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The production of well-understood software will eventually be the responsibility of software gener-
ators.  Generators will enable high-performance, customized software systems and subsystems to
be assembled quickly and cheaply from component libraries. These components will be intelligent:
they will encapsulate domain-specific knowledge (e.g., “best practice” approaches) so that their
instances will automatically customize and optimize themselves to the system in which they are
being used.  In this paper, we explore the topics intelligent components and software generation as
they pertain to the issues of software productivity, performance, reliability, and quality.

1  Introduction

It is commonplace to create customized PC hardware configurations through the assembly of plug-and-
play hardware components. In the future, customized software systems will be assembled in much the
same manner using plug-and-play software components. The availability of plug-and-play software tech-
nologies will mark a major advance in software construction. Components will offer substantial increases
in software productivity, performance, reliability, and quality. The increase in productivity is easy to
understand: components are reused, not rewritten. They will be written by domain experts so that the qual-
ity of component software is substantially higher than that which can be produced by typical programmers.
The reliability of components will exceed that of typical software modules because they will have been
tested in a wider variety of situations. Finally, components will encapsulate “best practice” approaches for
coding and run-time tuning: rather than expecting application performance to be degraded, the expectation
will be that application performance will improve with the use of components.

Components are available today through platforms like CORBA and Microsoft OLE and COM [Ude94].
These technologies (and their variants) simplify the task of manually integrating components to build
applications. A more advanced view is the use of generators that automatically assemble applications from
specifications of component compositions. It is this advanced view of software development that we are
realizing at our research lab at the University of Texas. We have developed tools that glue pre-written
components together to assemble high-performance, customized software systems in minutes [Bat92-93,
Bat97]. The components that we use encapsulate and automate domain-specific techniques that are best-
practice for building software, so that generated code is efficient. We have developed tools that allow us to
validate the correctness of our compositions automatically, so that we know at system specification time
whether or not the system that we have designed will indeed work [Bat96]. We are now developing tools to
critique our designs automatically, given a workload specification. These tools (or design wizards) will
suggest alternative component compositions to those that we have created manually, and will provide rea-
sons why the suggested design changes will improve the overall product.

1.  This research is supported by DARPA contract F30602-96-2-0226, Microsoft Research, and The University of
Texas Applied Research Laboratories.
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Software architectures has emerged over the last four years as a significant area of study in software engi-
neering [Per92, Gar95]. The basic goals are (1) to understand the problems of building software from com-
ponents, (2) to find solutions to these problems, and (3) to evaluate trade-offs to determine which solution
to use if multiple solutions can be applied. A subarea of software architectures is software generators
[Bat94b, Kie96]. Generators take component assemblies as input specifications and produce optimized
source code as their output. The basic distinction between research on generators and software architec-
tures is that the components that generators compose to construct systems are designed to be plug-compat-
ible, interchangeable, and interoperable. These assumptions are not common for general work on software
architectures. However, the advantages of making these assumptions are substantial and their conse-
quences are the topic of this paper.2

At the core of generator technology is software reuse. To appreciate the problems in reuse that generator
technologies have overcome, it is instructive to review results of Selby [Sel88]. In 1988, Selby examined
the cost of software reuse in Fortran libraries. In particular, he posed the question: “What is the cost of
reusing a module if n% of it were modified?”, where n=0 means “as is” reuse, and n=100 means coding a
module from scratch. Figure 1 displays his findings. Note that “as is” reuse is not free: there is a small (but
noticeable) cost for reuse, because one must invest the time to understand what a component does before
deciding that it can be used. If minor modifications are needed, denoted in his studies by n<25%, there is a
substantial penalty — 55% of the cost of rewriting the module from scratch. The reason is simple: one
must have deep knowledge of how a module is implemented before it can be modified correctly, and
acquiring this knowledge takes substantial time. Interestingly, the cost of a major modification (n≥25%) is
marginally more expensive (70%). These figures are typical to that which we faced in building reusable
components of generators.

We learned two major lessons about component reuse in building generators. The first is: don’t manually
modify components. By doing so, one should expect (as Selby’s results indicate) a major loss in productiv-
ity. Clearly, what we want is “as is” or black box reuse. The second lesson is: component modification is
unavoidable. When a component is used in a new setting, it must often be modified for performance or
compatibility reasons. Rather than modifying components manually, we encoded domain-specific intelli-
gence into components so that they perform the customizations and optimizations automatically — tasks
that are now performed manually by domain experts. This is the idea of intelligent components.

