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Radio astronomy organisations desire to optimise the terrestrial radio astronomy observations by mitigating against interference
and enhancing angular resolution. Ground telescopes (GTs) experience interference from intersatellite links (ISLs). Astronomy
source radio signals received by GTs are analysed at the high performance computing (HPC) infrastructure. Furthermore,
observation limitation conditions prevent GTs from conducting radio astronomy observations all the time, thereby causing low
HPC utilisation. �is paper proposes mechanisms that protect GTs from ISL interference without permanent prevention of ISL
data transmission and enhance angular resolution. �e ISL transmits data by taking advantage of similarities in the sequence of
observed astronomy sources to increase ISL connection duration. In addition, the paper proposes a mechanism that enhances
angular resolution by using recon	gurable earth stations. Furthermore, the paper presents the opportunistic computing scheme
(OCS) to enhance HPC utilisation. OCS enables the underutilised HPC to be used to train learning algorithms of a cognitive base
station. �e performances of the three mechanisms are evaluated. Simulations show that the proposed mechanisms protect GTs
from ISL interference, enhance angular resolution, and improve HPC utilisation.

1. Introduction

Astronomy is the scienti	c study of the universe by analysing
astronomy source signals. Astronomy source signals can be
received by either ground or space telescopes. Astronomy
observations can also be categorised based on the signal
source. Astronomy source signals that are observed by
ground telescopes (GTs) can arise from optical, radio, and
gravitational waves. In addition, astronomical source signals
from X-ray, infra-red, and ultraviolet radiation are observed
from space telescopes.

Radio and gravitational astronomy observations are com-
plementary [1–3] and help in understanding the universe.�e
spectrumaccess of terrestrial radio astronomyobservations is
in
uenced by wavelength variation due to red shi� and blue
shi�. Wavelength variation necessitates that GTs should have
access to signi	cant bandwidth resources. Terrestrial radio
astronomy observations experience interference from the
radio waves radiated by intersatellite links (ISLs) of low earth

orbiting satellites.�e use of ISLs is projected to increase due
to small satellite proliferation [4–7].

Hence, a solution that protects terrestrial radio astronomy
observations from interfering ISLs is needed. Such a solution
can be designed using the cognitive radio (CR). �e CR
dierentiates users based on their priority to access the
radio spectrum. �e two types of users recognised by a CR
are primary users and secondary users with higher and
lower spectrum access priority, respectively. �e CR can be
used to design interference protection schemes by using
the interweaving or underlay spectrum sharing model. �e
interweaving spectrum sharing model enables secondary
users to share access to the radio spectrum with primary
users. �e sharing is realised by informing secondary users
of the spectrum access epochs of primary users. Being aware
of primary user spectrum access epochs, the secondary users
can use the spectrum when primary users are absent.

A CR based interweaving spectrum sharing framework
that protects GTs from ISL interference is proposed in [8].
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In [8], the primary user is the GT, while the secondary user is
the ISL. �e information on the epochs of astronomy source
observation is accessible to the satellite and is used to deter-
mine the ISL activation epoch and duration. �e CR is used
to deactivate the ISL for a given duration, while terrestrial
radio astronomy observations are ongoing. �e results in [8]
require further investigation to examine relations between
GT interference protection and the similarities in the patterns
of the observed astronomy sources.

Furthermore, organisations desiring to conduct radio
astronomy observations can be classi	ed based on GT avail-
ability. Some organisations can aord to construct their own
GTs, while others convert unused earth stations to GTs. �e
conversion of unused earth stations is feasible due to the
increasing use of 	bre optic cables instead of satellites for
broadband Internet access [9–14]. �e discussion in [9–14]
focuses on utilising converted unused satellite earth stations
as GTs but does not consider the presence of terrestrial
wireless networks in the destination electromagnetic envi-
ronment of converted earth stations. In addition, the use
of converted telescopes should also enhance the angular
resolution of the terrestrial radio astronomy observations.
Hoare and Rawlings [10] propose the use of a multimode
telescope for satellite communications and terrestrial radio
astronomyobservations.�edynamic use of amultimodeGT
should enhance the angular resolution. �e recon	gurable
CR can be used to enhance the angular resolution when
multimode GTs are used in terrestrial radio astronomy. �e
GT realised via conversion is also susceptible to interference
when its destination environment comprises terrestrial wire-
less networks. �erefore, GTs require interference protection
mechanisms.

In addition, terrestrial radio astronomyorganisations also
seek tomaximise high performance computing (HPC) infras-
tructure utilisation. According to Barbosa et al. [15], the Ata-
cama Large Millimetre/Submillimetre array (ALMA)’s HPC
is underutilised due to observation limitation conditions.
HPC utilisation can be improved by using techniques such
as time multiplexing. However, other multiplex techniques
such as duty cycle division multiplex which outperform time
multiplexing have been proposed [16–18]. �erefore, a duty
cycle multiplex scheme that can enhance HPC utilisation is
required.

�is paper addresses two goals for terrestrial radio astron-
omy organisations using converted GTs. It proposes mecha-
nisms that optimise the conduct of terrestrial radio astron-
omy observations by avoiding interference and improving
angular resolution.�epaper also proposes amechanism that
enhances HPC utilisation. �is paper makes the following
contributions:

(1) It proposes an optimisation framework for terres-
trial radio astronomy observations. �e optimisa-
tion framework protects terrestrial radio astronomy
observations from ISL interference and enhances
the angular resolution of terrestrial radio astronomy
organisation. �e paper analyses additional data sets
from the KarooArray Telescope [19] to investigate the
range of ISL transmit duration permissible without

causing interference to GTs.�e angular resolution is
also enhanced by using CR enabled multimode GTs
for terrestrial radio astronomy observations.

(2) It proposes an intelligent framework that uses sim-
ilarities in astronomy source observation data for
proactive interference avoidance between ISLs and
GTs.

(3) �e paper proposes the opportunistic computing
scheme (OCS) that uses a duty cycle multiplex to
enhance HPC utilisation. �is paper investigates
OCS’s success probability and the terrestrial wireless
network throughput as a function of the number of
GTs.

�e remainder of this paper is organised as follows.
Section 2 discusses the related literature. Section 3 focuses on
problem de	nition. Section 4 presents the proposed mech-
anisms. Section 5 discusses the simulation results. Section 6
concludes the paper.

2. Related Work

�is section is divided into two parts.�e 	rst part addresses
issues related to optimising terrestrial radio astronomy obser-
vations. It discusses literature focusing on the interference
protection of GTs and improving angular resolution. �e
second part discusses the improvement of HPC utilisation.

2.1. Optimising Terrestrial Radio Astronomy Observations.
Interference-free spectrum access and the improvement
of angular resolution are important goals in the conduct
of terrestrial radio astronomy observations. �e goal of
interference-free spectrum access can be achieved via spec-
trum reservation [20–24]. Spectrum reservation aims to
ensure that new services do not encroach into bands ded-
icated for terrestrial radio astronomy observations. How-
ever, spectrum reservation faces interference challenges from
new services which are ignorant of terrestrial radio astron-
omy observations. Interference mitigation measures such as
restricting satellites fromGT sky region are proposed in [24].
�e solution in [24] does not consider the forwarding of
data via ISLs through the satellite network. A restriction of
satellites increases latencywhen the shortest path through the
satellite network lies in the GT sky region. �e proliferation
of small satellite constellations [4–7] that use ISLs poses
interference risks to GTs.

