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Abstract

Chatter is a self-excited vibration that affects the part quality and tool life in the machining process. This paper introduces an
intelligent chatter detection method based on image features and the support vector machine. In order to reduce the background
noise and highlight chatter characteristics, the average FFT is applied to identify the dominant frequency bands that divide the
time-frequency image of the short-time Fourier transform into several sub-images. The non-stationary properties of the machin-
ing conditions are quantified using sub-images features. The area under the receiver operating characteristics curve ranks the
extracted image features according to their separability capabilities. The support vector machine is designed to automatically
classify the machining conditions and select the best feature subset based on the ranked features. The proposedmethod is verified
by using drymicro-milling tests of steel 1040 and high classification accuracies for both the stable and unstable tests are obtained.
In addition, the proposed method is compared with two additional methods using either image features from the continuous
wavelet transform or time-domain features. The results present a better classification performance than the two additional
methods, indicating the efficiency of the proposed method for chatter detection.

Keywords Micro-milling . Chatter detection . Image features . Dominant frequency bands . Support vector machine

1 Introduction

Chatter is a self-excited vibration due to complex, nonlinear,
and non-stationary characteristics of the machining process.
Poor surface quality, reduced tool life, and breakage of cutting
tools may be induced when chatter occurs. Development of
the stability chart defined in the space of the spindle speed and
axial depth of cut is an analytical approach to avoid chatter.
This approach is based on a series of simplifications of the
machining system, such as an assumption of a linear and time-
invariant machining system [1]. Hence, it cannot fully model

the nonlinear and dynamic machining system with various
uncertainties [2]. An alternative approach for avoiding chatter
is to monitor the machining process. Given the recent ad-
vances in signal processing and pattern recognition, intelligent
and automatic chatter detection is preferred in practical indus-
trial applications, as it is the prerequisite for timely chatter
suppression and also suitable for fully automated or lightly
staffed machining environments.

Due to non-stationary and uncertain characteristics of mea-
sured signals generated in machining operations, chatter de-
tection is sometimes too tricky in order to achieve reasonable
performance. Numerous algorithms have been applied to pro-
cess the measured signals for chatter detection, including
Fourier transform (FT) analysis [3, 4] and time-frequency
analysis [5]. Although the FTanalysis has provided acceptable
results for chatter detection [4, 6], it is unable to determine the
transition in non-stationary signals and hence ineffective for
real-time or intelligent chatter detection [7–10]. The time-
frequency analysis offers the advantage over a single time or
frequency domain analysis, which can reflect the non-
stationary properties of the machining operations.

The commonly used time-frequency methods for chatter
detection include the short-time Fourier transform (STFT)
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[11], empirical mode decomposition (EMD) based approach
[7], and wavelet-based method [12, 13]. Those methods usu-
ally decompose the measured signals into several compo-
nents, and each component contains information in a narrow
frequency band. The components that are sensitive to the ab-
normalities of the machining operations are selected for fea-
ture extraction. Mei et al. [14] used singular spectrum analysis
to decompose the signals, and a sensitive component was
selected to extract the singular value entropy as chatter indi-
cator. Liu et al. [13] extracted features from the dominant
frequency bands decomposed from the wavelet packet trans-
form. Although the decomposition of the original signals into
components limited in narrow frequency bands has received
reasonable performance, these features are still extracted from
one-dimensional components in the time domain, which do
not fully explore the advantage of the time-frequency analysis
that defines a two-dimensional space. To avoid this problem,
the spectra obtained from the time-frequency analysis can be
treated as two-dimensional images, and corresponding image
features can therefore be used for chatter detection. Statistical
approaches are the common tools used to extract image fea-
tures, and represent the image using statistics collected from
the distributions and relationships between the gray levels of
an image [15]. Dynamic changes that may be hidden in the
single time or frequency domain can be discovered by the
time-frequency image and bring about variations of neighbor-
ing pixel distributions and relationships in the image. The
image features from the time frequency analysis are often used
in the biomedical field for brain diseases [16–18]. Boashash
et al. [17] employed time-frequency image features for detec-
tion of abnormalities in newborn electroencephalogram
(EEG) signals, and concluded that the two-dimensional image
features performed significantly better than the one-
dimensional frequency-domain features. For machining,
Khalifa et al. [19] analyzed the machined surface images using
the statistical approaches to distinguish the stable and unstable
machining conditions.

