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Abstract 

Rolling bearings are one of the most widely used bearings in industrial machines. 

Deterioration in the condition of rolling bearings can result in the total failure of rotating 

machinery. AI-based methods are widely applied in the diagnosis of rolling bearings. 

Hybrid NN-based methods have been shown to achieve the best diagnosis results. 

Typically, raw data is generated from accelerometers mounted on the machine housing. 

However, the diagnostic utility of each signal is highly dependent on the location of the 

corresponding accelerometer. This paper proposes a novel hybrid CNN-MLP model-

based diagnostic method which combines mixed input to perform rolling bearing 

diagnostics. The method successfully detects and localizes bearing defects using 

acceleration data from a shaft-mounted wireless acceleration sensor. The experimental 

results show that the hybrid model is superior to the CNN and MLP models operating 

separately, and can deliver a high detection accuracy of 99,6% for the bearing faults 

compared to 98% for CNN and 81% for MLP models. 

 

Keywords: Condition monitoring, Fault diagnosis, Deep learning, Empirical Mode 
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1 Introduction 

As the rolling element bearings are key components of rotating machinery, their 

physical condition has a major impact on the safe and efficient operation of the 

equipment. Rolling bearing failures account for 30% or more of all failures in rotating 

machinery [1]. Accordingly, condition monitoring and intelligent diagnosis of bearings 

are considered critical aspects of system design and maintenance and have been the 

focus of widespread research effort over the past few decades [2]–[9]. 

In essence, fault diagnosis can be thought of as a pattern recognition problem 

related to the condition of rotating equipment. A common fault diagnosis method 

typically consists of two key steps: feature extraction (data processing) and fault 



classification. Vibration based signal processing is one of the most commonly used 

method for the first step, typically employing time-domain, frequency-domain, or time-

frequency domain analysis. 

Typically, a time-domain analysis calculates statistical parameters such as RMS, 

kurtosis, structural resonances [10]⁠ etс. Frequency-domain analysis is often 

advantageous, as it can readily isolate and identify key frequency components. A 

commonly used tool is the fast Fourier transform (FFT), as well as FFT based methods, 

spectrum analysis methods [11]⁠ etc. Time-frequency analysis is used to extend the 

capability of frequency-domain analysis to non-stationary vibration signals and 

includes such methods as the short-term Fourier transform [12], wavelet transform [13]⁠, 

empirical mode decomposition (EMD) of Hilbert–Huang transform (HHT) [14]⁠, EMD 

related methods etc. With the development of nonlinear dynamic theory, many entropy-

based estimation methods provide useful alternative approaches for extracting the 

defect-related features hidden in vibration signals and applying them to fault detection 

for rolling bearings [15]–[17].  

For the second step, the extracted features are used as inputs to machine learning 

techniques for the purposes of fault recognition. Numerous machine learning tools have 

been utilized. For example, the k-nearest neighbors (k-NN) method has been applied 

[18] to identify five different gear crack levels under different motor speeds and loads. 

Features extracted by HHT were also used by a k-NN classifier in [19]. Muralidharan 

et al. [20] adopted naive Bayes and Bayes network algorithms to implement fault 

diagnosis in combination with discrete wavelet transform for time–frequency features 

extraction. A support vector machine approach was utilized for fault diagnosis of rolling 

bearing in [21], [22] where features with most dominant fault information were 

extracted based on the concept of entropy. Hu et al. [23] use Random Forests to 

determine fault types, based on extracted multi-scale dimensionless indicators as fault 

features.  

Artificial neural networks and especially deep neural networks have shown great 

potential in mechanical fault diagnosis [24]. Convolutional neural networks (CNN) 

have prevailed in bearing fault diagnosis in recent years. Zhang et al. [25] successfully 

trained a one-dimensional CNN with raw vibration signals. But, due to its key 

architectural features - local receptive fields, weight sharing, and sub-sampling in 

spatial domain - CNN is most suitable for processing 2-D data.  In references [26], [27], 

and [28], time sequences of vibration signals were converted into time-frequency 



images by Wavelet analysis, HHT and FFT, respectively. Subsequently CNN was 

employed to exploit useful information from the images and recognize the fault patterns. 