Another area of innovation in terrestrial radio astronomy
observations is the conversion of unused earth stations to
GTs.�e increasing use of optical cables has been recognised
to make some satellite earth stations redundant [9–14]. GTs
realised from converted earth stations have been used in
the UK [9, 10], Mozambique [11], Ghana [12, 13], and New
Zealand [14]. �e conversion of unused satellite earth sta-
tions enables the reuse of satellite installations and reduces
astronomy infrastructure cost. However, the converted earth
stations have been those without a tracking system.

It can be inferred from [9–14] that the satellite earth sta-
tions to be converted have been le� unused for a long period
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of time.During the idle time of unused earth stations, the roll-
out of terrestrial wireless networks in concerned areas is not
unlikely, thereby exposing GTs to terrestrial wireless network
interference as inferred from [25–28]. �erefore, converted
earth stations require interference protection mechanisms
when they are in the vicinity of terrestrial wireless networks.

�e use of additional earth stations alongside converted
earth stations increases the number of GTs and the baseline.
�e increase in the number of GTs and baseline gives an
opportunity to improve the angular resolution of terrestrial
radio astronomy observation. In the absence of additional
GTs, the terrestrial radio astronomy organisation has a 	xed
baseline. �e angular resolution can be improved in a GT
array with a dynamic baseline.

Furthermore, Woodburn et al. [14] recognise that the
Goonhilly-3 GT can be used for satellite communications
and terrestrial radio astronomy. Such a GT reduces costs due
to dish and transponder reuse. A dual purpose GT can be
opportunistically used to increase the baseline of terrestrial
radio astronomy observations for a given period of time.
However, the dual purpose GT intended for satellite com-
munications and terrestrial radio astronomy observations
requires mode switching mechanisms. �e mode switching
mechanism determines the epochs where the dual purpose
GT can be used for receiving packets or radio astronomydata.
�e dual GT cannot be concurrently used for communica-
tions and astronomy observations. �is is because the high
transmit power in communication signals interferes with the
astronomy source radio signal. �e dual GT should also host
mechanisms that protect it from terrestrial wireless network
interference.

In addressing the challenges of interference mitigation
and enhancing angular resolution, this paper considers the
CR as suitable. CR spectrum sharing models are suitable for
the design of interference protection schemes for terrestrial
radio astronomy observations. In [29], the CR application
considers the underlay spectrum sharingmodel and prevents
interference by limiting terrestrial wireless network trans-
mit power. A reduction of the terrestrial wireless network
transmit power is proposed in [29] because astronomy source
transmit power cannot be controlled. Investigations in [29]
show that the desired coexistence between terrestrial wireless
networks and GTs is infeasible. �is is because of the large
transmit power of terrestrial wireless networks compared to
the very low received signal strength of astronomy source
signals. However, the CR supports other spectrum sharing
models such as the interweaving spectrum sharing model.

In addition, the CR bene	ts from the recon	gurable
so�ware de	ned radio. Being recon	gurable, the CR can
be used to design a dual GT with a dynamic baseline. �e
inclusion of a dual GT in amanner that increases the baseline
enhances observatory angular resolution.�e inclusion of the
CR in the dual GT enables the design of a GT that responds to
the requirement of improving the angular resolution. Being
suitable for designing solutions that enhance interference
mitigation and angular resolution, the CR can be used
to design technical solutions that enhance terrestrial radio
astronomy observations [30]. However, the use of the CR in
this aspect requires further consideration.

2.2. High Performance Computing Infrastructure Utilisation.
�e HPC is used to process the astronomy source radio
waves that are received by GTs. It is connected to the GTs via
optic 	bre links.�e terrestrial radio astronomy organisation
should maximally utilise the HPC. Barbosa et al. [15] point
out that the ALMAHPC has a 38% utilisation as indicated in
theALMACycle 0 report.�is results in low power e�ciency,
since the HPC is powered all the time [15].

�e resulting HPC underutilisation can be addressed by
using multiplexing techniques. Multiplexing techniques have
been used inwireless communications for sharing bandwidth
resources and suitable for enhancing HPC utilisation. �e
use of multiplexing proposed in [15] can also be extended
to accommodate data processing from cognitive terrestrial
wireless networks. Such an application can enhance the CR
autonomous capability as seen in [31, 32]. �e CR in [31,
32] has a limited autonomous capacity because it does not
autogenerate and train new learningmechanisms. Generative
arti	cial intelligence [32] can enable the CR to autogenerate
and train new intelligent mechanisms. �e autogenerated
learning mechanisms can be used to determine CR trans-
mission parameters a�er training [33, 34]. �e discussion in
[31, 32] has not considered using HPC’s unused computa-
tional resources to train autogenerated learningmechanisms.
Andreani [35] presents results that can be used to estimate the
GT nonobservation time fraction in ALMACycle 3 spanning
the period fromOctober 2015 to August 2016.�e discussion
in [35] also identi	es factors causing GT observation limi-
tations such as opacity and phase stability. �e occurrence
of observation limitations aects GTs observation and is
independent of interference from ISLs or terrestrial wireless
networks. From the estimated observation fraction presented
in [35], the ALMA HPC is le� unutilised for 51.4% of the
time that it is powered. �ough, the ALMA underutilisation
is noted to have reduced by 10.6%, an underutilised capacity
of 48.6% still exists.

3. Problem Definition

�is section describes the challenges being addressed for
a terrestrial radio astronomy organisation that uses GTs
realised from converted unused earth stations. It is divided
into two parts. �e 	rst part focuses on the optimisation
goals. In the 	rst part, the challenges discussed are those
of interference avoidance and enhancing angular resolution.
�e second part describes the problem of enhancing HPC
utilisation.

