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Automated and intelligent classification of defects can improve productivity, quality, and
safety of various welded components used in industries. This study presents a transfer
learning approach for accurate classification of tungsten inert gas (TIG) welding defects
while joining stainless steel parts. In this approach, eight pre-trained deep learning models
(VGG16, VGG19, ResNet50, InceptionV3, InceptionResNetV2, Xception, MobileNetV2,
and DenseNet169) were explored to classify welding images into two-class (good weld/
bad weld) and multi-class (good weld/burn through/contamination/lack of fusion/lack of
shielding gas/high travel speed) classifications. Moreover, four optimizers (SGD, Adam,
Adagrad, and Rmsprop) were applied separately to each of the deep learning models to
maximize prediction accuracies. All models were evaluated based on testing accuracy,
precision, recall, F1 scores, training/validation losses, and accuracies over successive
training epochs. Primary results show that the VGG19-SGD and DenseNet169-SGD
architectures attained the best testing accuracies for two-class (99.69%) and multi-class
(97.28%) defects classifications, respectively. For “burn through,” “contamination,” and
“high travel speed” defects, most deep learning models ensured productivity over quality
assurance of TIG welded joints. On the other hand, the weld quality was promoted over
productivity during classification of “lack of fusion” and “lack of shielding gas” defects.
Thus, transfer learning methodology can help boost productivity and quality of welded
joints by accurate classification of good and bad welds.
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1 INTRODUCTION

TIG welding is widely used in process industries to join many critical components/assemblies.
Transfer learning-based deep learning models have the potential to enable intelligent and automated
classification of welding defects for improving the quality and productivity of components joined
together by welding. The following sections present an overview of machine learning and deep
learning in image recognition, transfer learning and its applications in defects classification,
automated identification of TIG welding defects, followed by the primary contribution aimed by
the current study.

1.1 Machine Learning and Deep Learning in Image Recognition
Machine learning has been widely applied by researchers to model complex systems across varied
domains such as robotics (Sekhar and Shah, 2020), leanmanufacturing (Solke et al., 2022), composite
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machining (Sekhar et al., 2021), classification of anode effects
(Zhou et al., 2018), fault diagnosis (Hu et al., 2020), machine
condition monitoring (Liu et al., 2018), electric vehicles (Purohit
et al., 2021), topic modeling (Shah et al., 2021b; Sharma et al.,
2021), and many more. Neural networks form the core of the
machine learning-based image recognition applications in vogue
today (Sandler et al., 2019). Specifically, convolutional networks
(ConvNets) have been widely applied in various computer vision
applications (Szegedy et al., 2016), supported by high-
performance computing facilities and the availability of large
public image repositories such as the ImageNet (Deng et al.,
2009). Convolutional neural networks were originally employed
for character recognition (Le Cun et al., 1997). Their computer
vision applicability became apparent by their ImageNet
classification performance (Krizhevsky et al., 2012). In image
recognition, the output of convolutional layers depends upon the
shapes of inputs, kernel shapes, strides, and padding. ConvNets
achieve high performance by preserving feature ordering,
utilizing input multidimensionalities, keeping the networks
sparse, and sharing same weights among different layers.
ConvNets converge to a solution or arrive at a best optimal
solution by successive forward and backward passes through the
network. ConvNets aim at minimizing the total loss function by
continuous alteration of nodal weights in the network layers over
successive iterations.

The machine learning-based ConvNets were further
developed to create deep convolutional networks for enhanced
image detection, recognition, and classification applications
(Szegedy et al., 2017). The convolutional neural networks had
started with the LeNet models (LeCun et al., 1995) for feature
extraction and sub-sampling tasks. These networks were further
refined into AlexNets in 2012 (Krizhevsky et al., 2012).
Subsequently, 2014 onward, very deep convolutional networks
started being used in mainstream applications. The development
of deep learning models heralded newer breakthroughs in the
field of image recognition and classification (Krizhevsky et al.,
2012; Sermanet et al., 2013; Zeiler and Fergus, 2014). The varied
applications of these deep networks include object tracking
(Wang and Yeung, 2013), object detection (Girshick et al.,
2014), classification of videos (Karpathy et al., 2014),
classification of human poses (Toshev and Szegedy, 2014),
segmentation (Long et al., 2015), and super resolution (Dong
et al., 2014). Deep learning models such as AlexNets (Krizhevsky
et al., 2012) were successfully applied for all of the
abovementioned applications and more. Deeper and wider
network architectures such as GoogLeNet (InceptionV1)
(Szegedy et al., 2015) and VGGNet (Simonyan and Zisserman,
2014) yielded higher quality classification performances across
applications. The depth of deep learning models plays a critical
role in attaining high-quality classification results (Simonyan and
Zisserman, 2014; Szegedy et al., 2015), since the levels of feature
extraction are substantiated by the network depth (number of
stacked layers). In this way, deep learningmodels opened doors to
newer classification applications wherein machine learning
networks could not be applied (Erhan et al., 2014).

The prediction accuracy of deep learning networks can be
improved by having large model sizes and high computational

costs, provided that sufficient labeled data is available for training.
However, from an efficiency point of view, lower computational
costs and lower number of model parameters are desirable. Deep
networks such as VGGNet (Erhan et al., 2014) have simple
architecture but consume high computation power for
network evaluation. Researchers have found that aggressive
dimension reductions and factorizing convolutions can help
generate high quality deep learning models with relatively
lower computational costs (Szegedy et al., 2016). Mobile
networks have also been designed to achieve effective
classification accuracy even in resource-constrained mobile/
embedded hardware environments (Sandler et al., 2019).
Depthwise separable convolutions helped achieve classification
accuracies comparable to regular convolutional layers while
keeping the computation costs low. Tuning of deep neural
networks has also been investigated by researchers to optimize
performance and accuracy. Efforts have been made with regards
to manual architecture search as well as in training algorithms to
improve deep learning model designs. Specifically, researchers
have explored hyper parameter optimization (Bergstra and
Bengio, 2012; Snoek et al., 2012, 2015), connectivity learning
(Ahmed and Torresani, 2017; Veniat and Denoyer, 2018), and
network pruning methods (LeCun et al., 1990; Hassibi and Stork,
1993; Han et al., 2015, 2016; Guo et al., 2016; Li et al., 2016) to
improve algorithmic architectures. Investigators have also
dedicated efforts to modify connectivity maps of internal
convolutional blocks (Zhang et al., 2018) and make
connectivity structures more sparse (Changpinyo et al., 2017).
Others (Zoph and Le, 2016; Real et al., 2017; Xie and Yuille, 2017;
Zoph et al., 2018) have applied various metaheuristic algorithms
(Shah et al., 2021a) including reinforcement learning and genetic
algorithm to design optimum network architectures. However,
some articles also (Sandler et al., 2019) reported that such
optimized architectures tend to become very complex for low
resource applications. In this context, transfer learning has
emerged as a promising methodology of successfully applying
pre-trained deep learning architectures for high accuracy
classification tasks. The next subsection gives details of
transfer learning and its utility in defects classification.

1.2 Transfer Learning and Its Applications in
Defects Classification
Transfer learning refers to a deep learning methodology wherein
the network is trained for one task involving a huge data set and is
subsequently applied on a different task involving a much smaller
dataset (Larsen-Freeman, 2013; Gao andMosalam, 2018; Hussain
et al., 2018). Transfer learning involves initial training of deep
learning models on the features of a larger data set and
subsequently applying these pre-trained models to another
classification task of a smaller data set. This methodology
enables transfer learning to achieve higher accuracy than the
conventional approach of training deep learning models directly
on the target data set from scratch (Shaha and Pawar, 2018).
Transfer learning has been found to be especially suitable in cases
wherein the target data set is insufficient for satisfactory training
of the deep learning models (Zhu et al., 2011). Consequently,
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transfer learning is attracting a lot of attention with regards to
image classification-based diagnostics in various applications,
such as wind power prediction (Yin et al., 2021), wind turbine
blade damage image classification (Yang et al., 2021), injection
molding (Lockner et al., 2022), and other industrial fault
diagnoses (Li et al., 2022).

