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Abstract A Vehicular Ad hoc Network (VANET) is a type

of wireless ad hoc network that facilitates ubiquitous con-

nectivity between vehicles in the absence of fixed infrastruc-

ture. Source based geographical routing has been proven to

perform well in unstable vehicular networks. However, these

routing protocols leverage beacon messages to update the

positional information of all direct neighbour nodes. As a

result, high channel congestion or problems with outdated

neighbour lists may occur. To this end, we propose a street-

aware, Intelligent Beaconless (IB) geographical forwarding

protocol based on modified 802.11 Request To Send (RTS)/

Clear To Send (CTS) frames, for urban vehicular networks.

That is, at the intersection, each candidate junction node

leverage digital road maps as well as distance to destina-

tion, power signal strength of the RTS frame and direction

routing metrics to determine if it should elect itself as a next

relay node. For packet forwarding between Intersections, on

the other hand, the candidate node considers the relative di-

rection to the packet carrier node and power signal strength

of the RTS frame as routing metrics to elect itself based on
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intelligently combined metrics. After designing the IB pro-

tocol, we implemented it and compared it with standard pro-

tocols. The simulation results show that the proposed proto-

col can improve average delay and successful packet deliv-

ery ratio in realistic wireless channel conditions and urban

vehicular scenarios.
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1 Introduction

The recent growth of wireless communication technologies

paves the way for many emerging mobile networks like VAN

ET. This type of network facilitates the communication be-

tween vehicles in the absence of fixed infrastructure. Thus,

the increasing necessity of this network is an impetus for

leading car manufacturers, research communities and gov-

ernments to increase their efforts toward creating a stan-

dardized platform for vehicular communications. In partic-

ular, the 5.9 GHz spectrum band has been allocated for li-

censed Short Range Communication (DSRC) between vehi-

cles. Moreover, in the near future, vehicles will be equipped

with wireless devices such as Wireless Access in Vehicular

Environment (WAVE) [?]. With this communication capa-

bility, vehicles can exchange information, enabling numer-

ous applications and services that are unique to vehicular

traffic scenarios. The applications include traffic safety, co-

operative traffic monitoring and control of traffic flow. These

applications are made possible by the use of efficient multi-

hop routing protocols, which are a significant departure from

short range communications to the wide coverage areas cov-

erage. Clearly, in VANET, this long distance communication

can be achieved using multi-hop routing approaches. Var-

ious type of routing protocols and their shortcomings are

extensively discussed in the next section.
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The rest of the paper is arranged as follows: section 2

discusses the recent related literature. Section 3 provides an

overview of 802.11 RTS/CTS protocol. In section 4, we dis-

cuss an overview of the proposed protocol. The algorithm

of the proposed protocol is discussed in section 5. This is

followed by developing the score functions for relay self

election at and between intersections in section 6. In sec-

tion 7, performance evaluation is elaborated, where we high-

light the feasibility of our protocol by considering a realistic

urban vehicular scenario and log-normal shadowing model.

Finally, section 8 concludes the paper.

2 Related Work

2.1 Geographical Routing Protocol

VANET is counted as a special type of Mobile Ad hoc Net-

works (MANET) where vehicles or transportation infras-

tructures equipped with wireless access to form a self or-

ganizing wireless network. Traditional routing protocols de-

signed for MANET, Ad hoc On Demand Distance Vector

(AODV) [?]; Dynamic Source Routing (DSR) [?], are less

preferable in vehicular environments. These protocols are

address based rather than position based i.e., discover and

maintain the end-to-end path between source and destina-

tion. This leads to frequent break down of the routes due to

unstable vehicular networks. As a result, the protocol suffers

from control overhead, leading to low network performance.

Fig. ?? shows the problem of address based routing in the ur-

ban vehicular environment. As can be seen, the established

route between the source and the destination breaks.

An alternative routing scheme, which is suitable for ve-

hicular environments, is geographical routing where vehi-

cles’ route data packets by considering the position of the

(a) At time t=t1.

(b) At time t=t1 +δt .

Fig. 1: The address based routes that were established be-

tween the source and the destination frequently break due to

unstable vehicular networks. Route(S,A,D) that was created

at the time t=t1, breaks at the time t = t1 + δt when A exit

the radio range of S.

destination node. This type of routing is more desirable in

VANET for the following reasons. First, in the near future,

vehicles will be embedded with Global Positioning System

(GPS) and navigation systems, hence geographical routing

is perfectly suited to VANET. Second, since geographical

routing is stateless, it does not maintain established routes

between the source and the destination.

In vehicular wireless networks, the performance of exist-

ing geographical routing protocols, such as [?], [?], [?], [?],

[?], [?], [?], [?], [?] has been improved by considering effi-

cient forwarding strategies and vehicular mobility character-

istics. However, each of the aforementioned routing proto-

cols has its own limitations. Greedy Position Stateless Rout-

ing (GPSR) [?] may not perform well because of uneven

traffic distribution- a combination of dense and sparse traf-

fic conditions- along different road segments. Under these

circumstances, GPSR activates face routing, in which a data

packet is forwarded on a series of faces towards the desti-

nation. Greedy Source Routing GSR [?], uses greedy relay-

ing to forward data packets toward the destination. However,

they disregard low traffic densities in which there are an in-

sufficient number of nodes to relay data packets. Mobility-

centric data dissemination (MDDV) protocol [?] considers

the concepts of trajectory and opportunistic forwarding to

transmit messages towards destination regions. However, as

traffic density changes with time, MDDV enters local op-

timum with large amounts of route latency. Some authors

in [?] developed Anchor-based Street and Traffic Aware Rout-

ing (A-STAR) to utilize bus route information to discover

the best anchor paths of higher connectivity toward the packet’s

destination.

Based on the assumption that road traffic is the planar

graph, the authors in [?] proposed Greedy Perimeter Coor-

dinator Routing (GPCR) which utilizes the concept of junc-

tion nodes to control the next road segments that packets

should follow. In this new type of planar graph based on un-

derlying roads, vehicles can forward data packets along the

streets in both greedy and perimeter modes. At the intersec-

tion, GPCR uses two heuristics to determine whether a node

is located at the intersection. The first one uses beaconing

services so that each node is aware about its neighbours. A

node can be considered a coordinator node when it has two

neighbours that are within radio range of each other, but do

not list each other as a neighbour. The second one is derived

by calculating the correlation coefficient that relates a node

to its neighbours. A correlation coefficient close to zero in-

dicates that there is no linear coherence between the posi-

tions of the neighbours. This indicates the node is located at

a junction. GPCR solves the problem of inaccuracy of node

popularization in addition to the improvement of forwarding

performance as packets travel less number of nodes in the

perimeter mode. Performance evaluation shows that GPCR

delivers more data packets compared to GPSR. However,
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there is the possibility that packets loop back in the same

street from which the packet has arrived. Furthermore, they

only considered greedy forwarding metric for packet routing

in error prone urban vehicular scenario.

The authors in [?] proposed diagonal-intersection-based

routing (DIR) protocol for routing packets in urban vehic-

ular scenario. The DIR protocol consists of three phases-

destination discovery, packet forwarding, and route mainte-

nance, to route packets efficiently towards the destination.