3.1. Optimisation: De�ned Challenges for Terrestrial Radio
AstronomyObservations. �e considered scenario comprises
low earth orbit satellites, GTs, cognitive base stations, and the
HPC. �e satellites are connected using ISLs. �ese entities
have the following capabilities:

(1) Satellites: they are located in the low earth orbit
and have a shortest path routing and station keeping
algorithms

(2) High performance computing (HPC) infrastructure:
the HPC is peta-scale and general purpose and is
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shielded from radio frequency interference. It allo-
cates computational units to each GT and has access
to high speed Internet links. �e HPC can also
determine when observation limitation conditions
cause HPC underutilisation

(3) Ground telescopes (GTs): GTs are installed a�er
launching the satellite constellation. �ey are con-
nected to the HPC by optic 	bre links. �ey present
the observed astronomy source radio signals to the
HPC. Each GT allocated HPC computational units.
�e allocated HPC computational units are used to
process signals received from the GT

(4) Cognitive base station (CBS): the CBS is a massive
multiantenna system and is the central entity in
terrestrial wireless network. It incorporates generative
arti	cial intelligence, autogenerates learning mecha-
nisms, and is connected to the HPC via high speed
Internet links.�eCBSuses the orthogonal frequency
division multiplex-space division multiple access
technology and receives signal streams frommultiple
terrestrial wireless network subscribers. Individual
subscriber signals are extracted from the multiplexed
signal by an arti	cial neural networkmultiuser detec-
tor. �e multiuser detection aims to reduce user bit
error rate. �e CBS receives subscriber bit error rate
via the control channel. It compares subscriber bit
error rate with a prede	ned bit error rate threshold.
�e CBS autogenerates new arti	cial neural network
multiuser detectors when user bit error rate exceeds
the bit error rate threshold. It keeps existing arti	cial
neural network multiuser detectors and examines
their suitability in dierent future contexts

Let �, �, �, and � denote the set of satellites, GTs, HPC
computational units allocated to GTs, and the utilisation of
HPC computational units allocated to GTs, respectively.� = {�1, . . . , ��} ,� = {�1, . . . , ��} ,� = {�1, . . . , ��} ,� = {�1, . . . , ��} ,

(1)

where � and 	 are the maximum numbers of ISLs and GTs,
respectively.

In addition, let 
, �, ��, and �� be the sets of satellite
sky region, GT sky region, ISL frequency, and GT frequency,
respectively. 
 = (
1, . . . , 
�) ,� = (�1, . . . , ��) ,�� = (��1 , . . . , ���) ,�� = (��1 , . . . , ���) .

(2)

Satellites that are interconnected via ISLs and in the
sky region of GTs cause intermodulation interference to

h�s

h�a

G1
G2

s11

s12

s13

Figure 1: Interference between ISLs and GBTs.

terrestrial radio astronomy observations. �e spectral main
and side band signals are transmitted in the ISL antenna
main lobe and side lobes, respectively. �e presence of
multiple satellites in the low earth orbit leads to the existence
of multiple side lobes alongside each ISL main lobe due
to nonideal satellite side lobe suppression. �e ISL signal
interferes with the astronomy source radio signal because the
ISL’s main and side lobe signals have a higher power than the
astronomy source radio signal power.

Interference arises between ISLs and GTs when �� = 
�,��� = ��� , � ∈ {1, . . . , 	}, and � ∈ {1, . . . , �}. A scenario
showing the occurrence of an interference point can be seen
in Figure 1. In Figure 1, astronomy sources and satellites have
altitudes, ℎ�	 and ℎ�
, respectively, where ℎ�	 > ℎ�
.�e operating
frequencies of GTs, �1, �2, are ��1 and ��2 , respectively. �e

satellite sky region has three satellites, �11, �12, and �13, which
are connected with ISLs. ISLs �11-�12, �12-�13, and �11-�13 transmit
on ��1 , ��2 , and ��3 , respectively. �e interference point in
Figure 1 arises via either additive or multiplicative or other
combinations of radio astronomy and the ISL signals.

�e interference arises because of the nonlinear com-
bination of ISL and astronomy source signals. ISL signals
have intermodulation products that are radiated through the
satellite antenna’s main and side lobes. �e radiated signals
comprise intermodulation products and have a higher power
than the astronomy source signals. �e stronger ISL radiated
signals cause interference with the weaker astronomy source
signal. In the problem formulation here, the paper aims to
demonstrate that ISL signals cause interference to astronomy
source signals. �e ISL signal is recognised to comprise
multiple intermodulation products; the aim here is not to
list these products but to demonstrate that their presence
interferes with terrestrial radio astronomy organisations.

Let ����,�� denote the ISL signal from satellite �	, � ∈{1, . . . , �}, traversing 
 over ��. In addition, let �� denote
the astronomy source radio signal � received by �� in �,
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respectively. In the absence of interference protection, the GT

receives the signal, ���,��,��,�� , given as

���,��,��,�� = � + �,
� = �∑
	=1

�∑
�=1
����� ,�� + �∑

=1

�∑
�=1
��� + �∏
	=1

�∏
�=1
����� ,��

× �∏
=1

�∏
�=1
��� ,

� = �∑
	=1

�∑
�=1
����� ,�� + �∏

=1

�∏
�=1
��� + �∏
	=1

�∏
�=1
�����,�� .

(3)

� and � are intermodulation products arising from the
additive and multiplicative components of ���� ,�� and ��.
�e additive and multiplicative components arise due to the
combinations of dierent ISL signal components alongside
components of the astronomy source radio signal.

Furthermore, let��(�), (�, �), and !�(�) denote the sets
of (1) terrestrial wireless networks in GT vicinity at time �, (2)
GTs baseline at time �, and (3) GT observation wavelength at
time �, respectively.

� = {�1, . . . , ��} ,
�� (�) = {��1 (�) , . . . , ��� (�)} , (�, �) = {( (�1, �)) , . . . , ( (��, �))} ,!� (�) = {!�1 (�) , . . . , !�� (�)} .

(4)

�e angular resolution,&(	−4, �1), at time �1 given (	−4)
GTs is

& (	 − 4, �1) = �−4∑
�=1

(!�� , �1)
max ( (��, �1)) . (5)

Given that the baseline can be increased by using an addi-
tional GT such that max( (��−3, �1)) > max( (��−4, �1)),
the angular resolution, &(	 − 3, �1), is

& (	 − 3, �1) = �−3∑
�=1

(!�� , �1)
max ( (��, �1)) . (6)

However, the terrestrial astronomy organisation requires
an algorithm that enables it to increase its baseline by using
an additional GT.�e access to the additional GT ensures that
max( (��−3, �1)) > max( (��−4, �1)) without constructing
a newGT. In addition, let��(�) be the set of terrestrial wireless
network frequencies in GT vicinity:

�� (�) = {��1 (�) , . . . , ��� (�)} , (7)

where ' is the maximum number of terrestrial wireless
network channels. Interference arises between the terres-
trial wireless network and GTs when ���� (�) = 1/!��(�),

HPCG1

G2

Gp

HPC utilisation between 12% and 50%

HPC utilisation between 50% and 80%

HPC utilisation less than 12%
Optic �bre link (OFL)

Allocated computational units on HPC

Figure 2: HPC underutilisation.

'� ∈ {1, . . . , '}. Hence, GTs require an interference protection
mechanism.

�ediscussion above has not considered the processing of
the signals received by each GT. Each GT allocated �� HPC
computational units, each having utilisation ��. �e relations
between GTs and the HPC for a case of HPC underutilisation
and near optimal utilisation are shown in Figures 2 and 3,
respectively.

Figure 2 shows the case where �, � ∈ {1, . . . , 	},
GTs utilise the HPC. �e 	rst, second, and �th GTs have
utilisation lying within 12% to 50% to 80% and less than 12%,
respectively. In this case, �1,res HPC computational units are
unutilised.

