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Abstract

Cognitive radio (CR) promises to be a solution for the spectrum underutilization problems. However, security issues
pertaining to cognitive radio technology are still an understudied topic. One of the prevailing such issues are
intelligent radio frequency (RF) jamming attacks, where adversaries are able to exploit on-the-fly reconfigurability
potentials and learning mechanisms of cognitive radios in order to devise and deploy advanced jamming tactics. In
this paper, we use a game-theoretical approach to analyze jamming/anti-jamming behavior between cognitive radio
systems. A non-zero-sum game with incomplete information on an opponent’s strategy and payoff is modelled as an
extension of Markov decision process (MDP). Learning algorithms based on adaptive payoff play and fictitious play are
considered. A combination of frequency hopping and power alteration is deployed as an anti-jamming scheme. A
real-life software-defined radio (SDR) platform is used in order to perform measurements useful for quantifying the
jamming impacts, as well as to infer relevant hardware-related properties. Results of these measurements are then
used as parameters for the modelled jamming/anti-jamming game and are compared to the Nash equilibrium of the
game. Simulation results indicate, among other, the benefit provided to the jammer when it is employed with the
spectrum sensing algorithm in proactive frequency hopping and power alteration schemes.

Keywords: Jamming; Anti-jamming; Game theory; Stochastic game; Non-zero-sum game; Fictitious play; Adaptive
play; Markov models; Frequency hopping; Power allocation; Smart transmission layer

1 Introduction
Cognitive radio (CR) [1] is a technological breakthrough

that - by utilizing concepts of dynamic spectrum access

(DSA) and opportunistic spectrum access (OSA) - is

expected to bring about means for better radio frequency

spectrum utilization.

In order to access spectrum opportunistically, CRs need

to be able to acquire information related to the spec-

trum holes. Currently, there are three establishedmethods

allowing the cognitive radios to retrieve the spectrum

occupancy information. Among them, spectrum sens-

ing [2] has been given the most focus in the research

community.

Different spectrum sensing approaches, such as energy

detection [3], matched filters [4], various feature detection

methods (e.g., cyclostationary) [5], and hybrid methods

[6] have been proposed and analyzed in the past. These are
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mainly differentiated by their computational complexity

(energy detection being the most computationally effi-

cient, thus simplest to implement), necessity for a priori

knowledge of the observed signals (matched filters), and

the means of extracting features of the recognized signals

(feature detectors).

Alternative approach to acquiring spectrum informa-

tion is utilized by the geolocation/database-driven CRs

[7]. This method requires the CRs to have a perfect aware-

ness of their geographical position and to be able to access

a database containing the list of the currently available

frequencies at a given location.

Another alternative method is the beacon signals

method [8], which relies on the usage of beacon rays for

providing the prospective CRs information regarding the

currently unused channels in their proximity.

As useful as the newly introduced cognitive abilities

and on-the-fly reconfigurability prospectives of cognitive

radios may be for the functioning of the future wire-

less communication systems, they also inherently bring
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a new set of security issues [9] that need to be prop-

erly addressed. Among them, primary user emulation

attacks [10], spectrum sensing data falsification attacks

[11,12], eavesdropping attacks [13], and intelligent jam-

ming attacks [14,15] were given particular attention in the

research community.

Radio frequency (RF) jamming attacks may be defined

as illicit transmissions of RF signals aimed at disrupt-

ing the normal communication on the targeted channels.

Adversaries that utilize the CR learning mechanisms to

improve their jamming capabilities are considered intelli-

gent. Intuitively, being equipped with such learningmech-

anisms may also aid the legitimate users in improving

their anti-jamming capabilities. The goals of legitimate

transceivers and jammers are typically negatively corre-

lated. For this purpose, game theory - a mathematical

study of decision-making in situations involving conflicts

of interest - has emerged as a tool for formalization of the

intelligent jamming problems.

Most of the previous works in the literature on applica-

tion of game theory to jamming problems consider either

channel surfing or the power allocation as anti-jamming

strategies. Furthermore, they are mutually differentiated

mostly by the objective function subjected to optimization

(signal-to-noise ratio, bit error rate, Shannon capacity),

various forms of uncertainty (user types, physical pres-

ence, system parameters), game formulation (zero-sum

vs. non-zero-sum, single-shot vs. dynamic), learning algo-

rithms (Q-learning, SARSA, policy iteration), etc.

In [16], authors have proven the existence and unique-

ness of Nash equilibrium for a class of games with trans-

mission cost. In addition, they have derived analytical

expressions for the Nash equilibrium and have formulated

the jamming game as the generalization of the water-

filling optimization problem. Jamming game for OFDM

system with 5 channels was analyzed.

Authors in [17] have formulated the problem of jam-

ming in CR networks with primary users as a zero-sum

stochastic game, where channel hopping was considered

as the anti-jamming scheme and minimax-Q as the learn-

ing algorithm. They have compared the performance of

the developed stationary policy with the myopic deci-

sioning policy which did not consider the environment

dynamics.

Themethod was extended in [18], comparing the results

of Q-learning with those of the policy iteration scheme.

The performance of the proposed scheme was evaluated

against attackers of varying levels of sophistication.

In [19] and [20], multi-carrier power allocation was con-

sidered as an anti-jamming strategy. The games were also

formulated as zero-sum.

In [21], a study of the performance of fictitious

play as the learning algorithm in intelligent jamming

games was performed. In this work, we extend upon

the aforementioned ideas. A formulation of a proactive

jamming/anti-jamming game with intelligent players in an

increased action space created by combining frequency

hopping and power alteration is considered. Due to hop-

ping and transmission costs, the game is formulated as

non-zero-sum. Simulation results are used for finding

near-optimal strategies for a game with incomplete infor-

mation on an opponents’ payoffs and strategy. The results

are compared to the Nash equilibrium of the game. Often-

times, there exists a significant gap between the theoret-

ical contributions and the practical aspects of the radio

systems. In order to infer the parameters relevant for the

modelled game, thus bridging this gap, a set of experi-

ments is performed on the real-life software-defined radio

SDR/CR test bed.

