
This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2021.3087316, IEEE

Access

 O. Aslan et.al: Intelligent Behavior-Based Malware Detection System on Cloud Computing Environment

1

Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2021.Doi Number

Intelligent Behavior-Based Malware Detection System on Cloud

Computing Environment

Ömer Aslan1, Merve Ozkan-Okay2, and Deepti Gupta3

1Department of Computer Engineering, The University of Siirt, Siirt, Turkey
2Department of Computer Engineering, The University of Ankara, Ankara, Turkey
3Department of Computer Science, The University of Texas at San Antonio, San Antonio, TX 78249, USA

Corresponding author: Ömer Aslan (omer.aslan@siirt.edu.tr).

ABSTRACT These days, cloud computing is one of the most promising technologies to store information and

provide services online efficiently. Using this rapidly developing technology to protect computer-based systems

from cyber-related attacks can bring many advantages over traditional protection schemes. The protected assets

can be any computer-based systems such as cyber-physical systems (CPS), critical systems, desktop and laptop

computers, mobile devices, and Internet of Things (IoT). Malicious software (malware) is any software which

targets the computer-based system to launch cyber-attacks to threaten the integrity, confidentiality and availability

of the data. To detect the massively growing malware attacks surface, we propose an intelligent behavior-based

detection system in the cloud environment. The proposed system first creates a malware dataset on different virtual

machines which identify distinctive features efficiently. Then, selected features are given to the learning-based

and rule-based detection agents to separate malware from benign samples. Totally, 10,000 program samples have

been analyzed to evaluate the performance of the proposed system. The proposed system can detect both known

and unknown malware efficiently with high detection and accuracy rate. Besides, the proposed method results

have outperformed the leading methods’ results in the literature. Our evaluation results show that the proposed

algorithms along with machine learning (ML) classifiers achieve 99.8% detection rate, 0.4% false positive rate,

and 99.7% accuracy. Our proposed system and algorithms may assist those who would like to develop a novel

malware detection system in the cloud environment.

INDEX TERMS Cloud computing, virtualization, malware detection, behavioral detection, rule-based detection.

I. INTRODUCTION

Nowadays, there is a tremendous increase in both the amount

and severity of cyber-related attacks. In general, different

malware variants are the main reason for cyber-attacks.

Malware is any kind of software which is designed to exploit

computer and network systems’ vulnerabilities to perform
malicious activities and gain financial benefits. Virus, worm,

Trojan, backdoor, rootkits, and ransomware are well-known

examples of malware. Each malicious code variant and its

family are designed for different purposes. While some

malware variants steal sensitive data, others initiate

distributed denial of service (DDoS) attacks and allow remote

code execution [1]. During sophisticated attacks, more than

one malware type and family are used.

 Over the years, the number of malware samples have been

increasing rapidly. According to business and scientific

reports, around 1 million malicious software variants are

generated every day. Most of these malware variants are

evolving versions of existing malware. Adding new devices

to the computer networks every day such as IoT devices, the

amount of applications created in a short period of time, and

the amount of data created every day in social media also

increase the malware-related attacks in the virtual world. On

the other hand, new malware variants are using sophisticated

concealing techniques such as obfuscation and

packing to hide from detection systems. This makes it almost

impossible to identify and classify complex malware with a

conventional detection method.

 The sophistication of malware attacks, spread methods and

economic damage to the world economy have hit the peak

recently. According to the researchers, cyber-attacks cause

trillion dollars damage to the world economy globally. The

evolution of malware related attacks over the years is given

in Table 1. It can be seen that back in the early days, viruses

and worms were used to launch attacks, but over the years

Trojans and ransomwares are mostly used. Attack spread

methods that have been evolved, and damages that have been

inflicted are changing over the years as well. Social

engineering techniques which exploit user trust, software

vulnerabilities, malicious emails, and phishing scams are

used for attacks’ spread methods. Most of the recent attacks

steal information from individuals like credit card details on

banking systems, encrypt computer data on hard drives to

block victims’ access to the system, and cause damage to

millions of users around the globe.

 Malware detection is the process of specifying whether a

given program is malware or benign. There are a lot of

different methods presented to detect malware which can be

categorized as traditional and new detection approaches.

Traditional approaches include signature-, heuristic-,

mailto:omer.aslan@siirt.edu.tr

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2021.3087316, IEEE

Access

 O. Aslan et.al: Intelligent Behavior-Based Malware Detection System on Cloud Computing Environment

2

TABLE 1. The evolution of malware-related attacks over the years.

Malware Related Attack Year Attack Spread Method Result

Melissa Virus 1999
It used social engineering techniques to persuade

users to click on the email attachment.

It caused billions of dollars in losses across

many countries.

ILOVEYOU Worm 2000
It used social engineering to entice users to open the

attachment.

It stole users’ credentials and infected more

than 45 million computer users.

MyDoom worm 2004
It spread by email using attention-grabbing subjects,

such as errors, tests, etc.

It launched DDos attacks and allowed remote

control.

Zeus Trojan 2007
Malicious emails in the form of spam and drive-by

downloads.

It stole login details for social networks, bank

and email accounts.

Stuxnet Worm 2010
Attack on the programmable logic unit by stealing

source codes.
It took control of industrial processes.

Mirai Malware 2016 It exploited the vulnerability of IoT devices. It launched DDos attacks.

WannaCry Ransomware 2017 It exploited Windows vulnerability.
It encrypted computer hard drives and affected

150 countries.

Emotet Trojan 2018
Malicious emails in the form of spam and phishing

campaigns.

It stole information from individuals, like

credit card details on banking systems.

MyFitnessPal 2018 By exploiting software vulnerability. It affected 150 million users.

LockerGoga Ransomware 2019
Malicious emails, phishing scams and credentials

theft.

It completely blocked victims' access to the

system and caused millions of dollars in

damage.

CovidLock Ransomware 2020
It exploited users' trust by providing statistical

information about COVID-19.

It encrypted data on Android devices and

denied data access.

behavior-, and model checking-based while new approaches

include cloud-, deep learning-, and mobile devices-based

detection [2].

 As it is known, the signature-based detection approach

performs well for known and different versions of the same

malware, but it fails to detect unknown malware which has a

completely different signature. Behavior-, heuristic-, and

model checking-based approaches may detect a significant

portion of the zero-day malware. However, they cannot detect

new malware which uses advanced packing techniques.

Although deep learning- and mobile devices-based detection

approaches improve the detection rate (DR) for mobile

devices to a certain degree, they fail to detect malware which

seems completely different from the previous version [2].

 Cloud-based malware detection approach brings several

benefits over the other approaches. The cloud computing

environment provides easy access, on-request storage, more

computational power and considerably bigger databases

while decreasing the cost. Multiple execution traces of the

same malware have been collected by using different virtual

machines (VMs) and servers [3]. Cloud environment

improves the DR for personal computers, mobile and IoT

devices. In addition, various detection algorithms can be

implemented on different servers. Using several algorithms

improves the detection performance while decreasing the

false positive and negative rates.

 In this paper, an intelligent behavior-based malware

detection schema is proposed in the cloud computing

environment. The cloud-based detection schema consists of

two parts including feature extraction and detection phases.

A client submits a suspicious file over the computer network

and receives the analysis result from the server which shows

whether the given suspicious file is malware or not. The

suggested cloud-based system provides the following

contributions:

● Suggested model creates a malware dataset with fewer

features than known models do.

 First, several system calls are mapped into

relevant behaviors.

 Second, relationships are determined among the

behaviors.

 Finally, features are extracted from behaviors

which have semantic relationships between

them.

● Learning-based detection engine is used to separate

malware from benign.

● Rule-based detection engine is used to determine

malware from benign as well.

● The proposed schema can detect both previously known

and unknown malware.

● Proposed model detection and accuracy rate are

measured higher than known models.

 The rest of the paper is organized as follows: Section II

explains the cloud computing environment. Related work is

summarized in section III. Proposed methodology and case

study are defined in section IV and V. The results and

discussion are presented in section VI. The limitations and

future works of the proposed model are given in section VII.

Finally, the conclusion is given in section VIII.

II. CLOUD COMPUTING

Cloud computing provides various computing services over

the Internet [4]. By using the cloud, different users and

businesses are storing their data remotely in the data centers

instead of using their own local storage. This makes the data

available from anywhere, anytime, and from any devices.

Cloud environment provides data storage, servers, VMs,

databases, networking, and software. Typical cloud

computing environment and its infrastructure can be seen in

Figure 1.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2021.3087316, IEEE

Access

 O. Aslan et.al: Intelligent Behavior-Based Malware Detection System on Cloud Computing Environment

3

FIGURE 1. Cloud computing environment.

 These days, cloud computing is used almost everywhere.

Cloud computing brings several advantages over traditional

kinds of information storage such as easy access, pay as you

go, increase in speed, efficiency and performance, and

decreasing cost. There are many cloud service providers

including Amazon, Microsoft, Google, IBM, Rackspace, and

Verizon.

 Virtualization is the foundation of cloud computing.

Without virtualization, cloud computing will be incomplete

in many ways and will not be used as much as it is used today.

Virtualization uses a hypervisor (Virtual machine monitor) to

separate the operating system from the computer hardware.

This allows us to use multiple operating systems that run on

the same physical machine. Server virtualization on the cloud

site brings many advantages including: less equipment, lower

energy consumption, increase in server uptime, faster server

provisioning, redundancy, and improvement in disaster

recovery.

 Cloud environment provides different types of services

including infrastructure as a service (IaaS), platform as a

service (PaaS) and software as a service (SaaS) [5]. For

businesses' needs, one cloud service can have more

advantages than others. There are also different kinds of

cloud deployment models including public, private,

community and hybrid clouds [6]. Public clouds are owned

by third-party cloud providers and services, and available to

the general public. Users can access the cloud services by

using a web browser. In the public cloud, different

organizations share the same infrastructure which may

disclose sensitive data. Private clouds provide physical

infrastructure and services for specific organizations.

Infrastructure can be physically located in the company’s data
center or third-party’s data center. Community clouds are

created for exclusive use by a specific community. Hybrid

clouds combine public and private clouds together. Hybrid

clouds provide more deployment options, security and

flexibility.

 Cloud computing brings several advantages over traditional

storing schema:

1. Users and organizations can store and back up their

data in an efficient manner.

2. Regular users and organizations can access their

data from any device, anywhere, and any time via

browser or application.

