
Intelligent Assistance for
Software Development and Maintenance

Gail E. Kaiser

Columbia University

Department of Computer Science

New York, NY 10027

Peter H. Feiler

Steven S. Popovich

Carnegie Mellon University

Software Engineering Institute

Pittsburgh, PA 15213

Final version to appear in IEEE Software, May 1988.
5 June 1987

1

Overview
This article presents an architecture for controlled automation in software development en-

vironments. Controlled automation enables environments to behave as intelligent assistants by

answering questions about the software project and automatically invoking tools to further the

users’ goal of producing a working software system. The discussion of the architecture focuses

primarily on the programming stages of development and maintenance. An environment assists

programmers by understanding the technical aspects of the evolving software system and by ac-

tively participating in the programming process. The architecture supports these capabilities by

providing two kinds of knowledge representation: (1) the knowledge specific to a particular

software project is represented as entities in a database and (2) the knowledge that models pro-

gramming activities in general is represented as rules amenable to forward and backward chain-

ing. These rules enable an environment to automatically carry out each activity sometime be-

tween when its conditions are satisfied and its results are required. The rules are grouped into

collections called strategies. One or more specific strategies are employed according to each

user’s current context and goals, and determine when forward or backward chaining should be

applied and which rules are considered during chaining. This architecture has been validated

through a prototype implementation that models the capabilities of an existing environment that

supports automation.

1. Introduction
1In 1973, Winograd discussed his dream of an intelligent assistant for programmers. He

proposed that the most fundamental requirement for an intelligent assistant is that it understand

what it does, that is, it should be based on an explicit model of the programming world.

Winograd described an imaginary programming environment, A, that would assist programmers

by providing early error checking, answering questions about the program and the interactions

among program parts, handling trivial programming problems, and automating simple debugging

tasks.

This article presents an architecture for intelligent assistance that combines results of software

engineering and artificial intelligence research, briefly surveyed in Box A. Software engineering

provides experience building and using particular software development tools and environments

in the context of specific software development processes. Artificial intelligence provides

suitable structures for representing knowledge about software entities and the role of tools in the

2

software development process. The architecture supports environments that incorporate certain

understanding of the developed software systems and of the usage of tools for producing the

software. In particular, they handle the first two duties described by Winograd: early error

checking and answering queries about programs. The environments aid not only individual

programmers, but assist in the coordination of multiple programmer teams. The architecture has

not yet been applied to other aspects of software projects, such as project management or life
2cycle support, which are handled by some project support environments.

The architecture supports two basic aspects of an intelligent assistant: to provide insight into

the software system and to actively participate through opportunistic processing. Insight is the

capability of an environment to be aware of users’ activities and to anticipate the consequences

of these activities based on an understanding of the development process and the target software

system. Insight assists individual programmers by permitting them to become informed more

quickly about the structure and relationships in the target system, to be aware of the con-

sequences and side effects of their tasks, and to be guided in the job of making even major

changes to a system and getting it back into a consistent state. Insight also assists in coordinat-

ing the activities of multiple programmers so they can accomplish their tasks without interfering

with each other, knowing that the results of simultaneous work will be combined in a controlled

way.

Opportunistic processing is the capability of an environment to undertake simple software

development activities, so that programmers need not be bothered with them. This processing

must be carried out without interfering with the users. The architecture automates only menial

activities, such as determining when the source code has changed, invoking the compiler, and

recording errors found during compilation. It performs an activity when the opportunity arises,

i.e., at an appropriate time between the time a user activity causes additional processing and the

time the user requests the results of an activity; thus the term ‘opportunistic’ processing. This is

in contrast to some intelligent assistants such as the Programmer’s Apprentice (also known as
3 4KBEmacs) and CHI , which focus on automatic programming.

The architecture has been validated through a prototype implementation that is capable of cap-

turing the intelligent assistance embedded in an existing software development environment,

called SMILE. We call the environment that embodies our architecture PROFESSOR MARVEL, or

MARVEL for short, because Professor Marvel was the (Kansas) name of ‘the man behind the

3

curtain’ in the movie The Wizard of Oz. The analogy is from the ability of MARVEL to produce

impressive results using relatively simple technology. SMILE is described in Box B, while the

prototype implementation of MARVEL is discussed in Box C. A more elaborate implementation,

which will permit the extension of the MARVEL concepts to non-programming activities, is un-

derway.

The rest of this article explains how the architecture combines the software engineering and

artificial intelligence approaches to support intelligent assistance for software development and

maintenance. Section 2 gives an overview of the architecture. Section 3 describes the assistance

provided by the insight mechanisms while section 4 demonstrates how the opportunistic process-

ing mechanisms support active participation. A short sample session script illustrates the use of

the MARVEL. The conclusions summarize the contributions of this research.