We summarize the contributions and novelties of this

paper with respect to the state-of-the-art papers on the

application of game theory to intelligent jamming scenar-

ios as follows:

• We present the ideas of learning algorithms that

correspond to CRs with and without spectrum

sensing capabilities, comparing their performance.
• We compare the performance of the considered

learning algorithms for the modeled game with the

Nash equilibrium of the game.
• We consider an increased action space created by

combining two anti-jamming tactics.
• We use a real-life SDR/CR platform to infer

parameters that allow modeling the game in a more

realistic manner.

The remainder of the paper is structured as follows:

Section 2 describes the system model. Game formula-

tion along with equilibrium analysis and the description

of considered learning algorithms and decisioning poli-

cies is presented in Section 3. SDR/CR test bed setup

is described in Section 4, with experimental results pre-

sented in Section 5. Application to the modelled game

and the simulation results are given in Section 6, whereas

conclusions are drawn in Section 7.

2 Systemmodel
Consider a simplistic two-way transmitter-receiver com-

munication occurring over one of the nf pre-defined

channels and a malicious user (jammer) that is trying to

disrupt the communication by creating narrowband inter-

ference. Transmitter and receiver are considered the pri-

mary users over all of the considered channels and are able

to tune to the same channel at a given time instance.With-

out the loss of generality, all of the channels are modelled

with the same parameters; however, it will become obvi-

ous that the proposed anti-jamming techniques would

be able to indirectly infer different channel parameters
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and fit these inferences into their decision-making

process.

Jammer is able to create a narrowband interference on

a single channel at a time, causing the deterioration of

the signal to interference plus noise ratio (SINR) and sub-

sequently increase of the bit error rate (BER) on that

channel. It is assumed that the jamming attack is the only

possible reason for the deterioration of the channel qual-

ity, neglecting other possible sources of interference, as

well as the time-varying nature of channels, including

effects of the multipath propagation.

To mitigate the jamming effects and increase the SINR

at the receiver side over the threshold needed for success-

ful decoding, the transmitter may deploy a combination

of channel hopping and increasing its transmission power

(power alteration).

Both transmitter and jammer are able to make use of

the on-the-fly reconfigurability as well as the learning

prospectives of the cognitive radio technology. In dif-

ferent studied scenarios, both transmitter and jammer

may have different spectrum sensing capabilities. Follow-

ing that, two different learning algorithms are studied:

payoff-based adaptive play (PBAP), where players are not

necessarily embodied with spectrum sensing, and ficti-

tious play, where players are able to infer the actions of

the opponent in each step as a result of the deployed

spectrum sensing scheme. In addition, performance of the

proposed jamming/anti-jamming schemes is evaluated

against static, non-learning types of opponents.

Other assumptions and abstractions that were

taken in order to take a game-theoretical approach to

jamming/anti-jamming problems are given as follows:

• Considered channels are perfectly orthogonal and

non-overlapping, with frequency spacing between

them large enough to make any energy spillover

negligible.
• A discrete number of transmission powers were

considered for both the transmitter and the jammer.
• Following the previous assumption, an occurrence of

jamming is modelled as a discrete event, i.e., it always

occurs with success or failure, disregarding the

typical stochastic processing involved with the

occurrence of jamminga.
• Both transmitter and jammer are in continuous

transmission mode, i.e., they always have packets

ready to send.
• Jammer is available to create interference powerful

enough to successfully jam communications when

the transmitter is transmitting with its maximum

transmission power (provided that they are both

transmitting on the same channel at the time).
• All players maintain their relative positions as well as

antenna orientations with respect to each other.

3 Game formulation
The attack and defense problem is modelled as a multi-

stage proactive jamming/anti-jamming stochastic game.

A stochastic game [22] is played in a sequence of steps,

where at the end of each step, every player receives a pay-

off for the current step and chooses an action for the next

step that is expected to maximize his payoff. A player’s

payoff in each step is determined not only by his action

but also by the actions of all the other players in the game.

Collection of all of the actions that a player can take com-

prise his (finite) action set. The distribution of a player’s

choices of actions constitute his strategy. The strategymay

be fixed or may be updated according to the deployed

learning algorithm.

The proposed game is an extension of Markov decision

process (MDP), whose state transition probabilities may

be depicted as finite Markov chains.

The modelled game consists of two players: transmit-

ter T and jammer J . At the end of each step, every player

observes his payoff for the given step and decides either

to continue transmitting with the same power and at the

same frequency or to change one of them, or both. The

payoff consists of a summation of reward for the success-

ful transmission (jamming), penalty for the unsuccessful

transmission (jamming), and negative values related to

cost of transmission (jamming) and cost of frequency hop-

ping. Transmission (jamming) cost is related to the power

spent by the user for transmitting (jamming) in a given

step. Hopping cost may be explained by the fact that, after

changing the channel of the transceiver pair (jammer), a

certain time elapses before the communication may be

resumed (interference created) due to the settling time of

the radios or by other hardware constraints.

A generalized payoff at the end of the step s for transmit-

ter T is expressed as (1). Here, RT denotes the reward for

successful transmission, XT is the sustained fixed penalty

for the unsuccessful transmission, H is the hopping cost,

g(CT ) is a function that expresses the transmitter’s cost

of transmission when power CT is used, f T is the chan-

nel currently used by the transmitter-receiver pair, α = 1

if transmission is successful and α = 0 if not, and β = 1

if the transmitter decides to hop and β = 0 otherwise.

In this notation, subindices are used to denote steps, and

superindices to denote the players.