3. Organizations can subscribe only for needed

services.

4. Cloud environment provides cost-savings from

small businesses to big organizations.

5. Cloud environment provides more storage space,

computational power and considerably bigger

databases.

6. It eliminates the need for onsite equipment,

maintenance, and management issues.

7. It enables rapid response when increasing data

volume requirements.

8. It reduces cost for physical resources, energy, and

personnel training needs.

There are some issues which need to be addressed in the

cloud computing environment:

1. Users lose control over their data.

2. Sensitive and top-secret data can be disclosed.

3. On public clouds the same physical resources are

used for different organizations which also raises

the security issues.

4. Data can be lost because of internal bugs, natural

disasters and other reasons.

5. If the Internet is slow, it takes a lot of time to

access the data.

6. Real time monitoring is not possible for all

locations.

 Using the cloud computing environment for malware

detection brings many advantages. Cloud environment

presents more computational power and much bigger

databases [6]. Different methods and algorithms can be

implemented in the cloud such as machine learning (ML),

data mining, and deep learning. Multiple execution traces of

the same malicious software can be collected. It enhances the

detection performance for personal computers, mobile and

IoT devices.

https://www.pcmag.com/picks/the-best-infrastructure-as-a-service-solutions
https://www.pcmag.com/picks/the-best-hosted-endpoint-protection-and-security-software

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2021.3087316, IEEE

Access

 O. Aslan et.al: Intelligent Behavior-Based Malware Detection System on Cloud Computing Environment

4

III. RELATED WORK

Cloud computing technology has been rapidly developing

recently owing to some advantages, including simple

accessibility, lower costs and scalability. Due to the

innovation and convenience of cloud technology, the interest

and use of cloud computing have increased among users as

well as researchers. Cloud computing plays an important role

in the protection of computer systems such as smart cyber-

physical systems (CPSs) [7], IoT devices [8] and personal

computers from several cyber-attacks, especially from

malware attacks. In literature review, several studies are

presented to detect malware in the cloud environment.

Different malware detection approaches were analyzed based

on the main idea, algorithms that are used, and feature

extraction methods. Well-known cloud-based malware

detection methods are summarized in Table 2. The common

goal of all these studies is to identify malware by increasing

DR while decreasing misclassification rates. When these

studies are examined, it is seen that although each detection

method has its own superiorities and performs better for

particular datasets in the cloud, none of them could detect all

malware.
 Martignoni et al. [9] introduced a new framework to

support dynamic behavior-based malware analysis based on

cloud computing. The proposed framework is based on two

assumptions. First, the security lab has no limit on available

computing resources and can take advantage of hardware

features. Second, end users' environments are more literal and

nonhomogeneous than synthetic environments and are

therefore more suitable for analyzing malware. They

performed an empirical prototype to approve their ideas and

integrated it into their existing behavior-based malware

detection system. The evaluation results showed that the

proposed framework enables security labs to advance the

integrity of the analysis while performing a detailed analysis

of the program's behavior without computational costs for

end-users. On the other hand, the proposed framework

increased the security issues and inclined to several detection

and hijacking attacks. Solving security-related problems and

applying a framework resistant to evasion attacks will

improve framework performance.

 Cha et al. proposed a new malware detection system named

SplitScreen [10]. It is a distributed malware detection system

that uses a supplemental screening step before the signature

matching stage. SplitScreen's two-stage screening step is

separated into client-server processes. The suggested method

was implemented as an extension of ClamAV, which

increases scanning throughput with more than 2x the

signature set using half of the memory. As the authors

mentioned that the acceleration and memory savings of

SplitScreen improves when the number of signatures

increases. The proposed method is scalable with a wide range

of low end consumer and handheld devices. Since only one

server is used on the cloud side, it would be better to optimize

server efficiency and load some work on the client side.

 Win et al. studied cyber-attacks targeting the virtualization

infrastructure underlying cloud computing services [11].

They proposed a malware and rootkit detection system that

defends guests from several attacks. The system was

combined with Support Vector Machines (SVM) based

external monitoring on the host, with system call monitoring

and system call hashing in the guest kernel. The design of the

proposed approach is to perform a system that detects the

entity of attacks against guests in real time without the

demand for a signature database. They indicated the

efficiency of the proposed approach by appreciating it against

well-known user-level malware and kernel-level rootkit

attacks. According to the authors, the implemented solution

eliminated the demand to use a signature database for

malware classification.

 Gupta et al. proposed a novel model for malware detection

in the cloud [12]. The aim of this study is to detect malicious

activities with some techniques and warn guest VMs about it.

In this paper, DNA sequence detection process, the symbolic

detection process and the behavioral detection process are

combined. During the DNA sequence detection process, they

extracted the DNA sequence from a file to detect malware. In

the symbolic detection process, they clustered files according

to file formats and used symbols to detect malware files.

During the behavioral detection operation, they observed the

behavior of the file and determined whether it was a

malicious program using the Anubis sandbox. A prototype of

the proposed approach (PMDM) is partially implemented on

the Eucalyptus. According to the authors, PMDM is

inexpensive, needs less runtime, and ensures well

performance for large numbers of files compared to other

known systems. However, this study can be improved further

by using a bigger dataset.
 Rakotondravony et al. categorized attacks in the IaaS cloud

that can be analyzed using VMI-based mechanisms [13].

They focused on attacks that directly scramble VMs deployed

in the IaaS cloud. The classification methodology takes into

account the target, source and direction of attacks. They

provided an overview of attacks where each actor could be

threatened in the environment. They defined a common IaaS

cloud scenario as a range of three different elements: cloud

provider, external entity, and VMs. First, they summarized

the distinct properties of attacks classified in the literature in

respect to attack complexity, security effect, and suggested

defense metrics. They then analyzed statistics on

virtualization vulnerabilities misused by attacks, noticed

them in public databases, and highlighted their evolution over

time. Finally, they presented the economic impact of attacks

on business processes. This study allowed several actors in a

cloud scenario to evaluate different malware attacks and as a

result design sufficient detection and mitigation mechanisms

based on virtual machine introspection. Paper can be further

enhanced by focusing not only on attacks involving direct

VMs, but also on other types of attacks.
 Sun et al. [14] explained a cloud-based malware detection

system called CloudEyes. CloudEyes ensures effective

security and data privacy for limited resource devices.

Suspect bucket cross-filtering, a novel signature-based

detection system for the cloud server, has been proposed

based on reversible structure. It can provide retroactive and

correct processing of malicious signature fragments. A

scanning tool is applied to quickly define the file content

suspicion with respect to the summary of the reversible

sketch for the client. An interaction mechanism has been

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2021.3087316, IEEE

Access

 O. Aslan et.al: Intelligent Behavior-Based Malware Detection System on Cloud Computing Environment

5

TABLE 2. Summary of cloud-based malware detection methods.

Paper Proposed Method Goal/Success Year

Martignoni et al. [9]
Presented a new framework based on cloud

computing for dynamic behavior-based analysis.

It provides security labs to enhance the accuracy of the

analysis.
2009

Cha et al. [10] Anti-malware system called SplitScreen. It increases detection while decreasing memory usages. 2011

Win et al. [11] A malware and rootkit detection system. It removes the necessity of using a signature database. 2015

Gupta et al. [12]
A novel malware detection model on cloud

architecture.

PMDM is inexpensive, takes less working time and

presents well performance for large numbers of files.
2016

Rakotondravony et

al. [13]

Attack classification in the IaaS cloud that can be

examined using VMI-based mechanisms.

It lets distinct actors in a cloud scenario evaluate different

malware attacks and design sufficient detection and

mitigation mechanisms based on VMI.

2017

Sun et al. [14]

CloudEyes, which presents effective and

confident security services for limited resource

devices.

It is effective, practical, and saves time and data storage

when detecting malware. 2017

Babu and Murali

[15]

Improved and designed an intermediary malware

protection in cloud environments.

It protects the cloud from malware transportations, and

decreases time and cost.
2017

Xiao et al. [16] Malware detection scheme with Q-learning. It increases the accuracy, while reducing the latency. 2017

Abdelsalam et al.

[17]

Malware detection approach in cloud

infrastructure.

The 2-D CNN model achieves the 79% accuracy rate, and

3-D model notably enhances to 90% the accuracy rate.
2018

Mirza et al. [18]
An energy effective hosting model in the cloud

environment.

It shows important energy efficiency with regard to CPU

usage by the hosting model.
2018

Mirza et al. [19]
Cloud-based energy effective hosting model for

an intelligent malware detection
It performs better than the conventional antiviruses. 2018

Shen et al. [20]

Malware detection system implemented by an

intrusion detection system with cloud and fog

computing.

It decreases delay of data traffic as well as data transfer

overhead.
2018

Zhou and Yu [21]
A cloud-assisted model for malware detection and

the dynamic system against malware propagation.

It can prevent the spreading of malicious codes obviously

and efficiently and is convenient to the resource limited

WMS.

2018

Yadav [22]
Consolidated WFCM-AANN malware detection

technique.

It successfully determines the malicious software with

high detection precision thereby outperforming existing

classifiers.

2019

Indirapriyadarsini et

al. [23]

Random and some other modeling like KNN,

Logistic Regression (LR), etc.

It has come up with the unique solution by working with

ML and cloud computing simultaneously to determine the

legitimacy of the file.

2020

Deyannis et al. [24]
Cloud-based malware detection solution called

TrustAV.

It can protect the transmission and processing of user data

even in distrusted networks.
2020

designed to protect the data privacy and decrease

consumption of communication. The client transmits the

coordinates of the suspicious file segments rather than the

entire file content. They evaluated the performance of

CloudEyes using both suspicious and normal traffic.

According to the authors, the test results showed that

CloudEyes is effective, practical and outperforms other

existing systems in terms of time usage and consumption of

communication. However, DR and accuracy can be further

improved. In addition, some methods can be applied to

reduce the data size to optimize storage and matching

performances.

 Babu and Murali designed a protection system against

malware spreading in cloud environments [15]. This

investigation presents several layered protections to address

the problem and creates a two-layered epidemic model for

preventing spread of malware from network-to-network. In

the proposed system, they designed the malware detection

system for various cloud servers using a middle monitoring

server, allowing scanning, detection and removal of malware

before transferring to cloud servers. According to the authors,

this study secures malware transfers to the clouds and saves

time and cost.

