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Smart parsimonious and economical ways of irrigation have build up to fulfill the sweet water requirements for the habitants of
this world. In other words, water consumption should be frugal enough to save restricted sweet water resources. The major portion
of water was wasted due to incompetent ways of irrigation. We utilized a smart approach professionally capable of using ontology
to make 50% of the decision, and the other 50% of the decision relies on the sensor data values. The decision from the ontology and
the sensor values collectively become the source of the final decision which is the result of a machine learning algorithm (KNN).
Moreover, an edge server is introduced between the main IoT server and the GSM module. This method will not only avoid the
overburden of the IoT server for data processing but also reduce the latency rate. This approach connects Internet of Things with a
network of sensors to resourcefully trace all the data, analyze the data at the edge server, transfer only some particular data to the
main IoT server to predict the watering requirements for a field of crops, and display the result by using an android

application edge.

1. Introduction

Agriculture is the major resource of living wage in Pakistan.
A smart, intelligent, and fully automated agricultural system
was required and extremely desirable in some last decades
when our population grew exponentially in comparison to
the natural resources we have in our country, Pakistan. For
this purpose, an IoT-based smart watering system has been
achieved in the recent years of constant threat of losing
water. This agricultural industry has two particulars. The
plastic tunnel farming is divided into low, high, and walk-in
tunnels. It is convenient to sow, spray, and harvest in the
high tunnel than in low and walk-in tunnels due to its
broader size. Traditional farming, on the contrary, is the
most unpredictable and becomes the cause of more water
wastage. The issue we are going to deal with in this paper
regarding smart irrigation is any application designed and
used for the smart watering system still needs to be more
efficient and timely. Technically, it means that just cloud

computing is not enough for a large-scale IoT application.
There should be something like more efficient and fast
application using a better architecture to handle different
types of data coming from different sources (sensors). The
main purpose of a quick and smart irrigation system is the
consumption of water so frugally to execute the need of
water more timely for a field of plants and to save inadequate
sweet water reservoirs. To handle this rigorous matter, many
sensor-based smart irrigation systems with their mobile
applications have been designed in different times, but still,
there is a question on their reliability when data grow and
thus the latency rate of IoT devices. Like in preceding papers,
the input parameters humidity, temperature, soil moisture,
and light intensity were used, and a decision of watering
plants or not was made on the basis of a fuzzy logic [1]. The
same fuzzy logic has been applied to many healthcare sys-
tems, in which use of biosensors helped monitoring tem-
perature, blood pressure, oxygen, and infection status of the
wound [2]. Similarly, in fire alarming applications, this
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technology helped a lot in 2018 [3] and 2019 [4]. Now, we
come up with a new technology that is the combination of
machine learning technique and semantics for some input
parameters such as climate type, crop type, and soil type with
the sensors’ output: temperature, humidity, and soil
moisture.

A smart irrigation system with the application of edge
computing is required because the research studies on ir-
rigation systems until now are not much efficient that they
could not be implemented on large-scale systems and have
less efficiency due to overburdenized sensors for all sensing
data. So, a new intelligent and smart system should be
designed.

Our research found some grounds due to which
improvements in the existing system are mandatory:

(i) Existing smart irrigation systems either spotlighting
on lesser parameters like soil moisture, air moisture/
humidity or they are presenting a fuzzy logic
(implemented in matlab) to produce an output
decision or some are using simple machine learning
algorithm to predict about water need for plants. A
system which does not encounter the latency rate
cannot provide the reliable solution.

(ii) Skipping important parameters such as soil strata
and crop type can lead to an imperfect watering
system for plants.

(iii) Unwanted data loading on the IoT server due to
continuous throw of sensor data becomes a cause of
less efficiency of the IoT server. An intelligent ir-
rigation system should never halt due to overburden
of data.

(iv) As newest expertise has come into sight due to
progression in each and every field, therefore, we
also have to change our classical method of irri-
gation to advanced, smart, and perfect and simple
knowledge database for plant’s data to powerful
ontology-based semantics.

There are some main aspects, which we are going to
concentrate on in our anticipated approach:

(i) Three sensors are used in our approach: a soil
moisture sensor, humidity and temperature sensor,
and light sensor. Furthermore, ontology is used for
plant species data, different soil types, and different
climate types.

