
Hindawi Publishing Corporation
EURASIP Journal on Wireless Communications and Networking
Volume 2007, Article ID 10216, 16 pages
doi:10.1155/2007/10216

Research Article
Intelligent Broadcasting in Mobile Ad Hoc Networks:
Three Classes of Adaptive Protocols

Michael D. Colagrosso

Department of Mathematical and Computer Sciences, Colorado School of Mines, Golden, CO 80401-1887, USA

Received 10 February 2006; Revised 3 July 2006; Accepted 16 August 2006

Recommended by Hamid Sadjadpour

Because adaptability greatly improves the performance of a broadcast protocol, we identify three ways in which machine learning
can be applied to broadcasting in a mobile ad hoc network (MANET). We chose broadcasting because it functions as a foun-
dation of MANET communication. Unicast, multicast, and geocast protocols utilize broadcasting as a building block, providing
important control and route establishment functionality. Therefore, any improvements to the process of broadcasting can be im-
mediately realized by higher-level MANET functionality and applications. While efficient broadcast protocols have been proposed,
no single broadcasting protocol works well in all possible MANET conditions. Furthermore, protocols tend to fail catastrophically
in severe network environments. Our three classes of adaptive protocols are pure machine learning, intra-protocol learning, and
inter-protocol learning. In the pure machine learning approach, we exhibit a new approach to the design of a broadcast protocol:
the decision of whether to rebroadcast a packet is cast as a classification problem. Each mobile node (MN) builds a classifier and
trains it on data collected from the network environment. Using intra-protocol learning, each MN consults a simple machine
model for the optimal value of one of its free parameters. Lastly, in inter-protocol learning, MNs learn to switch between different
broadcasting protocols based on network conditions. For each class of learning method, we create a prototypical protocol and
examine its performance in simulation.

Copyright © 2007 Michael D. Colagrosso. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

1. INTRODUCTION: AD HOC NETWORK
BROADCASTING

We introduce three new classes of broadcast protocols that
use machine learning in different ways for mobile ad hoc
networks. A mobile ad hoc network (MANET) comprises
wireless mobile nodes (MNs) that cooperatively form a
network without specific user administration or configura-
tion, allowing an arbitrary collection to create a network
on demand. Scenarios that might benefit from ad hoc net-
working technology include rescue/emergency operations af-
ter a natural or environmental disaster, or terrorist attack,
that destroys existing infrastructure, special operations dur-
ing law enforcement activities, tactical missions in a hos-
tile and/or unknown territory, and commercial gatherings
such as conferences, exhibitions, workshops, and meetings.
Network-wide broadcasting, simply referred to as “broad-
casting” herein, is the process in which one MN sends a
packet to all MNs in the network (or all nodes in a local-
ized area). There has been considerable effort devoted to the

development of network-wide broadcast protocols in an ad
hoc network [1–14]. A performance evaluation of MANET
broadcast protocols is available in [15].

Broadcasting is a building block for most other network
layer protocols, providing important control and route estab-
lishment functionality in a number of unicast routing proto-
cols. For example, unicast routing protocols such as dynamic
source routing (DSR) [16, 17], ad hoc on-demand distance
vector (AODV) [18, 19], zone routing protocol (ZRP) [20–
22], and location aided routing (LAR) [23] use broadcasting
or a derivation of it to establish routes. Other unicast rout-
ing protocols, such as the temporally-ordered routing algo-
rithm (TORA) [24], use broadcasting to transmit an error
packet for an invalid route. Broadcasting is also often used as
a building block for multicast protocols (e.g., [4, 25, 26]) and
geocast protocols (e.g., [27, 28]).

The preceding protocols typically assume a simplistic
form of broadcasting called simple flooding, in which each
MN retransmits every unique received packet exactly once.
The main problems with simple flooding are that it often

2 EURASIP Journal on Wireless Communications and Networking

causes unproductive and harmful bandwidth congestion
(e.g., called the broadcast storm problem in [29]) and it
wastes node resources. The goal of an efficient broadcast
technique is to minimize the number of retransmissions
while attempting to ensure that a broadcast packet is deliv-
ered to each MN in the network.

The performance evaluation of MANET broadcast pro-
tocols in [15] illustrates that no single protocol for broad-
casting works well in all possible network conditions in a
MANET. Furthermore, every protocol fails catastrophically
when the severity of the network environment is increased.
In contrast to these static protocols, [15] proposed a hand-
tuned rule to adapt the main parameter of one protocol and
found it works well in many network environments. That
adaptive rule, described further in Section 2.3, made strong
assumptions that are specific to the network conditions un-
der which it was tested; from a machine learning perspective,
it is desirable for the protocol to tune itself in a systematic,
mathematically principled way.

In that spirit, we have identified three ways in which
machine learning techniques can be incorporated naturally
into broadcasting, and we use these ideas to create three
new classes of broadcasting protocols: pure machine learn-
ing, intra-protocol learning, and inter-protocol learning. We
believe that each class provides adaptability in a unique
way, so we present example protocols from all three classes
in this work. In Section 3, we train a probabilistic classi-
fier and develop it into a pure machine learning-based pro-
tocol, which is an extension of our previous work [30].
We choose Bayesian networks [31] for our learning model
because of their expressiveness and more elegant graphi-
cal representation compared to other “black box” machine
learning models. Bayesian networks, sometimes called be-
lief networks or graphical models, can be designed and in-
terpreted by domain experts because they explicitly commu-
nicate the relevant variables and their interrelationships. In
network-wide broadcasting, mobile nodes must make a re-
peated decision (to retransmit or not), but the input fea-
tures that MNs can estimate (e.g., speed, network load, local
density) are noisy and, taken individually, are weak predic-
tors of the correct decision to make. Our results (Section 7)
show that our Bayesian network combines the input fea-
tures appropriately and often predicts whether to retransmit
or not correctly. In Section 4, we develop an intra-protocol
learning method, in which the machine learning model’s job
is to learn the optimal value of a parameter in a known
broadcasting protocol. Although there are as many candi-
date protocols in this class as there are free parameters in
the broadcasting literature, we present one adaptive broad-
casting protocol that learns the value of a parameter that is
particularly sensitive to two MANET variables, traffic and
node density. The resulting protocol performs better than
attempts by human experts to hand-tune that parameter.
As the name implies, inter-protocol learning means learn-
ing between protocols, and we introduce that method in
Section 5. Since no single broadcast protocol was found to
be optimal in the previously cited survey, we propose an ap-
proach in which MNs switch between protocols based on

network conditions. We develop a machine learning method
that allows MNs to switch between two complicated broad-
casting protocols, and, despite the logistical difficulties, the
resulting combination performs better than either of the
parts.

Since a broadcast protocol is a building block of many
other MANET routing protocols, it is imperative to have
the most effective broadcast protocol possible. We believe
we have found three specific broadcast protocols that are
efficient under the widest range of network conditions.
Moreover, by identifying three new classes of adaptive proto-
cols, we hope to inspire new development in the same vein.

2. STATIC BROADCAST PROTOCOLS

In addition to providing an overview of the broadcast lit-
erature, we describe two published broadcast algorithms
in depth: the scalable broadcast algorithm and the ad hoc
broadcasting protocol. We modify these two algorithms in
Sections 4 and 5 by incorporating machine learning, and we
compare the results of the static protocols, the modified pro-
tocols, and our pure machine learning protocol (Section 3)
through simulation, presenting the results in Section 7. We
name the protocols in this section static protocols because
the protocol’s behavior does not change or adapt over time;
nevertheless, the protocols herein are certainly designed with
mobile nodes in mind. We introduce two key concepts—
the minimum connected dominating set and six families
of broadcast protocols—before discussing the protocols in
depth.

In the IEEE 802.11 MAC [32] protocol, the RTS/CTS/
data/ACK handshake is designed for unicast packets. To send
a broadcast packet, an MN needs only to assess a clear chan-
nel before transmitting. Since no recourse is provided at a
collision (e.g., due to a hidden node), an MN has no way
of knowing whether a packet was successfully received by its
neighbors. Thus, the most effective network-wide broadcast-
ing protocols try to limit the possibility of collisions by limit-
ing the number of rebroadcasts in the network. A theoretical
“best-case” bound for choosing which nodes to rebroadcast
is called the minimum connected dominating set (MCDS).
An MCDS is the smallest set of rebroadcasting nodes such
that the set of nodes is connected and all nonset nodes are
within one hop of at least one member of the MCDS. The
determination of an MCDS is an NP-hard problem [33]. Ar-
ticles in the literature have therefore proposed approximation
algorithms to determine the MCDS, for example, [13, 34–
41].

We categorize existing broadcast protocols into six fam-
ilies: global knowledge, simple flooding, probability-based
methods, area basedmethods, neighbor knowledgemethods,
and cluster-based methods. In [15], several existing broad-
cast protocols from all families are presented with a detailed
performance investigation; that investigation found that the
performance of neighbor knowledge methods is superior
to all other families for flat network topologies. Thus, we
choose neighbor knowledge protocols as the basis for our
machine learning improvements in Sections 4 and 5, and

Michael D. Colagrosso 3

they serve as the benchmark for our performance compar-
ison in Section 7.