However, the periodic maintenance of link cost (expected

packet forwarding delay) between forwarding diagonal in-

tersections ( f rom Ixi,yi to Ix j,y j) leads to higher overhead

traffic and hence negatively creates an impact on the end-

to-end data transfers.

Another direction of routing data packets optimally over

urban vehicular environments is taken by Jerbi et al. in [?]

where the authors proposed an improved vehicular ad hoc

routing protocol for city environments (GyTAR). The de-

signed protocol has two modes of operation: routing at the

intersections and at road segments. For the former mode,

GyTAR reactively selects the neighbour intersections upon

consideration of variations in traffic density and the distance

to the destination. However, since realistic city maps have

irregular shapes such as unequal road segments between in-

tersections, GyTAR does not consider variations of segment

lengths within urban environments. Furthermore, GyTAR’s

traffic density estimation is very costly in terms of band-

width consumption and scalability issue.

Cheng et al. discusses that delay tolerant aware routing

protocol is necessary due to heterogeneous distribution of

vehicles. To achieve such packet salvaging capability, in [?]

the authors proposed GeoDTN+Nav in which they combined

greedy mode, perimeter mode, and DTN mode. The GeoDTN

+Nav protocol utilizes a network partition detection method

so as to switch between different modes of packet forward-

ing. Network partition detection switches between different

modes based on the number of hops a packet has travelled so

far and the delivery quality of neighbours. The Virtual Nav-

igation Interface (VNI) has been used to provide necessary

information for the proposed protocol so that it can deter-

mine its routing mode and next hop forwarder. However, the

developed protocol have shortcomings in terms of favour-

ing link reliability, stability and forwarding progress toward

destination. In [?], the authors developed address based geo-

opportunistic routing that uses topology assisted geographic

routing with opportunistic forwarding. The proposed routing

protocol uses periodic packet receptions evoked by broad-

cast wireless medium and forwarding opportunity is trig-

gered to perform packet routing through direct neighbours

that have received data packets successfully.

In another attempt, Kayhan et al. in [?] developed a Sta-

bility and Reliability aware routing protocol (SRR) for ve-

hicular networks. The SRR protocol incorporates fuzzy logic

with geographical routing in order to lend cognitive capabil-

ity to packet forwarding decisions. Routing metrics, includ-

ing direction and distance, are considered inputs of the fuzzy

decision making system in order to select the best prefer-

able route around a smart vehicle. Next, it proposes a local

decision mechanism to observe the network partitions in or-

der to allow switching from SRR mode to queuing mode

or vice versa. In contrast to the proposed IB protocol, the

SRR routing protocol uses fuzzy inference system to rank

the neighbour nodes and considers source based routing for

relay node selection. In addition, the SRR protocol is de-

signed for highway vehicular scenario rather than urban ve-

hicular network.

2.2 Beaconless Geographical Forwarding

Neighbour discovery is a crucial part of geographical rout-

ing protocols. To achieve this, the routing protocols assume

that nodes broadcast periodic beacon messages to inform

neighbour nodes about their address, location and other rel-

evant information. In this proactive neighbourhood aware-

ness, each vehicle must maintain an up-to-date list of neigh-

bour nodes. Otherwise, the outdated information problems

occur, where of the neighbour list leads to a miss of the next

candidate node, or the node that has been chosen will move

out the radio range (Fig. ??).

The authors in [?] proposed a geographical forwarding

scheme called Guaranteed Delivery Beaconless Forwarding

Scheme (GDBF). In the proposed scheme, the relay node is

selected through the use of control RTS/CTS frames of the

MAC layer and waiting time function. In greedy mode, the

candidate node which is closest to the destination responds

to the source first.

When a source node has shortest distance to the destina-

tion as compared to the distance of direct neighbour nodes,

the contention winner might be the node which is closer to

the source. Thus, other nodes which overhear the CTS frame

exit from the contention phase because there is a link estab-

lished with the source.The GDBF could guarantee packet

delivery as compared with the existing beaconless routing

protocols. Furthermore, the existing beaconless approaches

either retransmit the whole data packet immediately, that

might lead to the redundant retransmissions, or have dupli-

cate packets.

In their analysis, they confirmed low routing overhead

and high guaranteed delivery. However, they assumed ideal

MAC layer and unit disc radio propagation in their perfor-

mance evaluation. Since the wireless channels between ve-

hicles in the urban environment are error prone due to high

inter-channel variation, shadowing and fading effects, the

aforementioned authors did not consider the quality of wire-

less channel and stability of packet forwarding. In addition,
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(a) The source node handshakes,through bea-

coning, with the relay node before sending

data packets.

(b) The relay node exit the radio range after sending

data packets by the source.

Fig. 2: Inaccurate neighbour list problem in VANET.

their proposed scheme is not designed for urban vehicular

environments.

In [?], Fussler et al. proposed a Contention Based

Forwarding (CBF) to route data packets greedily with-

out the need of periodic beacon transmissions. The packet

carrier node, which runs CBF, does not score the di-

rect neighbour nodes. Rather, it broadcasts the control

frames to them, and they should decide individually whether

to forward a packet or not. That is, the packet carrier

node broadcasts the RTS frame containing its and the

destination position. Then the next relay node is selected

by distributed timer-based next hop self election in the

contention period. The winner (shortest reply time) of

the contention phase is the node which has more geo-

graphical progress toward the destination. The contention

winner broadcasts the CTS frame to the node, which is

an originator of the RTS frame. At this time, the candi-

date nodes that hear this CTS frame, cancel their timers

and exit from the contention process. The CBF protocol

did not consider the unreliability and instability issues of

packet forwarding by considering other parameters like

power signal or direction of movement. Thus, this pro-

tocol may lead to sub-optimal results in erasure wireless

channel.

A positive step toward efficient routing protocols is taken

by [?], where the authors proposed road-based routing pro-

tocols that leverage on-board navigation systems to estab-

lish paths between the source and the destination through

a sequence of intersections with high network connectivity.

In addition, to eliminate the hello packet, the authors pro-

posed an enhancement of receiver-based next hop self elec-

tion (which is the core of our proposed protocol) (e.g., [?]

or [?]) to reduce protocol overhead in the network. How-

ever, exchanging link state information and route mainte-

nance leads to high network overhead. In [?], the authors

use beaconless forwarding optimization between intersec-

tions; however, it does not consider packet forwarding deci-

sion at intersections. In addition, they focused on the power

signal strength, optimal transmission range and distance for

packet forwarding. On the contrary, we take into account di-

rection, forwarding progress and variation of received signal

strength for reliable, stable and fast packet forwarding. Fur-

thermore, the modification of RTS/CTS in IB protocol is far

different compared with their geographical forwarding.

In [?], Ruhrup et al. proposed beaconless georout-

ing with guaranteed delivery for wireless sensor, ad hoc

and actuator networks. The proposed protocol, which is

based on the Select-and-Protest principle, consists of two

methods for reactive face routing with guaranteed deliv-

ery. The Beaconless Forwarder Planarization (BFP) de-

termines the nodes of a local planar subgraph with using

beacon message form all neighbours. The second method

uses angular relaying to determine next hop of a right-

hand face traversal. In addition, the authors presented

Circlunar Neighbourhood Graph (CNG) to address the

planarization problems of Gabriel Graph (GG). More

precisely, less messages is needed to construct CNG than

GG. Simulation and theoretical studies show that the pro-

posed delay function reduced the number of protest mes-

sages by a factor of 2 as compared to the angle-based

delay function.