(ii) This approach focuses on an intelligent technique,
i.e., machine learning, to decide watering require-
ments for a particular plant, and by considering
many other suitable parameters for the plant
growth, i.e., climate, weather, and soil type, we are
going to design a smart irrigation system in a dif-
ferent and more efficient way.

(iii) Our proposed smart system by design focuses on
system reliability as if a sensor for some reason is not
working at a particular time and was working an
hour before, then the value it measured before an
hour will be used by our trained model to produce
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the result because no drastic change can occur in
other parameters in just an hour. It makes our
system user friendly and more efficient.

(iv) The proposed approach is structured to come upon
the problems of the obsolete irrigation method
smartly.

2. Related Works

Traditional tunnel farms, all over the world, use drip irri-
gation or a sprinkler irrigation method. These are better than
normal flooding methods. Various irrigation methods
provide different water consumption levels and energy
competence [5]. The surface irrigation and level irrigation
methods provide low water and energy efficiency. The
subirrigation, overhead irrigation, and sprinkler irrigation
methods provide low-to-medium efficiency. The sprinkler
and drip irrigation methods provide similar energy effi-
ciency, but drip irrigation is more water efficient than
sprinkler irrigation [6].

To increase crop production and decrease costs effi-
ciently, the management of freshwater smartly is indis-
pensable. The powerful use of technologies provides the
precise amount of water required for plants. The SWAMP
project [7] in Europe has developed an IoT-based smart
water management platform for ideal irrigation with a
proactive approach on four pilots in Brazil and Europe. The
SWAMP architecture, the platform, and the system
deployed presented by the European people include a
performance analysis of FIWARE components. They aim to
reengineer some of its components to provide greater
scalability by using less number of computational assets.

The amount of land irrigated in the US is approximately
the same as their farmers used to irrigate ten years earlier,
but the important thing is water they are using nowadays for
this purpose is quite less than previously used. They are
growing plenty of fruits, vegetables, nuts, and whole grains
that fulfill their inhabitant’s requirements whole year. Two
types of irrigation traditional technologies have been used in
the US since 2013 [8]. First one is used in the gravity systems;
it makes up 35 to 42% of irrigation systems in the United
States. It delivers water from its source to a crop area by
flooding through land-forming measures, including canals,
waterways, basins, and furrows. Examples are the furrow
system controlled flooding systems and uncontrolled
flooding systems. The second type of irrigation technology is
used by the pressure systems. In pressure systems, tubing or
pipes are used to pump water, and irrigation is done through
an applicator such as a sprinkler or perforated pipe.

China’s development has been affected by three major
issues regarding agriculture, landscape, and farmers [9]. The
solution to these glitches is agricultural transformation.
Though this transformation is not so easy and quick, in-
troducing the cloud computing with Internet of Things to
their agriculture is going to help them in solving the issue.
However, cloud computing, IoT, and SOA technologies, are
helping in the they have built huge data involved agricultural
harvesting. Cloud computing is linked to IoT, and both
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collectively can enhance the agricultural production to solve
the matters regarding agriculture, landscape, and farmers.

In India, different traditional methods are designed and
applied regionally in India over the past decades to cope up
the necessities of their people in a sustainable way. The three
irrigation methods that exist in India are diversion channels,
small-scale water bodies such as tanks to store rainwater, and
wells to collect groundwater. These methods are for small-
scale as well as large-scale applications. As the population of
India is increased enough, the needs on the water increase
for various drives such as irrigation, domestic, hydroelec-
tricity, industrial, mining, and regeneration. However, India
has the largest irrigated area in the whole world, and the
irrigated area is only about 40% of the cropped area [10].
One of the main reasons for this low irrigated land is the
major use of traditional irrigation methods, which leads to
low water use efliciency of about 35-40% [11].

The use of traditional methods without the reach of cloud
computing and edge computing causes the unstable watering
system for the plants. Consequently, a well-organized and
judicious watering system is the major intention. During
some last decades, irrigation systems with the use of some
sensor networks with different IoT approaches are initiated
which basically provides the solution but still they need some
improvements. Table 1 shows their water-saving percentages,
techniques used by them, and the sensors used by them.

