CNNmodel which only

has one Conv layer and two FC layers. Hence, we directly

scale up real numbers by 10n times and convert them into 64-

bit integers, which represents real numbers with a fixed preci-

sion of n decimal points. Obviously, larger nwill lead to better

precision, but may cause result overflowwhen performing the

homomorphic addition and multiplication. This forces us to

use plaintext modulus p that is larger than 64 bits, which sub-

stantially slows down the homomorphic computation because

it overflows a single machine word. Instead, we determine

proper n so that the homomorphic addition (or multipli-

cation) result of any two after-scaling integers does not

overflow p.

We explain this by an example. Consider the first convolu-

tional layer of the VGG-16 model, which accepts a 3×224×
224 size of input image. Its filter size is 3 × 3. Each value

of the input image is normalized to the range of [0, 1]. If the

maximum value in the filter is 0.5, the maximum output value

of the layer is 3× 0.5× 9 = 13.5. Hence, with the plaintext

modulus p, the maximum scaling factor equals log10(
p
2−1
13.5

)

because the range of the corresponding two’s complement is
[

− p
2
,
p
2
− 1

]

. When multiplying two numbers that have been

scaled up by 10n times, the result will be scaled up by 102n

times. As results, the output of the first layer needs to be
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FIGURE 4. The divide and conquer convolutional layer computation.

divided by 10n before it can be accepted by the subsequent

layer. In this way, the scaling up factors can be applied to

each layer of the VGG-16 model.

B. DIVIDE AND CONQUER LINEAR LAYERS

COMPUTATIONS

Without loss of generality, a Conv layer can be represented

by a tuple (wi, hi, ci), where wi is its input width, hi is its

input height, and ci is the number of its input channels.

A convolutional layer has co filter banks each consisting

of ci many fw × fh filters. This is represented by a tuple

(fw, fh, ci, co). The output of a Conv layer can be represented

by a tuple (wo, ho, co) which is co many wo × ho output

images. Similarly, The input of an FC layer is a vector Evi of
length ni and its output is a vector Evo of length no. An FC

layer is specified by a tuple (W , Eb) where W is an no × ni
weight matrix and Eb is an no element bias vector. The output

of an FC layer is Evo = W · Evi + Eb.
With these parameters, the number of homomorphic mul-

tiplications and additions in a Conv layer is given by (co · ci ·
fw · fh), and those in an FC layer is ni · no. This makes both

theConv andFC layers homomorphic operations quadratic in

the input size. Unfortunately, when the number of the input

and output channels, i.e., ci, co, becomes large, the number

of homomorphic operations will be dramatically increased.

When performing SIMD homomorphic additions, the filters

are packed into one vector and have to be loaded intomemory.

However, memory consumption increases with ci · fw · fh. For
example, when ci = 256, the RAM space needed by VGG-16

model is more than 284GB. Disk RAM technology can be

used to support large memory consumptions, but it slows

down the Conv and FC layers computations and is expensive.

More importantly, the noise level introduced by lattice-based

FHE schemes will also arise, which may cause the decryption

failure after homomorphic operations. The noise level rising

can be hindered by avoiding one ciphertext involved in more

than once homomorphic operations. However, it will still fail

when the input channels becomes large (e.g.,ci = co = 256

in the VGG-16 model). Another way to tolerate the noise is to

select larger modulus p, but this will dramatically slow down

the computation when p is larger than 264 (a single machine

word).

FIGURE 5. Noise margin vs. the number of input channels.

Considering our framework in Figure 3 again, the server S1
keeps the private key sk and decrypts the encrypted interme-

diate results before performing non-linear layer computations

based on Yao’s garbled circuits. Obviously, if the decryption

succeeds, the noise is cleared. Hence, we adopt divide and

conquer linear layers computation. The idea is to divide the

input channels into groups to perform convolutional com-

putations separately on S2. After adding a uniform random

vector Er to each intermediate ciphertext homomorphically, S2
sends them to S1, the latter performs the decryption. After

the additions in plaintext, S1 encrypts the results with sk
and sends it back to S2. S2 gets the convolutional results

by subtracting Er homomorphically. In this way, Conv and

FC layers can accept a large number of input channels

(e.g., 512 input channels in VGG-16 model), and correctly

perform homomorphic convolutional computations (homo-

morphic additions and multiplications) with low memory

consumption (see Section VI).