2.1. The scalable broadcast algorithm

The scalable broadcast algorithm (SBA) [10] requires that all
MNs know their neighbors within a two-hop radius. Two-
hop neighbor knowledge is achievable via periodic “hello”
packets; each “hello” packet contains the nodes identifier (IP
address) and the list of known neighbors. After an MN re-
ceives a “hello” packet from all its neighbors, it has two-hop
topology information centered at itself. When Node B re-
ceives a broadcast packet fromNode A, Node B schedules the
packet for delivery with a random assessment delay (RAD)
if and only if Node B has additional neighbors not reached
by Node A’s broadcast. For each redundant packet received,
Node B again determines if it can reach any new MNs by
rebroadcasting. This process continues until either the RAD
expires and the packet is sent, or the packet is dropped if
all two-hop neighbors are covered. The RAD is chosen ran-
domly from a uniform distribution between 0 and Tmax sec-
onds, where Tmax is the highest possible delay. It turns out
that SBA’s performance is sensitive to the value of Tmax. If
Tmax is high, an MN will wait longer for redundant rebroad-
casts, possibly dropping its rebroadcast if all its two-hop
neighbors are covered. Thus, the number of rebroadcasting
MNs will likely be reduced, but the end-to-end delay (the
time it takes for the last node to receive a packet) is increased.
Choosing the right value of Tmax must balance the desire for
a small number of rebroadcasting nodes against the desire for
a small end-to-end delay.

A simple method to dynamically adjust the length of
the RAD to network conditions is proposed in [10]. Specifi-
cally, each MN searches its neighbor tables for the maximum
neighbor degree of any neighbor node, dNmax. It then cal-
culates a RAD based on the ratio of dNmax/di, where di is the
node i’s current number of neighbors. This weighting scheme
is greedy: MNs with the most neighbors usually broadcast
before the others. A completely different method that adapts
the length of the RAD based on traffic rather than the num-
ber of neighbors was developed in [15], and is described in
Section 2.3.

Before we present our machine learning protocols in Sec-
tions 3, 4, and 5, we investigate a simpler question: can
we create a model that emulates SBA? That is, instead of
creating a new broadcast protocol, we studied whether we
could create a protocol that could learn to behave like SBA,
without specifying the SBA algorithm. We collected data on
MNs running the SBA protocol under the range of net-
work conditions in Section 6. Every time an MN decided to
rebroadcast or drop a packet, we recorded that event and
annotated it with the current network conditions that the
MN had available (e.g., see Figure 3). We collected 125 000
such events from different MNs in various environments,
and treated these records in a database to be classified by a
machine learning model. The inputs to the model are the
instantaneous network conditions, and the desired output
is SBA’s decision of whether to rebroadcast the packet. We

Number of
duplicate
packets?

Drop

Drop

Number of
1-hop

neighbors?

Rebroadcast

� 1 < 1

� 16 < 16

Figure 1: A simple decision tree model of the SBA protocol. Over
a range of network conditions, this model makes the same rebroad-
cast/drop decisions as SBA 87% of the time.

found that SBA could be fit with extremely simple mod-
els. Figure 1 shows a particularly simple yet accurate model
of SBA. This decision tree [42] model matched the training
database with 87% accuracy. What is striking about the de-
cision tree model in Figure 1 is that it can be implemented
as two “if-then” statements. This means that most of SBA’s
functionality, which requires maintaining a graph structure
of two-hop neighbors and implementing a set-cover algo-
rithm, can be emulated quite simply over a range of envi-
ronments. We do not claim that this model does 87% as well
as SBA; in some scenarios, this decision tree performs better,
but SBA does better more often. On average, however, SBA
and this simple model agree 87% of the time.

2.2. The ad hoc broadcast protocol

Like SBA, the ad hoc broadcast protocol (AHBP) is in the
neighbor knowledge family of protocols. Whereas SBA can
be called a “local” neighbor knowledge protocol because each
mobile node makes its own decision whether to rebroadcast
or not, AHBP is a “nonlocal” neighbor knowledge protocol
because a mobile node receives the instruction whether to re-
broadcast or not in the header of the packet it receives. Since
AHBP is based on another protocol, multipoint relaying, we
describe them both in turn.

In multipoint relaying [12], rebroadcasting MNs are ex-
plicitly chosen by upstream senders. The chosen MNs are
called Multipoint Relays (MPRs) and they are the only MNs
allowed to rebroadcast a packet received from the sender. An
MN chooses its MPRs as follows [12].

(1) Find all two-hop neighbors reachable by only one
one-hop neighbor. Assign those one-hop neighbors as
MPRs.

(2) Determine the resultant cover set—neighbors receiv-
ing packets from the current MPR set.

(3) Add to the MPR set the uncovered one-hop neighbor
that will cover the most uncovered two-hop neighbors.

(4) Repeat steps 2 and 3 until all two-hop neighbors are
covered.

4 EURASIP Journal on Wireless Communications and Networking

Multipoint relaying is described in detail in the optimized
link state routing (OLSR) protocol, an internet RFC [43]. In
that implementation, the addresses of the selected MPRs are
included in “hello” Packets.

In the ad hoc broadcast protocol (AHBP) [11], only MNs
designated as a broadcast relay gateway (BRG) within the
header of a broadcast packet are allowed to rebroadcast the
packet. The algorithm for a BRG to choose its BRG set is
identical to that used in multipoint relaying to choose MPRs,
which is a sequence of steps that greedily approximates the
MCDS. AHBP differs frommultipoint relaying in two signif-
icant ways.

(1) In AHBP, when an MN receives a broadcast packet
and is listed as a BRG, the MN uses two-hop neigh-
bor knowledge to determine which neighbors also re-
ceived the packet in the same transmission. These
neighbors are considered already “covered” and are re-
moved from the neighbor graph used to choose next-
hop BRGs.

(2) AHBP is extended to account for high mobility
networks. Suppose node B receives a broadcast packet
from Node A, and Node B does not list Node A
as a neighbor (i.e., Node A and Node B have not
yet exchanged “hello” packets). In AHBP-EX (ex-
tended AHBP), Node B will assume BRG status and
rebroadcast the packet.

While both SBA and AHBP use two-hop neighbor knowl-
edge to infer node coverage, they use this knowledge in dif-
ferent ways. In SBA, when a node receives a broadcast or
rebroadcast packet, it assumes that other neighbors of the
sender have been covered. In AHBP, when a node sends a
broadcast or rebroadcast packet, it assumes that neighbors
of the designated BRG nodes will be covered.

2.3. The limitations of static protocols

An extensive evaluation of several broadcast protocols via
simulation using NS-2 [44] is compiled in [15]. The goals
were to compare the protocols over a range of network condi-
tions, pinpoint areas where each protocol performs well, and
identify areas where they need improvement. As a result of
the study, higher assessment delay was found to be effective
in increasing the delivery ratio of SBA in congested networks.
Since a lower assessment delay is desired in noncongested
networks (to reduce end-to-end delay), the balance proposed
in [15] was to develop an adaptive SBA scheme; specifically, if
the MN is receiving more than 260 packets per second on av-
erage, the MN uses a RAD with a Tmax value of 0.05 seconds.
Otherwise, the MN uses a RAD with a Tmax value of 0.01 sec-
onds. This simple adaptive SBA scheme leads to performance
measures outperforming the original SBA scheme and AHBP
under high congestion. Figure 2 illustrates how nodes im-
plementing SBA protocol that switches between two differ-
ent RADs can deliver more broadcast packets to the network
over the range of traffic loads studied. The figure also demon-
strates the fragility of SBA: if the value of Tmax is set too low
and there is no mechanism to adapt it, the performance of

80706050403020100

Broadcast packet origination rate (packets/s)

50

55

60

65

70

75

80

85

90

95

100

D
el
iv
er
y
ra
ti
o

SBA w/2 RADs
AHBP
SBA

Figure 2: The delivery ratio of SBA is sensitive to the length of the
RAD chosen by each mobile node. SBA performs the best when
mobile nodes can choose a long RAD during high traffic and a
short RAD during low traffic. This figure is recreated from a study
performed in [15].

SBA can decline rapidly with increasing congestion. The dif-
ference is so dramatic that it represents the difference be-
tween SBA being the worst or the best protocol under high
traffic [15].

2.4. MANET intelligence

In the previous section, we motivated our approach for ap-
plying machine learning to broadcasting by providing an
example in which an unsophisticated adaptive rule—a sin-
gle “if” statement—outperformed static protocols. In this
section, we give more background on the use of intelligent
methods in MANETs for the purpose of explaining what
is unique to the problem of broadcasting, and why we be-
lieve that more sophisticated methods can lead to further im-
provements.