In 2008, Bernard used the rain sensor and estimated the
eminence of pasture with and without the sensor. He tried to
figure out irrigation water use. He experienced common
Bermuda grass to achieve 34% water saving. Xiao et al. [13] self-
designed the sensor network for the irrigation system, and they
achieved water saving of about 65.22%. Dukes [20] described
that water saving of about 40% to 70% can be achieved by using
smart controllers but for real-world scenarios of bigger fields;
this value can be lessened to 10% [19].

Gutiérrez et al. [14] designed and tried to implement a
mechanized irrigation system to use water efficiently. They
used a wireless network of some sensors to manage water
saving of about 90% as compared to conventional irrigation
methods. Similarly, Kumar et al. [5] presented a similar work in
the same year and Parameswaran and Sivaprasath [6] and
Rawal [16] latterly introduced a few similar sensor-based so-
lutions. Nelson in 2015 used a few sensor data such as tem-
perature and soil moisture and WSAN to automate the
irrigation process with decreased water consumption. Saab
etal. [17] tried and thrived an on-field survey of a smart phone
irrigation setting up. He investigated and tested that application
in Mediterranean environments achieved 25% of water saving.
Recently, another input to these contributions was made by
Saqib (2020), i.e., a network system for the HC12 module is
intended to improve the communication range.

3. Architecture of the Proposed System

The anticipated irrigation system is entrenched with the
potential smart decisions taking capability to water plants
by considering the factors such as crop type, soil type,
climate type, temperature, humidity, and soil moisture.
Ontology is implanted to query about the decision for a

particular plant type, climate type, and soil type, while
remaining factors such as temperature, humidity, and soil
moisture are sensed by our sensor network. Final decision
for watering plants or not relies 50% on the ontology result,
and the other 50% is based on our trained machine learning
model. The smart architecture of our watering system is
given in Figure 1.

Our proposed architecture of IoT has four layers, appli-
cation layer, processing layer, transport layer, and the per-
ception layer, rather than basic IoT architecture which consists
of three layers (application layer, network layer, and perception
layer). The perception layer is known as the physical layer,
which means it has sensors for assembling data. It senses
temperature, soil moisture, and humidity from air. The
transport layer is the source of transferring sensed data col-
lected previously to the processing layer through networks such
as wireless, 2G, 3G, and LAN. The processing layer stores,
scrutinizes, and processes huge amounts of data coming from
the transport layer. It utilizes technologies such as databases,
cloud computing, and edge computing. The application layer is
for providing application-specific services to the end user. Our
system deals with the sensors, GSM module, edge server + IoT
server, and additionally an android application. These are the
perception layer, transport layer, processing layer (cloud
computing and intelligent computing), and the application
layer, respectively.

3.1. Sensor Data. At first, data are gathered by the sensors as
presented in Figure 2. Soil moisture, humidity, and tem-
perature data are collected in this phase. The perception
layer has all sensors, actuators, and the microcontroller. Rest
is the part of remaining three layers. Transport and pro-
cessing layers collectively provide schedule for watering
crops, their supervision, and other suggestions. After
gathering the data, the next stage is to accumulate data at
data centers for analyses.

The detailed design inspection of the physical components
used is presented in the figure. All the components are with no
trouble available in the market and cheap also. So, the device to
be deployed in the real environment can be made easily
available. This implantable device has the layer of sensors used,
i.e., humidity, light, and moisture sensors. The microcontroller
fixed in the Arduino board receives the analog signals from
these sensors, and after every 30 seconds, these values are
transferred to the data center through GSM module SIM808.
The final results from our decision-making process can be
visualized by the user all the way through an android appli-
cation, after which the user can direct our system’s actuators,
and finally, water is released from the valve or closed.

The next section briefs the working of our ML smart
decision system deployed at the IoT server which speedily
timetables the watering plan for plants. This setting up also
evolves the soil type, climate type, and crop type. In our
smart system, ontology inhabits in these parameters for
better competence and precision. By means of these tech-
nologies, we have prepared our system to be fully func-
tionally automatic. The subsequent section describes the
semantic knowledge base for our smart irrigation system.
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TABLE 1: Sensor-based solutions.