2. An Architecture for Intelligent Assistance
According to Winograd, the distinguishing feature of an intelligent assistant is that it under-

stands what it does. There is a spectrum, however, to artificially intelligent systems. Most

software tools can be thought of as moronic assistants that know only what to do and do not

understand the purpose of the objects they manipulate or how their tasks fit into the software

development process. In other words, they know the ‘how’, but do not understand the ‘why’.

A software development environment cannot understand why it performs particular activities

unless it knows

• the properties of the objects it manipulates,

• tools and activities, and the objects they manipulate,

• the preconditions under which a tool or activity can be activated,

• the results or postconditions of each activity, i.e., the state of development after ter-
mination of an activity.

Therefore, the architecture consists of two key components. The first is a database, where each

datum is represented as an object in the sense of object-oriented languages. This objectbase

maintains all entities that are part of the evolving software system, all information about the

history and current status of the project, and all tools used during software development and

maintenance. The objectbase defines the various classes of objects and the relationships among

objects, such as one object is a component of another and a particular object may be applied to

another object to produce a third object. The objectbase is active in the sense that accessing

objects may trigger certain actions.

4

The second key aspect is a model of the software development process that imposes a structure

on programming activities. The model consists of an extensible collection of rules that specify

the particular conditions that must exist for particular tools to be applied to particular software

objects. Some rules are relevant only when a tool is invoked by a user, others apply when tool

processing is initiated by the environment, while some rules apply equally to both cases. For-

ward and backward chaining permit the environment to perform activities automatically when it

knows the results of these activities will soon be required by its users. The article describes

mechanisms that enable each user to select the automation of desired activities and control un-

desired processing.

Box D illustrates the potential for intelligence assistance by describing a thought experiment

where an objectbase and a model enhance the capabilities of two well-known programming

tools. Rather than add intelligence to specific tools individually, the goal of the architecture is to

encapsulate all the intelligence in the environment, so that it is not necessary to modify the tools.

The following two sections explain the mechanisms that permit the MARVEL environment to

exhibit insight and opportunistic processing, respectively, and thus intelligently assist its users.

3. Providing Insight
The two key elements to supporting insight are a rich, structured information repository and

mechanisms to make available appropriate information at appropriate times. The information

repository is represented as an objectbase. The access mechanisms fall into two categories, those

that support direct access, or browsing, and those that support retrieval, i.e., queries.

3.1. An Objectbase
5MARVEL’s objectbase is conceptually related to object-oriented programming languages, in

that each object is an instance of a class, which defines the type of the object. The objectbase

contains a set of software objects, which represent both the system and its history of develop-

ment. Object types include module, procedure, type, design description, user manual, develop-

ment step, etc. Typing permits MARVEL to provide an object-oriented user interface, meaning

the environment makes available only those commands that are relevant to the object under con-

sideration within the context of the user’s recent activities.

Unlike most object-oriented languages, however, the objectbase is ‘persistent’, meaning it

retains its state across invocations of the environment. This enables MARVEL to provide a

5

‘fileless environment’; that is, it exposes its users only to the logical entities comprising the tar-

get software system, not to the physical storage of the software in terms of directories and files.
6Similar capabilities are found in the database support for other knowledge-based environments.

Each class defines certain properties of an object and inherits other properties from its

superclass(es). Some properties, called attributes, define the contents and status of objects. The

software development activities applicable to the instances of a class are defined by a second

category of properties, called methods. The values of attributes may be simple values (integers,

strings, etc.) or they may represent relationships with other software objects. Simple attribute

values include names of objects, status information about objects such as whether a software

object has been analyzed for static semantic errors and the analysis was successful, or string

entities such as pieces of source text or binary object code. Some of the relations represent the

logical (syntactic) structure; for example, a module is composed of procedures, types, and vari-

ables. Other relations express various types of semantic dependencies, such as intended use —

indicated by the import clauses of modules — or actual use, as demonstrated by the invocation of

a procedure. Relations are bidirectional by default, permitting the information to be queried

more flexibly, e.g., a user can ask for all uses of procedure p as well as all uses of other

procedures by procedure p. All information about objects is maintained in the objectbase, and

inferred or derived by MARVEL where possible: users are spared the tedium of entering redun-

dant information.

3.2. Accessing Information

Information in the objectbase is accessed for two purposes: for viewing and querying, and for

modification. Both users and tools may access information. Users generally modify the struc-

tural hierarchy, the names of objects, and source text attributes; they do this through particular

views of the objectbase. A view is defined as the subset of the information in the objectbase

relevant to the current goals. Other attributes (e.g., analysis status or use relationships) are main-

tained by tools to reflect the current state of the target software system. Users can also benefit

from browsing and querying this auxiliary information.

