Intelligent
Control Systems
Using
Soft Computmg
Methodologies

Edltedby " 4
’%All*-leouchIan _¢/
. Mollamshidi ™\

Intelligent

Control Systems
Using

Soft Computing

Methodologies

Intelligent

Control Systems
Using

Soft Computing

Methodologies

Edited by

Ali Zilouchian
Mo Jamshidi

Boca Raton London New York Washington, D.C.

Library of Congress Cataloging-in-Publication Data

Intelligent control systems using soft computing methodologies / edited by Ali
Zilouchian and Mohammad Jamshidi.
p. cm.
Includes bibliographical references and index.
ISBN 0-8493-1875-0
1. Intelligent control systems—Data processing. 2. Soft computing. I. Zilouchian, Ali.
II. Jamshidi, Mohammad.

TJ217.5 15435 2001
629.89°0285’63—dc21 2001016189

This book contains information obtained from authentic and highly regarded sources. Reprinted material
is quoted with permission, and sources are indicated. A wide variety of references are listed. Reasonable
efforts have been made to publish reliable data and information, but the author and the publisher cannot
assume responsibility for the validity of all materials or for the consequences of their use.

Neither this book nor any part may be reproduced or transmitted in any form or by any means, electronic
or mechanical, including photocopying, microfilming, and recording, or by any information storage or
retrieval system, without prior permission in writing from the publisher.

All rights reserved. Authorization to photocopy items for internal or personal use, or the personal or
internal use of specific clients, may be granted by CRC Press LLC, provided that $.50 per page
photocopied is paid directly to Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923
USA. The fee code for users of the Transactional Reporting Service is ISBN 0-8493-1875-
0/01/$0.00+$.50. The fee is subject to change without notice. For organizations that have been granted
a photocopy license by the CCC, a separate system of payment has been arranged.

The consent of CRC Press LLC does not extend to copying for general distribution, for promotion, for
creating new works, or for resale. Specific permission must be obtained in writing from CRC Press LLC
for such copying.

Direct all inquiries to CRC Press LLC, 2000 N.W. Corporate Blvd., Boca Raton, Florida 33431.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are
used only for identification and explanation, without intent to infringe.

Visit the CRC Press Web site at www.crcpress.com

© 2001 by CRC Press LLC

No claim to original U.S. Government works
International Standard Book Number 0-8493-1875-0
Library of Congress Card Number 2001016189
Printed in the United States of America 1 2 3 4 56 7 8 9 0
Printed on acid-free paper

To my late grandfather, Gholam-Reza for his devotion to science and
humanitarian causes

A. Zilouchian

To my family, Jila, Ava and Nima for their love and patience

M. Jamshidi

PREFACE

Since the early 1960s, artificial intelligence (AI) has found its way into
industrial applications — mostly in the area of expert knowledge-based decision
making for the design and monitoring of industrial products or processes. That
fact has been enhanced with advances in computer technology and the advent
of personal computers, and many applications of intelligence have been
realized. With the invention of fuzzy chips in the1980s, fuzzy logic received a
high boost in industry, especially in Japan. In this country, neural networks and
evolutionary computations were also receiving unprecedented attention in both
academia and industry. As a result of these events, “soft computing” was born.

Now at the dawn of the 21* century, soft computing continues to play a
major role in modeling, system identification, and control of systems — simple
or complex. The significant industrial uses of these new paradigms have been
found in the U.S.A and Europe, in addition to Japan. However, to be able to
design systems having high MIQ® (machine intelligence quotient, a concept
first introduced by Lotfi Zadeh), a profound change in the orientation of
control theory may be required.

The principal constituents of soft computing are fuzzy logic,
neurocomputing, genetic algorithms, genetic programming, chaos theory, and
probabilistic reasoning. One of the principal components of soft computing is
fuzzy logic. The role model for fuzzy logic is the human mind. From a control
theoretical point of view, fuzzy logic has been intermixed with all the
important aspects of systems theory: modeling, identification, analysis,
stability, synthesis, filtering, and estimation. Interest in stability criteria for
fuzzy control systems has grown in recent years. One of the most important
difficulties with the creation of new stability criteria for any fuzzy control
system has been the analytical interpretation of the linguistic part of fuzzy
controller IF-THEN rules. Often fuzzy control systems are designed with very
modest or no prior knowledge of a solid mathematical model, which, in turn,
makes it relatively difficult to tap into many tools for the stability of
conventional control systems. With the help of Takagi-Sugeno fuzzy IF-THEN
rules in which the consequences are analytically derived, sufficient conditions
to check the stability of fuzzy control systems are now available. These
schemes are based on the stability theory of interval matrices and those of the
Lyapunov approach. Frequency-domain methods such as describing functions
are also being employed for this purpose.

This volume constitutes a report on the principal elements and important
applications of soft computing as reported from some of the active members of
this community. In its chapters, the book gives a prime introduction to soft
computing with its principal components of fuzzy logic, neural networks,
genetic algorithms, and genetic programming with some textbook-type

problems given. There are also many industrial and development efforts in the
applications of intelligent systems through soft computing given to guide the
interested readers on their research interest track.

This book provides a general foundation of soft computing methodologies as
well as their applications, recognizing the multidisciplinary nature of the
subject. The book consists of 21 chapters, organized as follows:

In Chapter 1, an overview of intelligent control methodologies is presented.
Various design and implementation issues related to controller design for
industrial applications using soft computing techniques are briefly discussed in
this chapter. Furthermore, an overall evaluation of the intelligent systems is
presented therein.

The next two chapters of the book focus on the fundamentals of neural
networks (NN). Theoretical as well as various design issues related to NN are
discussed. In general, NN are composed of many simple elements emulating
various brain activities. They exploit massive parallel local processing and
distributed representation properties that are believed to exist in the brain. The
primary purpose of NN is to explore and produce human information
processing tasks such as speech, vision, knowledge processing, and motor
control. The attempt of organizing human information processing tasks
highlights the classical comparison between information processing
capabilities of the human and so called hard computing. The computer can
multiply large numbers at fast speed, yet it may not be capable to understand
an unconstrained pattern such as speech. On the other hand, though humans
understand speech, they lack the ability to compute the square root of a prime
number without the aid of pencil and paper or a calculator. The difference
between these two opposing capabilities can be traced to the processing
methods which each employs. Digital computers rely upon algorithm-based
programs that operate serially, are controlled by CPU, and store the
information at a particular location in memory. On the other hand, the brain
relies on highly distributed representations and transformations that operate in
parallel, have distributed control through billions of highly interconnected
neurons or processing elements, and store information in various straight
connections called synapses. Chapter 2 is devoted to the fundamental issues
above. In Chapter 3, supervised learning with emphasis on back propagation
and radial basis neural functions algorithms is presented. This chapter also
addresses unsupervised learning (Kohonen self-organization) and recurrent
networks (Hopfield).

In Chapters 4 — 7, several applications of neural networks are presented in
order to familiarize the reader with design and implementation issues as well as
applicability of NN to science and engineering. These applications areas
include medicine and biology (Chapter 4), digital signal processing (Chapter
5), computer networking (Chapter 6), and oil refinery (Chapter 7).

Chapters 8, 9 and 10 of the book are devoted to the theoretical aspect of
fuzzy set and fuzzy logic (FL). The main objective of these three chapters is to
provide the reader with sufficient background related to implementation issues

in the following chapters. In these chapters, we cover the fundamental concepts
of fuzzy sets, fuzzy relation, fuzzy logic, fuzzy control, fuzzification,
defuzification, and stability of fuzzy systems.

As is well known, the first implementation of Professor Zadeh’s idea
pertaining to fuzzy sets and fuzzy logic was accomplished in 1975 by
Mamedani, who demonstrated the viability of fuzzy logic control (FLC) for a
small model steam engine. After this pioneer work, many consumer products
as well as other high tech applications using fuzzy technology have been
developed and are currently available on the market. In Chapters 11 — 16,
several recent industrial applications of fuzzy logic are presented. These
applications include navigation of autonomous planetary rover (Chapter 11),
autonomous underwater vehicle (Chapter 12), management of air conditioning,
heating and cooling systems (Chapter 13), robot manipulators (Chapter 14),
desalination of seawater (Chapter 15), and object recognition (Chapter 16).

Chapter 17 presents a brief introduction to evolutionary computations. In
Chapters (18 — 20), several applications of evolutionary computations are
explored. The integration of these methodologies with fuzzy logic is also
presented in these chapters. Finally, some examples and exercises are provided
in Chapter 21. MATLAB neural network and fuzzy logic toolboxes have been
utilized to solve several problems.

The editors would like to take this opportunity to thank all the authors for
their contributions to this volume and to the soft computing area. We would
like to thank Professor Lotfi A. Zadeh for his usual visionary ideas and
support. The encouragement and patience of CRC Press Editor Nora Konopka
is very much appreciated. Without her continuous help and assistance during
the entire course of this project, we could not have accomplished the task of
integrating various chapters into this volume. The editors are also indebted to
many who helped us realize this volume. Hooman Yousefizadeh, a Ph.D.
student at FAU, has modified several versions of various chapters of the book
and organized them in camera-ready format. Without his dedicated help and
commitment, the production of the book would have taken a great deal longer.
We sincerely thank Robert Caltagirone, Helena Redshaw, and Shayna Murry
from CRC Press for their assistance. We would like to also thank the project
editor, Judith Simon Kamin from CRC Press for her commitment and skillful
effort of editing and processing several iterations of the manuscript. Finally, we
are indebted to our family for their constant support and encouragement
throughout the course of this project.

Ali Zilouchian Mo Jamshidi
Boca Raton, FL Albuquerque, NM

ABOUT THE EDITORS

Ali Zilouchian is currently a professor and the director of the Intelligent
Control laboratory funded by the National Science Foundation (NSF) in the
department of electrical engineering at Florida Atlantic University, Boca
Raton, FL. His recent works involve the applications of soft computing
methodologies to industrial processes including oil refineries, desalination
processes, fuzzy control of jet engines, fuzzy controllers for car engines,
kinematics and dynamics of serial and parallel robot manipulators. Dr.
Zilouchian’s research interests include the industrial applications of intelligent
controls using neural network, fuzzy logic, genetic algorithms, data clustering,
multidimensional signal processing, digital filtering, and model reduction of
large scale systems. His recent projects have been funded by NSF and
Motorola Inc. as well as several other sources.

He has taught more than 22 different courses in the areas of intelligent
systems, controls, robotics, computer vision, digital signal processing, and
electronic circuits at Florida Atlantic University and George Washington
University. He has supervised 13 Ph.D. and M.S. students during the last 15
years. In addition, he has served as a committee member on more than 25 MS
theses and Ph.D. dissertations. He has published over 100 book chapters,
textbooks, scholarly journal papers, and refereed conference proceedings. In
1996, Dr. Zilouchian was honored with a Florida Atlantic University Award
for Excellence in Undergraduate Teaching.

Dr. Zilouchian is a senior member of IEEE, member of Sigma Xi and New
York Academy of Science and Tau Beta Pi. He received the outstanding
leadership award for IEEE branch membership development activities for
Region III in 1988. He has served as session chair and organizer of nine
different sessions in the international conferences within the last five years. He
was a keynote speaker at the International Conference on Seawater
Desalination Technologies in November 2000. Dr. Zilouchian is currently an
associate editor of the International Journal of Electrical and Computer
Engineering out of Oxford, UK. He is also the local chairman of the next
WAC 2002 to be held in June 2002 in Orlando, Florida.

Mohammad (Mo) Jamshidi (Fellow IEEE, Fellow ASME, Fellow AAAS)
earned a Ph.D. degree in electrical engineering from the University of Illinois
at Urbana-Champaign in February 1971. He holds an honorary doctorate
degree from Azerbaijan National University, Baku, Azerbaijan, 1999.
Currently, he is the Regents professor of electrical and computer engineering,
the AT&T professor of manufacturing engineering, professor of mechanical
engineering and founding director of the NASA Center for Autonomous
Control Engineering (ACE) at the University of New Mexico, Albuquerque.

He was on the advisory board of NASA JPL's Pathfinder Project mission,
which landed on Mars on July 4, 1997. He is currently a member of the NASA
Minority Businesses Resource Advisory Committee and a member of the
NASA JPL Surface Systems Track Review Board. He was on the USA
National Academy of Sciences NRC's Integrated Manufacturing Review
Board. Previously he spent 6 years at U.S. Air Force Phillips (formerly
Weapons) Laboratory working on large scale systems, control of optical
systems, and adaptive optics. He has been a consultant with the Department of
Energy’s Los Alamos National Laboratory and Oak Ridge National
Laboratory. He has worked in various academic and industrial positions at
various national and international locations including with IBM and GM
Corporations.

He has contributed to over 475 technical publications including 45 books
and edited volumes. Six of his books have been translated into at least one
foreign language. He is the founding editor, co-founding editor, or editor-in-
chief of five journals (including Elsevier's International Journal of Computers
and FElectrical Engineering) and one magazine (IEEE Control Systems
Magazine). He has been on the executive editorial boards of a number of
journals and two encyclopedias. He was the series editor for ASME Press
Series on Robotics and Manufacturing from 1988 to 1996 and Prentice Hall
Series on Environmental and Intelligent Manufacturing Systems from 1991 to
1998. In 1986 he helped launch a specialized symposium on robotics which
was expanded to International Symposium on Robotics and Manufacturing
(ISRAM) in 1988, and since 1994, it has been expanded into the World
Automation Congress (WAC) where it now encompasses six main symposia
and forums on robotics, manufacturing, automation, control, soft computing,
and multimedia and image processing. He has been the general chairman of
WAC from its inception.

Dr. Jamshidi is a fellow of the IEEE for contributions to "large-scale systems
theory and applications and engineering education," a fellow of the ASME for
contributions to “control of robotic and manufacturing systems,” a fellow of
the AAAS - the American Association for the Advancement of Science — for
contributions to "complex large-scale systems and their applications to controls
and optimization". He is also an associate fellow of Third World Academy of
Sciences (Trieste, Italy), member of Russian Academy of Nonlinear Sciences,
associate fellow, Hungarian Academy of Engineering, corresponding member
of the Persian Academies of Science and Engineering, a member of the New
York Academy of Sciences and recipient of the IEEE Centennial Medal and
IEEE Control Systems Society Distinguished Member Award and the IEEE
CSS Millennium Award. He is an honorary professor at three Chinese
universities. He is on the board of Nobel Laureate Glenn T. Seaborg Hall of
Science for Native American Youth.

CONTRIBUTORS

Akbarzadeh-T, Mohammad
Department of EECE
Ferdowsi University
Mashad, Iran

Battle, Darryl
Department of Electrical
Engineering

North Carolina A&T University

Greensboro, NC

Bawazir, Khalid
Aramco
Dhahran, Saudi Arabia

Chen, Tan Kay
The National

University of Singapore
Singapore

Dozier, Gerry
Computer Science and

Software Engineering
Auburn University
Auburn, AL

El-Osery, Aly

Department of Electrical and
Computer Engineering

University of New Mexico

Albuquerque, NM

Fathi, Madjid

Department of Electrical and
Computer Engineering

University of New Mexico

Albuquerque, NM

Hildebrand, Lars
University of Dortmund
Dortmund, Germany

Homaifar, Abdollah
Department of Electrical
Engineering

North Carolina A&T University

Greensboro, NC

Howard, Ayanna
Jet Propulsion Laboratory
Pasadena, CA

Howard, David

Department of Electrical
Engineering

Florida Atlantic University

Boca Raton, FL.

Jafar, Mutaz

Kuwait Institute of
Scientific Research

Kuwait City, Kuwait

Jamshidi, Mohammad
Department of Electrical and
Computer Engineering
University of New Mexico

Albuquerque, NM

Lee, T.H.
The National

University of Singapore
Singapore

Meghdadi, A. H.

Department of Electrical
Engineering

Ferdowsi University

Mashad, Iran

Ross, Timothy J.

Department of Civil Engineering
University of New Mexico
Albuquerque, NM

Seraji, Homayoun
Jet Propulsion Laboratory
Pasadena, CA

Smith, Samuel M.

Institute for Ocean and
Systems Engineering
Florida Atlantic University

Dania, FL

Song, Feijun

Institute for Ocean and
Systems Engineering

Florida Atlantic University,

Dania, FL

Talebi-Daryani, Reza

Department of Control Engineering
University of Applied Sciences
Cologne, Germany

Tan, K. C.
The National
University of Singapore
Singapore

Tunstel, Edward
Jet Propulsion Laboratory
Pasadena, CA

Valafar, Faramarz

Department of Cognitive and
Neural Systems

Boston University

Boston, MA

Wang, Dali
STM Wireless, Inc.
Irvine, CA

Wang, M. L.
The National

University of Singapore
Singapore

Yousefizadeh, Homayoun
Procom Technology, Inc.
Santa Ana, CA

Yousefizadeh, Hooman

Department of Electrical
Engineering

Florida Atlantic University

Boca Raton, FL.

Zilouchian, Ali

Department of Electrical
Engineering

Florida Atlantic University

Boca Raton, FL

ABBREVIATIONS

1D One Dimension

2D Two Dimension

A/C Air Conditioning

ACS Average Changes in Slope
ADALINE ADAptive LINear Element

Al Artificial Intelligence

ANFIS Adaptive Neuro-Fuzzy Inference System
ANN Artificial Neural Network

AUV Autonomous Underwater Vehicle
BP Back Propagation

BPA Back Propagation Algorithm
CBR Constant Bit Rate

CCSN Common Channel Signaling Network
Cp Complete Partitioning

Cp Candidate Path

CRDF Causal Recursive Digital Filters
CS Complete Sharing

CT Cellulose Triacetate

Ccv Containment Value

D Derivative

DCS Distributed Control Systems

DDC Distributed Digital Control

DNS Dynamic Neural Sharing

DOF Degree Of Freedom

EA Evolutionary Algorithm

EAL Estimated Average Latency

EC Evolutionary Computation

ED Electrodialysis

FAM Fuzzy Associate Memory

FGN Fractal Gaussian Noise

FIR Finite Impulse Response

FIS Fuzzy Inference System

FL Fuzzy Logic

FLC Fuzzy Logic Controller

FNF False Negative Fraction

FOV Field of View

FPF False Positive Fraction

FRBS Fuzzy Rule Based System

FTDM Fixed Time Division Multiplexing
FTSA Fuzzy Tournament Selection Algorithm
GA Genetic Algorithm

GC-EIMS Gas Chromatography-Electron Impact Mass

Spectroscopy

GEPOA

GP
GPD
GPM
HFF
HIS

I

IE
IIR
LMS
LSS
MADALINE
MAL
MCV
ME
MF
MFC
MIMO
MISO
MLE
MSF
NB
NL
NM
NMR
NN
NS
OAM
OEX
OR

P

PA
PB
PCP
PD
PE

Pl
PID
PL
PLC
PM
PS
PSI
PV
RBFN

Global Evolutionary Planning and Obstacle
Avoidance

Genetic Programming

Gallon Per Day

Gallon Per Minute

Hollow Fine Fiber

Health and Safety Indicators

Integral

Ion Exchange

Infinite Impulse Response

Least Mean Square

Local State Space

Multiple ADALINE

Measured Average Latency

Mean Cell Volume

Multi- Effect

Membership Function

Membership Function Chromosome

Multi Input Multi Output

Multi Input Single Output

Maximum Likelihood Types Estimates

Multi- Stage Flash

Negative Big

Negative Large

Negative Medium

Nuclear Magnetic Resonance

Neural Network

Negative Small

Optimal Associative Memory

Ocean Explorer

Operations Research

Proportional

Predictive Accuracy

Positive Big

Piecewise Continuous Polynomial

Proportional Derivative

Processing Element

Proportional Integral

Proportional Integral-Derivative

Positive Large

Programmable Logic Controller

Positive Medium

Positive Small

Pressure Per Square Inch

Predictive Value

Radial Basis Function Network

RI
RMS
RO
ROC
RVP
SCADA
SCS
SDF
SDI
SGA
SMC
SMFC
SPS
STDM
SwW
TC
TCF
TDS
TNF
TPF
TS
VBR
VBR*
vC
VSC
XOR

Radius of Influence

Recursive Mean Square

Reverse Osmosis

Receiver Operating Characteristic
Read Vapor Pressure

Supervisory Control and Data Acquisition
Sum of the Changes in Slope
Separable-in-Denominator Digital Filters
Silt Density Index

Simple Genetic Algorithm

Sliding Mode Controller

Sliding Mode Fuzzy Controller

Static Partial Sharing

Statistical Time Division Multiplexing
Spiral Wound

Time Control

Temperature Correction Factor

Total Dissolved Solid

True Negative Function

True Positive Function
Takagi-Sugeno

Variable Bit Rate

Visibility Base Repair

Vapor Compressions

Variable Structure Controller
Exclusive Or

TABLE OF CONTENTS

Chapter 1 INTRODUCTION

1.1
1.2

1.3
1.4

1.5
1.6

Ali Zilouchian and Mo Jamshidi

Motivation

Neural Networks

1.2.1 Rationale for Using NN in Engineering
Fuzzy Logic Control

1.3.1 Rationale for Using FL in Engineering
Evolutionary Computation

Hybrid Systems

Organization of the Book

References

Chapter 2 FUNDAMENTALS OF NEURAL NETWORKS

2.1
2.2

23
24
2.5

2.6

2.7

Ali Zilouchian

Introduction

Basic Structure of a Neuron

2.2.1 Model of Biological Neurons

2.2.2 Elements of Neural Networks
2.2.2.1 Weighting Factors
2.2.2.2 Threshold
2.2.2.3 Activation Function

ADALINE

Linear Separable Patterns

Single Layer Perceptron

2.5.1 General Architecture

2.5.2 Linear Classification

2.5.3 Perceptron Algorithm

Multi-Layer Perceptron

2.6.1 General Architecture

2.6.2 Input-Output Mapping

263 XOR Realization

Conclusion

References

Chapter 3 NEURAL NETWORK ARCHITECTURES

3.1

Hooman Yousefizadeh and Ali Zilouchian

Introduction

3.2

3.3
34
3.5

3.6
3.7

NN Classifications

3.2.1 Feedforward and feedback networks
3.2.2 Supervised and Unsupervised Learning Networks
Back Propagation Algorithm

3.3.1 Delta Training Rule

Radial Basis Function Network (RBFN)
Kohonen Self Organization Network

3.5.1 Training of the Kohonen Network
3.5.2 Examples of Self-Organization
Hopfield Network

Conclusions

References

Chapter 4 APPLICATIONS OF NEURAL NETWORKS IN

4.1

4.2.

43

4.4

MEDICINE AND BIOLOGICAL SCIENCES
Faramarz Valafar

Introduction

Terminology and Standard Measures

Recent Neural Network Research Activity in Medicine
and Biological Sciences

4.3.1 ANNs in Cancer Research

4.3.2 ANN Biosignal Detection and Correction

4.3.3 Decision-making in Medical Treatment Strategies
Summary

References

Chapter 5 APPLICATION OF NEURAL NETWORK IN

5.1
52

53

54

DESIGN OF DIGITAL FILTERS
Dali Wang and Ali Zilouchian

Introduction

Problem Approach

5.2.1 Neural Network for Identification

5.2.2 Neural Network Structure

A Training Algorithm for Filter Design

5.3.1 Representation

5.3.2 Training Objective

53.3 Weight Adjustment

5.3.4 The Training Algorithm
Implementation Issues

5.4.1 Identifying a System in Canonical Form
5.4.2 Stability, Convergence, Learning Rate and Scaling

5.5

5.6

5.7

2-D Filter Design Using Neural Network

5.5.1 Two-imensional Signal and Digital Filters
5.5.2 Design Techniques

5.5.3 Neural Network Approach

Simulation Results

5.6.1 1-D Filters

5.6.2 2-D Filters

Conclusions

References

Chapter 6 APPLICATION OF COMPUTER

6.1
6.2

6.3

6.4

6.5

NETWORKING USING NEURAL NETWORK
Homayoun Yousefizadeh

Introduction

Self Similar Packet Traffic

6.2.1 Fractal Properties of Packet Traffic

6.2.2 Impacts of Fractal Nature of Packet Traffic

Neural Network Modeling of Packet Traffic

6.3.1 Perceptron Neural Networks and Back
Propagation Algorithm

6.3.2 Modeling Individual Traffic Patterns

6.3.3 Modeling Aggregated Traffic Patterns

Applications of Traffic Modeling

6.4.1 Packet Loss Prevention

6.4.2 Packet Latency Prediction

6.4.3 Experimental Observations

Summary

References

Chapter 7 APPLICATION OF NEURAL NETWORKS IN

7.1
7.2

7.3

OIL REFINERIES
Ali Zilouchian and Khalid Bawazir

Introduction

Building the Artificial Neural Network
7.2.1 Range of Input Data

7.2.2 Size of the Training Data Set
7.2.3 Acquiring the Training Data Set
7.2.4 Validity of the Training Data Set
7.2.5 Selecting Process Variables
Data Analysis

7.3.1 Elimination of Bad Lab Values

7.4

7.5
7.6

7.7

7.3.2 Process Parameters’ Effect on Neural Network
Prediction

Implementation Procedure

7.4.1 Identifying the Application

7.4.2 Model Inputs Identification

7.4.3 Range of Process Variables

Predictor Model Training

Simulation Results and Discussions

7.6.1 Naphtha 95% Cut Point

7.6.2 Naphtha Reid Vapor Pressure

Conclusions

References

Chapter 8 INTRODUCTION TO FUZZY SETS: BASIC

8.1
8.2
8.3
8.4
8.5

8.6
8.7

8.8
8.9

DEFINITIONS AND RELATIONS
Mo Jamshidi and Aly El-Osery

Introduction

Classical Sets

Classical Set Operations

Properties of Classical Sets

Fuzzy Sets

8.5.1 Fuzzy Membership Functions
Fuzzy Set Operations

Properties of Fuzzy Sets

8.7.1 Alpha-Cut Fuzzy Sets

8.7.2 Extension Principle

Classical Relations vs. Fuzzy Relations
Conclusion

References

Chapter 9 INTRODUCTION TO FUZZY LOGIC

9.1
9.2

9.3
9.4
9.5

Mo Jamshidi, Aly EI-Osery, and Timothy J. Ross

Introduction

Predicate Logic

9.2.1 Tautologies

9.2.2 Contradictions

9.2.3 Deductive Inferences
Fuzzy Logic

Approximate Reasoning
Conclusion

References

Chapter 10 FUZZY CONTROL AND STABILITY

10.1
10.2

10.3
10.4
10.5

10.6

Mo Jamshidi and Aly El-Osery

Introduction

Basic Definitions

10.2.1 Inference Engine

10.2.2 Defuzzification

Fuzzy Control Design

Analysis of Fuzzy Control Systems
Stability of Fuzzy Control Systems
10.5.1 Lyapunov Stability

10.5.2 Stability via Interval Matrix Method
Conclusion

References

Chapter 11 SOFT COMPUTING APPROACH TO SAFE

11.2

11.3

11.6

NAVIGATION OF AUTONOMOUS PLANETARY
ROVERS

Edward Tunstel, Homayoun Seraji,

and Ayanna Howard

Introduction
11.1.1 Practical Issues in Planetary Rover Applications
Navigation System Overview
11.2.1 Fuzzy-Behaviour-Based Structure
Fuzzy -Logic-Based Rover Health and Safety
11.3.1 Health and Safety Indicators
11.3.2 Stable Attitude Control
11.3.3 Traction Management
11.3.3.1 Neuro-Fuzzy Solution
Fuzzy Terrain-Based Navigation
11.4.1 Visual Terrain Traversability Assessment and
Fuzzy Reasoning
11.4.1.1 Terrain Roughness Extraction
11.4.1.2 Terrain Slope Extraction
11.4.1.3 Fuzzy Inference of Terrain Traversability
Strategic Fuzzy Navigation Behaviors
11.5.1 Seek-Goal Behavior
11.5.2 Traverse-Terrain Behavior
11.5.3 Avoid-Obstacle Behavior
11.5.4 Fuzzy-Behavior Fusion
Rover Test Bed and Experimental Results
11.6.1 Safe Mobility

11.6.2 Safe Navigation

11.7 Summary and Conclusions
Acknowledgement
References

Chapter 12 AUTONOMOUS UNDERWATER VEHICLE
CONTROL USING FUZZY LOGIC
Feijun Song and Samuel M. Smith

12.1 Introduction
12.2 Background
12.3 Autonomous Underwater Vehicles (AUVs)
12.4 Sliding Mode Control
12.5 Sliding Mode Fuzzy Control (SMFC)
12.6 SMFC Design Examples
12.7 Guidelines for Online Adjustment
12.7.1 Sliding Slope A Effects
12.7.2 Thickness of the Boundary Layer ¢ Effects
12.8 At Sea Experimental Results
12.9 Summary
References

Chapter 13 APPLICATION OF FUZZY LOGIC FOR
CONTROL OF HEATING, CHILLING, AND AIR
CONDITIONING SYSTEMS
Reza Talebi-Daryani

13.1 Introduction
13.2 Building Energy Management System (BEMS)
13.2.1 System Requirements
13.2.2 System Configuration
13.2.3 Automation Levels
13.3 Air Conditioning System: FLC vs. DDC
13.3.1 Process Description
13.3.2 Process Control
13.3.3 Digital PID Controller
13.3.4 Fuzzy Cascade Controller
13.3.5 DDC vs. FLC
13.4 Fuzzy Control for the Operation Management of a
Complex Chilling System
13.4.1 Process Description
13.4.2 Process Operation with FLC
13.4.3 Description of the Different Fuzzy Controllers

13.5

13.6

13.4.4 System Performance and Optimization with FLC
Application of Fuzzy Control for Energy Management of a
Cascade Heating Center

13.5.1 The Heating System

13.5.2 FLC for System Optimization

13.5.3 FLC Description

13.5.4 Temperature Control: Fuzzy vs. Digital
Conclusions

References

Chapter 14 APPLICATION OF ADAPTIVE NEURO-FUZZY

14.1
14.2
14.3

14.4

14.5

INFERENCE SYSTEMS TO ROBOTICS
Ali Zilouchian and David Howard

Introduction

Adaptive Neuro-Fuzzy Inference Systems

Inverse Kinematics

14.3.1 Solution of Inverse Kinematics Using Fuzzy Logic
14.3.2 Solution of Inverse Kinematics Using ANFIS
14.3.3 Simulation Experiments

Controller Design of Microbot

14.4.1 Design of a Conventional Controller

14.4.2 Hierarchical Control

14.4.3 ANFIS Controller for Microbot

Conclusions

References

Chapter 15 APPLICATION OF SOFT COMPUTING FOR

15.1
15.2

15.3

DESALINATION TECHNOLOGY
Mutaz Jafar and Ali Zilouchian

Introduction
General Background on Desalination and Reverse Osmosis
15.2.1 Critical Control Parameters
15.2.1.1 Temperature
15.2.1.2 Pressure
15.2.1.3 Recovery
15.2.1.4 Feed pH
15.2.1.5 Salt Rejection
15.2.1.6 Scaling
Predictive Modeling Using Neural Networks
15.3.1 Redistributed Receptive Fields of RBFN
15.3.1.1 Data Clustering

15.4

15.5

15.6

15.7

15.3.1.2 Histogram Equalization
15.3.1.3 Widths of Receptive Fields
Case Studies
15.4.1 Example 1: Beach Well Seawater Intake
154.1.1 Simulation Results
15.4.2 Example 2: A Ground Water Intake
15.4.3 Example 3: A Direct Seawater Intake
15.4.3.1 Scaling Simulation
Fuzzy Logic Control
15.5.1 Chemical Dosing Control
15.5.1.1 Fuzzy Rule Base
15.5.1.2 Membership Functions
15.5.1.3 Decision Matrix
15.5.1.4 Results and Discussion
15.5.2 High-Pressure Control
15.5.2.1 Fuzzy Rule Base
15.5.2.2 Decision Matrix
15.5.2.3 Results and Discussion
15.5.3 Flow Rate Control
15.5.3.1 Fuzzy Rule Base for Flow Control
15.5.3.2 Decision Matrix
15.5.3.3 Results and Discussion
Application of ANFIS to RO Parameters
15.6.1 ANFIS Simulation Results
Conclusion
References