Work year Sensor occupied Technique/methodology Water saved
Cardenas-Lailhacar et al. (2008) [12] Rain sensor Soil moisture sensor system 34%
Xiao et al. (2010) [13] Self-designed wireless sensor WSN 65.22%
Gutiérrez et al. (2014) [14] Soil moisture sensor VH400 WSN and GPRS 90%

Temperature sensor DS1822
Temperature sensor (LM35)

Kumar et al. (2014) [5] Humidity sensor (CLM53R) WSN and XBee-based communication No result
Soil pH sensor
Nelson et al. (2015) [15] Soil moisture sensor WSAN with cloud platform 72%
Parameswaran and Sivaprasath (2016) [6] Soil moisture sensor Drip irrigation with IOT No result
Rawal (2019) [16] Soil moisture Sprinklers with IOT 1000 m>/ha
Saab et al. (2019) [17] Blueleaf tool DSS with IOT 25.7%
Saqib et al. (2020) [18] Soil moisture sensor WSNs No results
Grady et al. (2019) [19] Prototype/model Edge computing No results
Field data Device side Services
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3.2. Semantic Knowledge Base. The semantic data model
(SDM) is designed for incorporating and handling of the real-
world data. In the semantic data model, the logical levels are
applied for the categorizing of concepts and evaluation of the
information. On the basis of the results extracted from prop-
ositional logic systems set in the ontology, one can make a smart
decision.

There are concepts in our ontology to make prediction of
the level of water need on the basis of crop type, climate type,
and soil type. These parameters collectively constitute the
structured data that why we can query decision on their bases
from the given ontology. The sensed data and the decision
resulted in SPARQL (RDF query language) together comprise
the full ground vital to make a watering system run. For in-
stance, if, due to the climate type and soil strata type, a par-
ticular plant requires water, it would be contingent to water the
plant. This action of watering crops is the consequence of the
actuation that is performed on the valve. Likewise, it could be
turned off as directed by the field specification.

Sensor data are pulled together at different levels of a
large area. The observed properties or the sensed data such as
temperature, humidity, and luminance are measured at the
yard level, while soil moisture (superficial and deep) is
measured at the quadrant level. These data in the form of
RDF and the desired knowledge (crop species, climate types,
and soil types) from ontology are sent to the control agent.
The control agent also receives data about plant requirement
for quantity of water in specific soil texture.

The ontology on which our system depends is vast and
complex due to the wide range of factors/features engaged in
taking decision for watering plants or not (Appendix A). An
abstract view of ontology is shown in Figure 3. There are
different climate zones of Pakistan, and they are distin-
guished into four different types such as highland zone, arid
zone, lowland zone, and coastal zone. As the humidity level
is diverse in diverse areas, irrigation in these climatic zones
has wide-ranging water needs.

In addition to temperature and humidity, another fea-
ture, soil type, also influences the level of water need to be
given. The clay which is known as well-drained like loamy
soils is the excellent soil type for wheat [21]. There are four to
five different types of soil considering their structure and
texture. In the same way, each crop has its some specific

water needs as some require more water such as sugarcane
and rice than others such as wheat and cotton.

The architecture of our decision support system is shown
in Figure 4. The information about crop types is giving the
watering requirements of the crop by utilizing plant on-
tology. Then, data sensed from pasture/crop land, soil type,
and climate type is used for depiction on the actual watering
supplies for the field. Water instructions or suggestions will
be shown as recommendations on the mobile phone via an
android app, and as a resultant of a button click from the
farmer’s smart phone, actuations will be executed on the
valves positioned in the field.

3.3. Used Analysis Technique. Water requirement level can
be predicted by any machine learning approach such as
random forest, decision trees, KNN, naive Bayes, and
support vector machine as all of these are classification
dilemma-handling algorithms. The modeling practice we are
using lies underneath supervised machine learning, known
as KNN (with k=05). It uses the whole dataset to predict an
unseen data instance. It searches through the whole dataset
to find “k” number of neighbors which are the most close
neighbors to that data instance. This is done by actually
finding the correspondence between the instance data with
the whole dataset, where “k” is the number of neighbors
found closer to instant data. If the value of “k” is set to 3, then
three most similar neighbors will take part in assigning class
label to instant data. It then allocates the most common class
label (among those k-training instances) to the test data.
Shemim et al. utilized three feature selection algorithms,
CBEFS, FPRS, and KERS, for the dataset, and then KNN is
used to classify featured classes [21]. Bzdok et al. also dis-
cussed about supervised learning algorithms including KNN
in 2018 [22].