6

3.3. Browsing

Browsing takes place according to views. The logical structure of the target system provides a

natural default view. For example, the user sees program libraries containing modules, which in

turn contain other modules or indivisible software components, i.e., procedures, types, variables,

etc. The user can navigate through this structural hierarchy the same way users navigate through

directory structures in file systems. However, limited bandwidth prohibits exposing users to the

complete structure at one time (unless very small fonts are used!), which may be undesirable in

any case because of the problem of information overload.

Views can be displayed and browsed in a variety of ways. MARVEL procides a style of brows-

ing where objects and subparts of objects can have selectable textual representations. Selection

of such an entity specifies the current focus of attention. Processing and command selection are

sensitive to the current focus, presenting the user with an object-oriented interface.

MARVEL tries to balance the amount of information presented to the user. One view displays

only a single level of the structural hierarchy. A selected object can be edited, e.g., the source

code attribute of a procedure object or the proper name of an object, and can be opened for

viewing if the component represents a reference to another object. The newly opened object can

be viewed in the current window, or in a separate window. Another view shows multiple levels

of the hierarchy at once. This permits MARVEL to respond to user requests for more context

information, reducing the need for repeated user queries or browsing operations. For example,

when viewing the content of a module, the view contains the names of the component objects as

well as their type, i.e., whether they are procedures or documents. Similarly, provision of visual

feedback of values for certain essential attributes, e.g., whether a module contains errors,

eliminates additional queries by the user while still avoiding information overload.

MARVEL permits the user to gain insights not only by navigating through the primary logical

structure, e.g., the library-module-component hierarchy, but also by following other cross-

reference links such as opening to the specification of a module referenced in the import list of

another module. Such cross-link browsing capabilities permit the user to get an impression of

the context of a piece of software with reduced effort.

In summary, the browsing capability allows the user to manually navigate through the ob-

jectbase, changing the focus of attention. This permits MARVEL to track user actions, anticipate

the consequences, and assist him to cope with them. However, manual navigation is inadequate

7

for general search tasks. For example, if the user maintains a system with 150 modules, trying to

find the three modules with outstanding errors can be a tedious task if done by browsing. A

general querying capability combined with a browsing capability solves this problem.

3.4. Queries

A general question answering capability supports searches of the objectbase for software ob-

jects based on search conditions. Examples include ‘retrieve all software objects with proper

name x’ or ‘retrieve all modules that contain errors’ (phrased in a stylized command language).

The search space can be constrained in several ways. One way is through particular search con-

ditions, such as objects of a particular type, or attributes having particular values. Other con-

straints are expressed in terms of the primary logical structure by indicating the search to be

limited to a particular substructure, e.g., search of a procedure in a particular library. MARVEL

also prunes the search space by utilizing dependency information such as import and actual uses

of procedures.

Queries may be either explicit or implicit. Explicit queries correspond to queries posed by a

user. MARVEL predefines short forms for a set of common queries. Examples of such queries

are: ‘what components use a particular function’, ‘are certain components not used at all’ (useful

during maintenance or cleanup), ‘which components/modules have errors’, ‘which components

have a particular error’, and ‘is anybody else intending to modify or actually modifying a par-

ticular component/module’. Such queries allow the user to get an impression of the structure and

connectivity of the software to be modified or maintained.

Implicit queries are initiated by MARVEL. There are several reasons for it to do so. The en-

vironment may have encountered an exceptional condition and generated a query to find essen-

tial information in an attempt to repair the problem. For example, if the user requests to edit

procedure p, but procedure p is not within the current focus (i.e., the current module), MARVEL

queries the objectbase for a procedure named p. If the query returns a unique element MARVEL

can change the focus; if there are choices, it asks the user to make the selection.

A second reason for implicit queries is that the result of the query may be automatically

presented to the user. An example is the provision of change simulation. When a user gives the

command to edit the specification of a module component that is being exported, MARVEL in-

forms the user of the expected extent of the consequences and requests confirmation to go ahead

8

with the editing. The same information can in turn be used to check whether the affected com-

ponents are accessible for modification (i.e., have been reserved by the particular user). The

result of this query can again be presented to the user, or MARVEL can go ahead and attempt a

reservation and/or add new editing tasks to the user’s agenda (see section 4). Implicit queries are

made when the result of the query provides insight into expected activities, making the user

aware of the potential consequences of his actions during development and maintenance.

3.5. Summary
• The objectbase maintains both the structural relationships among objects and ad-

ditional relationships defined by the tools provided by the environment.

• Multiple views of the objectbase support browsing and queries according to ap-
propriate abstractions of the information in the objectbase.

• Multiple views are also available to tools, and support implicit queries by the en-
vironment to anticipate the consequences of user actions.