Chapter 16 COMPUTATIONAL INTELLIGENCE

16.1
16.2

16.3
16.4

APPROACH TO OBJECT RECOGNITION
K.C. Tan, T.H. Lee, and M.L. Wang

Introduction

Obiect Recognition by Neural Feature Extraction and

Fuzzy Combination

16.2.1 Feature Extraction by Neural Network

16.2.2 Fuzzy State Dependent Modulation

16.2.3 Combination of Features Extracted from
Multiple Sources with Fuzzy Reasoning

A Face Recognition Application

Conclusions

References

Chapter 17 AN INTRODUCTION TO EVOLUTIONARY

17.1
17.2

17.3
17.4

17.5

COMPUTATION
Gerry Dozier, Abdollah Homaifar,
Edward Tunstel, and Darryl Battle

Introduction
An Overview of Genetic Search

17.2.1 The Genetic Representation of Candidate Solutions

17.2.2 Population Size

17.2.3 Evaluation Function

17.2.4 Genetic Operators
17.2.4.1 Single Point Crossover
17.2.4.2 Uniform Crossover
17.2.4.3 Mutation

17.2.5 The Selection Algorithm
17.2.5.1 Proportionate Selection
17.2.5.2 Linear Rank Selection
17.2.5.3 Tournament Selection

17.2.6 Generation Gap

17.2.7 Elitism

17.2.8 Duplicates

Genetic Search

Genetic Programming

17.4.1 Structure Representation

17.4.2 Closure and Sufficiency

17.4.3 Fitness Evaluation

17.4.4 Genetic Operators

Summary

Acknowledgments

References

Chapter 18 EVOLUTIONARY CONCEPTS FOR IMAGE

18.1
18.2

PROCESSING APPLICATIONS
Madjid Fathi and Lars Hildebrand

Introduction
Optimization Techniques
18.2.1 Basic Types of Optimization Methods
18.2.2 Deterministic Optimization Methods
18.2.2.1 Minimization in the Direction of the
Coordinates
18.2.2.2 Minimization in the Direction of the
Steepest Slope

18.3

18.4

18.5

18.2.2.3 Simplex Minimization
18.2.3 Probabilistic Optimization Methods
Evolutionary Strategies
18.3.1 Biological Evolution
18.3.2 Mechanisms of Evolution Strategy
18.3.3 The (1+1) Evolutionary Strategy
18.3.4 The (put1) Evolutionary Strategy
18.3.5 The (Y,A) Evolutionary Strategy
Image Processing Applications
18.4.1 Generating Fuzzy Sets for Linguistic Color
Processing
18.4.1.1 Resistance Spot Welding
18.4.1.2 Linguistic Color Processing
18.4.2 Developing Specialized Digital Filters
18.4.2.1 Digital Image Filters
18.4.2.2 Optimization of Digital Filters
Conclusion
References

Chapter 19 EVOLUTIONARY FUZZY SYSTEMS

19.1

19.2

19.3

19.4

19.5
19.6

19.7
19.8

Mohammad.R. Akbarzadeh-T. and A.H. Meghdadi

Introduction
19.1.1 The Problem Statement and Design Outline
Free Parameters
19.2.1 Competing Conventions
Design of Interpretation (Encoding) Function
19.3.1 Membership Functions
19.3.1.1 Triangular Membership Functions
19.3.1.2 Non-triangular Membership Functions
19.3.1.3 General Method of MF Encoding
19.3.2 Rule Encoding
19.3.2.1 A Control System Problem Formulation
The Initial Population
19.4.1 Grandparenting: A Method of Incorporating
a priori Expert Knowledge
Fitness Function
Speed Regulation of a DC Motor
19.6.1 The Control Architecture
19.6.2 Results
Current Problems and Challenges
Summary and Results

Acknowledgement
References

Chapter 20 GENETIC AND EVOLUTIONARY METHODS

20.1
20.2

20.3

204

20.5

20.6

FOR MOBILE ROBOT MOTION CONTROL
AND PATH PLANNING

Abdollah Homaifar, Edward Tunstel,

Gerry Dozier, and Darryl Battle

Introduction
Genetic Programming for Path Tracking Control
20.2.1 Path Tracking Formulation
20.2.2 GP Solution
20.2.2.1 Controller Fitness Evaluation
Path Tracking Simulation Result
20.3.1 Evolved Controller Robustness
Evolutionary Path Planning
20.4.1 Evolutionary Path Planning System
20.4.1.1 Environment and Path Representation
20.4.1.2 Visibility-Based Repair of Candidate
Paths
20.4.1.3 Path Evaluation, Selection, and
Evolutionary Operators
Path Evolution with Fuzzy Selection
20.5.1 Fuzzy Inference System
20.5.2 Experimental Example
Summary and Conclusions
Acknowledgments
References

Chapter 21: PROBLEMS AND MATLAB PROGRAMS

21.1
21.2
21.3
21.4
21.5

Ali Zilouchian and Mo Jamshidi

Introduction

Neural Network Problems
Fuzzy Logic Problems
Applications

MATLAB Programs

INTRODUCTION

Ali Zilouchian and Mo Jamshidi

1.1 MOTIVATION

With the increasing complexity of various industrial processes, as well as
household appliances, the link among ambiguity, robustness and performance of
these systems has become increasingly evident. This may explain the dominant
role of emerging “intelligent systems” in recent years [1]. However, the
definition of intelligent systems is a function of expectations and the status of
the present knowledge: perhaps the “intelligent systems” of today are the
“classical systems” of tomorrow.

The concept of intelligent control was first introduced nearly two decades
ago by Fu and G. Saridis [2]. Despite its significance and applicability to
various processes, the control community has not paid substantial attention to
such an approach. In recent years, intelligent control has emerged as one of the
most active and fruitful areas of research and development (R&D) within the
spectrum of engineering disciplines with a variety of industrial applications.

During the last four decades, researchers have proposed many model-based
control strategies. In general, these design approaches involve various phases
such as modeling, analysis, simulation, implementation and verification. Many
of these conventional and model-based methods have found their way into
practice and provided satisfactory solutions to the spectrum of complex systems
under various uncertainties [3]. However, as Zadeh articulated as early as 1962
[4] “often the solution of real life problems in system analysis and control has
been subordinated to the development of mathematical theories that dealt with
over-idealized problems bearing little relation to theory”.

In one of his latest articles [5] related to the historical perspective of system
analysis and control, Zadeh has considered this decade as the era of intelligent
systems and urges for some tuning: “I believe the system analysis and controls
should embrace soft computing and assign a higher priority to the development
of methods that can cope with imprecision, uncertainties and partial truth.”

Perhaps the truth is complex and ambiguous enough to accept contributions
from various viewpoints while denying absolute validity to any particular
viewpoint in isolation. The exploitation of the partial truth and tolerance for
imprecision underlie the remarkable human ability to understand distortions and
make rational decisions in an environment of uncertainty and imprecision. Such

modern relativism, as well as utilization of the human brain as a role model on
the decision making processes, can be regarded as the foundation of intelligent
systems design methodology.

In a broad perspective, intelligent systems underlie what is called “soft
computing.” In traditional hard computing, the prime objectives of the
computations are precision and certainty. However, in soft computing, the
precision and certainty carry a cost. Therefore, it is realistic to consider the
integration of computation, reasoning, and decision making as various partners
in a consortium in order to provide a framework for the trade off between
precision and uncertainty. This integration of methodologies provides a
foundation for the conceptual design and deployment of intelligent systems. The
principal partners in such a consortium are fuzzy logic, neural network
computing, generic algorithms and probabilistic reasoning. Furthermore, these
methodologies, in most part, are complementary rather than competitive [5], [6].
Increasingly, these approaches are also utilized in combination, referred to as
“hybrid.” Presently, the most well-known systems of this type are neuro-fuzzy
systems. Hybrid intelligent systems are likely to play a critical role for many
years to come.

Soft computing paradigms and their hybrids are commonly used to enhance
artificial intelligence (AI) and incorporate human expert knowledge in
computing processes. Their applications include the design of intelligent
autonomous systems/controllers and handling of complex systems with
unknown parameters such as prediction of world economy, industrial process
control and prediction of geological changes within the earth ecosystems. These
paradigms have shown an ability to process information, adapt to changing
environmental conditions, and learn from the environment.

In contrast to analytical methods, soft computing methodologies mimic
consciousness and cognition in several important respects: they can learn from
experience; they can universalize into domains where direct experience is absent;
and, through parallel computer architectures that simulate biological processes,
they can perform mapping from inputs to the outputs faster than inherently
serial analytical representations. The trade off, however, is a decrease in
accuracy. If a tendency towards imprecision could be tolerated, then it should be
possible to extend the scope of the applications even to those problems where
the analytical and mathematical representations are readily available. The
motivation for such an extension is the expected decrease in computational load
and consequent increase of computation speeds that permit more robust control.
For instance, while the direct kinematics mapping of a parallel manipulator’s leg
lengths to pose (position and orientation of its end effector) is analytically
possible, the algorithm is typically long and slow for real-time control of the
manipulator. In contrast, a parallel architecture of synchronously firing fuzzy
rules could render a more robust control [7].

There is an extensive literature in soft computing from theoretical as well as
applied viewpoints. The scope of this introductory chapter is to provide an
overview of various members of these consortiums in soft computing, namely

fuzzy logic (FL), neural networks (NN), evolutionary algorithms (EA) as well as
their integration. In section 1.2, justification as well as rationale for the
utilization of NN in various industrial applications is presented. Section 1.3,
introduces the concept of FL as well as its applicability to various industrial
processes. The evolutionary computation is presented in section 1.4. Section 1.5
is devoted to the integration of soft-computing methodologies commonly called
hybrid systems. Finally the organization of the book is presented in section 1.6
of this chapter.

1.2 NEURAL NETWORKS

For many decades, it has been a goal of engineers and scientists to develop a
machine with simple elements similar to one found in the human brain.
References to this subject can be found even in 19" century scientific literature.
During the 1940s, researchers desiring to duplicate the human brain, developed
simple hardware (and later software) models of biological neurons and their
interconnection systems. McCulloch and Pitts in 1943[8] published the first
systematic study on biological neural networks. Four years later the same
authors explored the network paradigms for pattern recognition using a single-
layer perceptron. Along with the progress, psychologists were developing
models of human learning. One such model, that has proved most fruitful, was
due to D. O. Hebb, who, in 1949, proposed a learning law that became the
starting point for artificial neural networks training algorithm [9]. Augmented
by many other methods, it is now well recognized by scientists as indicative of
how a network of artificial neurons could exhibit learning behavior. In the
1950s and 1960s, a group of researchers combined these biological and
psychological insights to produce the first artificial neural network [9], [10].
Initially implemented as electronic circuits, they were later converted into a
more flexible medium of computer simulation. However, from 1960 to 1980,
due to certain severe limitations on what a NN could perform, as pointed out by
Minsky [11], neural network research went into near eclipse. The discovery of
training methods for a multi-layer network of the 1980s has, more than any
other factor, been responsible for the recent resurgence of NN.

1.2.1 Rationale for Using NN in Engineering

In general, artificial neural networks (ANNs) are composed of many simple
elements emulating various brain activities. They exploit massively parallel
local processing and distributed representation properties that are believed to
exist in the brain. A major motivation to introduce ANN among many
researchers has been the exploration and reproduction of human information
processing tasks such as speech, vision, and knowledge processing and motor
control. The attempt of organizing such information processing tasks highlights
the classical comparison between information processing capabilities of the
human and so called hard computing. The computer can multiply large numbers

at fast speed, yet it may not be capable of understanding an unconstrained
pattern such as speech. On the other hand, though a human being understands
speech, he lacks the ability to compute the square root of a prime number
without the aid of pencil and paper or a calculator. The difference between these
two opposing capabilities can be traced to different processing methods which
each employs. Digital computers rely upon algorithm-based programs that
operate serially, controlled by CPU, and store the information at a particular
location in memory. On the other hand, the brain relies on highly distributed
representations and transformations that operate in parallel, distribute control
through billions of highly interconnected neurons or processing elements, and
store information in various straight connections called synapses.

During the last decade, various NN structures have been proposed by
researchers in order to take advantage of such human brain capabilities. In
general, neural networks are composed of many simple elements operating in
parallel. The network function is determined largely by the connections between
these elements. Neural networks can be trained to perform complex functions
due to the nature of their nonlinear mappings of input to output data set.

In recent years, the NN has been applied successfully to many fields of
engineering such as aerospace, digital signal processing, electronics, robotics,
machine vision, speech, manufacturing, transportation, controls and medical
engineering [12]-[60]. A partial list of NN industrial applications includes
temperature control [20], [21]; inverted pendulum controller [22], [23]; robotics
manipulators [24]-[30] servo motor control [31]-[34]; chemical processes [35]-
[37]; oil refinery quality control [38]; aircraft controls and touchdown [12],
[39]; character recognition [16], [40]-[42]; process identification [43]-[47];
failure detection [48]; speech recognition [40]; DSP architectures [49]; truck
backer [50]; autonomous underwater vehicle [51], Communication[52];steel
rolling mill [53] and car fuel injection system [54],and medical diagnosis and
applications [15], [55]-[60]. Detailed descriptions of the works can be found in
relevant references.

1.3 FUZZY LOGIC CONTROL

The fuzzy logic has been an area of heated debate and much controversy during
the last three decades. The first paper in fuzzy set theory, which is now
considered to be the seminal paper on the subject, was written by Zadeh [61],
who is considered the founding father of the field. In that work, Zadeh was
implicitly advancing the concept of human approximate reasoning to make
effective decisions on the basis of available imprecise linguistic information
[62], [63]. The first implementation of Zadeh’s idea was accomplished in 1975
by Mamdani [64], and demonstrated the viability of fuzzy logic control (FLC)
for a small model steam engine. After this pioneer work, many consumer
products as well as other high tech applications using fuzzy technology have
been developed and are currently available in Japan, the U.S. and Europe.

1.3.1 Rationale for Using FL in Engineering

During the last four decades, most control system problems have been
formulated by the objective knowledge of the given systems (e.g., mathematical
model). However, as we have pointed out in section 1.1, there are knowledge-
based systems and information which cannot be described by traditional
mathematical representations. Such relevant subjective knowledge is often
ignored by the designer at the front end, but often utilized in the last phase in
order to evaluate design. Fuzzy logic provides a framework for both information
and knowledge-based systems. So called knowledge-based methodology is
much closer to human thinking and natural language than the traditionally
classical logic.

Fuzzy logic controller (FLC) utilizes fuzzy logic to convert the linguistic
control strategy based on expert knowledge into an automatic control strategy.
In order to use fuzzy logic for control purposes, we need to add a front-end
“fuzzifier” and a rear-end “defuzzifier” to the usual input-output data set. A
simple fuzzy logic controller is shown in Figure 1.1. It contains four
components: rules, fuzzifier, inference engine, 1 and defuzzifier. Once the rule
has been established, it can be considered as a nonlinear mapping from the input
to the output.

Out
In
> SYSTEM >

FUZZIFIER
DEFUZZIFIER FIR ¢

Figure 1.1: A Simple Structure of a Fuzzy Logic Controller.

There are a number of books related to fuzzy logic [65]-[80]. Its applications
include automatic train control [6], [67]; robotics [21], [65], [68], [71], [81]-
[83]; pattern recognition [2], [7], [67], [71], [75]; servo motor [71], [84], [85],
disk drive [86], washing machine [87], [88]; VLSI and fuzzy logic chips [6],
[68], [75], [89]; car and helicopter model [6], [65], electronics and home
appliances [71], [73], [90]; sensors [71], temperature control [2], [71]; computer
vision [71], [73]; aircraft landing systems [71], [73]; navigation and cruise
control[71], [91]-[94], inverted pendulum [63],[71],[95]-[97] and cargo ship
[98], to name a few. In this book a number of pioneer applications are also
presented.

14 EVOLUTIONARY COMPUTATION

In recent years, a variety of evolutionary computation methodologies have been
proposed to solve problems of common engineering applications. Applications
often involve automatic learning of nonlinear mappings that govern the behavior
of control systems, as well as parallel search strategies for solving multi-
objective optimization problems. These algorithms have been particularly
appealing in the scientific communities since they allow autonomous
adaptation/optimization without human intervention. These strategies are based
on the fact that the biological evolution indeed represents an almost perfect
method for adaptation of an individual to the environment according to
Darwinian concepts.

There are various approaches to evolutionary optimization algorithms
including evolution concept, genetic programming and genetic algorithms.
These various algorithms are similar in their basic concepts of evolution and
differ mainly in their approach to parameter representation. The evolutionary
optimization algorithms operate by representing the optimization parameters via
a gene-like structure and subsequently utilizing the basic mechanisms of
Darwinian natural selection to find a population of superior parameters. The
three basic principles of rules of biological evolution are explained in detail in
Chapter 17.

Genetic algorithm (GA), in particular, is an evolutionary algorithm which
has performed well in noisy, nonlinear and uncertain processes. Additionally,
GAs are also not problem specific, i.e., there is very little, if any, a priori
knowledge about the system used in design of GAs. Hence, GAs are desirable
paradigms for optimizing a wide array of problems with exceeding complexity.
The mathematical framework of GA was first developed by Holland [101], and
has subsequently been extended [102], [103]. A simple genetic algorithm
operates on a finite population of fixed-length binary strings called genes.
Genetic algorithms possess three basic operations: reproduction, cross over and
mutation. The reproduction is an operation in which the strings are copies based
on their fitness. The crossover of genes and mutation of random changes of
genes are the other operations in GA. Interested readers are referred to Goldberg
[101], Davis [102], Chapter 17 of this book, and the references therein for
comprehensive overviews of GA.

Another evolutionary computational approach is genetic programming (GP)
which would allow a symbolic-based nonlinear optimization. The GP paradigm
[103] also computationally simulates the Darwinian evolution process by
applying fitness-based selection and genetic operators to a population of parse
trees of a given programming language. It departs from the conventional GA
primarily with regard to its representation scheme. Structures undergoing
adaptation are executable hierarchical programs of dynamically varying size and
structure, rather than numerical strings. Commonly in a hybrid system such as a
GP-Fuzzy case, a population comprising fuzzy rule-bases (symbolic structures)
that are candidate solutions to the problem, evolves in response to selective

pressure induced by their relative success at implementing the desired behavior
[103].

1.5 HYBRID SYSTEMS

In many cases, hybrid applications methods have proven to be effective in
designing intelligent control systems. As it was shown in recent years, fuzzy
logic, neural networks and evolutionary computations are complementary
methodologies in the design and implementation of intelligent systems. Each
approach has its merits and drawbacks. To take advantage of the merits and
eliminate their drawbacks, several integration of these methodologies have been
proposed by researchers during the past few years. These techniques include the
integration of neural network and fuzzy logic techniques as well as the
combination of these two technologies with evolutionary methods.

The merging of the NN and FL can be realized in three different directions,
resulting in systems with different characteristics [103]- [108]:

1. Neuro-fuzzy systems: provide the fuzzy systems with automatic tuning
systems using NN as a tool. The adaptive neuro fuzzy inference
systems are included in this classification

2. Fuzzy neural network: retain the functions of NN with fuzzification of
some of their elements. For instance, fuzzy logic can be used to
determine the learning steps of NN structure.

3. Fuzzy-neural hybrid systems: utilize both fuzzy logic and neural
networks in a system to perform separate tasks for decouple
subsystems. The architecture of the systems depends on a particular
application. For instance, the NN can be utilized for the prediction
where the fuzzy logic addresses the control of the system.

The applications of these hybrid methods to several industrial processes
including robot manipulators, desalination plants, and underwater autonomous
vehicles will be presented in this book.

On the other hand, the NN, FL and evolutionary computations can be
integrated [103], [109]-[123]. For example, the structure and parameter learning
problems of neural network can be coded as genes in order to search for optimal
structures and parameters of neural network. In addition, the inherent flexibility
of the evolutionary computation and fuzzy systems has created a large diversity
and variety in how these two complementary approaches can be combined to
solve many engineering problems. Some of their applications include control of
pH in chemical processes [110], inverted pendulum [111]-[113], cart and poles
problem [114], robot trajectory [115], truck-backing problem [116]; automotive
active suspension control [117]; temperature control of brine heater [119];
hepatitis diagnosis problem [120]; classification of flowers. [121]and position
control of servo systems [122].

In Chapter 18, evolutionary concept and fuzzy logic will be combined for
image processing applications. In Chapter 19, the application of GA-fuzzy
systems as the most common evolution-based fuzzy system will be presented.

Genetic programming is employed to learn the rules and membership functions
of the fuzzy logic controller, and also to handle selection of fuzzy set
intersection operators. Finally, Chapter 20 presents a methodology for applying
GP to design a fuzzy logic steering controller for a mobile robot.

1.6 ORGANIZATION OF THE BOOK

This book covers basic concepts and applications of intelligent systems using
soft computing methodologies and their integration. It is divided into six major
parts.

Part I (Chapters 2 — 3) covers the fundamental concepts of neural networks.
Single-layer as well as multilayer networks are briefly reviewed. Supervised and
unsupervised learning are discussed. Four different NN architectures including
back propagation, radial basis functions, Hopfield and Kohonen self-
organization are presented.

Part IT (Chapters 4 — 7) addresses several applications of NN in science and
engineering. The areas of the NN applications include medicine and biology,
signal processing, computer networking, chemical process and oil refinery.

Part III (Chapters 8 — 10) of the book covers the fuzzy set theory, fuzzy
logic and fuzzy control and stability. In these three chapters, we cover the
fundamental concepts of fuzzy sets, fuzzy relation, fuzzy logic, fuzzy control,
fuzzification, defuzification and stability of fuzzy systems.

Part IV (Chapters 11 — 16) covers various applications of fuzzy logic control
including navigation of autonomous planetary rover, autonomous underwater
vehicle, heating and cooling systems, robot manipulators, desalination and
object recognition.

Part V (Chapters 17 — 20) covers the concepts of evolutionary computations
and their applications to several engineering problems. Chapter 17 presents a
brief introduction of evolutionary computations. In the following chapters (18 —
20) several applications of evolutionary computations are explored. Furthermore
the integration of these methodologies with the fuzzy logic is presented. Finally,
some examples and exercises are provided in Chapter 21. MATLAB neural
network and fuzzy logic toolboxes can be used to solve some of these problems.

REFERENCES
1. Wright, R., Can Machines Think? Time, Vol. 147, No. 13, March 1996.

Gupta M., Saridis, G., and Gaines, B, Fuzzy Automatica and Decision
Processes, North-Holland, NY, 1977.

3. Antsaklis, P.J. and Passino, K.M., (eds.), An Introduction to Intelligent
and Autonomous Control, Kluwer Academic Publishers, Norwell, MA,
1993.

4. Zadeh, L.A., A Critical View of Our Research in Automatic Control,

IRE Trans. on Automatic Controls, AC-7, 74, 1962.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

Zadeh, L.A., The Evolution of Systems Analysis and Control: A
Personal Perspective, IEEE Control Mag., Vol. 16, No. 3, 95, 1996.
Yager, R. and Zadeh, L.A. (eds.), An Introduction to Fuzzy Logic
Applications in Intelligent Systems, Kluwer Academic Publishers,
Boston, 1992.

DiazRobainas, R., Zilouchian, A. and Huang, M., Fuzzy Identification
on Finite Training-Set with Known Features, Int. J. Automation Soft
Computing.

McCulloch, W.W. and Pitts, W., A Logical Calculus of Ideas Imminent
in Nervous Activity, Bull. Math. Biophy., 5, 115, 1943.

McClelland, J. L. and Rumelhart, D. E., The PDP Research Group,
Parallel Distributed Processing — Explorations in the Microstructure of
Cognition, Vol. 2: Psychological and Biological Models, MIT Press,
MA, 1986.

Rosenblatt, F., Principles of Neurodynamics, Spartan Press,
Washington, DC, 1961.

Minsky, M. and Papert, S., Perceptron: An Introduction to
Computational Geometry, MIT Press, MA, 1969.

Miller, W. T., Sutton, R., and Werbos, P., Neural Networks for
Control, MIT Press, MA, 1990.

Zurada, J., Introduction to Artificial Neural Systems, West Publishing
Co., St. Paul, MN, 1992.

Fausett, L, Fundamentals of Neural Networks, Prentice-Hall,
Englewood Cliffs, NJ. 1994.

Croall, .LF. and Mason, J.P. (eds.), Industrial Applications of Neural
Networks, Springer-Verlag, NY, 1991.

Linkens, D.A. (ed.), Intelligent Control in Biomedicine, Taylor &
Francis, London, 1994.

Haykin, S., Neural Networks: A Comprehensive Foundation, Prentice-
Hall, Upper Saddle River, NJ, 1999.

Kosko, B., Neural Network for Signal Processing, Prentice-Hall,
Englewood Cliffs, NJ, 1992.

Kohonen, T., Self-Organization and Associative Memory, 3rd ed.,
Springer-Verlag, NY, 1988.

Khalid, M. and Omatu S., A Neural Network Controller for a
Temperature Control System, IEEE Control System Mag., 58—64, June
1992.

Gupta, M. and Sinha, N. (eds.), Intelligent Control Systems: Theory
and Applications, 1IEEE Press, Piscataway, NJ, 1996.

Tolat, V., An Adaptive Broom Balancer with Visual Inputs, Proc. of
IEEE Int. Conf. Neural Networks, 641, 1998.

Anderson, C.W., Learning To Control an Inverted Pendulum with
Connectionist Networks, Proc. of Am. Controls Conf-, 2294, 1988.

24.

25.

26.

217.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

Nguyen, L., Patel, R., and Khorasani, K., Neural Network
Architectures for the Forward Kinematic Problem in Robotics, Proc. of
IEEE Int. Conf. Neural Networks, 393, 1990.

Newton, R.T. and Xu, Y., Neural Network Control of a Space
Manipulator, IEEE Control Syst. Mag., 14, Dec. 1993.

Miller, W. T., Real-Time Neural Network Control of a Biped Walker
Robot, IEEE Control Syst., Vol. 14, No.1, Feb. 1994.

Liu, H., Iberall, T., and Bekey, G., Neural Network Architecture for
Robot Hand Control, IEEE Control Syst., Vol. 9, No. 3, 38, April 1989.
Handdman, D., Lane, S., and Gelfand, J., Integrating Neural Networks
and Knowledge-Based Systems for Intelligent Robotic Control, /EEE
Control Syst. Mag., Vol. 10, No. 3, 77, April 1990.

Rabelo, L.C. and Avula, X., Hierarchical Neuo-controller Architecture
for Robotic Manipulation, /EEE Control Syst. Mag., Vol. 12, No.2, 37,
April 1992.

Murostsu, Y., Tsujio, S., Sendo, K., and Hayashi, M., Trajectory
Control of Flexible Manipulators on a Free-Flying Space Robot, /IEEE
Control Syst. Mag., Vol. 12, No.3, 51, June 1992.

Zhang, Y., Sen, P., and Hearn, G., An On-Line Trained Adaptive
Neural Controller, IEEE Control Syst., Vol. 15, No.5, 67-75, Oct.
1995.

Kupperstien, M. and Rubinstein, J., Implementation of an Adaptive
Neural Controller for Sensory-Motor Coordination, IEEE Control
Syst., Vol. 9, No. 3, 25, 1989.

Eckmiller, R., Neural Nets for Sensory and Motor Trajectories, /[EEE
Control Syst., Vol. 9, No. 3, 53, 1989.

Hashimoto, H., Kubota, T., Kudou, M., and Harashima, F., Self-
Organization Visual Servo System Based on Neural Networks, /EEE
Control Syst. Mag., Vol. 12, No. 2, 31, 1992.

Bhat, N., Minderman, P., McAvoy, T., and Wang, N., Modeling
Chemical Process Systems via Neural Network Computation, [EEE
Control Syst. Mag., Vol. 10, No.3, 24, 1990.

Borman, S., Neural Network Applications in Chemistry Begin to
Appear, Chemical and Eng. News, Vol. 67, No. 17, 24, 19809.
Bawazeer, K. H., Prediction of Crude Oil Product Quality Parameters
Using Neural Networks, M.S. Thesis, Florida Atlantic University, Boca
Raton, FL, 1996.

Draeger, A., Engell, S., and Ranke, H., Model Predictive Control
Using Neural Networks, IEEE Control Syst., Vol. 15, No.5, 61, 1995.
Steck, J. E., Rokhsaz, M., and Shue S., Linear and Neural Network
Feedback for Flight Control Decoupling, /IEEE Control Syst., Vol. 16,
No. 4, 22, 1996.

Lippmann, R. P., An Introduction to Computing with Neura Network,
IEEE Acoustic, Speech, and Signal Process. Mag., 4, 1987.

41.

42.

43.

44,

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

Guyon, 1., Application of Neural Networks to Character Recognition,
Int. J. Pattern Recog. Artif. Intell., Vol. 5, Nos. 1 and 2, 353, 1991.
LeCun, Y., Jackel, L.D., etal., Handwritten Digital Recognition:
Application of Neural Network Chips and Automatic Learning, /[EEE
Com. Mag., 41,1988.

Parlos, A. G., Chong, K.T., and Atiya, A.F., Application of Recurrent
Neural Multilayer Perceptron in Modeling Complex Process Dynamic,
IEEE Trans. on Neural Networks, Vol. 5, No. 2, 255, 1994.

Sartori, M. and Antsaklis, P., Implementation of Learning Control
Systems Using Neural Networks, IEEE Control Syst. Mag., Vol. 12,
No.2, 49-57,1992.

Narenda, K. and Parthasarathy, K., Identification and Control of
Dynamic Systems Using Neural Networks, IEEE Trans. on Neural
Networks, Vol.1, 4,1990.

Narendra, K.S., Balakrishnan, J., and Cliliz, K., Adaptation and
Learning Using Multiple Models, Switching and Tuning, [EEE Control
Syst., Vol. 15, No. 3, 37, 1995.

Antsaklis, P., Special Issue on Neural Networks for Control System,
IEEE Control Syst. Mag., Vol. 10, No.3, 8, 1990.

Naida, S., Zafiriou, E., and McAvoy, T., Use of Neural Networks for
Sensor Failure Detection in a Control System, IEEE Control Syst.
Mag., Vol. 10, No. 3, 49,1990.

Radivojevic, 1., Herath, J., and Gray, S., High-Performance DSP
Architectures for Intelligence and Control Applications, IEEE Control
Syst., Vol.11, No. 4, 49, 1991.

Nguyen, D. and Widrow, B., Neural Networks for Self-Learning
Control Systems, /IEEE Control Syst. Mag., 18, 1990.

Sanner, R. and Akin, D., Neuromorphic Pitch Attitude Regulation of an
Underwater Telerobot, IEEE Control Syst. Mag., Vol. 10, No. 3, 62,
1990.

Rauch, H. E. and Winarske, T., Neural Networks for Routing
Communication Traffic, IEEE Control Syst. Mag., Vol. 8, No. 2, 26,
1988.

Hofer, D. S., Neumerkel, D., and Hunt, K., Neural Control of a Steel
Rolling Mill, IEEE Control Syst., Vol. 13, No. 3, 69,1993.

Majors, M., Stori, J., and Cho, D., Neural Network Control of
Automotive Fuel-Injection Systems, IEEE Control Syst., Vol. 14, No.
3, 31, 1994.

Nekovie, R. and Sun, Y., Back-propagation Network and its
Configuration for Blood Vessel Detection in Angiograms, IEEE Trans.
on Neural Networks, Vol. 6, No. 1, 64, 1995.

Echauz, J. and Vachtsevanos, G., Neural Network Detection of
Antiepileptic Drugs from a Single EEG trace, Proc. of the IEEE
Electro/94 Int. Conf., Boston, MA, 346, 1994 .

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74,

75.

76.

Charache S., Barton F. B., MooreR. D., et al., Hydroxyurea and Sickle
Cell Anemia, Vol. 75, No. 6, 300, 1980.

Charache S., Terrin L. M., Moore R. D., et al., Effect of Hydroxyurea
on the Frequency of Painful Crises in Sickle Cell Anemia, N. E. J.
Med., 332, 1995.

Charache S, Dover G. J., Moore R. D., et al., Hydroxyurea: Effects on
Hemoglobin F Production In-Patients With Sickle Cell Anemia, Blood,
Vol. 79, 10, 1992.

Apolloni, B., Avanzini, G., Cesa-Bianchi, N., and Ronchini, G.,
Diagnosis of Epilepsy via Backpropagation, Proc. of the Int. Joint
Conf. Neural Networks, Washington, DC, Vol. 2, 571, 1990.

Zadeh, L.A., Fuzzy Sets, Information and Control, 8, 338, 1965.
Zadeh, L.A., A Rationale for Fuzzy Control, J. Dynamic Syst., Meas.
and Control, Vol. 94, Series G, 3, 1972.