Recent applications of transfer learning in welding defects
classification include deep learning-based classification of welded
joint quality using fully connected neural networks (FCNN)
and convolutional neural networks (CNN) (Bacioiu et al.,
2019). The CNN and FCNN models developed in this study
achieved 89.5% and 93.4% classification accuracies
respectively. In a similar study (Ajmi et al., 2020), X-ray
images were used to detect weld defects in steel pipes.
These images were classified using pre-trained AlexNet.
They were also classified using other deep learning models
(GoogLeNet, ResNet101, ResNet50, VGG19, and VGG16)
without the application of any pre-training. The study
showed that the pre-trained AlexNet model attained higher
classification accuracy of welding defects than other deep
learning architecture that were not pre-trained.

Thus, the existing deep learning methods coupled with
transfer learning exhibit better classification results than direct
application of deep learning models without pre-training.
Furthermore, the inherent drawbacks of transfer learning can
be overcome by utilizing advanced tuning methods such as
progressive resizing technique (Bhatt et al., 2021). Such
optimization techniques can be applied in conjunction with
the transfer learning models to maximize the accuracy of weld
defects classification. Accurate defects classification can yield
better productivity of welded stainless steel components for
various industrial/process applications.

1.3 Automated Identification of Tungsten
Inert Gas Welding Defects
TIG welding was invented in the 1930s for joining aluminum and
magnesium components (Weman, 2011; Jeffus, 2020). Gradually,
TIG was applied to copper and steel welding and shielding
applications as well (Weman, 2012). Today, TIG welding is
widely used to join precision components in automotive,
aerospace, and nuclear power industries among others
(Bacioiu et al., 2019). TIG offers better control over welding
parameters because its deposition rate is independent of heat
input, making it suitable for achieving high-quality welded joints.
The TIG welding process is also highly flexible, which makes it
widely applicable. However, its process flexibility also renders
weld pool complexities in different applications, which are
effectively assessed and controlled by a high-skilled labor.
Hence, a lot of research has been conducted to investigate
various aspects of effective TIG welding quality assessment
and control (Kovacevic et al., 1996; Lee and Na, 2002;
Vasudevan et al., 2011; Liu et al., 2015; Li et al., 2018). TIG
welding process monitoring includes various aspects such as
metallurgy of the metals under consideration, welding image
acquisition, image processing and classification to assess weld
quality, and identification of welding defects. Automation of TIG

quality assessment and process control is critical to ensure high
production rates of welded components to meet the demands of
ever growing economies. Over the past decade, researchers have
explored various techniques to automate the TIG welding quality
inspection process. Lucas et al. (2012) correlated the molten weld
pool features with the weld depth penetration to achieve real-time
measurement and control of weld uniformity. They applied laser
illumination on the weld pool and video recorded the welding
process for weld image acquisition. Mirapeix et al. (2007)
estimated TIG welding temperature and correlated welding
spectra with welding defects for manufacturing of nuclear
power plant’s steam generator parts. The authors applied
artificial neural networks (ANN)-based machine learning and
a principal component analysis to process weld spectra data for
defects identification. Song and Zhang (2007) applied one point
algorithm and edge point algorithm to estimate the weld pool
geometry in three dimensions, using the trajectory of the light
reflected from weld pool for this purpose. Yang and Li (2015)
applied ANN-based computer vision for spot weld pool geometry
measurement, weld image segmentation, weld defects feature
extraction, and defects classification. Günther et al. (2016) also
applied machine learning for predicting weld pool features and
controlling input power to the welding surface in a laser welding
application. Bacioiu et al. (2019) utilized high dynamic range
(HDR) cameras to monitor TIG welding of stainless steel (SS304)
and applied machine learning to categorize “good” and
“defective” welded joints. They applied convolutional neural
networks and fully connected neural networks to identify the
TIG welding defects classifications.

1.4 Primary Contribution of the Current
Study
The preceding section shows that most of the researchers have
employed machine learning-based automated classification of
TIG welding defects in various applications. Welding defects
classification accuracy can be further improved by exploring
suitable deep learning model architecture. Presently, there is
an open scope to investigate the application of transfer
learning-based classification of TIG welding defects in stainless
steel joints. The primary contribution of present study is to
“transfer” suitable pre-trained deep learning models to a TIG
welding image data set to achieve accurate classification of
different kinds of defects. The current study utilized the TIG
welding of SS304 stainless steel HDR picture data sets available
online on Kaggle (Bacioiu, 2018) to further improve the welding
defects classification accuracies reported in past research (Bacioiu
et al., 2019).

2 TRANSFER LEARNING METHODOLOGY

As detailed in the previous sections, transfer learning refers to the
training-based classification of a target data set using deep
networks that have already been pre-trained on a large image
data set. The transfer learning methodology adopted in the
current study involved the following steps:
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1. Data collection of TIG welding images.
2. Preprocessing of images.
3. Building transfer learning framework using:

a. pre-trained deep learning models as layer 0;
b. fully connected network as the subsequent layer.

4. Training the transfer learning architecture on preprocessed
TIG welding images for two-class and multi-class
classifications.

5. Maximizing model performances by using suitable
optimizers.

2.1 Tungsten Inert Gas Welding Images
Data Collection
As mentioned in the previous section, the current study utilized
online data set of SS304 TIG welding HDR images uploaded by
Bacioiu et al. (2019). The authors mounted an HDR camera on a
robotic arm holding the torch used for welding SS304 plates of 5
and 10 mm thicknesses. The HDR camera captured high-
definition pictures of the weld pool and the joint area ahead
of the welding arc. SS304 grade stainless steel was chosen for the
study owing to its good weldability and formability properties
which make it suitable for a variety of industrial applications. The
experimental layout consisted of generating a variety of welds
based on the selection of optimal welding parameters (to generate
good welds) and deviations from the optimal settings (to create
bad welds), as shown in Table 1. Welding defects were generated
due to excessive/insufficient heat inputs, travel speeds, inclusions
of contaminants, and the absence of shielding inert gas supply.

The specifications of the HDR camera used for image
acquisition are listed in Table 2. This camera avoided
overexposure to the welding arc while maintaining sufficient

TABLE 1 | TIG welding process parameters (* baseline settings) [(Bacioiu et al., 2019)].

Parameters/Levels L1 L2 L3 L4 L5 L6 L7 L8 L9

Gas flow rate (L/min) 10 15 30* 35 40 —

Traveling speed (cm/min) 10 10.5 16 19* 23.2 24.8 26.4 33.4 50
Voltage (V) 12 17.2* 22 —

Current (A) 100 150 200* 220 235 250 275 300

TABLE 2 | Xiris XVC-1000 specifications (Bacioiu et al., 2019).

Specification Description

Image Sensor 2/3″ Mono HDR CMOS
Resolution 1,280 (H) × 1,024 (V) pixels
Speed 55 frames per second (FPS)
Shutter Range 1 μs–53 s exposure
Dynamic Range 140 + dB

FIGURE 1 | Training samples of TIG welding images. (A)Good weld, (B) burn through, (C) contamination, (D) lack of fusion, (E) lack of shielding gas, (F) high travel
speed (Bacioiu, 2018).
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exposure to the area surrounding it. Figure 1 shows sample
images from the Kaggle data set corresponding to the good and
five types of bad welds (Bacioiu et al., 2019). The authors collected
and uploaded a total of 45,058 images from 56 welding
experimental trials. The HDR camera captured 55 frames per

second resulting in multiple welding images depicting different
stages of every welding trial. In the current study, all welding
images were distributed among training, testing, and validation
data subsets for modeling deep learning models. Table 3 shows
the number of welding images belonging to two-class

TABLE 3 | Data distribution of the welding data set for two-class classification.

Class Class label Training (%) Validation (%) Testing (%) Total

CT
0

Good weld 15,752 (52.37%) 6,700 (22.27%) 7,628 (25.30%) 30,080

CT
1

Defect 8,452 (52.37%) 2,994 (22.27%) 3,532 (23.58%) 14,978

Total — 24,204 (53.71%) 9,694 (21.51%) 11,160 (24.76%) 45,058

TABLE 4 | Data distribution of the welding data set for multi-class classification.

