

Intelligent
Control Systems
 Using
Soft Computing
Methodologies

Boca Raton London New York Washington, D.C.

CRC Press

Intelligent
Control Systems
 Using
Soft Computing
Methodologies
Edited by

Ali Zilouchian
Mo Jamshidi

This book contains information obtained from authentic and highly regarded sources. Reprinted material

is quoted with permission, and sources are indicated. A wide variety of references are listed. Reasonable

efforts have been made to publish reliable data and information, but the author and the publisher cannot

assume responsibility for the validity of all materials or for the consequences of their use.

Neither this book nor any part may be reproduced or transmitted in any form or by any means, electronic

or mechanical, including photocopying, microfilming, and recording, or by any information storage or

retrieval system, without prior permission in writing from the publisher.

All rights reserved. Authorization to photocopy items for internal or personal use, or the personal or

internal use of specific clients, may be granted by CRC Press LLC, provided that $.50 per page

photocopied is paid directly to Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923

USA. The fee code for users of the Transactional Reporting Service is ISBN 0-8493-1875-

0/01/$0.00+$.50. The fee is subject to change without notice. For organizations that have been granted

a photocopy license by the CCC, a separate system of payment has been arranged.

The consent of CRC Press LLC does not extend to copying for general distribution, for promotion, for

creating new works, or for resale. Specific permission must be obtained in writing from CRC Press LLC

for such copying.

Direct all inquiries to CRC Press LLC, 2000 N.W. Corporate Blvd., Boca Raton, Florida 33431.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are

used only for identification and explanation, without intent to infringe.

Visit the CRC Press Web site at www.crcpress.com

© 2001 by CRC Press LLC

No claim to original U.S. Government works

International Standard Book Number 0-8493-1875-0

Library of Congress Card Number 2001016189

Printed in the United States of America 1 2 3 4 5 6 7 8 9 0

Printed on acid-free paper

Library of Congress Cataloging-in-Publication Data

Intelligent control systems using soft computing methodologies / edited by Ali

Zilouchian and Mohammad Jamshidi.

p. cm.

Includes bibliographical references and index.

ISBN 0-8493-1875-0

1. Intelligent control systems—Data processing. 2. Soft computing. I. Zilouchian, Ali.

 II. Jamshidi, Mohammad.

TJ217.5 .I5435 2001

629.89′0285′63—dc21 2001016189

To my late grandfather, Gholam-Reza for his devotion to science and

humanitarian causes

A. Zilouchian

To my family, Jila, Ava and Nima for their love and patience

M. Jamshidi

PREFACE

Since the early 1960s, artificial intelligence (AI) has found its way into

industrial applications − mostly in the area of expert knowledge-based decision

making for the design and monitoring of industrial products or processes. That

fact has been enhanced with advances in computer technology and the advent

of personal computers, and many applications of intelligence have been

realized. With the invention of fuzzy chips in the1980s, fuzzy logic received a

high boost in industry, especially in Japan. In this country, neural networks and

evolutionary computations were also receiving unprecedented attention in both

academia and industry. As a result of these events, �soft computing� was born.

Now at the dawn of the 21
st
 century, soft computing continues to play a

major role in modeling, system identification, and control of systems − simple

or complex. The significant industrial uses of these new paradigms have been

found in the U.S.A and Europe, in addition to Japan. However, to be able to

design systems having high MIQ® (machine intelligence quotient, a concept

first introduced by Lotfi Zadeh), a profound change in the orientation of

control theory may be required.

The principal constituents of soft computing are fuzzy logic,

neurocomputing, genetic algorithms, genetic programming, chaos theory, and

probabilistic reasoning. One of the principal components of soft computing is

fuzzy logic. The role model for fuzzy logic is the human mind. From a control

theoretical point of view, fuzzy logic has been intermixed with all the

important aspects of systems theory: modeling, identification, analysis,

stability, synthesis, filtering, and estimation. Interest in stability criteria for

fuzzy control systems has grown in recent years. One of the most important

difficulties with the creation of new stability criteria for any fuzzy control

system has been the analytical interpretation of the linguistic part of fuzzy

controller IF-THEN rules. Often fuzzy control systems are designed with very

modest or no prior knowledge of a solid mathematical model, which, in turn,

makes it relatively difficult to tap into many tools for the stability of

conventional control systems. With the help of Takagi-Sugeno fuzzy IF-THEN

rules in which the consequences are analytically derived, sufficient conditions

to check the stability of fuzzy control systems are now available. These

schemes are based on the stability theory of interval matrices and those of the

Lyapunov approach. Frequency-domain methods such as describing functions

are also being employed for this purpose.

This volume constitutes a report on the principal elements and important

applications of soft computing as reported from some of the active members of

this community. In its chapters, the book gives a prime introduction to soft

computing with its principal components of fuzzy logic, neural networks,

genetic algorithms, and genetic programming with some textbook-type

problems given. There are also many industrial and development efforts in the

applications of intelligent systems through soft computing given to guide the

interested readers on their research interest track.

This book provides a general foundation of soft computing methodologies as

well as their applications, recognizing the multidisciplinary nature of the

subject. The book consists of 21 chapters, organized as follows:

In Chapter 1, an overview of intelligent control methodologies is presented.

Various design and implementation issues related to controller design for

industrial applications using soft computing techniques are briefly discussed in

this chapter. Furthermore, an overall evaluation of the intelligent systems is

presented therein.

The next two chapters of the book focus on the fundamentals of neural

networks (NN). Theoretical as well as various design issues related to NN are

discussed. In general, NN are composed of many simple elements emulating

various brain activities. They exploit massive parallel local processing and

distributed representation properties that are believed to exist in the brain. The

primary purpose of NN is to explore and produce human information

processing tasks such as speech, vision, knowledge processing, and motor

control. The attempt of organizing human information processing tasks

highlights the classical comparison between information processing

capabilities of the human and so called hard computing. The computer can

multiply large numbers at fast speed, yet it may not be capable to understand

an unconstrained pattern such as speech. On the other hand, though humans

understand speech, they lack the ability to compute the square root of a prime

number without the aid of pencil and paper or a calculator. The difference

between these two opposing capabilities can be traced to the processing

methods which each employs. Digital computers rely upon algorithm-based

programs that operate serially, are controlled by CPU, and store the

information at a particular location in memory. On the other hand, the brain

relies on highly distributed representations and transformations that operate in

parallel, have distributed control through billions of highly interconnected

neurons or processing elements, and store information in various straight

connections called synapses. Chapter 2 is devoted to the fundamental issues

above. In Chapter 3, supervised learning with emphasis on back propagation

and radial basis neural functions algorithms is presented. This chapter also

addresses unsupervised learning (Kohonen self-organization) and recurrent

networks (Hopfield).

In Chapters 4 −−−− 7, several applications of neural networks are presented in

order to familiarize the reader with design and implementation issues as well as

applicability of NN to science and engineering. These applications areas

include medicine and biology (Chapter 4), digital signal processing (Chapter

5), computer networking (Chapter 6), and oil refinery (Chapter 7).

Chapters 8, 9 and 10 of the book are devoted to the theoretical aspect of

fuzzy set and fuzzy logic (FL). The main objective of these three chapters is to

provide the reader with sufficient background related to implementation issues

in the following chapters. In these chapters, we cover the fundamental concepts

of fuzzy sets, fuzzy relation, fuzzy logic, fuzzy control, fuzzification,

defuzification, and stability of fuzzy systems.

As is well known, the first implementation of Professor Zadeh�s idea

pertaining to fuzzy sets and fuzzy logic was accomplished in 1975 by

Mamedani, who demonstrated the viability of fuzzy logic control (FLC) for a

small model steam engine. After this pioneer work, many consumer products

as well as other high tech applications using fuzzy technology have been

developed and are currently available on the market. In Chapters 11 −−−− 16,

several recent industrial applications of fuzzy logic are presented. These

applications include navigation of autonomous planetary rover (Chapter 11),

autonomous underwater vehicle (Chapter 12), management of air conditioning,

heating and cooling systems (Chapter 13), robot manipulators (Chapter 14),

desalination of seawater (Chapter 15), and object recognition (Chapter 16).

Chapter 17 presents a brief introduction to evolutionary computations. In

Chapters (18 −−−− 20), several applications of evolutionary computations are

explored. The integration of these methodologies with fuzzy logic is also

presented in these chapters. Finally, some examples and exercises are provided

in Chapter 21. MATLAB neural network and fuzzy logic toolboxes have been

utilized to solve several problems.

The editors would like to take this opportunity to thank all the authors for

their contributions to this volume and to the soft computing area. We would

like to thank Professor Lotfi A. Zadeh for his usual visionary ideas and

support. The encouragement and patience of CRC Press Editor Nora Konopka

is very much appreciated. Without her continuous help and assistance during

the entire course of this project, we could not have accomplished the task of

integrating various chapters into this volume. The editors are also indebted to

many who helped us realize this volume. Hooman Yousefizadeh, a Ph.D.

student at FAU, has modified several versions of various chapters of the book

and organized them in camera-ready format. Without his dedicated help and

commitment, the production of the book would have taken a great deal longer.

We sincerely thank Robert Caltagirone, Helena Redshaw, and Shayna Murry

from CRC Press for their assistance. We would like to also thank the project

editor, Judith Simon Kamin from CRC Press for her commitment and skillful

effort of editing and processing several iterations of the manuscript. Finally, we

are indebted to our family for their constant support and encouragement

throughout the course of this project.

Ali Zilouchian Mo Jamshidi

Boca Raton, FL Albuquerque, NM

ABOUT THE EDITORS

Ali Zilouchian is currently a professor and the director of the Intelligent

Control laboratory funded by the National Science Foundation (NSF) in the

department of electrical engineering at Florida Atlantic University, Boca

Raton, FL. His recent works involve the applications of soft computing

methodologies to industrial processes including oil refineries, desalination

processes, fuzzy control of jet engines, fuzzy controllers for car engines,

kinematics and dynamics of serial and parallel robot manipulators. Dr.

Zilouchian�s research interests include the industrial applications of intelligent

controls using neural network, fuzzy logic, genetic algorithms, data clustering,

multidimensional signal processing, digital filtering, and model reduction of

large scale systems. His recent projects have been funded by NSF and

Motorola Inc. as well as several other sources.

 He has taught more than 22 different courses in the areas of intelligent

systems, controls, robotics, computer vision, digital signal processing, and

electronic circuits at Florida Atlantic University and George Washington

University. He has supervised 13 Ph.D. and M.S. students during the last 15

years. In addition, he has served as a committee member on more than 25 MS

theses and Ph.D. dissertations. He has published over 100 book chapters,

textbooks, scholarly journal papers, and refereed conference proceedings. In

1996, Dr. Zilouchian was honored with a Florida Atlantic University Award

for Excellence in Undergraduate Teaching.

Dr. Zilouchian is a senior member of IEEE, member of Sigma Xi and New

York Academy of Science and Tau Beta Pi. He received the outstanding

leadership award for IEEE branch membership development activities for

Region III in 1988. He has served as session chair and organizer of nine

different sessions in the international conferences within the last five years. He

was a keynote speaker at the International Conference on Seawater

Desalination Technologies in November 2000. Dr. Zilouchian is currently an

associate editor of the International Journal of Electrical and Computer

Engineering out of Oxford, UK. He is also the local chairman of the next

WAC 2002 to be held in June 2002 in Orlando, Florida.

Mohammad (Mo) Jamshidi (Fellow IEEE, Fellow ASME, Fellow AAAS)

earned a Ph.D. degree in electrical engineering from the University of Illinois

at Urbana-Champaign in February 1971. He holds an honorary doctorate

degree from Azerbaijan National University, Baku, Azerbaijan, 1999.

Currently, he is the Regents professor of electrical and computer engineering,

the AT&T professor of manufacturing engineering, professor of mechanical

engineering and founding director of the NASA Center for Autonomous

Control Engineering (ACE) at the University of New Mexico, Albuquerque.

He was on the advisory board of NASA JPL's Pathfinder Project mission,

which landed on Mars on July 4, 1997. He is currently a member of the NASA

Minority Businesses Resource Advisory Committee and a member of the

NASA JPL Surface Systems Track Review Board. He was on the USA

National Academy of Sciences NRC's Integrated Manufacturing Review

Board. Previously he spent 6 years at U.S. Air Force Phillips (formerly

Weapons) Laboratory working on large scale systems, control of optical

systems, and adaptive optics. He has been a consultant with the Department of

Energy�s Los Alamos National Laboratory and Oak Ridge National

Laboratory. He has worked in various academic and industrial positions at

various national and international locations including with IBM and GM

Corporations.

He has contributed to over 475 technical publications including 45 books

and edited volumes. Six of his books have been translated into at least one

foreign language. He is the founding editor, co-founding editor, or editor-in-

chief of five journals (including Elsevier's International Journal of Computers

and Electrical Engineering) and one magazine (IEEE Control Systems

Magazine). He has been on the executive editorial boards of a number of

journals and two encyclopedias. He was the series editor for ASME Press

Series on Robotics and Manufacturing from 1988 to 1996 and Prentice Hall

Series on Environmental and Intelligent Manufacturing Systems from 1991 to

1998. In 1986 he helped launch a specialized symposium on robotics which

was expanded to International Symposium on Robotics and Manufacturing

(ISRAM) in 1988, and since 1994, it has been expanded into the World

Automation Congress (WAC) where it now encompasses six main symposia

and forums on robotics, manufacturing, automation, control, soft computing,

and multimedia and image processing. He has been the general chairman of

WAC from its inception.

Dr. Jamshidi is a fellow of the IEEE for contributions to "large-scale systems

theory and applications and engineering education," a fellow of the ASME for

contributions to �control of robotic and manufacturing systems,� a fellow of

the AAAS − the American Association for the Advancement of Science − for

contributions to "complex large-scale systems and their applications to controls

and optimization". He is also an associate fellow of Third World Academy of

Sciences (Trieste, Italy), member of Russian Academy of Nonlinear Sciences,

associate fellow, Hungarian Academy of Engineering, corresponding member

of the Persian Academies of Science and Engineering, a member of the New

York Academy of Sciences and recipient of the IEEE Centennial Medal and

IEEE Control Systems Society Distinguished Member Award and the IEEE

CSS Millennium Award. He is an honorary professor at three Chinese

universities. He is on the board of Nobel Laureate Glenn T. Seaborg Hall of

Science for Native American Youth.

CONTRIBUTORS

Akbarzadeh-T, Mohammad

Department of EECE

Ferdowsi University

Mashad, Iran

Battle, Darryl

Department of Electrical

Engineering

North Carolina A&T University

Greensboro, NC

Bawazir, Khalid

Aramco

Dhahran, Saudi Arabia

Chen, Tan Kay

The National

University of Singapore

Singapore

Dozier, Gerry

Computer Science and

 Software Engineering

Auburn University

Auburn, AL

El-Osery, Aly

Department of Electrical and

Computer Engineering

University of New Mexico

Albuquerque, NM

Fathi, Madjid

Department of Electrical and

Computer Engineering

University of New Mexico

Albuquerque, NM

Hildebrand, Lars

University of Dortmund

Dortmund, Germany

Homaifar, Abdollah

Department of Electrical

Engineering

North Carolina A&T University

Greensboro, NC

Howard, Ayanna

Jet Propulsion Laboratory

Pasadena, CA

Howard, David

Department of Electrical

Engineering

Florida Atlantic University

Boca Raton, FL

Jafar, Mutaz

Kuwait Institute of

Scientific Research

Kuwait City, Kuwait

Jamshidi, Mohammad

Department of Electrical and

Computer Engineering

University of New Mexico

Albuquerque, NM

Lee, T.H.

The National

University of Singapore

Singapore

Meghdadi, A. H.

Department of Electrical

Engineering

Ferdowsi University

Mashad, Iran

Ross, Timothy J.

Department of Civil Engineering

University of New Mexico

Albuquerque, NM

Seraji, Homayoun

Jet Propulsion Laboratory

Pasadena, CA

Smith, Samuel M.

Institute for Ocean and

Systems Engineering

Florida Atlantic University

Dania, FL

Song, Feijun

Institute for Ocean and

Systems Engineering

Florida Atlantic University,

Dania, FL

Talebi-Daryani, Reza

Department of Control Engineering

University of Applied Sciences

Cologne, Germany

Tan, K. C.

The National

University of Singapore

 Singapore

Tunstel, Edward

Jet Propulsion Laboratory

Pasadena, CA

Valafar, Faramarz

Department of Cognitive and

Neural Systems

Boston University

Boston, MA

Wang, Dali

STM Wireless, Inc.

Irvine, CA

Wang, M. L.

The National

University of Singapore

 Singapore

Yousefizadeh, Homayoun

Procom Technology, Inc.

Santa Ana, CA

Yousefizadeh, Hooman

Department of Electrical

Engineering

Florida Atlantic University

Boca Raton, FL

Zilouchian, Ali

Department of Electrical

Engineering

Florida Atlantic University

Boca Raton, FL

ABBREVIATIONS

1D One Dimension

2D Two Dimension

A/C Air Conditioning

ACS Average Changes in Slope

ADALINE ADAptive LINear Element

AI Artificial Intelligence

ANFIS Adaptive Neuro-Fuzzy Inference System

ANN Artificial Neural Network

AUV Autonomous Underwater Vehicle

BP Back Propagation

BPA Back Propagation Algorithm

CBR Constant Bit Rate

CCSN Common Channel Signaling Network

CP Complete Partitioning

CP Candidate Path

CRDF Causal Recursive Digital Filters

CS Complete Sharing

CT Cellulose Triacetate

CV Containment Value

D Derivative

DCS Distributed Control Systems

DDC Distributed Digital Control

DNS Dynamic Neural Sharing

DOF Degree Of Freedom

EA Evolutionary Algorithm

EAL Estimated Average Latency

EC Evolutionary Computation

ED Electrodialysis

FAM Fuzzy Associate Memory

FGN Fractal Gaussian Noise

FIR Finite Impulse Response

FIS Fuzzy Inference System

FL Fuzzy Logic

FLC Fuzzy Logic Controller

FNF False Negative Fraction

FOV Field of View

FPF False Positive Fraction

FRBS Fuzzy Rule Based System

FTDM Fixed Time Division Multiplexing

FTSA Fuzzy Tournament Selection Algorithm

GA Genetic Algorithm

GC-EIMS Gas Chromatography-Electron Impact Mass

Spectroscopy

GEPOA Global Evolutionary Planning and Obstacle

Avoidance

GP Genetic Programming

GPD Gallon Per Day

GPM Gallon Per Minute

HFF Hollow Fine Fiber

HIS Health and Safety Indicators

I Integral

IE Ion Exchange

IIR Infinite Impulse Response

LMS Least Mean Square

LSS Local State Space

MADALINE Multiple ADALINE

MAL Measured Average Latency

MCV Mean Cell Volume

ME Multi- Effect

MF Membership Function

MFC Membership Function Chromosome

MIMO Multi Input Multi Output

MISO Multi Input Single Output

MLE Maximum Likelihood Types Estimates

MSF Multi- Stage Flash

NB Negative Big

NL Negative Large

NM Negative Medium

NMR Nuclear Magnetic Resonance

NN Neural Network

NS Negative Small

OAM Optimal Associative Memory

OEX Ocean Explorer

OR Operations Research

P Proportional

PA Predictive Accuracy

PB Positive Big

PCP Piecewise Continuous Polynomial

PD Proportional Derivative

PE Processing Element

PI Proportional Integral

PID Proportional Integral-Derivative

PL Positive Large

PLC Programmable Logic Controller

PM Positive Medium

PS Positive Small

PSI Pressure Per Square Inch

PV Predictive Value

RBFN Radial Basis Function Network

RI Radius of Influence

RMS Recursive Mean Square

RO Reverse Osmosis

ROC Receiver Operating Characteristic

RVP Read Vapor Pressure

SCADA Supervisory Control and Data Acquisition

SCS Sum of the Changes in Slope

SDF Separable-in-Denominator Digital Filters

SDI Silt Density Index

SGA Simple Genetic Algorithm

SMC Sliding Mode Controller

SMFC Sliding Mode Fuzzy Controller

SPS Static Partial Sharing

STDM Statistical Time Division Multiplexing

SW Spiral Wound

TC Time Control

TCF Temperature Correction Factor

TDS Total Dissolved Solid

TNF True Negative Function

TPF True Positive Function

TS Takagi-Sugeno

VBR Variable Bit Rate

VBR* Visibility Base Repair

VC Vapor Compressions

VSC Variable Structure Controller

XOR Exclusive Or

TABLE OF CONTENTS

Chapter 1 INTRODUCTION

 Ali Zilouchian and Mo Jamshidi

1.1 Motivation

1.2 Neural Networks

 1.2.1 Rationale for Using NN in Engineering

1.3 Fuzzy Logic Control

 1.3.1 Rationale for Using FL in Engineering

1.4 Evolutionary Computation

1.5 Hybrid Systems

1.6 Organization of the Book

 References

Chapter 2 FUNDAMENTALS OF NEURAL NETWORKS

 Ali Zilouchian

2.1 Introduction

2.2 Basic Structure of a Neuron

 2.2.1 Model of Biological Neurons

 2.2.2 Elements of Neural Networks

 2.2.2.1 Weighting Factors

 2.2.2.2 Threshold

 2.2.2.3 Activation Function

2.3 ADALINE

2.4 Linear Separable Patterns

2.5 Single Layer Perceptron

2.5.1 General Architecture

2.5.2 Linear Classification

2.5.3 Perceptron Algorithm

2.6 Multi-Layer Perceptron

2.6.1 General Architecture

2.6.2 Input-Output Mapping

2.6.3 XOR Realization

2.7 Conclusion

 References

Chapter 3 NEURAL NETWORK ARCHITECTURES

 Hooman Yousefizadeh and Ali Zilouchian

3.1 Introduction

3.2 NN Classifications

3.2.1 Feedforward and feedback networks

3.2.2 Supervised and Unsupervised Learning Networks

3.3 Back Propagation Algorithm

 3.3.1 Delta Training Rule

3.4 Radial Basis Function Network (RBFN)

3.5 Kohonen Self Organization Network

 3.5.1 Training of the Kohonen Network

 3.5.2 Examples of Self-Organization

3.6 Hopfield Network

3.7 Conclusions

 References

Chapter 4 APPLICATIONS OF NEURAL NETWORKS IN

MEDICINE AND BIOLOGICAL SCIENCES

 Faramarz Valafar

4.1 Introduction

4.2. Terminology and Standard Measures

4.3 Recent Neural Network Research Activity in Medicine

and Biological Sciences

 4.3.1 ANNs in Cancer Research

 4.3.2 ANN Biosignal Detection and Correction

 4.3.3 Decision-making in Medical Treatment Strategies

4.4 Summary

 References

Chapter 5 APPLICATION OF NEURAL NETWORK IN

DESIGN OF DIGITAL FILTERS

 Dali Wang and Ali Zilouchian

5.1 Introduction

5.2 Problem Approach

 5.2.1 Neural Network for Identification

 5.2.2 Neural Network Structure

5.3 A Training Algorithm for Filter Design

 5.3.1 Representation

 5.3.2 Training Objective

 5.3.3 Weight Adjustment

 5.3.4 The Training Algorithm

5.4 Implementation Issues

 5.4.1 Identifying a System in Canonical Form

 5.4.2 Stability, Convergence, Learning Rate and Scaling

5.5 2-D Filter Design Using Neural Network

 5.5.1 Two-imensional Signal and Digital Filters

 5.5.2 Design Techniques

 5.5.3 Neural Network Approach

5.6 Simulation Results

 5.6.1 1-D Filters

 5.6.2 2-D Filters

5.7 Conclusions

 References

Chapter 6 APPLICATION OF COMPUTER

NETWORKING USING NEURAL NETWORK

 Homayoun Yousefizadeh

6.1 Introduction

6.2 Self Similar Packet Traffic

 6.2.1 Fractal Properties of Packet Traffic

 6.2.2 Impacts of Fractal Nature of Packet Traffic

6.3 Neural Network Modeling of Packet Traffic

 6.3.1 Perceptron Neural Networks and Back

Propagation Algorithm

 6.3.2 Modeling Individual Traffic Patterns

 6.3.3 Modeling Aggregated Traffic Patterns

6.4 Applications of Traffic Modeling

6.4.1 Packet Loss Prevention

6.4.2 Packet Latency Prediction

 6.4.3 Experimental Observations

6.5 Summary

 References

Chapter 7 APPLICATION OF NEURAL NETWORKS IN

OIL REFINERIES

 Ali Zilouchian and Khalid Bawazir

7.1 Introduction

7.2 Building the Artificial Neural Network

 7.2.1 Range of Input Data

 7.2.2 Size of the Training Data Set

 7.2.3 Acquiring the Training Data Set

 7.2.4 Validity of the Training Data Set

 7.2.5 Selecting Process Variables

7.3 Data Analysis

 7.3.1 Elimination of Bad Lab Values

 7.3.2 Process Parameters� Effect on Neural Network

Prediction

7.4 Implementation Procedure

 7.4.1 Identifying the Application

 7.4.2 Model Inputs Identification

 7.4.3 Range of Process Variables

7.5 Predictor Model Training

7.6 Simulation Results and Discussions

 7.6.1 Naphtha 95% Cut Point

 7.6.2 Naphtha Reid Vapor Pressure

7.7 Conclusions

References

Chapter 8 INTRODUCTION TO FUZZY SETS: BASIC

DEFINITIONS AND RELATIONS

 Mo Jamshidi and Aly El-Osery

8.1 Introduction

8.2 Classical Sets

8.3 Classical Set Operations

8.4 Properties of Classical Sets

8.5 Fuzzy Sets

 8.5.1 Fuzzy Membership Functions

8.6 Fuzzy Set Operations

8.7 Properties of Fuzzy Sets

 8.7.1 Alpha-Cut Fuzzy Sets

 8.7.2 Extension Principle

8.8 Classical Relations vs. Fuzzy Relations

8.9 Conclusion

 References

Chapter 9 INTRODUCTION TO FUZZY LOGIC

 Mo Jamshidi, Aly El-Osery, and Timothy J. Ross

9.1 Introduction

9.2 Predicate Logic

 9.2.1 Tautologies

 9.2.2 Contradictions

 9.2.3 Deductive Inferences

9.3 Fuzzy Logic

9.4 Approximate Reasoning

9.5 Conclusion

 References

 Chapter 10 FUZZY CONTROL AND STABILITY

 Mo Jamshidi and Aly El-Osery

10.1 Introduction

10.2 Basic Definitions

 10.2.1 Inference Engine

 10.2.2 Defuzzification

10.3 Fuzzy Control Design

10.4 Analysis of Fuzzy Control Systems

10.5 Stability of Fuzzy Control Systems

 10.5.1 Lyapunov Stability

 10.5.2 Stability via Interval Matrix Method

10.6 Conclusion

 References

Chapter 11 SOFT COMPUTING APPROACH TO SAFE

NAVIGATION OF AUTONOMOUS PLANETARY

ROVERS

 Edward Tunstel, Homayoun Seraji,

 and Ayanna Howard

11.1 Introduction

 11.1.1 Practical Issues in Planetary Rover Applications

11.2 Navigation System Overview

 11.2.1 Fuzzy-Behaviour-Based Structure

11.3 Fuzzy -Logic-Based Rover Health and Safety

 11.3.1 Health and Safety Indicators

 11.3.2 Stable Attitude Control

 11.3.3 Traction Management

 11.3.3.1 Neuro-Fuzzy Solution

11.4 Fuzzy Terrain-Based Navigation

 11.4.1 Visual Terrain Traversability Assessment and

Fuzzy Reasoning

 11.4.1.1 Terrain Roughness Extraction

 11.4.1.2 Terrain Slope Extraction

 11.4.1.3 Fuzzy Inference of Terrain Traversability

11.5 Strategic Fuzzy Navigation Behaviors

 11.5.1 Seek-Goal Behavior

 11.5.2 Traverse-Terrain Behavior

 11.5.3 Avoid-Obstacle Behavior

 11.5.4 Fuzzy-Behavior Fusion

11.6 Rover Test Bed and Experimental Results

 11.6.1 Safe Mobility

 11.6.2 Safe Navigation

11.7 Summary and Conclusions

 Acknowledgement

 References

Chapter 12 AUTONOMOUS UNDERWATER VEHICLE

CONTROL USING FUZZY LOGIC

 Feijun Song and Samuel M. Smith

12.1 Introduction

12.2 Background

12.3 Autonomous Underwater Vehicles (AUVs)

12.4 Sliding Mode Control

12.5 Sliding Mode Fuzzy Control (SMFC)

12.6 SMFC Design Examples

12.7 Guidelines for Online Adjustment

 12.7.1 Sliding Slope λ Effects

 12.7.2 Thickness of the Boundary Layer φ Effects

12.8 At Sea Experimental Results

12.9 Summary

 References

Chapter 13 APPLICATION OF FUZZY LOGIC FOR

CONTROL OF HEATING, CHILLING, AND AIR

CONDITIONING SYSTEMS

 Reza Talebi-Daryani

13.1 Introduction

13.2 Building Energy Management System (BEMS)

 13.2.1 System Requirements

 13.2.2 System Configuration

 13.2.3 Automation Levels

13.3 Air Conditioning System: FLC vs. DDC

 13.3.1 Process Description

 13.3.2 Process Control

 13.3.3 Digital PID Controller

 13.3.4 Fuzzy Cascade Controller

 13.3.5 DDC vs. FLC

13.4 Fuzzy Control for the Operation Management of a

Complex Chilling System

 13.4.1 Process Description

 13.4.2 Process Operation with FLC

 13.4.3 Description of the Different Fuzzy Controllers

 13.4.4 System Performance and Optimization with FLC

13.5 Application of Fuzzy Control for Energy Management of a

Cascade Heating Center

 13.5.1 The Heating System

 13.5.2 FLC for System Optimization

 13.5.3 FLC Description

 13.5.4 Temperature Control: Fuzzy vs. Digital

13.6 Conclusions

 References

Chapter 14 APPLICATION OF ADAPTIVE NEURO-FUZZY

INFERENCE SYSTEMS TO ROBOTICS

 Ali Zilouchian and David Howard

14.1 Introduction

14.2 Adaptive Neuro-Fuzzy Inference Systems

14.3 Inverse Kinematics

 14.3.1 Solution of Inverse Kinematics Using Fuzzy Logic

 14.3.2 Solution of Inverse Kinematics Using ANFIS

 14.3.3 Simulation Experiments

14.4 Controller Design of Microbot

14.4.1 Design of a Conventional Controller

14.4.2 Hierarchical Control

14.4.3 ANFIS Controller for Microbot

14.5 Conclusions

 References

Chapter 15 APPLICATION OF SOFT COMPUTING FOR

DESALINATION TECHNOLOGY

 Mutaz Jafar and Ali Zilouchian

15.1 Introduction

15.2 General Background on Desalination and Reverse Osmosis

15.2.1 Critical Control Parameters

 15.2.1.1 Temperature

 15.2.1.2 Pressure

 15.2.1.3 Recovery

 15.2.1.4 Feed pH

 15.2.1.5 Salt Rejection

 15.2.1.6 Scaling

15.3 Predictive Modeling Using Neural Networks

15.3.1 Redistributed Receptive Fields of RBFN

 15.3.1.1 Data Clustering

 15.3.1.2 Histogram Equalization

 15.3.1.3 Widths of Receptive Fields

15.4 Case Studies

15.4.1 Example 1: Beach Well Seawater Intake

 15.4.1.1 Simulation Results

15.4.2 Example 2: A Ground Water Intake

15.4.3 Example 3: A Direct Seawater Intake

 15.4.3.1 Scaling Simulation

15.5 Fuzzy Logic Control

15.5.1 Chemical Dosing Control

 15.5.1.1 Fuzzy Rule Base

 15.5.1.2 Membership Functions

 15.5.1.3 Decision Matrix

 15.5.1.4 Results and Discussion

15.5.2 High-Pressure Control

 15.5.2.1 Fuzzy Rule Base

 15.5.2.2 Decision Matrix

 15.5.2.3 Results and Discussion

15.5.3 Flow Rate Control

 15.5.3.1 Fuzzy Rule Base for Flow Control

 15.5.3.2 Decision Matrix

 15.5.3.3 Results and Discussion

15.6 Application of ANFIS to RO Parameters

15.6.1 ANFIS Simulation Results

15.7 Conclusion

 References

Chapter 16 COMPUTATIONAL INTELLIGENCE

APPROACH TO OBJECT RECOGNITION

 K.C. Tan, T.H. Lee, and M.L. Wang

16.1 Introduction

16.2 Obiect Recognition by Neural Feature Extraction and

Fuzzy Combination

 16.2.1 Feature Extraction by Neural Network

 16.2.2 Fuzzy State Dependent Modulation

 16.2.3 Combination of Features Extracted from

Multiple Sources with Fuzzy Reasoning

16.3 A Face Recognition Application

16.4 Conclusions

 References

Chapter 17 AN INTRODUCTION TO EVOLUTIONARY

COMPUTATION

 Gerry Dozier, Abdollah Homaifar,

 Edward Tunstel, and Darryl Battle

17.1 Introduction

17.2 An Overview of Genetic Search

17.2.1 The Genetic Representation of Candidate Solutions

17.2.2 Population Size

17.2.3 Evaluation Function

17.2.4 Genetic Operators

 17.2.4.1 Single Point Crossover

 17.2.4.2 Uniform Crossover

 17.2.4.3 Mutation

17.2.5 The Selection Algorithm

 17.2.5.1 Proportionate Selection

 17.2.5.2 Linear Rank Selection

 17.2.5.3 Tournament Selection

17.2.6 Generation Gap

17.2.7 Elitism

17.2.8 Duplicates

17.3 Genetic Search

17.4 Genetic Programming

17.4.1 Structure Representation

17.4.2 Closure and Sufficiency

17.4.3 Fitness Evaluation

17.4.4 Genetic Operators

17.5 Summary

 Acknowledgments

 References

Chapter 18 EVOLUTIONARY CONCEPTS FOR IMAGE

PROCESSING APPLICATIONS

 Madjid Fathi and Lars Hildebrand

18.1 Introduction

18.2 Optimization Techniques

 18.2.1 Basic Types of Optimization Methods

 18.2.2 Deterministic Optimization Methods

 18.2.2.1 Minimization in the Direction of the

Coordinates

 18.2.2.2 Minimization in the Direction of the

Steepest Slope

 18.2.2.3 Simplex Minimization

 18.2.3 Probabilistic Optimization Methods

18.3 Evolutionary Strategies

 18.3.1 Biological Evolution

 18.3.2 Mechanisms of Evolution Strategy

 18.3.3 The (1+1) Evolutionary Strategy

 18.3.4 The (µ+1) Evolutionary Strategy

 18.3.5 The (µ,λ) Evolutionary Strategy

18.4 Image Processing Applications

 18.4.1 Generating Fuzzy Sets for Linguistic Color

Processing

 18.4.1.1 Resistance Spot Welding

 18.4.1.2 Linguistic Color Processing

 18.4.2 Developing Specialized Digital Filters

 18.4.2.1 Digital Image Filters

 18.4.2.2 Optimization of Digital Filters

18.5 Conclusion

 References

Chapter 19 EVOLUTIONARY FUZZY SYSTEMS

 Mohammad.R. Akbarzadeh-T. and A.H. Meghdadi

19.1 Introduction

19.1.1 The Problem Statement and Design Outline

19.2 Free Parameters

19.2.1 Competing Conventions

19.3 Design of Interpretation (Encoding) Function

19.3.1 Membership Functions

 19.3.1.1 Triangular Membership Functions

 19.3.1.2 Non-triangular Membership Functions

 19.3.1.3 General Method of MF Encoding

19.3.2 Rule Encoding

 19.3.2.1 A Control System Problem Formulation

19.4 The Initial Population

19.4.1 Grandparenting: A Method of Incorporating

 a priori Expert Knowledge

19.5 Fitness Function

19.6 Speed Regulation of a DC Motor

19.6.1 The Control Architecture

19.6.2 Results

19.7 Current Problems and Challenges

19.8 Summary and Results

 Acknowledgement

 References

Chapter 20 GENETIC AND EVOLUTIONARY METHODS

FOR MOBILE ROBOT MOTION CONTROL

AND PATH PLANNING

 Abdollah Homaifar, Edward Tunstel,

 Gerry Dozier, and Darryl Battle

20.1 Introduction

20.2 Genetic Programming for Path Tracking Control

20.2.1 Path Tracking Formulation

20.2.2 GP Solution

 20.2.2.1 Controller Fitness Evaluation

20.3 Path Tracking Simulation Result

20.3.1 Evolved Controller Robustness

20.4 Evolutionary Path Planning

20.4.1 Evolutionary Path Planning System

20.4.1.1 Environment and Path Representation

20.4.1.2 Visibility-Based Repair of Candidate

 Paths

20.4.1.3 Path Evaluation, Selection, and

Evolutionary Operators

20.5 Path Evolution with Fuzzy Selection

20.5.1 Fuzzy Inference System

20.5.2 Experimental Example

20.6 Summary and Conclusions

 Acknowledgments

 References

Chapter 21: PROBLEMS AND MATLAB PROGRAMS

 Ali Zilouchian and Mo Jamshidi

21.1 Introduction

21.2 Neural Network Problems

21.3 Fuzzy Logic Problems

21.4 Applications

21.5 MATLAB Programs

1 INTRODUCTION

Ali Zilouchian and Mo Jamshidi

1.1 MOTIVATION

With the increasing complexity of various industrial processes, as well as

household appliances, the link among ambiguity, robustness and performance of

these systems has become increasingly evident. This may explain the dominant

role of emerging “intelligent systems” in recent years [1]. However, the

definition of intelligent systems is a function of expectations and the status of

the present knowledge: perhaps the “intelligent systems” of today are the

“classical systems” of tomorrow.