4. Supporting Opportunistic Processing
In addition to software objects, the objectbase also maintains the meta-knowledge MARVEL

uses to know when to apply sequences of tools on behalf of the users. This meta-knowledge is

defined as an extensible collection of rules consisting of a precondition, an activity, and multiple

postconditions. Forward chaining allows the assistant to invoke tools as soon as their precon-

ditions are satisfied, i.e., the earliest point of activation, and backward chaining makes it possible

to find the tools whose postconditions satisfy the preconditions of other tools whose activation is

requested, i.e., the latest point of activation. Strategies tailor this controlled automation to the

needs of each particular user; for example, MARVEL may perform different functions for an

long-term user than for a novice. It is important to realize that the rules and strategies are written

by an environment maintainer; individual users see the effects of such descriptions in the choice

of available strategies and in the resulting behavior of the environment in providing active assis-

tance.

4.1. Rules

MARVEL rules are based on production rules, i.e., condition/action pairs. When the condition

is true, or satisfied, then the action is applied to working memory (in this case, the objectbase).

However, production rules are inadequate, because it is necessary to separate the invocation of a

tool from the results produced by the tool in order to integrate existing tools without modifica-

9

tion. Therefore, the action is divided into two parts, an activity and a postcondition. Because

rules have postconditions, the original conditions are called ‘preconditions’.

The activity part of a rule represents an integral software development task. For example,

"compile module" is one activity and "edit procedure" is another. Low-level editing commands

(delete character, move cursor, and so on) applied during the course of the "edit procedure" ac-

tivity are not themselves considered activities. High-level goals such as ‘fix bug’ are not ac-

tivities, since they involve many tasks and perhaps several users. Thus an activity represents a

middle-ground in granularity.

Each activity is associated in the objectbase with a tool that actually carries out the activity.

One attribute of each tool is whether or not it can be invoked implicitly by the environment

without human intervention. For example, the "compile module" activity is associated with the

compiler, which can be applied automatically; the "edit procedure" activity is associated with a

text editor (or a syntax-directed editor), and an attribute of the editor indicates that editing re-

quires human interaction.

The precondition part of a rule is a boolean expression that must be true before an activity can

be performed. The operands of a precondition include software objects and their attributes. For

example, "notcompiled(module)" might be an appropriate precondition for the "compile module"

activity. If static semantic analysis is separated from code generation, another predicate for the

same activity would be "for all components c such that in(module, component c):

analyzed(component c)", where "analyzed(c)" is true only if the analysis of component c (a pro-

cedure, a type, a variable declaration, etc.) did not find any errors.

A postcondition is an assertion that becomes true when an activity is completed. Both precon-

ditions and postconditions are written as well-formed formulas (wffs) in the first order predicate
7calculus. Thus rules are syntactically similar to Hoare’s assertions, where a programming lan-

guage construct is associated with its preconditions and postconditions; if the preconditions are

true before the language construct is executed, then the postconditions will be true afterwards.

The semantics of MARVEL’s postconditions differ from Hoare’s in that the purpose of the

postcondition is to update the objectbase rather than to be verified. Further, a programming

activity may result in any one of multiple postconditions. The choice is determined by the result

of the tool invocation, and the chosen postcondition is asserted. For example, two mutually ex-

clusive postconditions for the "compile module" activity might be "compiled(module)" and

"errors(module)". The "compile" rule describing the above properties is given in figure 4.1.

10

notcompiled(module) and
for all components c such that in(module, component c):

analyzed(component c)
{ compile module }

compiled(module) |
errors(module);

Figure 4-1: Compile Rule and Edit Rule

4.2. Forward and Backward Chaining

Forward and backward chaining contribute to opportunistic processing by enabling MARVEL

to use the rules to determine what needs to be done and what can be done automatically. For-

ward chaining implies that if the preconditions of an activity are satisfied, and the activity is one

that the assistant is capable of performing, then MARVEL may perform the activity without

human intervention. Forward chaining supports behavior familiar from language-oriented
8editors. When the user makes a subtree replacement in the abstract syntax tree representing the

program, the editor automatically performs various actions, such as type checking or code

generation for the modified part of the program.

Consider again the rule in figure 4.1. MARVEL uses forward chaining to interpret this rule to

mean that the assistant may compile any and all modules M such that all the components of M

have been successfully analyzed but M has not yet been compiled. One of the preconditions is

"notcompiled(module)" of the "compile module" activity and "errors(module)" is included as one

of the possible postconditions. If a module has been previously compiled unsuccessfully,

"errors(module)" will be true. The "compile module" activity cannot be performed when

"errors(module)" is true, because its preconditions cannot be satisfied. If a user then edits a

component, perhaps to fix the error, a rule representing the edit activity will set

"notcompiled(module)" to be true, permitting compilation to be tried again.

Forward chaining implies that MARVEL may perform an activity when its preconditions are

satisfied. The assistant is not required to perform the activity as soon as the preconditions are

true, or at any particular time thereafter. However, it may go ahead and apply the tool, and use

forward chaining to determine additional activities whose preconditions are now satisfied as a

result of generating the postconditions of the first activity. The following section explains how

MARVEL decides when to apply forward chaining.