2.  Actually, very few software generators are based on component technologies. Common compiler-generator tools
like lex and yacc, for example, do not rely on software components. It is this newer (more uncommon) class of
generators that is the subject of this paper.
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Intelligent components are the central idea and strength of generators. They have effectively altered the
shape of Selby’s cost-of-reuse-curve: the curve representing the cost of reuse in generators is a flat line that
hugs the X-axis. Intelligent components make “as is” reuse practical. They have allowed us to achieve sig-
nificant productivity gains while retaining high quality and reliable software without loss in application
performance.

Much of this sounds too good to be true. It is indeed the case that generators and their component technol-
ogies are not free. There are at least three qualifications that must be satisfied for generator technologies to
be applicable. First, the domain in which software is to be generated must be mature. The problems of soft-
ware construction must be well-understood, and so too their solutions. Component technologies are the
product of standardizing these problems and their solutions. Second, it must be economical; generators are
expensive to build. Thus, it should be common in the domain for there to be many variants of a single sys-
tem, and that building each variant is expensive. Third, it must be feasible, both technically and politically.
From our experience, if a domain satisfies the first two qualifications — maturity and economics — we
have found the technical problems are solvable. To be sure, there are difficult technical challenges ahead,
but there are no show-stoppers. The hard part is political feasibility. Many organizations are not yet pre-
pared to automate the development of software that they are manually producing today. In this paper, we
focus on the technical aspects and accomplishments of generators.

In the following sections, we provide background material to give the readers more insights on generators.
We showcase the P2 generator as an example to make our points concrete. We then present a spectrum of
results from different experiments, to convey the broad capabilities of generators. Our goal is to use these
results to demonstrate the improvements generators offer in terms of software productivity, performance,
reliability, and quality. We conclude with a brief discussion of our current research.

2  Background

In this section, we review selected concepts on a class of generators called GenVoca generators, and
explain the scope of their application. A key point we want to convey is our use of the term “generator” is
actually much broader than its conventional meaning. So the ideas and results that we report on in this
paper actually have wide applicability.

2.1  GenVoca

GenVoca is a scalable model of constructing software systems from components. It is scalable because
exponentially-large families of systems can be constructed with a small number of components [Bat93,
Big94]. GenVoca generators have been created for many domains. Most that are listed in Table 1 have
been designed, conceived, and built independently of each other. This means that researchers are regularly
reinventing the same ideas; because there is a lot of trial-and-error, reinvention has a tremendous cost. One
of the important aspects of our research is to distill the experiences of these projects to expose a general
methodology and techniques for generator construction so that others can more easily build GenVoca gen-
erators for their domains.

The first GenVoca generator (to our knowledge) was Genesis: it demonstrated how customized DBMSs
could be assembled from prefabricated components. Its counterpart in the domain of network protocols
was Avoca/x-kernel. Complex protocol suites were constructed by composing plug-compatible compo-
nents called micro-protocols. Ficus is GenVoca generator for constructing scalable distributed file systems
for Unix. ADAGE is a generator for avionics software; SPS is generator for signal processing. Our most
recent work is generators for container data structures (P2 and DiSTiL).
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There are three central ideas that characterize GenVoca generators. First, the building blocks of software
systems are refinements of fundamental domain abstractions (see also [Nei89, Bax92]). Each refinement
corresponds to some feature of a domain that can be shared by many systems. The implementation of a
refinement is a component; it is through domain engineering (where interface standardizations are
imposed) that these components are defined to be plug-compatible, interchangeable, and interoperable
[Pri91]. Second, GenVoca refinements are large-scale. That is, they define a consistent refinement of mul-
tiple classes of a target system. The idea is familiar to software engineers: when a new feature or capability
is added to an existing application, modifications to the application’s source code are not localized; one
must update application source code in multiple places. GenVoca components formalize this concept and
automate the modification of target system software when a component is added or removed from a sys-
tem. Third, GenVoca refinements are parameterized. Parameterization is a simple and elegant model of
component customization and composition [Gog86-96].