3.3.1. Algorithm for KNN

Step 1: calculate the Euclidean distance between new
data X (4 features involved to predict the resultant class,
A, B, C, and D) and each existing point P,, in the input
dataset S:

Euclidean distance = \/(XA — PA)* + (XB - PB)* + (XC - PC)* + (XD - PD)~ (1)

Step 2: choose the value of “k,” i.e., no of nearest
neighbors to new data X:

k=5 (2)

Step 3: count the ballots of all the “k” neighbors to
predict the class of test data X.

Step 4: assign that class to the test data X, which won
more votes.

4. Application of the Proposed Architecture

Our system to be implemented uses an Arduino UNO
(ATmega328P) controller. The data sensed by the sensors
(perception layer) are received by the microcontroller, they
are transferred to the edge server (Ist processing layer) via
GSM SIMB808 (transport layer), in which basic scrutiny
occurs, and just the immediate data required to predict the
resultant water level are transferred to the main IoT server



Climate_type

Plant_species

Complexity

is-a

15-a Hot_and_dry
is-a

Cold_and_humid

is-a
/0
1s-a Sand_and_gravel
is-a

Organic_soil

Sugar_cane

FIGURE 3: Ontology: an abstract view.

(2nd processing layer) where our trained machine learning
model is deployed. This model, after detailed analysis, tells
the rank of water need for a field. The following section
elaborates the hardware setting.

4.1. Hardware Setting for the User. Embedded sensors used in
the IoT-based system are the source of sensing inventively
and cost-effectively, and they can record and analyze real-
time data (Sarwar, Bajwa, Ramzan et al. 2018 and Munir,
Bajwa and Cheema 2019) [23]. The proposed smart IoT
system as shown in Figure 5 employs some sensors to gather

data from the environment, and a GSM module SIM808 is
used to transfer the values to the edge server. A data SIM
card is inserted in it to get facilitated by the real-time data
transportation. As we can see in Figure 6, a hygrometer
sensor is used for soil moisture, while for the moisture from
air, AM2302 DHT22 (temperature/humidity) sensor is used.
Their details are described in the following.

4.1.1. HL-69 Soil Hygrometer Sensor. For the detection of the
humidness of the soil, we used HL-69 soil hygrometer
moisture sensor. The basic purpose for using the HL-69 soil
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hygrometer moisture sensor is to provide better reading than
other soil moisture sensors. This sensor is used for real-time
monitoring soil moisture of plants in a tunnel farm. The
voltages of the sensor output change accordingly to the water
content in the soil. There are some key factors of HL-69 soil
hygrometer sensor. If soil moisture is greater, then the
output voltage decreases, but if the soil is dry, then the
output voltage increases. The hygrometer soil moisture
sensor provides an analog signal as an output which has to be
converted to digital by Arduino. This sensor includes two
pieces: one is an electronic board and another one is two
pads that detect the water content. LM393 comparator chip
is located on the electronic board. The electronic board of the
HL-69 soil hygrometer sensor has a fixed bolt hole used for
easy installation. It contains two lights: red and green; red
light shows the power indicator, and the green light shows
the digital switching output indicator.

4.1.2. AM2302 DHTI1 Sensor. The DHT22 sensor is a
common temperature-humidity sensor that is used to de-
termine temperature and humidness in air. The DHT22
sensors are made up of two parts: a humidity sensor and a
thermistor. There are some key factors of the DHT22 sensor

which are as follows: the cost of the DHT22 sensor is low.
DHT22 sensor is good for 0-50% temperature readings with
2-5% accuracy and a humidity range from 20 to 80% with 5%
accuracy. The I/O voltage for the DHT22 sensor is between
3V and 5 V. While requesting data, the maximum current use
during conversion is 2.5 mA. DHT22 sensor contains 4 pins
with 0.1 spacing between them. The body size of the DHT22
sensor is approximately 15.1 mm *25mm *7.7 mm.