 Xiao et al. analyzed the malware detection game based on

cloud in which mobile devices upload the traces of their

application to security servers over access points or base

stations in dynamic networks [16]. Q-learned malware

detection system was designed for a mobile device. The aim

of this study is achieving the optimal payload transfer ratio

without knowing the trace creation and radio bandwidth

model of different mobile devices. They used the Dyna

architecture to enhance performance and a post-decision

learning method to speed up the reinforcement learning

phase.

 Abdelselam et al. [17] presented a malware detection

method based upon Convolutional Neural Network in cloud

computing environments. They used a standard 2-D CNN,

training on data existing for each of the processes in a VM

acquired through the hypervisor. They improved CNN

classifier accuracy rate by using a new 3-D CNN, which

considerably helps decrease mislabeled samples while

training and data collecting. They performed experiments on

collected data by working varied malware on VMs. The 2-D

CNN model achieves the 79% accuracy rate, and 3-D model

notably enhances to 90% the accuracy rate. This study could

be improved with increasing the experiments scale by

examining more malware binaries.

 Mirza et al. [18] proposed a combination of ML techniques

applied on large dataset. The paper mainly focused on two

important goals including higher DR and low resource

consumption. They extracted a group of features from the

dataset including malicious and normal files, and

implemented a SVM, boosting, and decision tree on the

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2021.3087316, IEEE

Access

 O. Aslan et.al: Intelligent Behavior-Based Malware Detection System on Cloud Computing Environment

6

decision tree to obtain the highest possible detection rate.

Boosting of the decision tree classifier showed a better

performance in the assessment of CloudIntell. They also

introduced a scalable cloud based architecture hosted on

Amazon Web Services (AWS). They tested proposed

methodology on different scenarios. According to the

authors, their methodology produced high results with lowest

energy consumption. Besides, implementing the boosting

algorithms on a real-time platform is difficult and training the

classifier with large amounts of data takes a lot of time and

computation. In another study, Mirza et al. [19] suggested an

energy efficient hosting model which consists of distinct

components of Amazon’s cloud services to improve a unique

and scalable model. This research examined the set

benchmarking numbers and known antiviruses for the cloud

based hosting model. According to the paper, the proposed

approach not only was successful for the hosted detection

framework, but also performed optimally better than

traditional antiviruses. However, the malware detection

framework and hosting model can be improved further by

integrating the intrusion detection mechanism to be assisted

by the cloud based engine.

 Shen et al. [20] explained a malware detection structure

implemented by a cloud and fog computational intrusion

detection system (IDS) to accomplish the IDS spreading

problem in smart objects. There are three main contributions

of the proposed study. First, they suggested an intrusion

detection approach to detect malicious software in fog cloud

based IoT networks. Second, they introduced a multistage

privacy-preserved game which is based on confidentially

leakage evaluation of smart objects to detect malware in IoT

networks. Finally, they explained a framework to integrate

the presented game into fog cloud based IoT networks using

the right detection strategies. According to the authors, the

proposed model fulfilled the large data processing

requirement caused by the greatly increasing number of smart

objects and the reduced data traffic latency as well as the data

transfer overhead.

 Zhou and Yu suggested a cloud assisted model for the

dynamic differential game against malware spread and

malware detection [21]. In the suggested model, first, a

malware detection model based on SVM is created by sharing

data on the security platform in the cloud. Second, the number

of malware infected nodes that physically infect sensitive

nodes is calculated according to attributes of wireless

multimedia system (WMS). Finally, the transition of states

between WMS devices is described by the changed epidemic

model and Hamilton function has been presented to simplify

the saddle point solution. Also, a target cost function and

dynamic differential game has been sequentially derived for

the Nash equilibrium between the WMS system and malware.

According to the paper, obtained results demonstrated that

the proposed algorithm is capable of suppressing the spread

of malicious code clearly and efficiently and is suitable for

resource-constrained WMS.

 Yadav explained a unified WFCM-AANN malware

detection approach to identify malware on the system [22].

The presented study consists of 2 modules, including

classification and clustering. In the clustering module, the

input data set is obtained in clusters by applying the WFCM

(Weighted Fuzzy C-mean) algorithm. In the classification

module, the centroid from the clusters is given to the

discontinuous Auto-Associative Neural Network, which is

applied to characterize whether information is intruded or

not. The author claims that the proposed classifier

successfully determines malware with high detection rate and

therefore outperforms the existing classifiers.

 Indirapriyadarshini et al. [23] proposed a machine learning-

based detection technique on the cloud environment. They

first used random modeling to get the worst log loss and then

used some modelling such as KNN, LR etc. They then looked

at the log loss of each algorithm and determined whether it

was a perfect model. Finally, they deployed the ML model

with the user interface on the cloud AWS. According to the

authors, they had found a unique solution by working

simultaneously with ML and cloud computing to determine

the legitimacy of the file. However, this study can be

enhanced by applying different data mining techniques for

feature selection or by implementing new learning models.

 Deyannis et al. [24] presented a cloud based malware

detection solution named TrustAV. This solution is based on

a pattern matching technique to determine contaminated data.

TrustAV transmits the processing of malware analysis to a

remote server and it is proposed as a cloud based solution.

According to the paper, TrustAV can protect the transmission

and processing of user data even in distrusted environments.

In addition, TrustAV also uses a variety of techniques offered

by Intel SGX technology to overcome general performance

loads and limit the risk. However, there is no real data to

evaluate the proposed cloud-based TrustAV solution.

 When the existing studies are examined for the cloud

environment, it is shown that various techniques such as

preprocessing, feature reduction and extraction, and ML

algorithms have been applied on the dataset to detect malware

with high accuracy. When the proposed malware detection

methods in these studies are evaluated, it is seen that

preprocessing and feature selection stages before

implementing ML algorithms improve the performance. In

addition, some ML algorithms may perform better than other

algorithms according to the size, distribution, and number of

features used in the dataset. It can be concluded that the cloud

based malware detection approach and its methods improve

the detection performance for computers, mobile, and IoT

devices with bigger malware databases, and heavy computing

resources. Other benefits of cloud based detection are

configurations, installations and regular updates. However,

some portions of malware could not be detected by using a

cloud based detection approach and its methods. To build a

more effective detector on the cloud site, hybrid-based

detection approach, which combines behavior-, model

checking-, and using deep learning

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2021.3087316, IEEE

Access

 O. Aslan et.al: Intelligent Behavior-Based Malware Detection System on Cloud Computing Environment

7

FIGURE 2. Proposed cloud-based malware detection architecture.

altogether on the cloud environment can be a promising

method. We believe that cloud-based malware detection

approach is still at the early stage, and there needs to be more

studies in this area to see effectiveness of the cloud at

detecting malware.

IV. PROPOSED SYSTEM

This section explains the proposed system including model

architecture, dataset, features, and detection methods in

detail.

 According to our proposed system, the user submits a

suspicious file to the cloud environment by using a computer

network. Then, the submitted file is executed in different

VMs and execution traces are gathered by using relevant

dynamic tools. Generated execution traces are collected on

behavior-based detection agent and behaviors are generated.

Related behaviors are grouped according to the predefined

rules in order to create features. When features are being

created, a proposed cloud-based behavior centric model

(CBCM) is used. After that, most discriminative features are

selected by suggested algorithms and selected features are

sent to the detection agents including learning-based

detection and rule-based detection. In learning-based

detection agent, selected features are trained by using

machine learning algorithm such as logistic model trees

(LMT), C4.5 (J48), random forest (RF), simple logistic

regression (SLR), sequential minimal optimization (SMO),

and k-nearest neighbor (KNN). On the other hand, in rule-

based detection agent, features are evaluated based upon

predefined features sets. Based on learning- and rule-based

detection agents, each sample is marked as malware or benign

and stored in the database. The analysis result is sent back to

the user which shows whether the suspicious file is malware

or not.

A. PROPOSED SYSTEM ARCHITECTURE

The system architecture of the cloud-based malware

detection model is presented in Figure 2.

B. BEHAVIOR CREATION, FEATURE EXTRACTION AND

SELECTION

Analyzing malware manually and extracting features require

a lot of time and manpower. Therefore, there is an urgent

need to build a system which can automatically analyze the

malware and extract features. Although malware performs

actions which are related to one another, it also carries out

unrelated actions to hide its real behaviors. Because of that, it

is vital to determine the interrelated actions and extract real

features while creating a dataset. Automatic dataset creation

models such as leading methods in the literature and the n-

gram are lacking in this regard because those methods

generate too many features as well as unrelated features.

These deficiencies increase the detection time while

decreasing the DR. For these reasons, the CBCM model is

proposed in this study which creates features and selects

features effectively.

 Overview of malware analysis process can be seen in

Figure 3 and feature creation and selection process can be

seen in Figure 4. To create features for each suspicious file,

an executable file is analyzed by using dynamic analysis tools

such as Process Monitor, API Monitor, Process Explorer,

Autoruns, and Debuggers in different VMs. Then, execution

traces are collected and sent to the behavior-detection agent.

In detection agent, behaviors and features are being created

by using the CBCM model. Behavior creation, feature

extraction and feature selection are intertwined in the

proposed model.

FIGURE 3. Malware analysis process.

 The CBCM model is a modification of the subtractive

center behavior model which was proposed in our previous

work [25]. While creating features, malicious behavior

patterns are determined. The malicious properties are those

which can be frequently seen in malicious codes but rarely

seen in non-malicious program samples. The goal is to gather

the most important properties. To identify malicious

properties: system calls, system call paths, system resource

Suspicious

files

Dynamic

analysis

tools

Feature

extraction

Feature

selection

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2021.3087316, IEEE

Access

 O. Aslan et.al: Intelligent Behavior-Based Malware Detection System on Cloud Computing Environment

8

FIGURE 4. Malware feature creation and selection process.

types, and file types are taken into consideration (Figure 4).

In this way properties that can distinguish malware from

benign samples are obtained. To create behaviors, necessary

relationships are established among the system calls. One or

more system calls, which can represent meaningful activity,

create a behavior. The behavior creation algorithm can be

seen in Algorithm 1. It takes the list of activities (system

calls) D1 as an input and generates a list of behaviors D2.

During the behavior creation, first based on the activities that

are performed, action states (𝜓: 𝑎𝑐𝑡𝑖𝑣𝑒 (𝐴) − 𝑝𝑎𝑠𝑠𝑖𝑣𝑒(𝑃))

are established. Then, action paths (µ: self (SF), system (S),

third party (TP), temporary (T), and auto start (AS)), where

the system calls perform, are determined. After that,

consecutive system calls, which can represent behaviors, are

determined. The same consecutive system calls and ending

system calls, which represent the actions, are excluded when

behaviors are generated. Finally, obtained behaviors are

written to do D2.