Attempts to promote intelligence in MANETs usually in-
volve application layer programs and intelligent agents [45],
or autonomous vehicle projects, for example, [46], which
also communicate at the application layer. These types of ap-
plications try to achieve complex goals and make multistep
decisions. By comparison, the broadcasting problem is a sim-
ple, single-step decision (retransmit a packet or not) that must
be made repeatedly. Because of the high frequency of actions
taken and almost immediate feedback given during broad-
casting, we argue that our models have more opportunity for
online learning. Although our goals are not as ambitious as
application layer autonomy, we believe that learning is more
attainable.

At the network level, unicast routing algorithms have
been analyzed [47] for the possibility of adaptation, but
not to the extent of online, uniquely instantiated machine
learning models for every MN as we propose herein. Instead,

Michael D. Colagrosso 5

unicast routing handles uncertainty by estimating a cost of
routing a packet to an MN through a particular link and ap-
plying dynamic programming to compute the least cost route
to each destination. When costs can be communicated eas-
ily without overhead, for example, included in ACK pack-
ets, cost-based routing has been shown to provide higher
throughput than traditional routing algorithms.

3. A PUREMACHINE LEARNING BROADCASTING
PROTOCOL

We exhibit a new approach to the design of a broadcast
protocol: the decision of whether to rebroadcast a packet is
cast as a classification problem. A classifier is simply a func-
tion that maps inputs into discrete outputs, which are called
class labels. In this section, we describe our method of de-
signing a classifier for the broadcast problem and how it
learns from experience. Training a classifier is merely the pro-
cess of adjusting how the functionmaps inputs to outputs, so
we also describe how to formulate the inputs and outputs in
a way that makes learning most effective.

Our proposed intra- and inter-protocol learning meth-
ods (Sections 4 and 5) take proven exiting protocols devel-
oped by experts and incorporate machine learning such that
they become more robust. We propose a new method from
the converse perspective: we will develop a pure machine
learningmodel first and add expert knowledge and heuristics
as needed. Using this method, each mobile node will con-
tain an instantiation of a small model that it consults when
deciding whether to rebroadcast a packet. Furthermore, we
constrain this model to be of a certain type, regardless of
how it is implemented: a binary classifier, a model with sev-
eral inputs but only one output which can only take on two
values (call them positive and negative). For each incoming
packet, a mobile node will use its model to classify that packet
as a positive (retransmit) or negative (disregard) example. In
other words, this machine learning strategy will treat the de-
cision to retransmit a packet as a classification task.

Our inspiration for applying machine learning stems
from previous work concluding that existing broadcast algo-
rithms are too brittle to support a wide range of MANET en-
vironments, and that even the hacked “if-then” rule to adapt
the RAD of SBA described in Section 2.3 is more robust.
We draw upon our previous work [30] applying Bayesian
networks to a MANET. In network-wide broadcasting, mo-
bile nodes must make a repeated decision (to retransmit or
not), but the input features that MNs can estimate (e.g.,
speed, network load, local density) are noisy and, taken indi-
vidually, are weak predictors of the correct decision to make.
Our results show that a Bayesian network combines the input
features appropriately and often correctly predicts whether to
retransmit or not.

We desire that mobile nodes improve automatically
through experience and adapt to their environment.
Therefore, we require an objective function that assesses
whether a given mobile node is beneficially contributing to
the network’s delivery of broadcast packets. Each MN will
estimate this objective function and tune its behavior in
order to maximize it. Intuitively, each mobile node must

make a decision whether to retransmit an incoming broad-
cast packet, so our objective function should reflect whether
the MN made a good decision or not. To this end, we define
the concept of a successful retransmission.

Successful retransmission

For a givenmobile nodeA and broadcast packet X ,A consid-
ers X to be a successful retransmission if after broadcasting
X , A hears one of its neighbors also broadcasting X .

The goal of this definition is to capture the idea that once
node A broadcasts a packet to its neighbors, if A hears one
of them rebroadcasting it, then A can infer that it has helped
in propagating the message. The insight is that node A has
no choice but to hear the broadcasts of its neighbors, and
therefore it collects this feedback without any communica-
tion overhead.

We identify two ways in which mistakes can be made,
with language borrowed from signal detection theory.
Type I error: If node A retransmits packet X , and then hears
neighbor node B retransmiting a copy of X it received else-
where, node A will incorrectly infer a successful retransmis-
sion. These “false-positive” errors are more commonwith in-
creasing congestion because B receives more duplicate copies
of X .
Type II error: If, for example, node A is near the edge of
the network and delivers a packet X to neighbor B, which
is also on the edge, then B might decide not to retransmit
the packet (Because it has no other neighbors). Node A will
incorrectly assume that this was an unsuccessful retransmis-
sion. We rarely find this type of “false negative” error when-
ever A has more than one neighbor, but it is more common
when A has only one neighbor. (Since we implement a pro-
tocol with neighbor knowledge, we could choose to ignore
unsuccessful retransmissions on nodes with only one neigh-
bor.)

We collect retransmit data in the naive Bayes model
shown in Figure 3. Naive Bayes models are special cases of
Bayesian networks consisting of one parent node with the ac-
tion or classification and several children nodes that make up
the input features. They have the advantage over full Bayesian
networks in that they are computationally simple and effi-
cient with respect to space and CPU evaluation. We take ⊕
to denote a successful rebroadcast and � to denote an un-
successful one, and each MN must consider each candidate
hypothesis, h ∈ {⊕,�}. The Bayesian approach to classify
a new broadcast packet is to choose the hypothesis with the
highest posterior probability, also known as the (maximum a
posteriori) hypothesis, hMAP, given the n data attributes of the
broadcast packet (d1,d2, . . . ,dn) that describe it. By applying
Bayes’ theorem, we arrive at the expression

hMAP = argmax
h∈{⊕,�}

P
(
h | d1,d2, . . . ,dn

)

= argmax
h∈{⊕,�}

P
(
d1,d2, . . . ,dn | h

)
P(h)

P
(
d1,d2, . . . ,dn

)

= argmax
h∈{⊕,�}

P
(
d1,d2, . . . ,dn | h

)
P(h).

(1)

6 EURASIP Journal on Wireless Communications and Networking

Retransmit

one-hop
neighbors

two-hop
neighbors

Speed Number of
duplicates

Link
duration

Traffic

Figure 3: Naive Bayes model of successful retransmissions. Circles represent random variables and arrows denote conditional indepen-
dence relationships. (Arrows do not show the direction of information flow.) Inference in a Bayesian model is the process of estimating the
unknown values of the unshaded circles (“retransmit” in the figure) with respect to the known shaded ones.

The naive Bayes assumption is that the input features are
conditionally independent given the action. Therefore, we
can approximate the MAP hypothesis, hMAP ≈ hNB, when
the naive Bayes assumption is true:

hNB = argmax
h∈{⊕,�}

P(h)
∏n

i=1P
(
di | h

)
. (2)

Even when this assumption is violated (and the posterior
probability estimates are wrong), there are conditions under
which naive Bayes classifiers can still output optimal clas-
sifications (retransmit or not) [48]. We choose the input
features for each broadcast packet based on our experience
with the small amount of data that each MN has avail-
able to it. The features we found most useful are shown in
Figure 3. Each input feature (e.g., speed, the number of one-
hop neighbors, etc.) maintains two tables: one conditional
on successful retransmissions and one conditional on un-
successful retransmissions. The parent stores one table: the
prior probabilities of success and failure. If, for example, a
packet X was inferred as a successful retransmission, sev-
eral tables must be updated: P(⊕), the prior probability of
success; P(1-hop neighbors | ⊕); P(2-hop neighbors | ⊕);
P(speed | ⊕); and so on. The MN estimates the num-
ber of neighbors, traffic, and speed at the time of the
successful retransmission. The tables that the input fea-
tures store can be approximated and smoothed by replac-
ing them with probability distributions. Deciding whether
to rebroadcast or drop a packet is simple. Equation (2)
is evaluated once for the ⊕ (rebroadcast) class and once
for the � (drop) class, and an MN makes its decision
based on which is bigger. Evaluating (2) for our model
in Figure 3 requires seven table look-ups and six multi-
plications. The tabular data structures and threshold deci-
sion procedure (rebroadcast or not) require less storage and
computation than other broadcast protocols, such as SBA
[10] and AHPB-EX [11], which both use graph-theoretic
algorithms.

An attractive feature of the naive Bayes model is that
the likelihood entries, P(1-hop neighbors | ⊕), P(speed |
⊕), and so on, can be used to answer questions in a post
hoc manner. For example, given that Node A decides that
the retransmission of packet X was unsuccessful, which

hypothesis can best explain why? Candidate hypotheses in-
clude (1) the node speed was so high that node A was out
of transmission range before it could hear packet X being re-
broadcast; (2) the congestion was so high that (a) there was a
collision or (b) the neighbors already got packet X from an-
other node; (3) the node density was so low that no neighbors
were in range that needed the packet X ; the hypothesis with
the maximum likelihood dictates how the MN should adapt.
Another useful feature is that there is diversity in the behavior
of the MNs because they have different training experience.
This means that each MN has its own classifier and naturally
allows for some MNs to be more successful rebroadcasters of
packets. An MN’s priors and likelihoods,

P(⊕) (3)

and P(di | ⊕), are updated through a node’s membership in
the network.