PTs

(

CT
s , f

T
s ,CJ

s , f
J
s

)

= RTα−XT (1 − α)−H ·β −g
(

CT
s

)

(1)

Similarly, jammer J ’s generalized payoff for the step s

is given as (2). Here, RJ is the jammer’s reward for suc-

cessful jamming, XJ is the sustained fixed penalty for

the unsuccessful jamming, g
(

CJ
)

is the jammer’s cost of
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transmission when power CJ is used. Finally, γ = 1 if the

jammer decides to hop and 0 if it does not.

PJs

(

CT
s , f

T
s ,CJ

s , f
J
s

)

= RJ (1−α)−XJα−Hγ −g
(

CJ
s

)

(2)

3.1 Equilibrium analysis of the game

Nash equilibrium is inarguably the central concept in

game theory, representing the most common notion of

rationality between the players involved in the game. It

is defined as the set of distributions of players’ strate-

gies designed in a way that no player has an incentive to

unilaterally deviate from its strategy distribution.

Let nf be a discrete number of channels available to both

players for channel hopping, and let nCT and nCJ be the

discrete number of transmission powers for the transmit-

ter and the jammer, respectively. For the game with nf ·

nCT

(

nCT = nCJ

)

pure strategies available to each player,

we define ST as the set of pure strategies of the transmitter

and SJ as the set of pure strategies of the jammer. Then,

x ∈ R
ST and y ∈ R

SJ represent the mixed strategies of

the transmitter and jammer, respectively. By denoting the

payoff matrices of the transmitter and jammer as A and

B, respectively, a best response to the mixed strategy y of

the jammer is mixed strategy x∗ of the transmitter that

maximizes its expected payoff x∗⊺Ay. Similarly, the jam-

mer’s best response y∗ to the transmitter’s mixed strategy

x is the one that maximizes x⊺By∗. A pair (x∗, y∗) that are

best responses to each other is a Nash equilibrium of the

bimatrix game, i.e., for any other combination of mixed

strategies (x, y) the following equations hold true:

xAy∗⊺ ≤ x∗Ay∗⊺, (3)

x∗By⊺ ≤ x∗By∗⊺. (4)

In 1951, Nash proved that all finite non-cooperative

games have at least one mixed Nash equilibrium [23]. Par-

ticularization of this proof for bimatrix games may be

given as follows [24]:

Let x and y be arbitrary pairs of mixed strategies for the

bimatrix game (A,B), and Ai· and B·j represent the ith col-

umn and the jth row of the matrices A and B, respectively.

Then,

ci = max
{

Ai·y
⊺ − xAy⊺, 0

}

, (5)

dj = max
{

xB·j − xBy⊺, 0
}

, (6)

x′
i =

xi + ci

1 +
∑

k ck
, (7)

y′
j =

yj + dj

1 +
∑

k dk
. (8)

Since T(x, y) = (x′, y′) is continuous and x′ and y′ are mixed

strategies, it can be shown that (x′, y′) = (x, y) if and only

if (x, y) is an equilibrium pair. Furthermore, if (x, y) is an

equilibrium pair, then for all i:

Ai·y
⊺ ≤ xAy⊺, (9)

hence ci = 0 (and similarly dj = 0 for all j), meaning that

x′ = x and y′ = y. Assume now that (x, y) is not an equilib-

rium pair, i.e., there either exists x such that xAy⊺ > xAy⊺,

or there exists y such that xBy⊺ > xBy⊺. Assuming the first

case, as xAy⊺ is a weighted average of Ai·y
⊺, there must

exist i for which Ai·y
⊺ > xAy⊺, and hence some ci > 0,

with
∑

k ck > 0. As xAy⊺ as a weighted average of Ai·y
⊺,

there must exist Ai·y
⊺ ≤ xAy⊺ for some i such that xi > 0.

For this i, ci = 0, hence:

x′
i =

xi + ci

1 +
∑

k ck
< xi, (10)

and so x′ �= x. In the same way, it can be shown that

y′ �= y, leading to the conclusion that (x′, y′) = (x, y) if

and only if (x, y) is an equilibrium. As the transformation

T(x, y) = (x′, y′) is continuous, it must have a fixed point,

and so by applying Brouwer’s fixed point theorem [25], it

follows that this fixed point indeed represents an equilib-

rium point. This concludes the proof of the existence of

mixed-strategy equilibrium points in a bimatrix game.

However, efficient computation of equilibria points, as

well as proving uniqueness of an equilibrium, remains an

open question for many classes of games. Lemke-Howson

(LH) [26] is the most well-known algorithm for the com-

putation of Nash equilibria for bimatrix games and is

our algorithm of choice for finding the Nash equilibrium

strategies. A bimatrix game requires the game to be fully

defined by two payoff matrices (one for each player). Since

in our case the immediate payoff of every player in each

step depends not only on his own action and the action

of the opponent but also on the previous state of the

player (influence of the hopping cost), our game as a whole

cannot be represented by two deterministic payoff matri-

ces. For this reason, we divide the game into nf · nCT

subgames, where each subgame corresponds to a unique

combination of possible states of the transmitter and the

jammer. Since each subgame can be treated as the sep-

arate game in a bimatrix form, we proceed to apply the

LHmethod to find mixed strategy Nash equilibriums (one

per subgame). Hence, in each step, every player plays an

equilibrium strategy corresponding to that step. A union

of equilibria strategies of all the nf · nCT combinations of

the states within the game may be considered as the Nash

equilibrium of the game.

Gambit [27], an open-source collection of tools for solv-

ing computational problems in game theory, was used

for finding equilibrium points using the LH method. For

details on the implementation of the LH algorithm, an

interested reader is referred to [28].

Each of the subgames
(

Aij,Bij

)

where i = 1 . . . nf and

j = 1 . . . nCT is a nondegenerate bimatrix game. Then, fol-

lowing Shapley’s proof from [26], we may conclude that

there exists an odd number of equilibria for each subgame.