 Unlike n-gram, the CBCM uses twenty consecutive

behaviors when creating properties. If there is a relationship

between first and tenth or twentieth behaviors, it can create a

property. The importance of the properties is determined as

follows:

1. Paths that system calls are performed on.

2. Resources that system calls are performed on.

3. File types that are created.

1) Paths that system calls are performed on
We divided performed system calls locations into five

categories, which is shown in Figure 4 including system, third

party, self, temporary, and auto start locations. Each path is

further divided into subfolders and path scores are

established. These paths are used during the behavior and

feature creation. Example list of system activities path can be

seen in Table 3 and path score calculation for behaviors can

be seen in Algorithm 2.

 When the system call is performed in system folder,

following criteria are taken into consideration (Algorithm 2):

(i) If an analyzed program sample interacts with the

operating system files and directories in order to

work properly, these interactions are evaluated

normal. Most of the time, these interactions are

provided by system DLLs, background processes,

and system services. These interactions are

considered to be normal, so the risk level of these

interactions will be low or moderate depending upon

the other information

(ii) If analyzed program tries to inject some codes to the

system DLLs and exes including kernel32.dll,

advapi.dll, svchost.exe, winlogon.exe, etc., those

actions are considered to be malicious and the risk

level of these interactions will be high.

 When the system call is performed in third party folder,

following criteria are taken into consideration:

Malware execution traces

Feature extraction and selection

1. Activities path

2. Activities types

3. System resources

4. File types

a. System path

b. Third party path

c. Self-path

d. Temporary path

e. Auto start location

a. Process start

b. Set information

c. Write file

d. RegCreate

a. Process, Thread

b. File

c. Registry

d. Network

e. Memory

f. Mutex

a. Exe files

b. DLL files

c. Macro files

d. Txt files

e. Image files

f. Multimedia files

g. Other files

B

e

h

a

v

i

o

r

s

F

e

a

t

u

r

e

s

Path

scores

Behavior

scores

Selected

Features

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2021.3087316, IEEE

Access

 O. Aslan et.al: Intelligent Behavior-Based Malware Detection System on Cloud Computing Environment

9

(i) Most programs need third-party software to run

properly. If an analyzed program sample needs other

programs to run properly, the risk level of these

interactions will be low or moderate depending on

the other information.

(ii) However, if actions on the third party files and

directories that are not related to the performed

sample, those actions are considered malicious and

the risk level of these interactions will be high.

Algorithm 1 Behavior Creation

Input (D1 file): List of activities/system calls

Output (D2 file): List of behaviors

1: for each system call in D1 i do

2: if D1[i][state] == 'active' then

3: 𝛙 = 'A'

4: else

5: 𝛙 = 'P'

6: end if

7: if process.name==d1.filename then

8: µ = 'SF'

9: elif path=='system' then

10: µ = 'S'

11: elif path =='thirdParty' then

12: µ = 'TP'

13: elif path =='temporary' then

14: µ = 'T'

15: elif path =='autostart' then

16: µ = 'AS'

17: end if

18: if D1[i] [system call]! =D1[i+1] [system call] then

19: if D1[i] [system call]! = 'ending system call' then

20: write. D2 (D1[i] [system call)

21: end if

22: end if

23: if D1[i] [system call] == D1[i+1] [system call] then

24: if D1[i] [path]! =D1[i+1] [path] then

25: if D1[i] [system call]! = 'ending system call' then

26: write. D2 (D1[i] [system call)

27: end if

28: end if

29: end if

30: end for

TABLE 3. Malware execution trace system calls path (The list is abbreviated).

Action System Path

' c:\windows', system folder

' hklm\system ', system folder

' c:\windows\system32', system folder

'c:\program files', third party folder

'c:\program files (x86)', third party folder

'\....\suspicious file', self-folder

' c:\users\...\startmenu\...\startup', auto start location

' hklm\software \microsoft\active setup\installed components',

auto start location

'hkcu\software\Microsoft\windows\currentversion\runonce\setu

p', auto start location

'hklm\software\microsoft\windows\currentversion\run', auto

start location

'c:\documents and settings\ user name\local settings\temp',

temporary folder

'c:\ users\user name \appdata\local\temp', temporary folder

 When the system call is performed in its own folder,

following criteria are taken into consideration:

(i) If an analyzed program needs some data from its

own directory or file in order to run properly, it

generates normal actions that cannot be categorized

as malicious. For those actions, the risk level will be

low.

(ii) However, if an analyzed program sample performs

registry and network-related actions within some

files or copies its own file content to other files, it is

considered to be malicious and the risk level of these

interactions will be high.

 Temporary folder and auto start locations are other paths

which need to be considered. This is because most of the

malware types use temporary folders when performing

malicious actions, and use auto start file-registry locations to

become persistent in the system.

(i) If an analyzed program sample is using temporary

folder or auto start locations, these interactions are

considered to be malicious and the risk level of these

interactions will be fairly high.

2) Resources that system calls are performed on
In order to create behaviors and related properties, system

resources are split into following categories: process, thread,

file, registry, network, memory and mutex. During the

determining behaviors and properties, usually the same types

of resources are considered. When malware first runs, it

creates some processes and threads to perform malicious

actions. These processes and threads can make some changes

on files, registry entries, memory and mutexes, or can connect

other networks to exchange some sensitive data. Because of

that each action which is carried out on those system

resources is analyzed deeply during the feature creation.

3) File types that are created
Created file types are also taken into consideration during

feature creation. We considered portable executable (exe,

DLL) and macro files slightly more dangerous than other files

including txt, image, multimedia files, etc. This is because

several malware variants create exe extension files or inject

malformed program codes into DLL files to launch attacks.

 The feature extraction algorithm is presented in Algorithm

3. When features are generated from behaviors, twenty

consecutive behaviors are considered. In this phase, features,

feature action types, and path scores are calculated. The same

types of system resources (file, registry, mutex, network, etc.)

are considered when determining property relationships. In

addition, different resources create features if relationships

can be established among them. Path scores and action states

(AA, AP/PA, PP) are used during the feature selection.

 The feature selection algorithm is presented in Algorithm

4. First, the frequency of each property is calculated. During

the feature frequency calculation, we try to reduce the number

of different features as many as we can. The features of the

same name, which occur on the same resource type and have

the same path score but different locations, are combined with

the same property and the frequency is increased. For

instance, even though ReadFileWriteFile ('\...\path1\',

pathScore = 'x') and ReadFileWriteFile ('\...\path2\',

pathScore = 'x') have been performed in different locations

and instances, they set to the same feature and frequency is

increased.

 After frequency calculation is finished, features are selected

based upon path scores and action states. If the path score is

moderate, high or very high, related property is chosen.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2021.3087316, IEEE

Access

 O. Aslan et.al: Intelligent Behavior-Based Malware Detection System on Cloud Computing Environment

10

Algorithm 2 Behavior Path Score Calculation

Input (D2 file): List of behaviors

Output: Behavior’s path score

1: for each behavior i do

2: if µ == 'SF' then

3: if process.name == D2. filename then

4: pathScore = 'low'

5: elif process.name! = D2. filename and D2. filename =='system *.exe' then

6: pathScore = 'high'

7: else

8: pathScore = 'moderate'

9: end if

10: elif µ == 'TP' then

11: if D2[i][path] == 'program files' then

12: pathScore = 'moderate'

13: elif D2[i][path] == 'AS' then

14: pathScore = 'high'

15: else

16: pathScore = 'low'

17: end if

18: elif µ == 'S' then

19: if process.name == D2. filename then

20: pathScore = 'low'

21: elif D2. Fileextension == 'exe' or DLL then

22: pathScore = 'moderate'

23: elif D2[i][path] =='registry AS similar locations' then

24: pathScore = 'high'

25: elif D2[i][path] == 'system *.exe' then

26: pathScore = 'very high'

27: else

28: pathScore = 'low'

29: end if

30: elif µ == 'T' or µ == 'AS' then

31: pathScore = 'very high'

32: end if

33: end for

Algorithm 3 Feature Extraction from Behaviors

Input (D2 file): List of behaviors

Output (D3 file): List of Features

1: propertyName [] =' '

2: for each i in D2 do

3: for j= i+1 to i+20 do

4: if D2[i] [behaviorStatus] == D2[j] [behaviorStatus] and D2[i] [behaviorStatus] == 'A' then

5: ψi = 'AA'

6: elif D2[i] [behaviorStatus] == D2[j] [behaviorStatus] and D2[i] [behaviorStatus] == 'P' then

7: ψi = 'PP'

8: else

9: ψi = 'AP' = 'PA'

10: end if

11: if D2[i] [behaviorType]==D2[j] [behaviorType] and D2[i] [behaviorName]! = D2[j] [behaviorName]

 and (D2[i] [path] == D2[j] [path] or D2[i] [behaviorRead] before D2[j] [behaviorWrite]) then

12: Algorithm 2 BehaviorPathScoreCalculation (D2[i] [behavior], D2[j] [behavior])

13: propertyName[k] = D2[i] [behaviorName] +' '+ D2[j] [behaviorName]

14: k = k +1

15: end if

16: write. D3 (propertyName[k], ψi, D2[i] [path], D2[j] [path], D2[i] [pathScore], D2[j] [pathScore])

17: if D2[i] [behaviorType]! =D2[j] [behaviorType] and D2[i] [behaviorRead] before D2[j] [behaviorWrite] then

18: propertyName[k] = D2[i] [behaviorName] +' '+ D2[j] [behaviorName]

19: k = k +1

20: Algorithm 2 BehaviorPathScoreCalculation (D2[i] [behvior], D2[j] [behavior])

21: end if

22: write. D3 (propertyName[k], ψi, D2[i] [path], D2[j] [path], D2[i] [pathScore], D2[j] [pathScore])

23: end for

24: write. D3 (D2[i] [behaviorName], D2[i] [ψ], D2[i] [path], D2[i] [pathScore])

25: end for

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2021.3087316, IEEE

Access

 O. Aslan et.al: Intelligent Behavior-Based Malware Detection System on Cloud Computing Environment

11

Furthermore, even if the path score is low but the action state

is AA or AP/PA, this property is also chosen. These

properties are considered because we try to choose only

malicious related patterns which differentiate malware from

benign. That way, normal features which can be performed

by malware and benign samples are removed from the

dataset. Thus, our proposed algorithms create far fewer

features than well-known algorithms and n-gram.