Even at this very high level of description, there are distinctions among different generators beyond their
domain of applicability. In particular, generators can be distinguished by how they answer two questions:

• When are refinements composed?

• How are refinements implemented?

Refinements (or components that implement refinements) can be composed either statically or dynami-
cally. Static compositions mean that components are composed at application generation time; composi-
tions are fixed for the lifetime of the application. In contrast, dynamic compositions mean that components
are composed at application run-time. Thus, this enables applications to be dynamically reconfigurable.

Refinements can be implemented in two ways: compositionally or transformationally [Big87, Gri94]. A
compositional implementation — called a compositional component — defines the code that is to be exe-
cuted at application run-time. Compositional components are templates (if composed statically) or are
object libraries (when composed dynamically). A transformational implementation — called a transfor-
mational component — is code that generates the code that an application is to execute at run-time. In
effect, transformational components generate compositional components that are specifically optimized
and customized to a particular application. Transformational components are most commonly imple-
mented as domain-specific extensions to compilers of general-purpose programming languages. Table 2
shows the classification of the generators listed in Table 1.

Domain Generator Name Year References

database management systems Genesis 1988 [Bat88]

network protocols Avoca/x-kernel 1989 [Hut91]

file systems Ficus 1990 [Hei94]

avionics ADAGE 1992 [Cog93]

data structures P2/DiSTiL 1994/1996 [Bat94b, Sma97]

audio signal processing SPS 1996 [Alt96]

TABLE 1. GenVoca Generators

Compositional Transformational

Static Genesis, ADAGE, Ficus P2/DiSTiL

Dynamic Avoca/x-kernel SPS

TABLE 2. Classification of GenVoca Generators
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When building a generator for a domain, one must choose between a compositional or transformational
implementation of all of its components. Presently, generator technologies do not permit a mixture of
dynamic and static, compositional and transformational components. Rather, all components that a genera-
tor composes must be implemented the same way. Thus, this means that the implementors of generators
face an important decision very early: they must decide whether or not to use dynamic or static composi-
tions, and whether their components are to have a compositional or transformational implementation.

Presently, we have few guidelines to make this decision wisely. In particular, the tradeoffs of choosing
between compositional and transformational implementations are not well understood. On the one hand,
compositional implementations are simple to understand: one writes the code that is to be executed by an
application. On the other hand, transformational implementations are more complicated, as there is a “level
of indirection” one must contend with. Namely, one must write code that generates the code that applica-
tions are to execute.

Generally speaking, there is adequate infrastructure for writing compositional components, as vanilla pro-
gramming languages can be used.3 The problems are more serious for transformational components,
because they are metaprograms — programs that write other programs [Kic91]. This means that transfor-
mational components represent and manipulate programs as data. The LISP and Scheme communities
have long recognized and solved these problems: both programs and data are represented as prefix expres-
sions [Kic91, Spr90]. However, for industrial languages like C and C++ (and the newcomer Java), there is
no language support for representing and manipulating programs as data. Consequently, a critical aspect of
programming infrastructure is lacking.

Finally, we’ve observed that compositional technologies are appropriate when one is reusing “larger” com-
ponents (in excess of 10,000 lines each), where relatively few optimizations and customizations are
required and performance is not critical. At the other extreme, transformational technologies are appropri-
ate when one is reusing “small” components that each contribute a few (e.g., less than 100) lines of code to
an application, where there are many domain-specific optimizations to be performed, and where perfor-
mance of the generated code is critical. In between these two extremes is a grey area where there are few
guidelines to follow for choosing component implementation technologies.

This background material is important to the subject of this paper because our use of the term “generator”
is quite broad: it can range from conventional template and object libraries to classical code generators.
The key point that we want to stress is that GenVoca is a powerful model. It enables us to understand
issues of software architecture in terms of primitive domain-specific refinements and their compositions. It
tells us the primitives to use to conceptualize software component technologies, thereby permitting
domains and systems to be analyzed in largely implementation-independent ways. This is exactly the kind
of features/properties that (we feel) are needed for generators and for understanding software architectures.