The concept of intelligent control was first introduced nearly two decades

ago by Fu and G. Saridis [2]. Despite its significance and applicability to

various processes, the control community has not paid substantial attention to

such an approach. In recent years, intelligent control has emerged as one of the

most active and fruitful areas of research and development (R&D) within the

spectrum of engineering disciplines with a variety of industrial applications.

During the last four decades, researchers have proposed many model-based

control strategies. In general, these design approaches involve various phases

such as modeling, analysis, simulation, implementation and verification. Many

of these conventional and model-based methods have found their way into

practice and provided satisfactory solutions to the spectrum of complex systems

under various uncertainties [3]. However, as Zadeh articulated as early as 1962

[4] “often the solution of real life problems in system analysis and control has

been subordinated to the development of mathematical theories that dealt with

over-idealized problems bearing little relation to theory”.

In one of his latest articles [5] related to the historical perspective of system

analysis and control, Zadeh has considered this decade as the era of intelligent

systems and urges for some tuning: “I believe the system analysis and controls

should embrace soft computing and assign a higher priority to the development

of methods that can cope with imprecision, uncertainties and partial truth.”

Perhaps the truth is complex and ambiguous enough to accept contributions

from various viewpoints while denying absolute validity to any particular

viewpoint in isolation. The exploitation of the partial truth and tolerance for

imprecision underlie the remarkable human ability to understand distortions and

make rational decisions in an environment of uncertainty and imprecision. Such

modern relativism, as well as utilization of the human brain as a role model on

the decision making processes, can be regarded as the foundation of intelligent

systems design methodology.

In a broad perspective, intelligent systems underlie what is called “soft

computing.” In traditional hard computing, the prime objectives of the

computations are precision and certainty. However, in soft computing, the

precision and certainty carry a cost. Therefore, it is realistic to consider the

integration of computation, reasoning, and decision making as various partners

in a consortium in order to provide a framework for the trade off between

precision and uncertainty. This integration of methodologies provides a

foundation for the conceptual design and deployment of intelligent systems. The

principal partners in such a consortium are fuzzy logic, neural network

computing, generic algorithms and probabilistic reasoning. Furthermore, these

methodologies, in most part, are complementary rather than competitive [5], [6].

Increasingly, these approaches are also utilized in combination, referred to as

“hybrid.” Presently, the most well-known systems of this type are neuro-fuzzy

systems. Hybrid intelligent systems are likely to play a critical role for many

years to come.

Soft computing paradigms and their hybrids are commonly used to enhance

artificial intelligence (AI) and incorporate human expert knowledge in

computing processes. Their applications include the design of intelligent

autonomous systems/controllers and handling of complex systems with

unknown parameters such as prediction of world economy, industrial process

control and prediction of geological changes within the earth ecosystems. These

paradigms have shown an ability to process information, adapt to changing

environmental conditions, and learn from the environment.

In contrast to analytical methods, soft computing methodologies mimic

consciousness and cognition in several important respects: they can learn from

experience; they can universalize into domains where direct experience is absent;

and, through parallel computer architectures that simulate biological processes,

they can perform mapping from inputs to the outputs faster than inherently

serial analytical representations. The trade off, however, is a decrease in

accuracy. If a tendency towards imprecision could be tolerated, then it should be

possible to extend the scope of the applications even to those problems where

the analytical and mathematical representations are readily available. The

motivation for such an extension is the expected decrease in computational load

and consequent increase of computation speeds that permit more robust control.

For instance, while the direct kinematics mapping of a parallel manipulator’s leg

lengths to pose (position and orientation of its end effector) is analytically

possible, the algorithm is typically long and slow for real-time control of the

manipulator. In contrast, a parallel architecture of synchronously firing fuzzy

rules could render a more robust control [7].

There is an extensive literature in soft computing from theoretical as well as

applied viewpoints. The scope of this introductory chapter is to provide an

overview of various members of these consortiums in soft computing, namely

fuzzy logic (FL), neural networks (NN), evolutionary algorithms (EA) as well as

their integration. In section 1.2, justification as well as rationale for the

utilization of NN in various industrial applications is presented. Section 1.3,

introduces the concept of FL as well as its applicability to various industrial

processes. The evolutionary computation is presented in section 1.4. Section 1.5

is devoted to the integration of soft-computing methodologies commonly called

hybrid systems. Finally the organization of the book is presented in section 1.6

of this chapter.

1. 2 NEURAL NETWORKS

For many decades, it has been a goal of engineers and scientists to develop a

machine with simple elements similar to one found in the human brain.

References to this subject can be found even in 19
th
 century scientific literature.

During the 1940s, researchers desiring to duplicate the human brain, developed

simple hardware (and later software) models of biological neurons and their

interconnection systems. McCulloch and Pitts in 1943[8] published the first

systematic study on biological neural networks. Four years later the same

authors explored the network paradigms for pattern recognition using a single-

layer perceptron. Along with the progress, psychologists were developing

models of human learning. One such model, that has proved most fruitful, was

due to D. O. Hebb, who, in 1949, proposed a learning law that became the

starting point for artificial neural networks training algorithm [9]. Augmented

by many other methods, it is now well recognized by scientists as indicative of

how a netwo rk of artif icial neuro ns could exhib it learn ing behav ior. In the

1950s and 1960s, a group of researchers combined these biological and

psychological insights to produce the first artificial neural network [9], [10].

Initially implemented as electronic circuits, they were later converted into a

more flexible medium of computer simulation. However, from 1960 to 1980,

due to certain severe limitations on what a NN could perform, as pointed out by

Minsky [11], neural network research went into near eclipse. The discovery of

training methods for a multi-layer network of the 1980s has, more than any

other factor, been responsible for the recent resurgence of NN.

1.2.1 Rationale for Using NN in Engineering

In general, artificial neural networks (ANNs) are composed of many simple

elements emulating various brain activities. They exploit massively parallel

local processing and distributed representation properties that are believed to

exist in the brain. A major motivation to introduce ANN among many

researchers has been the exploration and reproduction of human information

processing tasks such as speech, vision, and knowledge processing and motor

control. The attempt of organizing such information processing tasks highlights

the classical comparison between information processing capabilities of the

human and so called hard computing. The computer can multiply large numbers

at fast speed, yet it may not be capable of understanding an unconstrained

pattern such as speech. On the other hand, though a human being understands

speech, he lacks the ability to compute the square root of a prime number

without the aid of pencil and paper or a calculator. The difference between these

two opposing capabilities can be traced to different processing methods which

each employs. Digital computers rely upon algorithm-based programs that

operate serially, controlled by CPU, and store the information at a particular

location in memory. On the other hand, the brain relies on highly distributed

representations and transformations that operate in parallel, distribute control

through billions of highly interconnected neurons or processing elements, and

store information in various straight connections called synapses.

During the last decade, various NN structures have been proposed by

researchers in order to take advantage of such human brain capabilities. In

general, neural networks are composed of many simple elements operating in

parallel. The network function is determined largely by the connections between

these elements. Neural networks can be trained to perform complex functions

due to the nature of their nonlinear mappings of input to output data set.
In recent years, the NN has been applied successfully to many fields of

engineering such as aerospace, digital signal processing, electronics, robotics,
machine vision, speech, manufacturing, transportation, controls and medical
engineering [12]-[60]. A partial list of NN industrial applications includes
temperature control [20], [21]; inverted pendulum controller [22], [23]; robotics
manipulators [24]-[30] servo motor control [31]-[34]; chemical processes [35]-
[37]; oil refin ery quali ty contr ol [38]; aircr aft contr ols and touch down [12],
[39]; chara cter recog nition [16], [40]- [42]; proce ss ident ification [43]- [47];
failure detection [48]; speech recognition [40]; DSP architectures [49]; truck
backer [50]; autonomous underwater vehicle [51], Communication[52];steel
rolling mill [53] and car fuel injection system [54],and medical diagnosis and
applications [15], [55]-[60]. Detailed descriptions of the works can be found in
relevant references.

1.3 FUZZY LOGIC CONTROL

The fuzzy logic has been an area of heated debate and much controversy during

the last three decades. The first paper in fuzzy set theory, which is now

considered to be the seminal paper on the subject, was written by Zadeh [61],

who is considered the founding father of the field. In that work, Zadeh was

implicitly advancing the concept of human approximate reasoning to make

effective decisions on the basis of available imprecise linguistic information

[62], [63]. The first implementation of Zadeh’s idea was accomplished in 1975

by Mamdani [64], and demonstrated the viability of fuzzy logic control (FLC)

for a small model steam engine. After this pioneer work, many consumer

products as well as other high tech applications using fuzzy technology have

been developed and are currently available in Japan, the U.S. and Europe.

1.3.1 Rationale for Using FL in Engineering

During the last four decades, most control system problems have been
formulated by the objective knowledge of the given systems (e.g., mathematical
model). However, as we have pointed out in section 1.1, there are knowledge-
based systems and information which cannot be described by traditional
mathematical representations. Such relevant subjective knowledge is often
ignored by the designer at the front end, but often utilized in the last phase in
order to evaluate design. Fuzzy logic provides a framework for both information
and knowledge-based systems. So called knowledge-based methodology is
much closer to human thinking and natural language than the traditionally
classical logic.

Fuzzy logic controller (FLC) utilizes fuzzy logic to convert the linguistic

control strategy based on expert knowledge into an automatic control strategy.

In order to use fuzzy logic for control purposes, we need to add a front-end

“fuzzifier” and a rear-end “defuzzifier” to the usual input-output data set. A

simple fuzzy logic controller is shown in Figure 1.1. It contains four

compo nents: rules , fuzzi fier, infer ence engin e, l and defuz zifier. Once the rule

has been established, it can be considered as a nonlinear mapping from the input

to the output.

In

Figure 1.1: A Simple Structure of a Fuzzy Logic Controller.

There are a number of books related to fuzzy logic [65]-[80]. Its applications

include automatic train control [6], [67]; robotics [21], [65], [68], [71], [81]-

[83]; pattern recognition [2], [7], [67], [71], [75]; servo motor [71], [84], [85],

disk drive [86], washing machine [87], [88]; VLSI and fuzzy logic chips [6],

[68], [75], [89]; car and helicopter model [6], [65], electronics and home

appliances [71], [73], [90]; sensors [71], temperature control [2], [71]; computer

vision [71], [73]; aircraft landing systems [71], [73]; navigation and cruise

control[71], [91]-[94], inverted pendulum [63],[71],[95]-[97] and cargo ship

[98], to name a few. In this book a number of pioneer applications are also

presented.

SYSTEM

DEFUZZIFIER FUZZIFIERFIR

Out

-

1.4 EVOLUTIONARY COMPUTATION

In recent years, a variety of evolutionary computation methodologies have been

proposed to solve problems of common engineering applications. Applications

often involve automatic learning of nonlinear mappings that govern the behavior

of control systems, as well as parallel search strategies for solving multi-

objective optimization problems. These algorithms have been particularly

appealing in the scientific communities since they allow autonomous

adaptation/optimization without human intervention. These strategies are based

on the fact that the biological evolution indeed represents an almost perfect

method for adaptation of an individual to the environment according to

Darwinian concepts.

There are various approaches to evolutionary optimization algorithms

including evolution concept, genetic programming and genetic algorithms.

These various algorithms are similar in their basic concepts of evolution and

differ mainly in their approach to parameter representation. The evolutionary

optimization algorithms operate by representing the optimization parameters via

a gene-like structure and subsequently utilizing the basic mechanisms of

Darwinian natural selection to find a population of superior parameters. The

three basic principles of rules of biological evolution are explained in detail in

Chapter 17.

Genetic algorithm (GA), in particular, is an evolutionary algorithm which

has performed well in noisy, nonlinear and uncertain processes. Additionally,

GAs are also not problem specific, i.e., there is very little, if any, a priori

knowledge about the system used in design of GAs. Hence, GAs are desirable

paradigms for optimizing a wide array of problems with exceeding complexity.

The mathematical framework of GA was first developed by Holland [101], and

has subsequently been extended [102], [103]. A simple genetic algorithm

operates on a finite population of fixed-length binary strings called genes.

Genetic algorithms possess three basic operations: reproduction, cross over and

mutation. The reproduction is an operation in which the strings are copies based

on their fitness. The crossover of genes and mutation of random changes of

genes are the other operations in GA. Interested readers are referred to Goldberg

[101], Davis [102], Chapter 17 of this book, and the references therein for

comprehensive overviews of GA.

Another evolutionary computational approach is genetic programming (GP)

which would allow a symbolic-based nonlinear optimization. The GP paradigm

[103] also computationally simulates the Darwinian evolution process by

applying fitness-based selection and genetic operators to a population of parse

trees of a given programming language. It departs from the conventional GA

primarily with regard to its representation scheme. Structures undergoing

adaptation are executable hierarchical programs of dynamically varying size and

structure, rather than numerical strings. Commonly in a hybrid system such as a

GP-Fuzzy case, a population comprising fuzzy rule-bases (symbolic structures)

that are candidate solutions to the problem, evolves in response to selective

pressure induced by their relative success at implementing the desired behavior

[103].

1.5 HYBRID SYSTEMS

In many cases, hybrid applications methods have proven to be effective in

designing intelligent control systems. As it was shown in recent years, fuzzy

logic, neural networks and evolutionary computations are complementary

methodologies in the design and implementation of intelligent systems. Each

approach has its merits and drawbacks. To take advantage of the merits and

eliminate their drawbacks, several integration of these methodologies have been

proposed by researchers during the past few years. These techniques include the

integration of neural network and fuzzy logic techniques as well as the

combination of these two technologies with evolutionary methods.

The merging of the NN and FL can be realized in three different directions,

resulting in systems with different characteristics [103]- [108]:

1. Neuro-fuzzy systems: provide the fuzzy systems with automatic tuning

systems using NN as a tool. The adaptive neuro fuzzy inference

systems are included in this classification

2. Fuzzy neural network: retain the functions of NN with fuzzification of

some of their elements. For instance, fuzzy logic can be used to

determine the learning steps of NN structure.

3. Fuzzy-neural hybrid systems: utilize both fuzzy logic and neural

networks in a system to perform separate tasks for decouple

subsystems. The architecture of the systems depends on a particular

application. For instance, the NN can be utilized for the prediction

where the fuzzy logic addresses the control of the system.

The applications of these hybrid methods to several industrial processes

including robot manipulators, desalination plants, and underwater autonomous

vehicles will be presented in this book.

On the other hand, the NN, FL and evolutionary computations can be

integrated [103], [109]-[123]. For example, the structure and parameter learning

problems of neural network can be coded as genes in order to search for optimal

structures and parameters of neural network. In addition, the inherent flexibility

of the evolutionary computation and fuzzy systems has created a large diversity

and variety in how these two complementary approaches can be combined to

solve many engineering problems. Some of their applications include control of

pH in chemical processes [110], inverted pendulum [111]-[113], cart and poles

problem [114], robot trajectory [115], truck-backing problem [116]; automotive

active suspension control [117]; temperature control of brine heater [119];

hepatitis diagnosis problem [120]; classification of flowers. [121]and position

control of servo systems [122].

 In Chapter 18, evolutionary concept and fuzzy logic will be combined for

image processing applications. In Chapter 19, the application of GA-fuzzy

systems as the most common evolution-based fuzzy system will be presented.

Genetic programming is employed to learn the rules and membership functions

of the fuzzy logic controller, and also to handle selection of fuzzy set

intersection operators. Finally, Chapter 20 presents a methodology for applying

GP to design a fuzzy logic steering controller for a mobile robot.

1.6 ORGANIZATION OF THE BOOK

This book covers basic concepts and applications of intelligent systems using

soft computing methodologies and their integration. It is divided into six major

parts.

Part I (Chapters 2 − 3) covers the fundamental concepts of neural networks.

Single-layer as well as multilayer networks are briefly reviewed. Supervised and

unsupervised learning are discussed. Four different NN architectures including

back propagation, radial basis functions, Hopfield and Kohonen self-

organization are presented.

Part II (Chapters 4 − 7) addresses several applications of NN in science and

engineering. The areas of the NN applications include medicine and biology,

signal processing, computer networking, chemical process and oil refinery.

Part III (Chapters 8 − 10) of the book covers the fuzzy set theory, fuzzy

logic and fuzzy control and stability. In these three chapters, we cover the

fundamental concepts of fuzzy sets, fuzzy relation, fuzzy logic, fuzzy control,

fuzzification, defuzification and stability of fuzzy systems.

Part IV (Chapters 11 − 16) covers various applications of fuzzy logic control

including navigation of autonomous planetary rover, autonomous underwater

vehicle, heating and cooling systems, robot manipulators, desalination and

object recognition.

Part V (Chapters 17 − 20) covers the concepts of evolutionary computations

and their applications to several engineering problems. Chapter 17 presents a

brief introduction of evolutionary computations. In the following chapters (18 −

20) several applications of evolutionary computations are explored. Furthermore

the integration of these methodologies with the fuzzy logic is presented. Finally,

some examples and exercises are provided in Chapter 21. MATLAB neural

network and fuzzy logic toolboxes can be used to solve some of these problems.

REFERENCES

1. Wright, R., Can Machines Think? Time, Vol. 147, No. 13, March 1996.

2. Gupta, M., Saridis, G., and Gaines, B, Fuzzy Automatica and Decision

Processes, North-Holland, NY, 1977.

3. Antsaklis, P.J. and Passino, K.M., (eds.), An Introduction to Intelligent

and Autonomous Control, Kluwer Academic Publishers, Norwell, MA,

1993.

4. Zadeh, L.A., A Critical View of Our Research in Automatic Control,

IRE Trans. on Automatic Controls, AC-7, 74, 1962.

5. Zadeh, L.A., The Evolution of Systems Analysis and Control: A

Personal Perspective, IEEE Control Mag., Vol. 16, No. 3, 95, 1996.

6. Yager, R. and Zadeh, L.A. (eds.), An Introduction to Fuzzy Logic

Applications in Intelligent Systems, Kluwer Academic Publishers,

Boston, 1992.

7. Diaz-Robainas, R., Zilouchian, A. and Huang, M., Fuzzy Identification

on Finite Training-Set with Known Features, Int. J. Automation Soft

Computing.

8. McCulloch, W.W. and Pitts, W., A Logical Calculus of Ideas Imminent

in Nervous Activity, Bull. Math. Biophy., 5, 115, 1943.

9. McClelland, J. L. and Rumelhart, D. E., The PDP Research Group,

Parallel Distributed Processing − Explorations in the Microstructure of

Cognition, Vol. 2: Psychological and Biological Models, MIT Press,

MA, 1986.

10. Rosenblatt, F., Principles of Neurodynamics, Spartan Press,

Washington, DC, 1961.

11. Minsky, M. and Papert, S., Perceptron: An Introduction to

Computational Geometry, MIT Press, MA, 1969.

12. Miller, W. T., Sutton, R., and Werbos, P., Neural Networks for

Control, MIT Press, MA, 1990.

13. Zurada, J., Introduction to Artificial Neural Systems, West Publishing

Co., St. Paul, MN, 1992.

14. Fausett, L, Fundamentals of Neural Networks, Prentice-Hall,

Englewood Cliffs, NJ. 1994.

15. Croall, I.F. and Mason, J.P. (eds.), Industrial Applications of Neural

Networks, Springer-Verlag, NY, 1991.

16. Linkens, D.A. (ed.), Intelligent Control in Biomedicine, Taylor &

Francis, London, 1994.

17. Haykin, S., Neural Networks: A Comprehensive Foundation, Prentice-

Hall, Upper Saddle River, NJ, 1999.

18. Kosko, B., Neural Network for Signal Processing, Prentice-Hall,

Englewood Cliffs, NJ, 1992.

19. Kohonen, T., Self-Organization and Associative Memory, 3rd ed.,

Springer-Verlag, NY, 1988.

20. Khalid, M. and Omatu S., A Neural Network Controller for a

Temperature Control System, IEEE Control System Mag., 58−64, June

1992.

21. Gupta, M. and Sinha, N. (eds.), Intelligent Control Systems: Theory

and Applications, IEEE Press, Piscataway, NJ, 1996.

22. Tolat, V., An Adaptive Broom Balancer with Visual Inputs, Proc. of

IEEE Int. Conf. Neural Networks, 641, 1998.

23. Anderson, C.W., Learning To Control an Inverted Pendulum with

Connectionist Networks, Proc. of Am. Controls Conf., 2294, 1988.

24. Nguyen, L., Patel, R., and Khorasani, K., Neural Network

Architectures for the Forward Kinematic Problem in Robotics, Proc. of

IEEE Int. Conf. Neural Networks, 393, 1990.

25. Newton, R.T. and Xu, Y., Neural Network Control of a Space

Manipulator, IEEE Control Syst. Mag., 14, Dec. 1993.

26. Miller, W. T., Real-Time Neural Network Control of a Biped Walker

Robot, IEEE Control Syst., Vol. 14, No.1, Feb. 1994.

27. Liu, H., Iberall, T., and Bekey, G., Neural Network Architecture for

Robot Hand Control, IEEE Control Syst., Vol. 9, No. 3, 38, April 1989.

28. Handelman, D., Lane, S., and Gelfand, J., Integrating Neural Networks

and Knowledge-Based Systems for Intelligent Robotic Control, IEEE

Control Syst. Mag., Vol. 10, No. 3, 77, April 1990.

29. Rabelo, L.C. and Avula, X., Hierarchical Neuo-controller Architecture

for Robotic Manipulation, IEEE Control Syst. Mag., Vol. 12, No.2, 37,

April 1992.

30. Murostsu, Y., Tsujio, S., Sendo, K., and Hayashi, M., Trajectory

Control of Flexible Manipulators on a Free-Flying Space Robot, IEEE

Control Syst. Mag., Vol. 12, No.3, 51, June 1992.

31. Zhang, Y., Sen, P., and Hearn, G., An On-Line Trained Adaptive

Neural Controller, IEEE Control Syst., Vol. 15, No.5, 67-75, Oct.

1995.

32. Kupperstien, M. and Rubinstein, J., Implementation of an Adaptive

Neural Controller for Sensory-Motor Coordination, IEEE Control

Syst., Vol. 9, No. 3, 25, 1989.

33. Eckmiller, R., Neural Nets for Sensory and Motor Trajectories, IEEE

Control Syst., Vol. 9, No. 3, 53, 1989.

34. Hashimoto, H., Kubota, T., Kudou, M., and Harashima, F., Self-

Organization Visual Servo System Based on Neural Networks, IEEE

Control Syst. Mag., Vol. 12, No. 2, 31, 1992.

35. Bhat, N., Minderman, P., McAvoy, T., and Wang, N., Modeling

Chemical Process Systems via Neural Network Computation, IEEE

Control Syst. Mag., Vol. 10, No.3, 24, 1990.

36. Borman, S., Neural Network Applications in Chemistry Begin to

Appear, Chemical and Eng. News, Vol. 67, No. 17, 24, 1989.

37. Bawazeer, K. H., Prediction of Crude Oil Product Quality Parameters

Using Neural Networks, M.S. Thesis, Florida Atlantic University, Boca

Raton, FL, 1996.

38. Draeger, A., Engell, S., and Ranke, H., Model Predictive Control

Using Neural Networks, IEEE Control Syst., Vol. 15, No.5, 61, 1995.

39. Steck, J. E., Rokhsaz, M., and Shue S., Linear and Neural Network

Feedback for Flight Control Decoupling, IEEE Control Syst., Vol. 16,

No. 4, 22, 1996.

40. Lippmann, R. P., An Introduction to Computing with Neural Network,

IEEE Acoustic, Speech, and Signal Process. Mag., 4, 1987.

41. Guyon, I., Application of Neural Networks to Character Recognition,

Int. J. Pattern Recog. Artif. Intell., Vol. 5, Nos. 1 and 2, 353, 1991.

42. LeCun, Y., Jackel, L.D., etal., Handwritten Digital Recognition:

Application of Neural Network Chips and Automatic Learning, IEEE

Com. Mag., 41,1988.

43. Parlos, A. G., Chong, K.T., and Atiya, A.F., Application of Recurrent

Neural Multilayer Perceptron in Modeling Complex Process Dynamic,

IEEE Trans. on Neural Networks, Vol. 5, No. 2, 255, 1994.

44. Sartori, M. and Antsaklis, P., Implementation of Learning Control

Systems Using Neural Networks, IEEE Control Syst. Mag., Vol. 12,

No.2, 49-57,1992.

45. Narenda, K. and Parthasarathy, K., Identification and Control of

Dynamic Systems Using Neural Networks, IEEE Trans. on Neural

Networks, Vol.1, 4,1990.

46. Narendra, K.S., Balakrishnan, J., and Cliliz, K., Adaptation and

Learning Using Multiple Models, Switching and Tuning, IEEE Control

Syst., Vol. 15, No. 3, 37, 1995.

47. Antsaklis, P., Special Issue on Neural Networks for Control System,

IEEE Control Syst. Mag., Vol. 10, No.3, 8, 1990.

48. Naida, S., Zafiriou, E., and McAvoy, T., Use of Neural Networks for

Sensor Failure Detection in a Control System, IEEE Control Syst.

Mag., Vol. 10, No. 3, 49,1990.

49. Radivojevic, I., Herath, J., and Gray, S., High-Performance DSP

Architectures for Intelligence and Control Applications, IEEE Control

Syst., Vol.11, No. 4, 49, 1991.

50. Nguyen, D. and Widrow, B., Neural Networks for Self-Learning

Control Systems, IEEE Control Syst. Mag., 18, 1990.

51. Sanner, R. and Akin, D., Neuromorphic Pitch Attitude Regulation of an

Underwater Telerobot, IEEE Control Syst. Mag., Vol. 10, No. 3, 62,

1990.

52. Rauch, H. E. and Winarske, T., Neural Networks for Routing

Communication Traffic, IEEE Control Syst. Mag., Vol. 8, No. 2, 26,

1988.

53. Hofer, D. S., Neumerkel, D., and Hunt, K., Neural Control of a Steel

Rolling Mill, IEEE Control Syst., Vol. 13, No. 3, 69,1993.

54. Majors, M., Stori, J., and Cho, D., Neural Network Control of

Automotive Fuel-Injection Systems, IEEE Control Syst., Vol. 14, No.

3, 31, 1994.

55. Nekovie, R. and Sun, Y., Back-propagation Network and its

Configuration for Blood Vessel Detection in Angiograms, IEEE Trans.

on Neural Networks, Vol. 6, No. 1, 64, 1995.

56. Echauz, J. and Vachtsevanos, G., Neural Network Detection of

Antiepileptic Drugs from a Single EEG trace, Proc. of the IEEE

Electro/94 Int. Conf., Boston, MA, 346, 1994 .

57. Charache S., Barton F. B., Moore R. D., et al., Hydroxyurea and Sickle

Cell Anemia, Vol. 75, No. 6, 300, 1980.

58. Charache S., Terrin L. M., Moore R. D., et al., Effect of Hydroxyurea

on the Frequency of Painful Crises in Sickle Cell Anemia, N. E. J.

Med., 332, 1995.

59. Charache S, Dover G. J., Moore R. D., et al., Hydroxyurea: Effects on

Hemoglobin F Production In-Patients With Sickle Cell Anemia, Blood,

Vol. 79, 10, 1992.

60. Apolloni, B., Avanzini, G., Cesa-Bianchi, N., and Ronchini, G.,

Diagnosis of Epilepsy via Backpropagation, Proc. of the Int. Joint

Conf. Neural Networks, Washington, DC, Vol. 2, 571, 1990.

61. Zadeh, L.A., Fuzzy Sets, Information and Control, 8, 338, 1965.

62. Zadeh, L.A., A Rationale for Fuzzy Control, J. Dynamic Syst., Meas.

and Control, Vol. 94, Series G, 3, 1972.

63. Zadeh, L.A., Making the Computers Think Like People, IEEE

Spectrum, 1994.

64. Mamdani, E. H., Application of Fuzzy Algorithms for Control of

Simple Dynamic Plant, Proc. of IEE, Vol. 121, No. 12, 1974.

65. Surgeno, M. (ed.), Industrial Applications of Fuzzy Control, North-

Holland, Amsterdam, 1985.

66. Yagar, R., Ovchinnikov, S., Tong, R.M., and Nguyen, H.T, Fuzzy Sets

and Applications, Wiley Interscience, NY, 1987.

67. Zimmermann, H., Fuzzy Set Theory and its Applications, Kluwer

Academic Publishers, Boston, 1991.

68. Ralescu, A. (ed.), Applied Research in Fuzzy Technology, Kluwer

Academic Publishers, Boston, 1994.

69. Kaufmann, A. and Gupta, M. (eds.), Introduction to Fuzzy Arithmetic

Theory and Applications, Van Nostrand Reinhold, NY, 1985.

70. Bezdek, J., Pattern Recognition with Fuzzy Objective Function

Algorithms, Plenum Press, NY, 1981.

71. Marks II,R. (ed.), Fuzzy Logic Technology and Applications, IEEE

Press, Piscataway, NJ, 1994.

72. Jamshidi, M., Vadiee N., and Ross, T.J. (eds.), Fuzzy Logic and

Control: Software and Hardware Applications, Prentice Hall,

Englewood Cliffs, NJ, 1993.

73. Amizadeh, F. and Jamshidi, M., Soft Computing, Fuzzy Logic, Neural

Networks, and Distributed Artificial Intelligence, Vol. 4, Prentice Hall,

Englewood Cliffs, NJ, 1994.

74. Nguyen, H., Sugeno, M., Tong, R., and Yager, R., Theoretical Aspects

of Fuzzy Control, John Wiley & Sons, NY, 1995.

75. Kosko, B., Fuzzy Engineering, Prentice Hall, Upper Saddle River, NJ,

1997.

76. Passino, K., and Yurkovich, S., Fuzzy Control, Addison Wesley,

Menlo Park, CA, 1998.

77. Cox, E.D., Fuzzy Logic for Business and Industry, Charles River

Media, Inc., Rockland, MA, 1995.

78. DeSilva, C.W., Fuzzy Logic and Application, CRC Press, Boca Raton,

FL, 1998.