Figure 3 shows the case where � GTs have near optimal
HPC utilisation because all GTs utilise their computational
units by up to 80%. In this case, HPC’s underutilised compu-
tational unit is �2,res and �2,res < �1,res.

�e scenario given in Figure 2 can be described as

�2 > �1 > �,�1 = �2 = �,
∑
=1
� (1 − �) = �1,res.

(8)

�e scenario given in Figure 3 can be described as

�2 = �1 = �,�1 = �2 = �,
∑
=1
� (1 − �) = �2,res.

(9)
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HPCG1

G2

Gp

HPC utilisation greater than 80%
Optic �bre link (OFL)

Allocated computational units on HPC

Figure 3: Near optimal HPC utilisation.

Given that �th is the threshold computational unit
required for HPC sharing, the underutilised HPC can be
shared with external applications if �1,res < �th or �2,res <�th. However, the HPC requires a mechanism to verify when�1,res < �th or �2,res < �th.
4. Proposed Schemes for Enhancing Terrestrial

Radio Astronomy Observation

�is section presents the proposed schemes and consists of
two parts. �e 	rst part discusses the optimisation schemes.
�e optimisation scheme protects terrestrial radio astronomy
observations from ISL interference and enhances angular
resolution.�e second presents the opportunistic computing
scheme (OCS) proposed to enhance HPC utilisation.

�e proposed schemes incorporate the CR that is recon-
	gurable and can make decisions for dierent contexts of
a given application. �ough most CR applications focus on
terrestrial wireless networks, CR capabilities can enhance ter-
restrial radio astronomy observations goals. �e CR acquires
environmental awareness via sensing,makes inferences using
sensed results, determines recon	guration options, and exe-
cutes the recon	guration decisions.

4.1. Proposed Optimisation Mechanisms. �e optimisation
of terrestrial radio astronomy observations aims to achieve
interference mitigation and enhance angular resolution. In
this paper, we propose a CR interference mitigation frame-
work that extends [8] by considering the similarities in the
observation order of astronomy sources.

�e interference mitigation framework is located on the
satellite, assumes that the astronomy organisation has a
database of the epochs of previously observed astronomy
sources, and comprises three entities. �e entities are as
follows:

(1) Cognitive reasoner (CRE): the cognitive reasoner
receives two sets of information from the terrestrial
radio astronomy organisation.�e 	rst set comprises
the right ascension RA, declination  , observation
frequency OF, duration ODu, and dates ODt. �ese
are held in the tuple (RA,  ,OF,ODu,ODt). �e
second set comprises similarly observed sources,� with right ascension RA, and total observation
duration  . �e information on RA and  is held
in *. �e information on �, *, and - is held in
the tuple (�, *, -). �e CRE uses the information
in (RA,  ,OF,ODu,ODt) and (�, *, -) to determine
the ISL activation epochs and duration. �e tuples(RA,  ,OF,ODu,ODt) and (�, *, -) are the 	rst and
second tuples, respectively

(2) Cognitive ISL deactivator (CSLA): the CSLA receives
CRE outputs and uses these to determine the ISL
transmission status and duration

(3) Plan acquisition channel (PAC): the PAC is a control
channel that enables communications between the
satellite’s CRE and the terrestrial radio astronomy
organisation.�e 	rst and second tuples are transmit-
ted to the CRE from the terrestrial radio astronomy
organisation via the PAC

�e consideration of similarities implies that satellite does
not have to analyse similar patterns all the time, thereby
increasing ISL duration without interfering with GTs. �e
satellite does not have to analyse similar patterns all the time.
�erefore, using similarity information can prevent inter-
ference to ongoing terrestrial radio astronomy observations
while increasing ISL transmit duration.

�e framework’s 
owchart is shown in Figure 4.As shown
in Figure 4, the astronomy organisation transmits the 	rst
and second tuples via the PAC to the satellite via the PAC
prior to commencing an observation. �e CRE receives the
	rst and second tuples and analyses them to determine the
interference free ISL transmit epochs and duration. �e CRE
also determines whether a new similar pattern of observed
sources is in the data received via the PAC. �e new similar
pattern is then used to update the second tuple on the
satellite. �e CSLA receives the CRE outputs and uses them
to con	gure the ISL transmission status and duration.

Besides interference protection, optimising terrestrial
radio astronomy observations also requires enhancing angu-
lar resolution. CR’s recon	gurability is a useful feature in
this regard. �is paper applies a CR user classi	cation to
terrestrial radio astronomy observations. Terrestrial radio
astronomy observations can be conducted using either pri-
mary GTs or secondary GTs. A primary GT is a GT that is
designed for terrestrial radio astronomy observations only.
�e secondary GT is a GT that is capable of multiple
applications. It can be used for other applications besides
terrestrial radio astronomy observations. �e Goonhilly-3
GT [14] intended for satellite communications and radio
astronomy observations is an example of a secondary GT.
�is paper extends [14] by considering the CR as being
suitable for designing a secondary GT.
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CRE determines intersatellite link deactivation
epoch and duration

Yes

No

Astronomy organization creates {RA,OF,Odu,ODt} and {G, S, I}

Transmit {RA,OF,Odu,ODt} and {G, S, I} to satellites via the PAC

{G, S, I} in satellite
database?

Update satellite {G, S, I}

CSLA receives information from the CRE and
deactivates ISLs for determined duration at epochs

determined by the CRE

Figure 4: Flowchart of the learning framework.

�e secondary GT incorporates a CR with mode switch-
ing and spectrum sensing mechanisms. �e mode switching
mechanisms enable the secondary GT to process commu-
nication packets and radio astronomy signals. �is paper
proposes a framework that enables interactions between
terrestrial radio astronomy organisations (with primary GTs)
and secondary GTs. Primary and secondary GTs interact via
the Internet. Secondary GTs belong to other organisations.
Radio astronomy data observed by the secondary GT are
transmitted to the terrestrial radio astronomy organisation
via the Internet.

�e framework proposed to enhance the angular reso-
lution has two ends belonging to the terrestrial astronomy
organisation and the organisation that owns the secondary
GTs. Each end has two entities. �e entities at the terrestrial
radio astronomy organisations are as follows:

(1) Astronomy data processor (ADP): the ADP processes
radio astronomy data from primary and secondary
GTs

(2) Satellite astronomy interface (SAI): the SAI holds
information on the terrestrial radio astronomy organ-
isation’s observation objectives. It accesses accessible
secondary GTs information capability via the Internet

�e entities at the organisation that owns the secondary GTs
are as follows:

VIF

SPP

SAI
ADP

Internet

Secondary GTs

Primary GTs

Figure 5: Interaction between primary and secondary GT.

(1) Visibility interface (VIF): the VIF collates infor-
mation on the satellite visibility epoch and dura-
tion. �e VIF accesses radio astronomy observation
requirements from the SAI and determines suitable
secondary GTs. In addition, the VIF obtains radio
astronomy data from secondary GTs that are used
for terrestrial radio astronomy observations. �e
obtained data is sent to the SAI via the Internet. �e
SAI sends radio astronomy data received from the
VIF to the ADP

(2) Satellite packet processor (SPP): the SPP processes
satellite communication packets when secondary GTs
are used for satellite communications.