Zadeh, L.A., Making the Computers Think Like People, [EEE
Spectrum, 1994.

Mamdani, E. H., Application of Fuzzy Algorithms for Control of
Simple Dynamic Plant, Proc. of IEE, Vol. 121, No. 12, 1974.
Surgeno, M. (ed.), Industrial Applications of Fuzzy Control, North-
Holland, Amsterdam, 1985.

Yagar, R., Ovchinnikov, S., Tong, R.M., and Nguyen, H.T, Fuzzy Sets
and Applications, Wiley Interscience, NY, 1987.

Zimmermann, H., Fuzzy Set Theory and its Applications, Kluwer
Academic Publishers, Boston, 1991.

Ralescu, A. (ed.), Applied Research in Fuzzy Technology, Kluwer
Academic Publishers, Boston, 1994.

Kaufmann, A. and Gupta, M. (eds.), Introduction to Fuzzy Arithmetic
Theory and Applications, Van Nostrand Reinhold, NY, 1985.

Bezdek, J., Pattern Recognition with Fuzzy Objective Function
Algorithms, Plenum Press, NY, 1981.

Marks ILR. (ed.), Fuzzy Logic Technology and Applications, IEEE
Press, Piscataway, NJ, 1994.

Jamshidi, M., Vadiee N., and Ross, T.J. (eds.), Fuzzy Logic and
Control: Software and Hardware Applications, Prentice Hall,
Englewood Cliffs, NJ, 1993.

Amizadeh, F. and Jamshidi, M., Soft Computing, Fuzzy Logic, Neural
Networks, and Distributed Artificial Intelligence, Vol. 4, Prentice Hall,
Englewood Cliffs, NJ, 1994.

Nguyen, H., Sugeno, M., Tong, R., and Yager, R., Theoretical Aspecs
of Fuzzy Control, John Wiley & Sons, NY, 1995.

Kosko, B., Fuzzy Engineering, Prentice Hall, Upper Saddle River, NJ,
1997.

Passino, K., and Yurkovich, S., Fuzzy Control, Addison Wesley,
Menlo Park, CA, 1998.

77.

78.

79.

80.

81.

82.

83.

84.

85.

86.

87.

88.

89.

90.

91.

92.

93.

Cox, E.D., Fuzzy Logic for Business and Industry, Charles River
Media, Inc., Rockland, MA, 1995.

DeSilva, C.W., Fuzzy Logic and Application, CRC Press, Boca Raton,
FL, 1998.

Jamshidi, M., Large-Scale Systems — Modeling, Control and Fuzzy
Logic, Prentice Hall, Upper Saddle River, NJ, 1996.

Langari, G., A Framework for Analysis and Synthesis of Fuzzy Logic,
Ph.D. Dissertation, University of California, Berkeley, 1990.

Lime, C.M. and Hiyama, T., Application of Fuzzy Control to a
Manipulator, /[EEE Trans. on Robotics and Automation, Vol. 7, 5,
1991.

Li, W., Neuro-Fuzzy Systems for Intelligent Robot Navigation and
Control Under Uncertainty, Proc. of IEEE Robotics and Automation
Conf., 1995.

Nedungadi, A., Application of Fuzzy Logic to Solve the Robot Inverse
Kinematic Problem, Proc. of Fourth World Conf. on Robotics
Research, 1, 1991.

Li, Y. and Lau, C., Development of Fuzzy Algorithms for Servo
System, IEEE Control Mag., 65, 1989.

Ready, D. S., Mirkazemi-Moud, M., Green, T., and Williams, B.,
Switched Reluctance Motor Control Via Fuzzy Adaptive Systems,
IEEE Control Syst., Vol. 15, No. 3, 8, 1995.

Yoshida, S. and Wakabayashi, N., A Fuzzy Logic Controller for a
Rigid Disk Drive, IEEE Control Syst. Mag., Vol. 12, No. 3, 65, 1992.
Benison, P., Badami, V., Chiang, K., Khedkar, P., Marcelle, K., and
Schutten, M., Industrial Applications of Fuzzy Logic at General
Electric, Proc. of IEEE, Vol. 83, No, 3, 450, 1995.

Schwatz, D., Klir, G., Lewis, H., and Ezawa Y., Application of Fuzzy
Sets and Approximate Reasoning, Proc. of IEEE, Vol. 82, No. 4, 482,
1994.

Costa, A., DeGloria, A., Faraboschi, P., Pagni, A., and Rizzoto, G.,
Hardware Solutions for Fuzzy Control, Proc. of IEEE, Vol. 83, No. 3,
422, 1995.

Takagi, H., Cooperative System of Neural Network and Fuzzy Logic
and its Applications to Consumer Products, Van Nostrand Reinhold,
NY, 1993.

Kwong, W.A., Passino, K., Laukonen, E.G., and Yurkovich, S., Expett
Supervision of Fuzzy Learning Systems for Fault Tolerant Aircraft
Control, Proc. of IEEE, Vol. 83, No. 3, 466, 1995.

Hessburg, T. and Tomizuka, M., Fuzzy Logic Control for Lateral
Vehicle Guidance, /IEEE Control Syst., Vol. 14, No. 4, 55, 1994.
Chiu, S., Chand, S., Moore, D., and Chaudhary, A., Fuzzy Logic for
Control of Roll and Moment for a Flexible Wing Aircraft, /[EEE
Control Syst., Vol.11, No. 4, 42, 1991.

94.

95.

96.

97.

98.

99.

100.

101.

102.

103.

104.

105.

106.

107.

108.

109.

110.

111.

Vachtesanos, G., Farinwata, S., and Pirovolou, D., Fuzzy Logic control
of an Automotive Engine, IEEE Control System, Vol. 13, No. 3, 62,
1993.

Takagi, T. and Sugeno, M., Fuzzy Identification of Systems and its
Applications to Modeling and Contwol, [EEE Trans. on Syst, Man, and
Cyb., Vol. 15, No.1, 1985.

Lee, C. H., Fuzzy logic in Control Systems: Fuzzy Logic Controller,
PartII, IEEE Trans. on Syst, Man and Cyb., Vol. 20, No. 2, 419, 1990.
Berenji, H. and Khedhar, P., Learning and Tuning Logic Controller
Through Reinforcements, IEEE Trans. on Neural Networks, Vol. 3,
No. 5, 724, 1992.

Layne, J. and Passino, K., Fuzzy Model Reference Learning Control
for Cargo Ship Steeting, IEEE Control Syst., Vol. 13, No. 5, 23, 1993.
Fogel, L. J., Intelligence Through Simulated Evolution, John Wiley &
Sons, NY, 1999.

Holland, J.H., Adaptation in Natural and Artificial Systems, University
of Michigan Press, M1, 1975.

Goldberg, D.E., Genetic Algorithms in Search, Optimization and
Machine Learning, Addison-Wesley, Reading, MA, 1989.

Davis, L. (ed.), Handbook of Genetic Algorithms, Van Nostrand
Reinhold, N Y, 1991.

Koza, J. R., Genetic Programming — On the Programming of
Computers by Means of Natural Selection, MIT Press, MA, 1992.
Linkens, D.A. and H.O. Nyongeso, Learning systems in Intelligent
Approach of Fuzzy, Neural and Genetic Algorithm Control
Application, IEE Proc. Control Theory and Application, Vol. 143, No.
4, 367, 1996.

Lin, C.T. and Lee, C.S.G., Neural Fuzzy Systems, Prentice Hall, Upper
Saddle River, NJ, 1996.

Jang, J., Sun, C., and Mizutani, E., Neuro Fuzzy and Soft Computing,
Prentice Hall, Upper Saddle River, NJ, 1997.

Jang, J.S. and Sun, C., Neuro-Fuzzy Modeling and Control, Proc. of
IEEE, Vol. 83, No. 3, 378, 1995.

Mitra, S. and Pal, S.K., Self-Organizing Neural Network as a Fuzzy
Classifier, [EEE Trans. on Syst., Man, and Cyb., Vol. 24, No. 3, 1994.
Kim, J., Moor, Y., and Zeigler, B., Designing Fuzzy Net Controllers
Using Genetic Algorithms, IEEE Control Syst., Vol. 15, No. 3, 66,
1995.

Karr, C.L., Design of an Adaptive Fuzzy Logic Controller Using a
Genetic Algorithm, Proc. of the Fifth Int. Conf. on Genetic Algorithm,
450, 1991.

Lee, M. A. and Takagi, H.,, Integrating Design Stages of Fuzzy
Systems using Genetic Algorithms, Proc. of 2nd IEEE Int. Conf. on
Fuzzy Syst., 612, San Francisco, 1993.

112.

113.

114.

115.

116.

117.

118.

119.

120.

121.

122.

123.

Tan, G.V. and Hu, X., On Designing Fuzzy Contwllers Using Genetic
Algorithms, IEEE Int. Conf. on Fuzzy Syst., 905, 1996.

Kinzel, J., Modification of Genetic Algorithms for Design and
Optimizing Fuzzy Controllers, [EEE Int. Conf. on Fuzzy Syst.,28,
1994.

Cooper, M.G. and Vidal, J., Genetic Design of Fuzzy Contwollers: The
Cart and Jointed -Pole Problem, IEEE Int. Conf. on Fuzzy Syst., 1332,
1994.

Xu, H.Y. and Vukovich, G., Fuzzy Evolutionary Algorithms and
Automatic Robot Trajectory Generation, FUZZ-IEEE 94, 595, 1994.
Homaifar A. and McComick, E., Simultaneous Design of Membaership
Functions and Rule Sets for Fuzzy Controllers Using Genetic
Algorithms, IEEE Trans. on Fuzzy Syst., Vol. 3, No 2, 129, 1995.
Moon, S.Y. and Kwon, W. H., Genetic-Based Fuzzy Control for
Automotive Active Suspensions, FUZZ-IEEE 96, 923, 1996.
Akbarzadeh, M.R., Fuzzy Control and Evolutionary Optimization of
Complex Systems, Ph.D. Dissatation, The University of New Mexico,
1998.

Wang, C.H., Integrating Fuzzy Knowledge by Genetic Algorithms,
IEEE Trans. on Evolutionary Computations, Vol. 2, No. 4, 138, 1998.
Shi,Y., Implementation of Evolutionary Fuzzy Systems, /IEEE Trans.
on Fuzzy Syst., Vol. 7, No. 2, 109, 1999.

Park, Y.J., Lee, S.Y., and Cho, H.S., A Genetic Algorithm-Based
Fuzzy Control of an Electro-Hydraulic Fin Position Servo System,
Proc. IEEE Int. Fuzzy Syst., 1999, Seoul, Korea.

Kumbla, K.K., Adaptive Neuro-Fuzzy Systems for Passive Systems,
Ph.D. Dissertation, University of New Mexico, 1997.

Tustel, E., Adaptive Hierarchy of Distributed Fuzzy Control,
Application to Behavior Control of Rovers, Ph.D. Dissertation,
University of New Mexico, 1996.

FUNDAMENTALS OF NEURAL
NETWORKS

Ali Zilouchian

21 INTRODUCTION

For many decades, it has been a goal of science and engineering to develop
intelligent machines with a large number of simple elements. References to this
subject can be found in the scientific literature of the 19th century. During the
1940s, researchers desiring to duplicate the function of the human brain, have
developed simple hardware (and later software) models of biological neurons
and their interaction systems. McCulloch and Pitts [1] published the first
systematic study of the artificial neural network. Four years later, the same
authors explored network paradigms for pattern recognition using a single layer
perceptron [2]. In the 1950s and 1960s, a group of researchers combined these
biological and psychological insights to produce the first artificial neural
network (ANN) [3,4]. Initially implemented as electronic circuits, they were
later converted into a more flexible medium of computer simulation. However,
researchers such as Minsky and Papert [5] later challenged these works. They
strongly believed that intelligence systems are essentially symbol processing of
the kind readily modeled on the Von Neumann computer. For a variety of
reasons, the symbolic—processing approach became the dominant method.
Moreover, the perceptron as proposed by Rosenblatt turned out to be more
limited than first expected. [4]. Although further investigations in ANN
continued during the 1970s by several pioneer researchers such as Grossberg,
Kohonen, Widrow, and others, their works received relatively less attention. The
primary factors for the recent resurgence of interest in the area of neural
networks are the extension of Rosenblatt, Widrow and Hoff’s works dealing
with learning in a complex, multi-layer network, Hopfield mathematical
foundation for understanding the dynamics of an important class of networks, as
well as much faster computers than those of 50s and 60s.

The interest in neural networks comes from the networks’ ability to mimic
human brain as well as its ability to learn and respond. As a result, neural
networks have been used in a large number of applications and have proven to
be effective in performing complex functions in a variety of fields. These
include pattern recognition, classification, vision, control systems, and
prediction [6], [7]. Adaptation or learning is a major focus of neural net research
that provides a degree of robustness to the NN model. In predictive modeling,
the goal is to map a set of input patterns onto a set of output patterns. NN
accomplishes this task by learning from a series of input/output data sets

presented to the network. The trained network is then used to apply what it has
learned to approximate or predict the corresponding output [8].

This chapter is organized as follows. In section 2.2, various elements of an
artificial neural network are described. The Adaptive Linear Element
(ADALINE) and single layer perceptron are discussed in section 2.3 and 2.4
respectively. The multi-layer perceptron is presented in section 2.5. Section 2.6
discusses multi-layer perceptron and section 2.7 concludes this chapter.

2.2 BASIC STRUCTURE OF A NEURON
2.2.1 Model of Biological Neurons

In general, the human nervous system is a very complex neural network. The
brain is the central element of the human nervous system, consisting of near 10"
biological neurons that are connected to each other through sub-networks. Each
neuron in the brain is composed of a body, one axon and multitude of dendrites.
The neuron model shown in Figure 2.1 serves as the basis for the artificial
neuron. The dendrites receive signals from other neurons. The axon can be
considered as a long tube, which divides into branches terminating in little
endbulbs. The small gap between an endbulb and a dendrite is called a synapse.
The axon of a single neuron forms synaptic connections with many other
neurons. Depending upon the type of neuron, the number of synapses
connections from other neurons may range from a few hundreds to 10°.

The cell body of a neuron sums the incoming signals from dendrites as well
as the signals from numerous synapses on its surface. A particular neuron will
send an impulse to its axon if sufficient input signals are received to stimulate
the neuron to its threshold level. However, if the inputs do not reach the required
threshold, the input will quickly decay and will not generate any action. The
biological neuron model is the foundation of an artificial neuron as will be
described in detail in the next section.

Cutput Signals
Fj{nm Other

Syna[‘):sp‘s
iV

Axon Terminals

Cell Body

Figure 2.1: A Biological Neuron.

2.2.2 Elements of Neural Networks
An artificial neuron as shown in Figure 2.2, is the basic element of a neural

network. It consists of three basic components that include weights, thresholds,
and a single activation function.

X1
Activation

function
X2
Summing T
Junction
Xn)
] Threshold
Synaptic
Weights

Figure 2.2: Basic Elements of an Artificial Neuron.

2.2.2.1 Weighting Factors

The values W, ,W, ;W3 ,.....,W, are weight factors associated with each node
to determine the strength of input row vector X = [x; X, x3.....,xn]T. Each input is
multiplied by the associated weight of the neuron connection X' W. Depending
upon the activation function, if the weight is positive, X'W commonly excites
the node output; whereas, for negative weights, X' W tends to inhibit the node
output.

2.2.2.2 Threshold
The node’s internal threshold 6 is the magnitude offset that affects the

activation of the node output y as follows:

y = {XWw)-6,
(2.1)

2.2.2.3 Activation Function

In this subsection, five of the most common activation functions are
presented. An activation function performs a mathematical operation on the
signal output. More sophisticated activation functions can also be utilized
depending upon the type of problem to be solved by the network. All the
activation functions as described herein are also supported by MATLAB
package.

Linear Function
As is known, a linear function satisfies the superposition concept. The
function is shown in Figure 2.3.

A f

Figure 2.3: Linear Activation Function.

The mathematical equation for the above linear function can be written as
y=f(u)=au (2.2)

where o is the slope of the linear function 2.2. If the slope o is 1, then the linear

activation function is called the identity function. The output (y) of identity
function is equal to input function (u). Although this function might appear to
be a trivial case, nevertheless it is very useful in some cases such as the last
stage of a multilayer neural network.

Threshold Function

A threshold (hard-limiter) activation function is either a binary type or a
bipolar type as shown in Figures 2.4 and 2.5, respectively. The output of a
binary threshold function can be written as:

0 /7 u<O0

y=flu)= (2.3)
1 £ u=0

A f(v

Figure 2.4: Binary Threshold Activation Function.

A fw

+1

Figure 2.5: Bipolar Threshold Activation Function.

The neuron with the hard limiter activation function is referred to as the
McCulloch-Pitts model.

Piecewise Linear Function

This type of activation function is also referred to as saturating linear function
and can have either a binary or bipolar range for the saturation limits of the
output. The mathematical model for a symmetric saturation function (Figure 2.6)
is described as follows:

-1 5 wu<-1

1 7 u21

A fw

+1

Figure 2.6: Piecewise Linear Activation Function.

Sigmoidal (S shaped) function
This nonlinear function is the most common type of the activation used to
construct the neural networks. It is mathematically well behaved, differentiable
and strictly increasing function. A sigmoidal transfer function can be written in
the following form:
1
I+e

S ()=

0< /(<1 (2.5)

o’

Figure 2.7: A Sigmoid Activation Function.

where o is the shape parameter of the sigmoid function. By varying this

parameter, different shapes of the function can be obtained as illustrated in
Figure 2.7. This function is continuous and differentiable.

Tangent hyperbolic function
This transfer function is described by the following mathematical form:

o — o

e

S=2"C 1< /(<] (2.6)
e +e

— o

It is interesting to note that the derivatives of Equations 2.5 and 2.6 can be
expressed in terms of the individual function itself (please see problems
appendix). This is important for the learning development rules to train the
networks as shown in the next chapter.

Figure 2.8: A Tangent Hyperbolic Activation Function.

Example 2.1:
Consider the following network consists of four inputs with the weights as
shown

A
\
<

X3=5

O e
—C

X4=38

Figure 2.9: Neuron Structure of Example 2.1.

The output R of the network, prior to the activation function stage, is
calculated as follows:

A’:WT.Xz[l 1 -1 2]. =14 Q2.7)

With a binary activation function, and a sigmoid function, the outputs of the
neuron are respectively as follow:

y(Threshold) = 1;
y(Sigmoid) = 1.5%2*
23 ADALINE

An ADAptive LINear Element (ADALINE) consists of a single neuron of the
McCulloch-Pitts type, where its weights are determined by the normalized least
mean square (LMS) training law. The LMS learning algorithm was originally
proposed by Widrow and Hoff [6]. This learning rule is also referred to as delta
rule. It is a well-established supervised training method that has been used over
a wide range of diverse applications [7]- [11]. Curve fitting approximations can
also be used for training a neural network [10]. The learning objective of curve
fitting is to find a surface that best fits to the training data. In the next chapter
the implementation of LMS algorithms for backpropagation, and curve fitting
algorithms for radial basis function network, will be described in detail.

The architecture of a simple ADALINE is shown In Figure 2.10. It is
observed that the basic structure of an ADALINE is similar to a linear neuron
(Figure 2.2) with the activation function f(.) to be a linear one with an extra
feedback loop. Since ADALINE is a linear device, any combination of these
units can be accomplished with the use of a single unit.

During the training phase of ADALINE, the input vector Xe R"

X=[x, x, x;3 - x,] as well as desired output are presented to the

network. The weights are adaptively adjusted based on delta rule. After the
ADALINE is trained, an input vector presented to the network with fixed
weights will result in a scalar output. Therefore, the network performs a
mapping of an n dimensional mapping to a scalar value. The activation function
is not used during the training phase. Once the weights are properly adjusted, the
response of the trained unit can be tested by applying various inputs, which are
not in the training set. If the network produces consistent responses to a high
degree with the test inputs, it said that the network could generalize. Therefore,
the process of training and generalization are two important attributes of the
network.

Output

\/

v -
Error r-
< >
Desired +
Output

Figure 2.10: ADALINE.

In practice, an ADALINE is usually used to make binary decisions.
Therefore, the output is sent through a binary threshold as shown in Figure 2.4.
Realizations of several logic gates such as AND, NOT and OR are common
applications of ADALINE. Only those logic functions that are linearly separable
can be realized by the ADALINE, as is explained in the next section.

24 LINEAR SEPARABLE PATTERNS

For a single ADALINE to function properly as a classifier, the input pattern
must be linearly separable. This implies that the patterns to be classified must be
sufficiently apart from each other to ensure the decision surface consists of a
single hyperplane such as a single straight line in two-dimensional space. This
concept is illustrated in Figure 2.11 for a two-dimensional pattern.

(€&

Figure 2.11: A Pair of Linearly Separable (a), and Non-Linearly Separable
Patterns (b).

A classic example of a mapping that is not separable is XOR (the exclusive or)
gate function. Table 2.1 shows the input-output pattern of this problem. Figure
2.12 shows the locations of the symbolic outputs of XOR function corresponding
to four input patterns in X1-X2 plane. There is no way to draw a single straight
line so that the circles are on one side of the line and the triangular sign on the
other side. Therefore, an ADALINE cannot realize this function.

Table 2.1: Inputs/Outputs Relationship for XOR.

X1 X2 Output

0 0 0

0 1 1

1 0 1

1 1 0

A X2
LA o
5
T A > X1
5 1

Figure 2.12: The Output of XOR in X1-X2 Plane.

One approach to solve this nonlinear separation problem is to use
MADALINE (Multiple ADALINE) networks. The basic structure of a
MADALINE network consists of combining several ADALINE with their
correspondence activation functions into a single forward structure. When
suitable weights are chosen, the network is capable of implementing
complicated and nonlinear separable mapping such as XOR gate problems. We
will address this issue later in this chapter.

2.5 SINGLE LAYER PERCEPTRON
2.5.1 General Architecture

The original idea of the perceptron was developed by Rosenblatt in the late
1950s along with a convergence procedure to adjust the weights. In Rosenblatt’s
perceptron, the inputs were binary and no bias was included. It was based on
the McCulloch-Pitts model of the neuron with the hard limitation activation
function. The single layer perceptron as shown in Figure 2.13 is very similar to
ADALINE except for the addition of an activation function.

Activation

Function
Output

v

=

) 4
Error /
‘ \D
Desired
Output T +
Figure 2.13: A Perceptron with a Sigmoid Activation Function.

Connection weights and threshold in a perceptron can be fixed or adapted
using a number of different algorithms. Here the original perceptron
convergence procedure as developed by Minsky and Papert[5] is described.
First, connection weights W, W,,...,W, and the threshold value W, are
initialized to small non-zero values. Then, a new input set with N values
received through sensory units (measurement devices) and the input is
computed. Connection weights are only adapted when an error occurs. This
procedure is repeated until the classification of all inputs is completed.

2.5.2 Linear Classification

For clarification of the above concept, consider two input patterns classes C1
and C2. The weight adaptation at the kth training phase can be formulated as
follow:

1. If k member of the training vector x(k) is correctly classified, no correction
action is needed for the weight vector. Since the activation function is
selected as a hard limiter, the following conditions will be valid:

W (k+ 1)=W (k) if output>0 and x (k)e Cl , and
Wk+1)=W(k) if output<0 and x(k)eC2.

2. Otherwise, the weight should be updated in accordance with the following
rule:

Wk+1)=W(k)+n x(k) if output>0 and x(k)e C1
W(k+1)=W(k)-n x(k) if output<0 and x(k)e C2

Where 1 is the learning rate parameter, which should be selected between 0

and 1.

Example 2.2:

Let us consider pattern classes C1 and C2, where C1: {(0,2), (0,1)} and C2:
{(1,0), (1,1)}. The objective is to obtain a decision surface based on perceptron
learning. The 2-D graph for the above data is shown in Figure 2.14

X2
2

(@) »Xl

1

Figure 2.14: 2-D Plot of Input Data Sets for Example 2.2.

Since, the input vectors consist of two elements , the perceptron structure is
simply as follows:

0
7 wo
X1(k) Wi(k)
. Output
S i
L — | vk
X2(k) W2(k)

Figure 2.15: Perceptron Structure for Example 2.2.

For simplicity, let us assume =1 and initial weight vector W(1)=[0 0]. The
iteration weights are as follow:

Iteration I: w7 (1).x(1) = [0 o]m =0

Weight Update: 2=+ = {8} + [ﬂ = {0}

Iteration 2: 7 @x2)=[0 2] |=2>0

Weight Update: W3)=W(2)

Iteration 3: W (3.3)=[0 2]

1]
10]
Weight Update: w4 ="mQ3) - 1(3)2{(2)} [} { }

Iteration 4: W (4).q4)=|-1 2][}

Weight Update: ~— W(5)= W (4)— n4) = {_21} - E} = [_12}

Now if we continue the procedure, the perceptron classifies the two classes
correctly at each instance. For example for the fifth and sixth iterations:

Iteration 5: W (5).(5) = [—2 1][2} =2> 0:Correct Classification

Iteration 6: W (6).M6) = [—2 l]{ﬂ =1> 0:Correct Classification

In a similar fashion for the seventh and eighth iterations, the classification
results are indeed correct.

1
Iteration 7: W (T).H(7) = [—2 I]LJ = -2 < 0:Correct Classification

1
Iteration §: W (8).48) = [—2 I]L} =—1<0:Correct Classification

Therefore, the algorithm converges and the decision surface for the above
perceptron is as follows:

d(x)=-2X,+X,=0 2.8)

Now, let us consider the input data {1,2}, which is not in the training set. If
we calculate the output:

y=w x=[-2 1]m =-3<0 (2.9)

The output Y belongs to the class C2 as is expected.

ztxz y.

Decision Surface
2*¥X1+X2=0
1 @ O
@) > X1
1

Figure 2.16: Decision Surface for Example 2.2.

2.5.3 Perceptron Algorithm

The perceptron learning algorithm (Delta rule) can be summarized as
follows:

Step 1: Initialize the weights W, W,...W, and threshold 6 to small random

values.
Step 2: Present new input X1, X2,..Xn and desired output d, .

Step 3: Calculate the actual output based on the following formula:

V= f (2()@%—@) (2.10)

Step 4: Adapt the weights according to the following equation:
W new)=W, (old)+1(d;—1)x,0=7/= NV (211)

Where 1 is a positive gain fraction less than 1 and d, is the desired output.

Note that the weights remain the same if the network makes the correct decision.
Step 5: Repeat the procedures in steps 2—4 until the classification task is

completed.

Similar to ADALINE, if the presented inputs pattern is linearly separable,
then the above perceptron algorithm converges and positions the decision

hyperplane between two separate classes. On the other hand, if the inputs are not
separable and their distribution overlaps, then the decision boundary may
oscillate continuously. A modification to the perceptron convergence procedure
is the utilization of Least Mean Square (LMS) in this case. The algorithm that
forms the LMS solution is also called the Widrow-Hoff. The LMS algorithm is
similar to the procedure above except a threshold logic nonlinearity, replaces the
hard limited non-linearity. Weights are thus corrected on every trail by an
amount that depends on the difference between the desired and actual values.
Unlike the learning in the ADALINE, the perceptron learning rule has been
shown to be capable of separating any linear separable set of the training
patterns.

2.6 MULTI-LAYER PERCEPTRON
2.6.1 General Architecture

Multi-layer perceptrons represent a generalization of the single-layer
perceptron as described in the previous section. A single layer perceptron forms
a half-plane decision region. On the other hand multi-layer perceptrons can
form arbitrarily complex decision regions and can separate various input
patterns. The capability of multi-layer perceptron stems from the non-linearities
used within the nodes. If the nodes were linear elements, then a single-layer
network with appropriate weight could be used instead of two- or three-layer
perceptrons. Figure 2.17 shows a typical multi-layer perceptron neural network
structure. As observed it consists of the following layers:

Figure 2.17: Multi-layer Perceptron.

Input Layer: A layer of neurons that receives information from external
sources, and passes this information to the network for processing. These may
be either sensory inputs or signals from other systems outside the one being
modeled.

Hidden Layer: A layer of neurons that receives information from the input
layer and processes them in a hidden way. It has no direct connections to the
outside world (inputs or outputs). All connections from the hidden layer are to
other layers within the system.

Output Layer: A layer of neurons that receives processed information and
sends output signals out of the system.

Bias: Acts on a neuron like an offset. The function of the bias is to provide a
threshold for the activation of neurons. The bias input is connected to each of
the hidden and output neurons in a network.

2.6.2 Input-Output Mapping

The input/output mapping of a network is established according to the
weights and the activation functions of their neurons in input, hidden and output
layers. The number of input neurons corresponds to the number of input
variables in the neural network, and the number of output neurons is the same as
the number of desired output variables. The number of neurons in the hidden
layer(s) depends upon the particular NN application. For example, consider the
following two-layer feed-forward network with three neurons in the hidden layer
and two neurons in the second layer:

Figure 2.18: An Example of Multi-layer Perceptron.

As is shown, the inputs are connected to each neuron in hidden layer via their
corresponding weights. A zero weight indicates no connection. For example, if
Wp; =0, it is implied that no connection exists between the second input (i) and
the third neuron (n;). Outputs of the last layer are considered as the outputs of the
network.

The structure of each neuron within a layer is similar to the architecture as
described in section 2.5. Although the activation function for one neuron could be
different from other neurons within a layer, for structural simplicity, similar
neurons are commonly chosen within a layer. The input data sets (or sensory
information) are presented to the input layer. This layer is connected to the first
hidden layer. If there is more than one hidden layer, the last hidden layer should be
connected to the output layer of the network. At the first phase, we will have the
following linear relationship for each layer:

where 4 is a column vector consisting of m elements, #; is an mxn weight

matrix and X is a column input vector of dimension n. For the above example,
the linear activity level of the hidden layer (neurons n; to n3) can be calculated
as follows:

@y =W+ wyh
@y =Wyl + Wyb (2.13)

@3 = W3+ Wyh

The output vector for the hidden layer can be calculated by the following
formula:
O, =F 4 (2.14)

where A, is defined in Equation 2.12, and O, is the output column vector of the

hidden layer with m element. F' is a diagonal matrix comprising the non-linear
activation functions of the first hidden layer:

[0 0 0 0
0 A0 0
F=| . . . 2.15)

0 0 .. 0 /£0)

For example, if all activation functions for the neurons in the hidden layer of
Figure 2.18 are chosen similarly, then the output of the neurons n; to n; can be
calculated as follows:

O = fa,)
O, = a,)
Os = fa3)
In a similar manner, the output of other hidden layers can be computed. The

output of a network with only one hidden layer according to Equation 2.14 is
as follows:

(2.16)

2.17)
(2.18)

Where A4, is the vector of activity levels of output layer and O, is the q output of

the network. G is a diagonal matrix consisting of nonlinear activation functions of
the output layer:

[g() 0 0 0
0 gz(~) 0
G = . (2.19)
. .0
0 0 0 g0

For Figure 2.18, the activity level of output neurons n sandn 5canbe

calculated as follows:

{‘lzl =0, + M0y, + 50y, (2.20)

@, = W3,0,, + W50, + 15,0y,

The two outputs of the network with the similar activation functions can be
calculated as follows:

{01 = day,) 2.21)

O, = gay,)

Therefore, the input-output mapping of a multi-layer perceptron is
established according to relationships 2.12-2.22. In sequel, the output of the
network can be calculated using such nonlinear mapping and the input data sets.
2.6.3 XOR Realization

As it was shown in section 2.4, a single-layer perceptron cannot classify the
input patterns that are not linearly separable such as an Exclusive OR (XOR)
gate. This problem may be considered as a special case of a more general non-

linear mapping problem. In the XOR problem, we need to consider the four
corners of the unit square that correspond to the input pattern. We may solve the

problem with a multi-layer perceptron with one hidden layer as shown in Figure
2.19.

X2

9,
Figure 2.19: Neural Network Architecture to Solve XOR Problem.

In the above configuration, a McCulloh-Pitts model represents each neuron,
which uses a hard limit activation function. By appropriate selections of the
network weights, the XOR could be implemented using decision surfaces as
shown in Figure 2.20.

4 x
2
A)
A

Ar A p XI

1
Figure 2.20: Decision Surfaces to Solve XOR Problem.

Example 2.3:

Suppose weights and biases are selected as shown in Figure 2.21. The
McCulloh-Pitts model represents each neuron (binary hard limit activation
function). Show that the network solves XOR problem. In addition, draw the
decision boundaries constructed by the network.