11

Backward chaining implies that if a user invokes a tool whose preconditions are not satisfied,

MARVEL should find other activities it can perform whose postconditions might satisfy the

preconditions of the activity requested by the user. Backward chaining requires that the assistant

exhibit this behavior. The behavior supported by backward chaining is behavior familiar from
9Make . When a user requests regeneration of an executable system after changes have been

made to its source code, the tool uses dependency information previously supplied by the

software development team to determine which source files must be recompiled. Of course, it

may not be possible to satisfy all the preconditions, and in this case the user is informed of the

problem; MARVEL is not expected to, for example, find and repair bugs. In general, MARVEL

will not automatically perform activities that invoke tools requiring human intervention.

Consider the case where MARVEL supports a large programming team where multiple users

are not permitted to change the same module at the same time. This might be handled by requir-

ing each user to reserve a module before changing it. The preconditions and postconditions for

the "reserve module" activity are stated in the first rule shown in figure 4-2 ("saved(module)" is

true when the module has been saved by the version control tool). The second rule states that the

"change component" activity cannot be carried out unless the module that contains the com-

ponent is reserved.

not reserved(module) and saved(module)
{ reserve module }

reserved(module, userid);

reserved(module, userid)
{ change component }

notanalyzed(component) and notcompiled(module);

for all components k such that in(module, component k)
and uses(component k, component c):

reserved(module, userid)
{ change component c }

Figure 4-2: Change Rules and Reserve Rule

The "change component" activity permits the user to modify the specification of a component

("edit component" permits the user to modify only the body). The third rule of figure 4-2 states

that not only should the containing module be reserved, but it is necessary to reserve any other

modules whose components use the component that will be changed (the names c and k are used

to distinguish multiple objects of the same type). Backward chaining makes it possible for

12

MARVEL to automatically reserve any modules whose components may have to be modified in

order to restore consistency with the changed component. It also prevents the user from modify-

ing the specification of a component when these other modules cannot be reserved (according to

the first rule).

4.3. Employing Strategies

When MARVEL attempts to assist the user by performing opportunistic processing it must

wisely choose the degree of automation. It does so by selecting appropriate points on the

spectrum between the earliest and latest time an activity can be performed automatically, and by

disabling certain automatic processing when it gets in a user’s way; in other words, MARVEL

must dynamically adapt to the current user’s goals. This problem is remedied by including hints

and strategies in the architecture to aid the assistant in making these decisions.

A hint is similar to a rule, except there are no postconditions. The preconditions of a hint are

used to guide the assistant in choosing when to apply a tool whose other preconditions are

satisfied. Consider again the rule from figure 4.1. Suppose MARVEL should not automatically

recompile a module, even though the preconditions are satisfied, as long as a user who has

modification rights is browsing through the module. The rationale is that the user may soon

decide to edit some components of the module, and then the generation of code will have been

wasted. This is captured in a hint, shown in figure 4-3, giving this precondition for the "compile

module" activity (angle brackets are used for parentheses in both rules and hints). When the

assistant follows a strategy including this hint, compilation is delayed until the user changes his

focus to another module.

not reserved(module) or
< reserved(module, userid) and
not equals(module, focus(userid)) >

{ compile module }

Figure 4-3: Compile Hint

Of course, the user must be able to invoke the compiler without changing focus to another

module. This is why this precondition to "compile module" is stated as a hint, rather than as part

of a rule. Hints apply only to the opportunistic processing of the environment, not to user-

initiated activities. In other words, hints are considered during forward chaining and ignored

during backward chaining.

13

A strategy consists of a collection of hints and rules. These hints and rules apply only when

the strategy is in force. MARVEL employs strategies by combining their rules and hints. One or

more strategies may be employed at the same time. When this results in more than one rule for

the same activity, all their preconditions must be satisfied, but only one member of the set of

postconditions may be asserted.

MARVEL cannot choose its own strategies. Instead, each user selects the appropriate strategies

by informing the environment that he is, for example, a manager vs. a programmer, developing a

new software system vs. maintaining an old software system, or making major change vs.

making a minor revision. For example, a strategy whose rules and hints result in automatically

performing type checking immediately after each component is edited would be appropriate for a

minor revision, but not for a large scale change involving many interrelated components.

MARVEL has predefined strategies for these cases; these strategies can be modified or replaced

and new strategies can be added by an environment maintainer tailoring the environment. In

general, individual users would not modify the rules or strategies.