A method of converting vibration signals in the time domain into a 2-D form, called a 

vibration image, is proposed in [3]. Again, CNN is used to identify bearing faults via 

vibration image classification.  

It is becoming increasingly common to use data of different types within a single 

model. For example, Ma et al. [29] used features extracted in time domain and 

frequency domain in their PSO-SVM model for rolling bearing fault diagnosis. It is 

also becoming popular to create hybrid and collaborative techniques from existing 

machine learning algorithms. In [30], CNN is used to extract intrinsic fault features 

from the images (obtained from the continuous wavelet transform) which are then fed 

into a gcForest classifier. The analysis results demonstrated that the proposed hybrid 

deep learning model can achieve higher detection accuracy than CNN and gcForest 

operating in isolation. 

Most of the above-mentioned studies are based on the data provided by the Case 

Western Reserve University (CWRU) Bearing Data Center [31]⁠ which has become a 

benchmark data set in the bearing diagnostics field. CWRU vibration data was collected 

using accelerometers, which were attached to the housing of a mechanism. It is the 

traditional approach for collecting diagnostic information from technological 

processes. 

In [32]  a wireless acceleration sensor is proposed which can be mounted directly 

on a rotating shaft. This sensor is able to measure angular and linear accelerations 

simultaneously, directly from the rotating shaft or gears. The construction of the 

sensor’s moving part is a disk (a printed circuit board fixed on a hard base plate, in 

practice) rigidly mounted on the rotating shaft. The disk contains three one-axis 

accelerometers. Moreover, the accelerometers are mounted equidistant from the center 

with angle of 120 degrees between them. Furthermore, the sensitivity axes of the 

accelerometers are oriented tangentially to the rotating shaft (Fig. 1). 

This method of mounting potentially provides increased sensitivity to defects [33], 

[34]. The data set used in this paper is unique, since it was obtained using a sensor 

mounted directly on the shaft.  

 

 



 

Fig. 1 Sensor model 

Based on one of the state-of-the-art bearing fault diagnosis schemes (HHT-CNN), 

this paper proposes a novel intelligent bearing fault diagnosis method using mixed 

inputs.  In the proposed hybrid model, the first stage (CNN) implements fault diagnosis 

from HHT images. The second stage (MLP - multi-layer perceptron) operates on the 

signal power at resonant frequencies. The proposed model therefore combines two NN 

architectures, using different data types as input – both numerical and images. As will 

be shown, the resulting model delivers higher diagnosis accuracy than either CNN and 

MLP in isolation. 

The main contributions of this work can be summarized as follows:  

1. A novel fault diagnosis method is proposed for simultaneously processing data 

of different types. This model combines MLP for numerical inputs and CNN for HHT 

images.  

2. A new dataset is provided, obtained using a sensor mounted directly on the 

rotating shaft. This data set is described in Section 3 of the paper and available in the 

public domain [35]. We encourage other researchers to develop enhanced diagnostic 

methods applied to this unique data set.  

3. Experiments on the dataset demonstrate that the proposed hybrid model is 

superior to CNN and MLP applied separately. 

The remainder of this paper is structured as follows. Section 2 describes the 

proposed CNN-MLP hybrid model. Experimental validation is performed to evaluate 

the method in Section 3. Section 4 offers conclusions and future work.  

 



2 Proposed intelligent fault diagnosis method 

This section describes the hybrid fault diagnosis model that simultaneously 

processes data of different types. Fig. 1 depicts an overview of the proposed method.  

 

Fig. 1 Overview of the proposed method 

 

The implementation of the method is as follows.  