Chatter is highly related to the dynamic behavior of the
machining system. When chatter occurs, energy rises around

the specific natural frequencies of the machining system [20,
21]. In order to decrease the high level of environmental
noises and keep as much dynamic information as possible,
the frequency bands that contain the natural frequencies are
selected to highlight chatter-related characteristics. Signal de-
composition is commonly used to decompose the signal into a
set of components with narrow frequency bands. However,
most signal decomposition techniques are not adaptive, such
as wavelet packet decomposition. They may divide one con-
tinuous frequency band into two individual components or
two (or more) individual frequency bands into one compo-
nent, resulting in less sensitive features related to chatter
[22]. EMD is an adaptive decomposition based on the empir-
ical modes, but suffers from mode mixing [23]. Additional
assistances from white noises [23] or wavelet decomposition
[24] can be used to avoid modemixing with increased costs of
computation time. On the other hand, there are alternative
methods to identify the dominant frequency bands. For in-
stance, Attoui et al. [22] processed the FFTof the signal using
a short-time window to yield the dominant frequency bands,
and Lamraoui et al. [25] used the hammer impact test to iden-
tify the natural frequencies of the machining system and there-
fore the dominant frequency bands.

Although the extracted features can quantify the degree of
stability of the machining condition, additional efforts are

Fig. 1 Dominant frequency bands and sub-images

Fig. 2 GLCM construction methods at different angles
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required to determine the boundary between the stable and
unstable tests in the feature space. Pattern recognition can
automatically discriminate the stable and unstable tests
through a learning process. Several smart recognition tech-
niques have been used to monitor machining conditions, in-
cluding neural network [25], fuzzy logic [26], and hidden
Markov models [27]. Teti et al. [28] stated that neural network
and fuzzy logic techniques are the most widely used ones in
monitoring of machining operations. Alternatively, the sup-
port vector machine (SVM) was applied for chatter detection
inmirror milling [29], as it has simple geometric interpretation
and is suitable for small sample sizes [30]. The application of
the SVM to a tool breakage diagnosis system also obtained
reliable results, as indicated by Hsueh and Yang [31].

In the authors’ previous work [32], the time-frequency
analysis is an ideal tool for processing the non-stationary sig-
nals generated in machining operations, and its image features
from the STFT show better performance in discriminating the
stable and unstable tests than the time-domain features in mac-
ro-milling. This paper is a continuous effort to extend time-
frequency images features for intelligent chatter detection in
micro-milling. The high-energy frequency bands extracted
from the average FFTare used to reduce the background noise
and highlight chatter characteristics. The area under the re-
ceiver operating characteristics curve (AUC) and the SVM
are combined to classify the machining conditions and iden-
tify the best feature subset with the highest classification ac-
curacies. The proposed chatter detection method is compared

with two additional methods using either time-domain fea-
tures or image features from the continuous wavelet trans-
form. The results indicate a good classification performance
of the proposed method.

2 Methodology

2.1 Feature extraction and ranking

The feature extraction and ranking techniques proposed by the
authors [32] are briefly summarized in this section. In order to
identify the dominant frequency bands with high energy, a
constructed signal y(tk), that is, a sum of signals selected from
the stable and unstable machining conditions is processed
using an average fast Fourier transform (FFT).

Y ωð Þ ¼ ∑
L

l¼1
∑
K

k¼0
FFT y tkð Þw0 tk−alð Þ½ � ð1Þ

where tk is the kth sample time, w0(tk − al) is a rectangular
window function centered at time al, and {al} (l = 1,…, L) is
an arithmetic sequence. FFT[y(tk)] is the FFT of the signal
y(tk). The FFT algorithm is implemented using the function
“fft” inMatlab [33]. Equation (1) defines an average FFT Y(ω)
over L segments of the constructed signal y(tk). The average
FFT smooths the FFT spectrum and reduces the background
noises, resulting in highlighted dominant frequency bands.