In [29], the upper bound on the number of equilibria in



Dabcevic et al. EURASIP Journal on Advances in Signal Processing 2014, 2014:171 Page 5 of 18

http://asp.eurasipjournals.com/content/2014/1/171

d × d bimatrix games was shown to be equal to 2.41d

d1/2
;

however, the uniqueness of Nash equilibrium may still be

proven only for several special classes of bimatrix games.

Here, we provide conditions that the bimatrix game has

to satisfy in order to have a unique completely mixed

Nash equilibrium. Completely mixed Nash equilibrium

is an equilibrium in which the supports of each of the

mixed equilibrium strategies are equal to the number of

available pure strategies (i.e., each strategy from a mixed

strategy set is played with a non-zero probability). As

shown by [30], whose proof we re-state, a bimatrix game

(A,B) whose matrices A and B are a square, has a unique

completely mixed Nash equilibrium if det(A, e) �= 0 and

det(B, e) �= 0, i.e.:

det(A, e) · det(B, e) �= 0, (11)

where e is a column vector with all entries 1.

The saddle point matrix (A, e) is given by:

(A, e) =

[

A e

e⊺ 0

]

. (12)

Then, the equilibrium strategies of the players are given

as:

x∗
i = −

detBi

det(B, e)
, (13)

y∗
i = −

detAi

det(A, e)
, (14)

where Bi (Ai) is the matrix of B (A) with all entries of the

ith column (row) replaced by 1.

Let us now suppose that (x∗, y∗) is an equilibrium point

of the bimatrix game (A,B), where x∗ is completely mixed.

Then, every pure strategy would give that player the same

payoff P against the opponent’s strategy y∗, i.e.:

Ay∗ = Pe. (15)

Since y∗ is a vector of probabilities,

e⊺y∗ = 1. (16)

Or, in matrix form:
[

A e

e⊺ 0

] [

y∗

−P

]

=

[

0

1

]

. (17)

Following the assumption det(A, e) �= 0 and by applying

Cramer’s rule, it follows from (17) that (14) is true for (i =

1, 2, . . . , n) (in our case, n = nCT · nf ). Similarly, the same

holds for x∗
i. As shown in [30]:

det(Ai, e) = det(Ai − ee⊺) − det(Ai) = −detAi, (18)

hence (13) and (14) are shown to be true. This concludes

the proof of the uniqueness of the completely mixed

equilibrium.

It may be computationally shown that all of the nf · nCT

subgames constructed within the considered game satisfy

(11). Furthermore, by observing the Markov state chains

corresponding to the equilibrium points found by the

LH method, it may indeed be observed that supp(x∗) =

supp(y∗) = nf · nCT , i.e., the equilibriums are completely

mixed. Trying to find multiple equilibria for each sub-

game using other computational methods available within

[27] has also resulted in a single (completely mixed) equi-

librium for each subgame: empirical evaluation of these

results, based on the algorithms to find all possible equi-

librium points of the bimatrix game, further points to the

existence of a unique Nash equilibrium for each subgame.

One of the common criticisms of using computational

algorithms such as LH for finding Nash equilibria is that

they fail to realistically capture the way that the players

involved in the gamemay reach the equilibrium point. For

this reason, it is useful to discuss the payoff performance

and the convergence properties to Nash equilibrium of the

algorithms realistically used for learning in games. This

discussion is done for twomulti-agent learning algorithms

considered within this work: fictitious play (Section 3.2.1)

and payoff-based adaptive play (Section 3.2.2).

3.2 Learning algorithms

Learning algorithms forMDPs have been extensively stud-

ied in the past [31,32]. Based on their spectrum occupancy

inference capabilities, an illustrating example of the corre-

sponding learning algorithms for the considered game and

the dimensionality of the action space is given in Figure 1.

For CRs not equipped with spectrum sensing capa-

bilities (geolocation/database-driven CRs and CRs utiliz-

ing beacon rays), payoff-based reinforcement algorithms

impose themselves as the optimal viable learning algo-

rithms. In these cases, each player is able to evaluate

the payoff received in every step and modify its strategy

accordingly.

CRs able to perform energy detection spectrum sens-

ing, in addition, also have the possibility of observing their

opponents’ actions in each step (influenced possibly by

the accuracy of the deployed spectrum sensing mech-

anism). By incorporating these observations into their

future decision-making process, the players may build and

update a belief regarding the opponents’ strategy distribu-

tion. This learning mechanism is called fictitious play.

Finally, CRs able to perform feature detection spectrum

sensing may recognize important parameters of the oppo-

nent’s signal and use these observations to their advan-

tage. Since various waveforms exhibit different jamming

and anti-jamming properties, depending mainly on their

modulation and employed coding (see, for example, [33]),

increased action space could consist of switching between

multiple modulation types or coding techniques.

In this paper, we focus our analysis on the first two

cases. Algorithm 1 illustrates the general formulation of

the game. It can be seen how, in every step, each player

takes a decision ds for his next action based on their
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expected utility Ps = E[Ps|P1:s−1] under PBAP or Ps =

E[Ps|P1:s−1, ss1:s−1] under fictitious play. Received payoffs

Ps are calculated for each player using (1) and (2). There-

after, spectrum sensing is performed and the expected

payoff is updated with the new information available.

To simplify explanation of the learning strategies and

Algorithm 1, it is assumed that both players perform the

spectrum sensing step; however, the result of this step is

used only under fictitious play framework. For the players

with perfect spectrum sensing capabilities, ssTs = dTs and

ssJs = dJs .