Step 1: WAS signals are converted to mixed input data. The linear acceleration 

signals (linear signals) are transformed into time-frequency images using HHT, which 

are suitable inputs for CNN. Similarly, angular acceleration signals (angular signals) 

are converted into numerical values for the signal power around the first (N1) and 

second (N2) frequencies of the shaft torsional modes. The values N1 and N2 serve as 

input data for the MLP. 

Step 2: Model training using the data sets specific to each model type, resulting in 

a well-trained hybrid model.  

Step 3: Model testing. Use the trained hybrid model to identify bearing faults based 

on the mixed input data. 

 

 

 

 



2.1 Converting WAS signals to mixed input data  

Signals of angular and linear accelerations (angular and linear signals, respectively) 

are obtained by means of the WAS [32], with a sampling rate of 31.175 kHz. Signals 

examples are presented in Fig. 2, where the shaft rotation frequency is 20Hz. 

 

Fig. 2. Linear and angular signals 

 

The signals-to-mixed input data conversion process is illustrated in Fig. 3.  

 

Fig.3 Signals-to-mixed input data conversion 



Data is processed as a series of overlapping windows, where each window has 

duration of 125 ms (corresponding to 3,897 consecutive samples or 2.5 rotation 

periods), and where the offset between widows is 50 ms (corresponding to 1559 

samples or 1 rotation period). HHT is used to transform each linear acceleration signal 

data window into a 32 x 32 time–frequency image to be processed by the CNN model. 

Simultaneously, FFT is applied to the corresponding angular acceleration data window 

to obtain N1 and N2. This process is repeated for subsequent overlapping data windows 

to produce the required data for training and testing. 

Next, we describe the data processing in more detail. 

 

2.1.1 Linear signal-to-image conversion 

The Hilbert-Huang transform, which is a combination of the Empirical Mode 

Decomposition (EMD) and Hilbert transform, is a time–frequency analysis method 

designed for non-linear and non-stationary data [36]⁠. It is often used in the analysis of 

bearing signals with complex frequency components [27]. 

Using EMD, an arbitrary signal can be adaptively decomposed into a collection of 

intrinsic mode functions (IMFs), and can be expressed as a sum of IMFs plus a residual 

term:  

𝑥(𝑡) = ෍ 𝐼𝑀𝐹௞

௞

(𝑡) + 𝑟(𝑡) 

Following EMD, the Hilbert transform can be applied to each IMF separately. The 

Hilbert transform 𝑦(𝑡) of any signal 𝑥(𝑡) is defined as: 
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Utilizing 𝑦(𝑡) and 𝑥(𝑡) the associated analytical signal 𝑧(𝑡) is defined as: 

𝑧(𝑡) = 𝑥(𝑡) + 𝑖𝑦(𝑡) = 𝑎(𝑡)𝑒௜ఏ(௧) 

where 𝑎(𝑡) is the envelope of the signal and 𝜃(𝑡) is the instantaneous phase. The 

instantaneous frequency can be calculated as the derivative of the instantaneous phase:  

𝜔(𝑡) =
𝑑

𝑑𝑡
𝜃(𝑡) 

By performing the Hilbert transform on each IMF the original signal can be 

expressed as the real part (ℜ) in the following form 

 

𝑥(𝑡) = ℜ ቌ෍ 𝑎௝
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The above equation gives both the amplitude and the frequency of each component 

as a function of time. This time–frequency distribution of the amplitude is called the 

Hilbert spectrum. 

Fig. 4 depicts the decomposition process of a linear signal from a bearing with and 

without a fault. Fig. 5 depicts the corresponding HHT spectra for the first three IMFs.  

 

Fig. 4. IMFs for a healthy vibration signal (left) the bearing has a ball fault (right) 

 

Fig 5. The Hilbert spectrum of the healthy vibration signal (left) and signal from a 

bearing with a ball fault (right) 

 



In the traditional HHT method, the Hilbert spectrum of the whole signal is obtained 

by converting all obtained EMD decomposition results. However, good results with 

reduced computational cost have been obtained using only the first few IMFs to produce 

the Hilbert spectrum [37], [38]⁠. Our numerous experiments have shown that it is most 

effective to use only the first three IMFs.  