Class Class label Training (%) Validation (%) Testing (%) Total

CM
0

Good weld 15,752 (52.37%) 6,700 (22.27%) 7,628 (25.36%) 30,080

CM
1

Burn through 977 (41.50%) 646 (27.44%) 731 (31.05%) 2,354

CM
2

Contamination 1,613 (55.39%) 339 (11.64%) 960 (32.97%) 2,912

CM
3

Lack of fusion 5,036 (62.27%) 1,561 (19.30%) 1,490 (18.42%) 8,087

CM
4

Lack of shielding gas 196 (49.00%) 102 (25.50%) 102 (25.50%) 400

CM
5

High travel speed 630 (51.43%) 346 (28.24%) 249 (20.33%) 1,225

Total — 24,204 (53.71%) 9,694 (21.51%) 11,160 (24.76%) 45,058

FIGURE 2 | Flowchart of transfer learning methodology for weld defects classification.
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categorization, wherein CT
0 refers to the good weld (30,080

images) and CT
1 represents all varieties of bad welds (14,978

images). Of the total 30,080 good weld images, 15,752 were
allotted for training, 6,700 for validation, and 7,628 for testing.
Similarly, the 14,978 bad weld pictures were distributed as 8,452,
2,994, and 3,532 for training, validation, and testing, respectively.
Table 3 also shows the percentages of images reserved for
training, validation, and testing data subsets for the two-
classes CT

0 and CT
1 . In a similar fashion, the Table 4 shows

training, validation, and testing data subsets for multi-class
image categories. Herein, CM

0 indicates good welds, whereas
CM
1 − CM

5 corresponds to different welding defects viz. burn
through, contamination, lack of fusion, lack of shielding gas,
and high travel speeds, respectively. Table 4 also depicts the
percentage of images belonging to CM

0 − CM
6 allotted to the

training, validation, and testing subsets for building the deep
learning models.

2.2 Preprocessing
Preprocessing of TIG welding images was carried out through
resizing, antialiasing, and normalization (Figure 2). The TIG
welding defect images utilized in the current study were of size
1,280 × 700. First, all images were resized to 78 × 78 to reduce the
deep learning computational time. The resized images were
subsequently anti-aliased to smoothen the jagged edges in the
images by using a resampling filter. The anti-aliased images were
normalized to a pixel value range of 0–1 by dividing the actual
number of image pixels by 255.0. The TIG welding images in the
referred online data set were available in greyscale. The deep
learning models trained over single channel inputs of greyscale
images cannot perform as good as the models trained over three
channel RGB image inputs. Hence, in the current study, a
greyscale image array was replicated over the three RGB
channel inputs for effective training of the transfer learning
architecture.

2.3 Transfer Learning With Pre-Trained
Models, Optimizers, and Performance
Metrics
Figure 2 depicts the process flow of the transfer learning
methodology adopted in the current study. The preprocessed
TIG welding images were input separately to the two-class and
multi-class transfer learning architectures. Layer 0 of the transfer
learning architecture contained the pre-trained deep learning

models. The subsequent layers of the transfer learning
architecture were formed by the first and second fully
connected layers (FC1 and FC2) having 256 and 64 neurons,
respectively. To avoid overfitting of the model, a dropout rate of
0.5 was considered in FC2, which was followed by the output
layer yielding two-class/multi-class classifications. Table 5
depicts the feature map sizes of the eight pre-trained deep
learning models considered in the current study, viz. VGG16,
VGG19, ResNet50, InceptionV3, DenseNet169, Xception,
Inception-ResNetV2, and MobileNetV2. These pre-trained
deep learning architectures were further tuned using four
optimizers: SGD, Adam, Adagrad, and Rmsprop. Thus, a total
of 32 different combinations of deep learning models and
optimizers were investigated for transfer learning of two-class
and multi-class TIG welding defects categorizations. The
performances of all deep learning models were evaluated using
the metrics followed in the literature (Bacioiu et al., 2019) such as
testing accuracy, precision, recall, and F1 scores. Prediction
accuracy is defined as follows:

Accuracy � Correct predictions

Total samples
(1)

The aforementioned definition of accuracy compares true
positives (TP) and true negatives (TN) against true positives
(TP), false positives (FP), true negatives (TN), and false negatives
(FN). Model precision is a measure of prediction accuracy based
on the total predicted samples, determined as follows:

Precision � TP

TP + FP
(2)

whereas recall indicates the prediction accuracy based on the
actual number of samples, given as follows:

Recall � TP

TP + FN
(3)

High precision of bad weld classification is desirable in cases
wherein the objective is to ensure that minimum good weld
samples are wrongly categorized as bad. On the other hand, high
recall value of bad weld classification ensures that minimum bad
weld samples are incorrectly classified as good. Similarly, high
precision of good weld classification ensures that minimum bad
welds are incorrectly classified as good. Lastly, high recall of good
weld classification implies working toward the objective that
minimum good welds should be misidentified as bad. F1
scores, on the other hand, are harmonic means of recall and
precision values. F1 scores give a balanced measure of both
metrics by considering both false negatives as well as false
positives. In this way, the F1 score is able to handle
unbalanced data sets effectively. It is calculated as follows:

F1Score � 2
1

Precision + 1
Recall

� 2*Precision*Recall
Precision + Recall( ) (4)

The performances of the four optimizers considered in the
current study were determined by the evolution of training loss/
accuracy as well as evolution of validation loss/accuracy over
successive epochs for eight deep learning models. The relative

TABLE 5 | Feature map sizes in pre-trained deep learning models.

Sr. No. Model Feature map size

1 VGG16 512
2 VGG19 512
3 ResNet50 2048
4 InceptionV3 2048
5 DenseNet169 1,664
6 Xception 2048
7 Inception-ResNetV2 1,536
8 MobileNetV2 1,280
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values of training loss and validation loss profiles indicate the
degree of overfitting/underfitting of the model to the training data
set. If the training loss is much lesser than validation loss, it
implies that the model fits the training data set much better than
the validation data set. This trend indicates an overfit model that
is not generalized enough to handle unseen data. On the other
hand, if the training loss is much greater than the validation loss,
it implies that the model fits the validation data set much better
than the training data set. This trend shows that the model is
underfitting the training dataset substantially. It is to be noted
that validation loss is measured after each epoch, whereas training
losses are determined after every batch. Therefore, convergence of
validation/training losses over successive epochs and their
comparable magnitudes are indicators of a well-fitted deep
learning architecture.

3 MODELS AND OPTIMIZERS

The following subsections furnish salient features of the various
deep learning architectures and the optimizers considered under
the scope of the current study. The suitability of various models
for different applications has also been mentioned.

3.1 Overview of Pre-Trained Deep Learning
Models
The following subsections give details of pre-trained deep
learning models considered in the current study.

3.1.1 VGG
VGG are deep ConvNets developed by Simonyan and Zisserman
(2014) in 2014. Soon, VGG models were utilized by a lot of
researchers with improved performance results as compared to
the conventional ConvNet architecture (Girshick et al., 2014).
Researchers further explored deeper ConvNet architecture with
greater convolutional layers to achieve better classification and
localization accuracies. The VGG16 and VGG19 were reported as
the best performing VGG deep learning models with 16 and 19
layers, respectively. These networks were successfully evaluated
for large-scale image classification tasks, establishing the
suitability of deep learning models for visual data classifications.

3.1.2 ResNet50
Residual networks (ResNets) were postulated by He et al. (2016)
in 2016 to make deep neural network training easier. Changing
the previous practice of network layers learning unreferenced
functions, the authors reformulated the network layers as residual
learning functions with regards to the layer inputs. Hence,
ResNets learn from residual functions, and all information is
always passed through layers with additional learning of newer
residual functions. The authors found that the proposed residual
networks achieved high accuracies at increased layer depths and
were easier to optimize as well. Deep neural networks have been
observed to suffer from accuracy degradation issues during
convergence. The authors also addressed this issue through the
formulation of deep residual learning architecture. Accuracy

degradation is a limitation of solvers regarding identity
mapping approximations in multiple non-linear layers. In
residual learning architecture, solvers can reduce the weights
of such layers to zero for identity mapping approximations.
Authors claimed that identity mapping is effective against
network accuracy degradation and proved to be economical as
well. The authors also reported considerably higher accuracies
attained by the 50-layer ResNets than their 34 layer counterparts
during ImageNet classification-based evaluations.