Algorithm 4 Frequency Calculation and Feature Selection

Input (D3 file): List of Features

Output (D5 file): Selected Features with Frequency

1: for each feature i in D3 do

2: calculateFeatureFrequncy ()

3: write. D4 (propertyName, frequency)

3: end for

4: for each feature i in D4 do

5: if (pathScore == 'moderate' or == 'high' or == 'very high') then

6: write. D5 (propertyName, frequency)

7: end if

8: if (pathScore == 'low') and (ψ == 'AA' or == 'AP/PA') then

9: write. D5 (propertyName, frequency)

10: end if

11: end for

C. LEARNING-BASED DETECTION

After features are selected from the previous section, each

program sample is represented by a row vector. For each

property, frequency value is written. If property is repeated x

times, x is written as a property value, if property is not

repeated, 0 is written as a value. After the dataset is built

based on feature vectors, learning algorithms are applied. In

learning-based detection agent, selected features are trained

by using machine learning algorithms (classifiers) including

C4.5, LMT, RF, KNN, SLR and SMO. Several classifiers are

used for classification to measure the proposed method

efficiency. Learning-based detection agent in the cloud can

be seen in Figure 2, training and testing phase can be seen in

Figure 5.

FIGURE 5. Learning-based malware detection agent.

 During the training phase, cross-validation and holdout

methods are used to measure the performance. Decision trees

such as C4.5, LMT and RF are used for training and testing

as a classifier because they return scalable and highly

accurate results in the cloud environment. Besides, decision

trees are suitable classifiers for our dataset features

distribution to separate malware from benign. C4.5 uses gain

ratio for feature placement. In gain ratio, the feature with the

maximum gain is selected recursively for splitting criteria

when features are placed on the tree. The gain ratio is prone

to unbalanced partitioning and hence can create uneven trees.

The information gain ratio is measured as follows. 𝐺𝑎𝑖𝑛 𝑅𝑎𝑡𝑖𝑜 (𝐴) = 𝐺𝑎𝑖𝑛 (𝐴)/𝑆𝑝𝑙𝑖𝑡𝐼𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛𝐴(𝐷) (1) 𝐺𝑎𝑖𝑛 (𝐴)= 𝐼𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛(𝐷) − 𝐼𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛𝐴(𝐷) (2) 𝑆𝑝𝑙𝑖𝑡𝐼𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛𝐴(𝐷)= -∑ |𝐷𝑗||𝐷|𝑣𝑗=1 𝑙𝑜𝑔2 (|𝐷𝑗||𝐷|) (3) 𝐺𝑎𝑖𝑛(𝐴) shows how much information will be gained when

branching using the property A and 𝑆𝑝𝑙𝑖𝑡𝐼𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛𝐴(𝐷)

shows the intrinsic information which measures the entropy

of the sub-dataset. C4.5 is appropriate for our dataset because

it works with continuous data, eliminating data with noise,

and prunes decision trees effectively.

 RF is a combination of many trees which classifies using

attributes that each tree is sampled independently. This

classifier produces satisfying results in a dataset with low

variance and many interrelated features. It uses the CART

(Classification and regression tree) algorithm to generate RF

trees. On the other hand, LMT is a classifier which uses a

supervised learning algorithm that combines LR and decision

tree learning, and produces results with high accuracy. LMT

classifier creates LR functions on each node using the

LogitBoost algorithm [26] and prunes the tree using the

CART algorithm. The CART algorithm works according to

the depth priority search and uses the Gini index as a criterion

for splitting features. The Gini index is used to measure the

differences between the probability distributions of target

feature values. The feature with the minimum Gini index is

selected as the splitting attribute. The Gini index does not

work well when the number of classes and the value of

properties are very large. The Gini index is calculated as

follows. 𝐺𝑖𝑛𝑖(𝐴) = 𝐺𝑖𝑛𝑖(𝐷) − 𝐺𝑖𝑛𝑖𝐴(𝐷) (4) 𝐺𝑖𝑛𝑖(𝐷)=1 − ∑ (𝑃𝑖)2 𝑚𝑖=1 (5) 𝐺𝑖𝑛𝑖𝐴(𝐷)=
|𝐷1||𝐷| 𝐺𝑖𝑛𝑖(𝐷1) + |𝐷2||𝐷| 𝐺𝑖𝑛𝑖(𝐷2) (6)

 KNN is a statistical model classifier which uses example-

based learning. It is a classifier that produces good results

when there is no prior knowledge about data distribution.

Even though KNN classifier needs a lot of storage space

during the learning phase, it performs well in the cloud

environment for our dataset. Even if the SLR algorithm is not

adequate to solve non-linear problems and comprise high bias

which reduces the efficiency of the classifier, it is suitable and

fast when combined with the proposed model. Since SMO

works well for non-linear boundary situations and performs

well on high-dimensional data, it performs well on our

dataset on the cloud. After training and testing phases are

performed by using C4.5, LMT, RF, KNN, SLR and SMO,

the results are sent to the behavior-based detection agent.

Selected features

Classifier

Training Testing

Evaluation

Malware Benign

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2021.3087316, IEEE

Access

 O. Aslan et.al: Intelligent Behavior-Based Malware Detection System on Cloud Computing Environment

12

FIGURE 6. Rule-based malware detection agent.

Algorithm 5 Rule-Based Detection

Input: List of Features

Output: List of Marked Program Samples

1: pathScore {'very low', 'low', 'moderate', 'high', 'very high'}

2: list {…} ← predefinedList {…}, fC ← frequencyCategory {'few', 'average', 'many', 'excessive'}

3: for each feature i do

4: if ipathScore=='low' and i € list {} and (fC == 'many' or 'excessive') then

5: suspiciousFile = 'malware'

6: elif ipathScore=='moderate' and i € list {} and (fC == 'average' or 'many' or 'excessive') then

7: suspiciousFile = 'malware'

8: elif ipathScore== 'high' and i € list {} and (fC == 'average' or 'many' or 'excessive') then

9: suspiciousFile = 'malware'

10: elif ipathScore== 'very hig' and i € list {} and (fC == 'few' or 'average' or 'many' or 'excessive') then

11: suspiciousFile = 'malware'

12: elif ipathScore== 'hig' and (fC == 'excessive') then

13: suspiciousFile = 'malware'

14: list = list + 'ifeature'

15: elif ipathScore== 'very hig' and (fC == 'many' or 'excessive') then

16: suspiciousFile = 'malware'

17: list = list + 'ifeature'

18: else

19: suspiciousFile = 'benign'

20: end if

21: end for

D. RULE-BASED DETECTION

Rule-based behavior malware detection agent is running on

different machines in the cloud. For detection there is no

training or learning phase, instead detection is performed

based on the predefined property list (Figure 6). We use

malware behaviors when creating predefined properties. This

list consists of features which differentiate malware from

benign based on malicious behavior patterns. The malicious

behavior patterns are the features which can be frequently

performed by malware while rarely performed by benign

samples. The malicious behavior pattern list is dynamically

updated when new malware features are determined. After

features are created and selected in section IV.B, the feature

values are categorized based on repeated frequencies into

four categories. These categories are {few}, {average},

{many}, and {excessive}. If the analyzed program features

are substantially similar to the features in the list, the program

is marked as malware (Algorithm 5). Otherwise, the program

is marked as benign. For instance, analyzed program features

are somehow in the predefined properties list but without

enough repeated frequency, the analyzed program is marked

as benign. Feature paths are also used during the detection.

According to our findings we determined fifty features which

are frequently used by malware such as CreateService,

CreateRemoteThread,FindFirstFile,FindNextFile,Mapviewo

fFile,CreateFileMapping,QueryDirectoryWriteFile,ReadFile

WriteFile,RegDeleteValue,RegQueryKeyRegSetInfoKey,

etc.

The proposed rule-based detection agent detects various

forms of unknown and known malware efficiently. It is also

quite fast when compared with a learning-based detection

agent. After the rule-based detection agent finishes its task,

the results are stored in the database and sent back to the

behavior-based detection agent. Since the rule-based

detection agent is quite fast when compared with a learning-

based agent, the detection result is first sent to the client while

learning-based detection is still performing. After the

learning-based detection process is finished, its results are

also sent to the client as well. For future study, we aim to

combine learning-based and rule-based detection results.

Behavior-based detection agent will compare the results

coming from learning-based detection and rule-based

detection agents. If there are some differences, the detection

process will be repeated for those samples to decrease the

misclassification rate. When the same classification results

are gathered from both detection agents, the results will be

sent to the client.

V. CASE STUDY

This section presents case study and experiments. In order to

simulate the cloud environments, we used different

computers, VMs, switches and routers in the campus

network. Different versions of Windows machines are used

for test cases including Windows 7, 8, 10, VMs 7, 8 and 10.

Proposed dataset creation model is implemented by using

Python scripting language. For learning-based detection,

Weka and some python libraries are used, and for rule-based

Malware dynamic features

Predefined properties list

Malware

Benign

Rule-based

detector

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2021.3087316, IEEE

Access

 O. Aslan et.al: Intelligent Behavior-Based Malware Detection System on Cloud Computing Environment

13

detection the proposed algorithm is implemented in Python

language as well. Totally, 7000 malware and 3000 benign

portable executables are analyzed. Data collection and

representation, model performance and evaluation are

explained in the following subsections.

TABLE 4. List of malware types that are analyzed (The list is shortened).