In the brief discussion above, it is clear that receiver

based self election is an imperative need for multi-hop rout-

ing along the streets in the urban vehicular environment.

To this end, in this paper, we propose Intelligent Beacon-

less (IB) geographical forwarding protocol, based on mod-

ified 802.11 RTS/CTS frames, for vehicular wireless net-

works. That is, at the intersection (which is defined as a

convergence of one or more Road Segments), each candi-

date junction node leverage digital road maps as well as

distance to the destination, power signal strength and di-

rection to the next coming intersection routing metrics to

determine if it should elect itself as a next relay node. For

packet forwarding between Intersections, on the other hand,
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the candidate node considers the relative direction to the

packet carrier node and power signal strength of the RTS

frame as routing metrics to elect itself based on intelligently

combined metrics. The proposed geographical forwarding

protocol has been modeled using JIST/SWANs [?] network

simulator tool for performance evaluation. It is noteworthy

that the IB protocol is well suited for many applications. For

example, in comfort-related applications, it can be used for

chatting, gaming or infotainment between vehicles. We sum-

marize the contributions of this study as follows:

– We propose IB geographical forwarding protocol to tackle

proactive neighbour discovery. In essence, for packet for-

warding at the intersection, the candidate junction nodes

utilize distance to the destination, power signal strength

and direction as routing metrics. For routing between

intersections, multi-metric packet forwarding has also

been utilized to forward data packets toward the desti-

nation.

– We perform simulations to show the effect of vehicular

traffic density and speed of vehicles on the proposed ge-

ographical forwarding protocol.

3 An Overview of 802.11 RTS/CTS protocol

The IEEE 802.11 Distributed Coordination Function (DCF)

[?], [?] is designed to implement the Carrier Sense Multiple

Access/Collision Avoidance (CSMA/CA) protocol, which

utilizes four way handshaking (RTS/CTS/Data/ACK) for a

session of data transmission. When the source node has data

for transmission, it senses the wireless channel for the pe-

riod called DCF Inter Frame Space (DIFS). If the channel is

idle for DIFS period, then it selects a random backoff timer

in the range (0,CW), where CW is Contention Window. Af-

ter the timer expires, the source sends the RTS frame to the

intended receiver. The receiver broadcasts the CTS frame

to all of its neighbours. The neighbours of the source and

the intended receiver update their Network Allocation Vec-

tor (NAV) in the duration during which the channel is oc-

cupied by the ongoing session. During this time interval, all

neighbours defer their transmission until this session is com-

pleted. After the source has received the CTS frame, it starts

sending data to the intended receiver, and this is followed by

an ACK frame if the data is received successfully. In case of

any failure of data transmission the source starts the retrans-

mission until retry limit is reached.

4 Proposed Protocol Overview

The designed IB protocol is adopted for Inter-Vehicle Com-

munication (IVC), in which vehicles communicate in the

absence of fixed infrastructure. The proposed protocol con-

siders that all vehicles are equipped with the Global Posi-

tioning System (GPS) services and digital road map, i.e.

each vehicle knows its own position, coordinates of the junc-

tions and road segments. This assumption is valid because

in the near future more and more vehicles will be equipped

with on-board navigation systems. The packet carrier node

(source/relay nodes) needs to have the position coordinates

of the destination node to make packet forwarding decisions.

Furthermore, the proposed protocol is simulated in an open

and regularly structured vehicular environment (i.e., radio

obstacles and dead-end roads are not considered in the sim-

ulation).

In addition, the IB protocol does not require the trans-

mission of beacon messages and forward data packets opti-

mally in urban vehicular networks. To achieve this objective,

it makes the packet forwarding decision at and between in-

tersections. Fig. ?? demonstrates the flowchart steps of the

of IB protocol. The dark gray blocks are the contributions

of the designed IB protocol. In essence, at the intersection

the packet carrier node broadcasts a modified control frame

called RTS to all direct neighbours and the neighbours them-

selves decide if they should forward data packets. This for-

warding decision lies on the distributed timer-based con-

tention process, which allows the most suitable candidate

node to access the channel based on the distance to the des-

tination, power signal strength and the relative direction to

the next coming intersection. After the best intersection has

been chosen, and while between intersections, the candidate

nodes try to access the channel based on multi-metric for-

warding decision, i.e. the power signal strength of the RTS

frame as well as relative direction between the candidate and

the packet carrier node. When the best node, whether at or

between intersections, accesses the channel, the remaining

nodes then cancel the scheduled packet after detecting this

transmission. In the next section, the complete algorithm of

IB protocol is discussed.

5 Proposed Protocol Algorithm

IB protocol is completely unlike source based routing, which

is based on receiver self election to suppress the effect of

frequent broadcast of beacon message. The distributed next

hop self election is based on modified RTS/CTS frames of

the 802.11 protocol. The general contention phase procedure

is demonstrated in Fig. ??. As can be seen, if the packet car-

rier node receives a single CTS frame, then it transmits (after

Short Inter-Frame Space (SIFS)) the data frames to the node

which wins the contention phase. Furthermore, the design of

the score function, which is used to compute the reply timer,

has an important role in the successful contention phase be-

tween RTS receiver nodes.
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Fig. 3: Flowchart of different steps for IB geographical forwarding protocol

In addition, the RTS is a broadcast message which is

modified to carry the position of the destination node, the

direction and position of the source node. Furthermore, it

also carries two flags: the first one is used by the receivers

to know whether the source is located at the intersection or

between them, and the second flag is useful to make all re-

ceiver nodes to process/respond the RTS broadcast message.

The details of the IB protocol are illustrated in Algo-

rithm 1. From line 9 to 10, upon receiving the RTS frame,

candidate nodes first check, through Intersection Check Flag

(ICF), whether or not the source is at the intersection or be-
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Fig. 4: Contention phase of the IB protocol

tween them (line 10). At the intersection (ICF=1), a higher

priority should be given to a node, which provides forward

progress, loop-free for the packet proclaimed by the RTS

frame, and strong signal strength of the RTS frame. There-

fore, candidate nodes compute their score (reply timer) based

on Greediness Factor, Direction, and Signal Strength (line

11-13). After determining the reply timer ti, candidate nodes

set their timer to the value of ti, and this value determines

how good the candidate node is to become a next packet

forwarder (line 14-16).

If the current packet carrier node is located between in-

tersections (ICF=0) (line 17), the candidate node measures

the signal power strength (Signal Strength) of the RTS frame

and computes its direction (Direction) relative to the packet

carrier node. Then, the candidate nodes compute their reply

timer. This reply timer depends upon the relative direction

and power signal strength: a candidate node has a short-

est reply timer when it travels in the same direction of the

packet carrier node as well as receives the RTS message with

a strong power signal (line 18-23).

In case of the reply timer beetle off, a control frame

called CTS is transmitted to the packet carrier node, which

indicates that it wins the contention phase and becomes the

best preferable relay node. Meanwhile, when the direct neigh-

bour nodes hear a CTS frame, they cancel their own timer

and are suppressed from the contention phase. Afterwards,

the source concludes the communication session by trans-

mitting data packets to the elected node (line 24-34). It is

noteworthy to mention that if the reply timer ti has infinite

or negative values, the packet will be discarded by the can-

didate node. In the next section, the score function for relay

self election at intersections is illustrated.