4.1.3. BH1750 FVI Light Sensor. BH1750 is a common
digital light sensor that can determine the light intensity.
BH1750 is a calibrated digital light sensor, and it can
measure even small traces of light and can convert it into a
16-digit numeric value. It is commonly used in mobile
phones to exploit the screen brightness based on the en-
vironmental lighting. BH1750 measures the light intensity in
the range of 0 to 65,535lux (L). In the smart irrigation
system for tunnel farming, we used the H-resolution mode
of the BH1750 sensor. There are some key factors of BH1750
sensor which are as follows: the chip of the BH1750 sensor is
BH1750FVI. The power supply of the BH1750 sensor is 3.3 V
to 5V. The BH1750 sensor is a built-in 16 bit AD converter
that converts detection of light into a 16-digit numeric value.
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The range of light intensity in the BH1750 sensor is 0 to
65,5351ux. The size (L*W) of the BH1750 sensor is ap-
proximately 3.2cm™1.5 cm.

5. Results and Discussion

The proposed watering system for tunnel farming is so smart
that develops and employs the assistance of true decision-
making capability of machine learning. The architecture and
the hardware details of the system are given in the preceding
section. All the sensors (temperature and humidity, light
sensor, and the soil moisture sensors) were deployed to the

actual field to analyze the reaction of the proposed system.
The data transferred to the edge server through the GSM
module and through an Android application whereas the
results can also be seen by a farmer. A user can then perform
some actuation to open or close the valve.

5.1. Preparing the Training Dataset. The system is completely
automated as the sensor data receiving from the field are
processed according to our trained model of machine
learning, i.e., trained by the characteristic sensor values
shown in the following. Table 2 shows five classes: highly
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needed, needed, average, not needed, and highly not needed
for various levels of soil moisture sensed by the HL-69
hygrometer sensor and temperature and humidity sensed by
AM2302 DHT22. The output of a HL-69 hygrometer varies
from 0 to 870, while the humidity level of the AM2302
DHTI11 sensor varies in the air from 20 to 80%, and its
temperature value ranges from 0 to 50.

Here is our sampled training dataset shown in Figure 7
based on our rules set in Table 2, which we have provided to
our machine learning algorithm to predict water needs for
the given crop types.

5.2. Training of the KNN Model. We have implemented the
code in Anaconda, created for python programs, and have
trained our model on the fact that, on a particular tem-
perature, water requirements of different crops, which we
are taking into consideration, can be given.

Rice > sugarcane > maize > cotton > wheat.

This general rule can be elaborated more specifically by
identifying ranges for temperature, humidity, and soil
moisture for all the given types of crops to recognize its class.
Here is the rule summary in Table 3.

In Table 3, labels “HN,” “N,” “A,” “NN,” and “HNN” are
second hand for classes highly needed, needed, average, not
needed, and highly not needed correspondingly. Likewise,
working rules for watering considering climate and soil are
given in the following.

Sand and gravel > clay > silt > loam > organic soil.

Hot and dry > hot and humid > cold and humid.

5.3. Deploying the Trained Model. Our trained model has
been developed using Scikit-learn. To make it available to
production and to make it useful for end users so that they
could extract real values from it, we have deployed it. In this
regard, we need to have three components shown in
Figure 8.

The developed and trained model for predicting the
water level as a “model.pkl” file is ready, and model eval-
uation is provided in the results section. The web service we
have used for this purpose is the Flask API. Lastly, we need
cloud as a service provider, and Heroku server fulfilled our
requirement in this proposed system.

5.4. Implementation Using Edge Computing. In the process of
deploying the trained model through Flask API, we actually
define routes to where an HTTP request handles. One route
is for handling one HTTP request. The data are travelled in
the system from one side (perception layer) to other (edge
server).

The piece of code in Figure 9 is responsible for sending
the sensor data from the sensor-Arduino side (i.e., per-
ception layer) to edge server Firebase (i.e., processing layer).
Second last line of the code is establishing a link to which
data (temperature, humidity, soil moisture, and phone no.)
are transferred. These data are received by our edge server by
a route “/submit” defined in the application of Flask API as
shown in Figure 10. Whenever data from sensors send to the

TaBLE 2: Classes of sensor data.

Soil moisture Temperature Humidity

(%) ) (%) Class
<30 >45 <30 Highly needed
30-45 35-45 30-45 Needed
46-60 25-34 46-60 Average
61-80 20-24 61-80 Not needed

Highly not
80-100 <20 >80

needed

established link of HTTP request, it triggers the following
piece of code to run. In this piece of code, the sensor values
and the SIM card no. (phone no.) are inserted in our da-
tabase server (Firebase).