79. Jamshidi, M., Large-Scale Systems – Modeling, Control and Fuzzy

Logic, Prentice Hall, Upper Saddle River, NJ, 1996.

80. Langari, G., A Framework for Analysis and Synthesis of Fuzzy Logic,

Ph.D. Dissertation, University of California, Berkeley, 1990.

81. Lime, C.M. and Hiyama, T., Application of Fuzzy Control to a

Manipulator, IEEE Trans. on Robotics and Automation, Vol. 7, 5,

1991.

82. Li, W., Neuro-Fuzzy Systems for Intelligent Robot Navigation and

Control Under Uncertainty, Proc. of IEEE Robotics and Automation

Conf., 1995.

83. Nedungadi, A., Application of Fuzzy Logic to Solve the Robot Inverse

Kinematic Problem, Proc. of Fourth World Conf. on Robotics

Research, 1, 1991.

84. Li, Y. and Lau, C., Development of Fuzzy Algorithms for Servo

System, IEEE Control Mag., 65, 1989.

85. Ready, D. S., Mirkazemi-Moud, M., Green, T., and Williams, B.,

Switched Reluctance Motor Control Via Fuzzy Adaptive Systems,

IEEE Control Syst., Vol. 15, No. 3, 8, 1995.

86. Yoshida, S. and Wakabayashi, N., A Fuzzy Logic Controller for a

Rigid Disk Drive, IEEE Control Syst. Mag., Vol. 12, No. 3, 65, 1992.

87. Benison, P., Badami, V., Chiang, K., Khedkar, P., Marcelle, K., and

Schutten, M., Industrial Applications of Fuzzy Logic at General

Electric, Proc. of IEEE, Vol. 83, No, 3, 450, 1995.

88. Schwartz, D., Klir, G., Lewis, H., and Ezawa, Y., Application of Fuzzy

Sets and Approximate Reasoning, Proc. of IEEE, Vol. 82, No. 4, 482,

1994.

89. Costa, A., DeGloria, A., Faraboschi, P., Pagni, A., and Rizzoto, G.,

Hardware Solutions for Fuzzy Control, Proc. of IEEE, Vol. 83, No. 3,

422, 1995.

90. Takagi, H., Cooperative System of Neural Network and Fuzzy Logic

and its Applications to Consumer Products, Van Nostrand Reinhold,

NY, 1993.

91. Kwong, W.A., Passino, K., Laukonen, E.G., and Yurkovich, S., Expert

Supervision of Fuzzy Learning Systems for Fault Tolerant Aircraft

Control, Proc. of IEEE, Vol. 83, No. 3, 466, 1995.

92. Hessburg, T. and Tomizuka, M., Fuzzy Logic Control for Lateral

Vehicle Guidance, IEEE Control Syst., Vol. 14, No. 4, 55, 1994.

93. Chiu, S., Chand, S., Moore, D., and Chaudhary, A., Fuzzy Logic for

Control of Roll and Moment for a Flexible Wing Aircraft, IEEE

Control Syst., Vol.11, No. 4, 42, 1991.

94. Vachtesanos, G., Farinwata, S., and Pirovolou, D., Fuzzy Logic control

of an Automotive Engine, IEEE Control System, Vol. 13, No. 3, 62,

1993.

95. Takagi, T. and Sugeno, M., Fuzzy Identification of Systems and its

Applications to Modeling and Control, IEEE Trans. on Syst., Man, and

Cyb., Vol. 15, No.1, 1985.

96. Lee, C. H., Fuzzy logic in Control Systems: Fuzzy Logic Controller,

Part II, IEEE Trans. on Syst., Man and Cyb., Vol. 20, No. 2, 419, 1990.

97. Berenji, H. and Khedhar, P., Learning and Tuning Logic Controller

Through Reinforcements, IEEE Trans. on Neural Networks, Vol. 3,

No. 5, 724, 1992.

98. Layne, J. and Passino, K., Fuzzy Model Reference Learning Control

for Cargo Ship Steering, IEEE Control Syst., Vol. 13, No. 5, 23, 1993.

99. Fogel, L. J., Intelligence Through Simulated Evolution, John Wiley &

Sons, NY, 1999.

100. Holland, J.H., Adaptation in Natural and Artificial Systems, University

of Michigan Press, MI, 1975.

101. Goldberg, D.E., Genetic Algorithms in Search, Optimization and

Machine Learning, Addison-Wesley, Reading, MA, 1989.

102. Davis, L. (ed.), Handbook of Genetic Algorithms, Van Nostrand

Reinhold, N Y, 1991.

103. Koza, J. R., Genetic Programming − On the Programming of

Computers by Means of Natural Selection, MIT Press, MA, 1992.

104. Linkens, D.A. and H.O. Nyongeso, Learning systems in Intelligent

Approach of Fuzzy, Neural and Genetic Algorithm Control

Application, IEE Proc. Control Theory and Application, Vol. 143, No.

4, 367, 1996.

105. Lin, C.T. and Lee, C.S.G., Neural Fuzzy Systems, Prentice Hall, Upper

Saddle River, NJ, 1996.

106. Jang, J., Sun, C., and Mizutani, E., Neuro Fuzzy and Soft Computing,

Prentice Hall, Upper Saddle River, NJ, 1997.

107. Jang, J.S. and Sun, C., Neuro-Fuzzy Modeling and Control, Proc. of

IEEE, Vol. 83, No. 3, 378, 1995.

108. Mitra, S. and Pal, S.K., Self-Organizing Neural Network as a Fuzzy

Classifier, IEEE Trans. on Syst., Man, and Cyb., Vol. 24, No. 3, 1994.

109. Kim, J., Moor, Y., and Zeigler, B., Designing Fuzzy Net Controllers

Using Genetic Algorithms, IEEE Control Syst., Vol. 15, No. 3, 66,

1995.

110. Karr, C.L., Design of an Adaptive Fuzzy Logic Controller Using a

Genetic Algorithm, Proc. of the Fifth Int. Conf. on Genetic Algorithm,

450, 1991.

111. Lee, M. A. and Takagi, H., Integrating Design Stages of Fuzzy

Systems using Genetic Algorithms, Proc. of 2nd IEEE Int. Conf. on

Fuzzy Syst., 612, San Francisco, 1993.

112. Tan, G.V. and Hu, X., On Designing Fuzzy Controllers Using Genetic

Algorithms, IEEE Int. Conf. on Fuzzy Syst., 905, 1996.

113. Kinzel, J., Modification of Genetic Algorithms for Design and

Optimizing Fuzzy Controllers, IEEE Int. Conf. on Fuzzy Syst.,28,

1994.

114. Cooper, M.G. and Vidal, J., Genetic Design of Fuzzy Controllers: The

Cart and Jointed -Pole Problem, IEEE Int. Conf. on Fuzzy Syst., 1332,

1994.

115. Xu, H.Y. and Vukovich, G., Fuzzy Evolutionary Algorithms and

Automatic Robot Trajectory Generation, FUZZ-IEEE’94, 595, 1994.

116. Homaifar A. and McCormick, E., Simultaneous Design of Membership

Functions and Rule Sets for Fuzzy Controllers Using Genetic

Algorithms, IEEE Trans. on Fuzzy Syst., Vol. 3, No 2, 129, 1995.

117. Moon, S.Y. and Kwon, W. H., Genetic-Based Fuzzy Control for

Automotive Active Suspensions, FUZZ-IEEE’96, 923, 1996.

118. Akbarzadeh, M.R., Fuzzy Control and Evolutionary Optimization of

Complex Systems, Ph.D. Dissertation, The University of New Mexico,

1998.

119. Wang, C.H., Integrating Fuzzy Knowledge by Genetic Algorithms,

IEEE Trans. on Evolutionary Computations, Vol. 2, No. 4, 138, 1998.

120. Shi,Y., Implementation of Evolutionary Fuzzy Systems, IEEE Trans.

on Fuzzy Syst., Vol. 7, No. 2, 109, 1999.

121. Park, Y.J., Lee, S.Y., and Cho, H.S., A Genetic Algorithm-Based

Fuzzy Control of an Electro-Hydraulic Fin Position Servo System,

Proc. IEEE Int. Fuzzy Syst., 1999, Seoul, Korea.

122. Kumbla, K.K., Adaptive Neuro-Fuzzy Systems for Passive Systems,

Ph.D. Dissertation, University of New Mexico, 1997.

123. Tustel, E., Adaptive Hierarchy of Distributed Fuzzy Control,

Application to Behavior Control of Rovers, Ph.D. Dissertation,

University of New Mexico, 1996.

2 FUNDAMENTALS OF NEURAL

NETWORKS

Ali Zilouchian

2.1 INTRODUCTION

For many decades, it has been a goal of science and engineering to develop

intelligent machines with a large number of simple elements. References to this

subject can be found in the scientific literature of the 19th century. During the

1940s, researchers desiring to duplicate the function of the human brain, have

developed simple hardware (and later software) models of biological neurons

and their interaction systems. McCulloch and Pitts [1] published the first

systematic study of the artificial neural network. Four years later, the same

authors explored network paradigms for pattern recognition using a single layer

perceptron [2]. In the 1950s and 1960s, a group of researchers combined these

biological and psychological insights to produce the first artificial neural

network (ANN) [3,4]. Initially implemented as electronic circuits, they were

later converted into a more flexible medium of computer simulation. However,

researchers such as Minsky and Papert [5] later challenged these works. They

strongly believed that intelligence systems are essentially symbol processing of

the kind readily modeled on the Von Neumann computer. For a variety of

reasons, the symbolic–processing approach became the dominant method.

Moreover, the perceptron as proposed by Rosenblatt turned out to be more

limited than first expected. [4]. Although further investigations in ANN

continued during the 1970s by several pioneer researchers such as Grossberg,

Kohonen, Widrow, and others, their works received relatively less attention. The

primary factors for the recent resurgence of interest in the area of neural

networks are the extension of Rosenblatt, Widrow and Hoff’s works dealing

with learning in a complex, multi-layer network, Hopfield mathematical

foundation for understanding the dynamics of an important class of networks, as

well as much faster computers than those of 50s and 60s.

The interest in neural networks comes from the networks’ ability to mimic

human brain as well as its ability to learn and respond. As a result, neural

networks have been used in a large number of applications and have proven to

be effective in performing complex functions in a variety of fields. These

include pattern recognition, classification, vision, control systems, and

prediction [6], [7]. Adaptation or learning is a major focus of neural net research

that provides a degree of robustness to the NN model. In predictive modeling,

the goal is to map a set of input patterns onto a set of output patterns. NN

accomplishes this task by learning from a series of input/output data sets

presented to the network. The trained network is then used to apply what it has

learned to approximate or predict the corresponding output [8].

This chapter is organized as follows. In section 2.2, various elements of an

artificial neural network are described. The Adaptive Linear Element

(ADALINE) and single layer perceptron are discussed in section 2.3 and 2.4

respectively. The multi-layer perceptron is presented in section 2.5. Section 2.6

discusses multi-layer perceptron and section 2.7 concludes this chapter.

2.2 BASIC STRUCTURE OF A NEURON

2.2.1 Model of Biological Neurons

In general, the human nervous system is a very complex neural network. The

brain is the central element of the human nervous system, consisting of near 10
10

biological neurons that are connected to each other through sub-networks. Each

neuron in the brain is composed of a body, one axon and multitude of dendrites.

The neuron model shown in Figure 2.1 serves as the basis for the artificial

neuron. The dendrites receive signals from other neurons. The axon can be

considered as a long tube, which divides into branches terminating in little

endbulbs. The small gap between an endbulb and a dendrite is called a synapse.

The axon of a single neuron forms synaptic connections with many other

neurons. Depending upon the type of neuron, the number of synapses

connections from other neurons may range from a few hundreds to 10
4
.

The cell body of a neuron sums the incoming signals from dendrites as well

as the signals from numerous synapses on its surface. A particular neuron will

send an impulse to its axon if sufficient input signals are received to stimulate

the neuron to its threshold level. However, if the inputs do not reach the required

threshold, the input will quickly decay and will not generate any action. The

biological neuron model is the foundation of an artificial neuron as will be

described in detail in the next section.

Figure 2.1: A Biological Neuron.

2.2.2 Elements of Neural Networks

A n ar tif icial n eu ro n as s ho wn in F ig u re 2 .2 , is the b as ic element o f a n eur al

n etwo rk . I t con sists o f thr ee b asic com po nen ts th at includ e w eigh ts , thr esh olds ,

and a s ing le activatio n f un ctio n .

Fig ure 2 .2 : Bas ic Elem ents of an A r tificial N eur on .

2.2.2.1 Weighting Factors

The values W1 ,W2 ,W3 ,…..,Wn are weight factors associated with each node

to determine the strength of input row vector X = [x1 x2 x3…..,xn]
T
. Each input is

multiplied by the associated weight of the neuron connection X
T
W. Depending

upon the activation function, if the weight is positive, X
T
W commonly excites

the node output; whereas, for negative weights, X
T
W tends to inhibit the node

output.

2.2.2.2 Threshold

The node’s internal threshold θ is the magnitude offset that affects the

activation of the node output y as follows:

=

−=
n

i

kii
WXy

1

)(θ

 (2.1)

2.2.2.3 Activation Function

In this subsection, five of the most common activation functions are

presented. An activation function performs a mathematical operation on the

signal output. More sophisticated activation functions can also be utilized

depending upon the type of problem to be solved by the network. All the

activation functions as described herein are also supported by MATLAB

package.

y
w2

w1

Wn

ΣΣΣΣ

x1

x2

xn

Summing

Junction

Activation

function

Synaptic

Weights

θ

Threshold

Linear Function

As is known, a linear function satisfies the superposition concept. The

function is shown in Figure 2.3.

Figure 2.3: Linear Activation Function.

The mathematical equation for the above linear function can be written as

 uaufy .)(== (2.2)

where α is the slope of the linear function 2.2. If the slope α is 1, then the linear

activation function is called the identity function. The output (y) of identity

function is equal to input function (u). Although this function might appear to

be a trivial case, nevertheless it is very useful in some cases such as the last

stage of a multilayer neural network.

Threshold Function

A threshold (hard-limiter) activation function is either a binary type or a

bipolar type as shown in Figures 2.4 and 2.5, respectively. The output of a

binary threshold function can be written as:

u

f(u)

y f u

if u

if u

= =

<

≥









()

0 0

1 0

(2.3)

Figure 2.4: Binary Threshold Activation Function.

Figure 2.5: Bipolar Threshold Activation Function.

The neuron with the hard limiter activation function is referred to as the

McCulloch-Pitts model.

Piecewise Linear Function

This type of activation function is also referred to as saturating linear function

and can have either a binary or bipolar range for the saturation limits of the

output. The mathematical model for a symmetric saturation function (Figure 2.6)

is described as follows:

u

f(u)

+1

-1

y f u

if u

u if u

if u

= =

− < −

− ≥ ≥

≥









()

1 1

1 1

1 1

u

f(u)

(2.4)

Figure 2.6: Piecewise Linear Activation Function.

 Sigmoidal (S shaped) function

This nonlinear function is the most common type of the activation used to

construct the neural networks. It is mathematically well behaved, differentiable

and strictly increasing function. A sigmoidal transfer function can be written in

the following form:

f x
e x

() =
+ −

1

1 α
 , 0 1≤ ≤f x() (2.5)

Figure 2.7: A Sigmoid Activation Function.

where α is the shape parameter of the sigmoid function. By varying this

parameter, different shapes of the function can be obtained as illustrated in

Figure 2.7. This function is continuous and differentiable.

u

f(u)

+1

-1

Tangent hyperbolic function

This transfer function is described by the following mathematical form:

 f x
e e

e e

x x

x x
() =

−

+

−

−

α α

α α
− ≤ ≤1 1f x() (2.6)

It is interesting to note that the derivatives of Equations 2.5 and 2.6 can be

expressed in terms of the individual function itself (please see problems

appendix). This is important for the learning development rules to train the

networks as shown in the next chapter.

Figure 2.8: A Tangent Hyperbolic Activation Function.

Example 2.1:

 Consider the following network consists of four inputs with the weights as

shown

Figure 2.9: Neuron Structure of Example 2.1.

y
+1

+1

-1

ΣΣΣΣ

X1 = 1

X2 = 2

X3 = 5 θθθθ====0000

R

+ 2X4 = 8

The output R of the network, prior to the activation function stage, is

calculated as follows:

R W XT= = −[]




















=. .1 1 1 2

1

2

5

8

14 (2.7)

With a binary activation function, and a sigmoid function, the outputs of the

neuron are respectively as follow:

y(Threshold) = 1;

 y(Sigmoid) = 1.5*2
-8

2.3 ADALINE

An ADAptive LINear Element (ADALINE) consists of a single neuron of the

McCulloch-Pitts type, where its weights are determined by the normalized least

mean square (LMS) training law. The LMS learning algorithm was originally

proposed by Widrow and Hoff [6]. This learning rule is also referred to as delta

rule. It is a well-established supervised training method that has been used over

a wide range of diverse applications [7]- [11]. Curve fitting approximations can

also be used for training a neural network [10]. The learning objective of curve

fitting is to find a surface that best fits to the training data. In the next chapter

the implementation of LMS algorithms for backpropagation, and curve fitting

algorithms for radial basis function network, will be described in detail.

The architecture of a simple ADALINE is shown In Figure 2.10. It is

observed that the basic structure of an ADALINE is similar to a linear neuron

(Figure 2.2) with the activation function f(.) to be a linear one with an extra

feedback loop. Since ADALINE is a linear device, any combination of these

units can be accomplished with the use of a single unit.

During the training phase of ADALINE, the input vector X∈R
n
:

[]TnxxxxX L321= as well as desired output are presented to the

network. The weights are adaptively adjusted based on delta rule. After the

ADALINE is trained, an input vector presented to the network with fixed

weights will result in a scalar output. Therefore, the network performs a

mapping of an n dimensional mapping to a scalar value. The activation function

is not used during the training phase. Once the weights are properly adjusted, the

response of the trained unit can be tested by applying various inputs, which are

not in the training set. If the network produces consistent responses to a high

degree with the test inputs, it said that the network could generalize. Therefore,

the process of training and generalization are two important attributes of the

network.

W1

W2

Wn

Σ

Σ

_

+

Error

Desired

Output

Output

X1

X2

Xn

*

*

Figure 2.10: ADALINE.

In practice, an ADALINE is usually used to make binary decisions.

Therefore, the output is sent through a binary threshold as shown in Figure 2.4.

Realizations of several logic gates such as AND, NOT and OR are common

applications of ADALINE. Only those logic functions that are linearly separable

can be realized by the ADALINE, as is explained in the next section.

2.4 LINEAR SEPARABLE PATTERNS

For a single ADALINE to function properly as a classifier, the input pattern

must be linearly separable. This implies that the patterns to be classified must be

sufficiently apart from each other to ensure the decision surface consists of a

single hyperplane such as a single straight line in two-dimensional space. This

concept is illustrated in Figure 2.11 for a two-dimensional pattern.

(b)(a)

Figure 2.11: A Pair of Linearly Separable (a), and Non-Linearly Separable

Patterns (b).

A class ic ex amp le o f a m app in g that is no t s ep ar able is XO R (th e ex clu siv e or)

g ate fu n ctio n . Table 2 .1 sh ow s the in pu t- ou tpu t p attern of th is p ro b lem. Figu re

2 .1 2 sh o ws th e lo catio ns of the sy mb o lic ou tpu ts of X OR fu nctio n co r resp o nd in g

to fo ur in pu t p atter ns in X 1- X2 plan e. Th er e is n o way to dr aw a sin gle s tr aigh t

lin e so th at th e cir cles ar e on on e s id e of th e lin e an d the tr iang u lar s ig n on th e

o th er s ide. Therefo r e, an A DA LI N E can no t realize th is f u nctio n.

Tab le 2 .1: In pu ts /Ou tp u ts Relation s hip fo r X OR.

X1 X2 O utpu t

0 0 0

0 1 1

1 0 1

1 1 0

X1

X2

1

.5

1.5

Fig ure 2 .1 2: The O utp ut o f X OR in X 1- X 2 Plan e.

One approach to solve this nonlinear separation problem is to use

MADALINE (Multiple ADALINE) networks. The basic structure of a

MADALINE network consists of combining several ADALINE with their

correspondence activation functions into a single forward structure. When

suitable weights are chosen, the network is capable of implementing

complicated and nonlinear separable mapping such as XOR gate problems. We

will address this issue later in this chapter.

2.5 SINGLE LAYER PERCEPTRON

2.5.1 General Architecture

The original idea of the perceptron was developed by Rosenblatt in the late

1950s along with a convergence procedure to adjust the weights. In Rosenblatt’s

perceptron, the inputs were binary and no bias was included. It was based on

the McCulloch-Pitts model of the neuron with the hard limitation activation

function. The single layer perceptron as shown in Figure 2.13 is very similar to

ADALINE except for the addition of an activation function.

W1

W2

Wn

Σ

Desired

Output

Output

X0

X2

Xn

*

*

Σ

_

+

Error

Activation

Function

X1
W0

Figure 2.13: A Perceptron with a Sigmoid Activation Function.

Connection weights and threshold in a perceptron can be fixed or adapted

using a number of different algorithms. Here the original perceptron

convergence procedure as developed by Minsky and Papert[5] is described.

First, connection weights W1, W2 ,…,Wn and the threshold value W0 are

initialized to small non-zero values. Then, a new input set with N values

received through sensory units (measurement devices) and the input is

computed. Connection weights are only adapted when an error occurs. This

procedure is repeated until the classification of all inputs is completed.

2.5.2 Linear Classification

For clarification of the above concept, consider two input patterns classes C1

and C2. The weight adaptation at the kth training phase can be formulated as

follow:

1. If k member of the training vector x(k) is correctly classified, no correction

action is needed for the weight vector. Since the activation function is

selected as a hard limiter, the following conditions will be valid:

W (k+1)=W (k) if output>0 and x (k)∈C1 , and

W(k+1)=W(k) if output<0 and x(k)∈C2.

2. Otherwise, the weight should be updated in accordance with the following

rule:

W(k+1)=W(k)+η x(k) if output≥0 and x(k)ε C1

W(k+1)=W(k)-η x(k) if output≤0 and x(k)ε C2

Where η is the learning rate parameter, which should be selected between 0

and 1.

Example 2.2:

 Let us consider pattern classes C1 and C2, where C1: {(0,2), (0,1)} and C2:

{(1,0), (1,1)}. The objective is to obtain a decision surface based on perceptron

learning. The 2-D graph for the above data is shown in Figure 2.14

X1

X2

1

2

1

Figure 2.14: 2-D Plot of Input Data Sets for Example 2.2.

 Since, the input vectors consist of two elements , the perceptron structure is

simply as follows:

Σ

Output

θ

X2(k)

X1(k)

W0

W1(k)

W2(k)

yk

Figure 2.15: Perceptron Structure for Example 2.2.

For simplicity, let us assume η=1 and initial weight vector W(1)=[0 0]. The

iteration weights are as follow:

Iteration 1: W xT (). ()1 1 0 0
0

2
0= []







 =

Weight Update: W W x() () ()2 1 1
0

0

0

2

0

2
= + =









 +









 =











Iteration 2: W xT (). ()2 2 0 2
0

1
2 0= []







 = >

Weight Update:)2()3(WW =

Iteration 3: W xT (). ()3 3 0 2
1

0
0= []







 =

Weight Update: W W x() () ()4 3 3
0

2

1

0

1

2
= − =









 −









 =

−









Iteration 4: W xT (). ()4 4 1 2
1

1
1= −[]







 =

Weight Update: W W x() () ()5 4 4
1

2

1

1

2

1
= − =

−







 −









 =

−









Now if we continue the procedure, the perceptron classifies the two classes

correctly at each instance. For example for the fifth and sixth iterations:

Iteration 5: W xT (). ()5 5 2 1
0

2
2 0= −[]







 = > :Correct Classification

Iteration 6: W xT (). ()6 6 2 1
0

1
1 0= −[]







 = > :Correct Classification

In a similar fashion for the seventh and eighth iterations, the classification

results are indeed correct.

Iteration 7: W xT (). ()7 7 2 1
1

0
2 0= −[]







 = − < :Correct Classification

Iteration 8: W xT (). ()8 8 2 1
1

1
1 0= −[]







 = − < :Correct Classification

Therefore, the algorithm converges and the decision surface for the above

perceptron is as follows:

02)(21 =+−= XXxd (2.8)

Now, let us consider the input data {1,2}, which is not in the training set. If

we calculate the output:

Y W XT= = −[]






 = − <. 2 1
2

1
3 0 (2.9)

The output Y belongs to the class C2 as is expected.

X1

X2

1

2

1

Decision Surface

-2*X1+X2=0

Figure 2.16: Decision Surface for Example 2.2.

2.5.3 Perceptron Algorithm

The perceptron learning algorithm (Delta rule) can be summarized as

follows:

Step 1: Initialize the weights W1, W2…Wn and threshold θ to small random

 values.

Step 2: Present new input X1, X2,..Xn and desired output kd .

Step 3: Calculate the actual output based on the following formula:

y X Wik
h

i k

i

n

f= −
=

∑(())θ
1

 (2.10)

Step 4: Adapt the weights according to the following equation:

W new W old d y x i Ni i k k i() () () ,= + − ≤ ≤η 0

Where η is a positive gain fraction less than 1 and kd is the desired output.

Note that the weights remain the same if the network makes the correct decision.

Step 5: Repeat the procedures in steps 2−4 until the classification task is

completed.

Similar to ADALINE, if the presented inputs pattern is linearly separable,

then the above perceptron algorithm converges and positions the decision

(2.11)

hyperplane between two separate classes. On the other hand, if the inputs are not

separable and their distribution overlaps, then the decision boundary may

oscillate continuously. A modification to the perceptron convergence procedure

is the utilization of Least Mean Square (LMS) in this case. The algorithm that

forms the LMS solution is also called the Widrow-Hoff. The LMS algorithm is

similar to the procedure above except a threshold logic nonlinearity, replaces the

hard limited non-linearity. Weights are thus corrected on every trail by an

amount that depends on the difference between the desired and actual values.

Unlike the learning in the ADALINE, the perceptron learning rule has been

shown to be capable of separating any linear separable set of the training

patterns.

2.6 MULTI-LAYER PERCEPTRON

2.6.1 General Architecture

Multi-layer perceptrons represent a generalization of the single-layer

perceptron as described in the previous section. A single layer perceptron forms

a half–plane decision region. On the other hand multi-layer perceptrons can

form arbitrarily complex decision regions and can separate various input

patterns. The capability of multi-layer perceptron stems from the non-linearities

used within the nodes. If the nodes were linear elements, then a single-layer

network with appropriate weight could be used instead of two- or three-layer

perceptrons. Figure 2.17 shows a typical multi-layer perceptron neural network

structure. As observed it consists of the following layers:

Figure 2.17: Multi-layer Perceptron.

Input Layer: A layer of neurons that receives information from external

sources, and passes this information to the network for processing. These may

be either sensory inputs or signals from other systems outside the one being

modeled.

Hidden Layer: A layer of neurons that receives information from the input

layer and processes them in a hidden way. It has no direct connections to the

outside world (inputs or outputs). All connections from the hidden layer are to

other layers within the system.

Output Layer: A layer of neurons that receives processed information and

sends output signals out of the system.

Bias: Acts on a neuron like an offset. The function of the bias is to provide a

threshold for the activation of neurons. The bias input is connected to each of

the hidden and output neurons in a network.

2.6.2 Input-Output Mapping

The input/output mapping of a network is established according to the

weights and the activation functions of their neurons in input, hidden and output

layers. The number of input neurons corresponds to the number of input

variables in the neural network, and the number of output neurons is the same as

the number of desired output variables. The number of neurons in the hidden

layer(s) depends upon the particular NN application. For example, consider the

following two-layer feed-forward network with three neurons in the hidden layer

and two neurons in the second layer:

i
1

i
2

w 12

w 11

w
23

w 13

w 22

w 21 o
2

o
1

n1

n2

n3

n4

n5

11 w’

21 w’

12 w’

22 w’

23 w’

13 w’

i =1
0

w 01

w 02

w 03

Figure 2.18: An Example of Multi-layer Perceptron.

A s is s h ow n, th e in p uts are con n ected to each neu ro n in hidd en layer v ia th eir

cor resp o nd in g w eigh ts. A zero w eig ht in dicates n o con nection . F or ex am ple, if

W 2 3 = 0, it is imp lied th at no con n ectio n ex is ts between th e secon d in p ut (i2) and

the thir d neu ro n (n 3) . Ou tp u ts o f the last layer ar e con s id er ed as th e ou tp u ts o f the

n etwo rk .

 Th e str uctu r e of each n eur on w ith in a layer is s im ilar to th e ar ch itectu re as

d es cr ib ed in sectio n 2 .5 . A ltho u gh th e activ atio n f un ction f o r on e n eu ro n cou ld be

d if feren t fr o m other n eu r on s within a lay er , f or stru ctu ral s im plicity , s im ilar

n eu ro ns ar e com mo nly cho s en w ith in a layer. Th e inp ut d ata s ets (or sens o ry

inf or matio n) ar e pr esented to th e in p ut lay er. Th is lay er is co nn ected to the f irs t

h id den lay er . I f th ere is m or e than o ne h id d en layer, th e las t hidd en lay er s ho u ld b e

con nected to th e ou tpu t lay er o f the netw or k . A t th e f ir st ph as e, we w ill h av e the

f ollo win g lin ear relatio n sh ip f o r each layer :

XWA 11 = (2.12)

where 1A is a column vector consisting of m elements, 1W is an m×n weight

matrix and X is a column input vector of dimension n. For the above example,

the linear activity level of the hidden layer (neurons n1 to n3) can be calculated

as follows:

a w i w i

a w i w i

a w i w i

11 11 1 21 2

12 12 1 22 2

13 13 1 23 2

= +

= +

= +









 (2.13)

The o utp ut v ector f o r th e h id den lay er can b e calcu lated b y the f ollow in g

f or mu la:

11 .AFO = (2.14)

w here 1A is d ef ined in Eq uatio n 2 .1 2, an d 1O is th e o utpu t colum n v ector o f the

h id den lay er with m elem ent. F is a d iag on al matr ix co m pr is in g the no n- lin ear

activ ation f u nction s o f the f ir s t hid den lay er :

F

f

f

fm

=























1

2

0 0 0

0 0

0

0 0 0

(.) ...

(.)

.

. ..

... (.)

 (2.15)

F or exam ple, if all activ atio n f un ction s fo r the neur on s in the h id d en layer of

F ig ur e 2 .1 8 are cho s en s imilarly , th en th e o utpu t o f th e n eu r on s n1 to n 3 can be

calcu lated as f ollo w s:

O f a

O f a

O f a

11 11

12 12

13 13

=

=

=









()

()

()

 (2.16)

In a similar manner, the output of other hidden layers can be computed. The

output of a network with only one hidden layer according to Equation 2.14 is

as follows:

122 .OWA = (2.17)

22 .AGO = (2.18)

W here 2A is the vecto r of activity levels of ou tp ut layer and 2O is th e q o utp ut o f

the n etw or k. G is a d iag on al matr ix co n sistin g o f n on linear activ atio n f un ction s o f

the o utp ut layer:

G

g

g

gq

=























1

2

0 0 0

0 0

0

0 0 0

(.) ...

(.)

.

. ..

... (.)

 (2.19)

 For Figure 2.18, the activity level of output neurons n 4 and n 5 can be

calculated as follows:

a W O W O W O

a W O W O W O

21 11 11 12 21 13 31

22 21 11 22 21 23 31

= ′ + ′ + ′

= ′ + ′ + ′





 (2.20)

 The two outputs of the network with the similar activation functions can be

calculated as follows:

O g a

O g a

1 21

2 22

=

=





()

()
 (2.21)

 Therefore, the input-output mapping of a multi-layer perceptron is

established according to relationships 2.12−2.22. In sequel, the output of the
network can be calculated using such nonlinear mapping and the input data sets.

2.6.3 XOR Realization

As it was shown in section 2.4, a single-layer perceptron cannot classify the

input patterns that are not linearly separable such as an Exclusive OR (XOR)

gate. This problem may be considered as a special case of a more general non-

linear mapping problem. In the XOR problem, we need to consider the four

corners of the unit square that correspond to the input pattern. We may solve the

problem with a multi-layer perceptron with one hidden layer as shown in Figure

2.19.

θ2

θ3

W23

W21

W12

W11

W22

W13

W11

W11

W03

x2

x1

θ1

Figure 2.19: Neural Network Architecture to Solve XOR Problem.

In the above configuration, a McCulloh-Pitts model represents each neuron,

which uses a hard limit activation function. By appropriate selections of the

network weights, the XOR could be implemented using decision surfaces as

shown in Figure 2.20.

X1

X2

1

2

1

Figure 2.20: Decision Surfaces to Solve XOR Problem.

Example 2.3:

Suppose weights and biases are selected as shown in Figure 2.21. The

McCulloh-Pitts model represents each neuron (binary hard limit activation

function). Show that the network solves XOR problem. In addition, draw the

decision boundaries constructed by the network.

θ3=1

-1

-1

+1

-1

+1

-0.5

+0.5

-1

x2

x1

θ1=1

+1

Figure 2.21: Neural Network Architecture for Example 2.3.

In Figure 2.21, suppose the outputs of neurons (before activation function)

denote as O1, O2, and O3. The outputs of the summing points at the first layer

are as follow:

5.0211 +−= xxO (2.22)

5.0212 −−= xxO (2.23)

 With the binary hard limited functions, the output y1 and y 2 are shown in

Figures 2.22 and 2.23.

X2

1

.5

1.5

X1-X2+0.5=0
Y1=0

Y2=1

Figure 2.22: Decision Surface for Neuron 1 of Example 2.3.

X1

X2

1

.5

1.5

X1-X2-0.5=0

Y1=0

Y2=1

Figure 2.23: Decision Surface for Neuron 2 of Example 2.3.