6 Proposed Forwarding Metrics

6.1 Score Function for Relay Self Election at the

Intersections

In multi-hop routing protocols, packet forwarding based on

one routing metric can be sub-optimal because many crite-

ria (reliability, stability, one hop progress) affect route op-

timization between the source and the destination. At the

Algorithm 1 Receiver-based geographical Packet forward-

ing at node ni

1: notations:

tDATA, tCT S, tRT S, tACK and tSIFS : time to transmit data frame,

CTS, RTS, ACK and two subsequent frames

2: pi: position of node ni

3: pd : position of the destination node

4: dc: direction of the packet carrier node

5: pc: position of the packet carrier node

6: c: the address of the packet carrier node

7: ICF : a flag, to indicate the packet carrier node is at or between

intersections

8: ti: reply timer for node ni

9: if RT S packet (pc, pd ,dc, f , tDATA) packet is received then

10: if ICF = 1 then

11: determine the Greediness Factor
12: determine the Direction
13: determine the Signal Strength
14: call score function to calculate reply timer ti (at the intersec-

tion)

15: set the timer to ⌈ti⌉
16: defer transmissions, for ⌈tDATA + tCT S + tACK +3 × tSIFS⌉
17: else

18: determine the Signal Strength
19: determine the Direction
20: call score function to calculate reply timer ti (between inter-

sections)

21: set the timer to ⌈ti⌉
22: defer transmissions, if any, for ⌈tDATA + tCT S + tACK +

3 × tSIFS⌉
23: end if

24: else

25: if CT S packet (nk,ns, tDATA) is received f rom nk be f ore the timeout
then

26: cancel the timer

27: defer transmissions, if any, for ⌈tDATA + tACK +2 × tSIFS⌉
28: else

29: if node ni hears DATA f rom node ns then

30: defer transmissions, if any, for ⌈tACK + tSIFS⌉
31: else

32: if ti is runs o f f then

33: broadcast CT S(ni,c, tDATA)
34: end if

35: end if

36: end if

37: end if

intersections, the best preferable relay node is determined

based on the reply timer. The reply timer is computed based

on the (multi-metric) score function. Thus, to qualify the

best preferable candidate node, we introduce the input pa-

rameters of the score function: distance to the destination,

direction towards the next coming intersection and power

signal strength of the RTS frame.

1) Greediness−Factor (GF): When a candidate junc-

tion node is at the intersection and receives the RTS frame,

it calculates the Greediness − Factor which indicates the

closeness of a candidate node ni to the destination. This fac-

tor is calculated by Dc/Di; where Di is the distance of a

node ni to the destination and Dc is the distance of the cur-

rent packet carrier node to the destination. The greater the
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Greediness−Factor is, the higher priority a node has, and

hence it is approaching the destination with high advance-

ment progress. We considered the Greediness−Factor rout-

ing metric due to crucial decision of packet routing at the in-

tersection. However, if we consider this parameter alone, the

routing loop might be occurring at the intersection. Thus, we

consider the direction of a candidate node toward the next

coming intersection.

2) Direction (D): The direction of vehicles is important

to be considered for stable packet forwarding. This is be-

cause the direction of vehicles is constrained by the roads

as well as two vehicles travelling in the same direction hav-

ing more stable wireless link than they travel in the oppo-

site direction. In realistic urban scenarios (road with curva-

ture), the direction vector of vehicles is not always parallel-

ing to each other. However, the proposed protocol consid-

ers straight roads in the urban environments i.e. vehicles are

travelling in the same or opposite directions. Thus, we place

a great deal of reliance on this feature to give higher priority

to the nodes that they travel to the next coming intersection.

The relative direction between a mobile node and the fixed

point is calculated by measuring the angle between direction

vector of the mobile node and the x-axis [?]. Furthermore,

since wireless channel between vehicles is error prone, the

channel quality is also should be considered in packet for-

warding decisions.

3) Signal−Strength (P): The wireless channels between

vehicles are susceptible to attenuation and fading due to build-

ings and other obstacles in the urban area. Therefore, we

consider the level of power signal as a metric to character-

ize the quality of channel between a candidate node and the

packet carrier node. A candidate node can determine this

parameter by measuring the power signal level of the RTS

frame.

After the routing metrics has been defined, an aggregat-

ing function should be used to combine all criteria into a

single function which is used to excel the best candidate

node. The score function is a single ranking measure that

combines all routing metrics into a single one. Since the

random backoff timer of IEEE 802.11 is based on prod-

uct of slot time and a random number, the score function

is also modelled as a multiplication of specified variables.

Consider a score function based on j routing metrics ζi =

{ζi1,ζi2,ζi3, ...,ζi j}(In this paper, we assume that the rout-

ing metrics has to be maximized), for each of them the can-

didate node ni has numerical values in the range [ζ min
i ,ζ max

i ].

Then, a multi-metric scoring function is given as follows [?]:

f (ζi1,ζi2, ...,ζi j) = X × ζ β1
i1 × ζ β2

i2 × ζ β3
i3 .....ζ β j

i j +Ymax (1)

where Y is the maximum value of the scoring function

f (ζi1,ζi2,ζi3, ...,ζi j), X is the variable dependent weights of

the limiting condition, and (β1,β2,β3....,β j) is a j-weight

array used to give priority to the routing decision metrics,

i.e. the routing metric with a higher weight factor has more

impact on the self election process. In our IB protocol, three

metrics has been utilized to make packet forwarding deci-

sion at the intersections. Thus, the reply timer value is cal-

culated as follows:

f (GFi,Di,Pi) = X ×GFβ1
i ×Dβ2

i ×Pβ3
i +Ymax (2)

The maximum value of f (GFi,Di,Pi) occurs when its

derivative equals zero, the value of X is given by:

X =
−Ymax

GFβ1
max ×Dβ2

max ×Pβ3
max

(3)

To evaluate the score function in equation ??, first we

need to know the maximum values of GFi, Di and Pi. The

maximum value of GFi depends on the simulation area and

the communication range of vehicles. Accordingly, the GFmax

is equal to (10). The maximum value of Di is (1). This is

because the maximum range of cos σ is 1 (σ is the angle

between direction vector of the candidate node and x-axis).

Furthermore, we conducted a real experiment to deter-

mine the maximum value of the signal power. We set up

a scenario whereby two vehicles equipped with laptops are

travelling in the same direction in urban vehicular environ-

ment. The computer laptops have 802.11b Wireless LAN

card as well as software for signal strength measurement

named ”InSSIDer 2” [?]. Furthermore, during the experi-

ment, both vehicles travelled with an average speed of 45

km/hour. Therefore, based on this experiment, we observe

the maximum value of P is (-20 dBm) and the minimum

value is (-60 dBm). The (-60 dBm) is the radio reception

threshold and below this value the data packet receptions

are not possible.

If the maximum time delay (Ymax) for a candidate node

election is 0.8 ms (this value empirically is set in the simu-

lator), β1 = 0.5, β2 = 0.2, β3 = 0.01 and then we use equa-

tion ?? to calculate the value of X which yields −0.2416.