In this paper, the secondary GTs are owned by satellite
communication network operators.

Relations between the ADP, SAI, VIF, and SPP are shown
in Figure 5. In Figure 5, the secondary GT’s packets and
satellite visibility epochs are transmitted to the VIF. �e VIF
forwards packets to the SPP. It obtains and transmits satellite
visibility epochs to the SAI via the Internet. CES data are
processed at the ADP. Secondary GT’s astronomy data are
also sent to the ADP via the Internet. �e SAI is aware of
terrestrial radio astronomy observation goals and checks the
SVB for available secondary GTs using SAI information. A
bidirectional link exists between the SAI and the VIF.
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Data obtained from the SAI are used by the VIF to select
secondary GTs that satisfy the terrestrial radio astronomy
organisation’s observation objectives. �e selection is done
at the VIF. �e selection algorithm considers the desired
observation longitude, 0�
, latitude, 2�
 , and frequency, ��, of �.
�e information on 0�
, 2�
 , and �� is held in 5�1 . �e selection
procedure considers the 6th secondary GT’s longitude, 0��,
latitude, 2�� , and CR frequencies, ��� . Information on 0��, 2�� ,
and ��� is held in 5�2 . �e SAI selects the secondary GTs for
which the Euclidean distance �(5�1 , 5�2 ) is minimum.

� (5�1 , 5�2 )
= min

�∑
�=1

�∑
�=1
√(0��
 − 0��)2 + (2��
 − 2�� )2 + (��� − ��� )2. (10)

�e secondary GT hosts a cyclostationary detector that
can perfectly dierentiate between radio astronomy and
terrestrial wireless network signals. �e perfect dierenti-
ation is achieved because terrestrial wireless networks use
modulation schemes with known cyclostationary signatures.
�e secondary GT stops radio astronomy observations
when terrestrial wireless signals are detected. �e proba-
bility 8�(�, 6, �(5�1 , 5�2 )) that using 6 secondary GTs helps
the terrestrial radio astronomy organisation to realise its
observation objectives is

8� (�, 6, � (5�1 , 5�2 )) = 1 − 9−(�+�)�(�	1 ,�
2 ). (11)

�e use of secondary GTs also enhances the angular res-
olution. A smaller angular resolution is more bene	cial. �e
angular resolution, �1, when the terrestrial radio astronomy
organisation does not use secondary GTs is

�1 = �∑
�=1

!�:max

, (12)

where!� is the observationwavelength of the �thGT and :max

is the observatory baseline.
In the case where there are terrestrial wireless networks

in the vicinity of primary and secondary GTs, primary
and secondary GTs experience interference. �e resulting
interference reduces the baseline’s contribution in enhancing
the angular resolution. �e angular resolution is degraded
because the electromagnetic radiation pattern of the ter-
restrial wireless network in	ltrates that of the astronomical
source being received by GTs. Given that the baseline is
reduced by ;, the angular resolution �2 when secondary GTs
are not incorporated and primary GTs experience terrestrial
wireless network interference is

�2 = �∑
�=1

!�:max (1 − ;) . (13)

�e use of secondary GTs alongside primary GTs
improves the angular resolution, while using additional
secondary GTs increases the baseline. In this case, the
baseline is increased by ��. Assuming that both primary and

secondary GTs are unaected by terrestrial wireless network
interference, the angular resolution �3 is

�3 = �∑
�=1

!�:max (1 + ��) +
��∑
�=1

!�:max (1 + ��) , (14)

where !� is the 6th secondary GT’s observation wavelength
and �� is the maximum number of secondary GTs.

In the event that primary and secondary GTs have
terrestrial wireless networks in their vicinity. it is considered
that primary and secondary GTs do not incorporate and
incorporate an ideal cyclostationarity detector, respectively.
�e angular resolution, �4, is

�4 = �∑
�=1

!�:max (1 + ��) (1 − ;) +
��∑
�=1

!�:max (1 + ��) . (15)

4.2. Opportunistic Computing Scheme (OCS). �e proposed
OCS is a synergy between the CBS and HPC. �e CBS uses
arti	cial neural network multiuser detectors to ensure low
bit error rate signal reception. �e multiuser detectors are
developed by training the neural networks with dierent
bits of known modulated signals and user bit patterns for
dierent channel states and multiantenna con	guration. �e
cyberphysical system has two Internet entities that interact
with the CBS and the HPC. �ese entities are as follows:

(1) Neural resource monitor (NRM): the NRMmonitors
CBS’s usage of computational resources. It determines
when the CBS resources are insu�cient for devel-
oping newly autogenerated arti	cial neural network
multiuser detectors. �e NRM receives training data
and instructions from the CBS and sends them to the
TRM

(2) Training resource monitor (TRM): the TRM receives
CBS training data and instructions from the NRM.
It sends CBS training data and instructions of arti	-
cial neural network multiuser to underutilised HPC.
�e HPC executes CBS training instructions when
observation limitation conditions results in HPC
underutilisation by the GTs.

�e OCS system showing relations between the CBS and
the HPC at epochs �1 and �2 is shown in Figure 6. �e
CBS autogenerates new arti	cial neural network multiuser
detectors when the obtained bit error rate exceeds the
prede	ned threshold.

As shown in Figure 6, the CBS initially has four arti	cial
neural networkmultiuser detectors, that is, brain like learning
mechanisms at epoch �1. �e achieved bit error rate exceeds
the prede	ned threshold bit error rate at epoch �1. Hence,
the development of new arti	cial neural network multiuser
detectors is required. �e CBS autogenerates new arti	cial
neural network multiuser detectors at �2. However, at �2, the
CBS does not have su�cient computational units to train
the two autogenerated arti	cial neural network multiuser
detectors. �e OCS success probability is formulated using
the probability that there are su�cient HPC computational
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Figure 6: Evolution of states of arti	cial neural network multiuser detectors at epochs �1 and �2.
units for � GTs at time �, 8�(�, �), and the probability of CCM
failure for � telescopes at time �, 8	(�, �). OCS fails in the
following cases:

(1) �ere is TRM failure incident, though there are
su�cient HPC computational resources.

(2) �e TRM does not fail but there are insu�cient HPC
computational resources.

�e OCS success probability, 8OCS(�, �), can be obtained
as follows:8OCS (�, �) = 1 − (8	 (�, �) × 8� (�, �) + (1 − 8	 (�, �))× (1 − 8� (�, �))) . (16)

8OCS(�, �) is evaluated using the newly modi	ed Weibull
function [36] to model 8�(�, �) and 8	(�, �). OCS in
uences
terrestrial wireless network throughput. �e throughput is
formulated to investigate OCS’s ability to develop an arti	-
cial neural network multiuser detector that enhances signal
reception by reducing the bit error rate when executing mul-
tiuser detection. A high OCS success execution probability
results in a multiuser detector that reduces the number of
corrupted bits received per second by the terrestrial wireless
network subscriber. �e reduction in the number of received
corrupted bits increases the number of noncorrupted bits

received per second by each subscriber, thereby enhancing
terrestrial wireless network throughput.