As we can see in Figure 11, each phone no. is repre-
senting a different device. Any data coming from a particular
device are stored under the hierarchy of its phone no. Each
record under a device has a key value associated with it,
which actually contains the sensor data values. Whenever a
particular record arrives at the edge server, its key value
stores in the parameter “latestKey” under its phone no.
When another entry of record happens, its key value replaces
the previous one. In this way, our database is designed to
have the record of most recent data entered in it.

Firebase can be omitted from the system, and data can
directly be sent to the Heroku server (IoT server), i.e., cloud
computing. That is really a bad practice due to overburden
of the IoT server with useless data. Since sensors are
sending each and every instant value to the IOT server and
IOT server is responsible for scrutiny of data coming from a
device (which means three sensors values every 30 sec-
onds), and then applying model to predict value for water
requirement. It will definitely affect the speed and efliciency
of the system. This is the main concept of introducing edge
computing.

The piece of code in Figure 12 is triggered by the smart
mobile/tab when the user clicks to predict results for water
requirements. It utilizes the trained model to predict the
water requirements and return the value to the server. This
value is sent to the user, and he/she can see the result on his/
her phone via the app.

5.5. Android Application. An android platform is provided
to the farmers. The input parameters (crop type, climate
type, and soil type) are put on view in a dropdown, and users
can select from these and can send the command to the
device implanted to the field.

Codes for crop types, soil types, and climate types are
transferred from the mobile app interface in Figure 13(a) to
the server to which ontology is attached. Decision extracted
from the ontology section along with the sensor values then
reaches the main IoT server where our machine learning
algorithm is installed. Our training dataset also contains the
encoded values for labels for different classes which are
converted to the text (class label) at the front end in the
android app as in Figure 13(c). These codes are shown in
Table 4.
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FIGURE 7: Sampled training dataset.
TaBLE 3: Working rules for different crops.
Rule no. Temperature Humidity Soil moisture Ontology decision Class
1 T >50 H <20 SM <20 HN HN
2 T >40 H <40 SM <40 HN N
3 T >30 H <60 SM <60 HN A
4 T >20 H <80 SM <80 HN NN
5 T <20 H >80 SM >80 HN HNN
6 T >57 H <20 SM <10 N HN
7 T >40 H <30 SM <30 N N
8 T >35 H <40 SM <40 N A
9 T >30 H <60 SM <60 N NN
10 T <30 H >60 SM >60 N HNN
11 T >57 H <20 SM <10 A HN
12 T >40 H <30 SM <30 A N
13 T >35 H <40 SM <40 A A
14 T >30 H <60 SM <60 A NN
15 T <30 H >60 SM >60 A HNN
16 T >50 H <30 SM <40 NN HN
17 T >40 H <40 SM <60 NN N
18 T >30 H <60 SM <80 NN A
19 T >20 H <90 SM <100 NN NN
20 T <20 H >90 SM >100 NN HNN
21 T >50 H <30 SM <30 HNN HN
22 T >40 H <50 SM <60 HNN N
23 T >30 H <60 SM <80 HNN A
24 T >20 H <80 SM <90 HNN NN
25 T <20 H >80 SM >90 HNN HNN
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FIGURE 9: HTTP request sending to store sensor data.
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result /sen d data/’ request.values[ p

request.values[ ‘phone”], "lat , result)
Saved!'})

FiGure 10: Route defined for inserting values to the database.
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Ficure 11: Edge server handling data from sensors via the HTTP request.

{'/predict’,
dict():
p(request)
request.values

crop
climate

—[ 'POST' 1)

len(request.values)
request.values[ crop”]

reguest.values[’climate’ ]
soil = request.values['soil’]
phone request.values[ "ph
latestkey - firebase.get(’,
humidity result

firebase.ge
/ data-collection- /data/’
"humidity ']
soilmoi sult firebase.
; collection-7d
soil moisture’)
temperature result firebas
jdata/"
"temperature’)
model pickle. n{
prediction = model.predict(

nsor-data-collection-7d34e/data/’

/model/model.pkl”,

phone '/latestkey', 'name’)

phone latestkey,

latestkey,

phone latestkey,

"rb"))

[[humidity result, soilmoisture result, temperature result, crop, climate, soil]])

print(prediction)

json.dumps({ ‘status’: ‘true’,

json. ({'status': 'false’,

(prediction[@])]})

'‘Invalid request.’})

FIGURE 12: Data transfer from edge server to IoT server with prediction results.