Malware MD5 Signature Malware Type Malware Family/Malware Specific Name

f2c6a6541976bab117d03f7a8c2ccbf7 Trojan Trojan.Win32.Generic, Trojan.Injector, Trojan.Symmi

f3a6ab31986c928d312699dc7208a211 Ransomware TR/Crypt.Zpack, Ransom:Win32

28cb0c8083f6a41e7b04137ab166c580 Packed Malware Gen:Packer.PESpin, Trojan.Win32.Crypt

f448a906cc9906b8f7589b117a079280 Backdoor Backdoor.BDS, Trojan [Backdoor]/Win32.Hlux

b64f34137982332156e058cd63cf480b Dropper Win32/TrojanDropper.VB, Trojan.TR/Drop.VB

996f29ba29a14fc0ebf46ce38675f8cd Ransomware Ransom: Win32/Blocker

4a7e35d8c111e213a051462e66e73a3e Packed Malware Win32.Packed.VMProtect, HackTool.GameHack!8

f3aa059c23a2080bc0b219eebf5577e0 Virus Virus:Win32, Win32.Parite.B

9085a7dff20d6a5c287d3056d3ed1cc4 Rootkit Dropper.Generic_r.AC, Win32:Rootkit-gen

48cd89827939b3a8976d9bb0993bc338 Spyware Win.Spyware.Zbot, Gen:Variant.Razy

f3b03c25e1a53168a606732fc96707e3 Keylogger Gen:Application.Keylog.dm0, TrojanSpy.Vwealer

f3c6372f9c95ba38d72a5c2219ce9f8b Worm Worm/Win32.Mabezat

FIGURE 7. Analyzed malware distribution.

FIGURE 8. Data collection, analysis and representation process.

963

783 778 727
666 658

395 360 332 325 278 266 257 212

0

200

400

600

800

1000

1200

Malware types

N
u

m
b

er
 o

f
m

a
lw

a
re

 s
a

m
p

le
s

Malware

labels

Malware Analysis
2

Data Collection
1

Execution

traces

Behaviors

Malware Representation
3

Feature vectors

Features

Selected

features

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2021.3087316, IEEE

Access

 O. Aslan et.al: Intelligent Behavior-Based Malware Detection System on Cloud Computing Environment

14

FIGURE 9. Extracted behaviors for 4 samples (Figure 8. 2.4) (The list is shortened).

FIGURE 10. Generated features for 4 samples (Figure 8. 2.5) (The list is shortened).

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2021.3087316, IEEE

Access

 O. Aslan et.al: Intelligent Behavior-Based Malware Detection System on Cloud Computing Environment

15

FIGURE 11. Selected features 4 samples (Figure 8. 2.6) (The list is shortened).

FIGURE 12. Feature vectors (Figure 8. 3) (The list is shortened).

A. DATA COLLECTION AND REPRESENTATION

Malware samples were collected from various sources

including Das Malwerk, MalwareBazaar, Malware DB,

Malware Benchmark, Malshare, Tekdefense, ViruSign,

VirusShare, KernelMode [27-35]. Benign samples were

collected from different legitimate websites which include

various categories such as office documents, games, system

tools, and other third party’s software. Totally, 7000 malware
and 3000 benign samples were collected and analyzed on

different Windows VMs as well as real machines. Different

malware types include virus, worm, trojan, rootkit, backdoor,

ransomware, spyware, etc. and families include Generic,

Agent, Win32, Emotet, Ramnit, Sinowal, Sality, Snoopy,

Cryptolocker, Ransomlocker, etc. were collected. Analyzed

malware types and their families can be seen in Table 4.

Collected malware samples were labeled by using Virustotal

[36]. 7000 malware samples were chosen among 20,000

malware. The number of collected and analyzed malware

samples for each category can be seen in Figure 7.
 Collected malware samples were performed in different

VMs and execution traces were sent to the detection agent in

the cloud. To get execution traces Process Monitor, Process

Explorer, and Autoruns were used. Data collection, analysis

and representation process can be seen in Figure 8. Each

sample was executed between 5 to 15 seconds depending on

the number of activities generated by malware. Execution

traces were analyzed by using our proposed algorithms to

generate behaviors and features (Figure 9-10). Features are

selected based on risk scores (Figure 11). The proposed

algorithms were implemented by using Python scripting

language. Each sample is represented as a row feature vector

for learning-based detection (Figure 12). If the feature occurs

for a related sample, the frequency of the repetition is written.

If the feature is not repeated for a related sample, 0 is written.

Since 0 is written for not repeated features, the size of the

https://virusshare.com/

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2021.3087316, IEEE

Access

 O. Aslan et.al: Intelligent Behavior-Based Malware Detection System on Cloud Computing Environment

16

feature set is increasing over time. For 10,000 samples we

gathered 751 features. On the other hand, for rule-based

detection feature vectors, only features that are performed by

related samples are taken into consideration. The repetition

of each feature is written. For 10,000 samples, we got an

average of 60 features, which is quite fewer when compared

to the other datasets.

B. MODEL PERFORMANCE AND EVALUATION

After the feature selection process is completed, learning-

based and rule-based detection processes start. To measure

the performance of proposed model holdout and cross-

validation methods, as well as detection rate (DR), false

positive rate (FPR), f-measure, and accuracy metrics were

used. At first, when the generated dataset was small, the

cross-validation method returned more feasible results than

holdout. However, when the dataset has grown timely, the

holdout method returned favorable results as well. Best

performances are obtained when k is chosen 10 for cross

validation, and the data is divided into 80% training and 20%

test for holdout method. TP represents the number of malware

samples correctly classified as malware, TN the number of

benign samples correctly classified as benign, FP the number

of benign samples being mistakenly classified as malware,

and FN the number of malware samples being mistakenly

classified as benign. DR, FPR, f-measure, and accuracy

metrics are calculated by using confusion matrix (Table 5) as

follows:

DR = Recall= TP/ (TP + FN) (7)

FPR = FP/ (FP + TN) (8)

Precision = TP/ (TP + FP) (9)

F-Measure = (2 * precision * recall)/ (precision + recall)(10)

Accuracy = TP+TN/ (TP + TN + FP + FN) (11)

TABLE 5. Confusion matrix.

 Predicted Class

Actual

Class

 Yes No

Yes

 No

TP

FP

FN

TN

VI. RESULTS AND DISCUSSION

This section summarizes the test results and discusses the

proposed system performance. When performance is

evaluated, various learning algorithms are used. During the

training and testing, best performances are gathered by using

cross validation k = 10 and holdout method which is using

80% training and 20% testing sets. DR, FPR, f-measure, and

accuracies are used as metrics to compare test results. For

rule-based detection, we did not use any training and testing

phases. The performance is obtained in real time by using

predefined features. The cloud environment has provided a

fast and scalable environment for our learning- and rule-

based system. The test results can be seen in Figure 13, Table

6, Table 7, Table 8, Table 9, and Table 10.

 Table 6 demonstrates the proposed model performance

when 10,000 program samples are analyzed. For learning-

based detection, both cross validation and holdout methods

are performed fairly well. Cross validation results are slightly

higher than holdout results. The best results are obtained

when ML classifiers such as decision trees (J48, RF, LMT)

and KNN are used. For instance, in J48 DR, FPR, f-measure

and accuracy are measured as 99.8%, 0.4%, 99.8% and

99.75%, respectively. In the same way, RF algorithm

achieved 100% for DR, 0.6% for FPR, 99.6% for f-measure,

and 99.83% for accuracy; LMT achieved 99.3% for DR, 0.5%

for FPR, 99.6% for f-measure, and 99.38% for accuracy; and

KNN achieved 100% for DR, 1.2% for FPR, 99.7% for f-

measure, and 99.64% for accuracy. The obtained results on

SLR and SMO classifiers are slightly lower than J48, RF,

LMT and KNN. Using appropriate kernels for SMO and

reducing bias for SLR can increase the performance. On the

other hand, the obtained test results are satisfactory for rule-

based detection which do not use any learning algorithm and

do not require any training phase. rule-based detection

achieved 97.8%, 6.6%, 97.4%, and 96.5% for DR, FPR, f-

measure and accuracy, respectively.
 Table 7 shows performance on n-gram, ClaMP and our

dataset based on selected classifiers. It can be clearly seen

that J48, RF, and KNN classifiers perform better on our

dataset. For example, the J48 algorithm performance on n-

gram is measured as 98.1% for DR, 2% for FPR, and 98.05%

for accuracy; on ClaMP dataset [37] it is measured as 98.2%

for DR, 2.6% for FPR, and 97.8% for accuracy; and on our

dataset it is measured as 99.8% for DR, 0.4% for FPR, and

99.75% for accuracy. Similar results are obtained by using

different ML classifiers as well.

 The number of features is reasonable on our dataset when

it is compared with the n-gram dataset (Table 7). Figure 13

and Table 8 indicate the number of properties in the feature

vectors for learning-based detection and rule-based detection,

respectively. Until a certain number, the numbers of

properties are increased while analyzed program samples are

increasing (Figure 13). This is because some program

samples exhibit different features. Furthermore, when

properties are combined, each sample’s features are added to

the feature vector. For repeated frequency, frequency number

is written for feature value. If property is not presented in the

feature vector, 0 is written for that property. This conversion

also raises the number of features in our dataset. However,

for rule-based detection we have not created a feature vector.

Thus, the number of features is reasonable when compared to

other feature extraction methods (Table 8). For rule-based

detection, our dataset consists of an average of 60 features

with a minimum of 5 and a maximum of 150 (Table 8). Most

of the time, the extracted malware features are more than the

benign features for each sample for our dataset.

FIGURE 13. Number of analyzed program samples versus properties in the

feature vectors for learning-based detection.

0

100

200

300

400

500

600

700

800

0 2000 4000 6000 8000 10000 12000N
u

m
b

er
o
f

 p
ro

p
er

ti
es

 i
n

th
e

 f
ea

tu
re

 v
ec

to
r

Number of program samples

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2021.3087316, IEEE

Access

 O. Aslan et.al: Intelligent Behavior-Based Malware Detection System on Cloud Computing Environment

17

TABLE 6. Proposed model results on various classifiers and rule-based detection.

Method Classifier DR (%) FPR (%) F-measure (%) Accuracy

Learning-based detection using

Cross-validation

J48 99.8 0.4 99.8 99.75

RF 100 0.6 99.6 99.83

LMT 99.3 0.5 99.6 99.38

KNN 100 1.2 99.7 99.64

SLR 95.4 1.6 97.3 96.29

SMO 93.4 6.7 95.2 93.37

Learning-based detection using

Holdout

J48 99.3 0.3 99.6 99.45

RF 99.9 1 99.7 99.6

LMT 99.4 0 99.7 99.6

KNN 100 1.5 99.7 99.55

SLR 93.4 3.6 95.8 94.35

SMO 92.5 7.6 94.4 92.45

Rule-based detection No training 97.8 6.6 97.4 96.5

TABLE 7. Performance comparison of n-gram, ClaMP and our dataset based on selected classifiers.

TABLE 8. Number of features for rule-based detection.