In formulating the terrestrial wireless network through-
put when OCS is used, we consider a scenario where
CRs transmit to the CBS with transmit power, �tr11, over
a channel with gain, ℎtr11. �e transmitting CR experiences
interference from neighbouring users. �e interfering chan-
nel’s gains and powers are given as (ℎint12 , ℎint13 , . . . , ℎint1� ) and(�int12 , �int13 , . . . , �int1� ), respectively. �e development of an ideal
arti	cial neural network multiuser detector occurs when8OCS = 1; when 8OCS < 1, the arti	cial neural network
multiuser detector is nonideal due to interference eects.
Shannon throughput ? when the terrestrial wireless network
subscriber transmits on one channel is

? = log2(1 + (ℎtr11)2 × �11 × 8OCS∑���=1 (ℎint1��)2 × �int1��) . (17)

�e subscriber can also use multiple channels with each
channel having own interfering subscribers. �e use of
arti	cial neural network multiuser detectors developed via
OCS reduces the number of received corrupted bits and
enhances the signal to interference ratio, thereby improving

throughput. Let 8��
OCS

be the probability of successfully

executing OCS for channel C�. In addition, let ℎ��11 and ���11 be
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Table 1: Analysis results of the spectrum utilisation and transmit opportunity.

S/N Observation day Observation duration Spectrum utilisation (%) Transmit opportunity (%)

1 (considered in [8]) 16/02/13 28740 33.3 66.7

2 (considered in [8]) 21/01/13 14700 17 83

3 14/10/12-15/10/12 31080 36 64

4 16/10/12 15180 17.57 82.43

5 28/10/12 36931 42.74 52.76

6 06/11/12-07/11/12 40800 57.22 42.78

7 14/11/12-15/11/12 36119 41.80 58.20

8 05/02/13 9846 11.36 88.64

9 11/02/13 18740 21.74 78.26

10 23/02/13 21730 25.15 74.85

the CR transmit channel gain and power over C�, respectively.
Similarly, let ℎ��1�� and ���1�� be the interfering channel gain and

power of user �� over C�. �e throughput, ?1, when the CR
transmits over�� channels, each of capacity �Hz, is

? = ��� log2(1 + ∑�
�

��=1 (ℎ��11)2 × ���11 × 8��OCS∑����=1∑����=1 (ℎ��1��)2 × ���1�� ). (18)

5. Performance Investigation

�is section discusses the simulation results for the proposed
mechanisms. It is divided into two parts. �e 	rst part
presents results of terrestrial radio astronomy observation
optimisation. It presents results on the spectrum usage
analysis, similar observation strings of astronomy sources,
and angular resolution. �e second part investigates OCS’s
success execution probability and how OCS enhances terres-
trial wireless network throughput.

5.1. Spectrum Usage Analysis. �is section presents results
on the spectrum usage of radio astronomy observations
and examines ISL back-to-back duration and similar astron-
omy source observation strings. �e spectrum utilisation
and transmit opportunities are computed for the following
days: 21/01/13, 16/02/13, 14/10/12, 15/10/12, 16/10/12, 28/10/12,
07/11/12, 14/11/12, 15/11/12, 05/02/13, 11/02/13, 23/02/12, and
06/11/12. �e data used for 06/11/12 in [8] describes obser-
vations conducted between 17:15:54.8 and 23:37:42.6, while
here it concerns observation made between 16:12:24.8 and
23:59:45.2. Data analysis results are shown in Table 1.

�e average spectrum utilisation is computed using data
in [8] and is also recalculated using newdata. It is estimated to
be 25.6% for data solely used in [8] and 29.1% when new data
is incorporated, respectively. �e average spectrum utilisa-
tion of radio astronomy observation increases by 3.5% when
additional data is incorporated. �e transmit opportunity H
decreases by 3.5%.�eobservation day, observation duration,
spectrumutilisation, and transmit opportunity for previously
considered data sets and the additional eight samples are
presented in Table 1.

�e standard deviation before and a�er the inclusion of
more data for generalisation is evaluated to be 8.2% and
11.9%, respectively. Hence, the daily transmit duration is
approximately one-ninth of the maximum obtained transmit
opportunities. �ese transmit opportunities are exclusive of
opportunities existing during the conduct of radio astronomy
observations.

We also analyse the back-to-back duration  to deter-
mine the ISL transmit duration, while terrestrial radio astron-
omy observations are ongoing. �e ISL transmit opportu-
nities arise due to observation switching events. Switching
occurs when the astronomy organisation has just 	nished
observing an astronomy source and is about to commence
the observation of another source. �e switching results in a
period duringwhich terrestrial radio astronomyobservations
are not conducted. �ese periods are potential interference-
free ISL transmit opportunities and are repeated for astron-
omy source observation patterns. �e intelligent framework
is used to determine the transmit duration.

In analysing  , we use extra data for observations con-
ducted on 06/11/12 (period 1) and 07/11/12 (period 2) in addi-
tion to that of 16/02/13 (period 3) used in [8].�e observation
in periods 1, 2, and 3 has data for 30, 85, and 95 observation
epochs, respectively. In presenting data analysis results, the
periods are classi	ed as (1) early morning, 00:00:00.0–
06:00:00.0, (2) morning, 08:42:05.3–12:02:55.5, (3) mid a�er-
noon, 12:02:55.6–15:07:5.7, and (4) late a�ernoon, 15:07:15.8–
18:34:55.7. �e observation durations in these epochs are
shown in Table 2.

�e plots for the back-to-back connection for observa-
tions conducted in periods 1, 2, and 3 are shown in Figures 7,
8, and 9, respectively. From the results in Figures 7, 8, and 9, it
can be observed that the analysis of additional data shows that
ISL transmission can bene	t from transmit opportunities due
to the back-to-back connection duration. Further analysis
shows that the average ISL back-to-back connection duration
for periods 1, 2, and 3 is 49.5 seconds, 58.8 seconds, and 43.7
seconds, respectively.

�e similar astronomy source observations strings for
dierent observation dates are as follows:

(1) Source string 1: �1 = PKS 1934-638, :1 = PKS J0010-
4153, �1 = PKS J0022+0014, �1 = PKS J0024-4202,
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Table 2: Observation epochs used to investigate the back-to-back connection duration.

Observation
epochs/periods

Early morning Morning Mid a�ernoon Late a�ernoon

Period 1, 85 epochs 00:01:20.2–02:52:35.3

Period 2, 95 epochs,
00:01:20.2–02:52:35.3

Period 3, 95 epochs 08:42:05.3–12:02:55.5 12:02:55.6–15:07:15.7
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Figure 7: Back-to-back duration using period 1 observation data.
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Figure 8: Back-to-back duration using period 2 observation data.