3.1.3 InceptionV3
InceptionV1 deep learning model architecture was introduced in
2014 by Szegedy et al. (2015). In subsequent years, its improved
versions were developed in the form of InceptionV2 (Howard
et al., 2017) and InceptionV3 (Tieleman and Hinton, 2017).
Inception models have been the best performing networks on
the ImageNet data set (Russakovsky et al., 2015). An Inception
model is made up of multiple Inception modules, which are
convolutional feature extractors. These Inception modules are
designed to work more efficiently by employing lesser number of
parameters for learning data representations. Inception models
decouple cross-channel and spatial correlations during
convolutional mapping. The Inception architecture has been
proven to consume lower computational cost than other
higher performing networks (He et al., 2015). This makes it
suitable for applications with constraints on computational
capacity and/or memory. Specialized use of optimization can
help increase the efficiency of inception networks (Psichogios and
Ungar, 1994; Chen et al., 2015; Lavin and Gray, 2016). Thus,
inception networks can be successfully applied in various big data
scenarios (Movshovitz-Attias et al., 2015; Schroff et al., 2015).
However, inception architectures tend to be complex and,
therefore, are not very flexible toward modifications as per
different use cases.

3.1.4 DenseNet169
DenseNet169 stands for the dense convolutional network and
belongs to the family of feedforward deep learning models. These
networks are deeper (with layers > 100) versions of the popular
convolutional neural networks typically used in image
recognition machine learning modeling (Huang et al., 2017).
DenseNets were designed to achieve higher performances at
lesser computation expenses by reducing the number of
parameters required in their model architectures. DenseNets
reuse features, improve propagation of features across layers,
and eliminate the issue of vanishing gradients. These deep
learning models have proven to be suitable for feature
extraction applications in computer vision/image recognition.
Unlike ResNets (He et al., 2016), these networks combine feature
maps across layers through concatenation, which makes the
connectivity among their layers much denser. Each subsequent
layer is fed successively larger inputs, which improves learning
efficiency of the overall model. Similar concatenation approach is
followed by inception networks as well (Szegedy et al., 2015,
2016); however the authors claim DenseNets to be more efficient
due to their simpler architectures. DenseNets work with lesser
number of parameters since their layers differentiate between the
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conserved and the modified information. This is unlike ResNets,
which have to deal with more parameters because each layer adds
its own weights while passing on the information to the next layer.

3.1.5 Xception
Xception stands for “extreme inception” since it completely
decouples the mapping of spatial and cross-channel
correlations in the convolutional neural network modules. The
Xception network is made up of depth-wise separable
convolutional layers, making it much more flexible to modify
as compared to Inception models with the same number of
parameters. Hence, Xception models are as easy to implement
as the convolutional neural networks while retaining the efficient
deep learning advantage of the inception modules.

3.1.6 Inception-ResNetV2
Szegedy et al. (2017) combined the advantages of the Inception
architecture with residual connections resulting in accelerated
training with high performance and low computational costs.
They replaced the filter concatenations of Inception architecture
with the residual connections of ResNets to enable quick training of
very deep learning models while keeping computational costs low.
They demonstrated the role of activation scaling to stabilize the
training of very deep residual Inception networks. The authors also
improved Inception architectural design by including more
Inception modules and attempted further simplification of the
Inception networks. The resultant Inception-ResNetV2 was
reported to match the computational cost of the InceptionV4
network introduced in 2016. Inception-ResNetV2 was also
reported to significantly improve image recognition
performance at higher training speeds as compared to the
Inception networks without residual connections.

3.1.7 MobileNetV2
The mobile networks architecture MobileNetV2 was introduced
by Sandler et al. (2019). These networks were specifically designed
to tackle image recognition tasks in mobile and embedded
architectures with constrained computational and memory
resources. Mobile network models aim computer vision
accuracies at lower number of operations and memory
requirements. MobileNets are composed of inverted residual
layer modules with linear bottlenecks. These modules are
given inputs of compressed representations having low
dimensions. The compressed representations are then
expanded to higher dimensions and further filtered using
depth-wise convolutions. The extracted features are reverted to
a low dimensional representation using a linear convolution.
Linear bottleneck layers help prevent performance reduction
due to the non-linear layers. This architecture is well suited
for low memory constraints of mobile designs having
embedded hardware with small cache memory. MobileNetV2
is an extended version of MobileNetV1 that improves detection
and classification accuracy while retaining the simplicity of the
first version. MobileNetV1 achieves optimal balance between
accuracy and computation by employing multiplier parameters
to reduce the dimensionality of layers. MobileNetV1 and
MobileNetV2 were successfully evaluated by researchers for

ImageNet classification, object detection, and mobile semantic
segmentation applications (Sandler et al., 2019).

3.2 Overview of Optimizers
This subsection briefly discusses the various optimizers used to
maximize the deep learning model performances in the
current study.

3.2.1 SGD
SGD is an acronym for stochastic gradient descent optimizer that
was developed to minimize computational computation
complexities and enable learning per iteration while handling
large data sets (Robbins and Monro, 1951). SGD requires
minimal time to update gradients over successive iterations
since it employs a single random sample for this purpose
instead of considering all samples of a large data set. Its loss
function is formulated as follows (Sun et al., 2019):

L θ( ) � 1
N

∑N
i�1

1
2

yi − fθ xi( )( )2 (5)

The loss function L*(θ) for a random sample i is expressed as
follows:

L* θ( ) � 1
2

yi − fθ xi( )( )2 (6)

The gradient update based on L*(θ) is as follows:

θ′ � θ + η yi − fθ xi( )( )2xi (7)
where xi is independent variable with xi = (xi1, xi

2, . . . , x
i
D) for

i = 1, . . . , N, yi is the target output; N is the number of training
samples; and D is the total number of input features.

3.2.2 Adam
The adaptive moment estimation (Adam) is an optimization
algorithm used in neural networks for computing optimal
solutions (Kingma and Jimmy, 2014). Adam utilizes the
learning rate (gt) and exponential decay rates (β1 and β2) to
determine step sizes for convergence during back propagation.
The following steps are executed by the Adam optimizer:

Calculate exponential decay average of past gradients:

mt � β1 ·mt−1 + 1 − β1( ) · gt (8)
Calculate exponential decay average of past squared gradients:

vt � β2 · vt−1 + 1 − β2( ) · g2
t (9)

Compute bias corrected first moment estimate:

m̂t � mt

1 − βt1
(10)

Compute bias corrected second moment estimate:

v̂t � vt
1 − βt2

(11)

Update weights:
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θt � θt−1 − η · m̂t�����
v̂t + ε

√ (12)

3.2.3 Adagrad
The Adagrad optimizer dynamically adjusts parametric learning
rates as per the historical gradients of the previous iterations.
Adagrad improves upon the SGD optimizer by “adapting” the
learning rates through parameter updates during each iteration
automatically, as follows:

gt � zL θt( )
zθ

(13)

vt �
����������
∑t
i�1

gi( )2 + ε

√√
(14)

θt+1 � θt − η
gt

Vt
(15)

where gt is the parameter gradient θ at iteration t; Vt is the
combined historical gradient of parameter θ at iteration t; and θt
is the value of parameter θ at iteration t.

3.2.4 Rmsprop
Rmsprop or the root mean squared propagation was developed to
overcome the limitation of Adagrad’s learning rate reducing to
zero due to the gradients accumulated over successive iterations.
Rmsprop achieves this by dividing the gradients by the square
root of moving average of preceding gradients’ squares as
follows:

Vt �
�����������������
βVt−1 + 1 − β( ) gt( )2√

(16)
where β is the exponential decay parameter.

4 EXPERIMENTAL RESULTS AND
DISCUSSIONS

The current study involved TIG welding defects classification
using transfer learning methodology. Pre-trained deep learning
models were employed to obtain two-class and multi-class
classifications of welding images. The model training time is
expressed in terms of epochs which indicate successive iterations
of layer weight alterations in the deep networks. The current
study includes eight deep learning architectures with four
optimizers each, totaling 32 model–optimizer combinations for
each of the two-class and multi-class classification problems.
Thus, considering both classifications, a total of 64
model–optimizer architectures were explored in the
present study.

4.1 Performance Evaluation for Two-Class
Classification
The following subsections discuss the performance evaluation
results for two-class TIG welding defects classification.