Taking a Conv layer as an example, which is shown in Fig-

ure 4. The size of the encrypted input map is 3× 256× 256,

the size of the encrypted filter is 1 × 3 × 3 × 3. S2 divides

the encrypted input map into three groups, i.e., [Ex1], [Ex2] and
[Ex3]. The corresponding filters are [Ey1], [Ey2], [Ey3]. S2 performs

homomorphic convolutional computations for each group to

get [ EConvi] = [Exi] ∗ [Eyi], i = 1, 2, 3. Then, S2 homomorphi-

cally adds uniform random vector Er to [ EConvi], i = 1, 2, 3,

that is [ EConvi+Er], i = 1, 2, 3. S2 sends them to S1. The latter

does decryptions with private key sk to get the plaintexts,
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FIGURE 6. The deep feature similarity of the three datasets.

which are EConv1+Er , EConv2+Er , and EConv3+Er . The summa-

tion of the plaintexts is EConv1+ EConv2+ EConv3+3 · Er , which
is encrypted again by S1 and sent back to S2. S2 removes

the random vector Er by the homomorphically subtracting

3 · Er to get the correct and encrypted convolutional results,

i.e., [ EConv].
The remaining problem is to determine themaximum num-

ber of the input channels in a group so that the ciphertext can

be successfully decrypted after homomorphic convolutional

computations. Let us consider the noise in the ciphertext.

In lattice-based FHE schemes, the noise is bounded by the

coefficients of the sampled error polynomials, the plain-

text size, and the number of additions (or multiplications).

We refer readers to [38] for detailed analysis. In our frame-

work, the size of a plaintext is a single machine word

(64 bits). The coefficients of the sampled error polynomials

are pre-defined constants. The number of homomorphic oper-

ations are determined by filter size, fw× fh, and the number of

input channels, ci. Given the ciphertexts [Ex] and [Ey], the noise
growth of homomorphic addition, [Ex + Ey], is at most ηx + ηy
where ηx (resp. ηy) is the amount of noise in the ciphertext

[x] (resp. [y]). Given the ciphertext [Ex] and the plaintext Ey,
the noise growth of homomorphic multiplication, [Ex ◦ Ey],
is at most p · √n · ηx where ◦ denotes component-wise

multiplication of vectors, n is the number of slots in a packed

AHE ciphertext. The convolutional computation results can

be correctly decrypted if η < q/(2p) where η is the overall at

most noise growth. We have η = ci · p ·
√
n · ηx . Hence,

the maximum number of input channels, ci, should satisfy

ci < q/(2 · p2 · √n · ηx).
Consider the VGG-16 model again, we evaluate the noise

margin with the increase of the number of input channels

as is shown in Figure 5. The noise margin is defined as

log2(
q
p
) − log2(η). When the number of input channels

is 11, the noise margin after the convolutional computa-

tions is 1.0016, which indicates that the decryption will fail.

Thus, S2 can at most accept 10 input channels. The first

Conv layer of the VGG-16 model has 64 input channels,

which are then divided into ⌈64/10⌉ = 7 groups in our

framework.

C. IMAGE INDEXING

Given an image I , we add an FC layer and a SoftMax

layer after the secure deep feature extractor in FeatureExt(·).

FIGURE 7. The performance of divide and conquer convolutional
computation.

The FC layer is to compress the deep features generated

by the CNN model. The SoftMax layer is used as the final

layer of a neural network-based classifier, which provides

‘probabilities’ for each class, the correct class could always

have a higher probability and the incorrect classes always

a lower probability. Thus, we get a pair of the deep feature

vector (Eva, Evb) that Eva is holding by S1 and Evb is holding

by S2. We have Ev = Eva − Evb, where Ev is the deep feature

vector of the image I . The dimension with the maximum

probability value of Ev represents the clustering center of the

image I .