0,=1

X1

X2

Figure 2.21: Neural Network Architecture for Example 2.3.

In Figure 2.21, suppose the outputs of neurons (before activation function)
denote as Oy, Oy, and O;. The outputs of the summing points at the first layer
are as follow:

01 =X —Xp +0.5 (222)
02 =X —X) -0.5 (223)

With the binary hard limited functions, the output y; and y , are shown in
Figures 2.22 and 2.23.

A X2

X1-X2+0.5=0

Figure 2.22: Decision Surface for Neuron 1 of Example 2.3.

X2

X1-X2-0.5=0

Figure 2.23: Decision Surface for Neuron 2 of Example 2.3.

The outputs of the summing points at the second layer are:
O3 =y1=yy-1 (2.24)
The decision boundaries of the network are shown in Figure 2.24. Therefore,

XOR realization can be accomplished by selection of appropriate weights using
Figure 2.19.

4 X2

>X1

Figure 2.24: Decision Surfaces for Example 2.3.

2.7 CONCLUSION

In this chapter, the fundamentals of neural networks were introduced. The
perceptron is the simplest form of neural network used for the classification of
linearly separable patterns. Multi-layer perceptron overcome many limitations of
single-layer perceptron. They can form arbitrarily complex decision regions in
order to separate various nonlinear patterns. The next chapter is devoted to several
neural network architectures. Applications of NN will be presented in Chapters
4-7 and Chapter 15 of the book.

REFERENCES

1. McCulloch, W.W. and Pitts, W., A Logical Calculus of Ideas Imminent
in Nervous Activity. Bull. Math. Biophys., 5, 115—133, 1943.

2. Pitts, W. and McCulloch, W.W., How we Know Universals, Bull.
Math. 127-147, 1947.

3. McClelland, J.L. and Rumelhart, D.E., Parallel Distributed Processing

-Explorations in the Microstructure of Cognition, Vol. 2, Psychological
and Biological Models, MIT Press, Cambridge, MA, 1986.

4. Rosenblatt, F., Principles of Neurodynamics, Spartan Press,
Washington, DC, 1961.

5. Minsky, M. and Papert, S., Perceptron: An Introduction to
Computational Geometry, MIT Press, Cambridge, MA, 1969.

6. Widrow, B. and Hoff, M.E, Adaptive Switching Circuits, IRE
WESCON Convention Record, Part 4, NY, IRE, 96—-104, 1960.

7. Fausett, L., Fundamentals of Neural Networks, Prentice-Hall,
Englewood Cliffs, NJ, 1994.

8. Haykin, S., Neural Networks: A Comprehensive Foundation, Prentice
Hall, Upper Saddle River, NJ, 1999.

9. Kosko, B., Neural Network for Signal Processing, Prentice Hall,
Englewood Cliffs, NJ, 1992.

10. Ham, F. and Kostanic, 1., Principles of Neurocomputing for Science
and Engineering, McGraw Hill, New York, NY, 2001.

11. Lippmann, R.P., An Introduction to Computing with Neural Network,

IEEE Acoustic, Speech, and Sig. Proces. Mag., 4, 1987.

NEURAL NETWORK
ARCHITECTURES

Hooman Yousefizadeh and Ali Zilouchian

31 INTRODUCTION

Interest in the study of neural networks has grown remarkably in the last two
decades. This is due to the conceptual viewpoint regarding the human brain as a
model of a parallel computation device, a very different one from a traditional
serial computer. Neural networks are commonly classified by their network
topology, node characteristics, learning, or training algorithms. On the other
hand, the potential benefits of neural networks extend beyond the high
computation rates provided by massive parallelism of the networks. They
typically provide a greater degree of robustness or fault tolerance than Von
Neumann sequential computers. Additionally, adaptation and continuous
learning are integrated components of NN. These properties are very beneficial
in areas where the training data sets are limited or the processes are highly
nonlinear. Furthermore, designing artificial neural networks to solve problems
and studying real biological networks (Chapter 4) may also change the way we
think about the problems and may lead us to new insights and algorithm
improvements.

The main goal of this chapter is to provide the readers with the conceptual
overviews of several neural network architectures. The chapter will not delve
too deeply into the theoretical considerations of any one network, but will
concentrate on the mechanism of their operation. Examples are provided for
each network to clarify the described algorithms and demonstrate the reliability
of the network. In the following four chapters various applications pertaining to
these networks will be discussed.

This chapter is organized as follows. In section 3.2, various classifications of
neural networks according to their operations and/or structures are presented.
Feedforward and feedback networks are discussed. Furthermore, two different
methods of training, namely supervised and unsupervised learning, are
described. Section 3.3 is devoted to error back propagation (BP) algorithm.
Various properties of this network are also discussed in this section. Radial
basis function network (RBFN) is a feedforward network with supervised
learning, which is the subject of the discussion in section 3.4. Kohonen self-
organizing as well as Hopfield networks are presented in sections 3.5 and 3.6,
respectively. Finally section 3.7 presents the conclusions of this chapter.

3.2 NN CLASSIFICATIONS
3.2.1 Feedforward and Feedback Networks

In a feedforward neural network structure, the only appropriate connections
are between the outputs of each layer and the inputs of the next layer. Therefore,
no connections exist between the outputs of a layer and the inputs of either the
same layer or previous layers. Figure 3.1 shows a two-layer feedforward
network. In this topology, the inputs of each neuron are the weighted sum of the
outputs from the previous layer. There are weighted connections between the
outputs of each layer and the inputs of the next layer. If the weight of a branch is
assigned a zero, it is equivalent to no connection between correspondence nodes.
The inputs are connected to each neuron in hidden layer via their
correspondence weights. Outputs of the last layer are considered the outputs of
the network.

Input Y Layer N Layer >
1 2 Output

Figure 3.1: General Structure of Two-Layer Feedforward Network.

For feedback networks the inputs of each layer can be affected by the
outputs from previous layers. In addition, self feedback is allowed. Figure 3.2
shows a simple single layer feedback neural network.

Input |::> Layer > o)
utput
b p

Delay

Figure 3.2: General Structure of a Sample Feedback Network.

As observed, the inputs of the network consist of both external inputs and the
network output with some delays. Examples of feedback algorithms include the
Hopfield network, described in detail in section 3.6, and the Boltzman Machine.

An important issue for feedback networks is the stability and convergence of the
network.

3.2.2 Supervised and Unsupervised Learning Networks

There are a number of approaches for training neural networks. Most fall
into one of two modes:

- Supervised Learning: Supervised learning requires an external teacher to
control the learning and incorporates global information. The teacher may be a
training set of data or an observer who grades the performance. Examples of
supervised learning algorithms are the least mean square (LMS) algorithm and
its generalization, known as the back propagation algorithm[1]-[4], and radial
basis function network [5]-[8]. They will be described in the following sections
of this chapter.

In supervised learning, the purpose of a neural network is to change its
weights according to the inputs/outputs samples. After a network has established
its input output mapping with a defined minimum error value, the training task
has been completed. In sequel, the network can be used in recall phase in order
to find the outputs for new inputs. An important factor is that the training set
should be comprehensive and cover all the practical areas of applications of the
network. Therefore, the proper selection of the training sets is critical to the
good performance of the network.

- Unsupervised Learning: When there is no external teacher, the system must
organize itself by internal criteria and local information designed into the
network. Unsupervised learning is sometimes referred to as self-organizing
learning, i.e., learning to classify without being taught. In this category, only the
input samples are available and the network classifies the input patterns into
different groups. Kohonen network is an example of unsupervised learning.

33 BACK PROPAGATION ALGORITHM

Back propagation algorithm is one of the most popular algorithms for training a
network due to its success from both simplicity and applicability viewpoints.
The algorithm consists of two phases: Training phase and recall phase. In the
training phase, first, the weights of the network are randomly initialized. Then,
the output of the network is calculated and compared to the desired value. In
sequel, the error of the network is calculated and used to adjust the weights of
the output layer. In a similar fashion, the network error is also propagated
backward and used to update the weights of the previous layers. Figure 3.3
shows how the error values are generated and propagated for weights
adjustments of the network.

In the recall phase, only the feedforward computations using assigned
weights from the training phase and input patterns take place. Figure 3.4 shows
both the feedforward and back propagation paths. The feedforward process is

used in both recall and training phases. On the other hand, as shown in Figure
3.4(b), back propagation of error is only utilized in the training phase.

In the training phase, the weight matrix is first randomly initialized. In
sequel, the output of each layer is calculated starting from the input layer and
moving forward toward the output layer. Thereafter, the error at the output layer
is calculated by comparison of actual output and the desired value to update the
weights of the output and hidden layers.

Desired
Value 1

Desired
Value 2

Desired

+ Valuer
(De—

Figure 3.3. Back Propagation of the Error in a Two-Layer Network.

a) Forward propagation (Training and Recall Phase)

b) Backward propagation (Training Phase)

Figure 3.4: Forward Propagation in Recall and Training Phase and
Backward Propagation in Training Phase.

There are two different methods of updating the weights. In the first method,
weights are updated for each of the input patterns using an iteration method. In
the second method, an overall error for all the input output patterns of training
sets is calculated. In other words, either each of the input patterns or all of the
patterns together can be used for updating the weights. The training phase will
be terminated when the error value is less than the minimum set value provided
by the designer. One of the disadvantages of back propagation algorithm is that
the training phase is very time consuming.

During the recall phase, the network with the final weights resulting from
the training process is employed. Therefore, for every input pattern in this phase,
the output will be calculated using both linear calculation and nonlinear
activation functions. The process provides a very fast performance of the
network in the recall phase, which is one of its important advantages.

3.3.1 Delta Training Rule

The back propagation algorithm is the extension of the perceptron structure
as discussed in the previous chapter with the use of multiple adaptive layers. The
training of the network is based on the delta training rule method. Consider a
single neuron in Figure 3.5.

The relations among input, activity level and output of the system can be
shown as follows:

Figure 3.5: A Single Neuron.

a =wy +wyip Fw,iy e+ w i, 3.1

or in the matrix form:
a=wy+W'I (3.2)
o= f(a) (3.3)

where W and [are weight and input vectors of the neuron, @ is activity level
of the neuron and o is the output of the neuron. W, is called bias value.

Suppose the desired value of the output is equal to d. Error e can be defined as
follows:

e =%(d—0)2 (3.4)

by substituting Equations 3.2 and 3.3 into Equation 3.4, the following relation
holds:

e = (d = fwy + W7 1)? (3.5)
The error gradient vector can be calculated as follows:
e =—d —o0)f"(wy +WT DI (3.6)
The components of gradient vector are equal to:
a"—e =~ =0)f"(wy + W)1, (3.7)
W .

J
where f'(.) is derivative of activation function. To minimize the error the
weight changes should be in negative gradient direction. Therefore we will have

A W=- nle (3.8)

where N is a positive constant, called learning factor. By Equations (3.6) and
3.7, the AW is calculated as follows:

AV =-n(d-o)f'(a)] (3.9)
For each weight j Equation 3.9 can be written as:
bw; ==(d —o) [(a)]; j=0L12,..,n (3.10)

Therefore we update the weights of the network as:
Wj(new) :Wj(old)+AWj j:O,l,Z,...,n (311)

For Figure 3.3, the Delta rule can be applied in a similar manner to each
neuron. Through generalization of Equation 3.11 for normalized error and using
Equation 3.10 for every neuron in output layer we will have:

f)(dj _Oj)f’(aj)xj
2
vl
where X OR"is the input vector to the last layer, xj is the j"" element of X and
||-|| denotes L2-Norm.

The above method can be applied to the hidden layers as well. The only

difference is that the o; will be replaced by y;in 3.12. y; is the output of

hidden layer neuron, and not the output of network.

One of the drawbacks in the back propagation learning algorithm is the long
duration of the training period. In order to improve the learning speed and avoid
the local minima, several different methods have been suggested by researchers.
These include addition of first and second moments to the learning phase,
choosing proper initial conditions, and selection of an adaptive learning rate.

To avoid the local minima, a new term can be added to Equation 3.12. In
such an approach, the network memorizes its previous adjustment, and,

Wj (new) =Wj(uld)+

j=012,..,n 3.12)

therefore it will escape the local minima, using previous updates. The new
equation can be written as follows:

d;-0,)f"(a)x,
n(j 0])]2(‘ (a])xj +a[wj(new)_Wj(01d)] (3.13)
x|

where o is a number between 0 and 1, namely the momentum coefficient.

Nguyen and Widrow [9] have proposed a systematic approach for the proper
selection of initial conditions in order to decrease the training period of the
network. Another approach to improve the convergence of the network and
increase the convergence speed is the adaptive learning rate. In this method, the
learning rate of the network () is adjusted during training. In the first step, the
training coefficient is selected as a large number, so the resulting error values
are large. However, the error will be decreased as the training progresses, due to
the decrease in the learning rate. It is similar to coarse and fine tunings in
selection of a radio station.

In addition to the above learning rate and momentum terms, there are other
neural network parameters that control the network’s performance and
prediction capability. These parameters should be chosen very carefully if we
are to develop effective neural network models. Two of these parameters are
described below.

Wj(new)zwj(old)"’

Selection of Number of Hidden Layers

The number of input and output nodes corresponds to the number of network
inputs and desired outputs, respectively. The choice of the number of hidden
layers and the nodes in the hidden layer(s) depends on the network application.
Selection of the number of hidden layers is a critical part of designing a network
and is not as straightforward as input and output layers. There is no
mathematical approach to obtain the optimum number of hidden layers, since
such selection is generally fall into the application oriented category. However,
the number of hidden layers can be chosen based on the training of the network
using various configurations, and selection of the configuration with the fewest
number of layers and nodes which still yield the minimum root-mean-squares
(RMS) error quickly and efficiently. In general, adding a second hidden layer
improves the network’s prediction capability due to the nonlinear separability
property of the network. However, adding an extra hidden layer commonly
yields prediction capabilities similar to those of two-hidden layer networks, but
requires longer training times due to the more complex structures. Although
using a single hidden layer is sufficient for solving many functional
approximation problems, some problems may be easier to solve with a two-
hidden-layer configuration.

Normalization of Input and Output Data Sets

Neural networks require that their input and output data be normalized to
have the same order of magnitude. Normalization is very critical for some
applications. If the input and the output variables are not of the same order of
magnitude, some variables may appear to have more significance than they
actually do. The training algorithm has to compensate for order-of-magnitude

differences by adjusting the network weights, which is not very effective in
many of the training algorithms such as back propagation algorithm. For
example, if input variable i; has a value of 50,000 and input variable i, has a
value of 5, the assigned weight for the second variable entering a node of hidden
layer 1 must be much greater than that for the first in order for variable 2 to have
any significance. In addition, typical transfer functions, such as a sigmoid
function, or a hyperbolic tangent function, cannot distinguish between two
values of x; when both are very large, because both yield identical threshold
output values of 1.0.

The input and output data can be normalized in different ways. In Chapters 7
and 15, two of these normalized methods have been selected for the appropriate
applications therein.

The training phase of back propagation algorithm can be summarized in the
following steps:

1. Initialize the weights of the network.

2. Scale the input/output data.

3. Select the structure of the network (such as the number of hidden layers
and number of neurons for each layer).

4. Choose activation functions for the neurons. These activation functions
can be uniform or they can be different for different layers.

5. Select the training pair from the training set. Apply the input vector to the
network input.

6. Calculate the output of the network based on the initial weights and input
set.

7. Calculate the error between network output and the desired output (the
target vector from the training pair).

8. Propagate error backward and adjust the weights in such a way that
minimizes the error. Start from the output layer and go backward to input
layer.

9. Repeat steps 5—8 for each vector in the training set until the error for the
set is lower than the required minimum error.

After enough repetitions of these steps, the error between the actual outputs
and target outputs should be reduced to an acceptable value, and the network is
said to be trained. At this point, the network can be used in the recall or
generalization phases where the weights are not changed.

Network Testing

As we mentioned before, an important aspect of developing neural networks
is determining how well the network performs once training is complete.
Checking the performance of a trained network involves two main criteria: (1)
how well the neural network recalls the output vector from data sets used to train
the network (called the verification step); and (2) how well the network predicts
responses from data sets that were not used in the training phase (called the
recall or generalization step).

In the verification step, we evaluate the network’s performance in specific
initial input used in training. Thus, we introduce a previously used input pattern

to the trained network. The network then attempts to predict the corresponding
output. If the network has been trained sufficiently, the network output will
differ only slightly from the actual output data. Note that in testing the network,
the weight factors are not changed: they are frozen at their last values when
training ceased.

Recall or generalization testing is conducted in the same manner as
verification testing; however, now the network is given input data with which it
was not trained. Generalization testing is so named because it measures how
well the network can generalize what it has learned, and form rules with which
to make decisions about data it has not previously seen. In the generalization
step, we feed new input patterns (whose results are known to us, but not to the
network) to the trained network. The network generalizes well when it sensibly
interpolates these new patterns. The error between the actual and predicted
outputs is larger for generalization testing and verification testing. In theory,
these two errors converge upon the same point corresponding to the best set of
weight factors for the network.

In the following subsection, two examples are presented to clarify various
issues related to BP.

Example 3.1:
Consider the network of Figure 3.6 with the initial values as indicated. The
desired values of the output are d, =0 &, =1. We show two iterations of

learning of the network using back propagation. Suppose the activation function
of the first layer is a sigmoid and activation function of the output is a linear
function.

1

fx)= O () = f0) = f(x)] (3.14)

1+e™”

i =1

Figure 3.6: Feedforward Network of Example 3.1 with Initial Weights.

Iteration Number 1:
Step 1: Initialization: First the network is initialized with the values as shown
in Figure 3.6.

Step 2: Forward calculation, using Equations (3.1-3.3):
J[&i fw[d. 15 £0.0 0.600+0.80 = £(0.9)=0.7109

i =rov [1].0y= ra.1n=0.7503

olofF s, [d./F 0.500.7109+ 0.7 10.7503 =0.88066
ofll= rw,[1.7)= 0.6 0.7109 +0.5 00.7503 =0.80169

Step 3: According to Equation 3.5 the errors are calculated as follows:
x[0] =a, —K o =0-0.88066 = -0.88066

&[] =4, -1 =1-0.80169 =0.19831

Step 4: The updated weights of the network are calculated according to
Equations 3.10 and 3.11 as follows:

Wygo (e Wygooiad 1A k[010F (k[0]) 0/[0] =

0.5+1 0 —0.88066) +0.2072 [0.7109 =0.3694

WkOl (new) = s 6809 Wklo(new) =0.6301 Wkll(new) =05138
Wigg (new)= W i oty + n LI[0]* ZwA =

0.#1 [[J(0.50-0.88066+0.6[10.19831)=-0.2213

ij (new) = 0.6 Wj02 (new) =0.4787 leo(new) =-0.3173

Iteration Number 2: For this iteration the new weight values in Iteration 1
are utilized. Steps 2—4 of the previous iteration are repeated.

Step 2:
o] =05640 N1 =0.5163 dd =04991] =0.6299

Step 3:
Ne[0] =-0.4991 A1 =0.3701

Step 4:
WkOO (new) = 0.3032 ka (new) = 05025 WklO (new) = 0.6774

Wkll(new) = 05751 WjOO (new) = 017248 ij (new) = 0.6
WjOZ (new) = B2 B leo(new) =-04015 lel(new) =0.3

The weights after the two iterations of training of the network can be
calculated as follows:

1fo] =0.5878 11 =0.5257 dq =0.4424 ¢} =0.7005

Table 3.1 summarizes the results for the training phase. As can be seen, the
values of the output are closer to the desired value and the error value has been
decreased. Training should be continued until the error values become less than
a predetermined value as set by the designer (for example, 0.01). It should be
noted that the selection of small values for maximum error level will not
necessarily lead to better performance in the recall phase.

Table 3.1: Summary of Outputs and Error Norm after Iterations

Error Initial Iteration 1 Iteration 2
Output 1 -0.8807 -0.4991 -0.4424
Output 2 0.1983 0.3701 0.2995

Error Norm 0.9027 0.6213 0.5342

Choosing a very small value for this maximum error level may force the
network to learn the inputs very well, but it will not lead to better overall
performance.

Example 3.1 is also solved using MATLAB as shown in Chapter 21. Below
is the output result of the program.

Final [30.0088] Input Layer [3-0.0255 0.6 0.6473]
Ouput 0103708 Weight ~ H0.0763 03 07761

Hidden Layer [0.1170 0.28970 Bias [3-0.12550

Weight — [0.4987 041590 Weight +0.1237H

As observed, only four iterations are needed to complete the training task for
this example. (In this case, the training sets include only one input output set, so
each epoch is equivalent to an iteration.) The initial weights of the network for
the program are selected as indicated in this example. The final values of the
outputs are equal to -0.0088 and 1.0370. These values are close enough to the
desired values. The training error is less than 0.001, which the network has
achieved during the training phase.

Example 3.2: Forward Kinematics of Robot Manipulator

In this example a simple back propagation neural network has been used to
solve the forward kinematic of a robot manipulator. Therefore, 6, 0, are the
inputs with X, Y as the outputs of the network. A set of 200 samples is applied
to the network in the training phase.

AY

0, X

Figure 3.7: The Robot Manipulator.

The relation between (8; and 6,) and (X and Y) is as follows:
X =1, cos B, +1, cos(6, +8,)
Y =1, sin 6, +/, sin(6, +6,)
Figure 3.8 shows how the error of the network changes until the performance
goal has been met.

(3.15)

Performance is 0.000722006, Goalis 0.001

10° L Training

Goal

0 1 2 3 n 5 6 7
7 Epochs

Figure 3.8: The Error of the Network During Training.
After the network has established input and output mapping during the

training phase, new inputs are applied to the network to observe its performance
in the recall phase. Figure 3.9 shows the simulation result of the network.

Figure 3.9: The Network Output and Prediction of the Neural Network
Using the Back Propagation Algorithm.

34 RADIAL BASIS FUNCTION NETWORK (RBFN)

The back propagation method as described in the previous section, has been
widely used to solve a number of applications [1],[2]. However, despite the
practical success, the back propagation algorithm has serious training problems
and suffers from slow convergence [3]. While optimization of learning rate and
momentum coefficient parameters yields overall improvements on the networks,
it is still inefficient and time consuming for real time applications [4].

Radial Basis Function Networks (RBFN) provide an attractive alternative to
BP networks [5]. They perform excellent approximations for curve fitting
problems and can be trained easily and quickly. In addition, they exhibit none of
the BP’s training pathologies such as local minima problems. However, RBFN
usually exhibits a slow response in the recall phase due to the large number of
neurons associated in the second layer [6],[7]. One of the advantages of RBFN
is the fact that linear weights associated with the output layer can be treated
separately from the hidden layer neurons. As the hidden layer weights are
adjusted through a nonlinear optimization, output layer weights are adjusted
through linear optimization.

RBFN approximation accuracy and speed may be further improved with a
strategy for selecting appropriate centers and widths of the receptive fields. The
redistribution of centers to locations where input training data are meaningful
can lead to more efficient RBFN [8].

In this section, the fundamental idea pertaining the RBFN is presented.
Furthermore, two examples are provided to clarify the training and recall phases
associated with these networks. The network is inspired by Cover’s theorem as
explained below.

Cover’s Theorem[6]: A complex pattern classification problem cast in a high
dimensional space nonlinearity is more likely to be linearly separable than in a
low dimensional space.

Example 3.3:

Consider the XOR problem as presented previously. As it was shown in
chapter 2, an XOR gate cannot be implemented by a single perceptron due to
nonlinear separabality property of the input pattern. However, suppose, the
following pair of Guassian hidden functions are defined:

hl (x) - e—Hx—m HZ u, = [H]B

. (3.16)
h, (x):e—Hx—qu U = %B

a

If we calculate 7, (x), h, (x) for the above input patterns we will have the

Table 3.2. Figure 3.10 shows the graph of the outputs in the %, -/, space.

Table 3.2: Mapping of XY to 4, —h,

Input pattern: X h;(x) h,(x)
(1, 1) 1 0.1353
(0,1) 0.3678 0.3678
(0,0) 0.1353 1
(1,0) 0.3678 0.3678

Ay
1
A (1)

Decision

(0,1)
(1,0)

0.3678

0.1353

0.3678
0.1353

Figure 3.10: XOR Problem in A; —/, Space.

As can be seen, the XOR problem in A, — A, space is mapped to a new
problem, which is linearly separable. Therefore, Guassian functions can be used
to solve the above interpolation problem with one layer network. The above
interpolation problem can be generalized as: Suppose there exist N points
(Xy,..., Xy) and a corresponding set of N real values (d;, d, d3, ..., d;); find a

function that satisfies the following interpolation condition:
F(x,)=d, i=12,...,N (3.17)

Figure 3.11: A Simple Radial Basis Network.

Figure 3.11 shows a simple radial basis network. This network is a
feedforward network similar to back propagation, but it has totally different
performance. The first difference is the initial weights. Despite random initial
selection of the weights in back propagation, here the initial weights are not
chosen randomly. The weights of each hidden layer neuron are set to values that

produce a desired response. Such weights are assigned so that the network gives
the maximum output for inputs equal to its weights. The activation functions h;
can be defined as follows:

N2 2
ho=e /% (3.18)
where D; is defined as the distance of the input to the center of the neuron which
is identified by the weight vector of hidden layer neuron i. Equation (3.19)

shows this relation:

EDI'Z =(x _”i)T(x_”i)
Ok :input vector (3.19)
E@- :Weight vector of hidden layer neuron i

Therefore, the final contribution of the neuron will decrease for the inputs,
which are far from the center of the neuron. With this fact in mind, it is
reasonable to give the values of each input of the training set to a neuron, which
will result in faster training of the network. The main part of the training of the
network is adjusting the weights of the output layer. Figure 3.12 shows a single

neuron.
u,o

X h(x)

Figure 3.12: A Simple Radial Basis Neuron

Function h(x) as shown in Figure 3.13 can be defined as follows:

_(x—u)2

(3.20)

x-u/s

Figure 3.13: The Graph of h(x).

As both graph and formula show:

O h(x)=1 xX=u
E h(x) =0 |x—u|>30 (3.21)
B)<h(x)<1 |x—u|<30

The above formula indicates that each neuron only possesses contributions
from the inputs that are close to the center of the weight function. For other
values of x, the neuron will have zero output value with no contribution in the
final output of the network. Figure 3.14 shows a radial basis neuron with two
inputs, X; and Xj.

U,o

X
Y

Figure 3.14: A Simple Radial Basis Neuron with Two Inputs.

Figure 3.15 shows the three-dimensional graph of this neuron. As is seen, the
fundamental idea is similar. As Figure 3.15 shows, the function is radially
symmetric around the center U.

Training of the radial basis network includes two stages. In the first stage,
the center U; and diameter of receptive 0; of each neuron will be assigned. At the
second stage of the training, the weight vector W will be adjusted accordingly.
After the training phase is completed, the next step is the recall phase in which
the outputs are applied and the actual outputs of the network are produced.

h(x. y
G

0.
g ..

g

Figure 3.15: Graph of h(x,y) for the Neuron with Two Inputs.

Finding the center U; of each neuron

One of the most popular approaches to locate the centers U; is to divide the
input vector to some clusters and then find the center of each cluster and locate a
hidden layer neuron at that point.

Finding the diameter of the receptive region

The value of 0 can have significant effect on the performance of the
network. There are different approaches to find this value. One of the popular
methods is based on the similarity of the clustering of the input data. For each
hidden layer neuron, the RMS distance of each neuron and its first nearest
neighbor will be calculated; this value is considered as 0. The training phase of
RBFN can be summarized as follows:

1. Apply an input vector X from the training set.
Calculate the output of the hidden layer.

3. Compute the output Y and compare it to the desired value. Adjust each
weight W accordingly:

wy (n +1) =wy (n) +I7,(xj Y,)xl- (3.22)

4. Repeat steps 1 to 3 for each vector in the training set.
5. Repeat steps 1 to 4 until the error is smaller than a maximum acceptable
amount.

The advantage of radial basis network to back propagation network is faster
training. The main problem of back propagation is its lengthy training; therefore
radial basis networks have caught a lot of attention lately. The major
disadvantage of radial basis network is that it is slow in the recall phase due to
its nonlinear functions.

Example 3.4:

This example is the same as Example 3.1, where p and o are input and output
consecutively. We try to solve the problem using the radial basis network by
MATLAB. The details of the program are provided in Chapter 21. The output
of the program is shown below. As is observed, the output is very accurate for
the same input values. Also, execution of this simple code shows that the
network’s training is very fast. The answer can be obtained quickly, with high
accuracy. The output of the network to a similar input is also shown. o is the
output for the new applied input p , which is close to p. It can be seen that this

value is close to the output of the training input.

ad 00 d1.1 0O
0 5_ 0,0 ~
p=S)D OZHE P:D—O.SD
HE 509 H

Example 3.5:

In this example the inverse kinematics of the robot manipulator of Example
3.2 is solved by RBFN, using MATLAB program. Figure 3.16 compares the
actual path and the network prediction of this example. The actual path is shown
with circles and the network output with +. As can be seen, the network can
predict the path very accurately. In comparison with back propagation,
prediction of RBFN is more accurate and the training of this network is much
faster. However, due to the number of neurons, the recall phase of the network is
usually slower than back propagation.

Figure 3.16: Output of the RBFN and Actual Output of the System.

3.5 KOHONEN SELF-ORGANIZATION NETWORK

The Kohonen self-organization network uses unsupervised learning and
organizes itself to topological characteristics of the input patterns. The
discussion in this section will not seek to explain fully all the intricacies
involved in self-organization networks, but rather seek to explain the simple
operation of the network with two examples. Interested readers can refer to
Kohonen[10], Zurada[l1], and Haykin and Simon[12] for more detailed
information on unsupervised leaning and self-organization networks.

Learning and brain development phenomena of newborns are very
interesting from several viewpoints. As an example, consider how a baby learns
to focus its eyes. The skill is not originally present in newborns, but they
generally acquire it soon after birth. The parents cannot ask their baby what to
do in order to make sense of the visual stimuli impinging on the child’s brain.
However, it is well known that after a few days, a newborn has learned to
associate sets of visual stimuli with objects or shapes. Such remarkable learning
occurs naturally with little or no help and intervention from outside. As another

example, a baby learns to develop a particular trajectory to move an object or
grab a bottle of milk in a special manner. How can these phenomena happen?

One possible answer is provided by a self-learning system, originally
proposed by Teuvo Kohonen [10]. His work provides a relatively fast and yet
powerful and fascinating model of how neural networks can self-organize. In
general, the term self-~organization refers to the ability of some networks to learn
without being given the correct answer for an input pattern. These networks are
often closely modeled after neurobiological systems to mimic brain processing
and evolution phenomena.

A Kohonen network is not a hierarchical system, but consists of a fully
interconnected array of neurons. The output of each neuron is an input to all
other inputs in the network including itself. Each neuron has two sets of weights:
one set is utilized to calculate the sum of weighted external inputs, and another
one to control the interactions between different neurons in the network. The
weights on the input pattern are adjustable, while the weights between neurons
are fixed.

The other two networks that have been discussed so far in this chapter (BP
and RBFN) have neurons that receive input from previous layers and generate
output to the next layer or the external world. However, the neurons in the
network have neither input nor output to the neurons in the same layer. On the
contrary, the Kohonen network receives not only the entire input pattern into the
network, but also numerous inputs from the other neurons with the same layer.
A block diagram of a simple Kohonen network with N neurons is shown in
Figure 3.17.

Figure 3.17: A Two Dimensional Kohonen Network.

Notice that the input is connected to all the nodes and there are
interconnections between the neurons of the same layer. During each
presentation, the complete input pattern is presented to each neuron. Each
neuron computes its output as a sigmoidal function on the sum of its weighted
inputs. The input pattern is then removed and the neurons interact with each
other. The neuron with the largest activation output is declared the winner

neuron and only that neuron is allowed to provide the output. However, not only
the winning neuron’s weight is updated, but also all the weights in a
neighborhood around the winning neuron. The neighborhood size decreases
slowly with each iteration [11].

3.5.1 Training of the Kohonen Network

When we construct a Kohonen network, we must do two things that have not
been generally required by the other networks. First, we must properly initialize
the weight vectors of the neurons. Second, the weight vectors and the input
vectors should be normalized. These two steps are vital to the success of the
Kohonen network. The procedure to train a Kohonen self-organization is as
follows:

1. Normalize the random selected weights W;.

Present an input pattern vector x to the network. All neurons in the
Kohonen layer receive this input vector.