 Min Max Average

Each sample 5 150 60

 To evaluate the efficiency of the proposed system more

accurately, model performance for different feature

extraction methods is compared in Table 9. In addition, DR,

FPR and accuracies are compared on the same classifiers for

various cloud-based and other studies in the literature (Table

10). The proposed feature extraction method has generated

considerably better results than other methods (Table 9)

including studies in [38], [39], [40], [41], [42]. The 99.8%

performance is measured for the proposed feature extraction

method versus 96.4%, 99.6%, 97.6%, 89.92%, and 99.28% in

[38], [39], [40], [41], [42] studies, respectively. Even though

the performance of some feature extraction methods is quite

good in the literature, it cannot be confirmed that they are as

successful as the proposed method due to the other

deficiencies such as the low number of analyzed samples and

higher number of extracted features. The performance of

various ML classifiers such as J48, RF, KNN, SVM, SLR,

and neural networks on different studies are measured (Table

10). It can be clearly seen that combining the proposed

feature extraction method with an appropriate ML algorithm

produces more satisfactory results in terms of DR, FPR and

accuracies when compared with other studies in the literature.

 In this section, the performance of the proposed cloud-

based malware detection system and the leading methods in

the literature are compared. The proposed system

successfully detects both different types and families of

malware, as well as the new generation and previously

unknown malware. The measured performance values

increase as the number of programs analyzed increase. In

addition, the number of features does not increase after a

certain number of programs being analyzed in the proposed

system. The results obtained were higher than the pioneering

method results in the literature. In addition, testing the

proposed system in the cloud environment and using 2

different detection mechanisms provide a distinct advantage.

On the other hand, current studies in the literature face some

insufficiency for malware detection:

1. Behaviors are not clearly determined.

2. The number of extracted features is high.

3. Perform well for only certain types and families of

malicious software.

4. Inadequate for detection of new generation

malware.

5. Not resistant to evasion and stealth techniques

which leads to decreasing performance.

In the proposed system, these deficiencies were identified and

necessary contributions were made to increase the

performance.

 In addition, a number of key findings were obtained during

the malware analysis. These findings should be taken into

account while creating a fast and effective detection method.

The main findings identified can be listed as follows:

1. Malware creates random files with meaningless file

names.

2. Several malware types use newly created processes

and existing processes for malicious purposes.

3. Some of the malware injects itself into operating

system exe files including svchost.exe, conhost.exe,

winlogon.exe, etc. and system DLLs on Windows

operating systems.

4. Some malware variants hide themselves by creating

similar systems’ and third-parties’ file names.

5. Some malware variants disable the existing security

software such as firewall, IDS, antivirus scanner,

etc. whenever they are performed.

6. Some malware variants perform malicious activities

in the temporary files.

Classifier

n-gram Dataset(1386

samples, 14,520 features)

ClaMP Dataset

(5210 samples, 69 features)

Our Dataset

(10,000 samples, 751 features)

J48

RF

KNN

DR FPR Accuracy

98.1 2 98.05

99 0.4 99.2

94.9 0 97.47

 DR FPR Accuracy

 98.2 2.6 97.8

 99.7 2.1 98.8

 98 2 97.9

 DR FPR Accuracy

 99.8 0.4 99.75

 100 0.6 99.83

 100 1.2 99.64

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2021.3087316, IEEE

Access

 O. Aslan et.al: Intelligent Behavior-Based Malware Detection System on Cloud Computing Environment

18

7. Malware becomes persistent in the computer system

by locating itself in the automatic startup file and

registry locations.

TABLE 9. Comparison of different malware dataset creation methods.

Paper Feature Extraction Method Performance (%) Year

Anderson et al. [38] Markov chain weighted directed graph 96.40 2011

Chandramohan et al. [39] Bounded feature space behavior modeling 99.60 2013

Das et al. [40] Semantics of malicious behaviors 97.60 2016

Narayanan et al. [41] Context sensitive, adaptable and scalable rules 89.92 2017

Jeon et al. [42] Dynamic analysis with CNN 99.28 2020

Proposed Method Cloud-based behavior centric model 99.80 2021

TABLE 10. Performance of ML classifiers on different studies.

Study Classifier DR (%) FPR (%) Accuracy (%) Year

Santos et al.

[43]

DT: J48 92 9 91.25

2013
KNN K = 1 93 7 92.8

KNN K = 3 91 8 91.7

SVM: Polynomial 88 9 89.65

Yousefi-Azar et al.

[44]

SVM - 5.07 93.44

2018 RF - 6.82 90.05

KNN - 10 91.28

Yadav [22] Neural network 86.4 - - 2019

Kumar et al.

[45]

Decision tree - 12.5 95.7

2020 RF - 6.7 97.9

LR - 4.2 94.3

Azeez et al.

[46]

NB - - 32.52

2021 Decision tree 95 5.36 98.29

RF 98 2.13 99.24

Proposed Method

J48

RF

KNN

SMO

99.8

100

100

93.4

0.4

0.6

1.2

6.7

99.75

99.83

99.64

93.37

2021

VII. LIMITATIONS AND FUTURE WORKS

Although CBCM is quite effective in detecting different

kinds of malware, there are some limitations that need to be

addressed. Malware samples were selected randomly among

several malicious software variants, but malware types were

not equally distributed. For example, most of the malware

samples analyzed were Trojan, virus, adware, worm and

downloader. More ransomware, spyware, rootkit, and packed

malware need to be analyzed. In total, 10,000 program

samples were analyzed, in the future the number of program

samples will be increased. Even though our feature extraction

and selection algorithms work quite well, there are still some

benign samples misclassified as malware. This is because

there are some features which are frequently seen in malware

but rarely seen in benign. The numbers of these features

increased when more program samples are analyzed. In the

future, we will improve our feature selection algorithm and

also use well-known algorithms mentioned in the literature to

decrease the features that lead to misclassification. Even

though the proposed model can detect some portion of the

obfuscated and packed malware samples, it cannot detect all

of them. Thus, the proposed model will be improved more in

order to detect those malware samples. We analyze malware

only on various versions of Windows machines. We will

extend our system to other operating systems including

different Linux distributions and macOS.

 In this study, we classify the analyzed program samples into

two categories including malware and benign classes. In the

future, we will also classify the malware types into different

classes such as virus, worm, Trojan, rootkit, ransomware, etc.

In the cloud environment, a limited number of servers and

VMs are used during the analysis, these numbers can be

increased in the feature. Rule-based detection agent works in

real-time, but learning-based detection agent does not work

in real time. In the future, we are planning to combine

learning-based and rule-based detection agents to work

together in real time. In addition, we aim to build a deep

learning-based detection agent on different servers on the

cloud as well.

VIII. CONCLUSION

In this paper, a malware detection system which works in the

cloud computing environment is presented. There are two

parts including client and cloud environment. A client sends

suspicious file samples to the cloud, and receives the

analyzed results which show whether the suspicious samples

are malware or benign. In the cloud, our system consists of

three phases. In the first phase, file samples are analyzed by

using relevant tools to gather execution traces on different

VMs and sent to the behavior-detection agent. In behavior-

based detection agent, behaviors and features are generated

by using proposed CBCM. In this phase, system calls, system

call types, system call paths, system resources and different

file types are considered. By this way, malicious features

patterns are segregated from benign ones. In the third phase,

selected features are sent to the learning-based and rule-based

agents to classify file samples as malware or benign. The

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2021.3087316, IEEE

Access

 O. Aslan et.al: Intelligent Behavior-Based Malware Detection System on Cloud Computing Environment

19

results are sent back to the behavior-based detection agent,

evaluated and sent back to the client.

 Our test results confirm that combining proposed feature

extraction and selection phases with appropriate learning-

and rule-based detection agents increase the performance.

The proposed system can effectively detect both known and

unknown malware for different data samples. When the

proposed system is compared to other systems in the

literature, the obtained DR and accuracies are quite higher

while FPR and FNR are lower. On the other hand, some

portion of the malware samples are remaining undetected due

to the use of advanced code obfuscation techniques.

Increasing the analysis time, as well as determining more

specific features may increase the DR. We also aim to extend

our system to work on different cloud provider premises such

as AWS, IBM Cloud Foundry, Salesforce Platform as well.

We hope that our proposed system and its algorithms will

assist those who would like to develop an influential

detection system on the cloud for daily evolving malware.

REFERENCES

[1] O. Aslan and R. Samet, “'Investigation of possibilities to detect

malware using existing tools,” in Proc. IEEE/ACS 14th Int. Conf.

Comput. Syst.Appl. (AICCSA), Oct. 2017.

[2] O. Aslan and R. Samet, “A comprehensive review on malware

detection approaches”, IEEE Access, vol. 8, pp. 6249-6271, Jan. 2020.

[3] M.R.Watson, A. K.Marnerides, A. Mauthe, and D. Hutchison,

“Malware detection in cloud computing infrastructures”, IEEE

Transactions on Dependable and Secure Computing, vol. 13 no. 2, pp.

192-205, 2015.

[4] Website explaining cloud computing. Accessed: Jan. 12, 2021.

[Online]. Available:https://www.investopedia.com/terms/c/cloud-

computing.asp

[5] Website explaining cloud computing. Accessed: Jan. 14, 2021.

[Online]. Available: https://azure.microsoft.com/en-

us/overview/what-is-cloud-computing/#benefits

[6] O. Aslan, M. Ozkan-Okay, and D. Gupta, “A Review of Cloud-Based

Malware Detection System: Opportunities, Advances and Challenges”,

European Journal of Engineering and Technology Research, vol. 6 no.

3, pp. 1-8, March. 2021.

[7] D. Gupta, S. Bhatt, M. Gupta, and A. S. Tosun, “Future smart

connected communities to fight covid-19 outbreak,” Internet of Things,

vol. 13, 100342, March. 2021.

[8] D. Gupta, S. Bhatt, M. Gupta, O. Kayode, and A. S. Tosun, “Access

control model for google cloud iot,” in Proc. IEEE 6th Intl Conf. on

Big Data Security, pp. 198-208, May. 2020.

[9] L. Martignoni, R. Paleari, and D. Bruschi, “A framework for behavior-

based malware analysis in the cloud,” in Proc. Int. Conf. Inf. Syst.

Secur. Berlin, Germany: Springer, 2009.

[10] S. K. Cha, I. Moraru, J. Jang, J. Truelove, D. Brumley, and

D. G. Andersen, “SplitScreen: Enabling efficient, distributed malware

detection,” J. Commun. Netw., vol. 13, no. 2, pp. 187-200, Apr. 2011.