4.4. Activities as Side-Effects

Often a tool has the effect of performing additional activities as side-effects. For example, the

analysis tool invoked for the "analyze component" activity may change the values of several

attributes of software components. Setting the value of an attribute is considered an activity,

resulting in a situation where one action of MARVEL is embedded inside another rather than

being a consequence of forward or backward chaining. This case demonstrates a limitation of

MARVEL’s rules: secondary actions whose arguments are not simple derivatives of the ar-

guments of the preconditions or the activity cannot easily be expressed as postconditions. In-

stead, potential side-effects are indicated by attributes of the tool. In such cases, the secondary

activities are often described by their own rules, and these must be considered for further

processing. For example, some rules related to the "uses" attribute of a component are given in

figure 4-4. The "uses" attribute lists the other components that the component depends on.

The first rule gives the obvious preconditions and postconditions for the "analyze component"

activity. The second rule in figure 4-4 states a component c cannot use another component k

unless component k is in the same module or is imported into the module. The third rule means

that a component cannot be imported by a module M unless it is exported by another module N.

The fourth rule states that a component cannot be exported by a module unless it is in that

module.

14

notanalyzed(component)
{ analyze component }

analyzed(component) |
errors(component);

in(module, component c) and
< in(module, component k) or imports(module, component k) >
{ component c uses component k }

uses(component c, component k);

exports(module N, component) and
not equal(module M, module N)
{ import component }

imports(module M, component);

in(module, component)
{ export component }

exports(module, component);

Figure 4-4: Analyze Rule, Uses Rule and Import/Export Rules

Consider what happens when the analysis tool finds that procedure p (a component) calls pro-

cedure q (another component) and tries to set the "uses" attribute of procedure p to include pro-

cedure q. If q is in the same module as p, there is no problem; the attribute is set and the analysis

continues. If q is not in the same module, MARVEL checks whether it is imported. In the case

where q is not already imported, the assistant notes that "imports(module, component)" is a

postcondition of the "import component" activity (third rule) and further realizes it can perform

the "import component" activity. So it considers the preconditions of this activity. MARVEL

queries its objectbase to find the module that does contain q. If q is already exported from this

module, the assistant performs the "import component" activity. If not, backward chaining per-

mits the assistant to follow the preconditions of this activity given in the fourth rule of figure 4-4.

The assistant can add q to the exports of its module, then actually import q into the original

module, and then finally permit the analysis tool to set the "uses" attribute of p.

This is only one possible strategy, which ignores the possibility that distinct procedures named

q might be found in more than one module. Sometimes language-specific typing information

can be used to narrow down the possibilities, but in general MARVEL must interrupt the user to

explain its dilemma and to ask which q is intended. The assistant can then proceed as described

in the previous paragraph.

There is one more possibility: there is no component named q in the objectbase. Therefore,

15

MARVEL considers the "add component q" activity, whose postcondition is of course the exist-

ence of q. If permitted by the current strategy, MARVEL could carry out this activity on its own,

by creating a stub for the procedure within the module where the use occurs. Alternatively,

MARVEL could ask the user to create the procedure (or its stub) before continuing the analysis,

but this might be intrusive; a preferred alternative is to inform the analysis tool of the problem

and prevent it from performing the "procedure p uses procedure q" activity. This causes the

analysis tool to terminate unsuccessfully, generating the "errors(p)" predicate among its postcon-

ditions.

In this discussion, "import component" and "export component" are among the activities that

do not require human interaction, permitting MARVEL to carry out the repairs illustrated by the

example. An alternative strategy requires the assistant to take the imports and exports as given.
*This might be appropriate for languages, such as Ada , that include their own module constructs,

where reference to an external component without the appropriate ‘with’ clause should be

detected as an error. A second alternative would require MARVEL to ask the programmer

whether or not q is a typographical error before carrying out all the previously described actions.

Over time the modular structure of software systems degenerates. For systems written in lan-

guages such as Ada with explicit export/import declarations, the number of these declarations

tends to be monotonically increasing, even though some imported components are no longer

used. The assistant can support the maintenance of such ‘old code’ by providing both rigid and

flexible strategies in the same environment. Flexible strategies permit the assistant to reflect the

actual usage of components automatically in the export/import lists, e.g., remove unnecessary

exports/imports or adjust exports/imports as the code is being reorganized by the user. Rigid

strategies provide stability during development phases such as testing and integration by taking

the export/import declarations as givens to be checked against.

4.5. Implicit Queries

In the example of figure 4-4, MARVEL automatically queried its objectbase to locate procedure

q. When the environment performs a query on its own, rather than in response to a user com-

mand, we call this an implicit query. Implicit queries are necessary to determine whether the

preconditions of rules and hints are satisfied and to find the next rules to be applied in forward

and backward chaining.

*Ada is a trademark of the U.S. Department of Defense Ada Joint Projects Office.