The outputs of the summing points at the second layer are:

1213 −−= yyO (2.24)

The decision boundaries of the network are shown in Figure 2.24. Therefore,

XOR realization can be accomplished by selection of appropriate weights using

Figure 2.19.

X1

X2

1

.5

1.5

Y3=0
Y3=1

Y3=0

Figure 2.24: Decision Surfaces for Example 2.3.

2 .7 C ON CLUS I ON

I n th is ch ap ter , th e f un d am en tals of neur al netw o rk s wer e in tro du ced . Th e

p er ceptr on is the s imp les t fo rm of n eur al n etw or k u sed f or th e clas s if ication o f

lin early s ep arable p atter ns . Mu lti-layer p er ceptr on o v er co me many limitatio ns of

s in gle- lay er percep tro n. Th ey can fo r m ar bitrarily co mp lex d ecision regio ns in

o rd er to s ep arate v ariou s n on lin ear p attern s . Th e n ex t chapter is d evo ted to sev er al

n eu ral n etwo r k ar ch itectu res. A p plication s o f NN will b e p res en ted in Ch apter s

4 − 7 and Ch ap ter 1 5 of th e b oo k.

REFERENCES

1. McCulloch, W.W. and Pitts, W., A Logical Calculus of Ideas Imminent

in Nervous Activity. Bull. Math. Biophys., 5, 115−133, 1943.

2 . Pitts, W. and McCulloch, W.W., How we Know Universals, Bull.

Math. 127−147, 1947.
3. McClelland, J.L. and Rumelhart, D.E., Parallel Distributed Processing

-Explorations in the Microstructure of Cognition, Vol. 2, Psychological

and Biological Models, MIT Press, Cambridge, MA, 1986.

4. Rosenblatt, F., Principles of Neurodynamics, Spartan Press,

Washington, DC, 1961.

5 . Minsky, M. and Papert, S., Perceptron: An Introduction to

Computational Geometry, MIT Press, Cambridge, MA, 1969.

6 . Widrow, B. and Hoff, M.E, Adaptive Switching Circuits, IRE

WESCON Convention Record, Part 4, NY, IRE, 96−104, 1960.

7 . Fausett, L., Fundamentals of Neural Networks, Prentice-Hall,

Englewood Cliffs, NJ, 1994.

8. Haykin, S., Neural Networks: A Comprehensive Foundation, Prentice

Hall, Upper Saddle River, NJ, 1999.

9 . Kosko, B., Neural Network for Signal Processing, Prentice Hall,

Englewood Cliffs, NJ, 1992.

10. Ham, F. and Kostanic, I., Principles of Neurocomputing for Science

and Engineering, McGraw Hill, New York, NY, 2001.

11. Lippmann, R.P., An Introduction to Computing with Neural Network,

IEEE Acoustic, Speech, and Sig. Proces. Mag., 4, 1987.

3

NEURAL NETWORK

ARCHITECTURES

 Hooman Yousefizadeh and Ali Zilouchian

3.1 INTRODUCTION

Interest in the study of neural networks has grown remarkably in the last two

decades. This is due to the conceptual viewpoint regarding the human brain as a

model of a parallel computation device, a very different one from a traditional

serial computer. Neural networks are commonly classified by their network

topology, node characteristics, learning, or training algorithms. On the other

hand, the potential benefits of neural networks extend beyond the high

computation rates provided by massive parallelism of the networks. They

typically provide a greater degree of robustness or fault tolerance than Von

Neumann sequential computers. Additionally, adaptation and continuous

learning are integrated components of NN. These properties are very beneficial

in areas where the training data sets are limited or the processes are highly

nonlinear. Furthermore, designing artificial neural networks to solve problems

and studying real biological networks (Chapter 4) may also change the way we

think about the problems and may lead us to new insights and algorithm

improvements.

The main goal of this chapter is to provide the readers with the conceptual

overviews of several neural network architectures. The chapter will not delve

too deeply into the theoretical considerations of any one network, but will

concentrate on the mechanism of their operation. Examples are provided for

each network to clarify the described algorithms and demonstrate the reliability

of the network. In the following four chapters various applications pertaining to

these networks will be discussed.

This chapter is organized as follows. In section 3.2, various classifications of

neural networks according to their operations and/or structures are presented.

Feedforward and feedback networks are discussed. Furthermore, two different

methods of training, namely supervised and unsupervised learning, are

described. Section 3.3 is devoted to error back propagation (BP) algorithm.

Various properties of this network are also discussed in this section. Radial

basis function network (RBFN) is a feedforward network with supervised

learning, which is the subject of the discussion in section 3.4. Kohonen self-

organizing as well as Hopfield networks are presented in sections 3.5 and 3.6,

respectively. Finally section 3.7 presents the conclusions of this chapter.

 3.2 NN CLASSIFICATIONS

 3.2.1 Feedforward and Feedback Networks

In a feedforward neural network structure, the only appropriate connections

are between the outputs of each layer and the inputs of the next layer. Therefore,

no connections exist between the outputs of a layer and the inputs of either the

same layer or previous layers. Figure 3.1 shows a two-layer feedforward

network. In this topology, the inputs of each neuron are the weighted sum of the

outputs from the previous layer. There are weighted connections between the

outputs of each layer and the inputs of the next layer. If the weight of a branch is

assigned a zero, it is equivalent to no connection between correspondence nodes.

The inputs are connected to each neuron in hidden layer via their

correspondence weights. Outputs of the last layer are considered the outputs of

the network.

Layer

1
Input

Output

Layer

2

Figure 3.1: General Structure of Two-Layer Feedforward Network.

For feedback networks the inputs of each layer can be affected by the

outputs from previous layers. In addition, self feedback is allowed. Figure 3.2

shows a simple single layer feedback neural network.

Layer

1

Input
Output

Delay

Figure 3.2: General Structure of a Sample Feedback Network.

As observed, the inputs of the network consist of both external inputs and the

network output with some delays. Examples of feedback algorithms include the

Hopfield network, described in detail in section 3.6, and the Boltzman Machine.

An important issue for feedback networks is the stability and convergence of the

network.

3.2.2 Supervised and Unsupervised Learning Networks

There are a number of approaches for training neural networks. Most fall

into one of two modes:

- Supervised Learning: Supervised learning requires an external teacher to

control the learning and incorporates global information. The teacher may be a

training set of data or an observer who grades the performance. Examples of

supervised learning algorithms are the least mean square (LMS) algorithm and

its generalization, known as the back propagation algorithm[1]-[4], and radial

basis function network [5]-[8]. They will be described in the following sections

of this chapter.

 In supervised learning, the purpose of a neural network is to change its

weights according to the inputs/outputs samples. After a network has established

its input output mapping with a defined minimum error value, the training task

has been completed. In sequel, the network can be used in recall phase in order

to find the outputs for new inputs. An important factor is that the training set

should be comprehensive and cover all the practical areas of applications of the

network. Therefore, the proper selection of the training sets is critical to the

good performance of the network.

- Unsupervised Learning: When there is no external teacher, the system must

organize itself by internal criteria and local information designed into the

network. Unsupervised learning is sometimes referred to as self-organizing

learning, i.e., learning to classify without being taught. In this category, only the

input samples are available and the network classifies the input patterns into

different groups. Kohonen network is an example of unsupervised learning.

3.3 BACK PROPAGATION ALGORITHM

Back propagation algorithm is one of the most popular algorithms for training a

network due to its success from both simplicity and applicability viewpoints.

The algorithm consists of two phases: Training phase and recall phase. In the

training phase, first, the weights of the network are randomly initialized. Then,

the output of the network is calculated and compared to the desired value. In

sequel, the error of the network is calculated and used to adjust the weights of

the output layer. In a similar fashion, the network error is also propagated

backward and used to update the weights of the previous layers. Figure 3.3

shows how the error values are generated and propagated for weights

adjustments of the network.

In the recall phase, only the feedforward computations using assigned

weights from the training phase and input patterns take place. Figure 3.4 shows

both the feedforward and back propagation paths. The feedforward process is

used in both recall and training phases. On the other hand, as shown in Figure

3.4(b), back propagation of error is only utilized in the training phase.

In the training phase, the weight matrix is first randomly initialized. In

sequel, the output of each layer is calculated starting from the input layer and

moving forward toward the output layer. Thereafter, the error at the output layer

is calculated by comparison of actual output and the desired value to update the

weights of the output and hidden layers.

i 1

i 2
o

2

o
1

i =1 0

.

.

. o
r

-

-

-

.

.

.

Desired

Value 1

Desired

Value 2

Desired

Value r

i m
n n

n 2

n 1

.

.

.

Figure 3.3. Back Propagation of the Error in a Two-Layer Network.

a) Forward propagation (Training and Recall Phase)

b) Backward propagation (Training Phase)

 Figure 3.4: Forward Propagation in Recall and Training Phase and

 Backward Propagation in Training Phase.

There are two different methods of updating the weights. In the first method,

weights are updated for each of the input patterns using an iteration method. In

the second method, an overall error for all the input output patterns of training

sets is calculated. In other words, either each of the input patterns or all of the

patterns together can be used for updating the weights. The training phase will

be terminated when the error value is less than the minimum set value provided

by the designer. One of the disadvantages of back propagation algorithm is that

the training phase is very time consuming.

 During the recall phase, the network with the final weights resulting from

the training process is employed. Therefore, for every input pattern in this phase,

the output will be calculated using both linear calculation and nonlinear

activation functions. The process provides a very fast performance of the

network in the recall phase, which is one of its important advantages.

3.3.1 Delta Training Rule

The back propagation algorithm is the extension of the perceptron structure

as discussed in the previous chapter with the use of multiple adaptive layers. The

training of the network is based on the delta training rule method. Consider a

single neuron in Figure 3.5.

The relations among input, activity level and output of the system can be

shown as follows:

 .

 .

 .

W1

W2

Wn

W1 X1 +
W2 x2 +
...+
Wn Xn

f (.)

i
 2

i o =1

W0

i
 1

i
 n

Figure 3.5: A Single Neuron.

nniwiwiwwa ++++= L22110
(3.1)

or in the matrix form:

IWwa T+= 0 (3.2)

)(afo = (3.3)

where W and I are weight and input vectors of the neuron, a

is activity level

of the neuron and o is the output of the neuron. 0w is called bias value.

Suppose the desired value of the output is equal to .d Error e can be defined as

follows:

2)(
2

1
ode −= (3.4)

by substituting Equations 3.2 and 3.3 into Equation 3.4, the following relation

holds:

2
0))((

2

1
IWwfde T+−= (3.5)

The error gradient vector can be calculated as follows:

IIWwfode T)(')(0 +−−=∇ (3.6)

The components of gradient vector are equal to:

j
T

j

IIWwfod
w

e
)(')(0 +−−=

∂
∂

 (3.7)

where (.)'f is derivative of activation function. To minimize the error the

weight changes should be in negative gradient direction. Therefore we will have

eW ∇−=∆ η

 (3.8)

where η is a positive constant, called learning factor. By Equations (3.6) and

3.7, the W∆ is calculated as follows:

IafodW)(')(−−=∆ η (3.9)

For each weight j Equation 3.9 can be written as:

njIafodw jj ,...,2,1,0)(')(=−−=∆ η (3.10)

Therefore we update the weights of the network as:

njwww joldjnewj ,...,2,1,0)()(=∆+= (3.11)

For Figure 3.3, the Delta rule can be applied in a similar manner to each

neuron. Through generalization of Equation 3.11 for normalized error and using

Equation 3.10 for every neuron in output layer we will have:

nj
X

xafod
ww

jjjj
oldjnewj ,...,2,1,0

)(')(

2
)()(=

−
+=

η

 (3.12)

where X ∈ R
n

is the input vector to the last layer, xj is the j
th

 element of X and

||.|| denotes L2-Norm.

The above method can be applied to the hidden layers as well. The only

difference is that the jo will be replaced by jy in 3.12. jy is the output of

hidden layer neuron, and not the output of network.

One of the drawbacks in the back propagation learning algorithm is the long

duration of the training period. In order to improve the learning speed and avoid

the local minima, several different methods have been suggested by researchers.

These include addition of first and second moments to the learning phase,

choosing proper initial conditions, and selection of an adaptive learning rate.

 To avoid the local minima, a new term can be added to Equation 3.12. In

such an approach, the network memorizes its previous adjustment, and,

therefore it will escape the local minima, using previous updates. The new

equation can be written as follows:

][
)(')(

)()(
2

)()(oldjnewj

jjjj
oldjnewj ww

X

xafod
ww −+

−
+= α

η

where α is a number between 0 and 1, namely the momentum coefficient.

Nguyen and Widrow [9] have proposed a systematic approach for the proper

selection of initial conditions in order to decrease the training period of the

network. Another approach to improve the convergence of the network and

increase the convergence speed is the adaptive learning rate. In this method, the

learning rate of the network (η) is adjusted during training. In the first step, the

training coefficient is selected as a large number, so the resulting error values

are large. However, the error will be decreased as the training progresses, due to

the decrease in the learning rate. It is similar to coarse and fine tunings in

selection of a radio station.

In addition to the above learning rate and momentum terms, there are other

neural network parameters that control the network�s performance and

prediction capability. These parameters should be chosen very carefully if we

are to develop effective neural network models. Two of these parameters are

described below.

Selection of Number of Hidden Layers

The number of input and output nodes corresponds to the number of network

inputs and desired outputs, respectively. The choice of the number of hidden

layers and the nodes in the hidden layer(s) depends on the network application.

Selection of the number of hidden layers is a critical part of designing a network

and is not as straightforward as input and output layers. There is no

mathematical approach to obtain the optimum number of hidden layers, since

such selection is generally fall into the application oriented category. However,

the number of hidden layers can be chosen based on the training of the network

using various configurations, and selection of the configuration with the fewest

number of layers and nodes which still yield the minimum root-mean-squares

(RMS) error quickly and efficiently. In general, adding a second hidden layer

improves the network�s prediction capability due to the nonlinear separability

property of the network. However, adding an extra hidden layer commonly

yields prediction capabilities similar to those of two-hidden layer networks, but

requires longer training times due to the more complex structures. Although

using a single hidden layer is sufficient for solving many functional

approximation problems, some problems may be easier to solve with a two-

hidden-layer configuration.

Normalization of Input and Output Data Sets

Neural networks require that their input and output data be normalized to

have the same order of magnitude. Normalization is very critical for some

applications. If the input and the output variables are not of the same order of

magnitude, some variables may appear to have more significance than they

actually do. The training algorithm has to compensate for order-of-magnitude

(3.13)

differences by adjusting the network weights, which is not very effective in

many of the training algorithms such as back propagation algorithm. For

example, if input variable i1 has a value of 50,000 and input variable i2 has a

value of 5, the assigned weight for the second variable entering a node of hidden

layer 1 must be much greater than that for the first in order for variable 2 to have

any significance. In addition, typical transfer functions, such as a sigmoid

function, or a hyperbolic tangent function, cannot distinguish between two

values of xi when both are very large, because both yield identical threshold

output values of 1.0.

The input and output data can be normalized in different ways. In Chapters 7

and 15, two of these normalized methods have been selected for the appropriate

applications therein.

The training phase of back propagation algorithm can be summarized in the

following steps:

1. Initialize the weights of the network.

2. Scale the input/output data.

3. Select the structure of the network (such as the number of hidden layers

and number of neurons for each layer).

4. Choose activation functions for the neurons. These activation functions

can be uniform or they can be different for different layers.

5. Select the training pair from the training set. Apply the input vector to the

network input.

6. Calculate the output of the network based on the initial weights and input

set.

7. Calculate the error between network output and the desired output (the

target vector from the training pair).

8. Propagate error backward and adjust the weights in such a way that

minimizes the error. Start from the output layer and go backward to input

layer.

9. Repeat steps 5−8 for each vector in the training set until the error for the

set is lower than the required minimum error.

After enough repetitions of these steps, the error between the actual outputs

and target outputs should be reduced to an acceptable value, and the network is

said to be trained. At this point, the network can be used in the recall or

generalization phases where the weights are not changed.

Network Testing

 As we mentioned before, an important aspect of developing neural networks

is determining how well the network performs once training is complete.

Checking the performance of a trained network involves two main criteria: (1)

how well the neural network recalls the output vector from data sets used to train

the network (called the verification step); and (2) how well the network predicts

responses from data sets that were not used in the training phase (called the

recall or generalization step).

In the verification step, we evaluate the network�s performance in specific

initial input used in training. Thus, we introduce a previously used input pattern

to the trained network. The network then attempts to predict the corresponding

output. If the network has been trained sufficiently, the network output will

differ only slightly from the actual output data. Note that in testing the network,

the weight factors are not changed: they are frozen at their last values when

training ceased.

 Recall or generalization testing is conducted in the same manner as

verification testing; however, now the network is given input data with which it

was not trained. Generalization testing is so named because it measures how

well the network can generalize what it has learned, and form rules with which

to make decisions about data it has not previously seen. In the generalization

step, we feed new input patterns (whose results are known to us, but not to the

network) to the trained network. The network generalizes well when it sensibly

interpolates these new patterns. The error between the actual and predicted

outputs is larger for generalization testing and verification testing. In theory,

these two errors converge upon the same point corresponding to the best set of

weight factors for the network.

In the following subsection, two examples are presented to clarify various

issues related to BP.

Example 3.1:

 Consider the network of Figure 3.6 with the initial values as indicated. The

desired values of the output are 10 10 == dd . We show two iterations of

learning of the network using back propagation. Suppose the activation function

of the first layer is a sigmoid and activation function of the output is a linear

function.

)](1)[()(
1

1
)(xfxfxf

e
xf

x
−=′⇒

+
=

−
 (3.14)

i =1 1

2

o[1]

O[0]

0.1

0.6

0.8

0.2

0.3

0.9

0.5

0.6

0.5

0.7

j[0]

j[1]

i =0

3 i =1

Figure 3.6: Feedforward Network of Example 3.1 with Initial Weights.

Iteration Number 1:

Step 1: Initialization: First the network is initialized with the values as shown

in Figure 3.6.

Step 2: Forward calculation, using Equations (3.1−3.3):

[] []
[] [] 7503.0)1.1().1(1J

7109.0)9.0(18.006.011.0().0(0J

===

==∗+∗+∗==

fIWf

ffIWf

j

j

[] []
[] [] 0.80169 0.7503 0.5 0.7109 0.6).1(1O

0.88066 0.7503 0.7 0.7109 0.5).0(0O

=∗+∗==
=∗+∗==

JWf

JWf

k

k

Step 3: According to Equation 3.5 the errors are calculated as follows:

[] []
[] [] 0.1983180169.0111

88066.088066.0000

1

0

=−=−=∆
−=−=−=∆

kdk

kdk

Step 4: The updated weights of the network are calculated according to

Equations 3.10 and 3.11 as follows:

[]() []

0.2213− =0.19831) ∗ 0.6 + 0.88066− ∗ (0.5 ∗ 1 ∗ 1 + 0.1

=∆Σ∗ +=
30. = =60. =

0.3 =0. ∗ 0. + 0.88066− ∗ 1 + 0.
=∗∗∆∗ +=

1110

wn

jkn

oldnew

newnewnew

oldnew

 * I[0] W W

851W6301.0W3095 W

69471092072)(5

00kf [0] W W

)(j00)(j00

)(k)(k)(k01

)(k00)(k00

0.3827 =0.3 =

0.3173− =0.4787 = 0.6 =

1211

10

)(j)(j

)(j)(j02)(j01

WW

WW W

newnew

newnewnew

Iteration Number 2: For this iteration the new weight values in Iteration 1

are utilized. Steps 2−4 of the previous iteration are repeated.

Step 2:

[] [] [] [] 0.62991O10.4990O5163.01J5640.00J ====

Step 3:

[] [] 10.37014991.00 =∆−=∆ kk

Step 4:

2985W

W540W552W

6 W17248- W5751 W

6774 W5025 W032 W

)(j

)(j)(j)(j02

)(j01)(j00)(k11

)(k10)(k01)(k00

0. =

0.3 =10.− =70. =

0. =0. =0. =
0. =0. =0.3 =

12

1110

new

newnewnew

newnewnew

newnewnew

The weights after the two iterations of training of the network can be

calculated as follows:

[] [] [] [] 0.7005 1O0.4424 0O5257.01J5878.00J ====

Table 3.1 summarizes the results for the training phase. As can be seen, the

values of the output are closer to the desired value and the error value has been

decreased. Training should be continued until the error values become less than

a predetermined value as set by the designer (for example, 0.01). It should be

noted that the selection of small values for maximum error level will not

necessarily lead to better performance in the recall phase.

Table 3.1: Summary of Outputs and Error Norm after Iterations

Choosing a very small value for this maximum error level may force the

network to learn the inputs very well, but it will not lead to better overall

performance.

Example 3.1 is also solved using MATLAB as shown in Chapter 21. Below

is the output result of the program.








−
=







−
=

7763.03.00763.0

6475.06.00255.0

0370.1

0088.0

Weight

LayerInput

Output

Final









−
−

=







=

1237.0

1255.0

4159.04987.0

2897.01170.0

Weight

Bias

Weight

LayerHidden

As observed, only four iterations are needed to complete the training task for

this example. (In this case, the training sets include only one input output set, so

each epoch is equivalent to an iteration.) The initial weights of the network for

the program are selected as indicated in this example. The final values of the

outputs are equal to -0.0088 and 1.0370. These values are close enough to the

desired values. The training error is less than 0.001, which the network has

achieved during the training phase.

Example 3.2: Forward Kinematics of Robot Manipulator

In this example a simple back propagation neural network has been used to

solve the forward kinematic of a robot manipulator. Therefore, θ1 θ2 are the

inputs with X, Y as the outputs of the network. A set of 200 samples is applied

to the network in the training phase.

X

Y

θ 1

θ 2

Figure 3.7: The Robot Manipulator.

Error Initial Iteration 1 Iteration 2

Output 1 - 0.8807 - 0.4991 - 0.4424

Output 2 0.1983 0.3701 0.2995

Error Norm 0.9027 0.6213 0.5342

The relation between (θ1 and θ2) and (X and Y) is as follows:

)sin(sin

)cos(cos

21211

21211

θθθ
θθθ

++=
++=

llY

llX
 (3.15)

Figure 3.8 shows how the error of the network changes until the performance

goal has been met.

0 1 2 3 4 5 6 7
1 0 - 4

1 0
- 3

1 0
- 2

1 0 - 1

1 0 0

1 0
1

1 0
2 P e r fo r m a n c e is 0 .0 0 0 7 2 2 0 0 6 , G o a l is 0 . 0 0 1

7 E p o c h s

G o a l

T r a in in g

Figure 3.8: The Error of the Network During Training.

After the network has established input and output mapping during the

training phase, new inputs are applied to the network to observe its performance

in the recall phase. Figure 3.9 shows the simulation result of the network.

-3 -2 -1 0 1 2 3 4 5
0

0 . 5

1

1 . 5

2

2 . 5

3

3 . 5

4

4 . 5

Figure 3.9: The Network Output and Prediction of the Neural Network

Using the Back Propagation Algorithm.

3.4 RADIAL BASIS FUNCTION NETWORK (RBFN)

The back propagation method as described in the previous section, has been

widely used to solve a number of applications [1],[2]. However, despite the

practical success, the back propagation algorithm has serious training problems

and suffers from slow convergence [3]. While optimization of learning rate and

momentum coefficient parameters yields overall improvements on the networks,

it is still inefficient and time consuming for real time applications [4].

Radial Basis Function Networks (RBFN) provide an attractive alternative to

BP networks [5]. They perform excellent approximations for curve fitting

problems and can be trained easily and quickly. In addition, they exhibit none of

the BP�s training pathologies such as local minima problems. However, RBFN

usually exhibits a slow response in the recall phase due to the large number of

neurons associated in the second layer [6],[7]. One of the advantages of RBFN

is the fact that linear weights associated with the output layer can be treated

separately from the hidden layer neurons. As the hidden layer weights are

adjusted through a nonlinear optimization, output layer weights are adjusted

through linear optimization.

RBFN approximation accuracy and speed may be further improved with a

strategy for selecting appropriate centers and widths of the receptive fields. The

redistribution of centers to locations where input training data are meaningful

can lead to more efficient RBFN [8].

In this section, the fundamental idea pertaining the RBFN is presented.

Furthermore, two examples are provided to clarify the training and recall phases

associated with these networks. The network is inspired by Cover�s theorem as

explained below.

Cover�s Theorem[6]: A complex pattern classification problem cast in a high

dimensional space nonlinearity is more likely to be linearly separable than in a

low dimensional space.

Example 3.3:
Consider the XOR problem as presented previously. As it was shown in

chapter 2, an XOR gate cannot be implemented by a single perceptron due to

nonlinear separabality property of the input pattern. However, suppose, the

following pair of Guassian hidden functions are defined:

()

() 







==









==

−−

−−

0

0

1

1

22

11

2

2

2

1

uexh

uexh

ux

ux

 (3.16)

If we calculate () ()xhxh 21 , for the above input patterns we will have the

Table 3.2. Figure 3.10 shows the graph of the outputs in the 21 hh − space.

Table 3.2: Mapping of XY to 21 hh −

Input pattern: X h1(x) h2(x)

(1, 1) 1 0.1353

(0, 1) 0.3678 0.3678

(0, 0) 0.1353 1

(1, 0) 0.3678 0.3678

1 h

0.3678

0.3678

0.1353

0.1353

Decision

Boundary

(0,0)

(1,1)

(0,1)

(1,0)
2 h

Figure 3.10: XOR Problem in 21 hh − Space.

As can be seen, the XOR problem in 21 hh − space is mapped to a new

problem, which is linearly separable. Therefore, Guassian functions can be used

to solve the above interpolation problem with one layer network. The above

interpolation problem can be generalized as: Suppose there exist N points

) X , ,(X N1 … and a corresponding set of N real values (d1, d2, d3, �, d1); find a

function that satisfies the following interpolation condition:

 () NidxF ii ,,2,1 K== (3.17)

x 1

x 2

O 1

h

11,σu

∑

x m

w 1

w 2

w n

22 ,σu

1

h 2

h n

nnu σ,

.

.

.
.
.
.

.

.

.

Figure 3.11: A Simple Radial Basis Network.

Figure 3.11 shows a simple radial basis network. This network is a

feedforward network similar to back propagation, but it has totally different

performance. The first difference is the initial weights. Despite random initial

selection of the weights in back propagation, here the initial weights are not

chosen randomly. The weights of each hidden layer neuron are set to values that

produce a desired response. Such weights are assigned so that the network gives

the maximum output for inputs equal to its weights. The activation functions hi

can be defined as follows:
22

2/ σiD
i eh

−= (3.18)

where Di is defined as the distance of the input to the center of the neuron which

is identified by the weight vector of hidden layer neuron i. Equation (3.19)

shows this relation:








 −−=

ineuronlayerhiddenofvectorWeightu

vectorinputx

uxuxD

i

i
T

ii

:

:

)()(
2

 (3.19)

Therefore, the final contribution of the neuron will decrease for the inputs,

which are far from the center of the neuron. With this fact in mind, it is

reasonable to give the values of each input of the training set to a neuron, which

will result in faster training of the network. The main part of the training of the

network is adjusting the weights of the output layer. Figure 3.12 shows a single

neuron.

h h(x)

x

σ,u

Figure 3.12: A Simple Radial Basis Neuron

Function h(x) as shown in Figure 3.13 can be defined as follows:

() 2

2

2

)(

σ
ux

exh

−
−

= (3.20)

-4 -3 -2 -1 0 1 2 3 4 0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

x-u /s

h
 (

 x
)

Figure 3.13: The Graph of h(x).

As both graph and formula show:

()









<−<<
>−=

==

σ
σ

31)(0

30)(

1

uxxh

uxxh

uxxh

 (3.21)

The above formula indicates that each neuron only possesses contributions

from the inputs that are close to the center of the weight function. For other

values of x, the neuron will have zero output value with no contribution in the

final output of the network. Figure 3.14 shows a radial basis neuron with two

inputs, X1 and X2.

h h (X,Y)

X

Y

σ,U

Figure 3.14: A Simple Radial Basis Neuron with Two Inputs.

Figure 3.15 shows the three-dimensional graph of this neuron. As is seen, the

fundamental idea is similar. As Figure 3.15 shows, the function is radially

symmetric around the center U.

Training of the radial basis network includes two stages. In the first stage,

the center Ui and diameter of receptive σi of each neuron will be assigned. At the

second stage of the training, the weight vector W will be adjusted accordingly.

After the training phase is completed, the next step is the recall phase in which

the outputs are applied and the actual outputs of the network are produced.

.

x

uxx

σ
−

y

uyy

σ
−

()yxh ,

Figure 3.15: Graph of h(x,y) for the Neuron with Two Inputs.

Finding the center Ui of each neuron

One of the most popular approaches to locate the centers Ui is to divide the

input vector to some clusters and then find the center of each cluster and locate a

hidden layer neuron at that point.

Finding the diameter of the receptive region

The value of σ can have significant effect on the performance of the

network. There are different approaches to find this value. One of the popular

methods is based on the similarity of the clustering of the input data. For each

hidden layer neuron, the RMS distance of each neuron and its first nearest

neighbor will be calculated; this value is considered as σ. The training phase of

RBFN can be summarized as follows:

1. Apply an input vector X from the training set.

2. Calculate the output of the hidden layer.

3. Compute the output Y and compare it to the desired value. Adjust each

weight W accordingly:

() ijjijij xyxnwnw ..)()1(−+=+ η (3.22)

4. Repeat steps 1 to 3 for each vector in the training set.

5. Repeat steps 1 to 4 until the error is smaller than a maximum acceptable

amount.

The advantage of radial basis network to back propagation network is faster

training. The main problem of back propagation is its lengthy training; therefore

radial basis networks have caught a lot of attention lately. The major

disadvantage of radial basis network is that it is slow in the recall phase due to

its nonlinear functions.

Example 3.4:

This example is the same as Example 3.1, where p and o are input and output

consecutively. We try to solve the problem using the radial basis network by

MATLAB. The details of the program are provided in Chapter 21. The output

of the program is shown below. As is observed, the output is very accurate for

the same input values. Also, execution of this simple code shows that the

network�s training is very fast. The answer can be obtained quickly, with high

accuracy. The output of the network to a similar input is also shown. o~ is the

output for the new applied input p~ , which is close to p. It can be seen that this

value is close to the output of the training input.









=
















−=








=
















=

9266.0

0~

9.0

3.0

1.1
~

1

0

1

0

1

oPop

Example 3.5:

In this example the inverse kinematics of the robot manipulator of Example

3.2 is solved by RBFN, using MATLAB program. Figure 3.16 compares the

actual path and the network prediction of this example. The actual path is shown

with circles and the network output with +. As can be seen, the network can

predict the path very accurately. In comparison with back propagation,

prediction of RBFN is more accurate and the training of this network is much

faster. However, due to the number of neurons, the recall phase of the network is

usually slower than back propagation.

-3 -2 -1 0 1 2 3 4 5 6
0

0 . 5

1

1 . 5

2

2 . 5

3

3 . 5

4

4 . 5

Figure 3.16: Output of the RBFN and Actual Output of the System.

3.5 KOHONEN SELF-ORGANIZATION NETWORK

 The Kohonen self-organization network uses unsupervised learning and

organizes itself to topological characteristics of the input patterns. The

discussion in this section will not seek to explain fully all the intricacies

involved in self-organization networks, but rather seek to explain the simple

operation of the network with two examples. Interested readers can refer to

Kohonen[10], Zurada[11], and Haykin and Simon[12] for more detailed

information on unsupervised leaning and self-organization networks.

Learning and brain development phenomena of newborns are very

interesting from several viewpoints. As an example, consider how a baby learns

to focus its eyes. The skill is not originally present in newborns, but they

generally acquire it soon after birth. The parents cannot ask their baby what to

do in order to make sense of the visual stimuli impinging on the child�s brain.

However, it is well known that after a few days, a newborn has learned to

associate sets of visual stimuli with objects or shapes. Such remarkable learning

occurs naturally with little or no help and intervention from outside. As another

example, a baby learns to develop a particular trajectory to move an object or

grab a bottle of milk in a special manner. How can these phenomena happen?

One possible answer is provided by a self-learning system, originally

proposed by Teuvo Kohonen [10]. His work provides a relatively fast and yet

powerful and fascinating model of how neural networks can self-organize. In

general, the term self-organization refers to the ability of some networks to learn

without being given the correct answer for an input pattern. These networks are

often closely modeled after neurobiological systems to mimic brain processing

and evolution phenomena.

A Kohonen network is not a hierarchical system, but consists of a fully

interconnected array of neurons. The output of each neuron is an input to all

other inputs in the network including itself. Each neuron has two sets of weights:

one set is utilized to calculate the sum of weighted external inputs, and another

one to control the interactions between different neurons in the network. The

weights on the input pattern are adjustable, while the weights between neurons

are fixed.

The other two networks that have been discussed so far in this chapter (BP

and RBFN) have neurons that receive input from previous layers and generate

output to the next layer or the external world. However, the neurons in the

network have neither input nor output to the neurons in the same layer. On the

contrary, the Kohonen network receives not only the entire input pattern into the

network, but also numerous inputs from the other neurons with the same layer.

A block diagram of a simple Kohonen network with N neurons is shown in

Figure 3.17.

.......

x x x x
 0 1 n-2 n-1

Figure 3.17: A Two Dimensional Kohonen Network.

Notice that the input is connected to all the nodes and there are

interconnections between the neurons of the same layer. During each

presentation, the complete input pattern is presented to each neuron. Each

neuron computes its output as a sigmoidal function on the sum of its weighted

inputs. The input pattern is then removed and the neurons interact with each

other. The neuron with the largest activation output is declared the winner

neuron and only that neuron is allowed to provide the output. However, not only

the winning neuron�s weight is updated, but also all the weights in a

neighborhood around the winning neuron. The neighborhood size decreases

slowly with each iteration [11].