Algorithm 1 Game pseudocode

1: function TRANSMITTER JAMMER GAME

2: nSteps ← Number of steps

3: RT ,RJ ← Rewards

4: CT ,CJ ← Cost of hopping

5:

6: Initialize the expected utilities

7: s ← 0

8: while s < nSteps do

9: dTs ← Decide Transmitter ⊲ Section 3.3

10: dJs ← Decide Jammer ⊲ Section 3.3

11: PTs ← Transmitter utility ⊲ Equation 1

12: PJs ← Jammer utility ⊲ Equation 2

13: ssdJs ← Transmitter Spectrum Sensing

14: ssdTs ← Jammer Spectrum Sensing

15: Transmitter.learn
(

PTs , ssd
J
s

)

⊲ Section 3.2

16: Jammer.learn
(

PJs , ssd
T
s

)

⊲ Section 3.2

17: s ← s + 1

18: end while

19: end function

Note from the pseudocode that the game consists of two

main parts: the learning algorithm, in charge of updating

the expected payoffs, and the decisioning policy, which

uses the available observations to decide upon the future

actions.

Let us assume that in step s the transmitter was trans-

mitting with power CT
s on the frequency f Ts . Using one of

the decisioning policies described in Section 3.3, its action

in the next step constitutes of transmitting with power

CT
s+1 on frequency f Ts+1. We denote this action as a list of

four elements dTs =
[

CT
s , f

T
s ,CT

s+1, f
T
s+1

]

for the transmit-

ter and the equivalent values dJs =

[

CJ
s , f

J
s ,C

J
s+1, f

J
s+1

]

for

the jammer.

3.2.1 Fictitious play

Fictitious play [34] is an iterative learning algorithm

where, at every step, each player updates his belief about

the stochastic distributions of the strategies of the other

players in the game. The application of a learning mech-

anism based on fictitious play to the modelled game is

constructed under the assumption that the player is nec-

essarily endowed with the spectrum sensing capabilities,

allowing him to infer the actions of the other player. A pay-

off of a particular action given the player’s current state

and the opponent’s action is deterministic and may be

calculated using (1) and (2) for transmitter and jammer,

respectively. If the player has the information regarding

the opponents’ action in each step, then it is possible to

calculate the expected utility more precisely, by accessing

the history of the opponents’ actions. This is particu-

larly true for the jammer because of the higher number

of non-jammed states compared to the states of success-

ful jamming. Hence, learning the transmitter’s pattern as

soon and with as much precision as possible makes a

significant difference to the overall payoff. This updating

process is denoted in Algorithm 2.

Algorithm 2 Expected utility update under fictitious

play

1: function FICTIOUS EXPECTED UTILITY UPDATE

2: powers ← Available powers

3: freqs ← Available frequencies

4: SS ← Opponent’s state [Spectrum Sensing]

5: flist ← Opponent’s previous states

6:

7: flist.append(SS)

8: for d ∈ possible actions do

9: sum ← 0

10: for C, f ∈ powers, freqs do

11: N ← count (C, f )in flist

12: sum ← sum + N · P(d[3] , d[4] ,C, f )

13: end for

14: PTs+1(d) = sum
s

15: end for

16: end function

It is known that the convergence of the fictitious play

to Nash equilibrium is guaranteed only for several spe-

cial cases, such as zero-sum games, non-degenerate 2×n

games with generic payoffs, games solvable by iterated

strict dominance and weighted potential games. For other

types of games, including the game considered within this

work, convergence to Nash equilibrium is not guaranteed,

and even when it converges, the time needed to run the

algorithm to convergence may be very long due to the

problem being polynomial parity arguments on directed

graphs (PPAD)-complete [35]. This has led to the intro-

duction of the concept of approximate Nash equilibrium

(ǫ-equilibrium). Here, ǫ is a small positive quantity rep-

resenting the maximum increase in payoff that a player

could gain by choosing to follow a different strategy.
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Figure 1 Spectrum sensing capability vs. learning mechanism and action space.

Author in [36] has shown that fictitious play achieves

the worst-case guarantee of ǫ = (r + 1)/(2r) (where r is

the number of FP iterations) and in reality provides even

better approximation results. Furthermore, as recently

shown in [37], fictitious play may in some cases outper-

form any actual Nash equilibrium - for this reason, it is

useful to study the performance of the FP algorithm in

terms of the average and final payoff compared to the

Nash equilibrium.

3.2.2 Payoff-based adaptive play

Payoff-based adaptive play [38] is a form of reinforcement

learning algorithm, where it is assumed that the player

does not have access to the information about the state

of the other player and relies on the history of his own

previous payoffs. The expected utility of ds given previous

payoffs is given by Equation 19.

Ps+1(ds) = E[Ps(ds)|P1:s−1(ds)]=
Ps(ds) · s + Ps(ds)

s + 1
(19)

PBAP has been shown to converge to Nash equilibrium

for zero-sum games [39]. For general finite two-player

games, it was shown to converge to close-to-optimal solu-

tions in polynomial time [40].

In addition to comparing the performance of the

PBAP to the computed Nash equilibrium strategy from

Section 3.1, of particular interest to this work is the com-

parison to the performance of the FP. This comparison

should reflect the benefit that each player gains by being

equipped with the spectrum sensing algorithm (FP) over

not being equipped with it (PBAP).

3.3 Decisioning policies

A decisioning policy of the learning algorithm corre-

sponds to the set of rules that the player uses to select his

future actions.

3.3.1 Greedy decisioning policy

The most intuitive decisioning policy consists of always

choosing the action that is expected to yield the highest

possible value based on the current estimates - the so-

called greedy decisioning policy [41]. However, a greedy

method is overly biased and may easily lead the learn-

ing algorithm to ‘get stuck’ in local optimal solutions. An

example of this is given in Figure 2, where both play-

ers are employing the greedy decisioning policy. Here,

each player fairly quickly learns the ‘best response’ to an

opponent’s action and starts relying on using it. Then, a



Dabcevic et al. EURASIP Journal on Advances in Signal Processing 2014, 2014:171 Page 8 of 18

http://asp.eurasipjournals.com/content/2014/1/171

Figure 2 Expected payoff over time for the greedy decisioning policy and payoff-based adaptive play learning algorithm.

significant amount of time has to pass before his expected

payoff for the given action drops enough that another

action starts being considered as ‘best response’, where

in the meantime significant payoff losses are sustained.