[11] T. Y. Win, H.Tianfield, and Q. Mair, “Detection of malware and

kernel-level rootkits in cloud computing environments,” in IEEE 2nd

Int. Conf. on Cyber Security and Cloud Computing, pp. 295-300, Nov.

2015.

[12] M. K. Gupta, S. Shaw, and S. Chakraborty, “Pattern Based Malware

Detection Technique in Cloud Architecture,” Sep. 2017.

[13] N. Rakotondravony, B.Taubmann, W. Mandarawi, E. Weishäupl, P.

Xu, B. Kolosnjaji, and H.P. Reiser, “Classifying malware attacks in

IaaS cloud environments,” Journal of Cloud Computing, vol. 6 no. 1,

pp. 1-12, Dec. 2017.

[14] H. Sun, X. Wang, R. Buyya, and J. Su, “CloudEyes: Cloud-based

malware detection with reversible sketch for resource-constrained

Internet of Things (IoT) devices,” Softw. Pract. Exper., vol. 47, no. 3,

pp. 421-441, Mar. 2017.

[15] N. M. Babu, and G. Murali, “Malware detection for multi cloud servers

using intermediate monitoring server,” in Int. Conf. on Energy,

Communication, Data Analytics and Soft Comput. (ICECDS), pp.

3609-3612, Agu2017.

[16] L. Xiao, Y. Li, X. Huang, and X. Du, “Cloud-based malware detection

game for mobile devices with offloading,” IEEE Trans. Mobile

Comput, vol. 16, no. 10, pp. 2742-2750, Oct. 2017.

[17] M. Abdelsalam, R. Krishnan, Y. Huang and R. Sandhu, “Malware

detection in cloud infrastructures using convolutional neural

networks,” in IEEE 11th Int. Conf. on Cloud Computing (CLOUD),

pp. 162-169, July.2018.

[18] Q. K. Ali Mirza, I. Awan, and M. Younas, “CloudIntell: An intelligent

malware detection system,” Future Gener. Comput. Syst., vol. 86, pp.

1042-1053, Sep. 2018.

[19] Q. K. Ali Mirza, I. Awan, and M. Younas, “A Cloud-Based Energy

Efficient Hosting Model for Malware Detection Framework,” in IEEE

Global Communications Conference (GLOBECOM), pp. 1-6, Dec.

2018.

[20] S. Shen, L. Huang, H. Zhou, S. Yu, F. Fan, and Q. Cao, “Multistage

signaling game-based optimal detection strategies for suppressing

malware diffusion in fog-cloud-based IoT networks,” IEEE Internet of

Things Journal, vol. 5 no. 2, pp. 1043-1054, Apr. 2018.

[21] W. Zhou and B. Yu, “A cloud-assisted malware detection and

suppression framework for wireless multimedia system in IoT based

on dynamic differential game,” China Communications, vol. 15 no. 2,

pp. 209-223, Feb. 2018.

[22] R. M. Yadav, “Effective analysis of malware detection in cloud

computing,” Comput. Secur., vol. 83, pp. 14-21, Jun. 2019.

[23] P. Indirapriyadarsini, M. U. Mohiuddin, M. Taqueeuddin, C. S. Reddy,

and T. Koushik, “Malware Detection using Machine Learning and

Cloud Computing,” international Journal for Research in Applied

Science & Engineering Technology (IJRASET), vol. 8, pp. 101-104,

Jun. 2020.

[24] D. Deyannis, E. Papadogiannaki, G. Kalivianakis, G. Vasiliadis, and S.

Ioannidis, “Trustav: Practical and privacy preserving malware analysis

in the cloud,” in Proc. of the Tenth ACM Conference on Data and

Application Security and Privacy, pp. 39-48, March, 2020.

[25] O. Aslan, R. Samet, and O. O. Tanrıöver, “Using a Subtractive Center

Behavioral Model to Detect Malware,” Security and Communication

Networks, vol. 2020, Feb. 2020.

[26] J. Friedman, T. Hastie, and R. Tibshirani, “Additive logistic regression:

a statistical view of boosting (with discussion and a rejoinder by the

authors),” Annals of statistics, vol. 28 no. 2, pp. 337-407, 2000.

[27] Das malwerk, malware downloading website. Accessed: Jan. 15, 2021.

[Online]. Available: https://dasmalwerk.eu/

[28] MalwareBazaar, malware downloading website. Accessed: Jan. 15

2021. [Online]. Available: https://bazaar.abuse.ch/

[29] TheZoo aka, malware downloading website. Accessed: Jan. 15, 2021.

[Online]. Available: https://thezoo.morirt.com/

[30] Malwarebenchmark, malware downloading website. Accessed: Jan.

15, 2021. [Online]. Available: http://malwarebenchmark.org/

[31] Malshare, malware downloading website. Accessed: Jan. 15, 2021.

[Online]. Available: https://malshare.com/

[32] Tekdefense, malware downloading website. Accessed: Jan. 15, 2021.

[Online]. Available: http://www.tekdefense.com/downloads/

[33] Virussign, malware downloading website. Accessed: Jan. 15, 2021.

[Online]. Available: https://virussign.com/

[34] Virusshare, malware downloading website. Accessed: Jan. 15, 2021.

[Online]. Available: https://virusshare.com/

[35] Kernelmode, malware downloading website. Accessed: Jan. 15, 2021.

[Online]. Available: https://www.kernelmode.info/forum/

[36] VirusTotal, online malware detection scanner. Accessed: Jan. 19, 2021.

[Online]. Available: https://www.virustotal.com/

[37] Classification of Malware with PE headers (ClaMP), malware dataset.

Accessed: Feb. 23, 2021. [Online]. Available:

https://github.com/urwithajit9/ClaMP

[38] B. Anderson, D. Quist, J. Neil, C. Storlie, and T. Lane, “Graph-based

malware detection using dynamic analysis,” J. Comput. Virol., vol. 7,

no. 4, pp. 247-258, Nov. 2011.

[39] M. Chandramohan, H. B. K. Tan, L. C. Briand, L. K. Shar, and

B. M. Padmanabhuni, “A scalable approach for malware detection

through bounded feature space behavior modeling,” in Proc. 28th

IEEE/ACM Int. Conf. Autom. Softw. Eng. (ASE), pp. 312-322, Nov.

2013.

[40] S. Das, Y. Liu, W. Zhang, and M. Chandramohan, “Semantics-

based online malware detection: Towards efficient real-time protection

against malware,” IEEE Trans. Inf. Forensics Security, vol. 11, no. 2,

pp. 289-302, Feb. 2016.

https://www.investopedia.com/terms/c/cloud-computing.asp
https://www.investopedia.com/terms/c/cloud-computing.asp
https://azure.microsoft.com/en-us/overview/what-is-cloud-computing/#benefits
https://azure.microsoft.com/en-us/overview/what-is-cloud-computing/#benefits
https://dasmalwerk.eu/
https://bazaar.abuse.ch/
https://thezoo.morirt.com/
http://malwarebenchmark.org/
https://malshare.com/
http://www.tekdefense.com/downloads/
https://virussign.com/
https://virusshare.com/
https://www.kernelmode.info/forum/
https://www.virustotal.com/
https://github.com/urwithajit9/ClaMP

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2021.3087316, IEEE

Access

 O. Aslan et.al: Intelligent Behavior-Based Malware Detection System on Cloud Computing Environment

20

[41] A. Narayanan, M. Chandramohan, L. Chen, and Y. Liu, “Context-

aware,adaptive, and scalable Android malware detection through

online learning,” IEEE Trans. Emerg. Topics Comput., vol. 1, no. 3,

pp. 157-175, Jun. 2017.

[42] J. Jeon, J. H. Park, &Y. S. Jeong, “Dynamic analysis for IoT malware

detection with convolution neural network model,” IEEE Access, vol.

8, pp. 96899-96911, Jun. 2020.

[43] I. Santos, F.Brezo, X. Ugarte-Pedrero,& P. G.Bringas, “Opcode

sequences as representation of executables for data-mining-based

unknown malware detection,” Information Sciences, vol. 231, pp. 64-

82, May. 2013.

[44] M. Yousefi-Azar, L. G. Hamey,V.Varadharajan, and S. Chen,

“Malytics: a malware detection scheme,” IEEE Access, vol. 6, pp.

49418-49431, 2018.

[45] R. Kumar, K.Sethi, N. Prajapati, R. R. Rout, and P. Bera, “Machine

Learning based Malware Detection in Cloud Environment using

Clustering Approach,” In 2020 11th International Conf. on Computing,

Communication and Networking Technologies (ICCCNT) pp. 1-7,

July. 2020.

[46] N. A. Azeez, O. E. Odufuwa, S. Misra, J. Oluranti, and R.

Damaševičius, “Windows PE Malware Detection Using Ensemble

Learning,” in Informatics, Multidisciplinary Digital Publishing

Institute, vol. 8, no. 1, p.p. 1-10, Feb. 2021.

ÖMER ASLAN is a Dr. researcher in the computer

engineering department at the University of Siirt,

Turkey. He received his PhD in cyber security field

in 2020 from University of Ankara, Turkey, MSc in

information security field in 2014 from University of

Texas at San Antonio, United States of America

(USA), and BSc in computer engineering department

in 2009 at University of Trakya, Turkey. He is

working on computer systems, information security,

cyber security, malware analysis, cloud computing,

and IoT device security. He has published several papers on international

journals and conferences. He has been also serving as a reviewer in some

prestigious journals.

Merve Ozkan-Okay received B.S. and M.S. degree in

computer engineering from Ankara University, in

2014 and 2016 respectively. She is a Research

Assistant and doing Ph.D. in Department of Computer

Engineering, Ankara University. Her current research

interests include cyber security, cloud-based systems,

machine learning and image processing. She has

published several papers on international journals and

conferences.

Deepti Gupta is pursuing Ph.D. in computer science

at University of Texas at San Antonio (UTSA). She

received B.S. and M.S. degree in mathematics from

Chaudhary Charan Singh University, India, the

M.Tech. degree in computer engineering from Shobhit

University, India and the M.S. degree in computer

science from The University of Texas at San Antonio

(UTSA). She has worked as an Adjunct Faculty in the

Department of Computer Science at St. Edward

University, Austin. Her primary area of research includes security and

privacy in cloud computing and Internet of Things, security models, and deep

learning. She has also served as reviewer and committee member in

conferences.