3.5.1 Training of the Kohonen Network

When we construct a Kohonen network, we must do two things that have not

been generally required by the other networks. First, we must properly initialize

the weight vectors of the neurons. Second, the weight vectors and the input

vectors should be normalized. These two steps are vital to the success of the

Kohonen network. The procedure to train a Kohonen self-organization is as

follows:

1. Normalize the random selected weights Wi.

2. Present an input pattern vector x to the network. All neurons in the

Kohonen layer receive this input vector.

3. Choose the winning neuron as the one with the largest similarity

measure between all weight vectors Wi and the input vector x. If the

shortest Euclidean distance is selected as similarity measure within a

cluster, then the winning unit m satisfies the following equation:

{ }i
i

m wxWx −=− min (3.23)

where m is referred to as the winning unit.

4. Decrease the radius of Nm region as the training progress, where Nm

denotes, as a set of index associated with the winning neighborhood

around the winner unit C. The radius of Nm region can be fairly large

as the learning starts and slowly reduced to include only the winner and

possibly its immediate neighbors.

5. The weight of the winner unit and its neighborhood units are obtained

as follows:

() () ()[]
oldioldinewi WxWW −+= α (3.24)

where, Wi is the weight vector, x is the input pattern vector and a is the

leaning rate (0<α<1) Since a depend on the size of neighborhood

function, Equation (3.25) can be rewritten as

() () ()[]
oldicioldinewi WxNWW −+= α (3.25)

where the function Nc can be chosen appropriately such as a Gaussion

function or a Mexican hat function.

6. Present the next input vector. Repeat steps 3−5 until the training phase

is completed for all inputs.

In order to achieve a good convergence for the above procedure, the learning

rate α, as well as the size of neighborhood Nc should be decreased gradually

with each iteration. As was mentioned before, at the beginning of the training

phase, the selected region around the winner unit might be fairly large.

Therefore, a substantial portion of the network can learn each pattern. As the

training proceeds, the size of the neighborhood slowly decreases, so fewer and

fewer neurons learn with each iteration. Finally the winner itself will adjust its

weights. After the completion of this procedure, the network is trained for the

next input vector in a similar fashion.

Kohonen self-organization network has some interesting capabilities that can

be extremely useful. One possible application is vector quantization. The

network can also be used to perform dimension reduction and feature extraction

as well as classification.

In MATLAB, the leaning rate, α, and the neighborhood size are altered

through two phases: an ordering phase and a tuning phase.

3.5.2 Examples of Self �Organization

In this subsection, two examples of self-organization maps are provided. The

detailed description of examples can be found in chapter 21

Example 3.6: 1-D self-organization Mapping

Consider 200 2-Element unit vectors spread uniformly between 0 and 180 as

shown in Figure 3.18. We now consider a 1-D self-organization map with 20

neurons.

-1 -0 .8 -0 .6 -0 .4 -0 .2 0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 3.18: Original Distribution of the Input of the Kohonen Network.

Figure 3.19 shows the weights of the Kohonen self-organizing network after

training. It can easily be observed that the weights of the network have the

pattern of the input. In the other words, the network is being adjusted to the form

of the pattern of input of the network.

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

0

0.2

0.4

0.6

0.8

1

1.2

W(i,1)

W
(i
,2

)

Weight Vectors

Figure 3.19: Weights of the Kohonen Self-organizing Network.

Example 3.7: 2-D Self-organization Mapping

Suppose we have created 2000 input vectors randomly (Figure 3.20). We

will define a two-dimensional map of 35 neurons to classify these input vectors.

The two dimensional map is five neurons by seven neurons in horizontal and

vertical directions, respectively. The map is then trained for 5,000 presentation

cycles in the MATLAB. The results are displayed in Figure 3.22. The details of

the program are given in Chapter 21.

-1 -0 .8 -0 .6 -0 .4 -0 .2 0 0 .2 0 .4 0 .6 0 .8 1
-1

-0 .8

-0 .6

-0 .4

-0 .2

0

0 .2

0 .4

0 .6

0 .8

1

Figure 3.20: Initial Inputs of the Network of Example 3.7.

-0.5 0 0.5 1 1.5
-0.5

0

0.5

1

1.5

W(i,1)

W
(i
,2

)

Weight Vectors

 Figure 3.21: Initial Weights of the Network.

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

W(i,1)

W
(i,

2
)

Weight Vectors

Figure 3.22: Weights of the Kohonen Self-organizing Network after

Training (Example 3.7).

3.6 HOPFIELD NETWORK

Hopfield rekindled interest in neural networks by his extensive work on

different versions of the Hopfield network [13],[14]. The network can be

utilized as an associative memory or to solve optimization problems. One of the

original network [13], which can be used as a content addressable memory is

described in this chapter. The network is a typical recursive model in which

nodes are connected to one another. Figure 3.23 shows a Hopfield network.

µ 1 n1

n2

nk

µ 2

-1

-1

-1

.

.

.

.

.

.

.

.

.

w

21

w

k1

w

12

w

k2

w

1k

w

2k

O

1

O

2

O

k

T

1

2

T

k

µ k

T

Figure 3.23: Hopfield Network.

As is shown, the output of each neuron consists of the inputs from other

neurons, with the exception of itself. Therefore, the activity level of the neurons

can be calculated using the following formula:

∑
≠
=

=−+=
n

ij
j

iijiji niTowa

1

...,,2,1µ

(3.26)

or in the vector form as:

niTOWa iiii ...,,2,1=−+= µ

(3.27)

where:

[] niwwwW iniii ...,,2,121 == L

(3.28)

 Wi is the weight vector for the i-th input of the neural network and the i-th

element of this vector is equal to zero. On the other hand,

ni

o

o

o

O

n

i ...,,2,1
2

1

=


















=
M

(3.29)

is the output vector of the neural network. Equation 3.27 in the matrix form can

be rewritten as follows:

niTIWOA ...,,2,1=−+=

 (3.30)

The weight matrix W is a symmetric matrix with all diagonal elements equal

to zero. If the activation function of the neuron is a sign function, we will have:





>+
<−

=
01

01

i

i
i

aif

aif
o

(3.31)

The output transition between old value and new value will happen at certain

times. At that time, if the value of the additive weighted sum of a neuron is

greater than threshold of that neuron, the new output of that neuron will remain

or change to +1, otherwise it will remain or change to �1.

Considering this fact, we can define the state of the network, which is the

value of the outputs at one time. For example, []1111 L−=O is a state of the

network. For each neuron we have two values. Therefore n2 states exist for a

network with n neurons.

 In a Hopfield network, we apply an input at certain times and then it will be

removed. This causes transitions in states of the network. These transitions

continue until the network reaches to a stable point, which is called an attractor.

An important point about this network is that at each time one neuron will

calculate its activity level and change its output. In other words, updating of the

outputs of the neuron is being done in an asynchronous fashion. Therefore to

calculate activity level of the next neuron, and find the output of that neuron, we

use some updated value for the output of the other neurons. The updating order

of the neurons is random. It depends on random propagation delays and noise.

When using the formula in matrix form, we should be careful, because it offers

synchronous or parallel updating. If we consider []11 −=E , each state of the

system is an edge of the graph in n
E space. After applying an input pattern, the

state of the network goes from edge to adjacent edge until it reaches an attractor

of n2 edges. An attractor should satisfy the equation:

aa OA =]sgn[

 (3.32)

Where aA and aO are activity level and output at the attractor. Note that if

the network satisfies this equation, the next state of the network is equal to its

present state and therefore no transition will happen until a new input pattern is

applied to the network.

As mentioned earlier, input will be applied momentarily and then will be

removed. Considering this fact and using Equation 3.30, Equation 3.32 will

change to:

]sgn[TWOO aa −=

(3.33)

If we define the energy function for the system as:

∑ ∑ ∑+∑−−=−⋅+−=
≠

= = ==

n

ij
i

n

j

n

i
iii

n

i
ijiij

TT oToioowOTOWOOE
1 1 112

1

2

1 µ

The gradient of the energy can be calculated from Equation 3.34 as:

TTTTt TWOTOWWE +−−=+−+−=∇ µµ)(
2

1
 (3.35)

Here we have used the fact that the weight matrix is symmetric. The energy

increment is equal to:

OEE T ∆∇=∆)((3.36)

As discussed earlier outputs will be updated one at a time. Therefore only

i-th output will be updated,

[]T
ioO 00 LL=∆

 (3.37)

The energy increment will be equal to:

iii
T

i
T

i
T

i oAoTOWE ∆−=∆+−−=∆)(µ

 (3.38)

It is obvious that for positive iA , 0≥∆ io and for negative iA , 0≤∆ io .

Looking at Equation 3.38 it can be seen that 0≤∆E . Therefore it can be

concluded that state transitions of the network are in a way that the energy is

either decreased or retained. This means that the attractors are the edges with

lowest levels of energy. Following is an example to clarify these ideas.

Example 3.8:

Shows the state transitions and attractors in a fourth order Hopfield network.

Consider the weight matrix as follows:



















−−
−−
−−

−−

=

0112

1011

1101

2110

W

 (3.39)

Considering the threshold and external inputs equal to zero, energy level can

be calculated as follows:

WOOE T

2

1=

 (3.40)

or:

[]




































−−
−−
−−

−−

−=

4

3

2

1

4321

0112

1011

1101

2110

2

1

o

o

o

o

ooooE (3.41)

(3.34)

After simplification we will have:

() () 434324321 2 oooooooooE +−−+−−−=

(3.42)

Now if we consider all the states of the network starting

from []1111 −−−− to []1111 , we can calculate all the energy levels of

the network. The result will be the levels 1, 1, -1 3, -1, 3, -7, 1, 1, -7, -1, 3, 3, -1,

3, 1 respectively. Therefore the energy levels are �7, -1, 1, 3. The two states

with the lowest energy level -7 are []1111 −− and []1111 −− . We can

see that these states are attractors of the network. In other words, they satisfy

Equation 3.33. If we try any other state of the network, we will see that they do

not satisfy this equation, which means that they are not attractors of the network.

In other words, the attractors are the states with minimum levels of energy.

In fact we can see that the transition in the network will be from an state to

another state with a lower or the same level of energy. On the other hand, we

know that the transition is asynchronous. Therefore, at each single step we will

go from one state to its adjacent state. These transitions are in the direction of

reduction of energy level until we reach a state with a minimum level of energy,

which is the attractor of the network. Figure 3.24 shows the state transition of

the network.

++++

+1

-+++

+1

+-++

+3

++-+

-1

+++-

+3

--++

+3

-+-+

+3

-++-

-7

+-+-

-1

+--+

-7

++--

+3

---+

+1

--+-

-1

-+--

-1

+---

+1

+1

Figure 3.24: State Transition of the Hopfield Network to Reach to a Stable

State.

3.7 CONCLUSIONS

In this chapter, four different neural networks were presented. Several numerical

examples were provided to demonstrate the effectiveness of these networks. The

described networks consist of highly parallel building blocks that illustrate NN

design principles. They can be used to construct more complex systems. In

general, the NN architectures cannot compete with the conventional techniques

at performing precise numerical operations. However, there are large classes of

problems that often involve ambiguity, prediction, or classifications that are

more amenable to solution by NN than other available techniques. In the

following chapters several of these problems will be addressed in detail.

REFERENCES:

1. Widrow, B. and Lehr, M. A., Thirty Years of Adaptive Neural Networks:

Perceptron, MADALINE, and back propagation. Proc. of the IEEE, Vol.

78, 1415-1442, 1990.

2. Rumelhart, D.E., Hinton G.E. and Williarns, R.J., Learning Internal

Representations by Error Propagation, Parallel Data Processing, Vol. 1,

Chap. 8, the MIT Press, Cambridge, MA, 1986.

3. Specht, D.F., A General Regression Neural Network, IEEE Trans. on

Neural Networks, Vol. 2, 568−576, 1991.

4. Wasserman P.D., Advanced Methods in Neural Computing, Van Nostrand

Reinhold, New York, 1993.

5. Moody, J. and Darken, C., Fast Learning in Networks of Locally-Tuned

Processing Units, Neural Computation, Vol. 1, 281−294, 1989.

6. Jang, J. S., Sun, C. T., and Mizutani, E., Neuro-Fuzzy and Soft

Computing, Prentice Hall, Englewood Cliffs, NJ, 1997.

7. Lowe, D., Adaptive Radial Basis Function Nonlinearities and the

Problem of Generalization, Proc. First IEEE Int. Conf. on Artificial

Networks, London, UK, 1989.

8. Wettschereck D. and Dietterich, T., Improving the Performance of Radial

Basis Function Networks by Learning Center Locations, Advances in

Neural Information Processing Systems, Vol. 4, 1133-1140, Morgan

Kaufmann, San Mateo, CA, 1992.

9. Nguyen, D. and Widrow B., The Truck Backer-Upper, Int. Joint Conf. on

Neural Networks, Washington, DC, Vol. 2, 357−363, 1989.

10. Kohonen, T., Self-organization and Associative Memory, 3rd ed.,

Springer-Verlag, New York, 1988.

11. Zurada, J., Introduction to Artificial Neural Systems, West Publishing Co,

St. Paul, MN, 1992.

12. Haykin, S., Neural Networks: A Comprehensive Foundation, Prentice

Hall, Upper Saddle River, NJ, 1999.

13. Hopfield J.J., Neurons with Grades Response Have Collective

Computational Properties Like Those of Two State Neurons�, Proc. of

National Academic of Science, Vol. 81, 3088−3092, 1984.

14. Hopfield, J.J. and Tank, D.W., Computing with Neural Circuits: A

Model, Science, Vol. 233, 625−633, 1986.

4
APPLICATIONS OF NEURAL

NETWORKS IN MEDICINE AND

BIOLOGICAL SCIENCES

Faramarz Valafar

4.1 INTRODUCTION

In this chapter, we will discuss applications of artificial neural networks (ANNs)

in medicine and biological sciences. In particular, we will discuss ANN

solutions to classical engineering problems of detection, estimation,

extrapolation, interpolation, control, and pattern recognition as it pertains to

these sciences. We will discuss some of these applications in detail to introduce

the readers to typical problems that researchers face in the area.

Research in ANNs’ applications as an alternative to classical engineering and

mathematical techniques in medicine and biological sciences has intensified in

recent years. Since the early 1990s, many applications of ANNs have replaced

classical solutions to the engineering problems mentioned above. This is also

true in medicine and biological sciences. [1 − 20] To discuss applications and
accomplishments of ANNs in medicine and biological sciences, we will first

introduce a few standard measures that will be used throughout this chapter to

compare or report various results. These measures have been recommended and

used to evaluate physicians and healthcare workers by various organizations,

and therefore are good measures for evaluating the performance of any

automated system that is designed to assist these healthcare professionals.

4.2. TERMINOLOGY AND STANDARD MEASURES

The American Heart Association (AHA) recommends the use of four measures

to evaluate procedures for diagnosing CAD. [21] Since these measures are

useful in other areas of diagnosis as well, we will be using them in evaluating

most diagnostic systems.

FNTP

TP
TPFysensitivit

+
=…

100*
 (4.1)

FPTN

TN
TNFyspecificit

+
=…

100*
 (4.2)

() ()[]DPyspecificitDPysensitivitPA −+= 1** (4.3)

()
() () ()[]DPyspecificitDPysensitivit

DPysensitivit
PV

−−+
=

1*100*

*
 (4.4)

Where TP stands for true positive, FN stands for false negative, TN stands

for true negative, and FP stands for false positive. Sensitivity, or true-positive

fraction (TPF), is the probability of a patient who is suffering from a disease to

be diagnosed as such. Specificity, or true-negative fraction (TNF), is the

probability that a healthy individual is diagnosed as such by a diagnosis

mechanism for a specific disease. PA is the predictive accuracy, or the overall

percentage of correct diagnosis. PV is the predictive value of a positive test, or

the percentage of those who have the disease and have tested positive for it.

P(D) is the a priori probability of a patient who is referred to the diagnosis

procedure actually having cancer.

In addition to TPF and TNF, we define two other related values. False-

positive fraction (FPF) is the probability of a healthy patient being incorrectly

diagnosed as having a specific disease. And false-negative fraction (FNF) is the

probability that a patient who is suffering from a disease will be incorrectly

diagnosed as healthy. In this way, the following relations can be established:

TNFFPF −=1 (4.5)

TPFFNF −=1 (4.6)

To clarify the terminology and symbols, let us consider the following example.

Example 4.1:

Let us assume that 100 patients were referred to the mammography

department for diagnosis of breast cancer. Let us further assume that of the 100

individuals, 38 actually had a cancerous tumor, and the remaining 62 either did

not have any tumor or did not have one that was malignant (cancerous). Let us

further assume that a diagnosis procedure (manually conducted by physicians,

by an automated system, or by both) correctly diagnosed 32 of the 38 cancer

sufferers as having breast cancer. It, however, misdiagnosed six of those as

being cancer free. Let us also assume that the procedure correctly classified 58

of the 62 cancer-free patients as such, and misclassified the remaining 4 as

having breast cancer. Finally, let us assume that on the average, 35 % of those

who are referred to the mammography procedure actually have breast cancer.

In this example TP = 32, FN = 6, TN = 58, FP = 4, and P(D) = 0.35.

Hence,

Sensitivity TPF≡ =
+

=
32 100

32 6
84 21

*
. % ⇒ FNF = − =1 84 21 15 79. . %,

Specificity TNF= =
+

=
58 100

58 4
93 55

*
. % ⇒ FPF = − =1 93 55 6 45. . %,

PA = + −[] =84 21 0 35 93 55 1 0 35 90 28. * . . * . . %,

PV =
+ −() −[]

=
84 21 0 35

84 21 0 35 100 93 55 1 0 35
87 55

. * .

. * . . * .
. %

In this example the overall system accuracy is 90.28 %, while the predictive

value of a positive test is at 87.55 %.

Another commonly used measure of ANNs’ performance that has found its

way into the medical community (among others) is the receiver operating

characteristic (ROC) curve. [22,23]. ANNs that perform pattern recognition or

detection could be viewed as a receiver system (in the sense of a radar signal

receiver) that receives a noisy signal and attempts to identify it. In the radar

example, identification of the signal could mean classifying an aircraft as friend

or foe. In medical decision-making, it usually means the diagnosis of a patient

as healthy or sick. For simplicity, let us assume that the ANN has one output

neuron. The following discussion can be expanded to cover multi output ANNs

as well.

An important variable in the performance of the ANN is the threshold value

θ of the output neuron. If θ=1, all incoming signals in radar technology would

be classified as noise. In medical technology, it would translate into having a

negative diagnosis for all patients and, thus, categorizing them as healthy. If

θ=0 , we would be classifying all patients as sick. In the first case, the

probability of detection, or TPF, would have a value of zero, but so would the

probability of false alarm, or FPF. In the second case, TPF would have a value

of one, as would FPF. Neither of these receivers (detectors) would be desirable.

The ROC curve gives an idea as to how the receiver would perform for all

values of threshold (θ) between 0 and 1.

Let us assume that f z H s() is the conditional probability density function of
z, the activation level of the output neuron, given that the input to the network

contains a signal (patient actually is carrying the disease) (hypothesis H s).

Similarly, f z Hn() is the conditional probability density function of z, given
that the input to the network does not contain any signal (patient is actually

healthy) (noise only, hypothesis Hn). A hypothetical example of these two

density functions is shown in Figure 4.1.

With θ0 being the alarm threshold, the probability of detection, or TPF, and

the probability of positive error, or FPF, can then be calculated as follows:

TPF f z H dzsθ
θ

0

1

0

() = ()∫ (4.7)

FPF f z H dznθ
θ

0

1

0

() = ()∫ (4.8)

Figure 4.2 shows the TPF and FPF graphs for the probability density

functions of the hypothetical example shown in Figure 4.1.

Definition 4.1: The ROC curve of a system is the plot of that system’s TPF

curve versus its FPF curve. The operating variable of

the three curves is θ0, the alarm threshold.

Figure 4.1: Hypothetical Conditional Probability Density Functions of the

Activation Level z of the Output Neuron, Given that the Patient is Known to be

Sick (Hs) or Healthy (Hn).

Figure 4.2: The True Positive Fraction and the False Positive Fraction

Functions of the Hypothetical Example Shown in Figure 4.1, Plotted vs. the

Alarm Threshold of the Output Neuron.

The ROC plot of the hypothetical example can now be plotted according to

Definition 4.1. Figure 4.3 shows the ROC plot for the hypothetical example of

Conditional Probability Density functions of the activation

level of the Output Neuron

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Activation Level of the Output Neuron (z)

f(z|Hs) Patient is actually sick.

f(z|Hn) Patient is actually healthy

θ0

Hypothetical TPF and FPF Curves Versus the Output

Threshold.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

 Activation Threshold of the Output Neuron

TPF

FPF

q

Figure 4.1. This figure also shows a worst case classifier (dashed line), and a

theoretical best case classifier.

The ROC curve demonstrates an important property of any detection system:

namely, that the probability of “true positive” is directly related to the

probability of “false positive.” They rise and fall together. The ideal classifier

is one whose TPF is one for all values of FPF, including when θ0=1 and FPF=0

(the red curve in Figure 4.3). The worst classifier is one that has no

discrimination. A positive detection always has equal probability of being true

or false. In other words, TPF = FPF for all values of θ0. This, in turn, would

produce the dashed line ROC curve shown in Figure 4.3.

A consolidated measure that is a good representation of the overall quality of

the receiver, and of the model used to build the receiver, is the area under the

ROC curve. This area is commonly referred to as Az. [23] This area varies

between 0.5 (worst receiver) and 1 (best receiver). The area under the

hypothetical ROC curve of the example in Figure 4.1 is 97.49 %. Furthermore,

the best operating point of a receiver can be determined from the ROC curve by

determining the point with a maximum distance from the diagonal line of the

worst case classifier. In Figure 4.3, the label “Ideal Operating Point” shows this

point of the hypothetical receiver. As can be seen from the figure, the best

operating point of the hypothetical receiver has a TPF value of about 84 %, and

FPF value of about 3.5 %.

Figure 4.3: ROC Plots of a Hypothetical Receiver, a Theoretical Best Case

Receiver, and a Worst Case Receiver.

The measures introduced in this section are particularly helpful in comparing

the performance of most diagnosis procedures (systems) and therefore will be

used in several parts of this chapter.

ROC Plot

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.000.660.440.290.190.120.070.040.020.010.00

FPF

T
P
FWorst

Classifier

Increasing θ0

Best Classifier

θ0=0θ0=1

Hypothetical Classifier

Ideal Operating Point

4.3 RECENT NEURAL NETWORK RESEARCH ACTIVITY IN

MEDICINE AND BIOLOGICAL SCIENCES

ANNs have enjoyed success in various areas of medicine and biological

sciences. ANNs have been successfully applied to areas such as radiology [16],

cancer research, [12,14,24−29] biochemical spectrum analysis, [30] sleep

disorder, [31] cardiac disease, [1,2,15,18,19] biochemistry of a disease, [4,5]

HIV and AIDS, [5,29] epilepsy, [6,20] vision, [7] motor control, [8] lunge

disease, [10,11] pathology and laboratory data analysis, [13,14] diagnosis

decision support, [17,18,32] and many more.

In the following we present a brief summary of three research projects as

examples of some of the most active research areas in ANNs’ applications in

medicine and biological sciences. These three applications are only meant to

give an indication as to the breadth of the activity areas, and to demonstrate the

typical problems (and give some ideas as to possible solutions) that researchers

often face when dealing with real world data in the areas of medicine and

biological sciences. It is also our hope that through these examples we can

indicate the level of achievement of the ANN research community in various

fields.

4.3.1 ANNs in Cancer Research

Pattern recognition using ANNs in cancer research is likely to be the most

active area in terms of application of ANNs in medicine. ANNs have been used

extensively in various roles in cancer research anywhere from tumor detection

and analysis, [24,25,26] to the detection of biochemical changes in the body due

to cancer, [29] to analysis of follow-up data in primary breast cancer, [27] to

visualizing anticancer drug databases. [28] Among various types of cancer and

detection methods, breast cancer diagnosis by the means of ANN classification

of mammography images has been one of the most widely studied.

T.C.S.S. André and A. C. Roque [24] offer one of the most recent studies in

this area. The authors have developed a medical decision support system using

neural networks to aid in the diagnosis of breast cancer. This system uses digital

mammogram images to classify a case as having one of three possible outcomes:

suspicion of malignant breast cancer, suspicion of benign breast cancer, or no

suspicion of breast cancer. André and Roque [33] used a staged (layered) neural

network with a set of identical single layer networks as the input layer. These

input layer networks used localized receptive fields without overlapping in the

mammogram image. The hidden and the output layers of the network were each

a single layer of perceptrons. The input layer was first trained, with regions

taken from several mammograms, to become a feature extractor using the

competitive learning algorithm. [33] The perceptron layers were then trained

with the backpropagation learning algorithm.

The authors report a TPF of 0.75, and an FPF value of 0.06 for the optimum

operating point of the ANN system described above. Furthermore, they report

an Az value of 0.84 for their system. To put this value in perspective, it should

be mentioned that Az values typically fall in the 0.80 to 0.90 range for

mammography analysis. In a similar study, Wu et al. [34] report an Az value of

0.84 for a group of attending radiologists, and an Az value of 0.80 for a group of

resident radiologists.

Wu et al. [34] also conducted a similar study using a neural network trained

with the backpropagation algorithm. They used a set of features of

mammogram images that were selected by experienced radiologists as the input

signal to the neural networks. In this case, they report an Az value of 0.95 for

textbook cases, and an Az value of 0.89 for clinical cases.

4.3.2 ANN Biosignal Detection and Correction

Applications of signal detection techniques have been used in biological

sciences to detect a single signal, or a group of signals, buried in various types

of noise and nonrelevant biosignals for several decades. Applying pattern

recognition techniques to spectroscopic data, for instance, has been used to help

in structural elucidation of known molecules, and to significantly reduce the

enormous duplicate work otherwise conducted in the area. Pattern recognition

tools can therefore be employed to build search engines for spectral databases of

various types of molecules.

An example of this can be seen in detecting the signature of one, or a group

of complex carbohydrates in gas chromatography-electron impact mass

spectroscopy (GC-EIMS), or nuclear magnetic resonance (NMR) spectra. [30]

Complex carbohydrates have been linked to biochemical functions of all

cells, [35 − 37] such as cell recognition (e.g., initial steps in host pathogen and
symbiotic relationships), intercellular adhesion (lectins and selectins), biosignal

processes (oligosaccharins), developmental regulation, antibody binding,

immune system modulation, and hormonal regulation. Consequently, complex

carbohydrates, or the receptors that bind them, are also involved in many

diseases, including autoimmune diseases, inflammatory diseases, and cancer. A

tool to rapidly elucidate the chemical structures of complex carbohydrates can

be instrumental in research to understand their biological functions. The

presence of specific carbohydrates or their “uncommon” relatives, for instance,

could be indicative of disease, the stage of a disease, or the presence of an

antibody.

In this context, signal correction techniques could be used to correct the

incoming biosignals and to compare them to a prerecorded clean library of

signals. In this way, signal detection and correction techniques are used to

discover and clean biosignals, and subsequently identify complex carbohydrates

from which they originated. In this section, we discuss an artificial neural

network solution to biochemical signal detection and identification, as well as

biochemical signal correction for complex carbohydrates. [30]

Identification Of Complex Carbohydrate Structures f rom Their Spectral

Signatures Using ANNs.

Structural and functional elucidation of complex carbohydrates is a key part

of an increasing number of biomedical inquiries into these molecules. The

structural determination of complex carbohydrates is the mandatory prerequisite

to determining their functions. But the enormous chemical complexity and

diversity of complex carbohydrates makes their structural elucidation a

particularly challenging, lengthy task, and one that scientists would not wish to

duplicate unnecessarily. Therefore, the primary need for the scientist faced with

finding out the identity, chemical characteristics, and other attributes of a

carbohydrate is to know whether that carbohydrate has already been analyzed by

others and, if so, what is known about its chemistry, biology, and conformation.

F. Valafar and H. Valafar [30] have developed a system for automated

identification of complex carbohydrates using their chemical spectra that can

provide this type of information.

Figure 4.4 (a) A
1
H-NMR Time-Domain Signal of an N-linked

Oligosaccharide. (b) The Fourier Transformed Frequency-Domain Spectrum of

the Same Oligosaccharides.

(a)

(a)

Hump Region Standard

HDO

SignalSignal

In the following, we discuss Valafar’s method in identifying complex

carbohydrate structures from their
1
H-NMR spectra using artificial neural

networks. In most classical signal processing methodology, the process of

structural elucidation of a chemical compound from its
1
H-NMR spectrum first

involves individual signal detection of elementary components (proton or
1
H

signals). The second step in this process is the task of combining the detected

individual signals in order to identify the structure of the carbohydrate in

question. Valafar’s use of ANNs in this process combines the two steps; the

ANN performs both steps at the same time.
1
H-NMR spectra, in general, suffer from environmental, instrumental, and

other types of variations that manifest themselves in a variety of aberrations.

Low signal-to-noise ratio, [38 − 40] baseline drifts, [41 − 43] frequency shifts
due to temperature variations, line broadening and negative peaks due to phasing

problems, and malformed peaks (or peaks overlapped more than usual) due to

inaccurate shimming are among the most common aberrations. Figure 4.4

demonstrates a clean
1
H-NMR spectrum of an N-linked complex carbohydrate.

As can be seen from Figure 4.4, large peaks not relevant to the structural

elucidation of the complex carbohydrate usually dominate
1
H-NMR spectra of

complex carbohydrates. These peaks include that of the solvent (heavy water in

this case, HDO) and that of the standard. The proton signals (drifts) are

typically in the order of 100 times weaker than the large peaks. Furthermore,

most of these signals heavily overlap in the “hump” region of the spectrum,

leaving the region unusable for structure elucidation.

For the purpose of automated identification of these spectra, elimination of

the above mentioned aberrations becomes essential, as they can lead to

erroneous identification. [41−45] A variety of signal processing techniques

have been applied to "clean up"
1
H-NMR spectra. For instance, signal

averaging
1
 and apodization

2
 have become standard ways of improving the

signal-to-noise ratio. To correct baseline problems, a number of techniques

have been used such as parametric modeling using a priori knowledge, [41,42]

optimal associative memory (OAM), [42] spectral derivatives, [46] polynomial

fitting, partial linear fitting, [47] and Bayesian analysis. [48] For peak detection

(and solvent peak suppression), methods such as Bayesian analysis [48,49] and

principal component analysis [50,51] can be mentioned. For signal-to-noise

1
 In signal averaging a spectrum is recorded several times. Each recorded signal

is referred to as a “transient”. The final spectrum is the arithmetic average of all

the transients. The hope is that by using signal averaging the zero mean

components of the noise present in the signal will be averaged out.[44]
2
 Apodization is a type of low (high) pass filtering performed in the time

domain. Apodization is performed by speeding up or slowing down the rate of

decay of time domain exponential functions. This is accomplished by

multiplying the time domain signal by another function. This technique allows

the improvement of the signal-to-noise ratio at the cost of the reduction in signal

resolution (or vice versa).[44]

ratio problems, various types of filters (including adaptive filters such as

matched filters [44,51]) in addition to standard apodization and signal averaging

have also been used. A number of other mathematical techniques have also

been introduced to address other specific types of aberrations encountered in
1
H-NMR spectra.

Although many of these signal processing techniques have enjoyed success,

they remain solutions to specific types of aberrations. In order to produce

sufficiently “clean” spectrum overall, one needs to use several of these methods

to eliminate the aberrations present in a real spectrum. Furthermore, most of

these techniques produce side effects that are magnified when improperly

processed by a second signal processing algorithm, which can lead to false

identification. Moreover, after the initial signal processing steps have been

taken, the task of identifying the processed spectrum remains. This is not a

trivial task as frequently the quality of the processed spectrum remains poor,

requiring a sophisticated identification system.

Valafar and Valafar [30] have developed an artificial neural network system

that addresses many of the above mentioned problems while identifying
1
H-NMR spectra of complex carbohydrates. Although the procedure still

requires a minimal amount of preprocessing, it has significantly reduced the

number of preprocessing steps while increasing the overall identification

accuracy.

In this project, the authors developed an ANN system for a library of N-

linked oligosaccharides, and one for xyloglucan oligosaccharides. While

xyloglucans are plant cell wall oligosaccharides, the N-linked oligosaccharides

are present in most animal biochemistry. Since the two systems used similar

methods to develop an ANN identification system, we will only discuss here the

development of the N-linked ANN identifier.

 Preprocessing. Initial testing indicated that without preprocessing all

selected methods for identification purposes would perform poorly. Therefore,

it was decided to use some minimal preprocessing techniques to eliminate some

aberrations before the identification stage. These preprocessing steps included

baseline correction, high frequency noise reduction, and water and solvent peak

elimination. These steps were respectively accomplished by a first derivative

technique, a low-pass filter in the form of a specially designed averaging

moving window, and a bin selection technique. The ANN eliminated the

remaining aberrations in the process of identification. In other words, the ANN

was able to learn during training to be insensitive to the remaining aberrations.

Additionally, since each
1
H-NMR spectrum contained anywhere from 4K to

16K of data, an interpolation technique was used to normalize the length of all
1
H-NMR vectors to 5000. This would reduce (in most cases) the resolution of

the spectrum to 2 points per Hertz, which is as low as Nyquist’s theorem [51]

would permit. The 5000-point vector covered the region between 1 and 5.5 ppm.

The corrected spectra then were introduced to the ANN for training purposes.