3  The P2 Generator

P2 is a static, transformational generator of container data structures. It is static because components are
composed at application generation time; it is transformational because its components generate the code
that applications are to execute. A version of P2, called DiSTiL [Sma97], has been implemented as part of
Microsoft’s Intentional Programming (IP) project, a prototype program transformation system that is under

3.  This is not strictly true. Dynamic compositions of components often corresponds to the dynamic creation of inher-
itance hierarchies — i.e., the ability at run-time to alter the superclass(es) of a given subclass. Most programming lan-
guages support only statically-defined inheritance hierarchies.
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development at Microsoft Research [Sim95]. IP will be used to develop software internally at Microsoft
before being released as a product.

It often surprises readers to learn that the study of data structures would have any bearing on understanding
issues of software architecture. The typical reaction is: “Aren’t data structures trivial?” “Why even look at
this domain at all?” Indeed, compared to avionics, file systems, and network protocols, data structure algo-
rithms are simple. But the focus of software architectures and software componentry is not on algorithm
complexity but in understanding the mechanisms by which components are defined, composed, custom-
ized, and parameterized. We have found these mechanisms to be the same (or even more complex) for data
structures than they are for avionics, file systems, etc. Thus, data structures is an ideal domain for study: its
algorithms are understood by all and it is easy to illustrate how component technologies work. By showing
how a readily understood domain can be decomposed into components, and that complex data structures
can be synthesized through component composition, it is more likely that others can understand how to
apply these ideas to their own, more complicated, domains.

P2 abstractions are elementary. Typical container data structures, such as binary trees, lists, etc., are imple-
mentations of a simple cursor-container abstraction (see Figure 2). A container is a collection of elements
of a single type. A cursor is a run-time object that is used to retrieve, update, and delete elements of a con-
tainer. Users code their P2 programs in terms of cursor and container abstract data types; these types are
abstract because they have no implementation. The P2 generator manufactures their implementation at P2-
program compile time.

More specifically, a P2 program is a C program that references abstract cursor and container data types
(which P2 added to the C language). At the top of a P2 program is a type equation, which specifies a com-
position of P2 components that defines how cursor and container data types are to be implemented. The P2
program is then submitted to the P2 generator (which really is a C-preprocessor) that outputs the same C
program, but now implementations have been generated for the referenced cursor and container types.

P2 gives containers a relational database-like “image”. Not surprisingly, it’s syntax is also relational-like.
For example, a container of elements (emp_cont) that are instances of the EMPLOYEE_TYPE is declared
below:

container< EMPLOYEE_TYPE > emp_cont;

A cursor that ranges over all elements of emp_cont is all_emp:

cursor< emp_cont > all_emp;

selected_emp is a cursor that ranges only over those elements of emp_cont where the department num-
ber is 10:

cursor< emp_cont > where “$.deptno == 10” selected_emp;

Given the above, a code fragment that retrieves all employees whose department number is 10, prints out
the names of these employees, and deletes these employees is easily expressed:

cursor

container

elements

Figure 2: P2 Cursor-Container-Element Abstractions
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foreach (selected_emp) {
printf(“%s\n”, selected_emp.name);
delete(selected_emp);

}

While admittedly this code fragment is artificial, the basic idea is clear: programmers are freed from data
structure implementation details and can concentrate on the algorithms that are specific to their applica-
tion.

P2 presently has over 50 components in its library. Among them include components for AVL trees, splay
trees, doubly-linked lists, key-ordered doubly-linked lists, compression algorithms (i.e., algorithms that
transform containers of uncompressed elements to containers of compressed elements), memory managers,
sequential and heap storage of elements, and components that store containers in transient or persistent
memory. Components are organized into realms — i.e., libraries of plug-compatible and interchangeable
components. A partial listing of the membership of the two major realms of P2, DS (data structures) and
MEM (memory storage), is given below:

DS = { avl[DS] // avl tree
splay[DS] // splay tree
dlist[DS] // doubly-linked list
odlist[DS] // key-ordered doubly-linked list
compress[DS] // compression of elements
avail[DS] // memory managers
sequential[MEM] // sequential storage
heap[MEM] // heap storage
...