3. Choose the winning neuron as the one with the largest similarity
measure between all weight vectors W; and the input vector x. If the
shortest Euclidean distance is selected as similarity measure within a
cluster, then the winning unit m satisfies the following equation:

e =, = minfJx - w, } (3.23)

where m is referred to as the winning unit.

4. Decrease the radius of Nm region as the training progress, where Nm
denotes, as a set of index associated with the winning neighborhood
around the winner unit C. The radius of Nm region can be fairly large
as the learning starts and slowly reduced to include only the winner and
possibly its immediate neighbors.

5. The weight of the winner unit and its neighborhood units are obtained
as follows:

(Wi)new = (Wz)old ta |_x - (VVz)old J (3.24)

where, Wi is the weight vector, x is the input pattern vector and a is the
leaning rate (0<a<l) Since a depend on the size of neighborhood
function, Equation (3.25) can be rewritten as

(VVZ)new = (VVI)old ta Nci I.x - (VVI)old J (325)

where the function N, can be chosen appropriately such as a Gaussion
function or a Mexican hat function.

6. Present the next input vector. Repeat steps 3—5 until the training phase
is completed for all inputs.

In order to achieve a good convergence for the above procedure, the learning
rate O, as well as the size of neighborhood Nc should be decreased gradually
with each iteration. As was mentioned before, at the beginning of the training
phase, the selected region around the winner unit might be fairly large.
Therefore, a substantial portion of the network can learn each pattern. As the

training proceeds, the size of the neighborhood slowly decreases, so fewer and
fewer neurons learn with each iteration. Finally the winner itself will adjust its
weights. After the completion of this procedure, the network is trained for the
next input vector in a similar fashion.

Kohonen self-organization network has some interesting capabilities that can
be extremely useful. One possible application is vector quantization. The
network can also be used to perform dimension reduction and feature extraction
as well as classification.

In MATLAB, the leaning rate, o, and the neighborhood size are altered
through two phases: an ordering phase and a tuning phase.

3.5.2 Examples of Self —-Organization

In this subsection, two examples of self-organization maps are provided. The
detailed description of examples can be found in chapter 21

Example 3.6: 1-D self-organization Mapping

Consider 200 2-Element unit vectors spread uniformly between 0 and 180 as
shown in Figure 3.18. We now consider a 1-D self-organization map with 20
neurons.

0.9

0.8

0.7

0.6

0.4

0.3

0.2

Figure 3.18: Original Distribution of the Input of the Kohonen Network.

Figure 3.19 shows the weights of the Kohonen self-organizing network after
training. It can easily be observed that the weights of the network have the
pattern of the input. In the other words, the network is being adjusted to the form
of the pattern of input of the network.

Weight Vectors

08 06 04 02 0 02 04 06 08
WG, 1)

Figure 3.19: Weights of the Kohonen Self-organizing Network.

Example 3.7: 2-D Self-organization Mapping

Suppose we have created 2000 input vectors randomly (Figure 3.20). We
will define a two-dimensional map of 35 neurons to classify these input vectors.
The two dimensional map is five neurons by seven neurons in horizontal and
vertical directions, respectively. The map is then trained for 5,000 presentation
cycles in the MATLAB. The results are displayed in Figure 3.22. The details of
the program are given in Chapter 21.

1 .
] I+ w |+ T -+ T _a-l T Tt 1 +|__‘: T
T o E fhE o
0.8 B! T + e sy
et +¢+ * **#Ti#“ + TR R +
FaEE T e L e BT L o e
0.6 45" + T+ g, TR T # +H
++ I FECT S T e
oafp *t F -ﬁ*i"’*_’_#ﬁ_" * £ T +7 4
e e F T L L P e s
0.2 ++j—: N Frrgh +"+:f-+++"-"--'f-=’
S ﬂ'ﬁ-“..'.""h-""" s 4+ Tt F
T . e i T T
oty Pt IR B
F oy Tt S ig}' e Ee A,
0.2 + 4+ +.1£-+++ '-"'.-:_#' "3—+-‘-—]t +":|ﬁ' +"'$: _'-_'__;- ++_#._
TP TP AR TR+ PE T A]
sl + +j:'.t.ﬁE b ot f’" # "
A T, e BESE e S R R g
++-‘:" ""ﬂ:;_._-l""-FH_'-_Fi- +%+1#'ﬁ-++;i 4+ 7
06k 4w gt Ry + o +HF #
PR R - S AN e o
osfegE & et F tF Ty # " R
T AR n T B B P
++3+-0—0-+ + + :‘:"'F:;f_" + -':O-#_'. # 'Hi+++mi++}¢ :‘:i
-1
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

Figure 3.20: Initial Inputs of the Network of Example 3.7.

Weight Vectors
1 .5 T T \)

W(i,2)
o
=
)

_0.5 1 1 L
-0.5 0 0.5 1 1.5

W(i,1)
Figure 3.21: Initial Weights of the Network.

Weight Vectors

0.4

0.2}

W(i2)
o

-0.6[

Figure 3.22: Weights of the Kohonen Self-organizing Network after
Training (Example 3.7).

3.6 HOPFIELD NETWORK

Hopfield rekindled interest in neural networks by his extensive work on
different versions of the Hopfield network [13],[14]. The network can be
utilized as an associative memory or to solve optimization problems. One of the
original network [13], which can be used as a content addressable memory is
described in this chapter. The network is a typical recursive model in which
nodes are connected to one another. Figure 3.23 shows a Hopfield network.

>
0,
>
0,
O«
>

Figure 3.23: Hopfield Network.

As is shown, the output of each neuron consists of the inputs from other
neurons, with the exception of itself. Therefore, the activity level of the neurons
can be calculated using the following formula:

a; = ; Wi/'Oj +yl _T[izl, 2, ey N (326)

or in the vector form as:
a, =W,0+u; -T, i=1, 2, .., n (3.27)

where:
Wy=wy wo oo ow,] =2, L n (3.28)

Wi is the weight vector for the i-th input of the neural network and the i-th
element of this vector is equal to zero. On the other hand,

—_

i=1, 2, ., n (3.29)

QS
1
OOEOoy
=35
Oooogg

@0
is the output vector of the neural network. Equation 3.27 in the matrix form can
be rewritten as follows:
A=WO+I-T i=1, 2, ., n (3.30)
The weight matrix W is a symmetric matrix with all diagonal elements equal
to zero. If the activation function of the neuron is a sign function, we will have:

1] <0
0, =0 lf “ (3.31)
! if a; >0

The output transition between old value and new value will happen at certain
times. At that time, if the value of the additive weighted sum of a neuron is
greater than threshold of that neuron, the new output of that neuron will remain
or change to +1, otherwise it will remain or change to —1.

Considering this fact, we can define the state of the network, which is the
value of the outputs at one time. For example, 0=[t -1 1 --- 1] is a state of the
network. For each neuron we have two values. Therefore 2” states exist for a
network with » neurons.

In a Hopfield network, we apply an input at certain times and then it will be
removed. This causes transitions in states of the network. These transitions
continue until the network reaches to a stable point, which is called an attractor.
An important point about this network is that at each time one neuron will
calculate its activity level and change its output. In other words, updating of the
outputs of the neuron is being done in an asynchronous fashion. Therefore to
calculate activity level of the next neuron, and find the output of that neuron, we
use some updated value for the output of the other neurons. The updating order
of the neurons is random. It depends on random propagation delays and noise.
When using the formula in matrix form, we should be careful, because it offers
synchronous or parallel updating. If we consider E=[I -], each state of the

system is an edge of the graph in E” space. After applying an input pattern, the

state of the network goes from edge to adjacent edge until it reaches an attractor
of 2" edges. An attractor should satisfy the equation:

sgn[4,]1=0, (3.32)

Where 4, and O, are activity level and output at the attractor. Note that if

the network satisfies this equation, the next state of the network is equal to its
present state and therefore no transition will happen until a new input pattern is
applied to the network.

As mentioned earlier, input will be applied momentarily and then will be
removed. Considering this fact and using Equation 3.30, Equation 3.32 will
change to:

0, =sgn[W0, - T1] (3.33)

a

If we define the energy function for the system as:

E = —%OTWO +u-1"0 = -1 5 fwl.jo,.oj ~Y i +5 To, (3.34)
i=1 j=1 i=1 i=l
J#i

The gradient of the energy can be calculated from Equation 3.34 as:
(E =—%(W’ w0 -u’ +1" = wo-u” +1" (3.35)

Here we have used the fact that the weight matrix is symmetric. The energy
increment is equal to:
A E= (OE)" nO (3.36)
As discussed earlier outputs will be updated one at a time. Therefore only
i-th output will be updated,

ro=o - o o]" (3.37)
The energy increment will be equal to:
2 =(W," 0 -p," +T,") 0o, =400, (3.38)

It is obvious that for positive 4;, Ao; 20 and for negative 4;, No; <0.

Looking at Equation 3.38 it can be seen that AE <0. Therefore it can be
concluded that state transitions of the network are in a way that the energy is
either decreased or retained. This means that the attractors are the edges with
lowest levels of energy. Following is an example to clarify these ideas.

Example 3.8:
Shows the state transitions and attractors in a fourth order Hopfield network.
Consider the weight matrix as follows:

oo -1 -1 20

0 0
1 0 1 -1

-0 0 (3.39)
EH 1 0 —1%
@ -1 -1 0f

Considering the threshold and external inputs equal to zero, energy level can

be calculated as follows:

E:%OTWO (3.40)
or:
o0 -1 -1 20,0
0 M O
1 10 1 —lge,
E=-—— O O 41
2 [Ol 02 03 04]']—1 1 0 _1%3 D (3)
0 M° 0
02 -1 -1 0es4n

After simplification we will have:
E =-01(—02 —0; +204)—02 (03 —04)+ 0504 (3.42)

Now if we consider all the states of the network starting
from[—l -1 -1 —l] to [1 11 l],we can calculate all the energy levels of

the network. The result will be the levels 1, 1, -1 3,-1,3,-7,1,1,-7, -1, 3, 3, -1,
3, 1 respectively. Therefore the energy levels are —7, -1, 1, 3. The two states
with the lowest energy level -7 are [—1 11 —1] and [1 -1 -1 1]. We can

see that these states are attractors of the network. In other words, they satisfy
Equation 3.33. If we try any other state of the network, we will see that they do
not satisfy this equation, which means that they are not attractors of the network.

In other words, the attractors are the states with minimum levels of energy.
In fact we can see that the transition in the network will be from an state to
another state with a lower or the same level of energy. On the other hand, we
know that the transition is asynchronous. Therefore, at each single step we will
go from one state to its adjacent state. These transitions are in the direction of
reduction of energy level until we reach a state with a minimum level of energy,
which is the attractor of the network. Figure 3.24 shows the state transition of
the network.

Figure 3.24: State Transition of the Hopfield Network to Reach to a Stable
State.

3.7 CONCLUSIONS

In this chapter, four different neural networks were presented. Several numerical
examples were provided to demonstrate the effectiveness of these networks. The

described networks consist of highly parallel building blocks that illustrate NN
design principles. They can be used to construct more complex systems. In
general, the NN architectures cannot compete with the conventional techniques
at performing precise numerical operations. However, there are large classes of
problems that often involve ambiguity, prediction, or classifications that are
more amenable to solution by NN than other available techniques. In the
following chapters several of these problems will be addressed in detail.

REFERENCES:

1. Widrow, B. and Lehr, M. A., Thirty Years of Adaptive Neural Networks:
Perceptron, MADALINE, and back propagation. Proc. of the IEEE, Vol.
78, 1415-1442, 1990.

2. Rumelhart, D.E., Hinton G.E. and Williarns, R.J., Learning Internal
Representations by Error Propagation, Parallel Data Processing, Vol. 1,
Chap. 8, the MIT Press, Cambridge, MA, 1986.

3. Specht, D.F., A General Regression Neural Network, /[EEE Trans. on
Neural Networks, Vol. 2, 568=576, 1991.

4. Wasserman P.D., Advanced Methods in Neural Computing, Van Nostrand
Reinhold, New York, 1993.

5. Moody, J. and Darken, C., Fast Learning in Networks of Locally-Tuned
Processing Units, Neural Computation, Vol. 1, 281-294, 1989.

6. Jang, J. S., Sun, C. T., and Mizutani, E., Neuro-Fuzzy and Soft
Computing, Prentice Hall, Englewood Cliffs, NJ, 1997.

7. Lowe, D., Adaptive Radial Basis Function Nonlinearities and the
Problem of Generalization, Proc. First IEEE Int. Conf. on Artificial
Networks, London, UK, 1989.

8. Wettschereck D. and Dietterich, T., Improving the Performance of Radial
Basis Function Networks by Learning Center Locations, Advances in
Neural Information Processing Systems, Vol. 4, 1133-1140, Morgan
Kaufmann, San Mateo, CA, 1992.

9. Nguyen, D. and Widrow B., The Truck Backer-Upper, Int. Joint Conf. on
Neural Networks, Washington, DC, Vol. 2, 357-363, 1989.

10. Kohonen, T., Self-organization and Associative Memory, 3rd ed.,
Springer-Verlag, New York, 1988.

11. Zurada, J., Introduction to Artificial Neural Systems, West Publishing Co,
St. Paul, MN, 1992.

12. Haykin, S., Neural Networks: A Comprehensive Foundation, Prentice
Hall, Upper Saddle River, NJ, 1999.

13. Hopfield J.J., Neurons with Grades Response Have Collective
Computational Properties Like Those of Two State Neurons”, Proc. of
National Academic of Science, Vol. 81, 3088—-3092, 1984.

14. Hopfield, J.J. and Tank, D.W., Computing with Neural Circuits: A

Model, Science, Vol. 233, 625-633, 1986.

APPLICATIONS OF NEURAL
NETWORKS IN MEDICINE AND
BIOLOGICAL SCIENCES

Faramarz Valafar
4.1 INTRODUCTION

In this chapter, we will discuss applications of artificial neural networks (ANNs)
in medicine and biological sciences. In particular, we will discuss ANN
solutions to classical engineering problems of detection, estimation,
extrapolation, interpolation, control, and pattern recognition as it pertains to
these sciences. We will discuss some of these applications in detail to introduce
the readers to typical problems that researchers face in the area.

Research in ANNs’ applications as an alternative to classical engineering and
mathematical techniques in medicine and biological sciences has intensified in
recent years. Since the early 1990s, many applications of ANNs have replaced
classical solutions to the engineering problems mentioned above. This is also
true in medicine and biological sciences. [1 — 20] To discuss applications and
accomplishments of ANNs in medicine and biological sciences, we will first
introduce a few standard measures that will be used throughout this chapter to
compare or report various results. These measures have been recommended and
used to evaluate physicians and healthcare workers by various organizations,
and therefore are good measures for evaluating the performance of any
automated system that is designed to assist these healthcare professionals.

4.2. TERMINOLOGY AND STANDARD MEASURES

The American Heart Association (AHA) recommends the use of four measures
to evaluate procedures for diagnosing CAD. [21] Since these measures are
useful in other areas of diagnosis as well, we will be using them in evaluating
most diagnostic systems.

*
sensitivity ..TPF :M 4.1)
TP+ FN
TN *100
specificity ..INF =———— (4.2)
pecificity TN + FP

PA = sensitivity * P(D)+ specificity * [1 - P(D)] (4.3)

_ sensitivity * P(D)
sensitivity * P(D)+ (1 00— speciﬁcity)* [1 - P(D)]

PV (4.4)

Where TP stands for true positive, FN stands for false negative, TN stands
for true negative, and F'P stands for false positive. Sensitivity, or true-positive
fraction (TPF), is the probability of a patient who is suffering from a disease to
be diagnosed as such. Specificity, or true-negative fraction (TNF), is the
probability that a healthy individual is diagnosed as such by a diagnosis
mechanism for a specific disease. PA is the predictive accuracy, or the overall
percentage of correct diagnosis. PV is the predictive value of a positive test, or
the percentage of those who have the disease and have tested positive for it.
P(D) is the a priori probability of a patient who is referred to the diagnosis
procedure actually having cancer.

In addition to TPF and TNF, we define two other related values. False-
positive fraction (FPF) is the probability of a healthy patient being incorrectly
diagnosed as having a specific disease. And false-negative fraction (FNF) is the
probability that a patient who is suffering from a disease will be incorrectly
diagnosed as healthy. In this way, the following relations can be established:

FPF =1-TNF (4.5)
FNF =1-TPF (4.6)

To clarify the terminology and symbols, let us consider the following example.

Example 4.1:

Let us assume that 100 patients were referred to the mammography
department for diagnosis of breast cancer. Let us further assume that of the 100
individuals, 38 actually had a cancerous tumor, and the remaining 62 either did
not have any tumor or did not have one that was malignant (cancerous). Let us
further assume that a diagnosis procedure (manually conducted by physicians,
by an automated system, or by both) correctly diagnosed 32 of the 38 cancer
sufferers as having breast cancer. It, however, misdiagnosed six of those as
being cancer free. Let us also assume that the procedure correctly classified 58
of the 62 cancer-free patients as such, and misclassified the remaining 4 as
having breast cancer. Finally, let us assume that on the average, 35 % of those
who are referred to the mammography procedure actually have breast cancer.

In this example TP = 32, FN = 6, TN = 58, FP = 4, and P(D) = 0.35.
Hence,

Sensitivity= TPF = % =84.21% = FNF=1-8421=15.79%,
Specificity= TNF = ng*j(io =93.55% = FPF=1-93.55=6.45%,
PA=8421%0.35+93.55%[1-0.35]=90.28 %,

84.21%0.35

=87.55%

= 84.21 *o.35+(100—93.55) *[1 —0.35]

In this example the overall system accuracy is 90.28 %, while the predictive
value of a positive test is at 87.55 %.

Another commonly used measure of ANNs’ performance that has found its
way into the medical community (among others) is the receiver operating
characteristic (ROC) curve. [22,23]. ANNSs that perform pattern recognition or
detection could be viewed as a receiver system (in the sense of a radar signal
receiver) that receives a noisy signal and attempts to identify it. In the radar
example, identification of the signal could mean classifying an aircraft as friend
or foe. In medical decision-making, it usually means the diagnosis of a patient
as healthy or sick. For simplicity, let us assume that the ANN has one output
neuron. The following discussion can be expanded to cover multi output ANNs
as well.

An important variable in the performance of the ANN is the threshold value
0 of the output neuron. If 6=/, all incoming signals in radar technology would
be classified as noise. In medical technology, it would translate into having a
negative diagnosis for all patients and, thus, categorizing them as healthy. If
6=0, we would be classifying all patients as sick. In the first case, the
probability of detection, or TPF, would have a value of zero, but so would the
probability of false alarm, or FPF. In the second case, TPF would have a value
of one, as would FPF. Neither of these receivers (detectors) would be desirable.
The ROC curve gives an idea as to how the receiver would perform for all
values of threshold (6) between 0 and 1.

Let us assume that /(ZIHV) is the conditional probability density function of

z, the activation level of the output neuron, given that the input to the network
contains a signal (patient actually is carrying the disease) (hypothesis Hj).

Similarly, /(ZIH”) is the conditional probability density function of z, given

that the input to the network does not contain any signal (patient is actually
healthy) (noise only, hypothesis H,). A hypothetical example of these two
density functions is shown in Figure 4.1.

With 6, being the alarm threshold, the probability of detection, or TPF, and

the probability of positive error, or F/PF, can then be calculated as follows:

7PH(8,) = ;[/\4#,) 4.7)
FPH8,)= j' /\4#,) 2 (4.8)

Figure 4.2 shows the TPF and FPF graphs for the probability density
functions of the hypothetical example shown in Figure 4.1.

Definition 4.1: The ROC curve of a system is the plot of that system’s TPF
curve versus its FPF curve. The operating variable of

the three curves is 6y, the alarm threshold.

Conditional Probability Density functions of the activation
level of the Output Neuron

—f(4Hs) Patient is actually sick.

------- f(Z4Hn) Patient is actually healthy

0 0.1 0.2 0.3 0.4 05% 06 0.7 0.8 0.9 1

Activation Level of the Output Neuron (2)

Figure 4.1: Hypothetical Conditional Probability Density Functions of the
Activation Level z of the Output Neuron, Given that the Patient is Known to be
Sick (H;) or Healthy (H,,).

Hypothetical TPF and FPF Curves Versus the Output
Threshold.

e
CTSettvemedaan..

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Activation Threshold of the Output Neuron (

Figure 4.2: The True Positive Fraction and the False Positive Fraction
Functions of the Hypothetical Example Shown in Figure 4.1, Plotted vs. the
Alarm Threshold of the Output Neuron.

The ROC plot of the hypothetical example can now be plotted according to
Definition 4.1. Figure 4.3 shows the ROC plot for the hypothetical example of

Figure 4.1. This figure also shows a worst case classifier (dashed line), and a
theoretical best case classifier.

The ROC curve demonstrates an important property of any detection system:
namely, that the probability of “true positive” is directly related to the
probability of “false positive.” They rise and fall together. The ideal classifier
is one whose TPF is one for all values of FPF, including when 6,=7 and FPF=0
(the red curve in Figure 4.3). The worst classifier is one that has no
discrimination. A positive detection always has equal probability of being true
or false. In other words, TPF = FPF for all values of 6,. This, in turn, would
produce the dashed line ROC curve shown in Figure 4.3.

A consolidated measure that is a good representation of the overall quality of
the receiver, and of the model used to build the receiver, is the area under the
ROC curve. This area is commonly referred to as A,. [23] This area varies
between 0.5 (worst receiver) and 1 (best receiver). The area under the
hypothetical ROC curve of the example in Figure 4.1 is 97.49 %. Furthermore,
the best operating point of a receiver can be determined from the ROC curve by
determining the point with a maximum distance from the diagonal line of the
worst case classifier. In Figure 4.3, the label “Ideal Operating Point” shows this
point of the hypothetical receiver. As can be seen from the figure, the best
operating point of the hypothetical receiver has a TPF value of about 84 %, and
FPF value of about 3.5 %.

ROC Plot
Best Classifier
r1.2
60=1 * ¢ Incrasing 6o 6o= ;
Hypotheied Classfier, .-~ " T T T
\ Aw //// +0.8
o |\ & - L
S AN _— "~ Worst 06
AN - =
- DTN Classifier 04
R N N L 0.2
Kt | Ideal Operating Point
T T T T T T : T T T T T T T T T T T T T T 0
0.00 001 002 004 007 012 019 029 044 066 1004,
FPF

Figure 4.3: ROC Plots of a Hypothetical Receiver, a Theoretical Best Case
Receiver, and a Worst Case Receiver.

The measures introduced in this section are particularly helpful in comparing
the performance of most diagnosis procedures (systems) and therefore will be
used in several parts of this chapter.

4.3 RECENT NEURAL NETWORK RESEARCH ACTIVITY IN
MEDICINE AND BIOLOGICAL SCIENCES

ANNs have enjoyed success in various areas of medicine and biological
sciences. ANNs have been successfully applied to areas such as radiology [16],
cancer research, [12,14,24-29] biochemical spectrum analysis, [30] sleep
disorder, [31] cardiac disease, [1,2,15,18,19] biochemistry of a disease, [4,5]
HIV and AIDS, [5,29] epilepsy, [6,20] vision, [7] motor control, [8] lunge
disease, [10,11] pathology and laboratory data analysis, [13,14] diagnosis
decision support, [17,18,32] and many more.

In the following we present a brief summary of three research projects as
examples of some of the most active research areas in ANNs’ applications in
medicine and biological sciences. These three applications are only meant to
give an indication as to the breadth of the activity areas, and to demonstrate the
typical problems (and give some ideas as to possible solutions) that researchers
often face when dealing with real world data in the areas of medicine and
biological sciences. It is also our hope that through these examples we can
indicate the level of achievement of the ANN research community in various
fields.

4.3.1 ANNSs in Cancer Research

Pattern recognition using ANNSs in cancer research is likely to be the most
active area in terms of application of ANNs in medicine. ANNs have been used
extensively in various roles in cancer research anywhere from tumor detection
and analysis, [24,25,26] to the detection of biochemical changes in the body due
to cancer, [29] to analysis of follow-up data in primary breast cancer, [27] to
visualizing anticancer drug databases. [28] Among various types of cancer and
detection methods, breast cancer diagnosis by the means of ANN classification
of mammography images has been one of the most widely studied.

T.C.S.S. André and A. C. Roque [24] offer one of the most recent studies in
this area. The authors have developed a medical decision support system using
neural networks to aid in the diagnosis of breast cancer. This system uses digital
mammogram images to classify a case as having one of three possible outcomes:
suspicion of malignant breast cancer, suspicion of benign breast cancer, or no
suspicion of breast cancer. André and Roque [33] used a staged (layered) neural
network with a set of identical single layer networks as the input layer. These
input layer networks used localized receptive fields without overlapping in the
mammogram image. The hidden and the output layers of the network were each
a single layer of perceptrons. The input layer was first trained, with regions
taken from several mammograms, to become a feature extractor using the
competitive learning algorithm. [33] The perceptron layers were then trained
with the backpropagation learning algorithm.

The authors report a 7PF of 0.75, and an FPF value of 0.06 for the optimum
operating point of the ANN system described above. Furthermore, they report

an A, value of 0.84 for their system. To put this value in perspective, it should
be mentioned that 4, values typically fall in the 0.80 to 0.90 range for
mammography analysis. In a similar study, Wu et al. [34] report an A4, value of
0.84 for a group of attending radiologists, and an 4, value of 0.80 for a group of
resident radiologists.

Wau et al. [34] also conducted a similar study using a neural network trained
with the backpropagation algorithm. They used a set of features of
mammogram images that were selected by experienced radiologists as the input
signal to the neural networks. In this case, they report an A4, value of 0.95 for
textbook cases, and an A4, value of 0.89 for clinical cases.

4.3.2 ANN Biosignal Detection and Correction

Applications of signal detection techniques have been used in biological
sciences to detect a single signal, or a group of signals, buried in various types
of noise and nonrelevant biosignals for several decades. Applying pattern
recognition techniques to spectroscopic data, for instance, has been used to help
in structural elucidation of known molecules, and to significantly reduce the
enormous duplicate work otherwise conducted in the area. Pattern recognition
tools can therefore be employed to build search engines for spectral databases of
various types of molecules.

An example of this can be seen in detecting the signature of one, or a group
of complex carbohydrates in gas chromatography-electron impact mass
spectroscopy (GC-EIMS), or nuclear magnetic resonance (NMR) spectra. [30]

Complex carbohydrates have been linked to biochemical functions of all
cells, [35 — 37] such as cell recognition (e.g., initial steps in host pathogen and
symbiotic relationships), intercellular adhesion (lectins and selectins), biosignal
processes (oligosaccharins), developmental regulation, antibody binding,
immune system modulation, and hormonal regulation. Consequently, complex
carbohydrates, or the receptors that bind them, are also involved in many
diseases, including autoimmune diseases, inflammatory diseases, and cancer. A
tool to rapidly elucidate the chemical structures of complex carbohydrates can
be instrumental in research to understand their biological functions. The
presence of specific carbohydrates or their “uncommon” relatives, for instance,
could be indicative of disease, the stage of a disease, or the presence of an
antibody.

In this context, signal correction techniques could be used to correct the
incoming biosignals and to compare them to a prerecorded clean library of
signals. In this way, signal detection and correction techniques are used to
discover and clean biosignals, and subsequently identify complex carbohydrates
from which they originated. In this section, we discuss an artificial neural
network solution to biochemical signal detection and identification, as well as
biochemical signal correction for complex carbohydrates. [30]

Identification Of Complex Carbohydrate Structures from Their Spectral
Signatures Using ANNS.

Structural and functional elucidation of complex carbohydrates is a key part
of an increasing number of biomedical inquiries into these molecules. The
structural determination of complex carbohydrates is the mandatory prerequisite
to determining their functions. But the enormous chemical complexity and
diversity of complex carbohydrates makes their structural elucidation a
particularly challenging, lengthy task, and one that scientists would not wish to
duplicate unnecessarily. Therefore, the primary need for the scientist faced with
finding out the identity, chemical characteristics, and other attributes of a
carbohydrate is to know whether that carbohydrate has already been analyzed by
others and, if so, what is known about its chemistry, biology, and conformation.
F. Valafar and H. Valafar [30] have developed a system for automated
identification of complex carbohydrates using their chemical spectra that can
provide this type of information.

(@

DO
H ’” M Hump Region Signal Standard

u S s
A

()

Figure 4.4 (a) A 'H-NMR Time-Domain Signal of an N-linked
Oligosaccharide. (b) The Fourier Transformed Frequency-Domain Spectrum of
the Same Oligosaccharides.

In the following, we discuss Valafar’s method in identifying complex
carbohydrate structures from their '"H-NMR spectra using artificial neural
networks. In most classical signal processing methodology, the process of
structural elucidation of a chemical compound from its '"H-NMR spectrum first
involves individual signal detection of elementary components (proton or 'H
signals). The second step in this process is the task of combining the detected
individual signals in order to identify the structure of the carbohydrate in
question. Valafar’s use of ANNs in this process combines the two steps; the
ANN performs both steps at the same time.

'H-NMR spectra, in general, suffer from environmental, instrumental, and
other types of variations that manifest themselves in a variety of aberrations.
Low signal-to-noise ratio, [38 — 40] baseline drifts, [41 — 43] frequency shifts
due to temperature variations, line broadening and negative peaks due to phasing
problems, and malformed peaks (or peaks overlapped more than usual) due to
inaccurate shimming are among the most common aberrations. Figure 4.4
demonstrates a clean "H-NMR spectrum of an N-linked complex carbohydrate.

As can be seen from Figure 4.4, large peaks not relevant to the structural
elucidation of the complex carbohydrate usually dominate 'H-NMR spectra of
complex carbohydrates. These peaks include that of the solvent (heavy water in
this case, HDO) and that of the standard. The proton signals (drifts) are
typically in the order of 100 times weaker than the large peaks. Furthermore,
most of these signals heavily overlap in the “hump” region of the spectrum,
leaving the region unusable for structure elucidation.

For the purpose of automated identification of these spectra, elimination of
the above mentioned aberrations becomes essential, as they can lead to
erroneous identification. [41-45] A variety of signal processing techniques

have been applied to "clean up" 'H-NMR spectra. For instance, signal
averaging' and apodization’ have become standard ways of improving the
signal-to-noise ratio. To correct baseline problems, a number of techniques
have been used such as parametric modeling using a priori knowledge, [41,42]
optimal associative memory (OAM), [42] spectral derivatives, [46] polynomial
fitting, partial linear fitting, [47] and Bayesian analysis. [48] For peak detection
(and solvent peak suppression), methods such as Bayesian analysis [48,49] and
principal component analysis [50,51] can be mentioned. For signal-to-noise

" In signal averaging a spectrum is recorded several times. Each recorded signal
is referred to as a “transient”. The final spectrum is the arithmetic average of all
the transients. The hope is that by using signal averaging the zero mean
components of the noise present in the signal will be averaged out.[44]

* Apodization is a type of low (high) pass filtering performed in the time
domain. Apodization is performed by speeding up or slowing down the rate of
decay of time domain exponential functions. This is accomplished by
multiplying the time domain signal by another function. This technique allows
the improvement of the signal-to-noise ratio at the cost of the reduction in signal
resolution (or vice versa).[44]

ratio problems, various types of filters (including adaptive filters such as
matched filters [44,51]) in addition to standard apodization and signal averaging
have also been used. A number of other mathematical techniques have also
been introduced to address other specific types of aberrations encountered in
'H-NMR spectra.

Although many of these signal processing techniques have enjoyed success,
they remain solutions to specific types of aberrations. In order to produce
sufficiently “clean” spectrum overall, one needs to use several of these methods
to eliminate the aberrations present in a real spectrum. Furthermore, most of
these techniques produce side effects that are magnified when improperly
processed by a second signal processing algorithm, which can lead to false
identification. Moreover, after the initial signal processing steps have been
taken, the task of identifying the processed spectrum remains. This is not a
trivial task as frequently the quality of the processed spectrum remains poor,
requiring a sophisticated identification system.

Valafar and Valafar [30] have developed an artificial neural network system
that addresses many of the above mentioned problems while identifying
'H-NMR spectra of complex carbohydrates. Although the procedure still
requires a minimal amount of preprocessing, it has significantly reduced the
number of preprocessing steps while increasing the overall identification
accuracy.