Figure 4.5 shows the estimated a posteriori probability density functions [51]

of the inter-
3
 and intra-class

4
 correlation coefficients between the raw (not

processed)
1
H-NMR spectra of the N-linked data set

5
 as defined by Bayes’

theorem. [51] The required a priori density functions by Bayes’ theorem were

estimated using the nonparametric approach of Parzen density estimation. [52]

Figure 4.6 shows the estimated a posteriori density functions of the

preprocessed spectra from the same data set. As can be seen from the graphs,

the overlap of the two density functions has been reduced from 56 to 43 %. This

means that the “classical” signal preprocessing has simplified the identification

task, and a Bayes' classifier, in combination with correlation coefficient analysis,

now carries a 43 % uncertainty factor vs. the previous 56 %. Moreover, the

probability density functions behave closer to expected (one large peak per

density function, and smooth decay everywhere else in the function) after

preprocessing.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0
0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9 1

Intra

Inter
Overlap = 0.56

Intra Inter

Figure 4.5 Estimated Distribution of Inter- and Intra-class Correlation

Coefficients of Raw (Not Processed)
1
H-NMR Spectra of 109

1
H-NMR Spectra

of 23 N-linked Oligosaccharides.

 ANN design

The authors used a two stage feedforward network with sigmoidal artificial

neurons [33] in the hidden and output layers. The input layer of the network

contained 5000 fan out neurons. The output layer contained 67 neurons

3
 By “class” we refer to the set of all spectra for a specific compound. In other

words, each class in the xyloglucan experiment contained two spectra. In the N-

linked database, 20 oligosaccharides were represented by five spectra, and the

remaining three had three spectra, giving rise to five-member and three-member

classes respectively. An “inter-class” correlation coefficient is the correlation

coefficient between the spectra of two different oligosaccharides.
4
 “Intra-class” correlation coefficient is the correlation coefficient between two

different spectra of the same oligosaccharide.
5
 The estimated Bayes’ a posteriori distribution functions for the xyloglucan

data set were similar to those shown here for the N-linked data set, and for space

consideration are not shown here.

corresponding to the 67 oligosaccharides in the library. The number of the

hidden neurons was empirically determined to be 27.

To develop the best performing ANN, several criteria were set forward: 1)

the developed ANN was to have a very low FPF. In other words, if a spectrum

of a complex carbohydrate was not present in the training library, the system

should not try to find the closest match in the library. The outcome should be

that the carbohydrate does not exist in the library; 2) the system needed to be

tolerant of aberrations, and to be able to identify carbohydrates from its library

even in the presence of relatively low signal-to-noise ratio. This translated into

a high value for the area under the ROC curve, Az. This also meant a high TPF

value and 3) in the case of a mixture, the system was to indicate the

carbohydrate of the highest ratio in the mixture.

0

0.1

0.2

0.3

0.4

0.5

0.6

0
0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9 1

Intra

Inter

Overlap = 0.43

Intra ClassInter

Figure 4.6 Histogram of the Correlation Coefficient Distribution of the

Preprocessed
1
H-NMR Spectra of 109

1
H-NMR Spectra of 23 N-linked

Oligosaccharides.

With these goals in mind, a large number of training simulations were

conducted. A large number of permutations were tried, namely, by varying the

learning step size update policy, the number of hidden neurons, and the level of

input noise. Valafar et al. dynamically manipulated the spectra during training

by introducing some input noise in order to simulate the natural variability of

these spectra. The noise simulated varying coupling constants due to

temperature, line shape problems due to incorrect shimming, and minor baseline

drifts. [53]

Table 4.1 shows the results of the best performing ANN in comparison with

three other methods. The table shows the results of the experiments for both the

N-linked and xyloglucan oligosaccharides.

 Method A: Correlation coefficient analysis; Method B: Singular value

decomposition; Method C: Correlation coefficient analysis and Bayesian

classifiers; Method D: Backpropagation ANN.

The ANN system also showed less sensitivity to signal to noise degradation.

Table 4.2 shows the degradation of identification accuracy of the four methods

with increasing noise.

Table 4.1: Number of Correctly Identified N -linked and Xyloglucan

Oligosaccharide Spectra (Total Number of Spectra is in Parentheses) by Four

Different Identification Techniques after the Spectra Were Preprocessed as

Described Above.

N-linked Oligosaccharides Xyloglucan Oligosaccharides

Method Training

(67 spectra)

Testing

(134 spectra)

Training

(20 spectra)

Testing

(20 spectra)

A 41 69 9 12

B 43 72 10 11

C 44 78 10 13

D 67 128 20 20

Table 4.2: Percentage Correct Identification of the Four Systems with

Increasing Noise During Testing in the N-linked Oligosaccharide Database.

Testing Noise Level

Method 0% 5% 10% 15% 20%

A 51.49 41.86 37.21 34.88 27.91

B 53.73 46.51 39.53 34.88 25.58

C 58.21 53.49 46.51 37.21 32.55

D 95.52 95.35 81.40 62.79 39.53

4.3.3 Decision-making in Medical Treatment Strategies

Decision-making techniques can be used in medicine to solve various

problems. Specifically, ANN pattern recognition engines have enjoyed

significant success in medical decision-making. [1 − 20] Although, the ANN
systems developed in this area demonstrate great potential benefit to the

healthcare community, due to the numerous remaining challenges, the area

remains one of the most active. To introduce the difficulties that researchers

face in this area, we discuss here an ANN system designed to assist physicians

in deciding on the best treatment strategy. Specifically, we will describe a

research project conducted by H. Valafar et al. [32] to develop an ANN system

to decide whether a beneficial, and yet at times harmful, medication

(Hydroxyurea) should be prescribed in battling the symptoms of sickle cell

anemia (SCA).

Predicting a sickle cell anemia patient’s response to Hydroxyurea. Sickle

cell anemia is a genetic disease mostly affecting African Americans in the US.,

although the disease is not limited to people from African origin worldwide.

Treatment with Hydroxyurea (HU) partially alleviates disease symptoms in

many patients with SCA.

Treatment with HU alleviates the clinical course in many patients with sickle

cell anemia. [54] Most patients respond to HU with an increase in the fetal

hemoglobin (HbF) concentration of blood by either increasing the amount of

HbF in their F-cells and/or by increasing the proportion of F-cells. The response

to HU varies from patient to patient. If the magnitude of the HU-elicited

increase in the %HbF (with respect to the total Hb) of the patient’s blood could

be predicted, “non-responders” could be identified. Although Hydroxyurea is

effective for many patients, it is ineffective, and at times harmful, for others.

Therefore, it is desirable to devise a tool with which physicians can predict, with

a high percentage of accuracy, the outcome of the treatment before the

medication is administered. Hence, the ultimate goal of the project is to predict

the response level of a given patient to Hydroxyurea, using only the

pretreatment data of a patient.

To develop such a system, the first question that needs to be answered is:

What data should be used for the prediction/decision-making task? In this

particular project, the authors relied on the expertise and experience of the

physicians who were involved in sickle cell anemia research. The final set of

data to be used for prediction contained the results of a standard blood test, in

addition to some genetic information. A detailed list of the parameters that were

used can be seen in Table 4.3.

Selection of the parameters listed in Table 4.3 was based solely on educated

guesses on the physicians’ parts (such as the genetic information), and some

earlier simple statistical analysis of various data. Therefore, it could be expected

that some of the 23 parameters might not be relevant to the problem at hand. It

is also quite possible that not all relevant parameters are included in the study.

Data preprocessing. Many medical databases, especially those that go years

into patients’ past history and treatment, are in printed or written form. The first

step in this research was to create an electronic database usable by the modeling

team. This process was accomplished at the Medical College of Georgia. All

patients’ data were entered into a widely available spreadsheet. These data then

were sent to the modeling team for analysis.

Soon after the first round of analysis was completed, the following problems

were observed:

1) Missing data. A quick look at the data revealed that much of the data was

missing. For instance, if the patient was feeling well in that particular

month, certain measurements (tests) were not conducted. Furthermore,

there were instances where the patient simply did not show up for follow-up

tests because he/she was feeling okay. In some instances, the paperwork

containing the data for the early stages of the treatment was misplaced and

lost. There were two types of missing data in our databases. In some

instances, certain variables (pieces of data) were missing from a monthly

record. In others, an entire monthly record was missing.

2) Incorrect data. Simple statistical correlation analysis revealed that there

were some severe outliers. Most of these were traced back to human error.

But there were also data that simply were off the chart, but not traceable to

any human error. All the human errors were corrected. However, the

nontraceable extreme outliers were excluded from the study.

3) Invalid or corrupt data. In some cases, there were patients who became

pregnant against the doctor’s advice, or underwent a blood transfusion due

to other complications in the middle of the treatment period. The data of

such patients were excluded from the study as the effects of such events on

a patient’s blood chemistry and his or her ability to respond to Hydroxyurea

was unclear.

 Table 4.3 A Description of the 23 Parameters for Which Data was Obtained

from the Patients. From H. Valafar, et al., [32].

 Parameter Description Units

 Age Age of patient at the time of analysis Days

 Sex Male/Female F=1, M=2

 NAGG α Globin gene number None

 BAN Number of BAN haplotypes 1,2, or 3*
None

 BEN Number of BEN haplotypes 1,2, or 3*
None

 CAM Number of CAM haplotypes 1,2, or 3*
None

 SEN Number of SEN haplotypes 1,2, or 3*
None

 WGT Weight of patient Kg

 %HbF Fetal hemoglobin, as % total

hemoglobin

 None

 HbF Fetal hemoglobin, absolute value g/L of blood

 Hb Total hemoglobin concentration g/dL of blood

 RBC Red blood cell count x 1012 / Liter

 PCV Packed cell volume (hematocrit) Liter / Liter

 RDW % Variation in the size of red cells None

 Retic Reticulocytes x 103

 MCV Mean cell (erythrocyte) volume Femtoliters

 MCH Mean cell hemoglobin Picograms

 WBC White cell count x 109 / Liter

 Polys Polymorphonuclear leukocytes x 109 / Liter

 Plats Platelet count x 109 / Liter

 Bili Bilirubin concentration in blood mg / dL

 NRBC Nucleated red blood cells seen in
peripheral blood

 Number per

WBC

 Duration Duration of treatment a patient received

to arrive at the maximum %HbF level

 Days

 *The actual values were 0,1,or 2, but 0 could not be used (see last paragraph

under ANN Analyses).

Problem definition. Further problems arose as the team prepared for the first

round of modeling experiments. One of the more fundamental problems, and

often one that is usually difficult to solve in medical decision-making problems,

was with the definition of the problem (problem statement). After further close

examination of the data, it was realized that the definition of the problem was

inadequate and that the experiments were destined to either fail, or to produce

results that were medically useless. The original statement of the problem was

as follows: “Develop a system that can accurately distinguish positive

responders from the nonresponders using pretreatment data.” Furthermore, a

“positive responder” was defined to be “a patient whose initial percentage HbF

(%HbF) doubles at some point during the treatment.”

After looking at the data, it was soon realized that while this definition may

work for patients whose initial %HbF is, say 7%, or higher, it does not work so

well for patients whose initial %HbF is 1% or 2%. In other words, while

Hydroxyurea treatment might increase a patient’s initial %HbF value from 1%

to 2% at some point during treatment, it is not very likely that he/she would

experience any benefits (reduced number of hospital visits, or reduced severity

of symptoms) as a result of this minor increase. This meant that even in the

bestcase scenario that a system with 100% accuracy (in separating the patients

who can double their initial %HbF from those who cannot due to Hydroxyurea)

was developed, its results would be clinically meaningless. This is because

doubling the %Hbf value does not translate into reduced symptoms or hospital

visits for many or all patients. A new definition for a “positive response” had to

be devised.

After extensive study of published articles on Hydroxyurea and its

alleviation of symptoms, two possible definitions were suggested:

1) Dynamic patient threshold. It was suggested that each patient has a

different level of % HbF, beyond which his/her symptoms begin to taper

off. A patient would be categorized as a positive responder if his/her %HbF

level increased above this dynamic threshold as a result of the treatment.

This dynamic level needs to be calculated or estimated for each patient via

some type of computational means. Although this measure is probably the

more accurate measure of positive response, it was soon realized that in

order to estimate accurately each patient’s threshold, one would need to

have the response model in hand. Since the response model was the final

goal of the project, this definition seemed impractical and was therefore

abandoned.

2) Static threshold. The team agreed that the next best definition was that of a

static threshold across all patients. This threshold was determined by

consulting existing publications and the collaborators at MCG. All these

sources seemed to agree that most patients experienced some type of relief

of symptoms when their %Hbf rose about 15%. [55,57] Hence, if a

patient’s HbF concentration rose above 15% of total Hb during treatment,

he/she was categorized as a positive responder, and all others as

nonresponders. Three patients were excluded from this study, as their

initial % HbF was higher than 15. This threshold divides the final 83

patients included in the study into 58% responders and 42% non-

responders.

Missing Data. The problem of missing data arises in medicine quite often. The

most common causes of missing data are 1) patients who do not come into

clinics for further tests when they start feeling better or, if they do come in, the

nurses and the physicians who record the data are not as motivated to record all

available information; and 2) data are commonly recorded on paper and,

therefore, sometimes are misplaced and/or lost. While these are the two main

causes of missing data, there are others that need not be mentioned here.

In general, regardless of the reason for missing data, the missing data can be

categorized into two classes: 1) missing record: in some instances, the data for

an entire record are missing. A common cause of this type of missing data in

the case of SCA is due to patients who do not report to the clinic for their

monthly tests when they experience some relief in their symptoms. In such

cases, no data for that month are available for the patient; and 2) missing data

points: In some instances, specific parameters in each record are missing. An

example of this in the case of SCA would be when a patient who is feeling better

reports to the clinic for a monthly test. In some such cases, not all the tests are

conducted, or properly recorded. Human error is also a common source of this

type of missing data.

The first type of missing data did not cause many problems in our

experiments. This is because only the initial parameters of the patient (from

before the beginning of the treatment) were used and the highest level of

percentage HbF during treatment to train the artificial neural network. For this

reason, missing intermittent data were not harmful to our experiments, except in

cases when the highest percentage HbF was also missing. In the cases where the

highest percentage HbF value was missing, all data of that patient were excluded

from the study.

The second type of missing data could be potentially much more

problematic, as it is much more likely for the value of some parameters to be

missing at the initial recording before the beginning of the treatment. Since the

initial values are vital information, all patients who were missing more than two

initial parameters were dropped from the study. The patients whose data were

missing one or two initial parameters were kept in the study as long as the level

of initial percentage HbF was not missing. To fill in the missing parameters,

some experiments were conducted with a few extrapolation algorithms.

However, it was discovered that the best way to deal with the few missing

parameters was to fill them in with zeroes. This is simply because Delta rule

[33] and backpropagation algorithms were used to train our neural networks,

and, as can easily be determined from weight update formulas, when the input

parameter is zero, no learning is conducted in the first stage of the network.

This was the best way to make use of the data without presenting the network

with erroneous data.

Compliance. Compliance is one of the biggest problems in medical research.

The simple cause of it is that some patients stop taking the medication, or at

least reduce the dosage without instructions from the physician when they start

feeling better. This can lead to corrupt data (for our purposes), as a patient

could be falsely identified as a nonresponder. This was the case in our study.

Our initial systems suffered from a relatively high FNF. From formula 4.6, it

can easily be seen that this causes TPF to be reduced, and therefore Az, the area

under the ROC curve, to be lower than expected. As a result, it could lead to the

false conclusion that the identification technique or system architecture is

inadequate, while the source of the problem really lies in the data.

In the case of many medications, compliance can be measured by the

variation in one or many biochemical parameters. This was the case with HU

and SCA patients. One of HU’s side effects is that it increases the volume of

red blood cells. [58] Among the final 83 patients who were all categorized as

compliant and were included in this study, the mean cell volume increased by an

average of 22% as a result of HU treatment. This is in line with other studies.

[55,56,58,59] The variable mean cell volume (MCV) is thus a good measure of

compliance. This variable was analyzed for each patient. It was decided that six

patients were not compliant and so their data were excluded from the study.

Figure 4.7 shows the bin distribution function of MCV before and after HU

treatment. As can be observed, the distribution has clearly moved to higher

values after the treatment and has a higher mean.

7
0

8
0

9
0

1
0
0

1
1
0

1
2
0

1
3
0

1
4
0

1
5
0

0

5

10

15

20

#
 o
f
p
a
ti
e
n
ts

Mean cell (erythrocyte)

volume (Femtoliter)

Before

After

 Figure 4.7: Distribution of Average Volume of the Red Blood Cells of 83

Sickle Cell Patients before and after Treatment with HU. From H. Valafar, et al.,

[32].

Neural network prediction model. An ANN using 23 input neurons, 4 hidden

neurons, and 1 output neuron was used for the 15% threshold experiment. This

neural network produced an output value higher than 0.5 if the patient was

predicted to be a responder, and an output of less than 0.5 if the patient was

predicted to be a nonresponder.

The threshold experiment was designed to eliminate the possibility that the

ANN could simply “memorize” the values of the parameters of each patient.

This was accomplished by training ANNs with the parameter values of 82 of the

patients, and then using the values of the patient whose parameters had not been

seen by the ANN, to test the ANN. This procedure was repeated 83 times and

each time an ANN was trained. (A different patient was left out of the training

each time) The result of this experiment is presented in Figure 4.8. Seventy

patients were correctly classified as responders or nonresponders while 13 were

misclassified. Thus, 84% of the responses were predicted correctly. This

experiment was repeated five times with, on average, 86.6 correct predictions

with a standard deviation of +/-2.0.

Variable selection. Researchers in the medical fields are also frequently faced

with the problem of variable selection. In most cases, there is not enough

information to select the relevant variables for a certain modeling/pattern

recognition problem in medicine. Also, one of the reasons that researchers seek

a mathematical model for a disease is to use it to determine the relevant

variables. This information can be extremely helpful in understanding how the

disease works, develops in the body, or is fought against by the body’s immune

system. In the latter case, if the immune system is failing to effectively fight the

disease, information about relevant variables could lead to new medications that

either help the body in eliminating the disease, or at least reduce its symptoms

(e.g., the case of sickle cell anemia).

0

0.5

1

1.5

0 10 20 30 40 50 60 70 80

PATIENTS

A

N

N

O

U

T
Actual response

Predicted response

Figure 4.8: The Prediction by ANNs of Which Patients Would Respond to HU

by an Increase in Their HbF Concentration to the Point Where it Accounts for

15% or More of Their Total Hb. ANNs Were Trained with the Values of the

Parameters of 82 Patients and then Tested with the Values of the Parameters of

the Patient that Had Not Been Used to Train the ANN. This Procedure Was

repeated 83 times, each time Leaving Out a Different Patient and Training the

ANN With the Data from the Other 82 Patients to Give the Values in the Figure.

Patients Whose HbF Concentration Did Not Reach 15% of the Total Hb Should

have generated an ANN “output” of less than 0.5, while patients whose HbF

Concentration Exceeded 15% of the Total Hb Should Have Generated an ANN

Output of More Than 0.5. From H. Valafar, et al., [32].

Valafar et al. designed their variable selection experiments in the SCA’s case

to identify which of the 23 parameters are most important or influential in

assisting ANNs to predict those patients that will respond to HU treatment.

Determining the importance of each of the 23 parameters was accomplished by

employing two different methods. The first method consisted of a recursive

elimination process in which a different set of parameters was taken out of the

training set. The ANNs were trained with the values of the remaining

parameters. The software measures the degradation of performance due to the

missing parameters. This experiment is an exhaustive elimination process in

which the removal of every combination of parameters (2
23
-1=8,388,607

combinations)

is evaluated. The degradation (or importance) of the parameters

observed is the averages of ten experiments (two different seeds for the random

number generator, and five runs per seed). The final effect of removing each

set of parameters is calculated by averaging the performance degradation of the

ten ANNs trained without that set of parameters.

The second method of parameter selection is an adaptive technique that takes

into effect the synaptic connection strengths of each variable. This algorithm is

initiated by setting equal values for each parameter. During the course of

training, these values are updated to reflect the strength of the synaptic

connection(s) associated with each parameter. This, in turn, is an indication of

the contribution of each parameter towards the discovery of the correct answer.

Thus, at the end of the training the contribution of each parameter reveals its

importance in the solution of the problem. Each training session was repeated

five times to eliminate any random behavior of the system.

Although the above two methods are distinctly different methods for

parameter selection, both algorithms produced similar results in extracting the

relevant parameters. For this reason, we will only discuss the results of the

second method from this point forward.

The 23 parameters and their scores, which are proportional to their

contributions in predicting the response to HU treatment, are listed in Table 4.4.

This table contains the averaged data for over five different training sessions.

The lack of any particularly influential contributors indicates that no one

parameter contains the information needed to predict the response to HU.

Therefore, based on the given contributions, it is reasonable to assume that the

information needed for a successful classification is distributed among a number

of parameters, perhaps even a fairly large number of parameters.

The ANNs whose testing results are shown in Figure 4.8 used the values of

all 23 parameters. A separate experiment was carried out to determine if the

values of just ten of the twenty-three parameters listed in the previous section

could be used while maintaining the ANN’s full ability to identify responders

and non-responders. This experiment used the top ten parameters listed in Table

4.4. The ability to eliminate unnecessary parameters has the potential for

reducing the problem size by more than 50%, and might assist in elucidating the

mechanisms by which ANNs function.

Table 4.4 The Effectiveness of Each of the 23 Parameters to Assist ANNs in

Predicting the Response of Patients to HU Treatment. From H. Valafar, et al.,

[32].

Parameter Score

Duration 0.083

RDW 0.063

WBC 0.059

Plats 0.053

MCV 0.053

Polys 0.052

WGT 0.050

SSEN 0.045

Retic 0.043

Sex 0.042

SCAM 0.041

NAGG 0.041

Hb 0.040

SBAN 0.040

MCH 0.035

RBC 0.034

SBEN 0.034

Bili 0.034

Age 0.033

HbF 0.032

%HbF 0.031

PCV 0.031

SNBRC 0.030

The ANN trained only with the 10 selected variables had remarkably similar

results to the one trained with all 23 variables. Except for 2 of the 83 patients,

the results of the 2 networks were very similar. The network trained with ten

variables produced outputs that were more clearly defined. The mean of the

probability density function of the output z of the smaller network was higher

for positive responders, and lower for nonresponders. By the same token, the

standard deviation of both curves was smaller than those of the larger network.

Furthermore, the two patients whose classification changed by using the smaller

network were both marginally classified by the larger network. One was

correctly classified as a responder, and one incorrectly as a nonresponder. With

the smaller network, the first patient was incorrectly classified as a

nonresponder; the second patient was correctly classified as a responder.

Therefore, the TPF, FPF, and the ROC curves remained identical for both

networks.

4.4 SUMMARY

Artificial neural networks have distinct features that can be advantageous in

modeling natural phenomena in biology and medicine. Applications of ANNs in

these fields are sure to help unravel some of the mysteries in various diseases

and biological processes. In the SCA case, the ANN developed for the variable

selection process helped pinpoint the parameters that possibly play an important

role in understanding the works of SCA. This could lead to a significant

increase in the life expectance of SCA sufferers.

Research in applications of ANNs in medicine and biological sciences

currently remains strong. With more systematic data collection routines

implemented in healthcare facilities, systems such as the ones described in this

chapter are sure to find their way into doctors’ offices and hospital laboratories.

REFERENCES

1. Akay, M., Akay, Y.M., Welkowitz, W., Semmlow, J.L., and Kostis,

J.B., Noninvasive Detection of Coronary Artery Disease Using Neural

Networks, Proc. of the Ann. Conf. on Eng. in Med. and Biol., 13(3),

1434 − 1435, Oct 31 − Nov 3, 1991.
2. Akay, M., Noninvasive Diagnosis of Coronary Artery Disease Using a

Neural Network Algorithm, Biol. Cybern., 67: 361 − 367, 1992.
3. Alpsan, D., Auditory Evoked Potential Classification by Unsupervised

ART 2-A and Supervised Fuzzy ARTMAP Networks, Int. Conf. on

Neural Networks (ICNN '94), IEEE, Orlando, FL, 3512 − 3515, June 26
− July 2, 1994.

4 . Andrea, T.A. and Kalayeh, H., Applications of Neural Networks:

Quantitative Structure-Activity Relationships of Dihydrofolate

Reductase Inhibitors, J. Med. Chem., 34:2824 − 2836, 1991.
5. Andreassen, H., Bohr, H., Bohr, J., Brunak, S., Bugge, T., Cotterill,

R.M.J., Jacobsen, C., Kusk, P., and Lautrap, B. Analysis of Secondary

Structure of the Human Immunodeficiency Virus Proteins by Computer

Modelling Based on Neural Network Methods, J. Acquired Immune

Deficiency Syndrome, 3, 615, 1990.

6 . Apolloni, B., Avanzini, G., Cesa-Bianchi, N., and Ronchini, G.,

Diagnosis of Epilepsy via Backpropagation, Proc. of the 1990 Int. Joint

Conf. on Neural Networks, Washington, DC, 2, 571 − 574, 1990.
7. Armentrout, S.L., Reggia, J.A., and Weinrich, M., A Neural Model of

Cortical Map Reorganization Following a Focal Lesion, Artif.

Intelligence in Med., 6(5), Oct 1994.

8. Armstrong, W.W., Stein, B.A., Kostov, R., Thomas, M., Baudin, P.,

Gervais, P., and Popovic, D., Application of Adaptive Logic Networks

and Dynamics to Study and Control of Human Movement, Proc. of the

Second Int. Symp. on 3D Anal. of Human Movement, Poitiers, France,

81 − 84, June 30 − July 3, 1993.

9 . Armstrong, W.W., Kostov, A., Stein, R.B., and Thomas, M.M.,

Adaptive Logic Networks in Rehabilitation of Persons with Incomplete

Spinal Cord Injury, Workshop on Environmental and Energy

Applications of Neural Networks, Richland, WA, Pacific Northwest

National Laboratory, March 30 – 31, 1995.

10. Asada, N., Doi, K., MacMahon, H., Montner, S.M., Giger, M.L., Abe,

C., and Wu, Y., Potential Usefulness of an Artificial Neural Network

for Differential Diagnosis of Interstitial Lung Diseases: pilot study,

Radiology, 177, Vol. 3, 857−60, December, 1990.

11. Asada, N., Doi, K., MacMahon, H., Montner, S., Giger, M.L., Abe, C.,

and Wu, Y., Neural Network Approach for Differential Diagnosis of

Interstitial Lung Diseases, Proc. SPIE (Medical Imaging IV), 1233:

45 − 50, 1990.
12. Ashenayi, K., Hu, Y., Veltri, R., Hurst, R., and Bonner, B., Neural

Network Based Cancer Cell Classification, Proc. of the World

Congress on Neural Networks, San Diego, CA, 1, 416 − 421 June 5 – 9,
1994.

13. Astion, M.L. and Wilding, P., The Application of Backpropagation

Neural Networks to Problems in Pathology and Laboratory Medicine,

Arch. Pathol. Lab. Med., 116:995 − 1001, 1992.
14. Astion, M.L. and Wilding, P., Application of Neural Networks to the

Interpretation of Laboratory Data in Cancer Diagnosis, Clin. Chem.

(US) 38, 34 − 38, 1992.
15. Avanzolini, G., Barbini, P., and Gnudi, G. Unsupervised Learning and

Discriminant Analysis Applied to Identification of High Risk

Postoperative Cardiac Patients, Int. J. Bio-Med. Comput., 25, 207 −
221, 1990.

16. Barski, L.L., Gaborski, R.S., and Anderson, P.G., A Neural Network

Approach to the Histogram Segmentation of Digital Radiographic

Images, Intell. Eng. Sys. Through Artif. Neural Networks, Dagli,

Burke, Fernandez, and Ghosh, (eds.), 3, 375 – 380, ASME Press, NY,

1993.

17. Bartels, P.H., Thompson, D., and Weber, J.E., Diagnostic Decision

Support by Inference Networks, In Vivo, 7, 379 − 385, 1993.
18. Baxt, W.G., Use of an Artificial Neural Network for Data Analysis in

Clinical Decision-Making: the Diagnosis of Acute Coronary Occlusion,

Neural Computation, 2, 480 − 489, 1990.
19. Baxt, W.G., Use of an Artificial Neural Network for the Diagnosis of

Myocardial Infarction, Ann. of Intern. Med., 115, 843 − 848, 1991.
20. Echauz, J. and Vachtsevanos, G., Neural Network Detection of

Antiepileptic Drugs from a Single EEG Trace, Proc. of the IEEE

Electro/94 Int. Conf., 346 − 351, Boston, MA, May 10 − 12, 1994.
21. Gibbons, R.J., Balady, G.J., Beasley, J.W., Bricker, J.T., Duvernoy,

W.F., Froelicher, V.F., Mark, D.B., Marwick, T.H., McCallister, B.D.,

Thompson, P.D. Jr., Winters, W.L., Yanowitz, F.G., Ritchie, J.L.,

Gibbons, R.J., Cheitlin, M.D., Eagle, K.A., Gardner, T.J., Garson. A.

Jr., Lewis, R.P., O'Rourke, R.A., and Ryan, T.J., ACC/AHA Guidelines

for Exercise Testing, A Report of the American College of

Cardiology/American Heart Association Task Force on Practice

Guidelines (Committee on Exercise Testing), J. of the Am. Coll. of

Cardiol., 30(1), 260 − 311, July, 1997.
22. Goodenough, D.J., Rossmann, K., and Lusted, L.B., Radiographic

Applications of Receiver Operating Characteristic (ROC) Curves,

Radiology, 110, 89 − 95, 1974.
23. Hanely, J.A. and McNeil, B.J., The Meaning and Use of the Area

Under a Receiver Operating Characteristic (ROC) Curve, Radiology,

143, 29 − 36, 1982.
24. André, T.C.S.S. and Roque, A. C., A Neural Network System for the

Diagnosis of Breast Cancer, Proc. of the Int. Conf. on Math. and Eng.

Techniques in Med. and Biol. Sci. 2000 (METMBS’00), Las Vegas,

NV, 1, 1 − 6, June 26 − 29.
25. Rodrigues, R.G.S., Pela, C.A., and Roque, A.C., Tomographic Image

Reconstruction Using Neural Networks, FFCLRP, Brazil, V1 27 − 33.
26. Chen, D., Chang, R.F., and Huang, Y.L., Breast Cancer Diagnosis

Using Self-Organizing Map for Sonography, Ultrasound. Med. Biol.,

26(3), 405 − 11, March, 2000.

27. Harbeck, N., Kates, R., Ulm, K., Graeff, H., Schmitt, M., Neural

Network Analysis of Follow-Up Data in Primary Breast Cancer, Int. J.

Biol. Markers, 15 Vol. 1, 116 − 22, January – March, 2000.

28. Shi, L.M., Fan, Y., Lee, J.K., Waltham, M., Andrews, D.T., Scherf, U.,

Paull, K.D., Weinstein, J.N., Mining and Visualizing Large Anticancer

Drug Discovery Databases, J. Chem. Inf. Comput. Sci, 40, Vol. 2, 367 −
79, March – April, 2000.

29. Cherniak, R., Valafar, H., Morris, L.C., and Valafar, F., Cryptococcus

neoformans Chemotyping by Quantitative Analysis of
1
H-NMR

Spectra of Glucuronoxylomannans Using a Computer Based Artificial

Neural Network, J. of Clin. and Diag. Lab. Immunol., 5(2),146 − 159,
March, 1998.

30. Valafar, F. and Valafar, H., CCRC-Net: An Internet-Based Spectral

Database for Complex Carbohydrates, Using Artificial Neural

Networks Search Engines, Trends in Anal. Chem., 18, 508 − 512,
1999.

31. Guimaraes, G., The Discovery of Sleep Apnea with Unsupervised

Neural Networks, Int. Conf. on Math. and Eng. Techniques in Med. and

Biol. Sci. (METMBS’2000), 1, 361 − 367, Las Vegas, NV, June 26 –
29, 2000.

32. Valafar, H., Valafar, F., Darvill, A., Albersheim, P., Kutlar, A., Woods,

C., and Hardin, J., Predicting the effectiveness of Hydroxyurea in

Individual Sickle Cell Anemia Patients, J. of Artif. Intell. in Med., 18

(2), 133 – 148, February, 2000.

33. Haykin, S., Neural Networks: A Comprehensive Foundation, Prentice

Hall, NJ, 1999.

34. Wu, Y., Giger, M.L., Doi, K., Vyborny, C.J., Schmidt, R.A., and Metz,

C.E., Artificial Neural Networks in Mammography: Application to

Decision Making in the Diagnosis of Breast Cancer, Radiology, 187

Vol. 1, 81 – 7, April, 1993.

35. Varki, A., Biological Roles of Oligosaccharides: All the Theories are

Correct, Glycobiology, 3, 97 − 130, 1993.
36. Goochee, C.F., Gramer, M.J., Andersen, D.C., Bahr, J.B., and

Rasmussen, J.R., The Oligosaccharides of Glycoproteins: Factors

Affecting Their Synthesis and Their Influence on Glycoprotein

Properties, Frontiers in Bioprocessing II. (Todd, P., Sikdar, K., and

Bier, M., eds.) 199 − 240, American Chemical Society, Washington,

D.C., 1992.

37. Cook, G.M.W., Glycobiology of the Cell Surface: the Emergence of

Sugars as an Important Feature of the Cell Periphery, Glycobiology, 5,

449 − 461, 1995.
38. Van Huffel, S., Enhanced Resolution Based on Minimum Variance

Estimation and Exponential Data Modeling, Signal Processing, 33, 333

− 355, 1993.
39. Van den Boogaart, A., Howe, F.A., Rodrigues, L.M., Stubbs, M.,

Griffiths, J.R., In Vivo
31
P MRS: Absolute Concentrations, Signal-to-

Noise and Prior Knowledge, NMR in Biomed., 8, 87 − 93, 1995.
40. Angelidis, P.A., Spectrum Estimation and the Fourier Transform in

Imaging and Spectroscopy, Concepts Magn. Resonance, 8 Vol. 5, 339

− 381, 1996.
41. Blumler, P., Greferath, M., Blumich, B., and Spiess, H.W., NMR

Imaging of Objects Containing Similar Substructures, Magn .