16

Another application for implicit queries is to anticipate the postconditions of activities. This

enables MARVEL to notify the user in a timely manner when a user action is likely to lead to

adverse results. Consider the two rules shown in figure 4-5. Through forward chaining, chang-

ing a component will lead to semantic analysis, which may result in errors. When a user invokes

the editor on a particular component, MARVEL anticipates this forward chaining and notes the

possible "errors(component)" postcondition. This causes it to implicitly query its objectbase to

determine likely potential error sites.

reserved(module, userid)
{ change component }

notanalyzed(component) and notcompiled(module);

notanalyzed(component)
{ analyze component }

analyzed(component) |
errors(component);

Figure 4-5: Change and Analyze Rules

Of course, MARVEL cannot guess what modifications the user will make and how these will

affect other components. However, it can take advantage of the "used-by" attribute to determine

those components most likely to be affected. Both the "used-by" attribute and its inverse

("uses") are listed in the objectbase among the potential side-effects of the editor tool. (Note that

the granularity of dependencies can be more refined if editing is done with a syntax-directed

editor rather than a text editor.) The environment informs the user of the potential sources of

semantic inconsistencies by presenting the list of components given by "used-by" attribute of the

component argument to the editor. The user can take this information into account and choose

whether or not to abort his "change component" command.

Implicit queries were also evident in the example of figure 4-2. A user gave the "change

component" command. Backward chaining led the assistant to query the objectbase to determine

whether all the modules affected by the proposed change were reserved by this user. If not,

MARVEL would attempt to automatically reserve all the necessary modules. If some of these

modules are reserved by other users, the assistant would present the results of its implicit queries

to the user to explain why the requested activity is not permitted.

17

4.6. Summary
• Rules define the preconditions that must be satisfied before a tool can be applied and

the alternative postconditions of each tool.

• Hints define the preconditions that must be satisfied before a tool can be automati-
cally applied by the environment; unlike rules, hints do not affect the activities of
users.

• The architecture supports forward chaining from the postconditions of completed
activities to the preconditions of other tools and backward chaining from the precon-
ditions of desired activities to the postconditions of other tools, respectively.

• Tools may have side-effects that cannot be directly expressed as postconditions, but
these are nevertheless considered with respect to forward and backward chaining.

• The environment performs implicit queries to determine the attributes of software
objects and the potential side-effects of tools.

• Strategies group together rules and hints that are appropriate for particular users and
for particular phases of software development and maintenance. The architecture
enables the assistant to employ particular strategies during forward and backward
chaining.

5. A Sample Session
Figure 5-1 shows a sample session in MARVEL. It represents a snapshot of the workstation

screen after the user has been interacting with MARVEL and is in the middle of editing a par-

ticular procedure. The screen shows two windows. In the large window the user interacts with

the MARVEL command interpreter. It shows a transcript of the user’s session sofar. The window

is scrollable, i.e., the complete transcript is accessible to the user. The smaller window in the

right lower half is an edit window, which is brought up by MARVEL for the user to edit a par-

ticular item in the objectbase using his favorate editor, in this particular case Emacs. The bottom

of the screen shows several icons that are part of the general X window view of the underlying

Unix system.

The transcript in the large windows shows a series of interactions between the user and

MARVEL. These interactions demonstrate some of the behavior of MARVEL. The beginning of

the session the user enters an existing workspace to modify a software system, in this case an

interactive program for fractional arithmetic. This workspace, a MARVEL database, is private to

the user, and is connected to a public database, in which the baseline version of the software

resides. At the time the user enters the workspace, one module has been reserved from the public

database and made accessible for modification in the workspace. All other parts of the software

system, which physically reside in the public database are transparently accessible for reading.

18

The user’s focus of attention is placed on the system object representing the whole program,

which is indicated by the prompt showing the system name. First, the user requests a particular

view of the system, namely the list of modules composing the system. The user then changes the

focus of attention to the module "BasicOps". Notice the change in the prompt. Next, another

view is requested, in this case a more detailed view of a particular module. Since the user did

not specify a module name, the system chose the module in the current focus of attention. This

view shows all components of the module (several procedures and an object; the module does

not contain data type definitions) as well as the list of components that are made available exter-

nally as part of the module specification in form of an export list. With the "change" command,

the user next attempts to modify the specification of the procedure "quit". The system prompts

for missing command parameters, providing defaults. MARVEL first performs an implicit query

to determine the consequences of the planned change to a specification. The user is informed that

the procedure "quit" is used by another module, for which the user currently does not have

modification rights. Under the chosen strategy MARVEL does not automatically reserve the

module, but aborts the command. The user explicitly reserves the module. MARVEL confirms

that the module is to be reserved from the public database it is aware of. After the reservation the

second modification attempt succeeds. The user is informed of potentially affected components

before the actual editing, and asked upon completion of the modification whether the affected

components should be analyzed and compiled as well. Since the user expects to correct the af-

fected procedure he declines the offer. The modified component is analyzed and compiled in the

background, while the user issues the "edit" command to make a local modification to procedure

"ci". MARVEL changes the focus of attention to the appropriate module, displays the procedure

specification, and presents the user with the procedure body in the editor window. This is the

time when the screen snapshot is taken. The dialog shown in the session transcript can be

adapted by the user through choice of different strategies to influence verboseness and automa-

tion by MARVEL.