In this project, the authors developed an ANN system for a library of N-
linked oligosaccharides, and one for xyloglucan oligosaccharides. While
xyloglucans are plant cell wall oligosaccharides, the N-linked oligosaccharides
are present in most animal biochemistry. Since the two systems used similar
methods to develop an ANN identification system, we will only discuss here the
development of the N-linked ANN identifier.

Preprocessing. Initial testing indicated that without preprocessing all
selected methods for identification purposes would perform poorly. Therefore,
it was decided to use some minimal preprocessing techniques to eliminate some
aberrations before the identification stage. These preprocessing steps included
baseline correction, high frequency noise reduction, and water and solvent peak
elimination. These steps were respectively accomplished by a first derivative
technique, a low-pass filter in the form of a specially designed averaging
moving window, and a bin selection technique. The ANN eliminated the
remaining aberrations in the process of identification. In other words, the ANN
was able to learn during training to be insensitive to the remaining aberrations.
Additionally, since each 'H-NMR spectrum contained anywhere from 4K to
16K of data, an interpolation technique was used to normalize the length of all
'H-NMR vectors to 5000. This would reduce (in most cases) the resolution of
the spectrum to 2 points per Hertz, which is as low as Nyquist’s theorem [51]
would permit. The 5000-point vector covered the region between 1 and 5.5 ppm.
The corrected spectra then were introduced to the ANN for training purposes.

Figure 4.5 shows the estimated a posteriori probability density functions [51]
of the inter-> and intra-class® correlation coefficients between the raw (not
processed) 'H-NMR spectra of the N-linked data set’ as defined by Bayes’
theorem. [51] The required a priori density functions by Bayes’ theorem were
estimated using the nonparametric approach of Parzen density estimation. [52]
Figure 4.6 shows the estimated a posteriori density functions of the
preprocessed spectra from the same data set. As can be seen from the graphs,
the overlap of the two density functions has been reduced from 56 to 43 %. This
means that the “classical” signal preprocessing has simplified the identification
task, and a Bayes' classifier, in combination with correlation coefficient analysis,
now carries a 43 % uncertainty factor vs. the previous 56 %. Moreover, the
probability density functions behave closer to expected (one large peak per
density function, and smooth decay everywhere else in the function) after
preprocessing.

0.35
0.3 |
0.25 -
0.2 |
0.15 |
0.1
0.05 [

0
Q

Figure 4.5 Estimated Distribution of Inter- and Intra-class Correlation
Coefficients of Raw (Not Processed) 'H-NMR Spectra of 109 '"H-NMR Spectra
of 23 N-linked Oligosaccharides.

ANN design

The authors used a two stage feedforward network with sigmoidal artificial
neurons [33] in the hidden and output layers. The input layer of the network
contained 5000 fan out neurons. The output layer contained 67 neurons

’ By “class” we refer to the set of all spectra for a specific compound. In other
words, each class in the xyloglucan experiment contained two spectra. In the N-
linked database, 20 oligosaccharides were represented by five spectra, and the
remaining three had three spectra, giving rise to five-member and three-member
classes respectively. An “inter-class” correlation coefficient is the correlation
coefficient between the spectra of two different oligosaccharides.

* “Intra-class” correlation coefficient is the correlation coefficient between two
different spectra of the same oligosaccharide.

> The estimated Bayes’ a posteriori distribution functions for the xyloglucan

data set were similar to those shown here for the N-linked data set, and for space
consideration are not shown here.

corresponding to the 67 oligosaccharides in the library. The number of the
hidden neurons was empirically determined to be 27.

To develop the best performing ANN, several criteria were set forward: 1)
the developed ANN was to have a very low FPF. In other words, if a spectrum
of a complex carbohydrate was not present in the training library, the system
should not try to find the closest match in the library. The outcome should be
that the carbohydrate does not exist in the library; 2) the system needed to be
tolerant of aberrations, and to be able to identify carbohydrates from its library
even in the presence of relatively low signal-to-noise ratio. This translated into
a high value for the area under the ROC curve, 4,. This also meant a high TPF
value and 3) in the case of a mixture, the system was to indicate the
carbohydrate of the highest ratio in the mixture.

0.6
0.5+
0.4+
0.3+
0.2+ Jnter
01 + -

0 | RS e ER N it , T T
b1 f f T f f t f f t t

° » yoo? LN ©

Intra

Figure 4.6 Histogram of the Correlation Coefficient Distribution of the
Preprocessed 'H-NMR Spectra of 109 "H-NMR Spectra of 23 N-linked
Oligosaccharides.

With these goals in mind, a large number of training simulations were
conducted. A large number of permutations were tried, namely, by varying the
learning step size update policy, the number of hidden neurons, and the level of
input noise. Valafar et al. dynamically manipulated the spectra during training
by introducing some input noise in order to simulate the natural variability of
these spectra. The noise simulated varying coupling constants due to
temperature, line shape problems due to incorrect shimming, and minor baseline
drifts. [53]

Table 4.1 shows the results of the best performing ANN in comparison with
three other methods. The table shows the results of the experiments for both the
N-linked and xyloglucan oligosaccharides.

Method A: Correlation coefficient analysis; Method B: Singular value
decomposition; Method C: Correlation coefficient analysis and Bayesian
classifiers; Method D: Backpropagation ANN.

The ANN system also showed less sensitivity to signal to noise degradation.
Table 4.2 shows the degradation of identification accuracy of the four methods
with increasing noise.

Table 4.1: Number of Correctly Identified N-linked and Xyloglucan
Oligosaccharide Spectra (Total Number of Spectra is in Parentheses) by Four
Different Identification Techniques after the Spectra Were Preprocessed as
Described Above.

N-linked Oligosaccharides Xyloglucan Oligosaccharides
Method Training Testing Training Testing
(67 spectra) | (134 spectra) (20 spectra) (20 spectra)
A 41 69 9 12
B 43 72 10 11
C 44 78 10 13
D 67 128 20 20

Table 4.2: Percentage Correct Identification of the Four Systems with
Increasing Noise During Testing in the N-linked Oligosaccharide Database.

Testing Noise Level
Method 0% 5% 10% 15% 20%
A 51.49 41.86 37.21 34.88 27.91
B 53.73 46.51 39.53 34.88 25.58
C 58.21 53.49 46.51 37.21 32.55
D 95.52 95.35 81.40 62.79 39.53

4.3.3 Decision-making in Medical Treatment Strategies

Decision-making techniques can be used in medicine to solve various
problems. Specifically, ANN pattern recognition engines have enjoyed
significant success in medical decision-making. [1 — 20] Although, the ANN
systems developed in this area demonstrate great potential benefit to the
healthcare community, due to the numerous remaining challenges, the areca
remains one of the most active. To introduce the difficulties that researchers
face in this area, we discuss here an ANN system designed to assist physicians
in deciding on the best treatment strategy. Specifically, we will describe a
research project conducted by H. Valafar et al. [32] to develop an ANN system
to decide whether a beneficial, and yet at times harmful, medication
(Hydroxyurea) should be prescribed in battling the symptoms of sickle cell
anemia (SCA).

Predicting a sickle cell anemia patient’s response to Hydroxyurea. Sickle
cell anemia is a genetic disease mostly affecting African Americans in the US.,
although the disease is not limited to people from African origin worldwide.
Treatment with Hydroxyurea (HU) partially alleviates disease symptoms in
many patients with SCA.

Treatment with HU alleviates the clinical course in many patients with sickle
cell anemia. [54] Most patients respond to HU with an increase in the fetal

hemoglobin (HbF) concentration of blood by either increasing the amount of
HDF in their F-cells and/or by increasing the proportion of F-cells. The response
to HU varies from patient to patient. If the magnitude of the HU-elicited
increase in the %HbF (with respect to the total Hb) of the patient’s blood could
be predicted, “non-responders” could be identified. Although Hydroxyurea is
effective for many patients, it is ineffective, and at times harmful, for others.
Therefore, it is desirable to devise a tool with which physicians can predict, with
a high percentage of accuracy, the outcome of the treatment before the
medication is administered. Hence, the ultimate goal of the project is to predict
the response level of a given patient to Hydroxyurea, using only the
pretreatment data of a patient.

To develop such a system, the first question that needs to be answered is:
What data should be used for the prediction/decision-making task? In this
particular project, the authors relied on the expertise and experience of the
physicians who were involved in sickle cell anemia research. The final set of
data to be used for prediction contained the results of a standard blood test, in
addition to some genetic information. A detailed list of the parameters that were
used can be seen in Table 4.3.

Selection of the parameters listed in Table 4.3 was based solely on educated
guesses on the physicians’ parts (such as the genetic information), and some
earlier simple statistical analysis of various data. Therefore, it could be expected
that some of the 23 parameters might not be relevant to the problem at hand. It
is also quite possible that not all relevant parameters are included in the study.

Data preprocessing. Many medical databases, especially those that go years
into patients’ past history and treatment, are in printed or written form. The first
step in this research was to create an electronic database usable by the modeling
team. This process was accomplished at the Medical College of Georgia. All
patients’ data were entered into a widely available spreadsheet. These data then
were sent to the modeling team for analysis.

Soon after the first round of analysis was completed, the following problems
were observed:

1) Missing data. A quick look at the data revealed that much of the data was
missing. For instance, if the patient was feeling well in that particular
month, certain measurements (tests) were not conducted. Furthermore,
there were instances where the patient simply did not show up for follow-up
tests because he/she was feeling okay. In some instances, the paperwork
containing the data for the early stages of the treatment was misplaced and
lost. There were two types of missing data in our databases. In some
instances, certain variables (pieces of data) were missing from a monthly
record. In others, an entire monthly record was missing.

2) Incorrect data. Simple statistical correlation analysis revealed that there
were some severe outliers. Most of these were traced back to human error.
But there were also data that simply were off the chart, but not traceable to

any human error. All the human errors were corrected. However, the
nontraceable extreme outliers were excluded from the study.

3) Invalid or corrupt data. In some cases, there were patients who became
pregnant against the doctor’s advice, or underwent a blood transfusion due
to other complications in the middle of the treatment period. The data of
such patients were excluded from the study as the effects of such events on
a patient’s blood chemistry and his or her ability to respond to Hydroxyurea
was unclear.

Table 4.3 A Description of the 23 Parameters for Which Data was Obtained
from the Patients. From H. Valafar, et al., [32].

Parameter Description Units
Age Age of patient at the time of analysis Days
Sex Male/Female F=1, M=2
NAGG o Globin gene number None
BAN Number of BAN haplotypes 1,2, or 3*
None
BEN Number of BEN haplotypes 1,2, or 3*
None
CAM Number of CAM haplotypes 1,2, or 3*
None
SEN Number of SEN haplotypes 1,2, or 3*
None
WGT Weight of patient Kg
%HbF Fetal hemoglobin, as % total None
hemoglobin
HbF Fetal hemoglobin, absolute value g/L of blood
Hb Total hemoglobin concentration g/dL of blood
RBC Red blood cell count x 10"/ Liter
PCV Packed cell volume (hematocrit) Liter / Liter
RDW % Variation in the size of red cells None
Retic Reticulocytes x 10
MCV Mean cell (erythrocyte) volume Femtoliters
MCH Mean cell hemoglobin Picograms
WBC White cell count x 10’ / Liter
Polys Polymorphonuclear leukocytes x 10’ / Liter
Plats Platelet count x 10’ / Liter
Bili Bilirubin concentration in blood mg/dL
NRBC Nucleated red blood cells seen in Number per
peripheral blood WBC
Duration Duration of treatment a patient received Days
to arrive at the maximum %HDbF level

*The actual values were 0,1,or 2, but 0 could not be used (see last paragraph
under ANN Analyses).

Problem definition. Further problems arose as the team prepared for the first
round of modeling experiments. One of the more fundamental problems, and
often one that is usually difficult to solve in medical decision-making problems,
was with the definition of the problem (problem statement). After further close
examination of the data, it was realized that the definition of the problem was
inadequate and that the experiments were destined to either fail, or to produce
results that were medically useless. The original statement of the problem was
as follows: “Develop a system that can accurately distinguish positive
responders from the nonresponders using pretreatment data.” Furthermore, a
“positive responder” was defined to be “a patient whose initial percentage HbF
(%HDF) doubles at some point during the treatment.”

After looking at the data, it was soon realized that while this definition may
work for patients whose initial %HDbF is, say 7%, or higher, it does not work so
well for patients whose initial %HbF is 1% or 2%. In other words, while
Hydroxyurea treatment might increase a patient’s initial %HbF value from 1%
to 2% at some point during treatment, it is not very likely that he/she would
experience any benefits (reduced number of hospital visits, or reduced severity
of symptoms) as a result of this minor increase. This meant that even in the
bestcase scenario that a system with 100% accuracy (in separating the patients
who can double their initial %HbF from those who cannot due to Hydroxyurea)
was developed, its results would be clinically meaningless. This is because
doubling the %HDbf value does not translate into reduced symptoms or hospital
visits for many or all patients. A new definition for a “positive response” had to
be devised.

After extensive study of published articles on Hydroxyurea and its
alleviation of symptoms, two possible definitions were suggested:

1) Dynamic patient threshold. 1t was suggested that each patient has a
different level of % HbF, beyond which his/her symptoms begin to taper
off. A patient would be categorized as a positive responder if his/her %HbF
level increased above this dynamic threshold as a result of the treatment.
This dynamic level needs to be calculated or estimated for each patient via
some type of computational means. Although this measure is probably the
more accurate measure of positive response, it was soon realized that in
order to estimate accurately each patient’s threshold, one would need to
have the response model in hand. Since the response model was the final
goal of the project, this definition seemed impractical and was therefore
abandoned.

2) Static threshold. The team agreed that the next best definition was that of a
static threshold across all patients. This threshold was determined by
consulting existing publications and the collaborators at MCG. All these
sources seemed to agree that most patients experienced some type of relief
of symptoms when their %Hbf rose about 15%. [55,57] Hence, if a
patient’s HbF concentration rose above 15% of total Hb during treatment,
he/she was categorized as a positive responder, and all others as
nonresponders. Three patients were excluded from this study, as their

initial % HbF was higher than 15. This threshold divides the final 83
patients included in the study into 58% responders and 42% non-
responders.

Missing Data. The problem of missing data arises in medicine quite often. The
most common causes of missing data are 1) patients who do not come into
clinics for further tests when they start feeling better or, if they do come in, the
nurses and the physicians who record the data are not as motivated to record all
available information; and 2) data are commonly recorded on paper and,
therefore, sometimes are misplaced and/or lost. While these are the two main
causes of missing data, there are others that need not be mentioned here.

In general, regardless of the reason for missing data, the missing data can be
categorized into two classes: 1) missing record: in some instances, the data for
an entire record are missing. A common cause of this type of missing data in
the case of SCA is due to patients who do not report to the clinic for their
monthly tests when they experience some relief in their symptoms. In such
cases, no data for that month are available for the patient; and 2) missing data
points: In some instances, specific parameters in each record are missing. An
example of this in the case of SCA would be when a patient who is feeling better
reports to the clinic for a monthly test. In some such cases, not all the tests are
conducted, or properly recorded. Human error is also a common source of this
type of missing data.

The first type of missing data did not cause many problems in our
experiments. This is because only the initial parameters of the patient (from
before the beginning of the treatment) were used and the highest level of
percentage HbF during treatment to train the artificial neural network. For this
reason, missing intermittent data were not harmful to our experiments, except in
cases when the highest percentage HbF was also missing. In the cases where the
highest percentage HbF value was missing, all data of that patient were excluded
from the study.

The second type of missing data could be potentially much more
problematic, as it is much more likely for the value of some parameters to be
missing at the initial recording before the beginning of the treatment. Since the
initial values are vital information, all patients who were missing more than two
initial parameters were dropped from the study. The patients whose data were
missing one or two initial parameters were kept in the study as long as the level
of initial percentage HbF was not missing. To fill in the missing parameters,
some experiments were conducted with a few extrapolation algorithms.
However, it was discovered that the best way to deal with the few missing
parameters was to fill them in with zeroes. This is simply because Delta rule
[33] and backpropagation algorithms were used to train our neural networks,
and, as can easily be determined from weight update formulas, when the input
parameter is zero, no learning is conducted in the first stage of the network.
This was the best way to make use of the data without presenting the network
with erroneous data.

Compliance. Compliance is one of the biggest problems in medical research.
The simple cause of it is that some patients stop taking the medication, or at
least reduce the dosage without instructions from the physician when they start
feeling better. This can lead to corrupt data (for our purposes), as a patient
could be falsely identified as a nonresponder. This was the case in our study.
Our initial systems suffered from a relatively high FNF. From formula 4.6, it
can easily be seen that this causes TPF to be reduced, and therefore 4., the area
under the ROC curve, to be lower than expected. As a result, it could lead to the
false conclusion that the identification technique or system architecture is
inadequate, while the source of the problem really lies in the data.

In the case of many medications, compliance can be measured by the
variation in one or many biochemical parameters. This was the case with HU
and SCA patients. One of HU’s side effects is that it increases the volume of
red blood cells. [58] Among the final 83 patients who were all categorized as
compliant and were included in this study, the mean cell volume increased by an
average of 22% as a result of HU treatment. This is in line with other studies.
[55,56,58,59] The variable mean cell volume (MCV) is thus a good measure of
compliance. This variable was analyzed for each patient. It was decided that six
patients were not compliant and so their data were excluded from the study.

Figure 4.7 shows the bin distribution function of MCV before and after HU
treatment. As can be observed, the distribution has clearly moved to higher
values after the treatment and has a higher mean.

of patients

Mean cell (erythrocyte)
volume (Femfoliter)

Figure 4.7: Distribution of Average Volume of the Red Blood Cells of 83
Sickle Cell Patients before and after Treatment with HU. From H. Valafar, et al.,
[32].

Neural network prediction model. An ANN using 23 input neurons, 4 hidden
neurons, and 1 output neuron was used for the 15% threshold experiment. This
neural network produced an output value higher than 0.5 if the patient was
predicted to be a responder, and an output of less than 0.5 if the patient was
predicted to be a nonresponder.

The threshold experiment was designed to eliminate the possibility that the
ANN could simply “memorize” the values of the parameters of each patient.
This was accomplished by training ANNs with the parameter values of 82 of the
patients, and then using the values of the patient whose parameters had not been
seen by the ANN, to test the ANN. This procedure was repeated 83 times and
each time an ANN was trained. (A different patient was left out of the training
each time) The result of this experiment is presented in Figure 4.8. Seventy
patients were correctly classified as responders or nonresponders while 13 were
misclassified. Thus, 84% of the responses were predicted correctly. This
experiment was repeated five times with, on average, 86.6 correct predictions
with a standard deviation of +/-2.0.

Variable selection. Researchers in the medical fields are also frequently faced
with the problem of variable selection. In most cases, there is not enough
information to select the relevant variables for a certain modeling/pattern
recognition problem in medicine. Also, one of the reasons that researchers seek
a mathematical model for a disease is to use it to determine the relevant
variables. This information can be extremely helpful in understanding how the
disease works, develops in the body, or is fought against by the body’s immune
system. In the latter case, if the immune system is failing to effectively fight the
disease, information about relevant variables could lead to new medications that
either help the body in eliminating the disease, or at least reduce its symptoms
(e.g., the case of sickle cell anemia).

A 15
N 1
N
0.5
O
0
U
T

PATIENTS L Actu?I response
1 Predicted response

Figure 4.8: The Prediction by ANNs of Which Patients Would Respond to HU
by an Increase in Their HbF Concentration to the Point Where it Accounts for
15% or More of Their Total Hb. ANNs Were Trained with the Values of the
Parameters of 82 Patients and then Tested with the Values of the Parameters of
the Patient that Had Not Been Used to Train the ANN. This Procedure Was
repeated 83 times, each time Leaving Out a Different Patient and Training the
ANN With the Data from the Other 82 Patients to Give the Values in the Figure.
Patients Whose HbF Concentration Did Not Reach 15% of the Total Hb Should
have generated an ANN “output” of less than 0.5, while patients whose HbF
Concentration Exceeded 15% of the Total Hb Should Have Generated an ANN
Output of More Than 0.5. From H. Valafar, et al., [32].

Valafar et al. designed their variable selection experiments in the SCA’s case
to identify which of the 23 parameters are most important or influential in
assisting ANNs to predict those patients that will respond to HU treatment.
Determining the importance of each of the 23 parameters was accomplished by
employing two different methods. The first method consisted of a recursive
elimination process in which a different set of parameters was taken out of the
training set. The ANNs were trained with the values of the remaining
parameters. The software measures the degradation of performance due to the
missing parameters. This experiment is an exhaustive elimination process in
which the removal of every combination of parameters (2%-1=8,388,607
combinations) is evaluated. The degradation (or importance) of the parameters
observed is the averages of ten experiments (two different seeds for the random
number generator, and five runs per seed). The final effect of removing each
set of parameters is calculated by averaging the performance degradation of the
ten ANNSs trained without that set of parameters.

The second method of parameter selection is an adaptive technique that takes
into effect the synaptic connection strengths of each variable. This algorithm is
initiated by setting equal values for each parameter. During the course of
training, these values are updated to reflect the strength of the synaptic
connection(s) associated with each parameter. This, in turn, is an indication of
the contribution of each parameter towards the discovery of the correct answer.
Thus, at the end of the training the contribution of each parameter reveals its
importance in the solution of the problem. Each training session was repeated
five times to eliminate any random behavior of the system.

Although the above two methods are distinctly different methods for
parameter selection, both algorithms produced similar results in extracting the
relevant parameters. For this reason, we will only discuss the results of the
second method from this point forward.

The 23 parameters and their scores, which are proportional to their
contributions in predicting the response to HU treatment, are listed in Table 4.4.
This table contains the averaged data for over five different training sessions.
The lack of any particularly influential contributors indicates that no one
parameter contains the information needed to predict the response to HU.
Therefore, based on the given contributions, it is reasonable to assume that the
information needed for a successful classification is distributed among a number
of parameters, perhaps even a fairly large number of parameters.

The ANNs whose testing results are shown in Figure 4.8 used the values of
all 23 parameters. A separate experiment was carried out to determine if the
values of just ten of the twenty-three parameters listed in the previous section
could be used while maintaining the ANN’s full ability to identify responders
and non-responders. This experiment used the top ten parameters listed in Table
4.4. The ability to eliminate unnecessary parameters has the potential for
reducing the problem size by more than 50%, and might assist in elucidating the
mechanisms by which ANNs function.

Table 4.4 The Effectiveness of Each of the 23 Parameters to Assist ANNs in
Predicting the Response of Patients to HU Treatment. From H. Valafar, et al.,
[32].

Parameter Score
Duration 0.083
RDW 0.063
WBC 0.059
Plats 0.053
MCV 0.053
Polys 0.052
WGT 0.050
SSEN 0.045
Retic 0.043
Sex 0.042
SCAM 0.041
NAGG 0.041
Hb 0.040
SBAN 0.040
MCH 0.035
RBC 0.034
SBEN 0.034
Bili 0.034
Age 0.033
HbF 0.032
%HbF 0.031
PCV 0.031
SNBRC 0.030

The ANN trained only with the 10 selected variables had remarkably similar
results to the one trained with all 23 variables. Except for 2 of the 83 patients,
the results of the 2 networks were very similar. The network trained with ten
variables produced outputs that were more clearly defined. The mean of the
probability density function of the output z of the smaller network was higher
for positive responders, and lower for nonresponders. By the same token, the
standard deviation of both curves was smaller than those of the larger network.
Furthermore, the two patients whose classification changed by using the smaller
network were both marginally classified by the larger network. One was
correctly classified as a responder, and one incorrectly as a nonresponder. With
the smaller network, the first patient was incorrectly classified as a
nonresponder; the second patient was correctly classified as a responder.
Therefore, the TPF, FPF, and the ROC curves remained identical for both
networks.

44 SUMMARY

Artificial neural networks have distinct features that can be advantageous in
modeling natural phenomena in biology and medicine. Applications of ANNs in
these fields are sure to help unravel some of the mysteries in various diseases
and biological processes. In the SCA case, the ANN developed for the variable
selection process helped pinpoint the parameters that possibly play an important
role in understanding the works of SCA. This could lead to a significant
increase in the life expectance of SCA sufferers.

Research in applications of ANNs in medicine and biological sciences
currently remains strong. With more systematic data collection routines
implemented in healthcare facilities, systems such as the ones described in this
chapter are sure to find their way into doctors’ offices and hospital laboratories.

REFERENCES

1. Akay, M., Akay, Y.M., Welkowitz, W., Semmlow, J.L., and Kostis,
J.B., Noninvasive Detection of Coronary Artery Disease Using Neural
Networks, Proc. of the Ann. Conf. on Eng. in Med. and Biol., 13(3),
1434 — 1435, Oct 31 — Nov 3, 1991.

2. Akay, M., Noninvasive Diagnosis of Coronary Artery Disease Using a
Neural Network Algorithm, Biol. Cybern., 67: 361 — 367, 1992.
3. Alpsan, D., Auditory Evoked Potential Classification by Unsupervised

ART 2-A and Supervised Fuzzy ARTMAP Networks, Int. Conf. on
Neural Networks (ICNN '94), IEEE, Orlando, FL, 3512 — 3515, June 26
—July 2, 1994.

4. Andrea, T.A. and Kalayeh, H., Applications of Neural Networks:
Quantitative Structure-Activity Relationships of Dihydrofolate
Reductase Inhibitors, J. Med. Chem., 34:2824 — 2836, 1991.

5. Andreassen, H., Bohr, H., Bohr, J., Brunak, S., Bugge, T., Cotterill,
R.M.J., Jacobsen, C., Kusk, P., and Lautrap, B. Analysis of Secondary
Structure of the Human Immunodeficiency Virus Proteins by Computer
Modelling Based on Neural Network Methods, J. Acquired Immune
Deficiency Syndrome, 3, 615, 1990.

6. Apolloni, B., Avanzini, G., Cesa-Bianchi, N., and Ronchini, G,
Diagnosis of Epilepsy via Backpropagation, Proc. of the 1990 Int. Joint
Conf. on Neural Networks, Washington, DC, 2, 571 — 574, 1990.

7. Armentrout, S.L., Reggia, J.A., and Weinrich, M., A Neural Model of
Cortical Map Reorganization Following a Focal Lesion, Artif.
Intelligence in Med., 6(5), Oct 1994.

8. Armstrong, W.W., Stein, B.A., Kostov, R., Thomas, M., Baudin, P.,
Gervais, P., and Popovic, D., Application of Adaptive Logic Networks
and Dynamics to Study and Control of Human Movement, Proc. of the
Second Int. Symp. on 3D Anal. of Human Movement, Poitiers, France,
81 — 84, June 30 — July 3, 1993.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

Armstrong, W.W., Kostov, A., Stein, R.B., and Thomas, M.M.,
Adaptive Logic Networks in Rehabilitation of Persons with Incomplete
Spinal Cord Injury, Workshop on Environmental and Energy
Applications of Neural Networks, Richland, WA, Pacific Northwest
National Laboratory, March 30 — 31, 1995.

Asada, N., Doi, K., MacMahon, H., Montner, S.M., Giger, M.L., Abe,
C., and Wu, Y., Potential Usefulness of an Artificial Neural Network
for Differential Diagnosis of Interstitial Lung Diseases: pilot study,
Radiology, 177, Vol. 3, 857-60, December, 1990.

Asada, N., Doi, K., MacMahon, H., Montner, S., Giger, M.L., Abe, C.,
and Wu, Y., Neural Network Approach for Differential Diagnosis of
Interstitial Lung Diseases, Proc. SPIE (Medical Imaging 1V), 1233:
45 - 50, 1990.

Ashenayi, K., Hu, Y., Veltri, R., Hurst, R., and Bonner, B., Neural
Network Based Cancer Cell Classification, Proc. of the World
Congress on Neural Networks, San Diego, CA, 1,416 — 421 June 5 -9,
1994.

Astion, M.L. and Wilding, P., The Application of Backpropagation
Neural Networks to Problems in Pathology and Laboratory Medicine,
Arch. Pathol. Lab. Med., 116:995 — 1001, 1992.

Astion, M.L. and Wilding, P., Application of Neural Networks to the
Interpretation of Laboratory Data in Cancer Diagnosis, Clin. Chem.
(US) 38, 34 — 38, 1992.

Avanzolini, G., Barbini, P., and Gnudi, G. Unsupervised Learning and
Discriminant Analysis Applied to Identification of High Risk
Postoperative Cardiac Patients, Int. J. Bio-Med. Comput., 25, 207 —
221, 1990.

Barski, L.L., Gaborski, R.S., and Anderson, P.G., A Neural Network
Approach to the Histogram Segmentation of Digital Radiographic
Images, Intell. Eng. Sys. Through Artif. Neural Networks, Dagli,
Burke, Fernandez, and Ghosh, (eds.), 3, 375 — 380, ASME Press, NY,
1993.

Bartels, P.H., Thompson, D., and Weber, J.E., Diagnostic Decision
Support by Inference Networks, In Vivo, 7, 379 — 385, 1993.

Baxt, W.G., Use of an Atrtificial Neural Network for Data Analysis in
Clinical Decision-Making: the Diagnosis of Acute Coronary Occlusion,
Neural Computation, 2, 480 — 489, 1990.

Baxt, W.G., Use of an Artificial Neural Network for the Diagnosis of
Myocardial Infarction, Ann. of Intern. Med., 115, 843 — 848, 1991.
Echauz, J. and Vachtsevanos, G., Neural Network Detection of
Antiepileptic Drugs from a Single EEG Trace, Proc. of the IEEE
Electro/94 Int. Conf., 346 — 351, Boston, MA, May 10 — 12, 1994.
Gibbons, R.J., Balady, G.J., Beasley, J.W., Bricker, J.T., Duvernoy,
W.F., Froelicher, V.F., Mark, D.B., Marwick, T.H., McCallister, B.D.,
Thompson, P.D. Jr., Winters, W.L., Yanowitz, F.G., Ritchie, J.L.,

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

Gibbons, R.J., Cheitlin, M.D., Eagle, K.A., Gardner, T.J., Garson. A.
Jr., Lewis, R.P., O'Rourke, R.A., and Ryan, T.J., ACC/AHA Guidelines
for Exercise Testing, A Report of the American College of
Cardiology/American Heart Association Task Force on Practice
Guidelines (Committee on Exercise Testing), J. of the Am. Coll. of
Cardiol., 30(1), 260 — 311, July, 1997.

Goodenough, D.J., Rossmann, K., and Lusted, L.B., Radiographic
Applications of Receiver Operating Characteristic (ROC) Curves,
Radiology, 110, 89 — 95, 1974.

Hanely, J.A. and McNeil, B.J., The Meaning and Use of the Area
Under a Receiver Operating Characteristic (ROC) Curve, Radiology,
143, 29 — 36, 1982.

André, T.C.S.S. and Roque, A. C., A Neural Network System for the
Diagnosis of Breast Cancer, Proc. of the Int. Conf. on Math. and Eng.
Techniques in Med. and Biol. Sci. 2000 (METMBS’00), Las Vegas,
NV, 1,1 -6, June 26 — 29.

Rodrigues, R.G.S., Pela, C.A., and Roque, A.C., Tomographic Image
Reconstruction Using Neural Networks, FFCLRP, Brazil, V1 27 — 33.
Chen, D., Chang, R.F., and Huang, Y.L., Breast Cancer Diagnosis
Using Self-Organizing Map for Sonography, Ultrasound. Med. Biol.,
26(3), 405 — 11, March, 2000.

Harbeck, N., Kates, R., Ulm, K., Graeff, H., Schmitt, M., Neural
Network Analysis of Follow-Up Data in Primary Breast Cancer, Int. J.
Biol. Markers, 15 Vol. 1, 116 — 22, January — March, 2000.

Shi, L.M., Fan, Y., Lee, J.K., Waltham, M., Andrews, D.T., Scherf, U.,
Paull, K.D., Weinstein, J.N., Mining and Visualizing Large Anticancer
Drug Discovery Databases, J. Chem. Inf. Comput. Sci, 40, Vol. 2, 367 —
79, March — April, 2000.

Cherniak, R., Valafar, H., Morris, L.C., and Valafar, F., Cryptococcus
neoformans Chemotyping by Quantitative Analysis of 'H-NMR
Spectra of Glucuronoxylomannans Using a Computer Based Artificial
Neural Network, J. of Clin. and Diag. Lab. Immunol., 5(2),146 — 159,
March, 1998.

Valafar, F. and Valafar, H., CCRC-Net: An Internet-Based Spectral
Database for Complex Carbohydrates, Using Artificial Neural
Networks Search Engines, Trends in Anal. Chem., 18, 508 — 512,
1999.