}

MEM = { transient // transient memory
persistent // persistent memory

}

A type equation is a named expression that defines a composition of P2 components; it defines how the
cursor-container abstraction (Figure 2 and Figure 3a) that users use to code their programs is to be imple-
mented. Suppose we want to store elements of a container using an AVL tree. To do so, we add the P2 avl
tree component to the container’s type equation. Figure 3b shows the result of this refinement: elements
have sprouted left and right AVL tree pointers and the container has “grown” a pointer to the root of the
AVL tree. (This, incidentally, is an example of a large-scale refinement: both element types and container
types are refined as a consequence of using the avl component).

Next, suppose we want to store the nodes of the AVL tree in a heap. To do so, we add the P2 heap compo-
nent to the type equation (Figure 3c). The result is that elements now are assigned heap addresses that were
not known in Figure 3b.

Lastly, we want to store elements in transient memory. To do so, we insert the transient component into
the equation (Figure 3d). Now all heap addresses reside in transient memory. Thus the type equation sim-
ple = avl[heap[transient]]] means that we are storing elements of a container in an AVL tree,
whose nodes are stored in a heap in transient memory.

Now suppose after fielding the application we discover that it is spending more and more time loading the
container with elements each time it is executed. Rather than storing elements in transient memory (requir-
ing them to be reloaded upon each execution of the application), it is more efficient to store the contents of
the container in persistent memory, so that all an application needs to do is to open the persistent container.
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This can be accomplished by replacing the transient component with the persistent component
(Figure 3e). Now the container is stored in a persistent file “foo” (where “foo” is a user-supplied parame-
ter to the persistent layer); elements are now assigned persistent (heap) addresses.

Finally, suppose later we discover that we would like to be able to read elements in an order that is differ-
ent than that provided to us by the AVL tree, yet we still want to retain the use of the AVL tree as a data
structure for these elements. This can be accomplished by inserting an ordered-doubly-linked list compo-
nent odlist into the type equation (Figure 3f).4 Now, elements of our container are stored on an ordered
list, they are also interconnected by an AVL tree, whose nodes are stored in a heap in persistent memory.

The point of this example is to illustrate how data structures of considerable complexity are easy to specify
and assemble from components. Once readers understand how components “refine” the cursor-container
abstractions by grafting on implementation details, and how compositions of components progressively

4.  The key field of this list, like the key of the AVL tree, is not explicit in our example, but is explicit in an actual
implementation.

cursor

container

elements

container

elements

container

elements

h1

h7h3

cursor

cursor

container

elements

t1

t7t3cursor

container

elements

p1

p7p3cursor

container

elements

p1

p7p3cursor

typeq simple = …

typeq simple = avl[ … ]
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Figure 3: Refinements of a Cursor-Container Abstraction
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reveal these details, it is not difficult to imagine how these same ideas have been applied in the creation of
generators for database systems, file systems, avionics, and so on. This is the central idea of GenVoca.

4  Experimental Results

In this section, we review results from selected projects and experiments to paint a general picture of
improved software productivity, performance, reliability, and quality.

4.1  LEAPS

LEAPS is a production system compiler [Mir90, Bra93] that produces the fastest executables of OPS5 rule
sets [Coo88]. LEAPS translates an OPS5 rule set — a set of rules with actions to be performed when a rule
is fired — into a C program. When the C program executes, it fires these rules at a rate which can be an
order of magnitude or more faster than OPS5 interpreters.

LEAPS is an interesting application because the C programs that it generates relies on unusual container
data structures and search algorithms that are unlikely to be found in any generic data structure library.
LEAPS is also a performance-driven application; it was hand-tuned and hand-coded by experts. Finally, it
was well-known that the LEAPS algorithms were difficult to understand. Thus, LEAPS seemed to be an
“acid test” for P2: it was our belief that if we could do well in reengineering LEAPS using P2, P2 could do
well on most any data structure application.

Our P2 re-engineered version of LEAPS, called RL, performed much better than we had imagined. We had
a 4-fold reduction in code volume: LEAPS is 20K lines of code; RL was about 5K. P2 (which itself is 50K
lines of code) provided us with tremendous leverage. In fact, our productivity in building RL was at the
rate at which experts in the domain could code, yet we certainly were novices: we had never dealt with rule
systems prior to RL. When we benchmarked the C files produced by LEAPS and RL, we found that, on
average, the RL-produced files executed about 50% faster than LEAPS executables [Bat94b]. Upon closer
inspection, we discovered that a contributing factor was that P2 could perform optimizations automatically
that were difficult, if not impractical, to do by hand. Finally, our P2 specifications of the LEAPS algo-
rithms (expressed in terms of cursors and containers) were very clean and easy to understand [Bat94a]. It
revealed the underlying elegance of LEAPS, but also suggested ways in which to improve its performance
by swapping/adding P2 components to the type equations that defined the implementations of LEAPS con-
tainers.