In this section, we designed a broadcast protocol based
around a naive Bayes machine learningmodel. To this model,
we added some expert knowledge about broadcasting and
MANETs in general; we formulated the inputs to the clas-
sifier using variables we believe affect network performance.
In the next two sections, we take a different approach: we
take fully formed broadcast protocols that have been de-
signed by human experts, and we try to add flexibility and
adaptability to them. The flexibility and adaptability will
come from the same place as in this section, by deploy-
ing small machine learning models on each of the nodes.
As we described in this section, the naive Bayes model is
conceptually simple and computationally efficient, and we
will apply other models in this spirit. Using simple mod-
els is appropriate in this setting for several reasons. First,
these models must be deployed on resource-constrained de-
vices. Second, we are working with small dimensionality in
the input and output spaces, where more complicated ma-
chine learning models would probably be overkilled and
would probably overfit the data. Last, we want to spread
the acceptance and adoption of machine learning methods
by demonstrating that they can be applied simply, in which
the benefits are achieved because of the dynamic nature of
the environment and not any special ability hidden in the
model.

Michael D. Colagrosso 7

4. INTRA-PROTOCOL LEARNING

In the previous two sections, we have described protocols
designed by human experts and protocols that learn their
behavior, respectively. In this section, we present the first
of two new classes of broadcast protocols that use a hy-
brid approach; we employ an existing broadcast protocol
and make it adaptive by using machine learning models. We
call our first approach intra-protocol learning because a mo-
bile node learns to change one of the free parameters inside
a broadcast protocol. By contrast, we categorize MNs that
can automatically learn to switch between different broad-
cast protocols as inter-protocol learners, and we discuss that
method in Section 5.

With the exception of simple flooding, all the broadcast
protocols we have identified in the literature have at least one
free parameter, which we define as a parameter that the net-
work programmer or implementer is free to set. Several stud-
ies in [15] confirm that the performance of a broadcast pro-
tocol is sensitive to the values of its free parameters. More-
over, the optimal value of a parameter varies as network
conditions change. The value of Tmax in the SBA protocol
(Section 2.3) is a single example of how much improvement
can be attained by properly setting a parameter and how dif-
ferent environments require different values.

We believe that the number of possible intra-protocol
learning protocols is large; whereas the number of pure ma-
chine learning broadcast protocols relatively bounded by the
number of reasonable classifiers, there can be as many intra-
protocol learners as there are relevant and sensitive free pa-
rameters. We present two candidate protocols in this section.
In Section 7, we use simulation results to assess the perfor-
mance of our first candidate.

4.1. Adapting RAD-based protocols to density
and congestion

We have noted earlier that the Tmax parameter controls
the length of SBA’s RAD, and that this parameter is sen-
sitive to the density of neighboring mobile nodes and
congestion [10, 15]. We propose that a mobile node im-
plementing SBA uses a simple regression model to esti-
mate the value of Tmax that is most appropriate for that
node and its local conditions. While the naive Bayes clas-
sifier from Section 3 is a function that maps seven in-
puts into a discrete output, our present regression func-
tion will map two inputs into a continuous output. We
choose two inputs to the regression, x = [x1, x2]T , where
x1 is the number of packets a node receives per second,
and x2 is the number of one-hop neighbors a node has.
These inputs are a node’s estimation of its local conges-
tion and density, and each of these inputs can be com-
puted easily and without extra communication overhead.
After trying different forms of the regression function, we
found the following equation to be both accurate and
simple:

T̂max ←− w0 +w1 log x1 +w2
1
x2
, (4)

where T̂max is the estimate of the correct upper bound on
the RAD and the values of the coefficient vector, w =
[w0,w1,w2]T , are found during training. To train the model,
we ran 25 different simulations, consisting of all combina-
tions of 5 levels of congestion and 5 levels of node density.
(See Section 6 for parameter values.) During each simula-
tion, we choose one node at random and spotlight its be-
havior throughout the simulation to gather our training ex-
amples. All the other nodes in the network run the SBA algo-
rithm described in Section 2.1, including the enhancement
proposed by [15]. A single training example is created when
the following conditions are met. When the spotlighted node
receives a broadcast packet, it takes note of its estimates of
number of packets received per second and the number of
one-hop neighbors (x1 and x2), and implements SBA by cov-
ering its one- and two-hop neighbors. When not all of the
spotlighted node’s neighbors are covered after receiving the
broadcast and any subsequent rebroadcasts, a training exam-
ple is created. Along with x1 and x2, the node stores T̂max,
which is the node’s estimate of the correct upper bound on
its RAD. According to our method, the node chooses T̂max as
twice the length of time between when a node receives the
first copy of a broadcast packet and when it receives the last
copy. Recall that nodes implementing SBA chose a RAD ran-
domly in the uniform range [0,Tmax), so the expected value
of the length of the RAD is half of Tmax. Thus, but choos-
ing our estimate, T̂max, as twice the interval that it takes for
a node to receive all copies of a broadcast packet, we aim to
ensure that nodes will wait before broadcasting most of the
time. In the special cases when the node hears only one copy
of the broadcast packet and no subsequent rebroadcasts (so
that it cannot compute a length of time to double), we esti-
mate T̂max as 0.01 seconds. Out of all the (x1, x2, T̂max) gen-
erated during a simulation, we choose 40 at random, and
over all the 25 simulations, these data comprise a training
set of 1000 entries. Even though (4) is nonlinear, we treat
it as a linear equation on the transformation of the inputs
in order to learn w = [w0,w1,w2]T by least squares. That
is, we write our training data as a matrix D and vector y,
where

D =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
(
log x1

)
1

(
1
x2

)

1

1
(
log x1

)
2

(
1
x2

)

2
...

...
...

1
(
log x1

)
1000

(
1
x2

)

1000

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, y =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

(
T̂max

)
1

(
T̂max

)
2

...
(
T̂max

)
1000

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

(5)

Then the standard least squares solution for w
is

w =
(
DTD

)−1
DTy. (6)

We do not claim that the training procedure or the es-
timate of w is optimal, but they are simple and work well
empirically.

8 EURASIP Journal on Wireless Communications and Networking

4.2. Adapting nonlocal decision neighbor knowledge
methods tomobility

Whereas we studied SBA in the previous subsection, we
investigate AHBP here for the opportunity to improve its
performance through learning. Recall that while AHBP is a
neighbor knowledge broadcast protocol, it is part of the non-
local decision family; nodes implementing AHBP do not de-
cide whether to rebroadcast or not, but instead are instructed
whether to do so in the header of the packet it receives.

AHBP-EX (which is AHBP plus the extension for mo-
bility, described in Section 2.2) provided the best perfor-
mance in the most severe network environment studied in
[15]. Unfortunately, its sensitivity to node mobility produces
the lowest delivery ratio in networks where the environment
is dominated by topological changes. AHBP-EX requires a
MN which receives a packet from an unrecorded neighbor
(i.e., a neighbor not currently listed as a one-hop neigh-
bor) to act as a broadcast relay gateway (BRG). In other
words, AHBP-EX handles the case when a neighbor moves
inside another node’s transmission range between “hello”
intervals. The extension does not handle the case when a
chosen BRG is no longer within the sending node’s trans-
mission range. No recourse is provided in AHBP-EX to
cover the two-hop neighbors that this absent BRG would
have covered. That is, outdated two-hop neighbor knowl-
edge corrupts the determination of next-hop rebroadcasting
MNs.

We propose to model high mobility by annotating each
entry in a node’s neighbor table with a confidence mea-
sure. This confidence measure represents the belief that a
given entry in the neighbor table really is a node’s neigh-
bor at that moment in time. The most straightforward con-
fidence measure is a simple probability that if the node
sends a packet, the given entry in the neighbor table will
receive it. If these probabilities can be inferred accurately,
an MN can make more conservative decisions on which
MNs should rebroadcast. While we do not implement
this protocol, we expect that training will reveal heuris-
tics to estimate the confidence values. By finding the ex-
pected number of neighbors, the MNs estimate of density
will be less. These confidence values will be based on fea-
tures such as local node speed and total number of neigh-
bors. For example, the confidence value is set to 1 when
a “hello” packet is received; the value then exponentially
decays at a rate determined by the heuristics learned in
training.