For example, we choose, from the dropdowns in the user
input screen shown in Figure 13(a), sugarcane as a crop type,
hot and dry as a climate type, and loam as a soil type. After
clicking the button “Send” from the Figure 13(b) interface,
the sensor readings come across to the server.

The values for humidity, temperature, and soil moisture
and the encoded result for soil type, climate type, and crop
type values are considered by our trained ML model to
recognize the watering need for the specific crop. So, with
the 50% result coming from ontology and the sensor values,
our system foretells to water the crops and displays a note on
the farmer’s mobile screen as shown in Figure 13(c).

The highlighted text “Highly need water” is mainly the
output of our machine learning algorithm already discussed
in the previous section. As shown in Table 4, our training
dataset holding the labels ranges from —1 to 3. These are
effectively the degree of water necessity to a specific plant at
specific time.

5.6. Performance Evaluation. We have performed tests on
our sample data, which we have obtained randomly from
about 500 instances. We provided these instances to train
our KNN model for the proposed system to forecast class
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TaBLE 4: Codes for class labels.

Class Code
Highly needed 3
Needed 2
Average 1
Not needed 0
Highly not needed -1

labels. We used two statistical measures to estimate the
performance of our KNN model, i.e., precision and recall.
Figure 14 shows the accuracy report of the results of the
KNN model providing k=5.

The accuracy report of the trained model is given in
Figure 1 and also presented graphically. Predicted results for
class label “Needed” are lacking in precision. This perfor-
mance is dependent on the “k” value that is the no. of nearest
neighbors involved in the predicting class. Figure 15 shows
the confusion matrices without normalization and with
normalization.

To increase accuracy, we should choose the “k” value
precisely. As per general rules for the KNN algorithm, the
value of “k” for the problem of two classes should be an odd
value, and for more than two classes, the “k” value should
not be the multiple of the number of the resultant classes.

As in our case, we have five labeled classes to be predicted,
so we will choose “k” accordingly. In order to choose a
suitable value for “k”, we have to plot “k value versus mean
error” graph to identify the error trend. So, we plot it by
using “matplotlib.pyplot” in Figure 16.

As we can see, the mean error initially increases up to
0.5 as the “k” value increases, but there is a sudden fall
which occurs after that to the value of 0.3 when the “k”
value reaches 10 to 11. After that, rise in error rate starts,
and it continues to increase with the increase in the “k”
value. It means that our “k” value should be “11” that is the
maximum value of ‘K’ for which mean error remains
lowest. So, for the value of k=11, we again find the ac-
curacy report to check if the performance of our model is
getting better or not.

Figure 17 shows the significant improvement in the
performance of the model as accuracy rate increases when
we set the “k” value to 11. The precision value for class “Not
Needed” is increased from 0.33 to 1.0 which means ac-
curacy rate increases from 33% to 100%. Similarly, for class
“Average,” the precision value increases from 0.25 to 0.33
which means that accuracy rate increases from 25% to 33%.
This is how tuning of the model can be possible. By tuning
training data values and by adjusting the “k” value, we can
have a better model for our system. This is the main reason
why we choose KNN algorithm for our proposed system.
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6. Conclusion and Future Work

Our proposed solution for smart irrigation constitutes
three modules: first module is the sensor network, which
is required to sense parameters influencing the water
need. We have used sensors DHT22, light sensor
BH1750, and HL-69 hygrometer to sense temperature,
soil moisture, light, and humidity in air. In the third
module, we use edge and main IoT servers to transfer and
receive data via HTTP requests. In the second module,
we applied KNN on the sample dataset to train the model
and used it for efficient decision-making of water re-
quirements. Our trained model classifies the input into
five possible classes based on input values such as highly
not required, not required, average, required, and highly
required. We have fully implemented the proposed
system in Anaconda.

Currently, our system employs KNN for decision-
making, but other intelligent data-extracting techniques can
also be used for decision-making. So, the presented irriga-
tion system can reproduce in future by using other decision-
making techniques such as random forest. Moreover, the
edge computing architecture can be further improved by
making the edge server responsible for processing data and
depicting the result from the machine learning algorithm. In
other words, the trained model for KNN can be deployed at
the edge server so that nearby devices to a particular edge can
get facilitated by that edge server. It will improve latency rate
remarkably.
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