The short-time Fourier transform (STFT) is a commonly
used method to discover the information of the non-stationary
signal in both the time and frequency domains. The signal x(t)
is transformed by applying STFT.

I τ ;ωð Þ ¼ ∫
þ∞
−∞ x tð Þw1 t−τð Þe−jωtdt ð2Þ

where w1(t-τ) is a window function centered at time τ.
I(τ, ω) defines a time-frequency image. This image is then
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d
2
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1

Feature F
2

Margin

Fig. 3 SVM for a two-class case

Table 1 Image features and their notation for the nth sub-image In(τ, ω)

Feature Notation Feature Notation Feature Notation

Mean Fn
1 Mean contrast Fn

5 Contrast range Fn
9

Standard variance Fn
2 Mean correlation Fn

6 Correlation range Fn
10

Skewness Fn
3 Mean energy Fn

7 Energy range Fn
11

Kurtosis Fn
4 Mean homogeneity Fn

8 Homogeneity range Fn
12

Fig. 4 Proposed chatter detection method
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divided into a set of sub-images according to the dominant
frequency bands and converted to grayscale sub-images
with G gray levels, as shown in Fig. 1. The first-order
statistical and second-order statistical approaches are used
to extract the features from the grayscale image. Detailed
algorithms for image features are given in Appendix. The
first-order statistics are calculated from the intensity-level
histogram h(i):

h ið Þ ¼ ∑
τ
∑
ω
δ In τ ;ωð Þ; ið Þ i ¼ 0;⋯;G−1 ð3Þ

where i is a gray level value, In(τ, ω) is the nth sub-image
in grayscale (Fig. 1) and δ is the Kronecker delta function.
The first-order statistics used for image feature extraction
are the mean, standard variance, skewness, and kurtosis of
h(i). The second-order statistics are extracted from the
gray level co-occurrence matrix (GLCM). GLCM con-
siders the relationship between two pixels, a distance d

apart along a given direction θ having co-occurring gray
values i and j:

GLCMd;θ i; jð Þ ¼

∑
τ
∑
ω
1 In τ ;ωð Þ ¼ i&In τ þ dcosθ;ωþ dsinθð Þ ¼ j

0 others

8

>

<

>

:

ð4Þ

Four second-order statistical features, that is, contrast, cor-
relation, energy, and homogeneity, are evaluated from the
GLCM. Let the distance d = 1 pixel and θ = 0o, 45o, 90o, or
135o (Fig. 2), there are four sets of second-order statistical

features. The mean and range of each second-order feature
are used for chatter detection. Table 1 lists all the statistical
features and their notations.

Irrelevant features should be removed in order to im-
prove the classification performance and decrease the
computation time. The area under the receiver operating
characteristics curve (AUC) is used to rank the image
features in terms of their separability capabilities [34].
To select the best feature subset, an algorithm that itera-
tively realizes the classification first for the subset with
the top ranked feature then for subset with top two fea-
tures then for top three features, etc. until all features are
classified. The best feature subset is chosen as the subset
with best classification accuracies.

Y X

ZEnd mill

Accelerometer

Fig. 5 Micro-milling experimental setup

Frequency bands

Fig. 6 Average FFT plot

Table 2 Cutting parameters

Cutting parameter Values

Spindle speed np (rpm) 10,000, 12,000, 14,000, 16,000

Feed per tooth ft (μm/tooth) 0.5, 1, 2, 3, 5, 7

Axial depth of cut ap (μm) 50, 80, 110, 140

(a)

Cut begins

(b)

Cut begins

Fig. 7 Vibration signals a stable at np 16,000 rpm, ap 50 μm, and ft 5 μm/
tooth b unstable at np 16,000 rpm, ap 50 μm, and ft 1 μm/tooth
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2.2 Classification