6. Conclusions
This article presents an architecture for intelligent assistance consisting of an objectbase and a

model of the software development process. The advantage of an objectbase is it permits the

assistant to present a ‘fileless environment’, so its users are concerned only with the logical en-

tities associated with software project and not with the details of the underlying file system and

19

Figure 5-1: Sample MARVEL Session

operating system. The advantages of an explicit model of software development are that it can

constrain the relationships among the software objects to maintain consistency and can automate

bookkeeping chores and other menial development activities.

Similar notions have previously been promoted by other researchers as the fundamental basis

for a programming environment that understands what it is doing. The specific contribution of

this research is the formalization of insight and opportunistic processing. Insight and oppor-

tunistic processing are made possible by

• maintaining all knowledge about the particular software development effort and the
general software development process in the objectbase,

• multiple views of the objectbase, available both to users and to tools,

20

• modeling the software development process as rules that define the preconditions
and alternative postconditions of software development activities,

• representing alternative collections of rules as strategies.

MARVEL’s architecture combines knowledge with already available software development tools

to produce software engineering environments that intelligently assist software development and

maintenance efforts by individuals as well as teams of users.

Acknowledgements
Dave Ackley, Naser Barghouti, Susan Dart, Mark Dowson, Bob Ellison, David Garlan, Dan

Miller, John Nestor, Gavin Oddy, Cecile Paris, Colin Tully, Nelson Weiderman, Ursula Wolz

and the anonymous referees reviewed previous drafts of this article and made many useful

criticisms and suggestions. Purvis Jackson assisted us with technical editing. The work reported

in this article was started while Dr. Kaiser was a Visiting Computer Scientist at the Software

Engineering Institute, Carnegie-Mellon University, Pittsburgh, PA. The first prototype im-

plementation was done at the Software Engineering Institute. Further research on MARVEL is

currently continuing at Columbia University. Research on MARVEL is supported in part by Dr.

Kaiser’s DEC Faculty Award, in part by a grant from Siemens Research and Technology

Laboratories, and in part by the Department of Defense.

References

1. Terry Winograd, ‘‘Breaking the Complexity Barrier (Again)’’, SIGPLAN-SIGIR Inter-
face Meeting on Programming Languages — Information Retrieval, Gaithersburg, MD,
November 1973, pp. 13-30, Reprinted in David R. Barstow, Howard E. Shrobe, and Erik
Sandewall (Eds.), Interactive Programming Environments, McGraw-Hill Book Co., New
York, 1984.

2. Mark Dowson, ‘‘ISTAR — An Integrated Project Support Environment’’, 2nd
SIGSOFT/SIGPLAN Symposium on Practical Development Environments, December
1986, pp. 27-33, Proceedings published as SIGPLAN Notices, vol. 22, no. 1, January
1987.

3. Richard C. Waters, ‘‘KBEmacs: Where’s the AI?’’, The AI Magazine,Vol. VIINo.
1Spring 1986, pp. 47-56.

4. Douglas R. Smith, Gordon B. Kotik and Stephen J. Westfold, ‘‘Research on Knowledge-
Based Software Environments at Kestrel Institute’’, IEEE Transactions on Software
Engineering,Vol. SE-11No. 11November 1985, pp. 1278-1295.

5. Object-Oriented Programming Systems, Languages and Applications, Portland, OR, Sep-
tember 1986, Proceedings published as SIGPLAN Notices, vol. 21, no. 11, November
1986.

21

6. David S. Wile and Dennis G. Allard, ‘‘Worlds: an Organizing Structure for Object-
Bases’’, 2nd SIGSOFT/SIGPLAN Symposium on Practical Development Environments,
December 1986, pp. 16-26, Proceedings published as SIGPLAN Notices, vol. 22, no. 1,
January 1987.

7. C. A. R. Hoare, ‘‘An Axiomatic Approach to Computer Programming’’,
Communications of the ACM,Vol. 12No. 10October 1969, pp. 576-580, 583.

8. Tim Teitelbaum and Thomas Reps, ‘‘The Cornell Program Synthesizer: A Syntax-
Directed Programming Environment’’, Communications of the ACM,Vol. 24No.
9September 1981, Reprinted in David R. Barstow, Howard E. Shrobe, and Erik San-
dewall (Eds.), Interactive Programming Environments, McGraw-Hill Book Co., New
York, 1984.

9. S. I. Feldman, ‘‘Make — A Program for Maintaining Computer Programs’’, Software —
Practice & Experience,Vol. 9No. 4April 1979, pp. 255-265.