Figure 4 shows the performance results for a typical rule set, waltz. The Y-axis indicates run-time in sec-
onds (logarithmic, base 10); the X-axis shows data set size. The top two curves show the performance of
two versions of LEAPS: the highest (slowest) is the persistent version called DATEX. (DATEX containers
resided in persistent storage that used the relational storage manager of Genesis [Bat88, Bra93]). LEAPS
(which used transient containers) is the second highest curve. The performance of RL (for both transient
and persistent versions) are the two lines below that of LEAPS. The persistent version of RL was achieved
by unplugging the transient component and replacing it with a memory-mapped persistent component.
(Because memory mapped I/O only results in a degradation of about 10%, there was little performance dif-
ference between transient and persistent versions of RL).

We mentioned earlier that because the P2 specification of LEAPS revealed the source of much of the CPU
overhead, we introduced new hashing components/data structures to the type equation that defined RL
containers. By doing so, we were able to improve performance further (the bottom-most curves of
Figure 4). Our persistent hashed-version of RL ran over 40 times faster than LEAPS! [Bat97]



10

We learned an important lesson in software quality from our experiments: abstracting voluminous and
complex implementation details promotes clean, efficient, and understandable designs. Moreover, organiz-
ing fewer details often leads to more maintainable products. In our case, it was very easy to alter design
decisions after we had built RL: we simply redefined type equations (to alter the implementation of its con-
tainers) and recompiled; no other source code was changed.

4.2  LRUsim

The Object-Oriented Programming Systems (OOPS) Group at the University of Texas is investigating
issues of OS memory management. One of their projects is to analyze the locality of references in memory
using real program traces. Their observation is that randomly generated memory references do not reflect
the true usage of memory; the proper way to evaluate memory management schemes is to use real traces.

LRUsim is a hand-coded C++ tool that maintains the LRU ordering of pages using container data struc-
tures. LRUsim reads a trace file and maintains a page reference queue; it records the position of each page
in the queue at reference time and promotes that page to the head of the queue. If the memory size is m
pages, references to positions 1…m represent page hits; above m are misses (page faults). The idea natu-
rally extends to memory hierarchies: level 1 has m pages, level 2 has n pages, etc.

LRUsim is an interesting application for P2 for many reasons. First, performance is critical: LRUsim run-
times are measured in hours or days. Second, LRUsim’s data structures are C++ templates. They are rela-
tively simple structures (e.g., splay trees) that require no sophisticated optimizations. P2 performed well
with LEAPS because the retrieval predicates of LEAPS were very complicated and required sophisticated
optimizations and manipulations for efficient code to be produced. Not so for LRUsim: the retrieval predi-
cates only specified primary keys. Thus, there was no need for predicate manipulation; there were no obvi-
ous opportunities for optimization.

Looking at this problem from another perspective, LRUsim’s data structures were implemented as tem-
plates (i.e. compositional components). For such a simple application, the use of a transformational gener-
ators (P2) seemed to be overkill. Yet, initial results suggested otherwise: our P2 version of LRUsim ran

Figure 4: Performance Comparison of RL with LEAPS

R
un

ni
ng

 ti
m

e

Input data set size (tuples)

1

10

100

1000

10000

100000

12 25 37 50 75

waltz

DATEX

LEAPS

RLpersistent
RLtransient

RLhash-persisent

RLhash-transient

(s
ec

on
ds

 o
f c

om
bi

ne
d 

us
er

 +
 s

ys
te

m
 ti

m
e)



11

30% faster than the C++ version (see Table 1). Although LRUsim had undergone extensive tuning by the
OOPS group, we discovered a performance bug. Upon correcting the C++ version of LRUsim, bench-
marks indicated that the P2 version was still about 6% faster (see right-most columns of Table 3).5 Thus,
even in situations where few or no optimizations are applied, the performance of the software produced by
P2 was very good (i.e., comparable to programs hand-coded and tuned by experts).