The SVM is suitable to classify data samples with small sizes.
It separates classes using the training data by fitting an optimal
separating hyperplane in a feature space. The optimization
problem being solved aims to maximize the margins between
the optimal hyperplanes and the closest training data (i.e.,

support vectors), as shown in Fig. 3. Let {x} be the feature
vectors of the training data set and y∈{−1, 1} be the corre-
sponding class labels. The decision function g(x) is defined
by the weight vector w and the threshold w0 as.

g xð Þ ¼ w⋅xþ w0 ð5Þ

If w⋅xþ w0≥1 ≤−1ð Þ; x∈Class y ¼ 1 −1ð Þ ð6Þ

The support vectors lie on two hyperplanes g(x) = ± 1. The
margin maximization between the two hyperplanes is solved
by minimizing ‖w‖

2. Figure 3 shows a completely separate
case with linear hyperplanes in a simple two-dimensional fea-
ture space. In more practical cases, features in higher dimen-
sional space are usually used, and the classes are more likely
non-separable. Thus, nonlinear kernels may be needed for
better classification.

2.3 Proposed chatter detection method

An intelligent chatter detection method based on image fea-
tures and SVM is proposed in this work. The procedures to
conduct the proposed method are shown in Fig. 4. Several
signals from the stable and unstable machining conditions
are summed up to construct a synthesized signal for the aver-
age FFT. In order to highlight the chatter-related charac-
teristics, the dominant frequency bands are identified by
localizing the frequency bands at which the energy is high

(a)

1
st

band (80-700 Hz)

2
nd

band (930-2500 Hz)

(b)
2

nd
band (930-2500 Hz)

1
st

band (80-700 Hz)

Fig. 8 STFT images and sub-
images for tests in Fig. 7 a stable,
b unstable

Fig. 9 AUC for each feature from STFT images

Fig. 10 Test distribution in the space defined by the mean F1
1 and

skewness F1
3 from the STFT images

Table 3 Sensitivity analysis of the frequency resolution

FR NFBS ACsd ACusd AC

27 2 100.0% 93.3% 96.6%

28 2 100% 100% 100%

29 2 100% 100% 100%

210 2 100% 100% 100%

Int J Adv Manuf Technol



in the average FFT plot. The measured vibration signals
are then transformed into the time-frequency images using
the STFT. A set of sub-images are selected from the ob-
tained time-frequency images according to the identified
dominant frequency bands and converted into grayscale
images. Statistical image features are extracted from each
sub-image and ranked according to the AUC. Finally, the
SVM classifier is employed for the ranked features, and

the best feature subset is selected according to the highest
classification accuracies.

3 Experimental assessment

3.1 Experimental setup

Micro-milling tests are used to assess the proposed chatter
detection method using the STFT image features. The exper-
imental setup and the coordinate system of the vibration sig-
nals are shown in Fig. 5. The workpiece material is steel 1040.
The feed direction is the x direction. The accelerometer was
mounted on the workpiece to measure the vibration signals in
the x direction. The sample rate was 10 kHz. Slot micro-
milling was performed throughout the tests. Two-flute end
mill cutters with a diameter of 600 μm and a helix angle of
30o were used. The cutting parameters are given in Table 2,
and the total number of tests is 29.

3.2 Detection results

More than five micro-milling tests for each case of machining
condition, either stable or unstable, are summed to obtain the
average FFT plot as shown in Fig. 6. The average FFT is
evaluated over a rectangular window size of 256. Two domi-
nant frequency bands, i.e., 80–700 Hz (the first frequency
band) and 930–2500 Hz (the second frequency band), are
identified. To examine the difference between the stable and
unstable tests, two vibration signals used for the average FFT

Table 4 Time domain features used by Lamraoui et al. [25]

Feature Notation Feature Notation

Variance (Ft1) ∑K
k¼1 x tkð Þ−xð Þ2=K * Skewness (Ft6) ∑K

k¼1 x tkð Þ−xð Þ3=K
h i

=F t1
3=2

Kurtosis (Ft2) ∑K
k¼1 x tkð Þ−xð Þ4=K

h i

=F t1
2 Peak value (Ft7) [maxx(tk) −min x(tk)]/2

Root mean square (Ft3)
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∑K
k¼1x