Now, the problem comes to allow S1 and S2 to find the

dimension with the maximum value under the condition

that neither of them knows Ev. The idea is to let S1 and S2
independently compute the partial values and exchange the

intermediate results to compare and find the dimension with

the maximum value correctly.

Given two elements x, y ∈ Ev, x − y can be transformed as:

compare(x, y) = x − y
= xa − ya − (xb − yb)
= (xa − xb)− (ya − yb) (2)

where xa, ya ∈ Eva kept by S1, xb, yb ∈ Evb kept by S2. We have

x = xa − xb and y = ya − yb. Thus, S1 and S2 can calculate

xa − ya and xb − yb independently. Then, S2 sends the inter-
mediate results to S1. The latter can get x − y. Consequently,
S1 can find the dimension with themaximum value in the vec-

tor Ev. Each deep feature vector Ev is classified into a clustering
center according to its dimension with the maximum value.

Finally, we simply use a hash table (HT ) as an index to store

the information on the cloud server S1 (resp. S2), each entry

119216 VOLUME 7, 2019



F. Liu et al.: Intelligent and Secure CBIR for Mobile Users

FIGURE 8. Performance of feature extraction v.s. input shapes.

FIGURE 9. Performance of feature extraction v.s. the number of convolutional layers.

FIGURE 10. Performance of feature extraction v.s. the number of input channels.

of which includes the local path of the encrypted sub-images

(e.g., Ia (resp. Ib)) and the corresponding partial deep feature

vectors (e.g., Eva (resp. Evb)).

D. IMAGE SIMILARITY SCORING AND IMAGE QUERY

Given the deep feature Evq of the image Iq, S1 keeps its partial

deep feature vector Evqa, while S2 holds the other partial deep
feature vector Evqb. We use Euclidean distance between Evq and
Ev of a target image I as the image similarity scoring function,

which is transformed as:
dist(Ev, Evq) = ||Ev− Evq||

= ||(Eva − Evb)− (Evqa − Evqb)||
= ||(Eva − Evqa)− (Evb − Evqb)|| (3)

With the equation (3), S1 and S2 can compute the Euclidean

distance between Evq and Ev without knowing Evq or Ev.
With the image index HT , S1 computes the Euclidean

distance between Evq and any Ev in the same entry of HT

according to the equation 3. Finally, S1 sorts the results and

returns ER to the query user, Similarly, S2 returns KR. The

user can easily recover the result images by invoking the

function ImgDec(Ia, Ib) that Ia ∈ ER and Ib ∈ KR.

VI. EXPERIMENTAL EVALUATIONS

A. EXPERIMENTS SETUP

Datasets To measure the feasibility of our method, we use

three kinds of public image datasets. We randomly selected

different numbers of images from the whole dataset as tar-

get images, and randomly selected one as the query image.

Details of the three public datasets are as follows.

Corel-1k Dataset:All of the images in the Corel-1k dataset

are in colored format. Image sizes are either 256 × 384

or 384 × 256. The images are grouped by content into

10 categories. Each category contains 100 images. These cat-

egories are African, Beach, Architecture, Buses, Dinosaurs,

Elephants, Flowers, Horses, Mountains, and Food. There are

1000 deep feature vectors extracted in the whole dataset.

In the experiments, we selected distinct collections of images,

containing 100, 200, 300, ..., and 1,000 distinct images,

respectively.

VOLUME 7, 2019 119217



F. Liu et al.: Intelligent and Secure CBIR for Mobile Users

FIGURE 11. Performance of feature extraction v.s. the number of output channels.

FIGURE 12. Performance of index construction v.s. the number of images.