Therefore, we can compute the reply timer (ti), based on

equation ?? , which is equal to 0.0860 ms. This duration

(0.08

60 ms) is the time in which the candidate node should wait

after receiving the RTS message. It is noteworthy that all

candidate nodes leverage the score function (equation ??) to

compute their reply timer after receiving the RTS message.

Moreover, for theoretical analysis the values of weights are

constant, but they optimally could be determined in the per-

formance evaluation.

Furthermore, Fig. ?? depicts the correlation behaviour

between ti, GFi and Pi variables. The trend shows that the

reply timer (ti) decreases to minimum value when the value

of P is 0.01 mw and GF is 10. This is because the candidate



IB Geographical Forwarding for VANET 9

node is more directed toward the next coming intersection,

is close to the destination node and is receive the the RTS

frame with strong power signal (lower green part).

The IB protocol handles two modes of packet forward-

ing in the urban vehicular environment. In the previous sec-

tions, we presented the packet forwarding decision at inter-

sections. In the next section, we elaborate the routing met-

rics and the score function for packet forwarding between

intersections.

6.2 Score Function for Relay Self Election between

Intersections

In this section, we use the same ideas of equation ?? to

derive a multi-metric/score function for packet forwarding

between intersections. This score function consists of two

input variables and one output variable. The inputs are the

power signal strength of the RTS frame and relative direc-

tion of a candidate node with respect to the packet carrier

node. The power signal strength of the RTS frame is dis-

cussed in section ??, the second metric is the the movement

direction of the vehicles Direction (D), which facilitate sta-

ble packet forwarding towards the destination. This is be-

cause the direction of vehicles is constrained by the roads,

hence it leads to high resident connection time between two

vehicles that are travelling in the same direction. Therefore,

we place a great deal of reliance on this feature to give a

higher score to a candidate node which travels in the same

direction of the packet carrier node. Furthermore, a mobile

vehicle can calculate its relative direction with respect to the

packet carrier node when its own and the source node’s di-

rection are known. Thus, the bearing angle is needed to pro-

vide the same or opposite directionality awareness of neigh-

bour vehicles in the vicinity with respect to the packet carrier

node. For example: if vehicle a is moving in < dxa,dya >

direction and vehicle b is moving in < dxb,dyb > direction,

we can calculate the bearing angle (σ) between a candidate

node and a packet carrier node as follows:

cosσ =
dxa · (dxb)+ dya · (dyb)

(
√

dx2
a + dy2

a) · (
√

dx2
b + dy2

b)
(4)

We now define the score function that gives optimal trade-

off between power signal strength and the relative direction,

which is given by:

g(Pi,Di) = A×Pγ1
i ×Dγ2

i +Bmax (5)

Where γ1 and γ2 are weights for P and D routing metrics

respectively. The variable Bmax is the maximum time delay

after receiving the RTS frame, and A is defined as follows:

A =
−Bmax

Pγ1
max ×Dγ2

max
(6)

To evaluate equation ??, finding the maximum range of

the variables P and D is essential. As determined in sec-

tion ??, the maximum value of D and P are equal to 1 and

-20 dBm respectively. The value of A can be determined,

A= −0.8
0.010.07×10.4 which yields −1.1043, hence the reply timer

becomes 0.0683 ms. Fig. ?? shows the correlation between

P, D and ti. We observe that, a candidate node has low reply

timer if it has good channel quality (strong signal strength)

and travels with the same direction of the packet carrier

node.

6.3 IB Protocol Packet Forwarding Example

In this section, we illustrate the basic operation of the IB

geographic forwarding protocol. Note that the main purpose

of IB protocol is to forward packets at the intersections and

between them without utilizing the periodic hello broadcast

message. In the following scenario, we assume that enough

vehicles exist at the intersections and between them.

Fig. ?? illustrates how IB protocol works. Now, the packet

carrier node S, which is at the intersection, needs to send

packets to the best preferable candidate node (A,B,C,F,G,H, I),

that is, forward it to the destination D. First it broadcasts the

RTS frame to all nodes within its radio range, which carries

the source direction and location as well as the destination

location and duration of the communication session. The

candidate nodes R2 hear the RTS frame, make sure that the

source is between intersections, trigger the score function

to determine its reply timer, and the node with the short-

est reply timer issues a first reply with CTS frame. In this

vehicular scenario, the relay node (A) has the best D and

P. Therefore, R2 sends back the CTS frame to the source

node. When the neighbour nodes hear the CTS frame, they

will exit the contention phase and do not send any frame to

the source node until A sends an ACK frame to the source

node. This vehicular scenario demonstrates the importance

of packet forwarding based on the relative direction D be-

tween mobile nodes and power signal strength of the RTS

frame.

After the best relay node has been selected between in-

tersections, the vehicle B will initiate geographical packet

forwarding at the intersection. As noted earlier, the candi-

date node triggers the score function to calculate its reply

timer based on the forwarding progress GF , direction D and

power signal strength P. In consideration of this vehicular
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Fig. 5: Correlation between GFi, Pi and ti variables (β1 = 0.5, β2 = 0.2, β3 = 0.01).

scenario, C elects itself as a next hop packet forwarder at the

intersection.

7 Performance Evaluation

This section presents the evaluation of the IB geographi-

cal forwarding protocol in urban vehicular environments.

We have simulated the proposed protocol using the packet

level simulator JIST/SWANS [?]. It is designed based on

the OSI seven layer network communication architecture.

The simulation scenario is 3968× 1251 m area that was

configured with JIST/SWANS, and the selected area con-

tains 370 road segments with 124 intersections (Fig. ??).

We used the open source STreet RAndom Way point mobil-

ity model (STRAW) [?] to simulate the movement of vehi-

cles. STRAW has an efficient car following trajectory, lane

changing model and real-time traffic controller. In STRAW,

the generated vehicles are distributed regularly in the urban

streets, and they pause for a period of time at the intersec-

tions. Moreover, Fig. ?? illustrates the actual map of the

Chicago city.

In addition, at the physical layer, the shadowing chan-

nel model has been used to characterize the wireless chan-

nel [?]. In the simulation, the value of the path loss exponent

n=2.8 and the reference distance d0=0.4 are used for the

shadowing model [?]. Furthermore, we set the radio com-

munication range at 250 meters. In the simulation area, the

traffic density of vehicles is varied from 100 nodes to 400

nodes, and they move along the roads with an average speed

ranging from 30 to 60 km/hour. Moreover, the variant of

Fig. 6: Correlation between input and output variables (γ1 = 0.07 and γ2 = 0.4).
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Fig. 7: The illustration of packet forwarding of IB protocol.

At the intersection, the receiver C elect itself as a next relay

hop, whereas between intersections the node A,BandF wins

the contention phase.