2 tkð Þ=K
q

Clearance factor (Ft8) F t7= ∑K
k¼1jx tkð Þj=K

� �2

Crest factor (Ft4) Ft7/Ft3 Shape factor (Ft9) F t3=∑K
k¼1jx tkð Þj=K

Impulse factor (Ft5) F t7= ∑K
k¼1jx tkð Þj=K

� �

*x(tk) is the envelope of a signal pre-processed by multiband filters

Fig. 11 AUC for each time-domain feature

Fig. 12 Test distribution in the space defined by the root mean square Ft3
and clearance factor Ft8

Table 5 Classification results

Approach NFBS ACsd ACusd AC

STFT* 2 100% 100% 100%

TD** 6 100% 93.3% 96.6%

CWT 2 92.9% 100.0% 96.6%

*Frequency resolution is 28 ; **TD represents time domain

Int J Adv Manuf Technol



plot are shown in Fig. 7. It can be seen that the vibration signal
for the stable test has a relatively small amplitude variation,
whereas the signal for the unstable test shows a significant
amplitude variation.

The STFT images and the corresponding sub-images for
the two tests in Fig. 7 are given in Fig. 8. The STFT images are
obtained using a Hanning window with a size of 29 and an
overlap of a quarter of the window size. The STFT has a trade-
off between the time and frequency resolutions, i.e., the higher
the frequency resolution, the lower the time resolution is and
vice versa. The time resolution of the STFT is generally much
lower than the number of sample points. For example, Fig. 8a
has a time resolution of 1340 pixels, whereas the number of
sample points is 44,551. Sub-images are firstly identified from
the STFT images according to the dominant frequency bands,
and then converted into grayscale images. A sensitivity anal-
ysis is conducted to choose the total number G of gray levels.
It is found that the image features become stable when G > =
28. Thus,G is set to 28. The image patterns significantly differ
between the stable and unstable tests. When chatter occurs, all
frequency components vary significantly. However, the first

and second frequency bands contain a majority of high-
intensity pixels, indicating high energies for those frequency
bands and large signal-to-noise ratios. Thus, the STFT image
features from the two bands are more sensitive to chatter
onset.

The AUC that assesses the separability capability of each
feature is shown in Fig. 9. It can be seen that most image
features from the first frequency band have large AUCs and
therefore, high separability capabilities. The top ranked fea-
tures are the mean F1

1 and skewness F
1
3 with the sameAUC of

0.5. Figure 10 gives the distribution of the micro-milling tests
in the two-dimensional space defined by the mean F1

1 and

skewness F1
3. The test distribution in the two-feature space

shows no overlap. A less overlap distribution usually implies
a better pattern recognition performance.

A linear SVM is used for classification, as it gives better
classification results than the nonlinear SVMs in this study.
The performance of the classification approach is assessed
using the leave-one-out (LOO) method [35]. The input

Fig. 14 AUC for each CWT image feature

(a)

2
nd

band (930-2500 Hz)

1
st

band (80-700 Hz)

(b)

2
nd

band (930-2500 Hz)

1
st

band (80-700 Hz)

Fig. 13 CWT images for tests in
Fig. 7 a stable, b unstable

Fig. 15 Test distribution in the space defined by the mean correlation F1
6

and homogeneity range F2
12 from the CWT images
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features are normalized using the z-score method before clas-
sification. Three types of accuracies are defined for classifica-
tion assessment, namely, ACsd, ACusd, and AC, which are the
percentages of stable tests classified as stable, unstable tests
classified as unstable, and total tests classified correctly, re-
spectively. The best feature subset that gives the highest clas-
sification accuracies is identified by using the iterative proce-
dure introduced in Section 2.1. As the resolution of the time-
frequency image affects separability capabilities of features
and classification performance [17], a sensitivity analysis is
conducted to investigate the effect of the resolution on the
classification performance. As the numbers of the sample
points of the measured signals are fixed, the time resolution
is fully determined by the window size or the frequency res-
olution (FR). Table 3 lists the classification accuracies and the
number of features in the best subset (NFBS) under different
FRs. All the classification accuracies ACsd, ACusd, and AC

reach 100% when the FR is equal or higher than 28. As a high
FR increases the computation time for obtaining STFT images
and decreases the time resolution, a FR of 28 pixels is selected
for feature ranking and classification, as well as the further
discussion presented in Section 3.3.