4.1.1 Based on Testing Accuracies
Table 6 shows the testing accuracy results of the 32
model–optimizer architectures for two-class welded joints
classifications. It is evident that the VGG19 deep learning
models with SGD optimizer attained the best two-class testing
accuracy of 99.69%. It is closely seconded by the VGG19 with
Rmsprop optimizer architecture with 99.67% testing accuracy.
Furthermore, the VGG with the Adam optimizer attained the
third best testing accuracy of 99.47%. Thus, VGG19 model
outperformed all other explored deep learning models in the
context of two-class TIG welding defects classification. It is
noteworthy that the ResNet50 with the Rmsprop optimizer
attained the fourth best accuracy of 99.24%. The Xception
model scored relatively lower values of testing accuracies
among all explored models. The InceptionV3 model also did
not perform very well relative to others. From the optimizer point
of view, SGD outperformed all other optimizers for VGG16,
VGG19, InceptionV3, DenseNet169, and Inception-ResNetV2.
Adam attained highest testing accuracy among all optimizers for
Xception and MobileNetV2, whereas Rmsprop attained highest
testing accuracy among all optimizers for the ResNet50 model.
Most of the model–optimizer architectures explored in the
current study attained better testing accuracies than those
obtained by the fully connected (89.5%) and convolutional
(75.5%) neural networks applied on the same TIG welding
image data by Bacioiu et al. (2019). Figure 3 depicts the two-
class accuracies of all model–optimizer architectures pictorially.

4.1.2 Based on Precision, Recall, and F1 Scores
Table 7 shows two-class results of precision, recall, and F1 scores.
Herein, CT

0 and CT
1 represent good and bad welds, respectively.

The VGG19-SGD and VGG19-Rmsprop models obtained the
maximum precision values of 1.00 for both the classes, which
indicates perfect predictability of these models to distinguish
between good and bad welds. The recall values of these two
models are also near perfect—0.99 for CT

0 (good welds) and 1.00
for CT

1 (bad welds)—which confirms the suitability of these
models to perfectly identify bad welds and almost perfect in
identifying the actual good quality welded joints. Consequently,
the F1 scores of these two models are also near perfect. The
precision and recall values of VGG19-Adam and ResNet50-
Rmsprop are slightly inferior to the VGG19-SGD and
VGG19-Rmsprop models. On the other hand, models like

TABLE 6 | Performance evaluation based on testing accuracies for two-class
classification [Accuracy (%)].

Sr. No. Model/Optimizer SGD Adam Adagrad Rmsprop

1 VGG16 95.34 92.75 93.54 92.63
2 VGG19 99.69 99.47 96.59 99.67
3 ResNet50 96.14 95.91 93.44 99.24
4 InceptionV3 91.93 83.78 91.65 81.37
5 DenseNet169 97.96 93.00 95.77 96.19
6 Xception 79.87 86.25 84.41 84.60
7 Inception-ResNetV2 98.17 97.40 97.80 97.25
8 MobileNetV2 97.48 97.99 97.27 97.08
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InceptionV3-Rmsprop, InceptionV3-Adam, Xception-Rmsprop,
and Xception-Adagrad attained relatively low values of precision,
recall, and F1 scores. Hence, it is evident that the Inception and
Xception models are unable to classify TIG welding defects as
perfectly as the other explored architectures. The precision, recall,
and F1 scores attained by the deep learning models in the current

study are superior to those attained by the fully connected and
convolution neural network architectures designed in Bacioiu
et al. (2019) (on the same data set). Bacioiu et al. (2019) attained
the best precision, recall, and F1 scores at 0.83, 0.99, and
0.91 (CT

0 ) and 0.99, 0.78, and 0.87 (CT
1 ). Hence, it is proved

that deep learning models curated by suitable optimizers can

FIGURE 3 | Testing accuracies for two-class classification.

TABLE 7 | Performance evaluation based on precision, recall, and F1 scores for two-class classification [Accuracy (%)].

Sr. No. Model–optimizer Precision Recall F1 Score Accuracy

— — CT
0 CT

1 CT
0 CT

1 CT
0 CT

1
—

1 VGG16-SGD 0.99 0.94 0.86 1.00 0.92 0.97 95.34
2 VGG16-Adam 1.00 0.90 0.77 1.00 0.87 0.95 92.75
3 VGG16-Adagrad 1.00 0.91 0.80 1.00 0.89 0.95 93.54
4 VGG16-Rmsprop 1.00 0.90 0.77 1.00 0.87 0.95 92.63
5 VGG19-SGD 1.00 1.00 0.99 1.00 1.00 1.00 99.69
6 VGG19-Adam 1.00 0.99 0.98 1.00 0.99 1.00 99.47
7 VGG19-Adagrad 1.00 0.95 0.89 1.00 0.94 0.98 96.59
8 VGG19-Rmsprop 1.00 1.00 0.99 1.00 0.99 1.00 99.67
9 ResNet50-SGD 0.90 0.99 0.99 0.95 0.94 0.97 96.14
10 ResNet50-Adam 1.00 0.94 0.87 1.00 0.93 0.97 95.91
11 ResNet50-Adagrad 1.00 0.91 0.79 1.00 0.88 0.95 93.44
12 ResNet50-Rmsprop 1.00 0.99 0.98 1.00 0.99 0.99 99.24
13 InceptionV3-SGD 0.86 0.95 0.88 0.94 0.87 0.94 91.93
14 InceptionV3-Adam 0.68 0.95 0.91 0.80 0.78 0.87 83.78
15 InceptionV3-Adagrad 0.84 0.96 0.91 0.92 0.87 0.94 91.65
16 InceptionV3-Rmsprop 0.65 0.94 0.90 0.77 0.75 0.85 81.37
17 DenseNet169-SGD 1.00 0.97 0.94 1.00 0.97 0.99 97.96
18 DenseNet169-Adam 0.82 0.99 0.99 0.90 0.90 0.95 93.00
19 DenseNet169-Adagrad 0.95 0.96 0.91 0.98 0.93 0.97 95.77
20 DenseNet169-Rmsprop 0.90 0.99 0.99 0.95 0.94 0.97 96.19
21 Xception-SGD 0.62 0.97 0.95 0.73 0.75 0.83 79.87
22 Xception-Adam 0.70 1.00 1.00 0.80 0.82 0.89 86.25
23 Xception-Adagrad 0.68 0.97 0.95 0.79 0.79 0.87 84.41
24 Xception-Rmsprop 0.68 0.99 0.99 0.78 0.80 0.87 84.60
25 Inception-ResNetV2-SGD 0.98 0.98 0.97 0.99 0.97 0.99 98.17
26 Inception-ResNetV2-Adam 0.96 0.98 0.96 0.98 0.96 0.98 97.40
27 Inception-ResNetV2-Adagrad 0.96 0.99 0.97 0.98 0.97 0.98 97.80
28 Inception-ResNetV2-Rmsprop 0.98 0.97 0.93 0.99 0.96 0.98 97.25
29 MobileNetV2-SGD 0.98 0.97 0.94 0.99 0.96 0.98 97.48
30 MobileNetV2-Adam 0.97 0.98 0.97 0.99 0.97 0.99 97.99
31 MobileNetV2-Adagrad 0.96 0.98 0.95 0.98 0.96 0.98 97.27
32 MobileNetV2-Rmsprop 0.95 0.99 0.98 0.98 0.97 0.98 97.80
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provide much better prediction performances over conventional
machine learning models.

4.2 Performance Evaluation for Multi-Class
Classification
The following subsections discuss the performance evaluation
results for multi-class TIG welding classifications.

4.2.1 Based on Testing Accuracies
Table 8 shows the testing accuracy results of the model–optimizer
architectures for multi-class TIG welding defect classifications.
The multi-class testing accuracies are inferior to two-class
models, highlighting the relative difficulty in obtaining highly
accurate multi-class classifications. The highest testing accuracy
(97.28%) for multi-class was attained by DenseNet169 with the
SGD optimizer. It was closely followed at (97.15%) by the
DenseNet169 model with the Rmsprop optimizer. The VGG19
with the Adam optimizer arrived a close third with (97.12%)
accuracy. Among all models, DenseNet169 attained highest
testing accuracy. The Xception model once again performed
poorly relative all other models. The InceptionV3 model also
performed moderately in case of two-class results. Among
optimizers, Rmsprop maximized testing accuracies among all
other optimizers for ResNet50, Xception, Inception-ResNetV2,
and MobileNetV2 models. The Adam optimizer peaked testing
accuracies for VGG16 and VGG19 models, whereas the SGD

optimizer helped InceptionV3 and DenseNet169 to attain best
testing accuracies. Most architectures explored in the current
study attained better testing accuracies than those of fully
connected (69%) and convolutional (93.4%) networks designed
in the previous study (Bacioiu et al., 2019). Figure 4 depicts the
multi-class accuracies of all model–optimizer architectures
pictorially.