 

2.1.2 Angular signals-to-numbers conversion 

The values N1 and N2 are based on an impulse model of defect behavior. Each 

defect in a bearing can generate a shock, which excites natural mechanical frequencies. 

Periodic shocks generate modulated frequency components around the natural 

frequencies including torsional modes (in the angular acceleration spectrum). Over 

time, the increasing bearing defects result in the strengthening of existing frequency 

components and the appearance of new ones. Accordingly, the analysis of angular 

acceleration signal power around the natural frequencies is useful for bearing fault 

detection. 

Here, the torsional natural frequencies are found using a shock response spectrum 

(SRS) analysis. The SRS analysis contains three steps: (1) A hammer is used to generate 

a shock to the shaft. The shock response is measured by the WAS sensor which is fixed 

to the shaft. (2) The raw signals are decomposed into angular and linear accelerations 

based on a mathematical model of the sensor response. (3) The frequency peaks are 

found at the angular acceleration spectrum by FFT analysis. The resulting frequency 

peaks are the centers of signal power estimate bands. The SRS for the 3/4-inch shaft 

used in this work is shown in Fig 6, with data for each axis (angular and X-Y linear). 



 

Fig 6. The shock response spectrum of the 3/4-inch shaft without rotating. 

 

The SRS of the angular acceleration has two clear peaks at approximately 240 Hz 

and 820 Hz, corresponding to the first and second torsional natural frequencies of the 

3/4-inch shaft. The values N1 and N2 are computed as the sum of the FFT components 

around the first and the second frequency peaks (Fig. 7). Values of the numbers N1 and 

N2 are associated with bearing defects. 

 

Fig. 7. Calculating the number N2 

 

 

2.2 Hybrid CNN-MLP model  

An overview of the developed hybrid model with mixed input is shown in Fig.8. 

This architecture is represented as a combination of MLP and CNN. Specifically, MLP 

is adopted to deal with numerical inputs, CNN is applicable to extract high-hierarchy 

features from structural data. MLP consists of multiple fully connected (FC) layers. 

CNN is composed of several convolution network units. After feature learning for 



different formats of data separately, the outputs of MLP and CNN are concatenated 

feature-wise to achieve the final classification results.  

 

Fig.8. Hybrid CNN-MLP model with mixed input 

The mixed input data for our hybrid model are image-number pairs found by linear 

and angular acceleration, respectively, in the same time interval. Before loading into 

the hybrid model, all input data (numbers N1, N2 and intensities of image pixels) are 

normalized to the range of [0,1]. 

 

3 Case study 

In order to evaluate the performance of the proposed model for bearing fault 

diagnosis, we apply it to the data obtained on an experimental rig using the WAS-

prototype. 

 

3.1 Experimental rig 

In the study, the experimental rig contains a 1-inch shaft supported by two bearing 

assemblies. The left bearing is defect-free while the on the right is the test bearing. The 

shaft is rotated by an AC motor which is fixed to the shaft by a jaw coupling adjacent 

to the defect-free bearing. A revolution indicator measures rotating shaft frequency. 

The WAS prototype is fixed at the end of the shaft near the test-bearing (Fig. 9). The 

WAS prototype contains three one-axis MEMS-accelerometers ADXL-001 (Analog 

Devices). A detailed description of the prototype, location and orientation of the 

accelerometers are described in [32]. 



 

Fig.9. Experimental rig 

A commercial bearing, the ER-16K from MB Manufacturing was used for both the 

test and defect-free devices. A rotary tool was used to apply mechanical damage to test-

bearings, with three different fault types: damage to the inner race, outer race, and ball. 