3.3 Discussion

In order to further assess the performance of the proposed
method for chatter detection, the image features based on
the STFT are compared with the time-domain features
extracted using the approach proposed by Lamraoui
et al. [25]. Lamraoui et al. designed a set of multiband
resonance filters based on the dominant frequency bands
to filter the vibration signals. The TD features in Table 4
are extracted from the envelopes of the filtered signals.
Figure 11 shows the AUC for each time-domain feature.
The root mean square Ft3 has the maximum AUC of 0.34,
which is much lower than the maximum from the STFT

image features. Figure 12 shows the distribution of the
micro-milling tests in the space defined by the top two
time-domain features Ft3 and Ft8. The test distribution
shows significant overlapping between the stable and un-
stable tests, which indicates the low separability capabil-
ities of the time domain features. Table 5 presents the best
feature subsets and the classification accuracies using the
time-domain features. Similar to the maximum AUC, the
classification accuracies for the time-domain features are
lower than the corresponding ones for the STFT image
features. This again evidences that the STFT image fea-
tures are powerful for intelligent chatter detection.

The STFT image features are also compared with the con-
tinuous wavelet transform (CWT) image features in terms of
their classification performance. The CWT images and their
corresponding sub-images for the two tests in Fig. 7 are given
in Fig. 13. The CWT images are obtained using a complex
Morlet wavelet. The FR of 28 for CWT images is equal to that
for STFT images. The time resolution for CWT images is
much higher, which is the same as the number of sample
points of signals. Similar to STFT images, CWT images also
discover the non-stationary properties of signals when chatter
occurs. Figure 14 gives the AUC for each feature from the
CWT images. The mean correlation F1

6 from the first frequen-
cy band has the maximum AUC of 0.34, which is lower than
the maximum AUC 0.5 in Fig. 9. Thus, the test distribution
(Fig. 15) in the top two-feature space for the CWT shows an
overlap between the stable and unstable tests. Similarly, the
classification accuracies ACsd and AC based on the CWT im-
age features are lower than their corresponding accuracies
based on the STFT image features (Fig. 15). Although the
CWT can output images with both high time and frequency
resolutions, it does not give better performance for chatter
detection than the low-resolution images from the STFT. It
is important to select the proper time-frequency analysis meth-
od for better classification performance [17].

Table 6 First-order statistical features for the nth sub-image In(τ, ω)

Feature Notation Feature Notation

Mean (Fn
1 )

1
N
∑G−1

i¼0 ihn ið Þ Skewness (Fn
3 )

1
N

Fn
2

� �−3
∑G−1

i¼0 i−Fn
1

� �3
hn ið Þ

Standard variance (Fn
2 )

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
N
∑G−1

i¼0 i−Fn
1

� �2
hn ið Þ

q

Kurtosis (Fn
4 )

1
N

Fn
2

� �−4
∑G−1

i¼0 i−Fn
1

� �4
hn ið Þ−3

Table 7 Definitions of variables μi, μj, σi, and σj

Variable Notation Variable Notation

μi ∑G−1
i¼0 i∑

G−1
j¼0p

n
d;θ i; jð Þ σi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∑G−1
i¼0 i−μið Þ2∑G−1

j¼0p
n
d;θ i; jð Þ

q

μj ∑G−1
i¼0 ∑

G−1
j¼0 jp

n
d;θ i; jð Þ σj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∑G−1
j¼0 j−μ j

� �2
∑G−1

i¼0 p
n
d;θ i; jð Þ

r
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4 Conclusions

In this paper, an intelligent chatter detection method based on
STFT image features and SVM is proposed for micro-milling
operations. Image features are used to describe the non-
stationary properties shown in the STFT time-frequency im-
ages. The dominant frequency bands that are identified from
the average FFT are used to divide the STFT images, in order
to increase the signal-to-noise ratio, as well as the sensitivity
of image features. The AUC that quantifies the separability
capability of each feature is used to identify the sensitive im-
age features and best feature subset. A linear SVM for classi-
fication is used to automatically determine the boundary be-
tween the stable and unstable tests in the best feature subset.
The classification performance is evaluated using the LOO
method.