4.2.2 Based on Precision, Recall, and F1 Scores
Table 9 depicts multi-class precision, recall, and F1 scores for all
32 model–optimizer architectures. Herein, the DenseNet169-
SGD architecture attained the best precision, recall, and F1
scores for all the six classes of TIG welding defects among all
other models. This model performed a bit lower only in case of
CM
2 and CM

5 recall values −0.82 and 0.79, respectively. Overall,
this model attained a remarkable result, considering that many
other models were unable to attain appreciable precision, recall,
and F1 scores evenly across all classes. For instance, most of the
deep learning models were unable to perform satisfactorily
especially in case of precision values of CM

4 welding defect. It
may be noted that there were very few CM

4 sample images
available for deep learning models training as compared to
other defects classes’ data sets (Table 4). There are some
shortfalls in precision values for CM

3 welding defect as well.
Similar deficiencies are evident in case of CM

1 and CM
2 recall

values. Some shortfalls may be observed in case of CM
5 recall

values as well. It is interesting to note that generally most of the
models performed better in precision values as compared to the
recall values for CM

1 , CM
2 , and CM

5 . This observation implies that
deep learning models predicted lesser false positives than false
negatives for these welding defects viz. burn through,
contamination, and high travel speed. More false negatives
mean that deep learning models are misidentifying such
welding defects as good welds. On the other hand, lesser false
positives imply that the models are not misidentifying good welds
as the abovementioned welding defects. From a quality assurance
point of view, misidentification of defective welds as good welds is
an issue. On the other hand, misidentification of good welds as
bad leads to loss of productivity. Hence, as regards the defects of
burn through, contamination, and high travel speed, most deep

TABLE 8 | Performance evaluation based on testing accuracies for multi-class
classification [Accuracy (%)].

Sr. No. Model/Optimizer SGD Adam Adagrad Rmsprop

1 VGG16 94.18 96.78 90.69 90.43
2 VGG19 96.77 97.12 93.19 96.07
3 ResNet50 89.85 95.13 88.02 96.17
4 InceptionV3 92.15 85.83 91.68 86.81
5 DenseNet169 97.28 95.68 96.08 97.15
6 Xception 86.56 85.13 86.85 88.13
7 Inception-ResNetV2 95.64 91.86 95.40 96.27
8 MobileNetV2 90.46 90.27 89.00 91.86

FIGURE 4 | Testing accuracies for multi-class classification.
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TABLE 9 | | Performance evaluation based on precision, recall, and F1 scores for multi-class classification [Accuracy (%)].

Sr. No. Model–optimizer Precision Recall F1 Score Accuracy

— Class CM
0 CM

1 CM
2 CM

3 CM
4 CM

5 CM
0 CM

1 CM
2 CM

3 CM
4 CM

5 CM
0 CM

1 CM
2 CM

3 CM
4 CM

5
—

1 VGG16-SGD 0.95 0.99 0.95 0.95 0.33 0.99 1.00 0.96 0.80 0.86 0.46 0.37 0.97 0.98 0.87 0.90 0.38 0.53 94.18
2 VGG16-Adam 0.96 1.00 0.98 1.00 0.62 1.00 1.00 0.96 0.88 0.90 0.78 0.82 0.98 0.98 0.93 0.95 0.70 0.90 96.78
3 VGG16-Adagrad 0.90 1.00 0.92 0.93 1.00 1.00 1.00 0.73 0.69 0.83 0.01 0.20 0.94 0.84 0.79 0.88 0.02 0.33 90.69
4 VGG16-Rmsprop 0.89 0.99 0.99 1.00 0.41 0.99 1.00 0.22 0.73 0.88 0.90 0.76 0.94 0.36 0.84 0.94 0.57 0.86 90.43
5 VGG19-SGD 0.98 0.96 0.93 1.00 1.00 0.73 1.00 0.92 0.82 0.97 0.22 1.00 0.99 0.94 0.87 0.98 0.35 0.84 96.77
6 VGG19-Adam 0.99 1.00 0.95 0.97 0.32 0.88 1.00 0.97 0.78 0.97 0.50 1.00 0.99 0.99 0.86 0.97 0.39 0.93 97.12
7 VGG19-Adagrad 0.92 0.97 0.93 1.00 1.00 0.74 1.00 0.57 0.87 0.97 0.01 0.44 0.96 0.72 0.90 0.97 0.02 0.55 93.19
8 VGG19-Rmsprop 0.97 0.92 0.95 1.00 0.79 0.77 1.00 0.99 0.71 0.94 0.30 1.00 0.98 0.96 0.82 0.97 0.44 0.87 96.07
9 ResNet50-SGD 0.89 1.00 0.79 0.95 0.00 1.00 0.99 0.98 0.28 0.99 0.00 0.02 0.94 0.99 0.41 0.97 0.00 0.03 89.85
10 ResNet50 -Adam 0.98 1.00 0.90 0.92 0.22 0.75 0.99 0.94 0.75 0.95 0.29 0.93 0.98 0.97 0.82 0.93 0.25 0.83 95.13
11 ResNet50-Adagrad 0.85 0.99 1.00 0.99 0.00 0.00 1.00 0.97 0.09 0.94 0.00 0.00 0.92 0.98 0.17 0.96 0.00 0.00 88.02
12 ResNet50-Rmsprop 0.96 1.00 0.92 0.98 0.35 0.99 1.00 0.94 0.72 0.98 0.30 1.00 0.98 0.97 0.81 0.98 0.32 0.99 96.17
13 InceptionV3-SGD 0.92 0.92 0.98 0.92 0.61 0.88 0.99 0.63 0.55 0.97 0.89 0.99 0.95 0.75 0.70 0.95 0.72 0.93 92.15
14 InceptionV3-Adam 0.92 0.64 0.96 0.74 0.27 0.85 0.91 0.37 0.58 0.98 0.97 0.99 0.92 0.47 0.72 0.85 0.42 0.92 85.83
15 InceptionV3-Adagrad 0.92 0.91 0.97 0.92 0.64 0.93 0.99 0.65 0.45 0.98 0.87 0.98 0.95 0.76 0.62 0.95 0.74 0.95 91.68
16 InceptionV3-Rmsprop 0.93 0.69 0.98 0.70 0.59 0.92 0.91 0.73 0.49 0.94 0.89 0.98 0.92 0.71 0.65 0.80 0.71 0.95 86.81
17 DenseNet169-SGD 0.96 1.00 1.00 1.00 1.00 0.99 1.00 0.92 0.82 0.99 0.97 0.79 0.98 0.96 0.90 0.99 0.99 0.88 97.28
18 DenseNet169-Adam 0.99 1.00 1.00 0.79 1.00 0.99 0.95 1.00 0.93 0.98 1.00 1.00 0.97 1.00 0.97 0.87 1.00 1.00 95.68
19 DenseNet169-Adagrad 0.95 0.98 0.99 0.98 1.00 1.00 1.00 0.86 0.86 0.98 0.85 0.51 0.97 0.92 0.92 0.98 0.92 0.67 96.08
20 DenseNet169-Rmsprop 0.99 1.00 1.00 0.89 1.00 0.90 0.98 0.95 0.90 1.00 0.98 1.00 0.98 0.98 0.95 0.94 0.99 0.95 97.15
21 Xception-SGD 0.96 1.00 1.00 0.55 1.00 1.00 0.86 0.60 0.90 1.00 0.95 0.91 0.91 0.75 0.95 0.71 0.97 0.95 86.56
22 Xception-Adam 0.97 1.00 0.99 0.51 0.75 1.00 0.85 0.52 0.91 0.99 0.95 0.89 0.90 0.68 0.95 0.67 0.84 0.94 85.13
23 Xception-Adagrad 0.96 1.00 1.00 0.56 0.99 0.99 0.88 0.58 0.88 1.00 0.83 0.69 0.92 0.73 0.93 0.72 0.90 0.81 86.85
24 Xception-Rmsprop 0.98 1.00 1.00 0.56 0.91 0.98 0.87 0.71 0.98 1.00 0.95 0.99 0.92 0.83 0.95 0.92 0.93 0.99 88.13
25 Inception-ResNetV2-SGD 0.97 0.98 0.95 0.92 0.45 0.98 0.99 0.87 0.70 0.99 0.91 0.87 0.98 0.92 0.81 0.96 0.61 0.92 95.64
26 Inception-ResNetV2-Adam 0.96 1.00 1.00 0.84 0.26 0.92 0.98 0.68 0.49 1.00 0.97 0.82 0.97 0.81 0.60 0.91 0.41 0.87 91.86
27 Inception-ResNetV2-Adagrad 0.97 0.99 0.95 0.92 0.53 1.00 0.99 0.76 0.74 1.00 0.79 0.92 0.98 0.86 0.84 0.96 0.64 0.96 95.40
28 Inception-ResNetV2-Rmsprop 0.97 0.99 0.95 0.96 0.57 0.99 1.00 0.77 0.83 0.99 0.91 0.80 0.98 0.86 0.88 0.97 0.70 0.88 96.27
29 MOBILENETtV2-SGD 0.93 0.88 1.00 0.85 0.33 1.00 1.00 0.43 0.44 1.00 0.94 0.64 0.96 0.57 0.61 0.92 0.49 0.78 90.46
30 MOBILENETtV2-Adam 0.95 0.90 1.00 0.83 0.24 1.00 1.00 0.81 0.15 0.99 0.99 0.58 0.97 0.85 0.26 0.90 0.39 0.74 90.27
31 MOBILENETtV2-Adagrad 0.93 0.81 0.98 0.75 0.40 1.00 1.00 0.43 0.29 1.00 0.88 0.59 0.97 0.56 0.45 0.86 0.55 0.74 89.00
32 MOBILENETtV2-Rmsprop 0.98 0.89 0.91 0.76 0.32 1.00 0.97 0.87 0.45 0.99 0.99 0.84 0.98 0.88 0.61 0.86 0.48 0.91 91.86
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learning models performed better at productivity as compared to
conformance to quality.