Guimaraes, G., The Discovery of Sleep Apnea with Unsupervised
Neural Networks, Int. Conf. on Math. and Eng. Techniques in Med. and
Biol. Sci. (METMBS’2000), 1,361 — 367, Las Vegas, NV, June 26 —
29, 2000.

Valafar, H., Valafar, F., Darvill, A., Albersheim, P., Kutlar, A., Woods,
C., and Hardin, J., Predicting the effectiveness of Hydroxyurea in
Individual Sickle Cell Anemia Patients, J. of Artif. Intell. in Med., 18
(2), 133 — 148, February, 2000.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

Haykin, S., Neural Networks: A Comprehensive Foundation, Prentice
Hall, NJ, 1999.

Wu, Y., Giger, M.L., Doi, K., Vyborny, C.J., Schmidt, R.A., and Metz,
C.E., Artificial Neural Networks in Mammography: Application to
Decision Making in the Diagnosis of Breast Cancer, Radiology, 187
Vol. 1, 81 — 7, April, 1993.

Varki, A., Biological Roles of Oligosaccharides: All the Theories are
Correct, Glycobiology, 3,97 — 130, 1993.

Goochee, C.F., Gramer, M.J., Andersen, D.C., Bahr, J.B., and
Rasmussen, J.R., The Oligosaccharides of Glycoproteins: Factors
Affecting Their Synthesis and Their Influence on Glycoprotein
Properties, Frontiers in Bioprocessing II. (Todd, P., Sikdar, K., and
Bier, M., eds.) 199 — 240, American Chemical Society, Washington,
D.C., 1992.

Cook, G.M.W., Glycobiology of the Cell Surface: the Emergence of
Sugars as an Important Feature of the Cell Periphery, Glycobiology, 5,
449 — 461, 1995.

Van Huffel, S., Enhanced Resolution Based on Minimum Variance
Estimation and Exponential Data Modeling, Signal Processing, 33, 333
— 355, 1993.

Van den Boogaart, A., Howe, F.A., Rodrigues, L.M., Stubbs, M.,
Griffiths, J.R., In Vivo 3P MRS: Absolute Concentrations, Signal-to-
Noise and Prior Knowledge, NMR in Biomed., 8, 87 — 93, 1995.
Angelidis, P.A., Spectrum Estimation and the Fourier Transform in
Imaging and Spectroscopy, Concepts Magn. Resonance, 8 Vol. 5, 339
— 381, 1996.

Blumler, P., Greferath, M., Blumich, B., and Spiess, H.W., NMR
Imaging of Objects Containing Similar Substructures, Magn.
Resonance, Series A 103, 142 — 150, 1993.

Wabuyele, B.W. and Harrington, P., Optimal Associative Memory for
Background Correction of Spectra, Anal. Chem., 66, 2047 — 2051,
1994.

Wabuyele, B. W. and Harrington, P., Quantitative Comparison of
Bidirectional Optimal Associative Memories for Background
Prediction of Spectra, Chemometrics and Intelligent Lab. Sys., 29, 51 —
61, 1995.

Angelidis, P. A., Spectrum Estimation and the Fourier Transform in
Imaging and Spectroscopy, Concepts Magn. Resonance, 8(5), 339 —
381, 1996.

Goodacre, R., Timmins, E.M., Jones, A., Kell, D.B., Maddock, I.,
Heginbothom, M., Magee J. T., On Mass Spectrometer Instrument
Standardization and Interlaboratory Calibration Transfer Using Neural
Networks, Analytica Chemica Acta, 348, 511 — 532, 1997.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

Gerow, D.D. and Rutan, S.C., Background Subtraction for
Fluorescence Detection in Thin—layer Chromatography with Derivative
Spectrometry and the Adaptive Kalman Filter, Analytica Chemica Acta,
184, 53, 1986.

Yu, K. M. and Jones, M.C., Local Linear Quantile Regression., J. 4m.
Statistical Assoc., 93(441): 228 — 237, March, 1998.

Whittenburg, S., Baseline Roll Removal in NMR Spectra Using
Bayesian Analysis, Spectroscopy Letters, 28(8), 1275 — 1279, 1995.
Whittenburg, S., Solvent Peak Removal in NMR Spectra Using
Bayesian Analysis, Spectroscopy Letters, 29(3), 393 — 400, 1996.
Harrington, P. B. and Isenhouer, T.L., Closure Effects in Infrared
Spectral Library search Performance, Appl. Spectrosc., 41, 1298, 1987.
Papoulis, A., Probability, Random Variables, and Stochastic
Processes, 3" ed., McGraw-Hill, NY, 1991.

Fukunaga, K., Introduction to Statistical Pattern Recognition, Second
Edition. Academic Press, Boston, 255 — 268, 1990.

Valafar, F., Valafar, H., and York, W.S., Identification of "H-NMR
Spectra of Xyloglucan Oligosaccharide: A Comparative Study of
Artificial Neural Networks and Bayesian Classification Using
Nonparametric Density Estimation, /nt. Conf. Artif. Intelligence 1999
(IC-AT'99), Las Vegas, NV, June 28 — July 1, 1999.

Rodgers, G.P., Dover, G.J., Noguchi, C.T., Schechter, A.N., Nienhuis,
A.W., and Nienhuis, M.D., Hematologic Responses of Patients with
Sickle Cell Disease to Treatment with Hydroxyurea, New England J.
Med., 322 Vol. 15, 1037 — 1044, April, 1990.

Charache, S., Terrin, M.L., Moore, R.D., Dover, G.J., Barton, F.B.,
Eckert, S.V., McMahon, R.P., and Bonds, D.R., Effect of Hydroxyurea
on the Frequency of Painful Crises in Sickle Cell Anemia, New
England J. Med., 332, 1317 — 1322, May 18, 1995.

Charache, S., Dover, G.J., Moore, R.D., Eckert, S., Ballas, S.K.,
Koshy, M., Milner, PF., Orringer, E.P., Phillips, G. Jr., and Platt, O.S.,
Hydroxyurea: Effects on Hemoglobin F Production in Patients With
Sickle Cell Anemia, Blood, 79(10), 2555 — 2565, May 15, 1992.

Powars, D.R., Weiss, J.N., Chan, L.S., and Schroeder, W.A., Is There a
Threshold Level of Fetal Hemoglobin That Ameliorates Morbidity in
Sickle Cell Anemia? Blood, 63(4), 921 — 926, April, 1984.

Charache, S., Barton, F.B., Moore, R.D., Terrin, M.L., Steinberg, M.H.,
Dover, G.J., Ballas, S.K., McMahon, R.P., Castro, O., and Orringer,
E.P., Hydroxyurea and Sickle Cell Anemia. Clinical Utility of a
Myelosuppressive "Switching" Agent. The Multicenter Study of
Hydroxyurea in Sickle Cell Anemia, Med., 75, Vol. 6, 300-325,
November, 1996.

Steinberg, M.H., Lu, Z., Barton, F.B., Terrin, L.M., Charache, S., and
Dover, G.J., Fetal Hemoglobin in Sickle Cell Anemia: Determinants of
Response to Hydroxyurea, Blood, 89(3) 1078 — 1088, Feb, 1997.

APPLICATION OF NEURAL
NETWORK IN DESIGN OF DIGITAL
FILTERS

Dali Wang and Ali Zilouchian

5.1 INTRODUCTION

Any action on a signal that modifies the spectral content of the signal is called
filtering. This includes the enhancement or suppression of certain features of the
signal and is usually achieved by the use of linear time invariant systems. There
are situations where the system may change with time in a particular manner;
such systems are called adaptive filters. In this section, we describe fixed filters
only.

There are two broad classes of digital filters. The first class is called finite
impulse response (FIR) filters, since their response to an impulse dies away in a
finite number of samples. FIR filters are developed as non-recursive structures
and are inherently simpler to design.

The second class of digital filters is recursive filters. The impulse responses
of recursive filters are composed of sinusoids that exponentially decay in
amplitude. This makes their impulse responses infinitely long. Because of this
characteristic, recursive filters are called infinite impulse response (IIR) filters.

An IIR filter can be represented by either difference equation or state space
form. The state space form in general involves more numbers of coefficients
than a transfer function unless it is represented as one of the canonical forms.
However, there are many benefits from using a state space model in the
analysis, design, and implementation of digital filters. First, the state space
model, with the exception of canonical structures, is more robust than a transfer
function representation. In other words, it exhibits less coefficient sensitivity.
Second, various forms of state space models possess distinctive properties that
are desirable in different applications. For instance, the balanced realization
exhibits superior performance in the context of minimizing scaling and round-
off noise. Third, the major part of modern control theory is based on the state
space model. Furthermore, the difference function representation could be
uniquely determined by the state space form representation. The reverse is not
necessarily true. In this chapter, the state space model will be utilized for the IIR
filter design.

In the above filter representations, all inputs, outputs or states are function of
a single variable, which is time in most cases. We call these types of filters one-
dimensional (1-D) filters. There are other types of filters in which the inputs,
outputs and states are the function of more than one variable. One example is

the filter used in image processing. Therein, the inputs and outputs values are
the function of two variables, i.e., horizontal and vertical coordination. The
digital filters used in this case are two-dimensional (2-D) filters. The same
concept can be extended to M-D filters and signals. In this chapter, we will start
with the design of 1-D IIR filter. The design process using neural networks
(NN) is presented in detail for 1-D IIR filters. Then the concept is extended to 2-
D filters. If the dimension of the filter is not explicitly specified, 1-D filters are
implied in this work.

5.2 PROBLEM APPROACH
5.2.1 Neural Network for Identification

There are numerous techniques developed for digital filter design, both in
frequency domain and in time domain. Most of these methods are analytical
techniques. They work well with well-defined filter formats and the availability
of accurate design data, such as the input and output of the filter. What if the
data set used to design filter is noisy, or there is a need for customization in the
filter’s representation? This is where the NN based design technique comes into
the picture.

The capability of neural networks as universal approximators has been
extensively studied for system identification and modeling during the last two
decades [1] — [20]. Most of the proposed methods are based on two types of NN
architectures, back propagation and Hopfield recurrent neural network [1], [2],
[10]. However, most of these identification techniques result in NN weight
matrices which do not necessarily correspond to the parameters of the original
system, such as in the works of Narendra and Parthasarathy [15], and Poggio
and Girosi [16].

In this chapter, a novel NN architecture for design of recursive digital filters
from input/output data in the state space form is presented. We use internal
hidden neurons to encode the temporal properties of sequential inputs and
outputs as the iterative states of the given process. The dynamic nature of the
system is implicitly constructed within the internal neurons of the proposed
model, which previous approaches have not addressed. Since the structure of
the process is built into NN, we can obtain a particular state space structure as
the result of the identification, such as controllability canonical, observability
canonical forms, etc. [8]. Such flexibility is important in various
implementations of linear discrete systems, such as computation complexity,
memory requirement and overflow analysis. The significance of this work is in
two fold. First, obtaining the state space model of a linear system is the basis for
many engineering applications where a fast on-line, flexible, and robust solution
is required [21]-[25]. Second, applying NN to this complex linear system
modeling problems can be an aid to understanding and developing new
architecture of NN for more general linear and nonlinear programming

problems [12], [14]. In fact, the proposed identification scheme has been
extended to general 2-D digital filters design problems in section 5.5 where an
analytical solution is difficult to obtain.

input & internal Self feedback (Wxx)
connections (qu)é\ internal & output

connections (Wyx)

known threshold

Yaq

input & output \> internal interconnctions (Wxx)

connections (Wyu) XN
input layer hidden layer output layer
neurons neurons neurons

Figure 5.1: A General Network Structure.

5.2.2 Neural Network Structure

The operation of an IIR filter can be specified by the equation
1) D Q -
}/(/7): 2 bjx(”_l)_zaj)’(”_l) (5.1
=0 =l

The above difference equation provides us a procedure for determining the
current output in terms of the present and past inputs as well as past output. An
IIR filter can also be represented in state space form:

X (n+1)=AX(n)+ Bu(n)
y(n) = CX(n)+ Du(n) (5.2)

where ue R”, ye RY, Xe R" are input, output and state vectors, respectively. A,
B, C, D are matrices of appropriate dimensions. The main objective of this work
is to obtain 4, B, C, D through NN by the training of an NN with available
input/output data.

The proposed NN structure is a recurrent network from an error propagation
viewpoint. The general network architecture is shown in Figure 5.1. For
simplicity, the optional activation functions are not explicitly shown on the
figure. The hidden neurons provide internal representations of the system via
their self-feedback and connection with other neurons. These units memorize

the status of the previous internal state, which are mapping information of
previous states into present output. From such a viewpoint, the neural network
is a recurrent network. However, the adjustment of the weights is based on the
desired output values and actual outputs. Therefore, it can be considered as an
error back propagation in the sense of training method.

In order to correlate the NN model with the state space model in Equation
5.2, an NN structure is proposed as shown in Figure 2. The association between
various parameters of NN (weights, denoted as Ann, Ban, Cnn, Dan for easy
correlation) and the above state space model (A, B, C, D) can be observed from
the proposed NN structure. A sub-section of Axn, Ban, Can, Dan is shown in
Figure 5.3 for a single neuron. The weights between hidden neurons (solid
nodes) provide the representation of matrix A. The weights between input
neurons (gray nodes) and hidden neurons and the weights between the hidden
neurons and output neurons (empty nodes) represent the mapping of B and C,
respectively. The weights between the input and output neurons map to D.

unit delay
,,, unit K< .
ANN
hidden x(n) S x(n+1)
neurons L < | | s
-dy(n)
—_— >
u(n) Sy(n)
—_— H
input output
neurons — neurons
.9

Figure 5.2: The Network Structure Designed
for System Identification.

Sj:q)k(rj)

i y R
T
-d;

Figure 5.3: A Single Neuron.

5.3 A TRAINING ALGORITHM FOR FILTER DESIGN

The training objective is based on the instantaneous error value of a single
input/output data pair. The algorithm can be implemented as a real time
algorithm since the training could be accomplished as each input/output sample
is fed to NN. The derivation of the algorithm is briefly presented in this section.
It is different with conventional error back propagation since it possesses a
recurrent process built into the network. The off line training algorithm can also
be derived for system identification [8].

5.3.1 Representation

Consider an NN consisting of p external input connections, q external output
connections and N hidden units. The various neurons can be classified into three
categories: input neuron set ue R” denoted as 7, hidden neuron set xe R" denoted
as H, and output neuron set ye R? denoted as O. At discrete time n, let u(n)
denote the p x 1 input vector, x(n) denote the N x 1 vector as hidden neuron
values, and s,(n) denote the q x 1 output vector of NN. As shown in Figure 3, a
neuron j is either an output neuron or a hidden neuron prior to the delay. For
such a neuron j which is connected to other neurons such as i, the corresponding
activation value and output value are presented as follows:

(7)) =) (D —d. (5.3a)
7%];‘Lw,,(ms,(n) /() -
’7‘(”) = Z w/’/‘(”)si(”) .
R wUr (5.3¢)
5/-(”) = (P/f(’"j(”))

JeH\Jo

where wj;(n) is the weight between two neurons, @) denotes the activation
functions for hidden neurons (¢.(-)) and output neurons (¢,(-), d(n) is the
desired outputs value at time n.

5.3.2 Training Objective

The on-line training objective is to minimize the mean-squared output of the
NN at any instant discrete time n,

() = %Z s, (7) (5.3d)
e

where s,(n) is the output error at time n, which is the difference between the
actual and desired outputs.

5.3.3 Weight Adjustment

A dynamic approach to minimize the cost function Equation 5.3d is to make
the NN evolve its weight space along a trajectory that descends against the
gradient of €(n). This condition implies that for all ie HUO, je HUI:

o, (+1)= 0,61 Ao, (1) (5.4a)
__, Jem)

where M is a learning rate which should be selected small enough to make
weight change adiabatically and maintain the stability of the model.

The error gradient in Equation 5.4b could be obtained based on Equations 5.3c,
and 5.3d:

og(n) de (7) ’ or,(n)
aa)y(ﬂ) -)EZOS ()860,,(/7) }EZOS.V(”)(Py (}Ty(”)) 90,(7) (5.5)

The derivatives in the right hand side of Equation 5.5 are the gradients of
output neuron value vs. NN weights. They are obtained using the following
equations. From Equations 5.3

Iry(n) 9@ 4 (7) - 5,(7)
wl/(”) heHOl 860#(”)
leﬂuggef/u/
ds;(n)
; . 5.6
A’;/((960 () A(”)) " /f;} 8601‘/(”) w'V/((”)) (5.6)

. 2 os ()
(7= 2)s () + i I ,(7)

where 8(i-y) is the Kronecker delta function that equals to 1 when i = y and 0
otherwise. The above derivation is based upon the following observation:

o (7)1 7 y=i and k=1
I, (n)
dsy(n) _
ow,(n)

kel

w}/r(”)

0 otherwise
5.7

Thus, we can obtain the gradients of output neuron values v.s. NN weights
as given in Equation 5.8, which are functions of neuron values, weights and the
gradients of hidden neuron value v.s. weights at instant discrete time n.

or (1)) ()
A ,
Fog i = 8(i= p)-s /(ﬂ)+;(p'r(q,(ﬂ))mwﬁ(n) (5.8)
/‘eHu)OegéHu/

The gradients of hidden neuron value v.s. weights in Equation 5.8 are
obtained as follow

orln) @4 (7= sy (7=1) _
W herrU7 860,](/1)
feHQré:/je,Hu/ (5.9)
8(/= D)5 (n=1)+ Z ¢;(4(n— 1))%%(”)
kel 4

The observation similar to Equation 5.7 is also applied here. The n is
assumed to be sufficiently small such that w;(n)=w;(n-1).

The iterative process defined by Equation 5.9 provides the values needed in
Equation 5.8. In sequel, the derivative value required in Equation 5.5 can be
obtained. The weight update process in Equation 5.4 is accomplished with all
the neuron value and derivative values at discrete instant time n.

5.3.4 The Training Algorithm

Based on the previous discussion, the proposed algorithm can be
summarized as follows:

1. Initialize NN by random assignment of initial weights, zero value for

all the weight gradients and hidden neuron values.

2. Present an input, desired output vectors pair to the NN.
Calculate the activation level of all neurons, including hidden neurons
and output neurons.
Calculate the output error using Equation 3.3d.
Calculate weight gradients using Equation 5.9, 5.8, and 5.5.
Update the NN weights by equations 5.4a and 5.4b.
Repeat steps 2 to 6 for a new input/desired output pair. Multiple
epochs may be required until the error criterion is bounded to a pre
specified value.

w

No v ok

5.4 IMPLEMENTATION ISSUES
5.4.1 Identifying a System in Canonical Form
There are infinite state-space structures with the same transfer function for a

linear system or digital filter. The representation of Equation 5.2 can be
transformed into different forms, such as controllability canonical form,

observability canonical form, normal structure or balanced structure. These
special forms can be built into NN by utilizing special network structures. By
selection or elimination of certain weight connections in advance, we can obtain
the system representation in such a particular form. This, on the other hand,
simplifies the network design and reduces the number of free parameters
compared to a fully connected network.

5.4.2 Stability, Convergence, Learning Rate and Scaling

The stability of recurrent networks has been extensively studied [4]. In
general, for the asymptotically convergence of the network, the learning rate m
should be assigned a small value. However, for fast convergence and local
minimum avoidance, a large learning rate 1 is preferred. To resolve such two
conflicting requirements, an adaptive learning rate scheme may be adapted
similar to NN MATLAB Toolbox[27]. There are advantages by starting with a
low learning rate and adaptively changing it. In order to improve the stability
and convergence of the network, the input and desired output data are scaled to a
proper range of value before being fed into the network.

55 2-D FILTER DESIGN USING NEURAL NETWORK
5.5.1 Two-dimensional Signal and Digital Filters

There are many signals that are inherently two-dimensional (2-D) in nature
and for which 2-D signal processing techniques are required. Included in this
group of signals are photographic data, medical X-rays, seismic data, gravity
and magnetic data, etc. Many of fundamental ideas of 1-D signal processing
may readily be extended to 2-D case. However, there are some very important
concepts of 1-D systems that are not directly extendible to 2-D systems.

One major difference between 1-D and 2-D systems is that we can introduce
global and local state in the 2-D cases. The global state (which is of infinite
dimension in general) preserves all the past information, while the local state
gives us a size of recursion to be performed at each step by a 2-D system. This
leads to the definitions of global as well as local controllability, observability
and as a result, the minimality of 2-D systems.

Similar to their 1-D counterparts, the 2-D recursive digital filters have the
advantage of computation efficiency and memory reduction capabilities in
comparison with non recursive digital filters. The 2-D state space models have
been mainly used for the spatial domain representation of the 2-D causal
recursive digital filters (CRDF). Kung et al. [38] have shown that the Roesser’s
model [37] is the most general form and the other representations can be
imbedded in the Roesser’s model.

Roesser’s local state space (LSS) model divides the local state into a
horizontal and a vertical state which are propagated in horizontal and vertical

directions respectively. It is defined by the equations

(i+1,) _|4 4\ Gp| | B . =AY + BU
L/‘(Z;HI)} L@ AJL”(IIJ) s en= A

(5.10)
wip=[a Cz]{/y(?’)}z)w;/) = X +0U
x(zy
where;
i is an integer-valued vertical coordinate,
j is an integer-valued horizontal coordinate,
xh(i, J) €R" is the horizontal state vector,
x'(i, j) R is the vertical state vector,
u(i, j) eR’ is the input vector,
y(i, j) €R? is the output vector,
and A, As, As, A4, By, By, Ci, C,, D are real matrices of appropriate
dimensions.

5.5.2 Design Techniques

During the last two decades various design techniques have been proposed
for 2-D recursive digital filters, either in frequency domain or in spatial domain
[28], [30]-[36], [40]. However, most of those techniques are for a special class of
2-D filters called as separable-in-denominator digital filters (SDDF) [31-33],
[36]. This is due to the fact that a SDDF filter shares some important properties
of 1-D counterpart such as stability, minimality conditions and absence of
singularity of the second kind. Therefore, many 2-D spatial design techniques
have been developed using SDDF as the extensions of corresponding 1-D
techniques [31-33]. There are relatively few techniques developed on
identification and design of general 2-D recursive digital filters. One of the
earliest methods was proposed by Shanks [39] et al., and Aly and Fahmy [30].
However, the problem of general 2-D identifications using an analytical solution
has not been addressed due to its mathematically complex nature.

The NN approach designed for a 1-D recursive filter could be extended for
general 2-D recursive digital filters. By a similar measure, an NN model has
been developed to approximate an arbitrary 2-D system response and obtain the
LSS model parameters from NN structure. The distinction of the proposed
identification technique in comparison with existing methods lies in its two
fold flexibility. First, the filter's input and resulting output could be selected
arbitrarily by the designer in spatial domain. In other words, the proposed
technique can be uniformly applied for identification of a 2-D filter with an
impulse response, a step response or a response to a random 2-D input signal.
Second, the method is applicable to a general Roesser's LSS model as well as
specific classes of 2-D filters, such as separable in denominator filters.

5.5.3 Neural Network Approach

By using a similar NN structure proposed for a 1-D recursive filter as shown in
Figure 5.1, we could develop a technique for 2-D recursive filter design.
Consider the general Roesser’s LSS model (5.10), an NN structure, which
combines recurrent and feedforward processes similar to an LSS 2-D model. In
order to correlate the proposed NN model with LSS model (5.10), an NN
structure is shown in Figure 5.4. Hidden neurons are classified into two different
types related to the vertical and horizontal states with their self feedback loops
and connections. The correlation between various coefficients in model (5.10)
and weight connections as shown in Figure 5.4 can be easily observed. The
weights between input neurons and hidden neurons (®, ®.) are represented by
matrices B, B, respectively. The weights between similar hidden neurons (®an,
.y) are established by matrices A, and A4 respectively. The weights between
two different classes of hidden neurons (®uy, ®.) are provided by the inter-
connection matrices A, and Aj; respectively. The weights between hidden
neurons and output neurons (Myn, ®y) are represented by matrices C; and C,.
Finally, the weights between input and output neurons (®y,) are related to each
other by the elements of matrix D. Therefore, by proper generation of various
weights in the proposed NN model, the identification of LSS model (5.10) can
be achieved.

type 2 delay
(22"

—type 1 delay

hidden
neurons

x"(1.i+1)
-dy(i.j)

sy(i.))
=>

u(i.j)

input output
neurons neurons

Figure 5.4: The Neural Network Structure for a 2-D System Identification

A general 2-D system identification algorithm is developed based on the NN
structure. It is a pattern mode learning since the weights are updated after the
presentation of each training sample data. The technique distinguishes itself

from an ordinary NN training algorithm in two aspects. First, there are two
classes of hidden neurons in the proposed NN structure. They are related to each
other via weight connection but develop their values in distinct ways. Second,
the neuron outputs are the function of two independent variables, instead of one
variable, as is related to a 1-D case. Due to the feedback of hidden neurons, the
NN architecture is a recurrent one. In addition, there are feedforward
information processes such as the direct path from input to hidden neurons and
hidden to output neurons. The adjustments of the weights are based on the
desired output values and NN actual outputs. Therefore, it can also be
considered as a supervised learning network in the sense of training method.
The details of the algorithm are presented here. Interested readers can refer to
Wang [8].

5.6 SIMULATION RESULTS
5.6.1 1-D Filters

Three numerical examples are provided herein; each emphasizes different
aspects of the proposed algorithm. The following L2 and Lee norm [24], [26]
error criteria are defined for error analysis.

€ —max|H HNN|/max|H|
ndT

%zaf HNN)ZE/Z/%z(H)Zd/Z

where H and Hyy are the impulse responses of the original system and identified
system, respectively, and T is the given trajectory (from discrete time ny to n;)
along which the error norms are calculated.

Example 5.1:

The system to be identified is a 5™ order Chebyshev type I filter with 0.8
decibel of ripple in the passband and 0.5 as cutoff frequency [26]. The transfer
function of the filter is given as:

0.0247 z° + 0.1237 z* + 0.2473 2 + 0.2473 2 +0.1237 z +0.0247

T(z)=
1.0000 z° -1.0925 z* +1.6014 2> -1.1520 z% + 0.6420 z- 0.2074

First, we generate 200 random input data whose amplitudes are uniformly
distributed in the range of [-1, 1] and obtain the corresponding output. An NN
with single input, single output and five neurons in hidden layer is trained using
input/desired output pairs for 200 epochs. The final training mean squared error
in Equation 5.3d is 1.0169E-03. The identified filter tusing NN is

0.0579 0.3237 0.0910 -0.8210 0.0541
-0.1457 0.4156 0.5757 0.0925 -0.0298
Ay =10.1962 -0.4314 0.1408 0.0872 -0.5384
0.7494 0.3956 -0.11250.2536 0.0094
0.0246-0.2153 0.5508 -0.0211 0.2364

By =[03272 0.6079 0.4382 -0.1568 0.0296]"
Cyy =[-0.2413 0.4809 0.0930 0.6673 0.0279)

D, =0.0247

The transfer function of the identified filter is:

0.02469 72 +0.1231z* +0.246 2 + 0.2431 22 +0.1196 z+ 0.02023
2 -1.104z* +1.607 z° -1.163 z> + 0.6461 z - 0.209

Ty (z2)=

The impulse responses of both the original system (H) and NN identified
system (Hxy) are obtained for 40 samples. The two error values are €, = 0.39
percent and €_ = 0.277 percent respectively.

For comparison, the system is identified with the same set of data by two
other well known methods, least square [24], and subspace [27]. The
comparison is shown in Table 5.1. To verify the robustness of the proposed
method, the same system is identified in two noisy conditions. In the first case,
the measurement contains zero-mean white noise whose variance is 5 percent of
the maximum amplitude of the response. In the second case, in addition to white
noise, the measurement also contains 5 percent density of wild (spike) noise
whose amplitude is equal to 10 percent of the maximum amplitude of the
response. The error norms of the proposed identification technique in
comparison to available techniques are shown in Tables 5.2 and 5.3. The results
show that the proposed technique provides more robust solutions under noise,
especially wild noise condition.

Table 5.1: Error Norms of Example 5.1 under Noise Free Conditions

N. N. Lease Square Subspace
€ 3.90e-03 3.67e-15 1.93e-15
€., 2.77e-3 3.77e-15 2.52e-15

Table 5.2: Error Norms of Example 5.1 under White Noise Conditions

N. N. Lease Square Subspace
€ 3.52e-02 8.30e-2 4.95e-2
€. 3.56e-2 7.15e-2 3.71e-2

Table 5.3: Error Norms of Example 5.1 under White Noise +
Spike Noise Conditions

N. N. Lease square Subspace
€ 5.34r-2 1.21e-01 9.07e-2
€., 5.29¢-2 8.98e-2 6.48¢-2

Example 5.2:

This example is presented in order to demonstrate the use of an
observability canonical state space form as the result of identification. By
selection and elimination of some weights in advance, the observability
canonical form is obtained. The filter to be identified is governed by the
following state space model.

-0.0051 0.2043 -0.7014
A= 05641 0.0923 0.3789
0.4642 -0.6482 -0.3021

B=[0.4121 0.8415 0.2693]

C=[0 05373 0.4676]

The corresponding transfer function is as follows:

0.5781 22 +0.1419 z +0.1103

T(z)==3 2
z°+0.2149 z“ +0.4291 z—0.3562

In order to obtain the observability canonical form, some weight connections
between hidden neurons were eliminated in advance. In addition, some of the
connections were taken out of update process by assigning a unity weight in the
beginning of the training phase. The NN is trained with 300 random generated
inputs. The identified system is given as:

0 0 0.3568 T
By :[0.1099 0.1413 0.5781]
Ay =110 -0.4248
01 -0.2139
Cw = lO 0 1J

The corresponding transfer function matrix is presented as:

T ()= 23781 2> +0.1413 z +0.1099
NN 3,02139 2404284 ,_0 3536

The two error values for 50 samples impulse response are €, = 0.03686
percent and €_ = 0.03827 percent respectively. For comparison, the same system
is identified with least square and subspace methods. In addition, two noise
conditions are considered similar to the above example. The error norm
comparisons are shown in the Tables 5.4, 5.5 and 5.6.

Table 5.4: Error Norms of Example 5.2 under Noise Free Conditions

N.N. Lease square Subspace
€ 3.69¢-4 1.47e-15 1.26e-15
€. 3.83e-4 1.20e-15 9.60e-16

Table 5.5: Error Norms of Example 5.2 under White Noise Conditions

N. N. Lease Square Subspace
€ 1.39¢-02 3.26e-2 1.45e-2
€. 1.40e-2 2.46e-2 1.40e-2

Table 5.6: Error Norms of Example 5.2 under White Noise +
Spike Noise Conditions

N. N. Lease Square Subspace
€ 2.86e-2 1.01e-01 4.18e-2
€. 2.69¢-2 6.88¢e-2 4.67¢-2

Example 5.3:

This example is provided in order to emphasize the effectiveness of the
proposed model for multi-input and multi-output systems. The filter to be
identified is a two inputs, two outputs system governed the following state
space form as provided by Taylor [26]:

[.0.5484 04138 0.2432 0.6010 0.1577 |
A=|-0.4776 -0.5864 0.0900| AZ=[0.1769 0.9879
0.0472 -0.2550 -0.2294 0.8284 0.2572
C_'o 02194 0.6960] _[0.6962 0.6695 |
| 0.1016 0.6347 0.7948 0.7529 0.2500 |

The corresponding transfer function matrix can be derived as:

0.69622° +1.56522* +1.17692+0.3906 0.75292° +1.85892" +1.35962+0.4297

o) = 22 +1.36422° +0.79102+0.09359 22 +1.36422° 4+0.79102+0.09359
0.66952° +1.30912% +0.71972+0.1067 0.25002° +1.18852* +0.75102+0.1146

22 +1.36422% +0.79102+0.09359 22 +1.36422° +0.79102+0.09359

The NN is trained with 200 random generated inputs for 200 epochs. The
system identified by NN is:

-0.8939 0.3002 03030
0.8840 0.4722 1.0046
Ay =1-0.5009 -0.3405 0.2023 B, =
1.0047 1.1123 1.2534
-0.0768 -0.7551 -0.1298
[0.3337 -0.5623 0.5832 _[0.6962 0.6695
" 10.3683 -0.2553 0.6237 10,7529 0.2500

The corresponding transfer function matrix is:

0.69622° +1.56522 +1.1772+0.3906 0.75292° +1.8592% +1.362+0.4297

7(9=| 7 +136427 +0.7912+0.09358 2 +1.3642° +0.7912+0.09358
o 0.66952° +1.30922 +0.71972+0.1067 0.252° +1.1892% +0.75092+0.1146

22 +1.3642°+0.7912+0.09358 22 +1.3642°+0.7912+0.09358

The two error values measured for the first 50 samples of impulse response
are calculated in vector form:
.082 9.1
{7 082 9 05].10_4

e =

oo

2.995 8.033

5817 7.546| |
4320 9.211

5.6.2 Two-dimensional Filters

Two numerical examples are provided for 2-D recursive filter, each emphasis
different aspects of the proposed algorithm. The following L, and L., norm [29]-
[32] error criteria are defined for error analysis:

&, = max|H(i, /) = Hyy (i,)| /maxlﬂ(i,j)l
NS [(oary i
O
& =0 Y (H(,))~Hy@))'0 /0% HGGHN O
& o g G@.ma]
MNR = Maximum Negative Ripple
where H(i,j) and Hyn(i,j) are the impulse responses of the original system and
identified system, respectively, A’={(i,j) | 0 < i< M’, 0 £j < N’} is the given
region where the error norms are calculated.