Corel-10k Dataset: The Corel-10K dataset contains

100 categories, and there are 10,000 images from diverse

contents, such as animals, airplanes, furniture, ships, build-

ings, car, beach, food, national flag, etc. Each category

contains 100 images of size 192×128 or 128×192. There
are 10,000 deep feature vectors extracted in the whole

dataset. In the experiments, we selected distinct collections

of images, containing 1,000, 2,000, 3,000, ..., and 10,000 dis-

tinct images, respectively.

MNIST: The MNIST dataset of handwritten digits has a

training set of 60,000 examples and a test set of 10,000 exam-

ples. The training set is made up of numbers written by

250 different people and the value of each label is an inte-

ger between 0 and 9. Each image consists of 28 × 28

pixels, each pixel is represented by a gray value. We ran-

domly selected 5,000 images in our experiments. They are

grouped by content into 10 categories, each of which contains

500 images and is corresponding to an integer number of 0

to 9. In the experiments, we selected distinct collections of

images, containing 500, 1,000, 1,500,..., and 5,000 distinct

images, respectively.

TABLE 1. Details for the experimental datasets.

Table 1 shows the overview about the three public datasets.

Because the similarity of the images in the datasets has

great impacts on the image retrieval results, we evaluated the

deep feature vector similarity (Euclidean distance) between

any two images in the datasets. As is shown in Figure 6,

the colder the color, the closer the Euclidean distance between

images, the higher the similarity between images. On the con-

trary, the warmer the color, the lower the similarity between

images. It can be seen that the selected three image datasets

are feasible for image retrieval. That is the images are not

too similar or too different, which may cause skewed retrieval

results. The similarity difference is almost the same between

Corel-1k, Corel-10k, and MNIST datasets, there are around

10% images are considered similar.
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FIGURE 13. Performance of image search v.s. the number of images.

FIGURE 14. Performance of image search v.s. the query result set size.

Evaluation Metrics: We evaluated the performance of the

feature extraction, index construction, and image retrieval,

respectively. During the feature extraction, we measured the

consumed time (termed as time cost), memory space (termed

as memory cost), and the communication overhead between

the cloud servers S1 and S2 (termed as communication cost).

During the index construction, we measured the consumed

time (termed as indexing time) and memory space (termed

as indexing size). As for the image retrieval, we measured

the query processing time (termed as searching time). The

communication cost refers to the size of the intermediate

data in bytes exchanged between the two servers. We only

measured the time cost consumed by each server, and the

communication delay is ignored. In addition, we evaluated

the correctness of the image retrieval by precision and recall

curves.

Image Query Generation: We generate 10 query images

that are randomly selected from the dataset. We average the

evaluation metrics as the final results.

Implementation Details: The experiments were carried out

on 2 PCs each with an Intel Core i7-5500U processor and

16GB RAM, running on Linux 64-bit OS. The source code

can be found at https://github.com/pzimao/ppcbir.

B. PERFORMANCE OF FEATURE EXTRACTION

In feature extraction of the function FeatureExt(·), we eval-

uated the memory cost and communication cost of each

VGG-16 linear layer, which includes the preprocess of filter,

the preprocess of input filter map, and the homomorphic

convolutional computation. We compared the performance

with and without divide and conquer linear layer computa-

tion, as is shown in Figure 7. Obviously, the memory cost

FIGURE 15. Performance of image search in comparison with other
schemes.

dropped dramatically from 54GB to 6.75GB (around 8 times)

for the second convolutional layer. The communication cost

between S1 and S2 increases around 4 times. These results

show the effectiveness of divide and conquer linear layer

computation.

We further evaluate the impacts of the input shapes

(Figure 8), the number of convolutional layers (Figure 9),

the number of input channels (Figure 10), and the number

of output channels (Figure 11) that are posed on the function

FeatureExt(·). It can be seen that memory cost, time cost and
Communication cost increase linearly with respect to each

parameter.

C. PERFORMANCE OF INDEX CONSTRUCTION

Figure 12 shows the experimental results conducted on

three public datasets. The indexing time and the indexing size

increase linearly with respect to the number of images.