5. INTER-PROTOCOL LEARNING

With sufficient training data and expert knowledge, it is
possible to train an MN to switch from one broadcast-
ing protocol to another that is more suitable. In this sec-
tion, we create an inter-protocol learner to automatically
switch an MN between SBA and AHBP. We are switch-
ing between two complicated neighbor knowledge proto-
cols to demonstrate that it is possible, but there are cer-
tainly simpler inter-protocol broadcastings that are just as

S

S

S
S

S
S

S
S

S S

SS S
S

S
S S
S

S S

S

S SS
S SS

S SS

S S
S

S
S
S

S
S
S S S

S
S

S

S

S S

S

S

A
A

A

A

A
AAA

A A

A

A
A

AAAA

A

A

A

A A

A

A
A

AA

A

AA

A

A

AAAA

A

A

A

A

A

AAA

A

A

A

A

A
A

A

A

AA

A

SS

S

SS

S
S S

SS

S
S
SS

SS S

SS S

A
A
A
A

A
AA
AAAA
A A A

A
AA

A

A
AA

A
A

A A

A
AA

AAAA
AA
AAA

A
AA

A

AA

A

A

AA

A

A

AA

S
S

S

S
S A

A

A

A

AA

S S S S

S

A

12010080604020

Congestion (packets/s)

5

10

15

20

25

30

Sp
ee
d
(m

/s
)

Figure 4: Training data for the inter-protocol learner is are the
form of (speed, congestion) pairs as input, and whether SBA (green
“S”) or AHBP (red “A”) performed better at that input. The inter-
protocol learner uses these training data to build a model to switch
between the protocols.

useful. Any combination of broadcasting protocols that do
not have specialized headers would be a good candidate, such
as simple flooding, probabilistic, counter-based, distance-
based, or location-based, (see [29] for descriptions of these
schemes). One obvious inter-protocol learner is to use any
advanced broadcasting protocol whenever possible, but fall
back to simple flooding when the network conditions are too
extreme. In the present case, however, we hope to combine
SBA and AHBP into a protocol that performs better than ei-
ther one individually because we know that neither one is
always better than the other over a wide range of simulations
[15].

Both SBA and AHBP have special conditions that require
the protocol to default to retransmit. Recall that if an SBA
node receives a packet from a new neighbor, it is unlikely to
know of any common one- or two-hop neighbors previously
reached; thus the node is more likely to rebroadcast. In other
words, local decision neighbor knowledgemethods appear to
adapt to mobility more easily than nonlocal decision neigh-
bor knowledge methods. However, local decision neighbor
knowledge methods (such as SBA) suffer more from conges-
tion than nonlocal decision neighbor knowledge methods.
Thus, we develop a protocol that will combine the benefits
of these two types of neighbor knowledge methods. Specifi-
cally, a node in this combined protocol will track the amount
of congestion and its speed to decide which protocol to use.

Figure 4 shows the training data we collected to train
our inter-protocol learner. We ran SBA and AHBP simula-
tions over the range of speeds and congestion levels given in
Table 3 and the number of nodes fixed at 50, and we mea-
sured the delivery ratio of each node. Each data point in the
figure represents five nodes, where we clustered the data by
finding the five nearest neighbors and plotting the point at
the centroid of each cluster; for each of the five nodes we take
a majority vote of which protocol had the best delivery ra-
tio, and we color the point with a green “S” if SBA was better

Michael D. Colagrosso 9

Table 1: SBA, AHBP, and the combined packet header of our inter-
protocol learner.

SBA AHBP Inter-protocol

Packet type Packet type Packet type

Send time Send time Send time

Node ID Node ID Node ID

Packet route Packet route Packet route

Neighbor nodes Neighbor nodes Neighbor nodes

Neighbor count Neighbor count Neighbor count

— BRG nodes BRG nodes

— BRG count BRG count

Hop count Hop count Hop count

Origin address Origin address Origin address

Destination address Destination address Destination address

Data length Data length Data length

Node X/Y position — Node X/Y position

and with a red “A” if AHBP was better. We chose clusters of
five nodes to eliminate some of the noise in the data, but
the overall pattern is not sensitive to this choice. Note that
because of the mobility model used in creating this training
data (see Section 6), the data is a bit striated in bands across
the speeds we studied, and that a large portion of the data is
collected at low speeds of 0, 1, and 5m/s. Also note that be-
cause we are plotting the centroids of clusters of five nodes,
the exact location of the plotted points may be far from some
node’s actual behavior. Although the data are noisy, there ex-
ist intuitive patterns to build a model on. For this data, we
will build a decision tree, in similar form to the one shown in
Figure 1. Like that decision tree, our inter-protocol learner
will use a univariate decision tree, meaning that it can ask
about only one variable at a time. The consequence is that a
decision tree separating the data in Figure 4 can draw only
vertical and horizontal lines, so our inter-protocol learner
will make a stair-step pattern roughly starting in the lower
left corner and continuing to the upper right. For an envi-
ronment of high speed and low congestion, a node will use
SBA, and it will use AHBP when it encounters low speed and
high congestion. When both speed and congestion are low
or high, the delivery ratio is nearly equally good and bad, re-
spectively, and the choice does not matter that much. (The
model tends to choose SBA under low speed and low conges-
tion and choose AHBP under high speed and high conges-
tion.) The more critical choices are in the middle of Figure 4,
and these are also the cases in which the network will have
some nodes running SBA and some running AHBP.

To facilitate a node switching between SBA and AHBP,
we make some changes to the structure and behavior of a
broadcast packet. As shown in Table 1, the two protocols
have a similar header format, so our combined header is the
union of the two, with the most notable change including
the BRG information from AHBP. Specifying the header also
explains most of a node’s behavior; it must implement a sub-
set of both protocols, enough to fill the headers in a packet.

Table 2: Simulation details common to all trials.

Input parameters

Simulation area size 300m× 600m

Transmission range 100m

Derived parameters

Node density 1 node per 3, 600m2

Coverage area 31, 416m2

Transmission footprint 17.45%

Maximum path length 671m

Network diameter (max. hops) 6.71hops

Mobility model

Mobility model Random waypoint [49]

Mobility speed 1, 5, . . . , 25, 30m/s ±10%
Simulator

Simulator used NS-2 (version 2.1b7a)

Medium access protocol IEEE 802.11

Number of repetitions 10

Confidence interval 95%

Table 3: Simulation parameters investigating network severity.

Trial 1 2 3 4 5 6 7

Number of nodes 40 50 60 70 90 110 150

Avg. speed (m/s) 1 5 10 15 20 25 30

Pkt. Src. Rate (pkts/s) 10 20 40 60 80 100 120

Number of nodes Avg. number of neighbors

40 7.6

50 9.1

60 11.2

70 13.9

90 18.1

110 23.6

150 31.3

When sending a packet, a node must specify the BRG nodes,
whether that node is implementing AHBP or not. This is not
too much extra work for a node implementing SBA because
that node already knows its uncovered two-hop neighbors,
so it simply chooses the BRG in a greedy way. When a node
receives a packet, it can choose to ignore the BRG fields in
the header if it is implementing SBA, or follow them if it is
implementing AHBP. In this way, the local behavior of SBA
is preserved, and so is the nonlocal behavior of AHBP.

6. SIMULATION ENVIRONMENT

We believe that defining and explaining our three classes of
adaptive protocols are a more important contribution than
the details of the three specific protocols we created, but by
simulating our protocols we confirm the concepts presented

10 EURASIP Journal on Wireless Communications and Networking

in the preceding sections. We use the same NS-2 simulation
parameters as [15]; see Tables 2 and 3 for details. In particu-
lar, we report results testing increasing network severity with
respect to density, mobility, and congestion, according to
Table 3. The MNs move according to the random waypoint
mobility model, and their positions were initialized accord-
ing to that model’s stationary distribution (see [49] for de-
tails). In subsequent studies in which we vary only a single
parameter, we choose to hold the others constant at their trial
3 values.

When simulating our pure machine learning protocol,
we run our naive Bayes feedbackmechanism in reverse, turn-
ing it into a naive Bayes classifier. For a fixed set of input fea-
tures, the model in Figure 3 estimates the posterior probabil-
ity of success. If the posterior probability is greater than 0.5,
the strategy that minimizes errors on average is to retransmit
the packet. As a node gets more local experience, it automati-
cally adapts to the network by changing the entries in its prior
and likelihood probability tables.

7. RESULTS

We test three hypotheses in the following subsections, one
for each learning method we propose. We demonstrate that
our methods are indeed learning what we designed them to,
and by doing so, that our protocols perform better than or
equivalent to the static ones we derived them from. While we
believe that the benefits of using machine learning are in the
design phase, such as leading to simpler protocol designs that
are more robust to change, the fact that they also are more
efficient further advocates their adoption.

We also compare our three learned protocols to each
other in Section 7.4. Since we have created only one example
from each of our three learning methods, we expect that op-
timal protocols have yet to be found. Our comparison, how-
ever, informs on what performance can be attained from a
protocol given the effort needed to create it, and we present
this information to give insight and advice on what protocols
should be used going forward. We expand on this insight and
advice in the concluding section.

7.1. Puremachine learning over increasing
network severity

We created our naive Bayes broadcasting protocol to demon-
strate that the pure machine learning method can be used
to create a protocol that is robust over varied network con-
ditions. To test this hypothesis, we replicate the most infor-
mative studies from [15] in which network severity increased
from the combined effects of mobility, congestion, and node
density. Table 3 shows that network severity increases as the
trial number increases.