Example 5.4: First Quarter Gaussian Filter

The prototype model used by Aly and Fahmy in [30] for designing a 2-D
causal recursive filter is presented here. It is a first quadrant Gaussian 2-D scalar
filter described by the following impulse response:

H(i, j) = 0256322 exp{—0.103203 i —4) +(j —-4)*]}
with most of its energy in the first-quadrant. The selected region for
identification consists of A={(i,j) |0 <1< 10, 0 <j < 10}. The same region was
used for error norm calculation: A’=A.

The proposed NN consists of one input neuron, one output neuron, and two
groups of hidden neurons, each with three neurons. After 80 epochs of training,
the identified 2-D filter in Roesser’s LSS model of order (3,3) is given as,

[13.0059¢0 -1.8840e0 2.2325e0 8.8268¢-1 -3.1194e-1 -6.4903¢-10
52.0812e0 -9.6880e-1 2.0168e0 1.4857¢0 -5.2382e-1 -1.0898e0 B
_ [J9.1445¢-1 6.9213e-1 -1.3040e-1| 3.5259¢-1 -1.2248e-1 -2.5830e-10
W 51.7607e-1 1.2241e-1 -1.5569¢-1| 4.8882¢-1 -2.7540¢-1 -1466376-1%
E4.4500e—1 -2.8219e-1 3.2107e-1| 8.4165¢-1 1.2692e0 4.78496—1%

§4.559e-1 3.1093e-1 -3.8792e-1]|-8.6954e-1 -8.7703e-1 1.4460e-1Q

BNN:[-6.6533e-3 -1.1209¢-2 -2.6681e-3 | -1.0466e-1 6.0182¢-2 -1A4947e-1]r

CNN:[3.87306+1 -2.9244e+1 1.8910e+1 | -1.2433¢0 4.3619¢-1 9.11526-1]

D,,, = 9.4009¢ - 03

Table 5.7 is presented to compare the error measurements of our design to
that of Aly and Fahmy [30]. Notice that the total order realization of our design
(3 + 3 =6) is the same theirs (4 + 2 = 6).

Table 5.7: Simulation Experiments for Example 5.4

€2 % g, % MNR
Our Design 3.71 5.16 Always positive
Design [Aly and Fahmy] 10.78 9.19 0.04479

Example 5.5: A (2, 2) 2-D Digital Filter

This example is presented to illustrate the identification of a 2-D system
using various responses. The random input response as well as the impulse
response are utilized to identify the given 2-D filter. The 2-D filter to be
identified is governed by the following state space model (D=0):

1.0000e-1 2.0000e-11|0 -1.0000e - 1
_|-1.0000e-1 0 1.0000e-1 0
| 1.0000e-1 0 2.0000e-1 0

0 1.0000e-1| 1.0000e-1 1.0000e-1

£=[1.0000¢0 1.0000€0 | 5.0000e - 1 1.0000e0]7
€=[1.0000¢0 5.0000¢- 1| 5.0000e-1 1.0000¢0]

First, we generated 50 x 50 random input data within region A={(i,j) |0 < i
<49, 0 £j <49} whose amplitude was uniformly distributed in the range of [-1,
1] and then obtained the corresponding output. An NN with single input, single
output and a total of four (two for each type) hidden neurons is trained using
generated input/desired output pairs for 40 epochs. The identified filter is:

H22048¢-1 3.7549¢-2 | 5.5330¢-2 6.1638¢-21

NN—E4.58536-3 -6.2183¢-2 | 5.4698¢-2 9.2342e-2%
[31.7303¢-2 8.1130e-2 | 7.5142¢-2 1.1919¢-1

(14.9556e -2 -7.48366-2‘-5.56146-2 7.9612e-201

Byy =[1.0399¢0 7.2060e-1|7.7643¢-1 5.8653¢-1]"
Cyy =[7.6376e-1 9.7999¢-19.9556¢-1 8.1350e-1]
In the second phase, the same NN was trained with the impulse response

defined in the region A={(1,j) |0<1<9,0<j < 9} for 40 epochs. The state-
space form of the identified filter is as follow:

01.0641e-1 7.7004e-2 | -1.2062¢-2 5.3092e-20]
H9.1873¢-2 8.5081e-2‘ 2.9856¢-2 7.1189%-20]
ANN=%3.84496—3 6.9885¢-2 | 8.1948¢-2 8.9764e-23
H6.8676e-4 7.1595¢-2 | 8.3222¢-2 9.0390e-2H

Byy =[1.2555¢0 3.1189e-1]1.1109¢0 4.4088e-1]"
Cyy =[1.078460 4.6248¢-1 | 8.4716e-1 6.9503¢-]

The region for error norm calculation is A’={(i,j) |0 <1< 19,0 <j < 19} for
both of designed filters. In Table 5.8, a comparison of the error analysis of two
different training results is shown. It is observed that a random input response
provides a more accurate model in comparison to an impulse response. A similar
conclusion is obtained based on other simulation results, due to the fact that the
responses generated by a large amount of random inputs contains more
information compared to the impulse responses.

Table 5.8: Results of Example 5.5

€2 % £, % MNR
(original -5.5¢e-3)
Design with a random response 0.166 0.115 -5.8e-03
Design with an impulse response 2.82 3.14 always > 0

5.7 CONCLUSIONS

In this chapter, a novel NN technique is introduced for the design of recursive
digital filters in the state space form. Instead of using spatial representation of
time by delayed input/output feedback, we use hidden neurons to encode the
temporal properties of the system. Through the self feedback of hidden neurons
as well as the interconnection between the neurons in the input, hidden, and
output layers, the proposed NN structure mimics the dynamics of a linear
discrete system or digital filter. The proposed method also provides flexibility
in selection of various state-space forms such as controllability and observability
canonical forms as an identification model.

The NN approach is also extended for the design of general 2-D recursive
digital filters where an analytical solution is not necessarily available. An
attractive feature of the proposed algorithm is that the LSS model structure to be
identified could be predefined in the design stage. This feature not only provides
us with flexibility in selection of the structure of a 2-D filter, but also facilitates
analyses on several implementation issues of 2-D filter, such as computation
efforts and memory requirement. Furthermore, the proposed method herein
places no limitation on the type of response to be approximated. Namely, any

type of responses with sufficient data points could be used as a training sample
for filter identification.

The effectiveness as well as robustness of this method have been
demonstrated by simulations experiments for both single input/single output
and multi-input/multi-output digital filters.

REFERENCES

1. Hopfield, J.J., Neural Networks and Physical Systems with Emergent
Collective Computational Abilities, Proc. Nat. Acad. Sci., Vol. 79,
2554 — 2558, April 1982.

2. Hopfield, J.J., Neurons with Graded Response have Collective
Computational Properties Like Those of Two State Neurons, Proc.
Nat. Acad. Sci., Vol. 81, 3088 — 3092, May 1984.

3. Elman, J.L., Finding Structure in Time, Cognitive Science, Vol. 14,
179 — 211, 1990.

4. Pineda, F.J., Dynamics and Architecture for Neural Computation, J.
Complexity, Vol. 4, 216 — 245, 1988.

5. Pineda, F.J., Recurrent Back Propagation and the Dynamical Approach
to Adaptive Neural Computation, Neural Computation, Vol. 1, 161 —
172, 1989.

6. Robinson, A.J. and Fallside, F. A Recument Error Propagation Network
Speech Recognition System, Computer Speech and Language 5, 259 —
274, 1991.

7. Irwin, K., Warwick G.W. and Hunt, K.J., Neural Networks for Control
and Systems, IEE Publication, 1992.

8. Wang, D. Identification and Approximation of 1-D and 2-D Digital
Filters, Ph.D Dissertation, Florida Atlantic University, Boca Raton, FL,
May, 1998.

9. Wang, D. and Zilouchian, A., Identification of Discrete Linear Systems
in State Space Form Using Neural Network, Proc. of Second IEEE Int.
Caracas Conf. on Devices, Circuits and Syst., Venezuela, 338 — 342,
March, 1998.

10. Rumelhart, D.E. and McClelland, J.L.(eds.), Parallel Distributed
Processing: Explorations in the Microstructure of Cognition, Vol. 1,
MIT Press, Boston, MA, 1986.

11. Galvan, J.B. and Perezllzabe, M.J., Two Neura Networks for Solving
the Linear System Identification Problem, Proc. of IEEE Conf. on
Neural Networks, 3226 — 3231, 1993.

12. Cichocki, A. and Unbehauen, R., Neura Networks for Solving Systems
of Linear Equations and Related Problems, IEEE Trans. on Circuits
and Syst., Vol. 39, No.2, 124 — 137, Feb., 1992.

13. Mammone, R.J. and Zeevi, Y., Neural Networks, Theory and
Application, Academic Press, NY, 1990.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.
28.

29.

Lippman, M.P. and Chua, L.O., Neural Networks for Nonlinear
Programming, IEEE Trans. on Circuits and Syst., Vol. 35, No.5, 554 —
562, May 1988.

Narendra, K.S. and Parthasarathy, K., Identification and Control of
Dynamic Systems Using Neural Networks, IEEE Trans. on Neural
Networks, Vol. 1, No. 1, 4 — 27, March, 1990.

Poggio, T. and Girosi,F., Network for Approximation and Learning,
Proc. of IEEE, 1481 — 1495, Sept., 1990.

Jamshidi, J. (ed.), Circuits, Systems & Information, TSI Press,
Albuquerque, NM, 1991.

Horton, M.P., Real-time Identification of Missile Aerodynamics Using
a Linearised Kalman Filter Aided by an Artificial Neural Network, /EE
Proc. Control Theory Appl., Vol. 144, No. 4, 299 — 308, July, 1997.
Hampel, F.R., Rondhetti, E.M., Roussew, P., and Stahel, W.A., Robust
Statistics - the Approach Based on Influence Functions, John Wiley &
Sons, NY, 1987.

Wang, D. and Zilouchian, A., Identification of 2-D Recursive Digital
Filters in State-Space Form Using Neura Network, Int. J. of Intelligent
Automation and Soft Computing .

Silverman, L.M., Realization of Linear Dynamic Systems, [EEE
Transaction on Automatic Control, AC-16, 554 — 567, 1971.

Wang, D. and Zilouchian, A., Model Reduction of Discrete Linear
Systems via Frequency Domain Balanced Structure, /[EEE Trans. on
Circuits and Syst. Vol. 47, No. 6, 830-838, July 2000.

Moonen, M., Moor, B. D., Vandenberghe, L., and Vandewalle, J., On-
and Off-line Identification of Linear State-Space Models, Int. J.
Control, Vol. 49, No. 1, 219 — 232, 1989.

Ljung, L., System Identification, Theory for the User, Prentice-Hall,
Inc., Englewood Cliffs, NJ, 1987.

Wang, D. and Zilouchian, A., Model Reduction of 2-D Separable-in-
Denominator Systems via Frequency Domain Balanced Realization,
Proc. of 37th IEEE Conf. on Decision and Control, Tampa, FL, 2179 —
2184, 1998.

Taylor, F.J., Digital Filter Design Handbook, Marcd Dekker Inc., NY,
1983.

MATLAB Toolbox, The Mathwork Inc., Boston, MA, 1998.

Ramos, J., A Subspace Algorithm for Identifying 2-D Separable in
Denominator Filters, IEEE Trans. on Ciraiits and Syst., Vol. 41, No. 1,
63 — 67, January, 1994.

Hinamoto, T. and Maekawa, S., Spatial-Domain Design of a Class of
Two-Dimensional Recussive Digital Filter, IEEE Trans. on ASSP, Vol.
32, No. 1, 153 — 162, February, 1984.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

Aly, S.H. and Fahmy, M.M., Spatial-Domain Design of Two-
Dimensional Recursive Digital Filters, IEEE Trans. on Circuits and
Syst., Vol. 27, No. 10, 892 — 901, October, 1980.

Lashgari, B., Siverman, L.M., and Abramatic, J., Approximation of 2-
D Sepamble in Denominator Filters, IEEE Trans. on Circuits and Syst.,
Vol. 30, No. 2, 107 — 121, February 1983.

Hinamoto, T. and Maekawa, S., Design of 2-D Separable in
Denominator Filters Using Canonic Local State-Space Models, /[EEE
Trans. on Circuits and Syst., Vol. CAS-33, No. 9, 922 — 929,
September, 1986.

Lin,L., Kawamata, M., and Higuchi,T., Design of 2-D Separable-
Denominator Digital Filter Based on the Reduced-Dimensional
Decomposition, IEEE Trans. on Circuits and Systems, Vol. CAS-34,
No. 8, 934 — 941, August, 1987.

Raymond, D.M., and Fahmy, M.M., Spatial-Domain Design of Two-
Dimensional Recursive Digital Filters, IEEE Trans. on Circuits and
Syst., Vol. 36, No. 6, 901 — 905, June, 1989.

Bose, T. and Chen, M., Design of Two-Dimensional Digital Filters in
the Spatial Domain, IEEE Trans. on Signal Processing, Vol. 41 No. 3,
1464 — 1469, March, 1993.

Attasi, S., Modeling and Recursive Estimation for Double Indexed
Sequences, in System Identification: Advances and Case Studies,
Mehra, R.K., and Lainiotis, D.G., (eds.), Academic Press, NY, 1976.

Roesser, R.P., A Discrete State-Space Model for Linear Image
Processing, IEEE Trans. on Automatic Control, Vol. AC-20, 1 — 10,
February 1975.

Kung, S., Levy, B.C., Morf, M., and Kailath, T., New Results in 2-D
Systems Theory, Part II: 2-D State-Space Models - Realization and the
Notions of Contmwllability, Obsewvability, and Minimality, Proc. of the
IEEE, Vol. 65, No. 6, 945 — 959, June, 1977.

Shanks, J.L., Treitel, S., and Justice, J.H., Stability and Synthesis of
Two-Dimensional Recursive Filters, /[EEE Trans. on Audio Electro-
Acoust., Vol. AU-20, 115 — 128, June, 1972.

Hinamoto, T., Realizations of a State-Space Model from Two-
Dimensional Input-Output Map, IEEE Trans. on Circuits and Syst.,
Vol. CAS-27, No. 1, 36—44, Jan., 1980.

APPLICATION OF COMPUTER
NETWORKING USING NEURAL
NETWORK

Homayoun Yousefizadeh

6.1 INTRODUCTION

This chapter investigates the application of perceptron neural networks in
modeling traffic sources in packet based computer communication networks. It
is motivated by recent measurement studies that indicate the presence of
significant statistical features in packet traffic belong to the fractal nature of the
processes rather than their stochastic nature. The chapter first provides an
illustration of the statistical features of the measured traffic over the Internet. It
then outlines a learning scheme based on back propagation algorithm for a class
of perceptron neural networks that can be used to capture several of the fractal
properties observed in actual data. The most important conclusion of this chapter
is that, despite the existence of numerical difficulties, neural networks may
allow building of accurate models to predict the behavior of packet traffic
sources.

6.2 SELF SIMILAR PACKET TRAFFIC

Teletraffic analysis of the computer communication networks is one of the most
important applications of mathematical modeling and queuing theory. Recently,
the widespread deployment of packet switching has generated a set of
challenging problems in queuing theory. The problem of bursty traffic packet
arrival modeling is considered one of the most important problems in this
category. Given that performance models are only reliable when their
underlying assumptions are satisfied, the problem of obtaining an accurate
model of packet traffic is particularly important in all packet based networks.
Although numerous models of packet arrival processes have been proposed
during the past few years, there is still a lack of complete understanding of the
features in packet traffic. This is partly due to uncertainties in the traffic
characteristics of the emerging networks and services, and partly due to the
difficulties in characterizing the traffic arrival models and resource usage
patterns in the emerging networks.

Analyses of traffic data from networks and services such as ISDN traffic,
Ethernet LANs, common channel signaling network (CCSN) and variable bit
rate (VBR) video have convincingly demonstrated the presence of features such
as self-similarity, long range dependence, slowly decaying variances, heavy-
tailed distributions and fractal dimensions. These features, indeed, are more
characteristic of fractal processes than those of conventional stochastic

processes. Conventional traffic processes from regular telephone traffic or the
Poisson and Poisson-based models seem to be Markovian in nature,
characterized by exponential decays. The types of packet traffic with the above
mentioned characteristics are interpreted to be bursty in nature. To be more
specific, Leland and Wilson from Bellcore research center have presented a
preliminary statistical analysis of Ethernet traffic, on the presence of
"burstiness" across a wide range of time scales [2]: traffic spikes ride on the
longer term ripples that, in turn, ride on longer term swells, etc. This is also
explained in terms of self-similarity, i.e., self-similar phenomena show structural
similarities across all or at least a very wide range of time scales [3-5]. The
degree of self-similarity measured via the Hurst parameter typically depends on
the utilization level of the transmission medium and can be used to measure
burstiness of the traffic.

As another important difference between the aggregated bursty traffic and
the so called Poisson-like conventional models, it could be mentioned that the
aggregated traffic is expected to become less bursty or smoother as the number
of traffic sources increases based on the conventional models, but it has very
little to do with the reality. In fact, contrary to commonly held views, it has been
observed that the burstiness of LAN traffic intensifies as the number of traffic
sources increases. Conventional characterizations suppose that packet traffic
consists of alternating active and silent periods with well-defined statistics. On
the contrary, measurement studies have noted that there is no actual burst length,
and bursts occur over many time scales. At every step, examination of the data
shows that the bursts resolve into bursts over smaller time scales. This burst-
within-burst structure captures the fractal properties observed in actual traffic
data.

6.2.1 Fractal Properties of Packet Traffic

The main objective of the current section is to establish a foundation for a
statistically well-defined property of time series called self-similarity.
Intuitively, self-similar phenomena display structural similarities across too
many time scales. Measuring a single parameter called the Hurst parameter
usually specifies the degree of self-similarity. The following discusses
mathematical and statistical properties of the self-similar processes.

Second-Order Self-similarity
Let

X=(X,:t=012,.) (6.1)
be a covariance stationary stochastic process with mean p, variance o, and

autocorrelation function T(k), £ =0. In particular suppose X has an
autocorrelation function of the form

tky~a k™, as ko (6.2)

where 0<p<1 and constants aj, a,, ... denote finite positive integers. For each

m=1,2,3, ... let
X =(x, ™ k=123, (6.3)

denote the new covariance stationary time series with corresponding
autocorrelation function ™ obtained by averaging the original series X over

nonoverlapping blocks of size m, i.e., for each m = 1,2,3,...,X(m) is given by

Xk(m) =1/ m(X oy + F X i) k=1 (6.4)

The process X is called exactly second-order self-similar with self-similarity
parameter H=1-B/2 if the corresponding X™ has the same correlation structure
as X, ie., ©™(k) =1(k) forall m=1,2, 3,...and k = 1, 2, 3, ... X is called
asymptotically second-order self-similar with self-similarity parameter H=1-3/2
if T™(k) agrees asymptotically with t(k) given by (6.2), for large m and k. In
other words, X is exactly or asymptotically second-order self-similar if the
aggregated processes X™ are the same as X or become indistinguishable from X
with respect to their correlation functions. Fractal Gaussian noise (FGN) is a
good example of an exactly self-similar process with self-similarity parameter
H, 1/2 < H < 1. Fractional Arima processes with the parameters (p, d, q) such
that 0 < d < 1/2 are examples of asymptotically second-order self-similar
processes with self-similarity parameter d + 1/2. Mathematically, self-similarity
manifests itself in a number of equivalent ways as follow.

(1) The variance of sample mean decreases more slowly than the reciprocal
of the sample size. This is called slowly decaying variance property meaning.

var(X ™) ~a,mP), m L 00<p <1 (6.5)

(2) The auto-correlation decay hyperbolically rather than exponentially fast,
implying a nonsummable autocorrelation function §,T(k)=oo. This is called
long range dependence property which means 1(k) satisfies relation (6.2).

(3) The spectral density f(.) obeys a power law near the origin. This is the
concept of 1/f noise with the meaning

fA) =k (6.6)

as A » oo with0<y<land y=1-3.

It looks like the most striking feature of self-similar processes is that their
aggregated process X™ possesses a nondegenerate correlation function as
m — oo This is in stark contrast to typical packet traffic models considered in
literature, all of which have the property that their aggregated processes Xm

tend to second order pure noise, i.e., 7 -0 as m — 00 . As an equivalent
method of description, they may be characterized by the following properties:

= The sample mean variance decreases like the reciprocal of the sample mean.

= The autocorrelation function decreases exponentially fast, implying a
summable autocorrelation function. This, in fact, is equivalent to the short
range dependence property.

= The spectral density is bounded at the origin.

The concept of self-similar processes provides a very elegant explanation of
an empirical law commonly referred to as the Hurst effect. In order to describe
the Hurst effect, it should be mentioned that for a given set of observations

X =(X:k=0,,2,..,n) with sample mean X(n) and sample variance S%(n), the
rescaled adjusted range or the R/S statistic is given by

Rm) _ 1 e W) —mi
S(n)—S(n)[max(O,Wl,Wz, W) —min(0, W, W, -, W,)]

W, =(X, +-+X,)—kX(n), k=1

6.7)

While many naturally occurring time series appear to be well represented by
the relation E[R(n)/S(n)]~k;n” , as n — oo, with Hurst parameter H typically
about 0.73, observations X, from a short range dependent model are known to

satisfy E[R(n)/S(n)] ~ k;n?, as n — oo . This discrepancy is usually referred to as
the Hurst effect.

Degree of Self-similarity

In this part, methods of estimating self-similarity degree are introduced
based on the properties of covariance stationary second-order self-similar
processes, namely slowly decaying variances, long-range dependence, and a
spectral density obeying a power-law. Hence the problem may be approached in
three ways:

= Time-domain analysis based on the R/S statistic;
= Analysis of variances of the aggregated processes;
= Periodogram-based analysis in the frequency domain.

The objective of the first method is to estimate the Hurst parameter H via the
Hurst effect. Briefly, the approach consists of plotting log(R(n)/S(n))vs.
log(n) in the logarithmic scale that results in a plot called "rescaled adjusted
range plot" or the "pox diagram of R/S." For a well-defined parameter H, a
typical rescaled adjust range plot starts with a transient zone showing the nature
of short range dependence and continues with a steady state part which is a
straight line with a certain slope. There are also some fluctuations around that
line. In fact, if such asymptotic behavior appears, then graphical R/S analysis

may be used to estimate the self-similarity degree. An estimate H of self-
similarity parameter H is given by the line's asymptotic slope, which can take
any value between %2 and 1. The most useful feature of the R/S analysis is its
relative robustness against changes of marginal distribution.

In the second method, the variances of the aggregated second-order self-
similar processes X ™, m =1, decrease linearly in log-log plots against m, with
slopes arbitrarily flatter than m. This behavior is, in fact, seen for the large

values of m as the representative of time. The so called variance time plots are
obtained by plotting log(var(X) against 'o2m and by fitting a simple least
squares line through the resulting points in the plane. Values of the estimate g of
the asymptotic slope between -1 and 0 suggest self-similarity with a degree of
H=1-p/2.

In contrast to the previous two methods, the third method takes advantage of
the presence of limit law for a more refined data analysis like the existence of
confidence levels for H. This is simply done by using maximum likelihood types
estimates (MLE) based on the periodogram-based analysis in the frequency
domain. As an example, Whittle's approximate MLE may be mentioned to be
used for the approximate Gaussian processes. A combination of an MLE-type
approach and the one above of the mentioned aggregation methods lead to an
operational procedure for obtaining confidence intervals for the self-similarity

parameter H. Plots of the point estimates H"™ of H" vs. m with their
specified confidence level will typically vary a lot for small aggregation levels
but will stabilize after a while and fluctuate around a constant value, the final
estimate of self-similarity parameter H. For a complete discussion, see Leland
and Wilson [2].

Mathematical Explanation of Self-similarity

Mathematically, self-similarity in measurements from aggregated traffic of
Ethernet, ISDN, CCSN, and VBR traffic can be explained by a simple
aggregation argument: aggregating many elementary renewal reward processes
representing individual user traffic produces self-similarity in limit as the
number of users increases. First, let us define the concept of infinite variance
syndrome. A random variable is said to exhibit an infinite variance syndrome or
is called heavy tailed if

PU = u]~u""L(u) (6.8)

where L(u) is a slowly varying function at infinity and 0 <o < 2. The crucial
property that distinguishes the renewal reward process source model from the
commonly assumed source model is that the interrenewal arrivals, i.e., the
lengths of the active/inactive periods, are heavy tailed or, in terms of Mandelbort
terminology, exhibit the infinite variance syndrome. A number of evidence
supports the existence of infinite variance syndrome in packet traffic
measurements. Hellstern and Wirth[9] have observed that the extreme variability
of ISDN data cannot be adequately captured using traditional packet traffic
models but instead is best described by the concept of heavy-tailed distributions.
Duffy and Willinger[14] have observed the same evidence in the CCSN traffic
studies. They have noticed that the call holding time distribution for calls
originating during high traffic periods is heavy tailed with an estimated value of
about 2.0, and for calls originating during light traffic periods, the estimated
value drops down to about 1.0. Erramilli et al., [10] first proposed the idea of
using fractal dimensions to characterize the fractal-like nature of the traffic
measurements. Intuitively, a dimension is an indication of the extent to which a

set, e.g., arrival times, fills the space in which it is embedded [11-13]. As an
example, the so-called correlation dimension associated with a measure, known
as correlation integral, is an appropriate tool to characterize the behavior of self-
similar sets.

6.2.2 TImpacts of Fractal Nature of Packet Traffic

Fractal characterization is, in fact, applicable to many aspects of teletraffic
systems such as arrival, service time, buffering, quality of service, and queuing.
Although, theoretically, classical Markovian models can always be used to
describe any finite set of traffic measurements, the resulting systems are very
complex and highly parameterized in case of fractal processes. Hence, it is better
to use simpler and more effective models. In this section, the major findings
from the most recent real network environment measurements are summarized.

Heavy-Tailed Service Densities

Heavy-tailed densities as a characteristic of fractal processes are suitable for
modeling a number of applications such as call holding times [15], and
individual call records [16]. In general, they are expected to be seen in switched
data services as well as packet based services when there are resources that need
to be held for duration of a call or a session. As an example, constant bit rate
(CBR) services in ATM networks may be mentioned. From the practical point
of view, there are numerous difficulties in accurately engineering these services
even when the well known insensitivity of the Erlang-B results is used to
characterize the service time. The major problem here is the very slow rate of
convergence that allows considerable deviations from the theory over time
scales of engineering interest. For a more detailed discussion see Smith[16—22].

Assuming there is a convergence, the rate of convergence problem may be
resolved by extending the length of period; however, for long interval
observations, the assumptions about the stationarity of arrival processes do not
hold and hence the Erlang-B results are not applicable. Intuitively, it looks like
the service rate over smaller time intervals can be much greater than the long
term and rate conditioned on a departure; hence fractal scaling of the service
processes should be applicable here.

Packet Loss

Packet loss processes are very well known to be highly bursty although
usually characterized by their long term rates. The limitations of using long term
rates in order to describe bursty processes and the problem of serial correlation
in losses have been identified to be due to the periodicities in the arrival process.
The work was done by Ramaswami et al [6], Erramilli et al [10], and
Mandelbort [17]. Briefly, any packet loss rate measurement is likely to be
arbitrary over a wide range of time scales, and the long term rate is probably too
low to be meaningful. On the contrary, with the cases of transmission errors and
packet arrivals, fractal characterizations are applicable in describing packet loss
processes. In order to illustrate the above-mentioned point, Erramilli et al., have

analyzed the loss processes in simulations driven by Ethernet traffic traces. The
study has relied on correlation analysis for different data sets. It has measured
the burstiness of the loss process using the fractional correlation dimension. The
study has shown that when the packet loss occurs, it occurs at much higher rates
than the long term rates, and hence there will be a considerably more impact on
the applications than that indicated by the long term rate. In addition, other
fractal parameters such as the Hurst parameter are also applicable to the loss
process. Please see Erramili et al., [3] for further details.

Fractal Queuing

The presence of fractal properties in actual arrival, service time, and QoS
processes may serve as a motivation for the development of the fractal queuing
to analyze the performance implications of the processes with long range
dependence. One possibility is that if fractal properties impact performance
indirectly by biasing the long term traffic measurements, then they can be
counted on to transform inputs to conventional queuing models. The direct
analysis of models that use fractal characterizations as the input is another
possibility, although the lack of a Markovian structure makes such models
extremely difficult to analyze. There are, however, three promising approaches:
the first one is based on a self-similar stochastic model, specifically, fractal
Brownian motion[17], the next one is based on dynamical system approach
using chaos theory, and the last one based on the neural networks theory. While
the first two approaches are only mentioned briefly here, the last one is the main
focus of this chapter and will be discussed in detail.

6.3 NEURAL NETWORK MODELING OF PACKET TRAFFIC

Neural networks as a class of nonlinear systems are able to learn and to perform
tasks done by other systems. They are suitable for speech and signal processing,
pattern recognition, system modeling, and servomechanism control. They
acquire requisite information based on the examples supplied to them. The
various kinds of neural networks generally have energy functions. The learning
procedure of neural networks is, indeed, nothing more than decreasing these
energy functions until reaching local minimum levels. Neural networks are
robust in the sense that if there is a relatively small error in the system, the
network will continue its desired action. This characteristic of the neural
networks makes them quite suitable for the traffic modeling task discussed
below. In this chapter, perceptron neural networks, along with their learning
algorithm back propagation, are utilized as the traffic modeling tool.

6.3.1 Perceptron Neural Networks and Back Propagation Algorithm

The perceptron network is arguably the most popular neural network
architecture, and certainly the trigger of the current widespread explosion of
activity in the field. The function of the perceptron network is to reproduce
certain target output patterns at the last layer of nodes. The task is achieved by

adjusting the weighting functions of each interconnecting link according to a
rule which compares the activity patterns at output nodes with the desired target
patterns and propagates the difference back through the network leading to a
small adjustment to each link’s weighting function. A simple feedforward
perceptron network does not have any feedback connection between two
different layers or a layer with itself. In this situation, the input data from the
input layer appears in the output layer via the interface of hidden layers.
Feedforward networks with no feedback connection between two different
layers are generally considered because of their nonlinear properties. Figure 6.1
shows a typical perceptron network.

Perceptron neural networks can be used to model teletraffic patterns. The
modeling procedure relies on attempting to predict the dynamical behavior of
the describing system after learning corresponding dynamics. The network
usually obtains the information required for the learning procedure from a
number of available samples.

I

|
)

L

T

Figure 6.1: A Typical Perceptron Neural Network.

In the following section, an approach capable of dealing with the fractal
properties of the aggregated traffic is introduced. This approach takes advantage
of perceptron neural networks with back propagation learning algorithm. It
provides an elegant solution for self-similar traffic modeling and has the
advantage of simplicity compared to the previously mentioned approaches
namely stochastic and deterministic nonlinear chaotic map models. It is,
motivated by the desire of having a relatively simple model of the complex
packet traffic generation process. As opposed to stochastic and chaotic modeling
approaches, it does not introduce a parameter that describes the fractal nature of
traffic and hence need not cope with the complexity of estimating Hurst
parameters or fractal dimensions. The approach simply takes advantage of using
a fixed structure nonlinear system that is able to predict either the number of
packets generated by a traffic source or the number of arrived packets in a buffer

after getting trained by accessing to a number of samples of the generation or
arrival pattern.

The back propagation