91 = PKS J0042-4414,�1 = PKS J0059+0006, I1 = PKS
J0044-3530, and ℎ1 = 3C348

(2) Source string 2: �2 = PKS J0240-2309, :2 = PKS J0252-
7104, �2 = PKS J0303-6211, �2 = PKS J0309-6058, 92
= PKS J0318+1628, �2 = PKS J0323+0534, I2 = PKS
J0351-2744, ℎ2 =PKS J0405-1308, �2 =PKS J0409-1757,
and '2 = 3C123

(3) Source string 3: �3 =PKS J0408-6544, :3 =PKS J0420-
6544, �3 = PKS J0440-4333, �3 = PKS J0442-0017,
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Figure 9: Back-to-back duration using period 3 observation data.

93 = PKS J0444-2809, �3 = PKS J0453-2807, I3 = PKS
J0519-4546, ℎ3 = PKS J0534+1927, �3 = PKS J0635-
7516, '3 = PKS J0744-0629, and J3 = PKS J0831-1951

Source strings 1, 2, and 3 are observed on 14/11/2012, 28/
10/2012, 06/11/2012, and 14/11/2012, 06/11/2012 and 14/11/2012,
and 14/11/2012 and 06/11/2012, respectively. Assuming that
similarity analysis in the intelligent framework takes up to
600 seconds, the achievable increment in the ISL transmit
duration is 726 seconds. �is increment is applicable to
observations conducted on 14/11/2012, 28/10/2012, 06/11/2012,
and 14/11/2012, 06/11/2012 and 14/11/2012, and 14/11/2012 and
06/11/2012, respectively.

Source substrings (�1-I1), (�1-91), (�2-�2), and (�2-�2)
repeatedly occur on 16/02/2012, 05/02/2013, 28/10/2012, and
06/11/2012 and 06/11/2012 and 05/02/2013.�e transmit dura-
tions associated with substrings (�1-I1), (�1-91), (�2-�2), and(�2-�2) are 360 seconds, 320 seconds, 340 seconds, and 190
seconds, respectively.

Source substrings (�3-ℎ3), (�3-J3), (�3-I3), and (�3-'3)
repeatedly occur on 28/10/2012 (2 epochs) and 06/11/2012 (2
epochs), respectively. �e transmit durations associated with
substrings (�3-ℎ3), (�3-J3), (�3-I3), and (�3-'3) are 360 sec-
onds, 160 seconds, 300 seconds, and 120 seconds, respectively.
�ese strings and substrings show that the observations of
some astronomy sources are repeated.�erefore, the interfer-
ence protection framework is feasible. ISLs can exploit these
transmit opportunities when they are aware of the astronomy
database. In the event that the intelligent framework is
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Table 3: Cost 	gures used to simulate ownership costs.

S/N Component Cost (USD) Reference

1 Conversion of unused earth station 100,000 Hoare and Rawlings [10]

2 Internet link from CCE to SVB 1,000

3 Control so�ware per telescope 20,000 (20% of conversion cost) Kemball and Cornwell [37]

4 Cyclostationary sensing module 11,413 LeMay [38]
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Figure 10: Terrestrial radio astronomy organisation ownership
costs.

not incorporated, the maximum and minimum transmit
durations are 49.5 seconds and 43.7 seconds, respectively.
�ese maximum and minimum values describe the range
of the back-to-back connection duration in the absence of
the intelligent framework. �e range of the average back-
to-back connection duration is 43.7–49.5 seconds. When
the proposed intelligent framework is used, the range of
the average back-to-back connection duration is 769.7–775.5
seconds.

In addition, the costs of ownership and angular resolution
of the terrestrial radio astronomy organisation thatmakes use
of primary and secondary GTs are simulated and shown in
Figures 10 and 11, respectively. �e simulation is conducted
for 	ve cases, that is, Cases 1, 2, 3, 4, and 5. �e cost of
ownership is computed using the parameters given in Table 3.

�e cases can be described as follows.

Case 1. �e terrestrial radio astronomy organisation has
seven primary GTs that are observed in the IEEE UHF
band. �e primary GTs do not have cyclostationary detec-
tors and are not susceptible to terrestrial wireless network
interference. �is case describes the kind of scenario found
in [11] because it does not use secondary GTs. �e baseline is
2100 km.

Case 2. �e terrestrial radio astronomy organisation uses
four primary GTs and three secondary GTs. �e secondary
GTs are capable of processing satellite communications
packets and astronomy source radio signals. Both primary
and secondary GTs operated in the IEEE UHF band. �e
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Figure 11: Terrestrial radio astronomy organisation angular resolu-
tion.

inclusion of secondary GTs doubles the baseline. Primary
GTs incorporate a cyclostationary detection mechanism.
Secondary GTs are not in terrestrial wireless network vicinity.

Case 3. �e terrestrial radio astronomy organisation uses
four primary GTs and three secondary GTs operating in the
IEEE UHF and IEEE C bands, respectively. Primary GTs do
not incorporate a cyclostationary detector for interference
protection. Secondary GTs are unaected by terrestrial wire-
less network interference. �e baseline is 4200 km.

Case 4. �e terrestrial radio astronomy organisation uses
four primary GTs and three secondary GTs that operate in
the IEEE UHF band. �e primary and secondary GTs incor-
porate cyclostationary detectors. �e baseline is 4200 km.

Case 5. �e terrestrial radio astronomy organisation uses
four primary GTs and three secondary GTs that operate in
the IEEE UHF band and IEEE C band, respectively. �e
maximum separating distance between primary and sec-
ondary GTs is 4200 km. Both primary and secondary GTs
incorporate the cyclostationary detection mechanism.

As shown in Figure 10, the use of secondaryGTs alongside
primary GTs reduces the terrestrial radio astronomy organi-
sation’s ownership costs. In the case where the number of GTs
is between 	ve and seven, the cost of ownership is maximum
in Case 1 compared to Cases 2, 3, 4, and 5, respectively. When
compared to the cost in Case 1, the use of secondary GTs in
Cases 2, 3, 4, and 5 reduces ownership costs by 17.9%, 25.6%,
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12.6%, and 12.6%, respectively. �e costs in Cases 4 and 5 are
equal because these cases are dierentiated only by the GT
observation frequency. �e simulation parameters shown in
Table 3 are not observation frequency dependent.

It can also be seen that the cost in Case 1 is lowest when
there are up to four primary GTs compared to Cases 2, 3,
4, and 5, respectively. �is is because the primary GTs in
Case 1 do not have any cyclostationary module, multimode
control so�ware or Internet link costs. �e cyclostationary
module increases the cost in Cases 4 and 5. �e inclusion of
the control so�ware and Internet link increases the cost in
Cases 2, 3, 4, and 5.�erefore, the increased cost is due to the
incorporation of the features proposed in this paper.�e cost
of adding the incorporated features increases the cost for the
	rst four GTs for Cases 2, 4, and 5 when compared to Case 1.
It does result in an increase for the cost comparison between
Cases 1 and 3. �is is because, in Cases 1 and 3, the 	rst four
GTs are primaryGTswith similar functionalities.�e average
increase in costs of Cases 2, 4, and 5 compared to Case 1 is
observed to be the same and equals 11.4%.�e increase in cost
is equal because only the cyclostationary module is added to
the primary GT in Cases 2, 4, and 5 when compared to Case
1.