Resonance, Series A 103, 142 − 150, 1993.
42. Wabuyele, B.W. and Harrington, P., Optimal Associative Memory for

Background Correction of Spectra, Anal. Chem., 66, 2047 − 2051,
1994.

43. Wabuyele, B. W. and Harrington, P., Quantitative Comparison of

Bidirectional Optimal Associative Memories for Background

Prediction of Spectra, Chemometrics and Intelligent Lab. Sys., 29, 51 −
61, 1995.

44. Angelidis, P. A., Spectrum Estimation and the Fourier Transform in

Imaging and Spectroscopy, Concepts Magn. Resonance, 8(5), 339 −
381, 1996.

45. Goodacre, R., Timmins, E.M., Jones, A., Kell, D.B., Maddock, J.,

Heginbothom, M., Magee J. T., On Mass Spectrometer Instrument

Standardization and Interlaboratory Calibration Transfer Using Neural

Networks, Analytica Chemica Acta, 348, 511 − 532, 1997.

46. Gerow, D.D. and Rutan, S.C., Background Subtraction for

Fluorescence Detection in Thin−layer Chromatography with Derivative

Spectrometry and the Adaptive Kalman Filter, Analytica Chemica Acta,

184, 53, 1986.

47. Yu, K. M. and Jones, M.C., Local Linear Quantile Regression., J. Am.

Statistical Assoc., 93(441): 228 − 237, March, 1998.

48. Whittenburg, S., Baseline Roll Removal in NMR Spectra Using

Bayesian Analysis, Spectroscopy Letters, 28(8), 1275 − 1279, 1995.
49. Whittenburg, S., Solvent Peak Removal in NMR Spectra Using

Bayesian Analysis, Spectroscopy Letters, 29(3), 393 − 400, 1996.
50. Harrington, P. B. and Isenhouer, T.L., Closure Effects in Infrared

Spectral Library search Performance, Appl. Spectrosc., 41, 1298, 1987.

51. Papoulis, A., Probability, Random Variables, and Stochastic

Processes, 3
rd
 ed., McGraw-Hill, NY, 1991.

52. Fukunaga, K., Introduction to Statistical Pattern Recognition, Second

Edition. Academic Press, Boston, 255 – 268, 1990.

53. Valafar, F., Valafar, H., and York, W.S., Identification of
1
H-NMR

Spectra of Xyloglucan Oligosaccharide: A Comparative Study of

Artificial Neural Networks and Bayesian Classification Using

Nonparametric Density Estimation, Int. Conf. Artif. Intelligence 1999

(IC-AI'99), Las Vegas, NV, June 28 − July 1, 1999.
54. Rodgers, G.P., Dover, G.J., Noguchi, C.T., Schechter, A.N., Nienhuis,

A.W., and Nienhuis, M.D., Hematologic Responses of Patients with

Sickle Cell Disease to Treatment with Hydroxyurea, New England J.

Med., 322 Vol. 15, 1037 − 1044, April, 1990.
55. Charache, S., Terrin, M.L., Moore, R.D., Dover, G.J., Barton, F.B.,

Eckert, S.V., McMahon, R.P., and Bonds, D.R., Effect of Hydroxyurea

on the Frequency of Painful Crises in Sickle Cell Anemia, New

England J. Med., 332, 1317 – 1322, May 18, 1995.

56. Charache, S., Dover, G.J., Moore, R.D., Eckert, S., Ballas, S.K.,

Koshy, M., Milner, PF., Orringer, E.P., Phillips, G. Jr., and Platt, O.S.,

Hydroxyurea: Effects on Hemoglobin F Production in Patients With

Sickle Cell Anemia, Blood, 79(10), 2555 − 2565, May 15, 1992.

57. Powars, D.R., Weiss, J.N., Chan, L.S., and Schroeder, W.A., Is There a

Threshold Level of Fetal Hemoglobin That Ameliorates Morbidity in

Sickle Cell Anemia? Blood, 63(4), 921 − 926, April, 1984.
58. Charache, S., Barton, F.B., Moore, R.D., Terrin, M.L., Steinberg, M.H.,

Dover, G.J., Ballas, S.K., McMahon, R.P., Castro, O., and Orringer,

E.P., Hydroxyurea and Sickle Cell Anemia. Clinical Utility of a

Myelosuppressive "Switching" Agent. The Multicenter Study of

Hydroxyurea in Sickle Cell Anemia, Med. , 75, Vol. 6, 300−325,
November, 1996.

59. Steinberg, M.H., Lu, Z., Barton, F.B., Terrin, L.M., Charache, S., and

Dover, G.J., Fetal Hemoglobin in Sickle Cell Anemia: Determinants of

Response to Hydroxyurea, Blood, 89(3) 1078 − 1088, Feb, 1997.

5
APPLICATION OF NEURAL

NETWORK IN DESIGN OF DIGITAL

FILTERS

Dali Wang and Ali Zilouchian

5.1 INTRODUCTION

Any action on a signal that modifies the spectral content of the signal is called

filtering. This includes the enhancement or suppression of certain features of the

signal and is usually achieved by the use of linear time invariant systems. There

are situations where the system may change with time in a particular manner;

such systems are called adaptive filters. In this section, we describe fixed filters

only.

There are two broad classes of digital filters. The first class is called finite

impulse response (FIR) filters, since their response to an impulse dies away in a

finite number of samples. FIR filters are developed as non-recursive structures

and are inherently simpler to design.

The second class of digital filters is recursive filters. The impulse responses

of recursive filters are composed of sinusoids that exponentially decay in

amplitude. This makes their impulse responses infinitely long. Because of this

characteristic, recursive filters are called infinite impulse response (IIR) filters.

An IIR filter can be represented by either difference equation or state space

form. The state space form in general involves more numbers of coefficients

than a transfer function unless it is represented as one of the canonical forms.

Howev er, there are many benef its from using a state space model in the

analysis, design, and implementation of digital filters. First, the state space

model, with the exception of canonical structures, is more robust than a transfer

function representation. In other words, it exhibits less coefficient sensitivity.

Second, various forms of state space models possess distinctive properties that

are desirable in different applications. For instance, the balanced realization

exhibits superior performance in the context of minimizing scaling and round-

off noise. Third, the major part of modern control theory is based on the state

space model. Furthermore, the difference function representation could be

uniquely determined by the state space form representation. The reverse is not

necessarily true. In this chapter, the state space model will be utilized for the IIR

filter design.

In the above filter representations, all inputs, outputs or states are function of

a single variable, which is time in most cases. We call these types of filters one-

dimensional (1-D) filters. There are other types of filters in which the inputs,

outputs and states are the function of more than one variable. One example is

the filter used in image processing. Therein, the inputs and outputs values are

the function of two variables, i.e., horizontal and vertical coordination. The

digital filters used in this case are two-dimensional (2-D) filters. The same

concept can be extended to M-D filters and signals. In this chapter, we will start

with the design of 1-D IIR filter. The design process using neural networks

(NN) is presented in detail for 1-D IIR filters. Then the concept is extended to 2-

D filters. If the dimension of the filter is not explicitly specified, 1-D filters are

implied in this work.

5.2 PROBLEM APPROACH

5.2.1 Neural Network for Identification

There are numerous techniques developed for digital filter design, both in

frequency domain and in time domain. Most of these methods are analytical

techniques. They work well with well-defined filter formats and the availability

of accurate design data, such as the input and output of the filter. What if the

data set used to design filter is noisy, or there is a need for customization in the

filter’s representation? This is where the NN based design technique comes into

the picture.

The capability of neural networks as universal approximators has been

extensively studied for system identification and modeling during the last two

decades [1] − [20]. Most of the proposed methods are based on two types of NN

architectures, back propagation and Hopfield recurrent neural network [1], [2],

[10]. However, most of these identification techniques result in NN weight

matrices which do not necessarily correspond to the parameters of the original

system, such as in the works of Narendra and Parthasarathy [15], and Poggio

and Girosi [16].

In this chapter, a novel NN architecture for design of recursive digital filters

from input/output data in the state space form is presented. We use internal

hidden neurons to encode the temporal properties of sequential inputs and

outputs as the iterative states of the given process. The dynamic nature of the

system is implicitly constructed within the internal neurons of the proposed

model, which previous approaches have not addressed. Since the structure of

the process is built into NN, we can obtain a particular state space structure as

the result of the identification, such as controllability canonical, observability

canonical forms, etc. [8]. Such flexibility is important in various

implementations of linear discrete systems, such as computation complexity,

memory requirement and overflow analysis. The significance of this work is in

two fold. First, obtaining the state space model of a linear system is the basis for

many engineering applications where a fast on-line, flexible, and robust solution

is required [21]-[25]. Second, applying NN to this complex linear system

modeling problems can be an aid to understanding and developing new

archi tecture of NN for more gener al linea r and nonli near progr amming

problems [12], [14]. In fact, the proposed identification scheme has been

extended to general 2-D digital filters design problems in section 5.5 where an

analytical solution is difficult to obtain.

5.2.2 Neural Network Structure

The operation of an IIR filter can be specified by the equation

y n bi x n i ai y n i
i

QP

i

() () ()= − − −∑∑
== 10

 (5.1)

The above difference equation provides us a procedure for determining the

current output in terms of the present and past inputs as well as past output. An

IIR filter can also be represented in state space form:

)()()(

)()()1(

nDunCXny

nBunAXnX

+=

+=+
 (5.2)

where u∈ℜp
, y∈ℜq

, X∈ℜN
 are input, output and state vectors, respectively. A,

B, C, D are matrices of appropriate dimensions. The main objective of this work

is to obtain A, B, C, D through NN by the training of an NN with available

input/output data.

The proposed NN structure is a recurrent network from an error propagation

viewpoint. The general network architecture is shown in Figure 5.1. For

simplicity, the optional activation functions are not explicitly shown on the

figure. The hidden neurons provide internal representations of the system via

their self- feedback and conne ction with other neuro ns. These units memor ize

input & output

connections (Wyu)

output layer

neurons
input layer

neurons

hidden layer

neurons

Figure 5.1: A General Network Structure.

u1

up

y1

yq

x1

xN

x2

internal interconnctions (Wxx)

Self feedback (Wxx)

internal & output

connections (Wyx)

input & internal

connections (Wxu)

known threshold

the statu s of the previ ous inter nal state , which are mappi ng infor mation of

previous states into present output. From such a viewpoint, the neural network

is a recurrent network. However, the adjustment of the weights is based on the

desired output values and actual outputs. Therefore, it can be considered as an

error back propagation in the sense of training method.
In order to correlate the NN model with the state space model in Equation

5.2, an NN structure is proposed as shown in Figure 2. The association between
various parameters of NN (weights, denoted as ANN, BNN, CNN, DNN for easy
correlation) and the above state space model (A, B, C, D) can be observed from
the proposed NN structure. A sub-section of ANN, BNN, CNN, DNN is shown in
Figure 5.3 for a single neuron. The weights between hidden neurons (solid
nodes) provide the representation of matrix A. The weights between input
neurons (gray nodes) and hidden neurons and the weights between the hidden
neurons and output neurons (empty nodes) represent the mapping of B and C,
respectively. The weights between the input and output neurons map to D.

ANN

CNNBNN

DNN

unit delay

unit

u(n) Sy(n)

x(n)

Figure 5.2: The Network Structure Designed

for System Identification.

input

neurons
output

neurons

hidden

neurons
x(n+1)

-dy(n)

ϕ k(⋅)
i jωji

r j sj=ϕ k(r j)

-d j

Figure 5.3: A Single Neuron.

5.3 A TRAINING ALGORITHM FOR FILTER DESIGN

The training objective is based on the instantaneous error value of a single

input/output data pair. The algorithm can be implemented as a real time

algorithm since the training could be accomplished as each input/output sample

is fed to NN. The derivation of the algorithm is briefly presented in this section.

It is different with conventional error back propagation since it possesses a

recurrent process built into the network. The off line training algorithm can also

be derived for system identification [8].

5.3.1 Representation

Consider an NN consisting of p external input connections, q external output

connections and N hidden units. The various neurons can be classified into three

categories: input neuron set u∈Rp
 denoted as I, hidden neuron set x∈RN

 denoted

as H, and output neuron set y∈Rq
 denoted as O. At discrete time n, let u(n)

denote the p x 1 input vector, x(n) denote the N x 1 vector as hidden neuron

values, and sy(n) denote the q x 1 output vector of NN. As shown in Figure 3, a

neuron j is either an output neuron or a hidden neuron prior to the delay. For

such a neuron j which is connected to other neurons such as i, the corresponding

activation value and output value are presented as follows:

r n n s n d n

r n n s n

s n r n

i
j O

ji i j

i H I

i
j H

ji i

i H I

j

j H O

k j

() () () ()

() () ()

()

∈ ∈

∈ ∈

∈

= −

=

= ()()

∑
∑

ω

ω

ϕ

U

U

U

where ωij(n) is the weight between two neurons, ϕk(⋅) denotes the activation
functions for hidden neurons (ϕx(⋅)) and output neurons (ϕy(⋅)), dj(n) is the
desired outputs value at time n.

5.3.2 Training Objective

The on-line training objective is to minimize the mean-squared output of the

NN at any instant discrete time n,

ε()n S ny

y O

= ()
∈
∑12

2

 (5.3d)

where sy(n) is the output error at time n, which is the difference between the
actual and desired outputs.

(5.3a)

(5.3b)

(5.3c)

5.3.3 Weight Adjustment

A dynamic approach to minimize the cost function Equation 5.3d is to make

the NN evolve its weight space along a trajectory that descends against the

gradient of ε(n). This condition implies that for all i∈H∪O, j∈ H∪I:

() () ()nnn iiiiii ωωω ∆+=+1 (5.4a)

()
)(

)(

n

n
n

ij

ii ω
ε

ηω
ƒ
ƒ

−=∆ (5.4b)

where η is a learning rate which should be selected small enough to make
weight change adiabatically and maintain the stability of the model.

The error gradient in Equation 5.4b could be obtained based on Equations 5.3c,

and 5.3d:

∂
∂

= () ∂

∂
= () ′ ()() ∂

∂
∈ ∈
∑ ∑ε

ω

ε

ω
ϕ

ω
()

()

()

()

()

()

n

n
s n

n

n
s n r n

r n

nij

y

y O

y

ii

y

y O

y y

y

ii

 (5.5)

The derivatives in the right hand side of Equation 5.5 are the gradients of

output neuron value vs. NN weights. They are obtained using the following

equations. From Equations 5.3

y O
i H O j H I

yk k

ijk H I

yk

ijk H I

k

k H I

k

ij

yk

ry n

ij n

n s n

n

n

n
s n

s n

n
n

∈
∈ ∪ ∈ ∪

∈ ∪

∈ ∪ ∈ ∪

= ⋅
⋅

= ⋅ + ⋅

=

∑

∑ ∑

,
,

()

()

(() ())

()

(
()

()
()) (

()

()
())

(

∂

∂ω

∂ ω

∂ω

∂ω

∂ω
∂
∂ω

ω

δ ii y s n
s n

n
nj

k

ij

yk

k H

− ⋅ +
∈
∑) ()

()

()
()

∂
∂ω

ω

 (5.6)

where δ(i-y) is the Kronecker delta function that equals to 1 when i = y and 0
otherwise. The above derivation is based upon the following observation:

∂ω

∂ω

∂
∂ω

yk

ij

k

ij

k I

n

n

if y i and k i

otherwise

s n

n

()

()

()

()

=
= =




=

∈

1

0

0

 (5.7)

Thus, we can obtain the gradients of output neuron values v.s. NN weights

as given in Equation 5.8, which are functions of neuron values, weights and the

gradients of hidden neuron value v.s. weights at instant discrete time n.

y O

i H O j H I

j x k
k

ij

yk

k H

ry n

ij n
i y s n r n

r n

n
n

∈
∈ ∪ ∈ ∪

∈

= − ⋅ + ′ ()()∑
,

,

()

()
() ()

()

()
()

∂

∂ω
δ ϕ

∂
∂ω

ω (5.8)

The gradients of hidden neuron value v.s. weights in Equation 5.8 are

obtained as follow

x H
i H O j H I

xk k

ijk H I

j x k
k

ij

xk

k H

rx n

ij n

n s n

n

i x s n r n
r n

n
n

∈
∈ ∪ ∈ ∪

∈

∈

=
− −

=

− ⋅ − + ′ −()() −
−

∑

∑

,
,

()

()

(() ())

()

() ()
()

()
()

∂
∂ω

∂ ω
∂ω

δ ϕ
∂
∂ω

ω

1 1

1 1
1

1

U

 (5.9)

The observation similar to Equation 5.7 is also applied here. The η is
assumed to be sufficiently small such that ωij(n)≈ωij(n-1).

The iterative process defined by Equation 5.9 provides the values needed in

Equation 5.8. In sequel, the derivative value required in Equation 5.5 can be

obtained. The weight update process in Equation 5.4 is accomplished with all

the neuron value and derivative values at discrete instant time n.

5.3.4 The Training Algorithm

Based on the previous discussion, the proposed algorithm can be

summarized as follows:

1. Initialize NN by random assignment of initial weights, zero value for

all the weight gradients and hidden neuron values.

2. Present an input, desired output vectors pair to the NN.

3. Calculate the activation level of all neurons, including hidden neurons

and output neurons.

4. Calculate the output error using Equation 3.3d.

5. Calculate weight gradients using Equation 5.9, 5.8, and 5.5.

6. Update the NN weights by equations 5.4a and 5.4b.

7. Repeat steps 2 to 6 for a new input/desired output pair. Multiple

epochs may be required until the error criterion is bounded to a pre

specified value.

5.4 IMPLEMENTATION ISSUES

5.4.1 Identifying a System in Canonical Form

There are infinite state-space structures with the same transfer function for a

linear system or digital filter. The representation of Equation 5.2 can be

transformed into different forms, such as controllability canonical form,

observability canonical form, normal structure or balanced structure. These

special forms can be built into NN by utilizing special network structures. By

selection or elimination of certain weight connections in advance, we can obtain

the system representation in such a particular form. This, on the other hand,

simplifies the network design and reduces the number of free parameters

compared to a fully connected network.

5.4.2 Stability, Convergence, Learning Rate and Scaling

The stability of recurrent networks has been extensively studied [4]. In

general, for the asymptotically convergence of the network, the learning rate η
should be assigned a small value. However, for fast convergence and local

minimum avoidance, a large learning rate η is preferred. To resolve such two
conflicting requirements, an adaptive learning rate scheme may be adapted

similar to NN MATLAB Toolbox[27]. There are advantages by starting with a

low learning rate and adaptively changing it. In order to improve the stability

and convergence of the network, the input and desired output data are scaled to a

proper range of value before being fed into the network.

5.5 2-D FILTER DESIGN USING NEURAL NETWORK

5.5.1 Two-dimensional Signal and Digital Filters

There are many signals that are inherently two-dimensional (2-D) in nature

and for which 2-D signal processing techniques are required. Included in this

group of signals are photographic data, medical X-rays, seismic data, gravity

and magnetic data, etc. Many of fundamental ideas of 1-D signal processing

may readily be extended to 2-D case. However, there are some very important

concepts of 1-D systems that are not directly extendible to 2-D systems.

One major difference between 1-D and 2-D systems is that we can introduce

global and local state in the 2-D cases. The global state (which is of infinite

dimension in general) preserves all the past information, while the local state

gives us a size of recursion to be performed at each step by a 2-D system. This

leads to the definitions of global as well as local controllability, observability

and as a result, the minimality of 2-D systems.

Similar to their 1-D counterparts, the 2-D recursive digital filters have the

advantage of computation efficiency and memory reduction capabilities in

comparison with non recursive digital filters. The 2-D state space models have

been mainly used for the spatial domain representation of the 2-D causal

recursive digital filters (CRDF). Kung et al. [38] have shown that the Roesser’s

model [37] is the most general form and the other representations can be

imbedded in the Roesser’s model.

Roesser’s local state space (LSS) model divides the local state into a

horizontal and a vertical state which are propagated in horizontal and vertical

directions respectively. It is defined by the equations

x i i

x i i

A A

A A

x i j

x i j

B

B
u i j AX BU

y i j C C
x i j

x i j
D

k

k

h

v

h

v

(,)

(,)

(.)

(.)
(,)

(,)
(.)

(.)

+

+









 =


















 +









 ≡ +

= []






 +

1

1

1 2

3 4

1

2

1 2 uu i j CX DU(,) ≡ +

 (5.10)

where;

i is an integer-valued vertical coordinate,

j is an integer-valued horizontal coordinate,

x
h
(i, j) ∈Rn1

is the horizontal state vector,

x
v
(i, j) R

n2
is the vertical state vector,

u(i, j) ∈R
p
 is the input vector,

y(i, j) ∈R
q
 is the output vector,

and A1, A2, A3, A4, B1, B2, C1, C2, D are real matrices of appropriate
dimensions.

5.5.2 Design Techniques

During the last two decades various design techniques have been proposed
for 2-D recursive digital filters, either in frequency domain or in spatial domain
[28], [30]-[36], [40]. However, most of those techniques are for a special class of
2-D filters called as separable-in-denominator digital filters (SDDF) [31-33],
[36]. This is due to the fact that a SDDF filter shares some important properties
of 1-D counterpart such as stability, minimality conditions and absence of
singularity of the second kind. Therefore, many 2-D spatial design techniques
have been developed using SDDF as the extensions of corresponding 1-D
techniques [31-33]. There are relatively few techniques developed on
identification and design of general 2-D recursive digital filters. One of the
earliest methods was proposed by Shanks [39] et al., and Aly and Fahmy [30].
However, the problem of general 2-D identifications using an analytical solution
has not been addressed due to its mathematically complex nature.

The NN approach designed for a 1-D recursive filter could be extended for
general 2-D recursive digital filters. By a similar measure, an NN model has
been developed to approximate an arbitrary 2-D system response and obtain the
LSS model parameters from NN structure. The distinction of the proposed
identification technique in comparison with existing methods lies in its two
fold flexibility. First, the filter's input and resulting output could be selected
arbitrarily by the designer in spatial domain. In other words, the proposed
technique can be uniformly applied for identification of a 2-D filter with an
impulse response, a step response or a response to a random 2-D input signal.
Second, the method is applicable to a general Roesser's LSS model as well as
specific classes of 2-D filters, such as separable in denominator filters.

5.5.3 Neural Network Approach

By using a similar NN structure proposed for a 1-D recursive filter as shown in

Figure 5.1, we could develop a technique for 2-D recursive filter design.

Consider the general Roesser’s LSS model (5.10), an NN structure, which

combines recurrent and feedforward processes similar to an LSS 2-D model. In

order to correlate the proposed NN model with LSS model (5.10), an NN

structure is shown in Figure 5.4. Hidden neurons are classified into two different

types related to the vertical and horizontal states with their self feedback loops

and connections. The correlation between various coefficients in model (5.10)

and weight connections as shown in Figure 5.4 can be easily observed. The

weights between input neurons and hidden neurons (ωuh, ωuv) are represented by

matrices B1, B2, respectively. The weights between similar hidden neurons (ωhh,

ωvv) are established by matrices A1 and A4 respectively. The weights between

two different classes of hidden neurons (ωhv, ωvh) are provided by the inter-

connection matrices A2 and A3 respectively. The weights between hidden

neurons and output neurons (ωyh, ωyv) are represented by matrices C1 and C2.

Finally, the weights between input and output neurons (ωyu) are related to each

other by the elements of matrix D. Therefore, by proper generation of various

weights in the proposed NN model, the identification of LSS model (5.10) can

be achieved.

Figure 5.4: The Neural Network Structure for a 2-D System Identification

A general 2-D system identification algorithm is developed based on the NN

structure. It is a pattern mode learning since the weights are updated after the

presentation of each training sample data. The technique distinguishes itself

ω
hu

ω
vu

ω
hh

ω
vv

ω
vh

ω
hv

ω
yhω

yv

ω
yu

u(i,j) sy(i,j)

inpu t

neu rons

ou tpu t

neu rons

h idden

neurons

type 2 delay

(z 2
-1

)

type 1 delay

(z 1
-1

)

x
h
(i+1 ,j)x

h
(i,j)

x
v
(i,j+ 1)x

v
(i,j)

-d y(i,j)

from an ordinary NN training algorithm in two aspects. First, there are two

classes of hidden neurons in the proposed NN structure. They are related to each

other via weight connection but develop their values in distinct ways. Second,

the neuron outputs are the function of two independent variables, instead of one

variable, as is related to a 1-D case. Due to the feedback of hidden neurons, the

NN archi tecture is a recur rent one. In addit ion, there are feedf orward

information processes such as the direct path from input to hidden neurons and

hidden to output neurons. The adjustments of the weights are based on the

desired output values and NN actual outputs. Therefore, it can also be

consi dered as a super vised learn ing netwo rk in the sense of train ing metho d.

The details of the algorithm are presented here. Interested readers can refer to

Wang [8].

5.6 SIMULATION RESULTS

5.6.1 1-D Filters

Three numerical examples are provided herein; each emphasizes different

aspects of the proposed algorithm. The following L2 and L∞ norm [24], [26]

error criteria are defined for error analysis.

0.2074 - z 0.6420 + z 1.1520 - z 1.6014 +z 1.0925 -z 1.0000

0.0247+ z 0.1237 + z 0.2473 + z 0.2473 + z 0.1237 +z 0.0247
)(

2345

2345

=zT

First, we generate 200 random input data whose amplitudes are uniformly

distributed in the range of [-1, 1] and obtain the corresponding output. An NN

with single input, single output and five neurons in hidden layer is trained using

input/desired output pairs for 200 epochs. The final training mean squared error

in Equation 5.3d is 1.0169E-03. The identified filter tusing NN is:

2/1
2

2/1
2

2)()(

maxmax





 ∑



 ∑ −=

−=

∈∈

∈∈
∞

TnTn
NN

TnTn

NN

HHH

HHH

ε

ε

where H and HNN are the impulse responses of the original system and identified

system, respectively, and T is the given trajectory (from discrete time n0 to n1)

along which the error norms are calculated.

Example 5.1:

The system to be identified is a 5
th

 order Chebyshev type I filter with 0.8

decibel of ripple in the passband and 0.5 as cutoff frequency [26]. The transfer

function of the filter is given as:

ANN =























0.0579 0.3237 0.0910 - 0.8210 0.0541

-0.1457 0.4156 0.5757 0.0925 - 0.0298

0.1962 - 0.4314 0.1408 0.0872 - 0.5384

0.7494 0.3956 - 0.1125 0.2536 0.0094

0.0246 - 0.2153 0.5508 - 0.0211 0.2364

BNN

T

= [] 0.3272 0.6079 0.4382 - 0.1568 0.0296

CNN = []-0.2413 0.4809 0.0930 0.6673 0.0279

0.0247=NND

The transfer function of the identified filter is:

0.209 - z 0.6461 + z 1.163 - z 1.607 + z 1.104 - z

0.02023 + z 0.1196 + z 0.2431 + z 0.246 + z 0.1231 + z 0.02469
)(

2345

2345

=zTNN

The impulse responses of both the original system (H) and NN identified

system (HNN) are obtained for 40 samples. The two error values are ε2 = 0.39

percent and ε∞ = 0.277 percent respectively.
For comparison, the system is identified with the same set of data by two

other well known methods, least square [24], and subspace [27]. The
comparison is shown in Table 5.1. To verify the robustness of the proposed
method, the same system is identified in two noisy conditions. In the first case,
the measurement contains zero-mean white noise whose variance is 5 percent of
the maximum amplitude of the response. In the second case, in addition to white
noise, the measurement also contains 5 percent density of wild (spike) noise
whose amplitude is equal to 10 percent of the maximum amplitude of the
response. The error norms of the proposed identification technique in
comparison to available techniques are shown in Tables 5.2 and 5.3. The results
show that the proposed technique provides more robust solutions under noise,
especially wild noise condition.

Table 5.1: Error Norms of Example 5.1 under Noise Free Conditions

N. N. Lease Square Subspace

ε2 3.90e-03 3.67e-15 1.93e-15

ε∞ 2.77e-3 3.77e-15 2.52e-15

Table 5.2: Error Norms of Example 5.1 under White Noise Conditions

N. N. Lease Square Subspace

ε2 3.52e-02 8.30e-2 4.95e-2

ε∞ 3.56e-2 7.15e-2 3.71e-2

Table 5.3: Error Norms of Example 5.1 under White Noise +
Spike Noise Conditions

N. N. Lease square Subspace

ε2 5.34r-2 1.21e-01 9.07e-2

ε∞ 5.29e-2 8.98e-2 6.48e-2

Example 5.2:
 This example is presented in order to demonstrate the use of an

observability canonical state space form as the result of identification. By
selection and elimination of some weights in advance, the observability
canonical form is obtained. The filter to be identified is governed by the
following state space model.

A =

















-0.0051 0.2043 - 0.7014

 0.5641 0.0923 0.3789

 0.4642 - 0.6482 - 0.3021

[]B
T= 0.4121 0.8415 0.2693

[]C = 0 0.5373 0.4676

The corresponding transfer function is as follows:

T(z)
0.5781 z 0.1419 z 0.1103

z 0.2149 z 0.4291 z 0.3562

2

3 2
=

+ +

+ + −

In order to obtain the observability canonical form, some weight connections
between hidden neurons were eliminated in advance. In addition, some of the
connections were taken out of update process by assigning a unity weight in the
beginning of the training phase. The NN is trained with 300 random generated
inputs. The identified system is given as:

ANN =

















0 0 0.3568

1 0 - 0.4248

0 1 - 0.2139

[]B
NN

= 01099. 0.1413 0.5781
T

[]C
NN

= 0 0 1

The corresponding transfer function matrix is presented as:

T z
z z

NN ()
. . .

=
+ +

+ + −

0.5781 z 0.1413 z 0.1099

z

2

3
0 2139 0 4284 0 3536

2

The two error values for 50 samples impulse response are ε2 = 0.03686

percent and ε∞ = 0.03827 percent respectively. For comparison, the same system

is identified with least square and subspace methods. In addition, two noise

conditions are considered similar to the above example. The error norm

comparisons are shown in the Tables 5.4, 5.5 and 5.6.

Table 5.4: Error Norms of Example 5.2 under Noise Free Conditions

N. N. Lease square Subspace

ε2 3.69e-4 1.47e-15 1.26e-15

ε∞ 3.83e-4 1.20e-15 9.60e-16

Table 5.5: Error Norms of Example 5.2 under White Noise Conditions

N. N. Lease Square Subspace

ε2 1.39e-02 3.26e-2 1.45e-2

ε∞ 1.40e-2 2.46e-2 1.40e-2

Table 5.6: Error Norms of Example 5.2 under White Noise +

Spike Noise Conditions

N. N. Lease Square Subspace

ε2 2.86e-2 1.01e-01 4.18e-2

ε∞ 2.69e-2 6.88e-2 4.67e-2

Example 5.3:
 This example is provided in order to emphasize the effectiveness of the

proposed model for multi-input and multi-output systems. The filter to be
identified is a two inputs, two outputs system governed the following state
space form as provided by Taylor [26]:

A =

















-0.5484 0.4138 0.2432

-0.4776 - 0.5864 0.0900

 0.0472 - 0.2550 - 0.2294

B =

















0.6010 0.1577

0.1769 0.9879

0.8284 0.2572

C =










 0 0.2194 0.6960

 0.1016 0.6347 0.7948

D =










0.6962 0.6695

0.7529 0.2500

The corresponding transfer function matrix can be derived as:

T z

z z z

z z z

z z z

z z z
z z z

z z z

()

. . . .

. . .

. . . .

. . .

. . . .

. .

=

+ + +

+ + +

+ + +

+ + +
+ + +

+ + +

0 6962 1 5652 1 1769 0 3906

1 3642 0 7910 0 09359

0 7529 1 8589 1 3596 0 4297

1 3642 0 7910 0 09359

0 6695 1 3091 0 7197 0 1067

1 3642 0 7910 0

3 2

3 2

3 2

3 2

3 2

3 2 ..

. . . .

. . .09359

0 2500 1 1885 0 7510 0 1146

1 3642 0 7910 0 09359

3 2

3 2

z z z

z z z

+ + +

+ + +



















The NN is trained with 200 random generated inputs for 200 epochs. The
system identified by NN is:

ANN =

















-0.8939 0.3002 0 3030

-0.5009 - 0.3405 0.2023

-0.0768 - 0.7551 - 0.1298

BNN =










0.8840 0.4722 1.0046

1.0047 1.1123 1.2534

CNN =










0.3337 - 0.5623 0.5832

0.3683 - 0.2553 0.6237
DNN =











0.6962 0.6695

0.7529 0.2500

The corresponding transfer function matrix is:

T z

z z z

z z z

z z z

z z z
z z z

z z z

NN ()

. . . .

. . .

. . . .

. . .

. . . .

. .

=

+ + +

+ + +

+ + +

+ + +
+ + +

+ +

0 6962 1 565 1 177 0 3906

1 364 0 791 0 09358

0 7529 1 859 1 36 0 4297

1 364 0 791 0 09358

0 6695 1 309 0 7197 0 1067

1 364 0 791

3 2

3 2

3 2

3 2

3 2

3 2 ++

+ + +

+ + +



















0 09358

0 25 1 189 0 7509 0 1146

1 364 0 791 0 09358

3 2

3 2.

. . . .

. . .

z z z

z z z

The two error values measured for the first 50 samples of impulse response
are calculated in vector form:

e2
47 082

10=








 ⋅ −. 9.105

4.320 9.211

e∞
−=









 ⋅

5.817 7.546

2.995 8.033
10 4

5.6.2 Two-dimensional Filters

Two numerical examples are provided for 2-D recursive filter, each emphasis

different aspects of the proposed algorithm. The following L2 and L∞ norm [29]-

[32] error criteria are defined for error analysis:

ε

ε

∞
∈ ∈

∈ ∈

= −

= −
























∑ ∑

max (,) (,) max (,)

((,) (,)) ((,))

(,) ' (,) '

(,) '

/

(,) '

/

H i j H i j H i j

H i j H i j H i j

NN

i j i j

NN
i j i j

Λ Α

Λ Λ
2

2

1 2

2

1 2

MNR = Maximum Negative Ripple

where H(i,j) and HNN(i,j) are the impulse responses of the original system and

identified system, respectively, Λ�={(i, j) | 0 ≤ i ≤ M�, 0 ≤ j ≤ N�} is the given

region where the error norms are calculated.