Table 1: Simulation parameters

Parameters Value

Simulation time 350 s

Simulation area 3968 m × 1251 m

Mobility model STRAW

Traffic Density 100-400 nodes

Vehicle velocity 30-60 km/hr

Transmission range 250 m

Maximum packet generation rate 6 packet/second

Maximum number of source nodes 10

Channel bandwidth 3 Mbps

MAC protocol IEEE 802.11b DCF

Data packet size 512 bytes

Weighting factors (β1,β2,β3,γ1,γ2) (0.01, 0.01, 0.01, 0.3, 0.3)

IEEE 802.11b DCF standard, based upon proposed protocol,

is used to model MAC layer [?], [?]. The simulation key pa-

rameters are summarized in Table ??. The selection of these

simulation parameters is based on the studies [?,?,?,?]. This

is because these studies were based on the realistic measure-

ments between nearby vehicles. Further, the total simulation

time is 350 seconds. We set the settling time to 25 seconds

at the beginning of simulation to remove the effect of tran-

sient behaviour on the results. The total simulation time also

included 25 seconds of stop sending packets from the end

of the simulation. It is worth mentioning that each point

in the performance figures exemplifies the average of 20

simulation runs.

Accuracy of simulation results are significantly re-

flect credibility of the data from a specific measurement.

Validation is used to evaluate the performance gain which

is obtained from the proposed solution. More precisely,

statistical significance test, namely Analysis Of Variance

(ANOVA-single factor) was calculated to verify the mea-

sured data form a specific protocol. ANOVA is a statis-

tical analysis model which is used to partition the vari-

ance of a particular variable into components which are

attributable to different sources of variation.

We have compared the performance of the IB protocol

with the state of the arts geographical routing (GPCR [?]

and [?] protocols. We now briefly review the basic oper-

ation of these routing protocols: GPCR is a geographical

routing protocol that forwards packets to a neighbour node

which has the closest distance to the destination (greedy

mode of packet forwarding). In the perimeter mode, a node

forwards packets to the next neighbour node by applying

right hand rule. In addition, GPCR assumes that the road

traffic is the planar graph, which utilizes the concept of junc-

tion nodes to control the next road segments that packets

should follow; CBF uses the distributed timer-based mech-

anism for the data packet forwarding decision. This random

timer mechanism is set when the relay nodes receive the

RTS frame and check if they are closer to the destination

than the packet carrier node. The contention between relay

nodes will end as one of them responds the source by send-

ing CTS frame (Which is a contention winner and selected

as the next hop).

The proposed geographical forwarding protocol are com-

pared with routing protocols based on the following evalua-

tion metrics:

(i) Packet Delivery Ratio (PDR): measures the fraction

of data packets that are successfully received by the

destination to those generated by traffic source.

(ii) End to end delay: is the total time required by all the

packets to travel from the source to the destination.

The packet delay obtained in the simulation is the sum

of sending buffer, medium access (packets delay due

to interface queue), re-transmission, relay election and

propagation delay.

(iii) Hop count: is the average number of relay nodes that

forward data packets to the destination.

In the performance evaluation, we conducted different

experiments to study the effect of various parameters on

the proposed protocol and the representative of the standard

routing protocols.

7.1 Impact of the Weighting Factors β1, β2, β3, γ1, γ2

In this section, we conducted experiments to analyze the

sensitivity of the weighting factors of the proposed protocol

to determine a good balance between the routing metrics.

Moreover, the performance of the IB protocol has been sim-

ulated for different values of the weighting factors. Fig. ??

and Fig. ?? shows the measured PDR and average packet de-

lay versus the packet sending rate (Constant Bit Rate/Source)

for various representative values of the weighting factors.

Initially, as the value of standard deviation and source

packet traffic increases, the PDR and average delay remain

stable. After the packet generation rate reaches about 32
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Fig. 8: A snapshot of Chicago city environment during simulation

kbps, we observe upward transition of the packet delay to

420 ms and decrease of the PDR to 75 % when β1, β2, β3, γ1, γ2

are set to 0.01, 0.01, 0.01, 0.3, 0.3 respectively. We believe

that this is because the network reaches its peak saturation

throughput (which is the maximum limit of capacity that

the network can carry in stable condition) at 32 kbps. After-

wards, packet loss occurs due to higher network load. MAC

layer tries to compensate for these packet losses at the cost

of average packet delay and PDR.

The analysis shows that when the weighting values of

β1, β2 and β3 are equal to each other as well as γ1 is equal to

γ2, more data packets are successfully delivered with lower

average packet delay. We coin the reasons why the values of

β1, β2, β3, γ1, γ2 are set to 0.01, 0.01, 0.01, 0.3, 0.3 respec-

tively, and offers better performance. First, since the packet

forwarding based on a single metric lead to sub-optimal,

the IB protocol that favours (by using weights) only GF ,

D or P routing metrics does not show good performance.

For instance, at the intersection, the IB protocol favours di-

rectionality which does not offer optimal performance. This

is because the GF routing metric is also important in or-

der to find the shortest path to the destination as well as the

P metric has an important role for good quality link selec-

tion. Furthermore, if the weights (γ1,γ2)=(0,0.3), it means

the IB protocol favours signal strength P, which finally leads

to sub-optimality due to the possibility of selecting unsta-

ble (low resident connection time) routes between intersec-

tions. Second, the weighting factors together have an impor-

Fig. 9: Map of the region of Chicago city used in the simulation scenario
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(a) Packet delivery ratio variation with packet sending rate for differ-

ent weighting factors.

(b) Average packet delay with packet sending rate for different

weighting factors.

Fig. 10: Illustration of the effect of different weighting fac-

tors on the IB protocol performance.

tant impact in the duration of each election round. Thus, the

selected weighting factors attain optimal reply timer of the

contention phase between candidate nodes.

7.2 Impact of Node speed

This study is performed with a traffic density of 300 nodes

with 10 of them acting as a source. To investigate the effect

of speed on the performance of the proposed protocol, we

run the experiments with varying the mobile speed from 30

km/hour to 60 km/hour. The simulated beacon interval is 0.5

s for the studied (GPCR) protocol.

Fig. ?? shows the packet delivery ratio of the IB, GPCR

and CBF protocols with respect to vehicle speed. A prompt

result of this performance evaluation is that an increase in

vehicle speed leads to a low successful packet delivery ratio

for all protocols. In more detail, as can be seen, the IB geo-

graphical forwarding protocol performs better as compared

to the other routing protocols. The reasons are that the pro-

posed protocol removes the beacon messages to update the

neighbour information, which leads to less bandwidth con-

sumption in the network and the required memory to store

neighbour information. As a consequence, the percentage of

the link utilization will increase for data packet transfers.

Furthermore, the multi-metric based next forwarder election

favours more stable and reliable links as well as forwarding

progress toward the destination. On the contrary, we observe

that the CBF protocol is always lags behind the IB protocol.

This is not surprise since CBF protocol only uses greedi-

ness factor as a routing metric to forward data packets in

the such unreliable and unstable vehicular scenario. Conse-

quently, the trend of CBF drops to 78.8 % at a speed of 60

km/hour.

ANOVA single factor has been used to compare the

means of the proposed IB protocol with the existing pro-

tocols. The result indicates that the IB protocol has the

lowest variance compared with the state of the arts. The

variance of IB, GPCR and CBF are 0.001329, 0.008859

and 0.002004 respectively for PDR with F value of 44.301

and P less than 1 % level of significance. These results

suggest that the IB protocol has lower variance than other

two protocols. The implication is that the proposed IB

protocol may be more efficient in increasing PDR in the

urban vehicular scenario than the other two methods as

it shown in Fig. ??. Thus, the applied ANOVA single fac-

tor validation method is significantly reflect credibility

of the variance of data from specific measurement of the

proposed protocol.