This could partially be mitigated by introducing temporal

forgiveness into the learning algorithm.

3.3.2 Stochastically sampled decisioning policy

Another common approach to this issue is choosing a

stochastically sampled policy (also known as ǫ-greedy pol-

icy, [42]) where, at each step, a randomly sampled action

is taken with a probability p. We propose a variation of

the stochastically sampled policy where sampling is per-

formed by scaling the expected payoff value of each action

to the minimum possible payoff for the game. For a min-

imum payoff PMIN and n actions with expected payoffs,

P(1) . . .P(n) the probability of choosing an action d is

given by (20):

p(d) =
P(d) − PMIN

∑n
k=1 P(k) − PMIN

(20)

4 Experimental setup
In order to infer the parameters related to the occurrence

of jamming and to be able to extract the physical parame-

ters relevant for the game, a set of experiments using the

real-life SDR test bed [43] is performed.

4.1 Test bed description

A coaxial test bed is implemented for the frequency range

of interest. The coaxial test bed eliminates the typical

uncertainties characteristic to wireless transmission and

allows for repeatability of the experiments. An imple-

mented test bed, shown in Figure 3, consists of two inter-

connected SWAVE handheld (HH) SDRs [44], and the

dual directional coupler with 50-dB attenuation placed

in between, emulating the channel. SWAVE HH is an

SDR terminal designed to operate in very high frequency

(VHF) (30 to 88 MHz) and ultra high frequency (UHF)

(225 to 512 MHz) bands. It is compliant with the Soft-

ware Communications Architecture (SCA) 2.2.2 standard

and supports a multitude of legacy as well as new wave-

forms. Each HH is connected to the personal computer

(PC) via Ethernet as well as the RS-232 serial connection.

Interfaces between the HH and the PC are illustrated in

Figure 4.

Ethernet connection is used for the external control of

HH’s transmission-related parameters. Using the Simple

Network Management Protocol (SNMP) v3, values of all

of the relevant parameters - for our purposes transmission

frequency and transmission power - may be read out and

altered on-the-fly.

Serial connection is used for transferring unprocessed

spectrum data from the HH to the PC. There, this data

is analyzed by the developed energy detection spectrum

sensing mechanism and outputted to the spectrum intel-

ligence mechanism (currently under development, [45]).

Figure 3 Implemented coaxial test bed.
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Figure 4 Flow diagram of the interfaces HH-PC.

4.2 Jammer implementation

In order to infer influence of intentional interference on

the communication, a vector signal generator is used as

a jammer emulator. Interference of various types (pulse

tones, multitones, Global System for Mobile Commu-

nications (GSM) signal, additive white Gaussian noise

(AWGN)), occupied bandwidth, and power may be cre-

ated and injected in the channel.

5 Experimental methodology and results
The measurements and parameters relevant for the con-

structed game are:

• Impact of interference on the quality of

communication link,
• Transmission levels,
• Battery life of the HHs for varying transmission levels
• Number of considered channels,
• Time needed to perform frequency hopping,
• Spectrum sensing time,
• Spectrum sensing detection accuracy.

The connection between the HHs is established using

the soldier broadband waveform (SBW). SBW is a

wideband multi-hop mobile ad hoc network (MANET)

waveform, encompassed with self-establishment and self-

awareness of the network structure and topology. The

waveform’s bandwidth is 1.3 MHz, and channel spacing

is 2 MHz - large enough to disregard the influence

of potential energy spillover between adjacent chan-

nels. Experiments are done at 300 MHz central carrier

frequency.

Interference is created by injecting a pulse-shaped signal

onto the central carrier frequency of the HHs. To mea-

sure the impact of interference, a set of BER tests was

performed for varying levels of transmission power and

varying levels of interference. Results for three discrete

values of transmission power: −12, 4, and 7 dBW, respec-

tively, are presented in Figure 5. By setting the threshold

for the communication failure at BER = 10−1, corre-

sponding interference powers for the observed values of

transmission powers are found, equaling to: 1, 6, and 9

dBW, respectively.

Figure 5 SINR vs BER.
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Energy detection spectrum sensing is done in the fol-

lowing way: every 1.1 s, a burst of 8,192 samples from the

HH’s ADC is sent over the serial port to the PC. These

samples, corresponding to 120 MHz of the bandwidth

scanned around the HH’s center frequency, are then con-

verted into the frequency domain. The data may then be

analyzed by the spectrum intelligence algorithm. This data

processing currently lasts around 0.2 s, making the whole

spectrum sensing cycle last approximately 1.3 s.

Currently, the test bed does not have the spectrum

intelligence algorithm developed, whose task is processing

spectrum sensing data related to the scanned wideband

signal and concluding on the presence of narrowband

waveforms in it. Hence, presently it is impossible to infer

the detection accuracy of the spectrum sensing. For these

purposes, various levels of detection accuracy manifesting

in varying percentages of misdetection will be considered

for the simulation results. An interested reader is referred

to [46] for experimental results on the energy detection

accuracy.

Frequency hopping is performed by issuing the appro-

priate SNMP SET command over the Ethernet port to

the HH. The action of processing the SNMP request and

changing the frequency takes 0.3 s, during which the radio

is not transmitting. The frequency settling time of the

radios is in this case negligibleb.

HH’s battery time for states of continuous packet data

stream (packets are generated by the BER test function)

are measured for the identified relevant values of the

transmission power of−12, 4, and 7 dBW, equaling to 120,

94, and 90 min, respectively. The results for the relevant

transmission powers of the supposed jammer were then

linearly interpolated from the aforementioned, equaling to

99, 92, and 87 min, respectively.

The relevant parameters are summarized in Table 1.