In a similar fashion, the CM
3 and CM

4 recall values were
generally observed to be superior to the corresponding
precision metrics. This observation implies that the models
predicted more false positives as compared to false negatives
with regards to CM

3 and CM
4 TIG welding defects. These defect

classes correspond to the lack of fusion and lack of shielding gas.
More false positives over false negatives imply that the deep
learning models predicted more good welds as bad and predicted
lesser bad welds as good. Hence, with regards to the defects of lack
of fusion and lack of shielding gas, the deep learning models
predictions promoted better quality assurance at the cost of
productivity losses. In a parallel observation, all models
attained excellent precision as well as recall values in case of
CM
1 , that is, good welds, which is a very encouraging result. This

observation implies that all explored deep learning models
architectures made no mistakes of misclassifying good welds.
This result may be attributed to the fact that CM

1 furnished
maximum number of images in the training, validation, and
testing datasets (Table 4), enabling better learning for the deep
learning models. Hence, the performance of DenseNet169-SGD
is appreciable considering that this model architecture
successfully attained excellent precision, recall, and F1 scores
across all TIG welding defects classes, despite unbalanced number
of images available for training across classes.

The Xception models fared poorly in CM
3 precision and CM

1
recall metrics. This implies that Xception models predicted more
false positives for CM

3 and more false negatives for CM
1 TIG

welding defects. This may be further understood as
misclassification of more good welds as CM

3 defect, viz. lack of
fusion, and greater misclassification of CM

1 defect, viz. ‘”burn
through” as good welds. Thus, the Xception model predictions
lead to greater loss of productivity as well as lower quality
assurance in TIG welding-based manufacturing. Similarly, the
InceptionResNet and MobileNetV2 models performed poorly
forCM

4 precision. These models mostly misidentified good welds
as CM

4 defect, viz. lack of shielding gas, thus impacting TIG
welding productivity adversely. The InceptionV3 models, on the
other hand, suffered from unbalanced precision and recall
accuracies across TIG welding defects classes. Interestingly,
the ResNet50 models fared poorly only in case of precision
and recall values for CM

4 defects (lack of shielding gas). For this
particular defect, the ResNet50 models totally misidentified
good welds as bad and bad welds as good. With regards to
the VGG models, all VGG16 models performed reasonably well
across all classes, with a few exceptions in cases of CM

4 precision
and recall values. The VGG19 models generally performed
better than the VGG16 models.

4.3 Analysis of Optimizer Performances
Across Models
The previous section has already given out some details of the role
of optimizers in maximizing the classification accuracies of deep
learning models. In the current section, optimizer performances
have been evaluated from the point of view of training loss,

training accuracy, validation loss, and validation accuracy
evolutions over successive training epochs.

4.3.1 Based on Two-Class Classification
Supplementary Figures S1–S4 show the two-class welding defect
classification training and validation evolution graphs of all
models for SGD, Adam, Adagrad, and Rmsprop optimizers,
respectively. Supplementary Figure S1 training loss graph
depicts that the SGD optimizer quickly reduced training loss
for all models except for VGG16, VGG19, and ResNet50, wherein
the training losses reduce gradually over successive epochs.
Supplementary Figure S1 also shows that the deep learning
models attained a little lower validation loss values as compared
to their training losses (except for ResNet50). This comparison
indicates that the SGD-optimized deep learning models for two-
class problem are a little overfitted on the training data. Since a
little data overfitting is allowed in network training, VGG19-SGD
architecture attained the best two-class testing accuracy.
Supplementary Figure S2 shows a similar set of graphs for
the Adam-optimized deep learning models. Herein, the
differences among the training and validation losses were a bit
greater than those in case of the SGD-optimized models. Hence,
the testing accuracies of the Adam-optimized models were a little
lesser than the SGD-optimized models (Table 7). Supplementary
Figure S3 depicts the Adagrad-optimized deep learning models’
training/validation loss curves. This graph also indicates little
overfit models on the training data, so the Adagrad-optimized
models also attained satisfactory testing accuracies.
Supplementary Figure S4 shows loss curves for the Rmsprop
optimizer across all deep learning models. These models also
obtained decent testing accuracies owing to little differences
among the training and validation losses (except for the
InceptionV3 and Xception models).

Supplementary Figures S5–S8 show the training and
validation accuracy curves of all deep learning models for the
four optimizers considered in the current study over successive
epochs. In all cases, excellent training accuracies were achieved
within 20 epochs. On the other hand, almost perfect validation
accuracies were attained by the models optimized with SGD,
Adam, and Rmsprop. The Adagrad-optimized models attained
lower validation accuracies, leading to lower testing accuracies in
VGG19, ResNet50, Xception, and MobileNetV2 models
(Table 7).

4.3.2 Based on Multi-Class Classification
Supplementary Figures S9–S12 show the multi-class training/
validation loss curves for all deep learning models.
Supplementary Figure S9 shows higher validation losses for
all SGD-optimized models as compared to their training losses.
This indicates that the multi-class SGD models are also a little
overfitted on training data as in case of the two-class SGD-
optimized architectures. Hence, the DenseNet169-SGD
obtained the best testing accuracy (Table 9). Supplementary
Figure S10 shows that most of the Adam-optimized models were
a little more overfitted on the training datasets as compared to
SGD. However, models like InceptionV2 and Xception were
much more overfitted with validation losses as compared to
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their training losses. Models like VGG16 and VGG19 attained
low validation losses, resulting in impressive testing accuracies
(Table 9). Supplementary Figure S11 shows the Adagrad-
optimized multi-class deep learning models validation/training
losses. This figure shows relatively lower differences between the
validation and the training losses, yielding better-fitted deep
learning models leading to decent testing accuracies of most
models except for ResNet50 (Table 9). Supplementary Figure
S12 depicts a wider range of validation losses for the Rmsprop-
supported architectures—Xception on the higher extreme and
ResNet50 on the lowermost margin. Hence, Rmsprop maximized
testing accuracies for models like ResNet50 (Table 9).

Supplementary Figures S13–S16 depict the validation/
training accuracies for all deep learning models supported by
the four optimizers. Except for Adagrad, all optimizers enabled
the models to achieve maximum training accuracies very quickly.
All optimizers helped most of the deep learning models attain
validation accuracies in the range of 0.7–0.9.