Further analysis of the results presented in Figure 11
shows that the angular resolution in Cases 2, 3, 4, and 5
outperforms that of Case 1 by 67.5%, 59.2%, 75%, and 66.7%
on average, respectively. It can be seen that the opportunistic
use of secondary GTs enhances the angular resolution. �e
incorporation of the cyclostationary module in Cases 4
and 5 also enhances the angular resolution because of the
interference protection capability.

�e improvement in angular resolution is larger when
primary and secondary GTs use the IEEE UHF band as
seen in Cases 2 and 4 because of the shorter wavelength.
Nevertheless, secondary GT incorporation enhances angular
resolution.�erefore, using a secondaryGT that incorporates
the cyclostationary detector improves the angular resolution
when its inclusion increases the baseline. Hence, terrestrial
radio astronomy organisations should combine primary and
secondary GTs to reduce ownership costs and improve
angular resolution.

5.2. Opportunistic Computing Scheme (OCS). �eprobability
of success of the opportunistic computing scheme (OCS-
SEP) is also investigated. OCS-SEP is dependent on the
number of GTs and HPC computational units (CUs). �e
OCS-SEP is investigated for dierent number of GTs and
HPC CUs. �e simulation result is shown in Figure 12. An
increase in the CU from 10Kbits to 100Kbits improves the
OCS-SEP for the same number of GTs. An increase in CUs
from 10Kbits to 100Kbits improves theOCS-SEP from0.0387
to 0.9087.�eOCS-SEP also improveswhen theCU increases
from 100Kbits to 1000Kbits. An increase in the CU from
100Kbits to 1000Kbits increases the OCS-SEP from 0.0726
to 0.9085. Hence, the availability of more HPC CUs improves
the OCS-SEP.

�e in
uence of OCS on terrestrial wireless network
throughput is also investigated. �e terrestrial wireless net-
work throughput is that obtained when OCS execution is
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Figure 12: OCS-SEP for varying computational units and number
of telescopes.
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Figure 13: Relationship between terrestrial wireless network
throughput and number of telescopes.

used to develop arti	cial neural network multiuser detectors.
�e simulation environment considers a scenariowhere three
CRs share a channel to improve spectrum utilisation. �e
simulated OCS throughput is shown in Figure 13.

As seen in Figure 13, the throughput reduces with a
decreasing HPC CU. �e lowest throughput is obtained at
epochs where available CUs cannot support the number
of functional GTs. �e achievable throughput is minimum
when the HPC has 10 Kbits and there are 71 GTs and when
the HPC has 100Kbits and there are 141 GTs.

Further analysis shows that the CBS throughput is
enhanced by 60.4% on average when the HPC CU is
1000Kbits compared to when the HPC CU is 10 Kbits for up
to 71 telescopes. �e CBS throughput is enhanced by 59.3%
on average when the HPC has 100Kbits compared to when
the HPC has 10 Kbits with up to 71 GTs.When there are up to
141 GTs, the increase in HPCCU from 100Kbits to 1000Kbits
improves throughput by an average of 37.7%.
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6. Conclusion

�is paper addresses challenges aecting the future conduct
of terrestrial radio astronomy observations. �e terrestrial
radio astronomy organisations being considered use ground
telescopes realised by converting unused earth stations. �e
challenges are those of optimising terrestrial radio astronomy
observations and enhancing high performance computing
infrastructure utilisation. �e optimisation goals aim to
protect terrestrial radio astronomy observations from inter-
satellite interference and enhance angular resolution. �e
interference mitigation framework utilises the similarities
in the order of observed astronomy sources. �e use of
similarities protects ground telescopes from intersatellite
link interference and increases intersatellite link connection
duration. �e paper also proposes the use of secondary
telescopes to enhance angular resolution. In addition, the
paper proposes the opportunistic computing scheme to
enhance high performance computing infrastructure utili-
sation. �e opportunistic computing scheme is a synergy
between radio astronomy observations and cognitive base
stations. It enhances cognitive base station autonomy. Inves-
tigations show that the intersatellite links that use cognitive
radios with the proposed intelligent framework have an
interference-free connection duration lying between 43.7
seconds and 49.5 seconds. �e interference-free intersatellite
link transmission duration is increased when the similarity in
radio astronomy observation patterns is considered. Analysis
also shows that the opportunistic computing scheme enables
the realisation of cognitive base stations. In addition, the
opportunistic computing scheme enhances terrestrial wire-
less network throughput. It is also shown that the use of
secondary telescopes enhances angular resolution by up to
59% and reduces costs by up to 12.6%.
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July 2014.

[31] H. Asadi, H. Volos, M.M.Marefat, and T. Bose, “Metacognition
and the next generation of cognitive radio engines,” IEEE
Communications Magazine, vol. 54, no. 1, pp. 76–82, 2016.

[32] T. V. D. Zant, M. Kouw, and L. Schomaker, “Generative arti	cial
intelligence,” in Philosophy and �eory of Arti�cial Intelligence,
V. C. Muller, Ed., vol. 5, pp. 103–120, 2012.

[33] K. Tsakgaris, A. Bantouna, and P. Demestichas, “Self-organizing
maps for advanced learning in cognitive radio systems,” Com-
puters and Electrical Engineering, vol. 38, no. 4, pp. 852–870,
2012.

[34] K. P. Bagadi and S. Das, “Multiuser detection in SDMA-OFDM
wireless communication system using complex multilayer per-
ceptron neural network,” Wireless Personal Communications,
vol. 77, no. 1, pp. 21–39, 2014.

[35] P. Andreani, ALMA Cycle 3 Proposer’s Guide and Capabilities,
Doc 3.2, Ver 1.9, 2015.

[36] S. J. Almalki and J. Yuan, “A newmodi	edWeibull distribution,”
Reliability Engineering and System Safety, vol. 111, pp. 164–170,
2013.

[37] A. J. Kemball and T. J. Cornwell, “A simple model of so�ware
costs for the square kilometre array,” Experimental Astronomy,
vol. 17, no. 1–3, pp. 317–327, 2004.

[38] B. LeMay, Agilent Technologies Introduces Basic Spectrum
Analyzer for Budget-Driven Applications, http://www.agilent
.com/about/newsroom/presrel/2012/30nov-em12148.html.



Submit your manuscripts at

http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

High Energy Physics
Advances in

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Fluids
Journal of

 Atomic and  
Molecular Physics

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in  
Condensed Matter Physics

Optics
International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Astronomy
Advances in

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Superconductivity

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Statistical Mechanics
International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Gravity
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Astrophysics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Physics 
Research International

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Solid State Physics
Journal of

 Computational 
 Methods in Physics

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Soft Matter
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Aerodynamics
Journal of

Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Photonics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Biophysics

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Thermodynamics
Journal of