6 Application to the proposed game and
simulation results

Starting from the general expressions for the payoffs of the

transmitter and the jammer given in Equations 1 and 2,

a short discussion is offered on the interpretation of the

parameters measured in the previous section and the

Table 1 Overview of the inferred parameters

Transmitter Jammer

Considered frequencies (MHz) (300, 302.65, 305.3) (300, 302.65, 305.3)

Transmitting powers (dBW) (−12, 4, 7) (1, 6, 9)

Battery life for TX powers (min) (120, 94, 90) (99, 92, 87)

Spectrum sensing time (s) 1.3 1.3

Frequency hopping time (s) 0.3 0.3

Signal detection accuracy (%) (50, 70, 90, 100) (50, 70, 90, 100)

feasibility of their application to the proposed game. The

discussion is followed by the simulation results.

6.1 Adaptation of the measured parameters to the

proposed game

One of the principal problems with introducing the exper-

imental parameters in the theoretical model is the process

of aligning the parameters with different units (namely,

Watts and seconds), used in Equations 1 and 2. The first

and second terms represent the transmission (jamming)

reward and penalty, which may be defined arbitrarily. For

the simulation purposes, we define them as R = 1 and

X = −R, respectively.

Hopping cost, the third term of the equation, can be

expressed as a function of the reward. If the hopping is

performed and the transmission is successful, the final

utility is decreased by the hopping cost, denoted as Rhαβ .

Here, h = 0,3
1,3 is the proportion of the time step where

the transmission is not taking place due to the hopping

process. An increase of the transmission power, on the

other hand, directly influences battery life. For this pur-

pose, transmission cost may be described as a function of

battery life of the radio, as denoted in (21). Maximum bat-

tery life corresponds to the minimum transmission power

of −12 dBW and equals to Bmax = 120 min. Transmis-

sion costs of higher transmission powers are then scaled

with respect to this value.

g(C) = R

(

1 −
B(C)

Bmax

)

(21)

Finally, for each step s, expression (1) may be re-written

as (22) and expression (2) as (23) for the transmitter and

jammer, respectively.

PT = RTα − RT (1 − α) − RThαβ − R

(

1 −
B(CT

s )

Bmax

)

= RT

(

α(2 − Hβ) +
B(CT

s )

Bmax
− 2

)

(22)

PJ = RJ (1 − α) + RJα − RJhγ (1 − α) − RJ

(

1 −
B(CJ

s )

Bmax

)

= RJ

(

Hγ (α − 1) +
B(CJ

s )

Bmax

)

(23)

Table 2 Overview of the parameters adapted to the game

Transmitter Jammer

R 1 1

h 0.3
1.3

0.3
1.3

g(C) (0, 94
120 ,

90
120 ) ( 99

120 ,
92
120 ,

87
120 )

Default probability of misdetection [%] 0 0
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Figure 6 Number of jamming occurrences while the number of channels increase.

Following the experiments denoted in Figure 5, the

occurrence of jamming in step s for the three couplets

of transmission powers CT = (−12, 4, 7) and CJ =

(1, 6, 9) can be defined as (24). An overview of the adapted

parameters is given in Table 2.

α =

{

1 if Ts > Js or f Ts �= f Js

0 if Ts ≤ Js and f Ts = f Js .
(24)

6.2 Simulation results

In this subsection, we analyze the performance of the con-

sidered learning algorithms under the proposed game and

compare it to the computed Nash equilibrium. All the

games are constructed using the parameters denoted in

Table 2, unless indicated otherwise. Default number of

simulation steps is 10,000. Each simulation is repeated 100

times, and the points are averaged. It was verified that

each pair of the constructed payoff matrices satisfy condi-

tion (13), guaranteeing uniqueness of a completely mixed

Nash equilibrium. In several games, a comparison with

the player whose strategy is fully randomized, i.e., taken

actions are irrespective of the observations, is performed.

Figure 6 shows the percentage of occurrences of suc-

cessful jamming for different dimensions of the players’

action sets, from games with one channel and one trans-

mission power, to four channels and three transmission

powers. In all games, transmitter is playing FP, whereas

jammer is alternating between FP (full lines) and random

strategy (dashed lines). Benefit of having the learning algo-

rithm for the jammer is particularly prominent for the

low-dimensional games, where the transmitter is able to

adapt to any static strategy of the jammer (including fully

randomized) and start exploiting it significantly.

To verify the importance of spectrum sensing capa-

bilities corresponding to the fictitious play learning

algorithm, we propose the analysis of the overall utility of

Figure 7 Overall payoff of the transmitter with different probabilities of misdetection.



Dabcevic et al. EURASIP Journal on Advances in Signal Processing 2014, 2014:171 Page 12 of 18

http://asp.eurasipjournals.com/content/2014/1/171

Figure 8 Overall payoff of the jammer with different probabilities of misdetection.

each player when the opponent is utilizing payoff-based

adaptive play. Furthermore, in order to understand how

the spectrum sensing accuracy affects the performance,

we consider a spectrum sensing mechanism with a certain

probability of misdetection. For the simplicity of analy-

sis, we disregard the fact that the misdetection probability

realistically depends on the instantaneous SINR. Figures 7

and 8 show the results of these simulations for transmitter

and jammer, respectively. In the left side of the figures, the

overall payoff obtained during the game for each player is

shown. For the visualization purposes, a trend is removed

in the right side of the figures.

From Figure 7, it is evident that the compared schemes

perform almost equally - regardless of the misdetection

probability - for the transmitter. This points to the conclu-

sion that the optimal strategy of the transmitter under the

considered game when the jammer is endowed with the

learning algorithm is not too far from ‘random’. On the

other hand, Figure 8 points once again to the significance

of the spectrum sensing for the jammer side, as its over-

all payoff is significantly higher when utilizing fictitious

play, compared to payoff-based adaptive play, even for

sub-optimal spectrum sensing mechanisms (mechanisms

with higher probabilities of misdetection).