In contrast to beaconless forwarding protocols, in GPCR

protocol, the packet carrier node needs to know the position

information of all direct neighbours. This information is ob-

tained through periodic beacon messages sent out by each

direct neighbour node. The high mobility of vehicles leads

to the staleness of neighbourhood information. As a result,

the trend of GPCR protocol acutely drops to 57.5 % at a

speed of 60 km/hour.

In addition, even though each direct neighbour node uti-

lizes its own accurate location information, the IB and CBF

protocols suffer slightly when mobility increases to 60 km/hour.

We believe that this is because the elected direct neighbour

node will exit the radio range before receiving the actual

data packets or sends back the CTS frame to the source.

In Fig. ??, we show the effect of increasing vehicle speed

on average packet delay. The proposed protocol has the small-

est average delay among the protocols studied. In IB proto-
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(a) Packet delivery ratio.

(b) Average packet delay.

(c) Average path length.

Fig. 11: Effect of varying vehicle speed on the performance

of IB, GPCR and CBF protocols.

col, the route is determined based on the modified RTS/CTS

frames handshaking, and this mechanism is more effective

in reducing the traffic load on the MAC layer. This leads

to improved delays, because fewer retransmissions and ex-

ponential backoffs happen in the MAC layer. Contrarily, in

GPCR, the average delay increases drastically with higher

mobility. This is because the number of MAC layer retrans-

missions increases.

In addition, we observe that the CBF protocol suf-

fers in terms of average delay as compared to the IB

protocol. This can be attributed to the fact that the re-

lay nodes in CBF contend to access the channel based

on greediness factor; that is, a relay node elect itself as a

next packet forwarder when it has the shortest distance

to the destination. Only considering greediness factor for

packet forwarding leads to RTS frame, CTS frame or

data packet losses in unreliable wireless channels between

vehicles. As a result, MAC layer tries to perform redun-

dant retransmissions to compensate these RTS frame,

CTS frame or data packet losses. With these packet re-

transmissions, the CBF protocol is susceptible to higher

end-to-end delay. As can be seen in Fig. ?? the delay

trend of CBF increases to 691 ms at a speed of 60 km/hour.

The comparison between IB protocol and the state of

the arts in Fig. ?? indicates that our proposed protocol has

slightly longer average path length than the other protocols.

The reason is that, unlike GPCR and CBF, IB protocol ex-

plores the paths to the destination by considering link relia-

bility (considering power strength), link stability (consider-

ing direction) and forwarding progress toward the destina-

tion (greedy forwarding). Expectedly, the routing protocols

should perform better for shorter path lengths. However, the

results do not support this hypothesis, because selecting bet-

ter en-route nodes leads to better performance. For instance,

the IB protocol has a longer path length, but it performs bet-

ter than other studied protocols.

7.3 Impact of Traffic Density

In this study, we conducted experiments to understand the

effects of a variable number of vehicles on the performance

of proposed and existing solutions. The experiments involved

setting the vehicle speed at 45 km/hour and the number of

source nodes at 10. We ran the simulation with different

number of nodes ranging from 100 to 400.

The results of this experiment is plotted in Fig. ??. In

Fig. ??, the trend of the average delivery ratio is plotted with

the different number of vehicles. As expected, the trend of

protocols show that the successful packet delivery ratio con-

sistently increased as the number of vehicles increases. This

is not surprising since the probability of connectivity is in-

creased with the increasing vehicular traffic density. In more

detail, when node density is sufficiently high (300 nodes or
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(a) Packet delivery ratio.

(b) Average packet delay.

(c) Average path length.

Fig. 12: Effect of varying vehicular traffic density on the

performance of IB, GPCR and CBF protocols.

more), the IB protocol’s trend becomes flat. This is because

the RTS/CTS handshaking procedure increases the probabil-

ity that a packet collision will occur as the packet is routed

towards the destination. The GPCR protocol, on the other

hand, greedily forwards data packets toward the destination.

The link between the packet carrier node and the selected

next hop will be very weak (move out the radio range). This

case leads to fewer packets delivered to the specified desti-

nation.

The CBF protocol uses relay node self election mecha-

nism to greedily forward data packets toward the destina-

tion. In greedy packet forwarding, the probability of link

failure increases due to high signal attenuation of unreliable

wireless channels. As a result, the network performance is

degraded due to high packet loss. Due to this case, the IB

protocol performs better as compared to the CBF protocol.

Another interesting metric is the average packet de-

lay, which is depicted in Fig. ??. We notice that the av-

erage packet delay for IB protocol consistently decreases

until the number of nodes becomes 300, then rises slightly

to 265 ms at 400 nodes. The reason is that low traffic den-

sity in the network increases the likelihood that the net-

work will be dis-connected during the forwarding pro-

cess, whereas the high traffic density leads to packet col-

lision and duplication. Consequently, in both cases, the

average packet delay slightly increases. The average packet

delay of CBF, on the other hand, increases to 675 ms as

number of nodes reach 400. The responsibility of CBF’s

high latency lies in the increasing number of MAC layer

retransmissions.

In GPCR, The average packet delay steeply increases

with traffic density. There are two reasons for this: First,

when the number of nodes increases, the time to determine

next packet forwarder (which is close to the destination)

also increases. Second, unlike IB protocol, GPCR does not

favour link reliability and stability.

Fig. ?? shows the average path length variation with traf-

fic density. Comparing the hop count incurred by IB proto-

col with those obtained by the state of the arts, we notice

that the average path length of IB protocol is slightly longer

than that of GPCR and CBF. However, our proposed proto-

col offers better performance in terms of successful delivery

ratios and average end-to-end delay. The reason for this ef-

fect lies again in the favouring link reliability and stability

in addition to the forwarding progress.

7.4 Impact of Radio Obstacles on the Simulation Results

In this study, we conducted experiments to understand the

effects of radio obstacles on the performance of proposed

and existing solutions. The experiments involved setting the

vehicle speed at 45 km/hour, the traffic density at 250 nodes
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and the number of source nodes at 10. We ran the simulation

with different packet generation rate ranging from 16 to 72

kbps.

The static obstacles (buildings) in the urban environment

is simulated in the following model. The roadmap of the ur-

ban area is represented as graphs where streets are straight

road segment. In this city map representation, two vehicles

in the same road segment are considered to be in line-of-

sight due to non-existence of buildings to interfere with the

radio signal. This can be determined by obtaining the street

number in road segment file for each vehicle. If two vehi-

cles are in the same street (visible to each other), they can

communicate with each other. If this case is not satisfied,

i.e., there will be a building or an open area between two ve-

hicles, the log-normal shadowing model in JIST/SWANs is

modified in order to add the attenuation value to the signal

attenuation between transmitter and receiver.

Fig. ?? shows that the proposed IB protocol performs

better with performance increases of up to 10 % com-

pared with GPCR and 6.25 % compared with CBF. We

observe that the successful delivery ratio decreases as the

packet generation rate increases. But, the trend of the

routing solutions is not sharp, which means the routing

solutions can maintain the traffic load, as compared with

the simulation results without radio obstacles. This is not

surprise since the the presence of radio obstacles in the

vehicular scenario reduces the percentage of contention

on the MAC sub-layer. On the other hand, as the value

of source packet traffic increases, the PDR decreases ac-

cordingly. This performance hit of the routing solutions

is due to increased error rate of the wireless link between

the packet carrier node and its neighbours.