We learned important lessons from this experiment: synthesized algorithms have a higher probability of
performing better (and for the same reasons are more reliable) than hand-coded algorithms. Remember, we
are not using formal methods to generate software, nor are we synthesizing customized algorithms (as in
[Smi90]), but merely gluing pre-written algorithms together. So our approach to software synthesis is quite
simple.

The reason for improved performance is that the authors of generator components focus their attention on
coding the most efficient implementation of a set of algorithms for a highly constrained problem. (In the
case of P2, these are algorithms for a particular data structure). Consequently, much more effort is
focussed on optimizing what would otherwise be called “minute” coding details.

Coding a data structure from scratch that corresponds to a composition of P2 components typically
requires far too many details to keep straight and to optimize. It is impractical and too time consuming for
programmers to optimize code at the same level of detail. Programmers have finite time and energy, and
attempt only a fraction of these optimizations. For this reason, the synthetic algorithms manufactured by
P2 will often outperform their hand-written counterparts.

Stated another way, P2 components generate locally optimal code. Composing locally optimal code frag-
ments doesn’t guarantee global optimality. So it is always possible to hand-craft code that will out perform
that which is produced by a generator. But the issue is “At what cost?”. Just as it is possible for humans to
outperform optimizing compilers by hand-coding assembly statements, it is generally not considered prac-
tical; the quality of compiler output is good enough compared to the productivity advantages gained in pro-
gramming in higher-level languages. So too it seems for using generators.

Components represent repositories for “best practice” approaches for building software: they can encapsu-
late coding tricks and proven-effective approaches for implementing their “feature” in an efficient way.
Over time, additional effort is put into components so that the code that they produce improves even fur-
ther, so that it is better (on average) than anything individuals or even groups of programmers can produce.
Thus, composing locally optimal components produces very good software.

5.  While 6% might not seem significant, notice that the execution times for LRUsim are enormous. The expresso
trace file takes days to complete; a 6% improvement meant the P2 version finished 6 hours faster than the C++
LRUsim [Jim97].

Trace File

# of
memory
references

LRUsimP2
run-time
(sec)

LRUsimC++original
run-time (sec)

Speedup
over

C++original

LRUsimC++corrected
run-time (sec)

Speedup
over

C++corrected

tex 200K 100 130 30% 108 8%

spice 200K 115 153 33% 124 8%

ghostscript 107M 64K 84.2K 31% 66.3K 4%

expresso 592M 378K 482K 27% 402k 6%

TABLE 3. LRUsim Execution Times
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It is interesting to note that there were productivity improvements in building LRUsim with P2. The C++
version of LRUsim is 6600 lines; the P2 version is about 2500 lines. The largest P2 function has 52 lines of
code; P2 expands this to 1300 lines. Once again, by raising the level of abstraction, the complexity of an
application is substantially reduced. In our exit surveys with the OOPS group, they believe that the ability
to compactly write complicated code is P2’s major benefit. It enabled revisions and restructuring that they
believed would be difficult or impossible to perform by hand.

Our LRUsim experiment also provided us with a valuable data point for choosing between a compositional
and transformational implementation of GenVoca refinements. In particular, this experiment showed us
that performance should be not a deciding factor in choosing between transformational and compositional
implementations. Other factors are more critical; what exactly are these factors is a subject of on-going
work.

4.3  ADAGE

ADAGE is a DARPA-sponsored project from 1992-1995. It is a static, compositional generator for avion-
ics software. The following results were reported by Holmquist, Tracz, and Selby [Hol96].

An evaluation of ADAGE was conducted by performing experiments to build navigation software with
and without ADAGE. The overall conclusions were (roughly) a factor of 14 improvement in productivity
using ADAGE, with an 8:1 reduction in errors.

The improvement in productivity was due to several factors: (1) The configuration process was repeatable:
it is a process of selecting components and parameter values. (2) The composition process is repeatable:
parameter substitution, component instantiation were automated. (3) Type equations (called decision trees)
structured configurations and formalized the process of instantiation. Stated a different way, the process of
instantiating and composing components given a graphical specification of a type equation was automated.
Consequently, it was done correctly and quickly. This alone led to an improvement in productivity.