As shown in Figures 5 and 6, our naive Bayes broad-
cast protocol outperforms SBA and AHBP-EX, maintaining
a high delivery ratio and low overhead. (Extremely poor re-
sults are clipped from the figure to preserve detail.) In all
the trials, it maintains the highest or second-highest delivery

0.450.430.410.390.370.350.330.310.29

Prior probability

0

3

6

9

12

15

N
u
m
be
r
of

n
od

es

Figure 5: Histogram showing the spread of the prior probability of
rebroadcasting, P(⊕). MNs have different priors because they have
their own training examples from the MANET. Data are taken from
trial 1 of Section 7.1.

ratio, and it is the only protocol that does not fail catastroph-
ically reaching a “breaking point.” In trials 1–4, AHBP-EX
uses fewer rebroadcasting nodes, but also has a worse deliv-
ery ratio. In the extremely taxing trials, 5–7, the naive Bayes
broadcast is the best in terms of delivery ratio and the num-
ber of rebroadcasting nodes. In these scenarios, MNs under
SBA broadcast far too often as shown in Figure 6(b). The
naive Bayes protocol, however, can adjust its prior proba-
bility of rebroadcasting, as shown in Figure 5, which shows
the spread of prior distributions. The result is that very few
MNs will rebroadcast, also shown in Figure 6(d), in which
the posterior probability of a successful rebroadcast (2) de-
creases.

To ensure that there are no hidden effects from varying
density, speed, and congestion at the same time, we vary
them individually in Figures 7(a)–7(c), holding the others
constant at their trial 3 values. We observe the same ef-
fects noted in [50], namely that AHBP-EX’s performance de-
creases with increasing speed (because its two-hop neighbor
knowledge is out of date), and SBA’s delivery ratio decreases
with increasing congestion (because its RAD is too short). As
in Figure 6, our naive Bayes protocol has the highest delivery
ratio.

7.2. Intra-protocol learning over increasing
congestion

By creating our adaptive SBA protocol, we want to show that
an intra-protocol learning method that automatically sets
one sensitive parameter can perform better than setting that
parameter by hand. We chose to learn Tmax as specified in
(4) by regression with w = [0.081, 0.011, 0.134]T found by
least squares. A node computes Tmax using the instantaneous
congestion and a number of neighbors, and we know that its
value is sensitive to congestion. In Figure 8, we show how our
learned protocol compares to static SBA and an adaptive SBA
with only two different values of Tmax. At high levels of con-
gestion, the delivery ratio is higher in the learned protocol

Michael D. Colagrosso 11

7654321

Trial

50

55

60

65

70

75

80

85

90

95

100
D
el
iv
er
y
ra
ti
o

Naive Bayes
AHBP-EX

SBA w/2 RADs
Flood

(a) Delivery ratio

7654321

Trial

0
5
10
15
20
25
30
35
40
45
50
55
60

N
u
m
be
r
of

re
tr
an
sm

it
ti
n
g
n
od

es

Flood
SBA w/2 RADs

Naive Bayes
AHBP-EX

(b) Number of rebroadcasting nodes

7654321

Trial

0

1

2

3

4

5

6

7

8

9

E
n
d-
to
-e
n
d
de
la
y
(s
ec
on

ds
)

Naive Bayes
AHBP-EX

Adaptive SBA
Flood

(c) End-to-end delay

7654321

Trial

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Po
st
er
io
r

Naive Bayes

(d) Posterior probability of rebroadcasting, P(⊕|d1, . . .,dn)

Figure 6: Performance of our naive Bayes protocol. Over a range of increasing network severity, our broadcast protocol built with a naive
Bayes classifier maintains a high delivery ratio, low overhead, and low delay. In the most extreme scenario, it performs the best in all cate-
gories. All nodes compute a posterior probability of rebroadcasting, which decreases in these trials.

because Tmax increases as congestion increases, so fewer un-
necessary duplicate packets are sent. Figure 8(d) shows that
our learned protocol has a smaller RAD than the simple
adaptive protocol at all rates except for the last one, and the
consequence is that our learned protocol has a smaller delay
but more rebroadcasting nodes. At 80 packets per second, the
relative size of the RADs is reversed and hence our learned
protocol has a longer delay. In this simulation, we fixed the
number of nodes at 60, the payload of size of each packet was
set to 64 bytes, and the network was static, identical to [15].

7.3. Inter-protocol learning over increasing speed

To test our inter-protocol learning method, we ask whether
our protocol that switches between SBA and AHBP can
perform at least as well as each protocol individually. If we

hold the congestion level constant at 60 packets per second
and increase the speed, we suspect that nodes will transition
from AHBP to SBA. Figure 9 shows that nodes indeed do
switch to SBA at higher speeds, but the figure also shows a
performance gain over either protocol individually in some
cases. (To remove any congestion effects, we used a null
MAC, so the end-to-end delay is equivalent for all three pro-
tocols.) Figure 9(b) shows that there is some additional over-
head cost in switching between protocols in terms of the
number of rebroadcasting nodes. As Table 1 shows, there
is also extra overhead in terms of the number of bytes per
broadcast packet.

As expected, Figure 9(c) shows that nodes more often
chose AHBP at low speeds and SBA at high speeds, and at the
extreme cases the protocol follows AHBP or SBA completely.
At moderate speeds, the behavior of our learned protocol

12 EURASIP Journal on Wireless Communications and Networking

1501109070605040

Number of nodes

50

55

60

65

70

75

80

85

90

95

100
D
el
iv
er
y
ra
ti
o

Naive Bayes
AHBP-EX

Adaptive SBA
Flood

(a) Increasing density

302520151051

Average speed (m/s)

50

55

60

65

70

75

80

85

90

95

100

D
el
iv
er
y
ra
ti
o

Naive Bayes
AHBP-EX

Adaptive SBA
Flood

(b) Increasing speed

1201008060402010

Packet source rate (pkts/s)

50

55

60

65

70

75

80

85

90

95

100

D
el
iv
er
y
ra
ti
o

Naive Bayes
AHBP-EX

Adaptive SBA
Flood

(c) Increasing congestion

Figure 7: The delivery ratio of our naive Bayes broadcasting proto-
col is also the highest while varying density, speed, and congestion
separately.

exhibits more of a gradual transition than a quick switch, and
these are the same cases in which our protocol has a higher
delivery ratio than AHBP or SBA. Providing a node with the
flexibility to implement the protocol that is best suited for its
local conditions is the cause of the improvement.

7.4. Comparing all three learned protocols

We believe that our learning methods can be applied to di-
verse network conditions to find an optimal broadcast proto-
col, and we have simulated many network conditions in this
paper with our three exemplar protocols. We return to the
increasing network severity study of Section 7.1 to compare
our three learned protocols because that study is the most
effective in separating out their performance. While they all
perform well in some specific scenarios, this study chooses a
wide range of network conditions, so it may give advice in
the absence of any knowledge of the deployed network con-
ditions.

Figure 10 shows that the naive Bayes protocol is the ro-
bust over varying network conditions, which is what we ob-
served in Section 7.1. Our protocol that switches between
AHBP and SBA becomes almost purely SBA at high speed,
so its poor performance in trials 5, 6, and 7 is not surprising.
Remember that the learning in the switching protocol is con-
fined to the switching itself, because this is an inter-protocol
learner; we do not modify the behavior of AHBP or SBA once
the protocol has decided to use it. When we perform intra-
protocol learning and learn SBA’s RAD, the performance in
terms of delivery ratio, overhead, and delay are improved rel-
ative to the switching, inter-protocol learning.

8. CONCLUSIONS

Advanced broadcast algorithms have been known in the lit-
erature, yet many unicast, multicast, and geocast protocols
are still built using simple flooding. We believe that this gross
misuse of network resources has perpetuated for two reasons.
First, simple flooding is trivial to implement, while previous
broadcast protocols require graph theory. Second, although
previous broadcast protocols all outperformed simple flood-
ing, there was no clear winner between them, especially un-
der severe network conditions. Our naive Bayes protocol ad-
dresses both of these issues; it has a table-based implementa-
tion that is simple and efficient, and it is a robust performer
over many network scenarios. Indeed, the naive Bayes proto-
col performed better than either of the other learned proto-
cols we created. We believe that the results in Figure 6 display
an optimized trade-off between delivery ratio and overhead.
If, on the other hand, a network application specified that
the delivery ratio was more important than overhead, or vice
versa, that knowledge can be directly incorporated into the
model in Figure 3. The prior probability of rebroadcasting,
for example, can be scaled up or down.