4.4 Analysis of Optimizer Performances
Within Models
This section deals with the training and validation losses/
accuracies of the deep learning models considered in the
current study, comparing the relative effects of different
optimizers within each model.

4.4.1 Based on Two-Class Classification
Supplementary Figures S17, S18 showcase similar loss curves for
the VGG16 and VGG19 models, with relatively lower amplitudes
of validation loss curves of VGG19 than those of VGG16. The
validation/training loss curves of InceptionV3 (Supplementary
Figure S20), Xception (Supplementary Figure S22), and
Inception-ResNetV2 (Supplementary Figure S23) models are
also similar, depicting non-convergence under Rmsprop and
Adam optimizers. The ResNet50 and DenseNet169 models
attained comparable validation and training losses
(Supplementary Figures S19, S21). Supplementary Figure
S24 depicts low validation losses for MobileNetV2 with all
optimizers except Rmsprop.

Supplementary Figures S25–S32 showcase the validation and
training accuracies attained by the deep learning models with the
help of the four optimizers. The Adam and Rmsprop optimizers
helped all models (except for ResNet50) reach perfect training
accuracy very quickly as compared to the SGD and Adagrad
optimizers. In case of ResNet50, the Adam optimizer attained
topmost training accuracy followed by Rmsprop, Adagrad, and
SGD. None of the optimizers were able to help ResNet50 attain
perfect training accuracy for two-class classification. In
consonance with the training and validation loss values, all
deep learning models recorded slightly lesser validation
accuracies as compared to testing accuracies, implying little
overfitting of all models. The VGG19 (Supplementary Figure
S26) models attained slightly better validation accuracy than
VGG16 (Supplementary Figure S25). The Adam and
Rmsprop models of DenseNet169 (Supplementary Figure
S29), all models of Xception (Supplementary Figure S30),

and all models of Inception-ResNetV2 (Supplementary Figure
S31) models attained validation accuracies greater than 0.95. The
Adam and Rmsprop optimized models of InceptionV3
(Supplementary Figure S28) and MobileNetV2
(Supplementary Figure S32) did not seem to converge as
good as the SGD- and Adagrad-optimized models of the same
architectures.

4.4.2 Based on Multi-Class Classification
Supplementary Figures S33–S40 showcase the multi-class
training and validation loss curves for all model–optimizer
architectures, grouped model-wise in separate figures. The
SGD and Adagrad optimizers helped all models (except
ResNet50) attain lower validation losses as compared to Adam
and Rmsprop optimizers. On the other hand, Adam and
Rmsprop optimzers helped reduce training losses of all models
in much lesser number of epochs as compared to SGD and
Adagrad. Except for the VGG16 (Supplementary Figure S33),
VGG19 (Supplementary Figure S34), and ResNet50
(Supplementary Figure S35) models, all other models
consumed very less epochs to reduce and converge training
losses to near zero values.

Supplementary Figures S41–S48 depict the multi-class
training and validation accuracy graphs for all
model–optimizer architectures grouped model-wise under
separate plots. It is evident that the Adam and Rmsprop
optimizers enabled all models (except for ResNet50) to attain
maximum training accuracies in very less epochs as compared to
the SGD and Adagrad optimizers. In case of ResNet50
(Supplementary Figure S43), Adam and Rmsprop attained
much higher training accuracies over SGD and Adagrad. In
fact, Adam and Rmsprop enabled all models (except for
InceptionV3) attain better validation accuracies as well. This
scenario was inverted in case of InceptionV3 (Supplementary
Figure S44). In general, all VGG19 (Supplementary Figure S42)
models attained better validation accuracies over the VGG16
(Supplementary Figure S41) multi-class models. The
DenseNet169 Adam and Rmsprop models (Supplementary
Figure S43) attained highest validation accuracies among all
model–optimizer architectures, translating into
correspondingly high testing accuracies as well.

5 CONCLUSION

The current study was based on the TIG welding image data set
generated by Bacioiu et al. (2019) in which the authors collected
good and defective weld images using an HDR camera. They
applied fully connected and convolutional neural network-based
machine learning architectures to classify the images into six
categories of weldments. The same data set was utilized in the
present study to improve the TIG welding defects classification
accuracy by employing deep learning architectures. A total of
eight different pre-trained deep learning models, namely,
VGG16, VGG19, ResNet50, InceptionV3, Xception,
DenseNet169, Inception-ResNetV2, and MobileNetV2 were
applied via transfer learning methodology. Furthermore, each
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of these deep learning models were tuned by four different
optimizers for maximizing classification accuracy: Adam,
Adagrad, Rmsprop, and SGD, resulting in 32 varieties of
model–optimizer combinations. All these models were applied
for two-class (good and bad welds) and multi-class (good welds
and five kinds of bad welds) classification tasks. Thus, a total of 64
model–optimizer architectures were trained—32 each for
two-class and multi-class classifications. All trained and
optimized pre-trained deep learning models were tested
for their two-class and multi-class performances based on
testing accuracy percentages, precision, recall, and F1 scores.
Moreover, the evolution of models’ training/validation losses
and accuracies over successive epochs were analyzed from
two perspectives: the effects of individual optimizers across
different models and the effects of different optimizers within
individual models. The primary findings of the present study
are listed as follows:

1. VGG19-SGD attained the best two-class testing accuracy
(99.69%) and perfect precision, recall, and F1 scores in
both TIG welding classes (good and bad welds).

2. InceptionV3 and Xception models attained relatively lower
two-class and multi-class testing accuracies.

3. SGD optimizer performed better than other optimizers for
most models in two-class classification.

4. DenseNet169-SGD attained the highest multi-class testing
accuracy (97.28%) and excellent precision, recall, and F1
scores across all six TIG welding defects classes.

5. Rmsprop optimizer performed better than other optimizers
for most models in multi-class classification.

6. Testing accuracy, precision, recall, and F1 scores of deep
learning models in two-class classifications was generally
superior to that in multi-class classifications.

7. Regarding the welding defects of “burn through,”
“contamination,” and “high travel speed,” most deep
learning models predictions favored productivity as
compared to quality assurance of TIG welded joints.

8. With regards to the defects of “lack of fusion” and “lack of
shielding gas,” the deep learning models predictions
promoted better quality assurance at the cost of
productivity losses in TIG welding-based manufacturing.

9. All explored pre-trained deep learning models architectures
made no mistake of misclassifying good welds.

10. The training and validation loss evolutions over successive
epochs showed that the pre-trained deep learning models
were slightly overfitted on the training data set.

11. The Xception model predictions lead to greater loss of
productivity and quality assurance in TIG welding-based
manufacturing.

12. The InceptionResNet and MobileNetV2 model predictions
mostly misidentified good welds as the welding defect of “lack
of shielding gas”.

13. The ResNet50 models completely misidentified the “lack of
shielding gas” welding defects as good welds and vice versa.

14. The pre-trained deep learning models architectures of the
current study performed better than the machine learning-

based architectures applied on the same image data set in the
previous study (Bacioiu et al., 2019).

15. The SGD optimizer quickly reduced training losses over
successive epochs for most models in two-class
classifications.

16. Generally, the pre-trained deep learning models attained
little lower validation losses as compared to the
corresponding training losses over successive epochs in
both two-class and multi-class classifications.

17. For two-class, excellent training accuracies were achieved by
pre-trained deep learning models within 20 epochs.

18. All optimizers considered in the current study helped the
deep learning models attain validation accuracies ranging
from 0.7 to 0.9 in multi-class classification.

19. Adam and Rmsprop maximized training accuracies of all
models (except ResNet50) faster (in lesser epochs) than SGD
and Adagrad optimizers in two-class classification.

20. All models of Xception and Inception-ResNetV2 attained
validation accuracies greater than 0.95 for two-class
classifications.

21. SGD and Adagrad optimizers minimized validation losses for
all models (except for ResNet50) as compared to Adam and
Rmsprop in multi-class classification.

22. Adam and Rmsprop minimized training losses and
maximized training accuracies of all models in lesser
epochs as compared to SGD and Adagrad in multi-class
classification. Adam and Rmsprop maximized the pre-
trained deep learning models’ validation accuracies as well.

23. All pre-trained deep learning models consumed very less
epochs to converge training losses to near zero in multi-
class classifications except for VGG16, VGG19, and
ResNet50.

24. Generally, all VGG19 models performed better than
VGG16 architecture in both two-class and multi-class
classification.
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