A fourth bearing had all three faults applied. Thus, testing took place on a total of five 

test-bearings: one defect-free, three with single faults, and one with the three faults 

combined. 

    

Fig.10. Test-bearings with inner race fault (left) and ball fault (right) 

 

 

 

3.2 Data description and preliminary analysis 

The linear and angular signals of all five bearings were collected with a sampling 

frequency of 31.175 kHz with the system operating at 1200 rpm (i.e. at 20 Hz). 

The overlapping truncation method described in Section 2.1 was used to generate 

27,900 HHT images from the linear signals. As shown in Fig. 3, a truncating window 



slides along the raw linear signal with a shift interval of 1,559 samples (which 

corresponds to one revolution of the shaft). The window size was 3,897 data points in 

this study (i.e. covering 2.5 shaft revolutions). HHT is used to transfer the selected 

linear signal data set into a 32 x 32 time–frequency image while FFT is applied to the 

corresponding angular signal data set to calculate N1 and N2. 

Using the train_test_split() function from the data science library scikit-learn [39], 

we split the dataset into train and test subsets. The distribution of data sets between each 

class is shown in Table 1. 

Table 1. Distribution of data sets for model development 

 

Fault type Training data set Validation data set Test data set 

Normal 4036 705 839 

Inner race 4056 696 828 

Outer race 4018 746 816 

Ball 3985 725 870 

Combined fault 4062 686 832 

Total 20157 3558 4185 

 

In order to explore the data and evaluate the possibility of solving the classification  

problem, all 27,900 HHT images were visualized using the t-distributed stochastic 

neighbor embedding (t-SNE) [40] which preserves the original data structure. 

Since our dataset is high dimensional (each image is characterized by 

32*32*3=3072values) and t-SNE is computationally expensive, we perform principal 

component analysis (PCA) [41] before t-SNE to reduce the dimensionality of the data. 

An essential aspect of applying PCA is the ability to estimate how many 

components are needed to adequately describe the data. This can be determined by 

looking at the cumulative explained variance ratio as a function of the number of 

components (Fig. 11). This curve quantifies how much of the total, 3072-dimensional 

variance is contained within the first N components. For example, we see that we need 

around 500 components to describe approximately 0.99 of the variance. 

 



 

Fig. 11 Cumulative explained variance ratio as a function of the number of 

components 

After reducing the number of features by PCA (to 506 components), we employ t-

SNE to portray the resulting two-dimensional map. Fig. 12 shows the t-SNE 

visualization results of the HHT images. Each point in the Fig. 12 corresponds to one 

HHT image, so in total we have 27,900 points. Now each point, instead of 506 features, 

is characterized by only 2 features. The main advantage of t-SNE is the ability to 

preserve local structure. This means, roughly, that points which are close to one another 

in the high-dimensional data set will tend to be close to one another in the chart. 

 

 

 

Fig. 12 Visualization of HHT images with t-SNE 

1 – normal, 2 – inner race, 3 – outer race, 4 – ball, 5 – combined fault 



 

t-SNE visualization can be used to check for the presence of clusters in the data and 

to see if there is some order or some pattern in the dataset. It can aid our intuition about 

what we think we know about the domain we are working in. However, t-SNE is the 

unsupervised learning algorithm and it does not use any class label data in its work. In 

the above visualization, different colors result from metadata (label) embedding. If we 

turn off the color in Fig. 12, then we can clearly distinguish only three clusters, corre-

sponding to a normal signal, a signal with a combined error, and signals with other types 

of defects. Thus, from any model that solves the problem of classifying our data set, we 

can expect good results in determining a normal signal, and a signal with a combined 

defect. We also expect more model errors in separating signals of the other three types 

(with inner race, outer race, ball faults), especially in recognizing signals with inner race 

and ball defects, which correspond to orange and red colors and which almost overlap 

each other in the Fig. 12. 