In order to study this occurrence in more detail and in

order to ease-up the comparison, we next present these

results in the forms of normal distributions. Figure 9

shows the performance of the transmitter using PBAP

learning algorithm in the upper part and fictitious play

in the bottom part, for varying learning algorithms of the

jammer. Analogously, Figure 10 shows the performance

of the jammer employing PBAP learning algorithm in

the upper part and fictitious play in the bottom part,

for different learning algorithms of the transmitter. The

title of each subplot denotes the learning algorithm fol-

lowed by the observed player while colors of the lines are

Figure 9 Difference in the overall payoff for the transmitter under different learning policies.
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Figure 10 Difference in the overall payoff for the jammer under different learning policies.

a

b

Figure 11 State-groupedMarkov chain with the default parameters (a,b).
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used to differentiate between the learning strategies of the

opponent.

The results verify that the performance of the trans-

mitter is very similar while using PBAP (top part) and

fictitious play (bottom part). The exception is the case

when the jammer employs fictitious learning. In this case,

the transmitter will benefit slightly more by also deploy-

ing fictitious play in order to learn to infer the jammer’s

actions as soon as possible. The results for the jammer

confirm our intuition - significantly better results for both

cases are obtained using fictitious play.

Next, we aim to show how evolution of the game is influ-

enced when the parameters of the game are modified. As

explained previously, the state/action space of the players

can be depicted by Markov chains, where each Markov

state represents the current state of the player, and each

edge the probability of taking an action leading to the new

state. A graphical representation of the Markov transition

probabilities is difficult to interpret for the full set of states

of high-action-space games (higher than 2 × 2). Some

examples of the full Markov chains for small action spaces

may be found in [21]. This problem can partially be alle-

viated by creating state-groupedMarkov chains, as shown

in Figure 11a,b. Here, the number refers to the ordinal

number of transmission power (i.e., ‘1’= −12 dBW for

the transmitter, ‘1’= 1 dBW for the jammer, etc.). Actions

pertaining to frequency hopping are grouped and marked

as ‘h’, while actions of staying on the same frequency are

marked as ‘s’.

Then, the simulations are done for two extreme val-

ues of the hopping cost: 0.01 and 1.3, while keeping all

other parameters the same. Figure 12a,b shows the differ-

ences in final stochastic distributions of the transmitter’s

strategies. As expected, an evident trend of the learning

algorithm focuses on placing more importance on action

‘s’ as the hopping cost increases.

Stochastic distributions of the mixed strategy Nash

equilibrium for the transmitter and jammer under the

default game parameters may also be shown in the form of

the state-grouped Markov chains, as done in Figure 13a,b.

Finally, we perform the evaluation of the convergence

to Nash equilibrium in terms of the overall payoff for the

considered learning algorithms.

Figure 14 shows the convergence to Nash equilibrium

in terms of payoff for fictitious play. Here, the red line

shows the payoff obtained when both players are playing

Nash equilibrium strategies. The blue line shows the case

when the transmitter is playing the Nash strategy and jam-

mer is deploying fictitious play. As can be seen for the

jammer in the bottom part of the figure, fictitious play is

a

b

Figure 12 State-groupedMarkov chain for different hopping cost (a,b).
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a

b

Figure 13 State-groupedMarkov chain for the transmitter and jammer playing Nash equilibrium (a,b).

Figure 14 Comparison of fictitious play to Nash equilibrium strategy.
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Figure 15 Comparison of PBAP to Nash equilibrium strategy.

able to obtain performance nearly as good as the strat-

egy played in Nash equilibrium, when the opponent is

playing according to Nash. Similar conclusions, although

once again less prominent, may be drawn from the upper

part of the figure for the transmitter playing fictitious

play and jammer playing according to Nash equilibrium.

The results are compared to the flow of the game when

both players are playing according to fictitious play (black

line). The results correspond to the results of [36] -

fictitious play indeed seems to converge in the payoff to

ǫ-equilibrium.

Similar results are obtained for the PBAP when faced

against the Nash strategy. Figure 15 shows the conver-

gence comparison for the jammer.

7 Conclusions
In the paper, a cognitive radio stochastic jamming/anti-

jamming game between two players was modelled.

Increased action space of the anti-jamming algorithm

was created by combining power alteration and chan-

nel hopping. Two learning algorithms were considered:

payoff-based adaptive learning corresponding to radios

without spectrum sensing capabilities and fictitious play

which may be utilized by the spectrum-sensing radios. In

addition to their performance, their convergence proper-

ties to Nash equilibrium in terms of overall payoff and

empirical distributions of the strategies were studied. In

order to narrow the gap between the theoretical con-

straints inherent to game theory and practical aspects of

the communication systems, relevant parameters for the

game were inferred by performing a set of experiments

using the real-life software-defined radio test bed. The

major finding of the paper is the importance of the spec-

trum sensing endowment for the jamming side, compared

to relatively insignificant benefits for the transmitting side

in proactive anti-jamming games. In addition, evolution

dynamics for different game parameters were presented.

Deployment of the feature detectors is a logical next

step in the arms race between the narrowband jammers

and the anti-jamming systems. However, introduction of

the additional parameters under the currently proposed

framework would increase the action space to the point

of infeasibility for analysis. For this purpose, future work

will focus on finding ways for clusterizing overly com-

plex action spaces and further optimizing their graphical

representations by the means of state-grouped Markov

chains.

In addition, once that the deployed SDR/CR test bed

becomes endowed with the spectrum intelligence and

automatic-reconfigurability capabilities, it will be used for

testing and verification of the adaptation of the proposed

game-theoretical schemes.

Endnotes
aThis assumption may be built upon the existence of

the threshold effect, characteristic for digital

communication systems, where there is a certain SINR

below which the BER significantly rises, and the

communication systems perform poorly [33].
bIn the cases of devices able to perform fast frequency

hopping, and whose spectrum sensing and processing

time is comparable to the frequency settling time, or in

the games with smaller step sizes, this parameter would

play a difference and should not be disregarded.
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