We believe that our most important contribution is
the identification of ways machine learning can be applied
to broadcasting. We have identified three new classes of
broadcasting protocols, and believe that there are many
implementations that are ripe for discovery in each class. Just
as there are many protocols under the heading “neighbor

Michael D. Colagrosso 13

80706050403020100

Broadcast packet origination rate (packets/s)

50

55

60

65

70

75

80

85

90

95

100
D
el
iv
er
y
ra
ti
o

SBA with learned RAD
SBA w/2 RADs

AHBP
SBA

(a) Delivery ratio

80706050403020100

Broadcast packet origination rate (packets/s)

0
5
10
15
20
25
30
35
40
45
50
55
60

N
u
m
be
r
of

re
tr
an
sm

it
ti
n
g
n
od

es

SBA with learned RAD
SBA w/2 RADs

AHBP
SBA

(b) Number of rebroadcasting nodes

80706050403020100

Broadcast packet origination rate (packets/s)

0

0.2

0.4

0.6

0.8

1

1.2

E
n
d-
to
-e
n
d
de
la
y
(s
ec
on

ds
)

SBA with learned RAD
SBA w/2 RADs

AHBP
SBA

(c) End-to-end delay

80706050403020100

Broadcast packet origination rate (packets/s)

0
0.01

0.05

0.1

A
ve
ra
ge

R
A
D
(s
ec
on

ds
)

SBA with learned RAD
SBA w/2 RADs
SBA

(d) RAD value, Tmax

Figure 8: The intra-protocol learningmethod adjusts its value of Tmax with changing congestion. Over the range of congestion levels studied,
the learned protocol had the highest delivery ratio.

knowledge” and “location-based,” we believe that there are
many improvements to be found to pure machine learning,
intra-protocol learning, and inter-protocol learning meth-
ods. None of the protocols we created under these head-
ings add any extra communication overhead to the protocols
themselves (aside from a slightly longer header in our intra-
protocol learner), but perhaps future directions would con-
sider the constraint of zero communication overhead to be
too stringent. Allowing some communication between ma-
chine learning models on MNs might lead to lower over-
all communication. Moreover, we have not applied machine
learning to other classes of broadcast protocols, which are
important to consider when two-hop neighbor knowledge is
not feasible or otherwise available.

We hope to encourage improvements to other network-
layer protocols through the use of our work by creating a
taxonomy in which others can create simple, yet effective
broadcast protocols. We conclude with a guideline on how
to choose which class of adaptive protocols to use. If you are
willing to create the protocol from scratch, a pure machine
learning protocol is a simple one to create. If you are willing
to change the internals of a known protocol, use an intra-
protocol learner to modify its internals. If you have access to
multiple protocols and are averse to modifying them, inter-
protocol learning requires little additional effort except for
possibly changing the packet header (which is often unneces-
sary). We believe that choosing any of these methods is more
desirable than choosing a static broadcasting protocol.

14 EURASIP Journal on Wireless Communications and Networking

2520151050

Average node speed (m/s)

50

55

60

65

70

75

80

85

90

95

100
D
el
iv
er
y
ra
ti
o

Switching between SBA and AHBP-EX
AHBP-EX
SBA

(a) Delivery ratio

2520151050

Average node speed (m/s)

0
5
10
15
20
25
30
35
40
45
50
55
60

N
u
m
be
r
of

re
tr
an
sm

it
ti
n
g
n
od

es

Switching between SBA and AHBP-EX
AHBP-EX
SBA

(b) Number of rebroadcasting nodes

2520151050

Average node speed (m/s)

0

10

20

30

40

50

60

70

80

90

100

Pe
rc
en
t
of

n
od

es
u
si
n
g
SB

A

(c) Percent of nodes using SBA

Figure 9: Nodes using the inter-protocol learning method switch
between AHBP and SBA. For a fixed level of congestion, nodes pre-
fer SBA at higher speeds.

7654321

Trial

50

55

60

65

70

75

80

85

90

95

100

D
el
iv
er
y
ra
ti
o

Naive Bayes
SBA with learned RAD
Switching between SBA and AHBP-EX

(a) Delivery ratio

7654321

Trial

0

1

2

3

4

5

6

7

8

9

E
n
d-
to
-e
n
d
de
la
y
(s
ec
on

ds
)

Naive Bayes
SBA with learned RAD
Switching between SBA and AHBP-EX

(b) Number of rebroadcasting nodes

7654321

Trial

0

1

2

3

4

5

6

7

8

9

E
n
d-
to
-e
n
d
de
la
y
(s
ec
on

ds
)

Naive Bayes
SBA with learned RAD
Switching between SBA & AHBP-EX

(c) End-to-end delay

Figure 10: Comparing all three of our learned protocols over in-
creasing network severity, we find that our naive Bayes learner is the
most robust.

Michael D. Colagrosso 15

REFERENCES

[1] S. Basagni, I. Chlamtac, V. Syrotiuk, and B. Woodward, “A dis-
tance routing effect algorithm for mobility (DREAM),” in Pro-
ceedings of the 4th Annual ACM/IEEE International Conference
on Mobile Computing and Networking (MOBICOM ’98), pp.
76–84, Dallas, Tex, USA, October 1998.

[2] C.-C. Chiang and M. Gerla, “Routing and multicast in mul-
tihop, mobile wireless networks,” in Proceedings of the IEEE
6th International Conference on Universal Personal Commu-
nications (ICUPC ’97), vol. 2, pp. 546–551, San Diego, Calif,
USA, October 1997.

[3] C. Chiang, H. Wu, W. Liu, and M. Gerla, “Routing in clus-
terhead multihop, mobile wireless networks with fading chan-
nel,” in Proceedings of the IEEE Singapore International Confer-
ence on Networks (SICON ’97), pp. 197–211, Singapore, April
1997.

[4] C. Ho, K. Obraczka, G. Tsudik, and K. Viswanath, “Flood-
ing for reliable multicast in multi-hop ad hoc networks,” in
Proceedings of the International Workshop on Discrete Algo-
rithms andMethods for Mobile Computing and Communication
(DIALM ’99), pp. 64–71, Seattle, Wash, USA, August 1999.

[5] H. Lim and C. Kim, “Multicast tree construction and flooding
in wireless ad hoc networks,” in Proceedings of the 3rd ACM In-
ternational Workshop on Modeling, Analysis and Simulation of
Wireless and Mobile Systems (MSWIM ’00), pp. 61–68, Boston,
Mass, USA, August 2000.

[6] H. Lim and C. Kim, “Flooding in wireless ad hoc networks,”
Computer Communications, vol. 24, no. 3-4, pp. 353–363,
2001.

[7] C. R. Lin and M. Gerla, “Adaptive clustering for mobile wire-
less networks,” IEEE Journal on Selected Areas in Communica-
tions, vol. 15, no. 7, pp. 1265–1275, 1997.

[8] E. Pagani and G. P. Rossi, “Providing reliable and fault tol-
erant broadcast delivery in mobile ad-hoc networks,” Mobile
Networks and Applications, vol. 4, no. 3, pp. 175–192, 1999.

[9] W. Peng and X.-C. Lu, “Efficient broadcast in mobile ad hoc
networks using connected dominating sets,” Journal of Soft-
ware, vol. 12, no. 4, pp. 529–536, 2001.

[10] W. Peng and X.-C. Lu, “On the reduction of broadcast redun-
dancy in mobile ad hoc networks,” in Proceedings of the 1st
ACM Interational Symposium on Mobile Ad Hoc Networking
and Computing (MOBIHOC ’00), pp. 129–130, Boston, Mass,
USA, August 2000.

[11] W. Peng and X.-C. Lu, “AHBP: an efficient broadcast protocol
for mobile ad hoc networks,” Journal of Computer Science and
Technology, vol. 16, no. 2, pp. 114–125, 2001.

[12] A. Qayyum, L. Viennot, and A. Laouiti, “Multipoint relaying:
an efficient technique for flooding in mobile wireless net-
works,” Rapport de Recherche 3898, INRIA, Cedex, France,
2000.

[13] I. Stojmenovic and X. Lin, “Loop-free hybrid single-
path/flooding routing algorithms with guaranteed delivery
for wireless networks,” IEEE Transactions on Parallel and Dis-
tributed Systems, vol. 12, no. 10, pp. 1023–1032, 2001.

[14] J. Sucec and I. Marsic, “An efficient distributed network-
wide broadcast algorithm for mobile ad hoc networks,”
CAIP Technical Report 248, CAIP Center, Rutgers University,
Piscataway, NJ, USA, September 2000, http://www.caip.
rutgers.edu/∼marsic/mobile/.

[15] B. Williams and T. Camp, “Comparison of broadcasting tech-
niques for mobile ad hoc networks,” in Proceedings of the 3rd
ACM International Symposium on Mobile Ad Hoc Networking

and Computing (MOBIHOC ’02), pp. 194–205, Lausanne,
Switzerland, June 2002.

[16] D. Johnson and D. Maltz, “Dynamic source routing in ad hoc
wireless networks,” inMobile Computing, T. Imelinsky and H.
Korth, Eds., pp. 153–181, Kluwer Academic, Dordrecht, The
Netherlands, 1996.

[17] D. Johnson, D. Maltz, and Y. Hu, “The dynamic source rout-
ing protocol for mobile ad hoc networks,” April 2003, internet
draft: draftietf- manet-dsr-09.txt.

[18] C. Perkins, E. Belding-Royer, and S. Das, “Ad hoc on demand
distance vector (AODV) routing,” July 2003, request for com-
ments 3561.