It is because the larger number of deep feature vector
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FIGURE 16. Samples of retrieved similar images.

contributes to the more calculations of the equation 2.

We compared our proposed index with the LSH-based

index [26]. We noticed that our proposed index per-

forms much better than LSH-based index, since it has

a simpler index structure than LSH-based index, which

has shown its priority over other index. For the Corel-

10k dataset (Figure 12(b)) which has the largest num-

ber of images, the indexing time of LSH-based index is

within 18 seconds, the corresponding indexing size is around

349MB, in stark contrast to 0.35 seconds and 40MB of

ours.

D. PERFORMANCE OF IMAGE SEARCH

Our searching time includes determining the position of the

query feature vector in the indexHT and calculation of image

similarity scoring function. Figure 13 shows the impacts of

the number of images on searching time. It shows that the

searching time keeps stable. That is, it does not increase

as the number of images increases. It can be seen that the

overall trend of LSH-based schemes [26] is rising, because it

retrieves dissimilar images.

Figure 14 shows the impacts of query result set size on

searching time. Obviously, the searching time increases lin-

early with respect to the size of query result set. It is because

that more similar images in the result set contribute to more

image similarity scoring function computations.

E. THE PERFORMANCE COMPARISON

For feature extraction function FeatureExt(·), we compared

time cost and communication cost with the works in [25],

[36], [39] over MNIST dataset. As is shown in Table 2,

the runtime and communication overhead of ours are much

lower than those ofMniONN [36] and Chameleon [39]. It has

similar performance with Gazelle [25].
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TABLE 2. The performance comparison on MNIST.

We also compared with these works by running VGG-16

model over Corel-1k and Corel-10k datasets. Unfortunately,

these works failed because of huge memory consumption.

For example, Gazelle [25] failed because it requests around

54GB memory at one time and cannot recover the plain-

text after the second convolutional layer. Chameleon [39]

and MniONN [36] failed because they cannot successfully

decrypt the outputs after the second convolutional layer.

F. IMAGE SEARCH CORRECTNESS EVALUATION

We evaluated our image search correctness by the widely

adopted precision-recall curves, which are defined as:

Recall= Number of relevant images retrieved

Total number of relevant images in dataset
(4)

Precision= Number of relevant images retrieved

Total number of retrieved images
(5)

Given a recall value, a high accuracy means that a better

retrieval performance. We carried out the experiments on

Corel-10k dataset and compared the results with the deep

auto-encoder scheme in [26] and the LSH-based scheme in

[40], both of which have shown their better accuracy than

other CBIR schemes. The results are shown in Figure 15. The

FC layer after the VGG-16 model has 1×1×100 neurons for
Corel-10k dataset. The SoftMax layer consists of 100 maps

where each map refers to one particular class of the Corel-

10k dataset.

Figure 16 shows the image retrieval samples on Corel-

1k and Corel-10k datasets, where the most relevant images

have been successfully retrieved at top ranks. In the figure,

the first column is the query image. The remaining columns

are the retrieved images that are sorted according to their

image similarity scoring function.

VII. CONCLUSION

In this paper, we study the problem of intelligent and secure

CBIR for mobile users. We proposed a secure CBIR frame-

work that uses VGG-16 as an accurate deep feature extractor.

We implemented a real number computation mechanism and

a divide-and-conquer CNN evaluation protocol to enable our

framework to securely and efficiently evaluate deep CNN

with a large number of inputs. We further proposed a secure

image similarity scoring protocol, which enables the cloud

servers to compare two images without knowing any infor-

mation about their deep features. The experimental evaluation

results indicate the efficiency and accuracy of our framework

under various parameter settings. Unfortunately, the proposed

solution in this article cannot take advantage of multi-core

processing units, likeGPUs. In futurework, we plan to further

improve the image retrieval efficiency by introducing more

compact deep features in the current framework. We are also

planning to build a framework that can run on GPUs.
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