 

3.3 Experimental results 

Table 2. Detailed structure of the designed Hybrid CNN-MLP model 

 

CNN branch 

Input   32 × 32 

C1 16@ 3 × 3 16@32 × 32 

P1 2 × 2 16@16 × 16 

C2 32@ 3 × 3 32@16 × 16 

P2 2 × 2 32@ 8 × 8 

C3 64@ 3 × 3 64@ 8 × 8 

P3 2 × 2 64@ 4 × 4 MLP branch 

Flatten 256 neurons Input  numbers N1, N2 

D1 16 neurons + dropout D1 16 neurons 

D2 8 neurons D2 8 neurons 

Concatenation 

Dense layer 8 neurons 

Output 5 neurons 

 



A trail-and-error analysis was carried out to determine the Hybrid CNN-MLP 

model parameters, as showed in Table 2. Layer C1 contained 16 convolution kernels 

with a size of 3×3 and outputted 16 feature maps with a size of 32×32 (we used zero 

padding to have the same size of output feature-maps). Layer P1 (2 ×2) outputted 16 

pooling maps with a size of 16×16. Layer C2 produced 32 feature maps with a size of 

16×16 and layer P2 provided 32 pooling maps with a size of 8×8. After a similar 

construction of layers C3, P3, we have 64 pooling maps with a size of 4×4 which than 

flatten in a layer with 256 neurons. An output from the flatten level is passed to two 

Dense layers D1, D2 with the dropout rate 0,5 between them.  

On the other hand, N1 and N2 are the inputs to the MLP branch with two dense 

layers of 16 and 8 neurons, respectively. The concatenated outputs of the two models 

are sent to the fully connected layer of 8 neurons and then to an output layer of 5 

neurons, which performs data classification (i.e. which generate 0/1 outputs 

corresponding to the five possible diagnostic outputs: no fault, each of the three 

individual faults, and the combined fault.  

Adam optimizer [42] with an initial learning rate of 1e-4 was adopted to optimize 

the model parameters. All activation functions were the Relu function, the batch size 

was 20, and the loss function was Categorical Cross entropy function. 

Initially, the number of epochs was set to 200 but we used Keras callbacks: 

EarlyStopping and ModelCheckpoint and due to this, the number of training epochs 

was less. These callbacks allow us to monitor the value of the loss function on the 

validation set and, if it starts to increase, stop the process of training the network. We 

used the value of the “patience” parameter equal to 50 epochs, i.e. we saved the best 

neural network (with the smallest value of the loss function on the validation set) and 

if there was no improvement in this value for 50 epochs, we stopped training and took 

the previously saved best model. 

Learning curves and confusion matrices are shown in Fig. 13. Learning curves 

show how the values of accuracy and loss on the training and validation datasets 

changed during training process. Here the training of the Hybrid CNN-MLP model was 

stopped at the 112th training epoch, because there was no decrease in the value of the 

loss function on the validation set during 50 epochs. The model obtained at the 62nd 

training epoch was taken as the model with the lowest value of the loss function on the 

validation set. Further, a test dataset, which did not participate in the training process 



in any way, was given to this model. The results of processing the test dataset are well 

represented by the confusion matrix on the right in the Fig. 13. 

The confusion matrix is a two-dimensional array comparing predicted category 

labels to the true label. Entry 𝑖, 𝑗 in the confusion matrix is the number of observations 

actually in group 𝑖, but predicted to be in group 𝑗.  

As we can see from the confusion matrix for the Hybrid model, all normal signals, 

except one, were correctly recognized by the network as normal. One was mistakenly 

classified as a ball defect signal. Similarly, all signals with a defect in the inner ring, 

with the exception of two (erroneously assigned to classes Outer and Ball), were 

correctly classified. The signals with a ball defect presented the greatest difficulty for 

the model, 7 of them were mistakenly assigned to the class Inner. In total, the Hybrid 

model made 15 errors (the sum of the off-diagonal elements). Recall that the size of the 

test dataset was 4185 samples. Thus, the accuracy of the model was (4185-15) / 4185 

= 0.9964 = 99.64%. 