At the same time, one can also see how the reduction in errors was accomplished. (1) There was automatic
constraint checking: selecting incorrect components and parameter values are detected automatically (just
as incorrect configurations and parameter values are detected in P2). (2) There was automatic, not manual,
source code modification: this is an example of “intelligent components”. (3) Errors were found at specifi-
cation time, not after the system has been built.

We can add to the observations of the ADAGE team with comments on software reliability. We believe
that there was the same density of errors in our P2 component code as any other hand-written application.
However, we noticed errors surfaced much faster. The reason is that components can be used in widely
varying settings. As a consequence, component code is more thoroughly exercised, thereby revealing
errors that might otherwise remain latent. We used a set of regression tests/programs whose correct output
was known. Each of these programs could use any one of a number of type equations in which a new com-
ponent could be inserted. No matter which type equation was chosen, the same output had to be generated.
That is, the result of a query is invariant to the way in which elements are stored. The different type equa-
tions allowed us to vary the container implementation (and hence the conditions under which the new com-
ponent was being used), thereby exercising different parts of a component’s code.

From our experience, we believe that component technologies will be inherently more reliable than tradi-
tional software. Using standard testing techniques today, coupled with additional approaches that we have
used in evaluating components, we expect that at shipment time, components will be measurably more reli-
able than typical software.
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5  Future Work

Designing components and building generators is difficult. We have made significant progress in under-
standing how components can be designed and recognized; there are methodologies now that can be fol-
lowed with good success. However, building these components and their generators remains a challenge.
There is little or no tool support, especially for building transformational generators. We estimate that 60%
or more of the effort in building a generator and its component libraries focuses on the design and con-
struction of languages for component definitions, component parameterizations, compositions, and auto-
matic checking. We have found that by the time that an adequate infrastructure is in place, and it is time to
seriously test the capabilities of a generator, funding has expired. Tools are needed to help build generators
to reduce this overhead.

Our current project is Jakarta, a tool suite for constructing generators. We are building compiler technolo-
gies for creating specification languages for domain-specific applications, and using these same tools for
making programming languages extensible.

Our tool suite is based on the Java language. We are now building an extensible version of Java, also called
Jakarta, that allows us to add new programming constructs (such as new data types that were introduced
into C by P2) and to provide language support for expressing programs as data — i.e., abstract syntax trees
— which is essential for writing program transformations. We expect Jakarta to be suitable for building
both compositional and transformational generators. Compositional components will be Jakarta template
libraries or binary libraries. Transformational components will be plug-and-play extensions to the Jakarta
language/compiler. Thus, just as we are building customized software systems from components, we will
be building customized versions of Jakarta from components.

6  Conclusions

Intelligent components will be a centerpiece for future tools of software development; they automatically
perform customizations and optimizations that are specific to the system in which they are used — modifi-
cations that today are performed by hand by domain experts. By automating modifications, we have found
that intelligent components make “as-is” software reuse practical, while maintaining software quality and
reliability without sacrificing application performance.

In this paper, we have reviewed a number of experimental results using generators. Although the actual
experiments were rather different, there were common themes in the lessons learned. Generators allow
users to program in terms of domain abstractions: this not only eliminates enormous amounts of implemen-
tation details but also promotes clean, efficient, and understandable designs of applications. Generators
simplify maintenance and application evolution: one can easily make modifications to application code by
regenerating the portion that must change. Because of the way components are written, generated code is
often more efficient than that produced by hand; this is similar to the situation that we have today where
optimizing compilers produce efficient assembly code. Although it is possible to write more efficient
assembly code by hand, it generally isn’t done because of the benefits offered by programming in higher-
level languages. One can understand generators as being next-generation compilers, where the “assembly
languages” for generators are conventional languages like C or C++.

Generator technologies are not free. They require programmers and software designers to think about soft-
ware not in terms of lines of code, or in terms of object-oriented classes, but rather at an architectural level
where refinements are the basic building blocks. We believe that the key problems of generators are not
technical in nature. To be sure, plenty of technical obstacles remain, but we are confident that they can be
overcome. We believe the most difficult challenges are political and organizational: it requires a major
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shift in organizational thinking to automate the development of software that is presently coded by hand.
However, only until software development is automated will major benefits in productivity, quality, reli-
ability, and performance be possible.
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