The proposed chatter detection method is implemented
in micro-milling of steel 1040. The two features, namely,
mean F1

1 and skewness F3
1 from the first dominant fre-

quency band, have the largest AUCs and high capabilities
to separate the stable and unstable tests. The classification
accuracies ACsd, ACusd, and AC all reach 100% using the
best subset consisted of the top two features. For further
verification, the proposed method is compared with two
additional chatter detection methods. The results show
that the STFT image features give a better classification
performance than the time-domain features and the CWT
image features. Thus, the proposed method based on
STFT image features from dominant frequency bands is
efficient for chatter detection. It is interesting to find that
high-resolution images obtained from the CWT do not
improve the classification accuracies as expected. To fully
explore the image features for intelligent chatter detection,
it is recommended to select the proper time-frequency
analysis method for better classification performance.
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Appendix

The first-order statistics, that is, mean Fn
1, standard variance

Fn
2, skewness Fn

3, and kurtosis Fn
4, are defined in Table 6.

The variables G and N are the number of gray levels and
number of pixels for the sub-image In(τ, ω), respectively.

The second-order statistical features, i.e., contrast, correla-
tion, energy, and homogeneity, are defined as [36]:

Contrast : FCon
d;θ ¼ ∑G−1

j¼0∑
G−1
i¼0 i− jð Þ2pnd;θ i; jð Þ ð7Þ

Correlation : FCor
d;θ ¼ ∑G−1

j¼0∑
G−1
i¼0 ijpnd;θ i; jð Þ−μiμ j

� �

=σiσ j ð8Þ

Energy : FE
d;θ ¼ ∑G−1

j¼0∑
G−1
i¼0 pnd;θ i; jð Þ

h i2
ð9Þ

Homogeneity : FH
d;θ ¼ ∑G−1

j¼0∑
G−1
i¼0 p

n
d;θ i; jð Þ=1þ i− jð Þ2 ð10Þ

where pnd;θ i; jð Þ is an approximate second-order statistical
probability for changes between gray levels i and j at a pair
(d, θ).

pnd;θ i; jð Þ ¼
GLCMn

d;θ i; jð Þ

∑
j

∑
i

GLCMn
d;θ i; jð Þ

ð11Þ

The variables μi, μj, σi, and σj are the means and standard
deviations of the marginal probability matrix elements, and
defined in Table 7. Since four angles {θm| 0

o, 45o, 90o, 135o}
are considered for evaluating GLCM, there are four sets of

Table 8 Second-order statistical features for the nth sub-image In(τ, ω)

Feature Notation Feature Notation

Mean contrast (Fn
5 ) mean FCon

d¼1;θ¼ θmf g

� �

* Contrast range (Fn
9 ) max FCon

d¼1;θ¼ θmf g

� �

−

min FCon
d¼1;θ¼ θmf g

� �

Mean correlation (Fn
6 ) mean FCor

d¼1;θ¼ θmf g

� �

Correlation range (Fn
10 )

max FCor
d¼1;θ¼ θmf g

� �

−

min FCor
d¼1;θ¼ θmf g

� �

Mean energy (Fn
7 ) mean FE

d¼1;θ¼ θmf g

� �

Energy range (Fn
11 )

max FE
d¼1;θ¼ θmf g

� �

−

min FE
d¼1;θ¼ θmf g

� �

Mean homogeneity (Fn
8 ) mean FH

d¼1;θ¼ θmf g

� �

Homogeneity range (Fn
12 )

max FH
d¼1;θ¼ θmf g

� �

−

min FH
d¼1;θ¼ θmf g

� �

*{θm} = {0
o , 45o , 90o , 135o }
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second-order statistical features. The mean and range of each
type of a second-order statistical feature are used for chatter
detection (Table 8).

Publisher’s note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.
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