Hybrid CNN-MLP 

  

CNN 



  

MLP 

  

Fig. 13 Learning curves and confusion matrices of the fault detection results  

Similarly, we can analyze the learning curves and confusion matrices for CNN and 

MLP models. We also stopped training if during 50 epochs there was no decrease in 

the value of the loss function on the validation dataset, and then we evaluated the 

accuracy of the model on the test dataset. For the CNN model, the greatest difficulty 

was also presented by signals with a ball defect, 56 of which were erroneously attributed 

to the Inner class. In turn, 31 signals of Inner class were erroneously assigned to the 

Ball class. We anticipated difficulties in the separation of Inner and Ball classes earlier 

in Section 3.2 from the analysis of Fig. 12 obtained using t-SNE for HHT images. 

The MLP model works only with N1 and N2, and its behavior is completely 

different. It confuses normal with ball defect, as well as outer ring with combined 

defect. Accordingly, the MLP and CNN models successfully complement each other 

and the Hybrid model generates significantly fewer errors. 



The standard metric of accuracy simply shows the proportion of correct responses 

from the model. If we are interested in a more detailed analysis of its work, then it is 

appropriate to examine the precision and recall metrics. 

Precision is defined as the fraction of relevant instances among all retrieved 

instances. Recall, sometimes referred to as sensitivity, is the fraction of retrieved 

instances among all relevant instances. A perfect classifier has precision and recall both 

equal to 1. Precision and recall are combined together into the f1-score: 

𝑓1 = 2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

Summary of the precision, recall, f1-score, accuracy for each class and each model 

is given in the classification report of Table 3. 

As can be seen, the Inner race class is the most difficult for the CNN model, scoring 

a precision of 0.93. This is consistent with the confusion matrix results where 56 

examples of the Ball class were erroneously assigned to the Inner race class. 

By contrast, the MLP model performs well in identifying signals of the Inner race 

class. We can see that the values of all metrics for this class are in the range of 94-95%, 

significantly exceeding the corresponding values for the other fault classes. These 

strong results are perhaps explained by the nature of the fault and the WAS sensor 

location. The inner race is rigidly bound to the shaft, and hence is close to the WAS in 

terms of the kinematic chain. 

 

Table 3. Classification report for the models 

 Hybrid CNN-MLP CNN MLP 

precision recall f1-

score 

precision recall f1-

score 

precision recall f1-

score 

Normal 1.00 1.00 1.00 1.00 1.00 1.00 0.77 0.79 0.78 

Inner race 0.99 1.00 0.99 0.93 0.96 0.94 0.95 0.94 0.95 

Outer race 1.00 1.00 1.00 1.00 0.99 0.99 0.76 0.74 0.75 

Ball  1.00 0.99 0.99 0.96 0.94 0.95 0.78 0.74 0.76 

Combined 

fault 

1.00 1.00 1.00 1.00 1.00 1.00 0.78 0.83 0.80 

Accuracy 1.00 0.98 0.81 

 

4 Conclusions and future work 



This paper proposes a new method for bearing fault diagnosis based on a Hybrid 

CNN-MLP model. The model simultaneously processes input data of different types 

and consists of two blocks: MLP to process numerical inputs and CNN to process HHT 

images. The unique dataset obtained using a sensor mounted directly on the shaft is 

presented. This data acquisition method is more sensitive to bearing defects. We 

provide open access to this dataset and encourage other scientists to use it. 

It is shown that the proposed hybrid model is superior to the CNN and MLP models 

in isolation and can produce a high detection accuracy of 99,6% for bearing faults 

compared to 98% for CNN and 81% for MLP models. All experiments in this work 

were carried out for one shaft rotation frequency. In future studies, it is planned to test 

how the proposed technique works in the case of signals with different shaft speeds. 
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