In Figure ??, the average packet delay is plotted with

respect to packet generation rate for different routing

protocols. When the inter-packet arrival time is large,

the average packet delay increases for IB,GPCR and CBF

Protocols. But, this ascending of delay is different for

each protocol. For IB protocol, the trend starts at about

625 ms then fluctuates gradually until it reaches 753 ms

at 72 kbps. The reason of this gradual increase of delay

is that, when obstacles are present in the city map, the

contention in the wireless network will be low. But, the

increase of delay is due to the unreliability of wireless

channels between vehicles.

8 Conclusions

In this article, we proposed an Intelligent Beaconless (IB)

geographical forwarding protocol to optimally route data

packets towards the destination. As discussed in detail in

this article, the proposed protocol consists of two modes

of packet forwarding: at the intersection and between them.

(a) Packet delivery ratio.

(b) Average packet delay.

Fig. 13: Effect of radio obstacle on the performance of IB,

GPCR and CBF protocols.

Both modes of packet forwarding, which are modelled an-

alytically, rely on distributed next hop self election based

on the modified 802.11 RTS/CTS frames. In addition, the

IB protocol forwards data packets along the city streets by

considering the real traffic on the roads and realistic wireless

channels. Simulation results show that, compared to the rep-

resentatives of geographical (GPCR and CBF) routing pro-

tocol, the IB protocol performs the best in terms of success-

ful packet delivery ratio and average packet delay. The fu-

ture work will consider the implementation of the proposed

IB protocol with IEEE 802.11p. In addition, we are currently

working to model static (e.g., Buildings) and moving (e.g.,

bus, fire track) obstacles by designing a new attenuation and

visibility schemes (both schemes have significant effect on

wireless signal propagation model).



IB Geographical Forwarding for VANET 17

Acknowledgements The authors wish to thank the anonymous re-

viewers for their constructive comments in improving the quality of

this manuscript.

Kayhan Zrar Ghafoor re-

ceived the BSc degree in Elec-

trical Engineering from Sala-

haddin University, the MSc de-

gree in Remote Weather Moni-

toring from Koya University and

the PhD degree in Wireless Net-

works from University Technol-

ogy Malaysia in 2003, 2006, and

2011, respectively. He is serving

as a member of Editorial Board

of IJCSIS, IJAIT, IJACSA, JCIT

and IJRRAN. He is also serving

as an associate editor of IJNPA and IJANC. Kayhan is cur-

rently working as a technical committee of GreeNets 2012,

ICNCS 2012, SMARTGREENS, TACPS 2012 and IEEE In-

ternational Workshop on Smart Communication Protocols

and Algorithms. He has been as a reviewer for 10 interna-

tional journals and 2 international conferences. Kayhan has

awarded UTM International Doctoral Fellowship (IDF) and

Kurdistan Regional Government (KRG) scholarship (Ah-

mad Ismail Foundation). His current research interests in-

clude routing over Vehicular Ad Hoc Networks and Tactical

Wireless Networks, as well as Artificial Intelligence and net-

work coding applications. He is a member of IEEE Commu-

nications Society and International Association of Engineers

(IAENG).

Kamalrulnizam Abu Bakar

obtained his PhD degree from As-

ton University (Birmingham, UK)

in 2004. Currently, he is associate

professor in Computer Science

at Universiti Teknologi Malaysia

(Malaysia) and member of the ”per-

vasive Computing” research group.

He involves in several research

projects and is the referee for many

scientific journals and conferences.

His specialization includes mobile

and wireless computing, informa-

tion security and grid computing.

Jaime Lloret (M07 SM10), re-

ceived his M.Sc. in Physics in 1997,

his M.Sc. in Electronic Engineering

in 2003 and his Ph.D. in telecom-

munication engineering (Dr. Ing.) in

2006. He is a Cisco Certified Net-

work Professional Instructor. He is

Associate Professor in the Polytech-

nic University of Valencia and he is

the research line coordinator of the

”communications and remote sens-

ing” of the Integrated Management

Coastal Research Institute. He is co-

ordinating the ”Active and collaborative techniques and use

of technologic resources in the education (EITACURTE)”

Innovation Group. He is the director of the University Ex-

pert Certificate Redes y Comunicaciones de Ordenadores

and of the University Expert Certificate Tecnologas Web

y Comercio Electrnico. He is currently the Cognitive Net-

works Technical Committee (IEEE Communications Soci-

ety) Vice-chair for the Europe/Africa Region. He has more

than 155 research papers published in national and inter-

national conferences, international journals (most of them

with Impact Factor in Journal Citation Report), and books.

He has 11 educational books and more than 55 papers pub-

lished in international conferences, journals and books of

education. He has been the co-editor of 15 conference pro-

ceedings and guest editor of several international books and

journals. He is editor-in-chief of the international journal

”Networks Protocols and Algorithms”, editor-in-chief of the

international Journal ”Advances in Network and Commu-

nications”, IARIA Journals Board Chair (8 Journals) and

he is associate editor of several international journals. He

has been involved in more than 150 Program committees

of international conferences and in several organization and

steering committees until 2011. He has been the general

chair of SENSORCOMM 2007, UBICOMM 2008, ICNS

2009 and ICWMC 2010 and co-chairman of ICAS 2009 and

INTERNET 2010. He is the co-chairman of IEEE MASS

2011 and SCPA 2011. He is IEEE Senior Member and

IARIA Fellow Member.

Rashid Hafeez Khokhar

did his M.S. in Statistics from

University of the Punjab, La-

hore, Pakistan. He received his

M.S. in Computer Science from

Preston University, Pakistan. Dr.Rashid

also received his second M.S.

in Computer Science by re-

search from Universiti Teknologi

Malaysia, Malaysia. He earned

PhD in Computer Science at

Universiti Teknologi Malaysia. He is currently working as a

senior lecturer in Faculty of Computer Science and Informa-

tion Technology, University of Malaya, Malaysia. His areas

of interest are geographical routing and realistic propagation

modelling in Vehicular Ad hoc Network.



18 Kayhan Zrar Ghafoor et al.

Kevin C. Lee received his Ph.D.

in the Computer Science Department

at the University of California, Los

Angeles in 2010. He received a B.S.

in Computer Science Engineering

and B.A. in Mathematics at the Uni-

versity of Pennsylvania in 2002. He

also received an M.S. in Computer

Science at the Carnegie Mellon Uni-

versity in 2004. Kevin has published

several papers in the fields of vehic-

ular ad hoc networks ranging from developing and running

a peer-to-peer application on the real vehicular test-bed, de-

signing an optimized geographic routing protocol in urban

scenarios, developing a light-weight loop-free geographic

routing protocol, and proposing link-state routing based on

density. He has also written technical reports in network pro-

cess migration in the area of network system programming

and in classification in the area of artificial intelligence. His

current research interests include vehicular ad hoc network

routing, theoretical analysis of computer networks, WiMax

networks, QoS, and mobile applications for vehicular ad hoc

networks.