[19] C. Perkins and E. Royer, “Ad-hoc on-demand distance vector
routing,” in Proceedings of the 2nd IEEE Workshop on Mobile
Computing Systems and Applications (WMCSA ’99), pp. 90–
100, New Orleans, La, USA, February 1999.

[20] Z. Haas, “New routing protocol for the reconfigurable wireless
networks,” in Proceedings of the IEEE 6th International Con-
ference on Universal Personal Communications (ICUPC ’97),
vol. 2, pp. 562–566, San Diego, Calif, USA, October 1997.

[21] Z. Haas and M. Pearlman, “The performance of query con-
trol schemes for the zone routing protocol,” in Proceedings
of the ACM Conference on Applications, Technologies, Architec-
tures, and Protocols for Computer Communication (SIGCOMM
’98), pp. 167–177, Vancouver, BC, Canada, August-September
1998.

[22] Z. Haas and B. Liang, “Ad-hoc mobility management with
randomized database groups,” in Proceedings of the IEEE In-
ternational Conference on Communications (ICC ’99), vol. 3,
pp. 1756–1762, Vancouver, BC, Canada, June 1999.

[23] Y. Ko and N. Vaidya, “Location-aided routing (LAR) in mo-
bile ad hoc networks,” in Proceedings of the ACM/IEEE Interna-
tional Conference on Mobile Computing and Networking (MO-
BICOM ’98), pp. 66–75, Dallas, Tex, USA, October 1998.

[24] S. Corson and A. Ephremides, “A distributed routing algo-
rithm for mobile wireless networks,” ACM Journal on Wireless
Networks, vol. 1, no. 1, pp. 61–81, 1995.

[25] C.-C. Chiang and M. Gerla, “On-demand multicast in mobile
wireless networks,” in Proceedings of the International Confer-
ence on Network Protocols (ICNP ’98), pp. 262–270, Austin,
Tex, USA, October 1998.

[26] S.-J. Lee, M. Gerla, and C.-C. Chiang, “On-demand multicast
routing protocol,” in Proceedings of IEEE Wireless Communi-
cations and Networking Conference (WCNC ’99), vol. 3, pp.
1298–1302, New Orleans, La, USA, September 1999.

[27] T. Camp and Y. Liu, “An adaptive mesh-based protocol for
geocast routing,” Journal of Parallel and Distributed Comput-
ing, vol. 63, no. 2, pp. 196–213, 2003, Special issue on routing
in mobile and wireless ad hoc networks.

[28] Y. Ko and N. Vaidya, “Geocasting in mobile ad hoc networks:
location-based multicast algorithms,” in Proceedings of the 2nd
IEEEWorkshop on Mobile Computing Systems and Applications
(WMCSA ’99), pp. 101–110, New Orleans, La, USA, February
1999.

[29] S. Ni, Y. Tseng, Y. Chen, and J. Sheu, “The broadcast storm
problem in a mobile ad hoc network,” in Proceedings of the
5th Annual ACM/IEEE International Conference on Mobile
Computing and Networking (MOBICOM ’99), pp. 151–162,
Seattle, Wash, USA, August 1999.

[30] M. D. Colagrosso, “A classification approach to broadcasting
in a mobile ad hoc network,” in Proceedings of IEEE Interna-
tional Conference on Communications (ICC ’05), vol. 2, pp.
1112–1117, Seoul, Korea, May 2005.

http://www.caip.rutgers.edu/~marsic/mobile/
http://www.caip.rutgers.edu/~marsic/mobile/

16 EURASIP Journal on Wireless Communications and Networking

[31] J. Pearl, Probabilistic Reasoning in Intelligent Systems: Networks
of Plausible Inference, Morgan Kaufmann, San Francisco, Calif,
USA, 1997.

[32] I. S. Committee, “Wireless LAN medium access control
(MAC) and physical layer (PHY) specifications,” in IEEE
802.11 Standard, IEEE Computer Society, New York, NY, USA,
1996.

[33] B. N. Clark, C. J. Colbourn, and D. S. Johnson, “Unit disk
graphs,” Discrete Mathematics, vol. 86, no. 1–3, pp. 165–177,
1990.

[34] B. Das and V. Bharghavan, “Routing in ad-hoc networks using
minimum connected dominating sets,” in Proceedings of IEEE
International Conference on Communications (ICC ’97), vol. 1,
pp. 376–380, Montreal, Que, Canada, June 1997.

[35] B. Das, R. Sivakumar, and V. Bharghavan, “Routing in ad hoc
networks using a spine,” in Proceedings of the 6th International
Conference on Computer Communications and Networks (IC-
CCN ’97), pp. 34–39, Las Vegas, Nev, USA 1997.

[36] S. Guha and S. Khuller, “Approximation algorithms for con-
nected dominating sets,” in Proceedings of the 4th Annual
European Symposium on Algorithms (ESA ’96), pp. 179–193,
Barcelona, Spain, September 1996.

[37] S. Guha and S. Khuller, “Approximation algorithms for con-
nected dominating sets,” Algorithmica, vol. 20, no. 4, pp. 374–
387, 1998.

[38] R. Sivakumar, B. Das, and V. Bharghavan, “An improved
spine-based infrastructure for routing in ad hoc networks,”
in Proceedings of the 3rd IEEE Symposium on Computers and
Communications (ISCC ’98), Athens, Greece, June-July 1998.

[39] R. Sivakumar, B. Das, and V. Bharghavan, “Spine routing in ad
hoc networks,” Cluster Computing, vol. 1, no. 2, pp. 237–248,
1998.

[40] P.-J. Wan, K. M. Alzoubi, and O. Frieder, “Distributed con-
struction of connected dominating set in wireless ad hoc net-
works,” in Proceedings of the 21st Annual Joint Conference of
the IEEE Computer and Communications Societies (INFOCOM
’02), vol. 3, pp. 1597–1604, New York, NY, USA, June 2002.

[41] J. Wu and H. Li, “On calculating connected dominating sets
for efficient routing in ad hoc wireless networks,” in Pro-
ceedings of the 3rd International Workshop on Discrete Algo-
rithms andMethods for Mobile Computing and Communication
(DIAL-M ’99), pp. 7–14, Seattle, Wash, USA, August 1999.

[42] J. R. Quinlan, C4.5: Programs for Machine Learning, Morgan
Kaufmann, San Mateo, Calif, USA, 1993.

[43] T. Clausen and P. Jacquet, “Optimized link state routing pro-
tocol (OLSR),” October 2003, request for comments 3626.

[44] K. Fall and K. Varadhan, Eds., UCB/LBNL/VINT network
simulator—ns (version 2), 1997, accessed on November 2002,
http://www-mash.cs.berkeley.edu/ns/.

[45] G. Christensen, “Intelligent mobile networks,” accessed on
July 2002, http://www.mobilein.com/intelligentmobilenet-
works.htm.

[46] B. Bellur, M. Lewis, and F. Templin, “An ad-hoc network for
teams of autonomous vehicles,” in Proceedings of 1st Annual
Symposium on Autonomous Intelligent Networks and Systems
(AINS ’02), Los Angeles, Calif, USA, May 2002.

[47] M. E. Streenstrup, “Routing under uncertainty: a comparative
study,” in Proceedings of IEEE Wireless Communications and
Networking Conference, vol. 1, pp. 112–116, Chicago, Ill, USA,
September 2000.

[48] P. Domingos and M. Pazzani, “Beyond independence: condi-
tions for the optimality of the simple bayesian classifier,” in

Proceedings of the 13th International Conference on Machine
Learning (ICML ’96), pp. 105–112, Bari, Italy, July 1996.

[49] W. Navidi, T. Camp, and N. Bauer, “Improving the accuracy
of random waypoint simulations through steady-state initial-
ization,” in Proceedings of the 15th International Conference on
Modeling and Simulation (MS ’04), pp. 319–326, Marina Del
Rey, Calif, USA, March 2004.

[50] B. Williams and T. Camp, “Comparison of broadcasting tech-
niques for mobile ad hoc networks,” in Proceedings of the 3rd
ACM International Symposium on Mobile Ad Hoc Network-
ing and Computing (MOBIHOC ’02), pp. 194–205, Lausanne,
Switzerland, June 2002.

http://www-mash.cs.berkeley.edu/ns/
http://www.mobilein.com/intelligentmobilenetworks.htm
http://www.mobilein.com/intelligentmobilenetworks.htm

	Introduction: Ad Hoc NetworkBroadcasting
	Static Broadcast Protocols
	The scalable broadcast algorithm
	The ad hoc broadcast protocol
	The limitations of static protocols
	MANET intelligence

	A Pure Machine Learning BroadcastingProtocol
	Successful retransmission

	Intra-Protocol Learning
	Adapting RAD-based protocols to densityand congestion
	Adapting nonlocal decision neighbor knowledge methods to mobility

	Inter-Protocol Learning
	Simulation Environment
	Results
	Pure machine learning over increasingnetwork severity
	Intra-protocol learning over increasingcongestion
	Inter-protocol learning over increasing speed
	Comparing all three learned protocols

	Conclusions
	REFERENCES