Example 5.4: First Quarter Gaussian Filter

The prototype model used by Aly and Fahmy in [30] for designing a 2-D

causal recursive filter is presented here. It is a first quadrant Gaussian 2-D scalar

filter described by the following impulse response:

H i j i j(,) . exp{ . [() ()]}= − ⋅ − + −0 256322 0103203 4 42 2

with most of its energy in the first-quadrant. The selected region for

identification consists of Λ={(i, j) | 0 ≤ i ≤ 10, 0 ≤ j ≤ 10}. The same region was

used for error norm calculation: Λ�=Λ.

The proposed NN consists of one input neuron, one output neuron, and two

groups of hidden neurons, each with three neurons. After 80 epochs of training,

the identified 2-D filter in Roesser�s LSS model of order (3,3) is given as,

ANN =



























3.0059e0 -1.8840e0 2.2325e0 8.8268e -1 -3.1194e -1 -6.4903e -1

2.0812e0 - 9.6880e -1 2.0168e0 1.4857e0 - 5.2382e -1 -1.0898e0

- 9.1445e -1 6.9213e -1 -1.3040e -1 3.5259e -1 -1.2248e -1 - 2.5830e -1

-1.7607e -1 1.2241e -1 -1.5569e -1 4.8882e -1 - 2.7540e -1 -1.6637e -1

4.4500e -1 - 2.8219e -1 3.2107e -1 8.4165e -1 1.2692e0 4.7849e -1

- 4.5596e -1 3.1093e -1 - 3.8792e -1 - 8.6954e -1 - 8.7703e -1 1.4460e -1

[]BNN

T= - 6.6533e - 3 -1.1209e - 2 - 2.6681e - 3 -1.0466e -1 6.0182e - 2 -1.4947e -1

[]CNN = 3.8730e +1 - 2.9244e +1 1.8910e + 1 -1.2433e0 4.3619e -1 9.1152e -1

D
NN

= 9.4009e - 03

Table 5.7 is presented to compare the error measurements of our design to
that of Aly and Fahmy [30]. Notice that the total order realization of our design
(3 + 3 = 6) is the same theirs (4 + 2 = 6).

Table 5.7: Simulation Experiments for Example 5.4

ε2 % ε∞ % MNR

Our Design 3.71 5.16 Always positive

Design [Aly and Fahmy] 10.78 9.19 0.04479

Example 5.5: A (2, 2) 2-D Digital Filter
This example is presented to illustrate the identification of a 2-D system

using various responses. The random input response as well as the impulse
response are utilized to identify the given 2-D filter. The 2-D filter to be
identified is governed by the following state space model (D=0):

A =





















1.0000e -1 2.0000e -1 0 -1.0000e -1

-1.0000e -1 0 1.0000e -1 0

1.0000e -1 0 2.0000e -1 0

0 1.0000e -1 1.0000e -1 1.0000e -1

B
T

= []1.0000e0 1.0000e0 5.0000e -1 1.0000e0

C = []1.0000e0 5.0000e -1 5.0000e -1 1.0000e0

First, we generated 50 x 50 random input data within region Λ={(i, j) | 0 ≤ i
≤ 49, 0 ≤ j ≤ 49} whose amplitude was uniformly distributed in the range of [-1,

1] and then obtained the corresponding output. An NN with single input, single

output and a total of four (two for each type) hidden neurons is trained using

generated input/desired output pairs for 40 epochs. The identified filter is:

In the second phase, the same NN was trained with the impulse response

defined in the region Λ={(i, j) | 0 ≤ i ≤ 9, 0 ≤ j ≤ 9} for 40 epochs. The state-
space form of the identified filter is as follow:

ANN =



















4.9556e - 2 -7.4836e - 2 -5.5614e - 2 7.9612e - 2

2.2048e -1 3.7549e - 2 5.5330e - 2 6.1638e - 2

4.5853e - 3 - 6.2183e - 2 5.4698e - 2 9.2342e - 2

-1.7303e - 2 8.1130e - 2 7.5142e - 2 1.1919e -1

[]BNN

T= 1.0399e0 7.2060e -1 7.7643e -1 5.8653e -1

[]CNN = 7.6376e -1 9.7999e -1 9.9556e -1 8.1350e -1

Design with a random response 0.166 0.115 -5.8e-03

Design with an impulse response 2.82 3.14 always > 0

5.7 CONCLUSIONS

In this chapter, a novel NN technique is introduced for the design of recursive

digital filters in the state space form. Instead of using spatial representation of

time by delayed input/output feedback, we use hidden neurons to encode the

temporal properties of the system. Through the self feedback of hidden neurons

as well as the interconnection between the neurons in the input, hidden, and

output layers, the proposed NN structure mimics the dynamics of a linear

discrete system or digital filter. The proposed method also provides flexibility

in selection of various state-space forms such as controllability and observability

canonical forms as an identification model.

The NN approach is also extended for the design of general 2-D recursive

digital filters where an analytical solution is not necessarily available. An

attractive feature of the proposed algorithm is that the LSS model structure to be

identified could be predefined in the design stage. This feature not only provides

us with flexibility in selection of the structure of a 2-D filter, but also facilitates

analyses on several implementation issues of 2-D filter, such as computation

efforts and memory requirement. Furthermore, the proposed method herein

places no limitation on the type of response to be approximated. Namely, any

ANN =





















1.0641e -1 7.7004e - 2 -1.2062e - 2 5.3092e - 2

9.1873e - 2 8.5081e - 2 2.9856e - 2 7.1189e - 2

- 3.8449e - 3 6.9885e - 2 8.1948e - 2 8.9764e - 2

- 6.8676e - 4 7.1595e - 2 8.3222e - 2 9.0390e - 2

[]BNN

T= 1.2555e0 3.1189e -1 1.1109e0 4.4088e -1

[]CNN = 1.0784e0 4.6248e -1 8.4716e -1 6.9503e -1

The region for error norm calculation is Λ�={(i, j) | 0 ≤ i ≤ 19, 0 ≤ j ≤ 19} for

both of designed filters. In Table 5.8, a comparison of the error analysis of two

different training results is shown. It is observed that a random input response

provides a more accurate model in comparison to an impulse response. A similar

conclusion is obtained based on other simulation results, due to the fact that the

responses generated by a large amount of random inputs contains more

information compared to the impulse responses.

Table 5.8: Results of Example 5.5

 ε2 % ε∞ % MNR

(original -5.5e-3)

type of responses with sufficient data points could be used as a training sample

for filter identification.

The effectiveness as well as robustness of this method have been

demonstrated by simulations experiments for both single input/single output

and multi-input/multi-output digital filters.

REFERENCES

1. Hopfield, J.J., Neural Networks and Physical Systems with Emergent

Collective Computational Abilities, Proc. Nat. Acad. Sci., Vol. 79,

2554 − 2558, April 1982.
2. Hopfield, J.J., Neurons with Graded Response have Collective

Computational Properties Like Those of Two State Neurons, Proc.

Nat. Acad. Sci., Vol. 81, 3088 − 3092, May 1984.

3. Elman, J.L., Finding Structure in Time, Cognitive Science, Vol. 14,

179 − 211, 1990.
4. Pineda, F.J., Dynamics and Architecture for Neural Computation, J.

Complexity, Vol. 4, 216 − 245, 1988.
5. Pineda, F.J., Recurrent Back Propagation and the Dynamical Approach

to Adaptive Neural Computation, Neural Computation, Vol. 1, 161 −
172, 1989.

6. Robinson, A.J. and Fallside, F. A Recurrent Error Propagation Network

Speech Recognition System, Computer Speech and Language 5, 259 −
274, 1991.

7. Irwin, K., Warwick G.W. and Hunt, K.J., Neural Networks for Control

and Systems, IEE Publication, 1992.

8. Wang, D. Identification and Approximation of 1-D and 2-D Digital

Filters, Ph.D Dissertation, Florida Atlantic University, Boca Raton, FL,

May, 1998.

9. Wang, D. and Zilouchian, A., Identification of Discrete Linear Systems

in State Space Form Using Neural Network, Proc. of Second IEEE Int.

Caracas Conf. on Devices, Circuits and Syst., Venezuela, 338 − 342,
March, 1998.

10. Rumelhart, D.E. and McClelland, J.L.(eds.), Parallel Distributed

Processing: Explorations in the Microstructure of Cognition, Vol. 1,

MIT Press, Boston, MA, 1986.

11. Galvan, J.B. and Perez-Ilzarbe, M.J., Two Neural Networks for Solving

the Linear System Identification Problem, Proc. of IEEE Conf. on

Neural Networks, 3226 − 3231, 1993.
12. Cichocki, A. and Unbehauen, R., Neural Networks for Solving Systems

of Linear Equations and Related Problems, IEEE Trans. on Circuits

and Syst., Vol. 39, No.2, 124 − 137, Feb., 1992.
13. Mammone, R.J. and Zeevi, Y., Neural Networks, Theory and

Application, Academic Press, NY, 1990.

14. Lippman, M.P. and Chua, L.O., Neural Networks for Nonlinear

Programming, IEEE Trans. on Circuits and Syst., Vol. 35, No.5, 554 −
562, May 1988.

15. Narendra, K.S. and Parthasarathy, K., Identification and Control of

Dynamic Systems Using Neural Networks, IEEE Trans. on Neural

Networks, Vol. 1, No. 1, 4 − 27, March, 1990.

16. Poggio, T. and Girosi,F., Network for Approximation and Learning,

Proc. of IEEE, 1481 − 1495, Sept., 1990.
17. Jamshidi, J. (ed.), Circuits, Systems & Information, TSI Press,

Albuquerque, NM, 1991.

18. Horton, M.P., Real-time Identification of Missile Aerodynamics Using

a Linearised Kalman Filter Aided by an Artificial Neural Network, IEE

Proc. Control Theory Appl., Vol. 144, No. 4, 299 − 308, July, 1997.
19. Hampel, F.R., Ronchetti, E.M., Roussew, P., and Stahel, W.A., Robust

Statistics - the Approach Based on Influence Functions, John Wiley &

Sons, NY, 1987.

20. Wang, D. and Zilouchian, A., Identification of 2-D Recursive Digital

Filters in State-Space Form Using Neural Network, Int. J. of Intelligent

Automation and Soft Computing .

21. Silverman, L.M., Realization of Linear Dynamic Systems, IEEE

Transaction on Automatic Control, AC-16, 554 − 567, 1971.
22. Wang, D. and Zilouchian, A., Model Reduction of Discrete Linear

Systems via Frequency Domain Balanced Structure, IEEE Trans. on

Circuits and Syst. Vol. 47, No. 6 , 830−838, July 2000.
23. Moonen, M., Moor, B. D., Vandenberghe, L., and Vandewalle, J., On-

and Off-line Identification of Linear State-Space Models, Int. J.

Control, Vol. 49, No. 1, 219 − 232, 1989.
24. Ljung, L., System Identification, Theory for the User, Prentice-Hall,

Inc., Englewood Cliffs, NJ, 1987.

25. Wang, D. and Zilouchian, A., Model Reduction of 2-D Separable-in-

Denominator Systems via Frequency Domain Balanced Realization,

Proc. of 37th IEEE Conf. on Decision and Control, Tampa, FL, 2179 −
2184, 1998.

26. Taylor, F.J., Digital Filter Design Handbook, Marcel Dekker Inc., NY,

1983.

27. MATLAB Toolbox, The Mathwork Inc., Boston, MA, 1998.

28. Ramos, J., A Subspace Algorithm for Identifying 2-D Separable in

Denominator Filters, IEEE Trans. on Circuits and Syst., Vol. 41, No. 1,

63 − 67, January, 1994.
29. Hinamoto, T. and Maekawa, S., Spatial-Domain Design of a Class of

Two-Dimensional Recursive Digital Filter, IEEE Trans. on ASSP, Vol.

32, No. 1, 153 − 162, February, 1984.

30. Aly, S.H. and Fahmy, M.M., Spatial-Domain Design of Two-

Dimensional Recursive Digital Filters, IEEE Trans. on Circuits and

Syst., Vol. 27, No. 10, 892 − 901, October, 1980.
31. Lashgari, B., Siverman, L.M., and Abramatic, J., Approximation of 2-

D Separable in Denominator Filters, IEEE Trans. on Circuits and Syst.,

Vol. 30, No. 2, 107 − 121, February 1983.
32. Hinamoto, T. and Maekawa, S., Design of 2-D Separable in

Denominator Filters Using Canonic Local State-Space Models, IEEE

Trans. on Circuits and Syst., Vol. CAS-33, No. 9, 922 − 929,
September, 1986.

33. Lin,L., Kawamata, M., and Higuchi,T., Design of 2-D Separable-

Denominator Digital Filter Based on the Reduced-Dimensional

Decomposition, IEEE Trans. on Circuits and Systems, Vol. CAS-34,

No. 8, 934 − 941, August, 1987.
34. Raymond, D.M., and Fahmy, M.M., Spatial-Domain Design of Two-

Dimensional Recursive Digital Filters, IEEE Trans. on Circuits and

Syst., Vol. 36, No. 6, 901 − 905, June, 1989.
35. Bose, T. and Chen, M., Design of Two-Dimensional Digital Filters in

the Spatial Domain, IEEE Trans. on Signal Processing, Vol. 41 No. 3,

1464 − 1469, March, 1993.

36. Attasi, S., Modeling and Recursive Estimation for Double Indexed

Sequences, in System Identification: Advances and Case Studies,

Mehra, R.K., and Lainiotis, D.G., (eds.), Academic Press, NY, 1976.

37. Roesser, R.P., A Discrete State-Space Model for Linear Image

Processing, IEEE Trans. on Automatic Control, Vol. AC-20, 1 − 10,
February 1975.

38. Kung, S., Levy, B.C., Morf, M., and Kailath, T., New Results in 2-D

Systems Theory, Part II: 2-D State-Space Models - Realization and the

Notions of Controllability, Observability, and Minimality, Proc. of the

IEEE, Vol. 65, No. 6, 945 − 959, June, 1977.
39. Shanks, J.L., Treitel, S., and Justice, J.H., Stability and Synthesis of

Two-Dimensional Recursive Filters, IEEE Trans. on Audio Electro-

Acoust., Vol. AU-20, 115 − 128, June, 1972.
40. Hinamoto, T., Realizations of a State-Space Model from Two-

Dimensional Input-Output Map, IEEE Trans. on Circuits and Syst.,

Vol. CAS-27, No. 1, 36−44, Jan., 1980.

6
APPLICATION OF COMPUTER

NETWORKING USING NEURAL

NETWORK

 Homayoun Yousefizadeh

6.1 INTRODUCTION

This chapter investigates the application of perceptron neural networks in

modeling traffic sources in packet based computer communication networks. It

is motivated by recent measurement studies that indicate the presence of

significant statistical features in packet traffic belong to the fractal nature of the

processes rather than their stochastic nature. The chapter first provides an

illustration of the statistical features of the measured traffic over the Internet. It

then outlines a learning scheme based on back propagation algorithm for a class

of perceptron neural networks that can be used to capture several of the fractal

properties observed in actual data. The most important conclusion of this chapter

is that, despite the existence of numerical difficulties, neural networks may

allow building of accurate models to predict the behavior of packet traffic

sources.

6.2 SELF SIMILAR PACKET TRAFFIC

Teletraffic analysis of the computer communication networks is one of the most

important applications of mathematical modeling and queuing theory. Recently,

the widespread deployment of packet switching has generated a set of

challenging problems in queuing theory. The problem of bursty traffic packet

arrival modeling is considered one of the most important problems in this

category. Given that performance models are only reliable when their

underlying assumptions are satisfied, the problem of obtaining an accurate

model of packet traffic is particularly important in all packet based networks.

Although numerous models of packet arrival processes have been proposed

during the past few years, there is still a lack of complete understanding of the

features in packet traffic. This is partly due to uncertainties in the traffic

characteristics of the emerging networks and services, and partly due to the

difficulties in characterizing the traffic arrival models and resource usage

patterns in the emerging networks.

 Analyses of traffic data from networks and services such as ISDN traffic,

Ethernet LANs, common channel signaling network (CCSN) and variable bit

rate (VBR) video have convincingly demonstrated the presence of features such

as self-similarity, long range dependence, slowly decaying variances, heavy-

tailed distributions and fractal dimensions. These features, indeed, are more

characteristic of fractal processes than those of conventional stochastic

processes. Conventional traffic processes from regular telephone traffic or the

Poisson and Poisson-based models seem to be Markovian in nature,

characterized by exponential decays. The types of packet traffic with the above

mentioned characteristics are interpreted to be bursty in nature. To be more

specific, Leland and Wilson from Bellcore research center have presented a

preliminary statistical analysis of Ethernet traffic, on the presence of

"burstiness" across a wide range of time scales [2]: traffic spikes ride on the

longer term ripples that, in turn, ride on longer term swells, etc. This is also

explained in terms of self-similarity, i.e., self-similar phenomena show structural

similarities across all or at least a very wide range of time scales [3-5]. The

degree of self-similarity measured via the Hurst parameter typically depends on

the utilization level of the transmission medium and can be used to measure

burstiness of the traffic.

 As another important difference between the aggregated bursty traffic and

the so called Poisson-like conventional models, it could be mentioned that the

aggregated traffic is expected to become less bursty or smoother as the number

of traffic sources increases based on the conventional models, but it has very

little to do with the reality. In fact, contrary to commonly held views, it has been

observed that the burstiness of LAN traffic intensifies as the number of traffic

sources increases. Conventional characterizations suppose that packet traffic

consists of alternating active and silent periods with well-defined statistics. On

the contrary, measurement studies have noted that there is no actual burst length,

and bursts occur over many time scales. At every step, examination of the data

shows that the bursts resolve into bursts over smaller time scales. This burst-

within-burst structure captures the fractal properties observed in actual traffic

data.

6.2.1 Fractal Properties of Packet Traffic

 The main objective of the current section is to establish a foundation for a

statistically well-defined property of time series called self-similarity.

Intuitively, self-similar phenomena display structural similarities across too

many time scales. Measuring a single parameter called the Hurst parameter

usually specifies the degree of self-similarity. The following discusses

mathematical and statistical properties of the self-similar processes.

Second-Order Self-similarity

Let

,...)2,1,0:(== tXX t (6.1)

be a covariance stationary stochastic process with mean µ, variance σ
2
, and

autocorrelation function 0),(≥kkτ . In particular suppose X has an

autocorrelation function of the form

∞→− kaskak ,~)(1
βτ (6.2)

where 0<β<1 and constants a1, a2, ... denote finite positive integers. For each

m = 1, 2, 3, ... let

),3,2,1:(
)()(

L== kXX
m

k
m (6.3)

denote the new covariance stationary time series with corresponding

autocorrelation function τ(m)
 obtained by averaging the original series X over

nonoverlapping blocks of size m, i.e., for each
)(

,...,3,2,1
m

Xm = is given by

 1),(/1 1
)(≥++= +− kXXmX kmmkm

m
k L (6.4)

 The process X is called exactly second-order self-similar with self-similarity

parameter H=1-β/2 if the corresponding X
(m)

 has the same correlation structure

as X, i.e., τ
(m)

(k) = τ(k) for all m = 1, 2, 3,... and k = 1, 2, 3, ... X is called

asymptotically second-order self-similar with self-similarity parameter H=1-β/2

if τ
(m)

(k) agrees asymptotically with τ(k) given by (6.2), for large m and k. In

other words, X is exactly or asymptotically second-order self-similar if the

aggregated processes X
(m)

 are the same as X or become indistinguishable from X

with respect to their correlation functions. Fractal Gaussian noise (FGN) is a

good example of an exactly self-similar process with self-similarity parameter

H, 1/2 < H < 1. Fractional Arima processes with the parameters (p, d, q) such

that 0 < d < 1/2 are examples of asymptotically second-order self-similar

processes with self-similarity parameter d + 1/2. Mathematically, self-similarity

manifests itself in a number of equivalent ways as follow.

 (1) The variance of sample mean decreases more slowly than the reciprocal

of the sample size. This is called slowly decaying variance property meaning.

 10,,~)var()(
2

)(<<∞→− ββ mmaX m (6.5)

 (2) The auto-correlation decay hyperbolically rather than exponentially fast,

implying a nonsummable autocorrelation function ∞=∑k k)(τ . This is called

long range dependence property which means τ(k) satisfies relation (6.2).

 (3) The spectral density f(.) obeys a power law near the origin. This is the

concept of 1/f noise with the meaning

 γλλ −= kf)((6.6)

as ∞→λ with 10 << γ and βγ −=1 .

 It looks like the most striking feature of self-similar processes is that their

aggregated process X
(m)

 possesses a nondegenerate correlation function as

∞→m . This is in stark contrast to typical packet traffic models considered in

literature, all of which have the property that their aggregated processes X
(m)

tend to second order pure noise, i.e., 0)(→mτ as ∞→m . As an equivalent

method of description, they may be characterized by the following properties:

! The sample mean variance decreases like the reciprocal of the sample mean.

! The autocorrelation function decreases exponentially fast, implying a

summable autocorrelation function. This, in fact, is equivalent to the short

range dependence property.

! The spectral density is bounded at the origin.

 The concept of self-similar processes provides a very elegant explanation of

an empirical law commonly referred to as the Hurst effect. In order to describe

the Hurst effect, it should be mentioned that for a given set of observations

),...,2,1,0:(nkXX k == with sample mean)(nX and sample variance)(2 nS , the

rescaled adjusted range or the R/S statistic is given by

)],,,,0min(),,,,0[max(
)(

1

)(

)(
2121 nn WWWWWW

nSnS

nR
LL −=

 1),()(1 ≥−++= knXkXXW kk L

 While many naturally occurring time series appear to be well represented by

the relation Hn1k~)]E[R(n)/S(n , as ∞→n , with Hurst parameter H typically

about 0.73, observations kX from a short range dependent model are known to

satisfy Hn1k~)]E[R(n)/S(n , as ∞→n . This discrepancy is usually referred to as

the Hurst effect.

Degree of Self-similarity

 In this part, methods of estimating self-similarity degree are introduced

based on the properties of covariance stationary second-order self-similar

processes, namely slowly decaying variances, long-range dependence, and a

spectral density obeying a power-law. Hence the problem may be approached in

three ways:

! Time-domain analysis based on the R/S statistic;

! Analysis of variances of the aggregated processes;

! Periodogram-based analysis in the frequency domain.

 The objective of the first method is to estimate the Hurst parameter H via the

Hurst effect. Briefly, the approach consists of plotting))(/)(log(nSnR vs.

)log(n in the logarithmic scale that results in a plot called "rescaled adjusted

range plot" or the "pox diagram of R/S." For a well-defined parameter H, a

typical rescaled adjust range plot starts with a transient zone showing the nature

of short range dependence and continues with a steady state part which is a

straight line with a certain slope. There are also some fluctuations around that

line. In fact, if such asymptotic behavior appears, then graphical R/S analysis

may be used to estimate the self-similarity degree. An estimate H� of self-

similarity parameter H is given by the line's asymptotic slope, which can take

any value between ½ and 1. The most useful feature of the R/S analysis is its

relative robustness against changes of marginal distribution.

 In the second method, the variances of the aggregated second-order self-

similar processes 1,)(≥mX m , decrease linearly in log-log plots against ,m with

slopes arbitrarily flatter than .m This behavior is, in fact, seen for the large

(6.7)

values of m as the representative of time. The so called variance time plots are

obtained by plotting))log(var(X (m)

against log(m) and by fitting a simple least

squares line through the resulting points in the plane. Values of the estimate β� of

the asymptotic slope between -1 and 0 suggest self-similarity with a degree of

/2β�1H� −= .

 In contrast to the previous two methods, the third method takes advantage of

the presence of limit law for a more refined data analysis like the existence of

confidence levels for H. This is simply done by using maximum likelihood types

estimates (MLE) based on the periodogram-based analysis in the frequency

domain. As an example, Whittle's approximate MLE may be mentioned to be

used for the approximate Gaussian processes. A combination of an MLE-type

approach and the one above of the mentioned aggregation methods lead to an

operational procedure for obtaining confidence intervals for the self-similarity

parameter H. Plots of the point estimates)(� mH of)(mH vs. m with their

specified confidence level will typically vary a lot for small aggregation levels

but will stabilize after a while and fluctuate around a constant value, the final

estimate of self-similarity parameter H. For a complete discussion, see Leland

and Wilson [2].

Mathematical Explanation of Self-similarity

Mathematically, self-similarity in measurements from aggregated traffic of

Ethernet, ISDN, CCSN, and VBR traffic can be explained by a simple

aggregation argument: aggregating many elementary renewal reward processes

representing individual user traffic produces self-similarity in limit as the

number of users increases. First, let us define the concept of infinite variance

syndrome. A random variable is said to exhibit an infinite variance syndrome or

is called heavy tailed if

)(~][uLuuUP α−≥ (6.8)

where L(u) is a slowly varying function at infinity and 0 <α < 2. The crucial

property that distinguishes the renewal reward process source model from the

commonly assumed source model is that the interrenewal arrivals, i.e., the

lengths of the active/inactive periods, are heavy tailed or, in terms of Mandelbort

terminology, exhibit the infinite variance syndrome. A number of evidence

supports the existence of infinite variance syndrome in packet traffic

measurements. Hellstern and Wirth[9] have observed that the extreme variability

of ISDN data cannot be adequately captured using traditional packet traffic

models but instead is best described by the concept of heavy-tailed distributions.

Duffy and Willinger[14] have observed the same evidence in the CCSN traffic

studies. They have noticed that the call holding time distribution for calls

originating during high traffic periods is heavy tailed with an estimated value of

about 2.0, and for calls originating during light traffic periods, the estimated

value drops down to about 1.0. Erramilli et al., [10] first proposed the idea of

using fractal dimensions to characterize the fractal-like nature of the traffic

measurements. Intuitively, a dimension is an indication of the extent to which a

set, e.g., arrival times, fills the space in which it is embedded [11−13]. As an

example, the so-called correlation dimension associated with a measure, known

as correlation integral, is an appropriate tool to characterize the behavior of self-

similar sets.

6.2.2 Impacts of Fractal Nature of Packet Traffic

Fractal characterization is, in fact, applicable to many aspects of teletraffic

systems such as arrival, service time, buffering, quality of service, and queuing.

Although, theoretically, classical Markovian models can always be used to

describe any finite set of traffic measurements, the resulting systems are very

complex and highly parameterized in case of fractal processes. Hence, it is better

to use simpler and more effective models. In this section, the major findings

from the most recent real network environment measurements are summarized.

Heavy-Tailed Service Densities

 Heavy-tailed densities as a characteristic of fractal processes are suitable for

modeling a number of applications such as call holding times [15], and

individual call records [16]. In general, they are expected to be seen in switched

data services as well as packet based services when there are resources that need

to be held for duration of a call or a session. As an example, constant bit rate

(CBR) services in ATM networks may be mentioned. From the practical point

of view, there are numerous difficulties in accurately engineering these services

even when the well known insensitivity of the Erlang-B results is used to

characterize the service time. The major problem here is the very slow rate of

convergence that allows considerable deviations from the theory over time

scales of engineering interest. For a more detailed discussion see Smith[16−22].

 Assuming there is a convergence, the rate of convergence problem may be

resolved by extending the length of period; however, for long interval

observations, the assumptions about the stationarity of arrival processes do not

hold and hence the Erlang-B results are not applicable. Intuitively, it looks like

the service rate over smaller time intervals can be much greater than the long

term and rate conditioned on a departure; hence fractal scaling of the service

processes should be applicable here.

Packet Loss

 Packet loss processes are very well known to be highly bursty although

usually characterized by their long term rates. The limitations of using long term

rates in order to describe bursty processes and the problem of serial correlation

in losses have been identified to be due to the periodicities in the arrival process.

The work was done by Ramaswami et al [6], Erramilli et al [10], and

Mandelbort [17]. Briefly, any packet loss rate measurement is likely to be

arbitrary over a wide range of time scales, and the long term rate is probably too

low to be meaningful. On the contrary, with the cases of transmission errors and

packet arrivals, fractal characterizations are applicable in describing packet loss

processes. In order to illustrate the above-mentioned point, Erramilli et al., have

analyzed the loss processes in simulations driven by Ethernet traffic traces. The

study has relied on correlation analysis for different data sets. It has measured

the burstiness of the loss process using the fractional correlation dimension. The

study has shown that when the packet loss occurs, it occurs at much higher rates

than the long term rates, and hence there will be a considerably more impact on

the applications than that indicated by the long term rate. In addition, other

fractal parameters such as the Hurst parameter are also applicable to the loss

process. Please see Erramili et al., [3] for further details.

Fractal Queuing

 The presence of fractal properties in actual arrival, service time, and QoS

processes may serve as a motivation for the development of the fractal queuing

to analyze the performance implications of the processes with long range

dependence. One possibility is that if fractal properties impact performance

indirectly by biasing the long term traffic measurements, then they can be

counted on to transform inputs to conventional queuing models. The direct

analysis of models that use fractal characterizations as the input is another

possibility, although the lack of a Markovian structure makes such models

extremely difficult to analyze. There are, however, three promising approaches:

the first one is based on a self-similar stochastic model, specifically, fractal

Brownian motion[17], the next one is based on dynamical system approach

using chaos theory, and the last one based on the neural networks theory. While

the first two approaches are only mentioned briefly here, the last one is the main

focus of this chapter and will be discussed in detail.

6.3 NEURAL NETWORK MODELING OF PACKET TRAFFIC

Neural networks as a class of nonlinear systems are able to learn and to perform

tasks done by other systems. They are suitable for speech and signal processing,

pattern recognition, system modeling, and servomechanism control. They

acquire requisite information based on the examples supplied to them. The

various kinds of neural networks generally have energy functions. The learning

procedure of neural networks is, indeed, nothing more than decreasing these

energy functions until reaching local minimum levels. Neural networks are

robust in the sense that if there is a relatively small error in the system, the

network will continue its desired action. This characteristic of the neural

networks makes them quite suitable for the traffic modeling task discussed

below. In this chapter, perceptron neural networks, along with their learning

algorithm back propagation, are utilized as the traffic modeling tool.

6.3.1 Perceptron Neural Networks and Back Propagation Algorithm

 The perceptron network is arguably the most popular neural network

architecture, and certainly the trigger of the current widespread explosion of

activity in the field. The function of the perceptron network is to reproduce

certain target output patterns at the last layer of nodes. The task is achieved by

adjusting the weighting functions of each interconnecting link according to a

rule which compares the activity patterns at output nodes with the desired target

patterns and propagates the difference back through the network leading to a

small adjustment to each link�s weighting function. A simple feedforward

perceptron network does not have any feedback connection between two

different layers or a layer with itself. In this situation, the input data from the

input layer appears in the output layer via the interface of hidden layers.

Feedforward networks with no feedback connection between two different

layers are generally considered because of their nonlinear properties. Figure 6.1

shows a typical perceptron network.

 Perceptron neural networks can be used to model teletraffic patterns. The

modeling procedure relies on attempting to predict the dynamical behavior of

the describing system after learning corresponding dynamics. The network

usually obtains the information required for the learning procedure from a

number of available samples.

Figure 6.1: A Typical Perceptron Neural Network.

 In the following section, an approach capable of dealing with the fractal

properties of the aggregated traffic is introduced. This approach takes advantage

of perceptron neural networks with back propagation learning algorithm. It

provides an elegant solution for self-similar traffic modeling and has the

advantage of simplicity compared to the previously mentioned approaches

namely stochastic and deterministic nonlinear chaotic map models. It is,

motivated by the desire of having a relatively simple model of the complex

packet traffic generation process. As opposed to stochastic and chaotic modeling

approaches, it does not introduce a parameter that describes the fractal nature of

traffic and hence need not cope with the complexity of estimating Hurst

parameters or fractal dimensions. The approach simply takes advantage of using

a fixed structure nonlinear system that is able to predict either the number of

packets generated by a traffic source or the number of arrived packets in a buffer

after getting trained by accessing to a number of samples of the generation or

arrival pattern.

 The back propagation algorithm (BPA) performs simple gradient descent to

reduce the mismatch between the desired and actual outputs. The BPA uses all

of the Processing Elements (PEs) and adjusts their total interconnections by

propagating the output layer error to the preceding layer via the existing

connections. The operation is then repeated until reaching the input layer. In

other words, output error moves from each layer to the preceding layer - just

opposite the direction of the movement of the original information - until

reaching the input layer.

 The back propagation network used for the task of modeling consists of an

input layer with up to eight neurons, four hidden layers with twenty neurons in

each layer, and an output layer with one neuron. The inputs of the network are

eight consecutive samples of the traffic pattern and the output of the network is

the ninth sample, which is supposed to be predicted. In the learning phase

information may come back through the network in order to update the

weighting functions. The network may also be heteroassociative or auto

associative. The following notation briefly describes the traffic modeling task

using back propagation algorithm for the choice of sigmoid output transfer

function. Please see references [23,24] and Chapter 3 for a complete discussion

about perceptron networks and back propagation algorithm.

lc : The learning coefficient

[]sx j : The present output state of the j-th PE from the layer s

[]swij : Weighting function of the connection between layer 1−s i-th PE and

layer s j-th PE

[]sI j : The combined input of the j-th PE from layer s

[])(sIf j : The output transfer function of the j-th PE from layer s

[]se j : The derivative of the absolute error function with respect to the combined

input of the j-th PE from layer s

• Propagate the input I in the forward direction through the network until

reaching to the output o . During propagation of this information through

the network, all of the combined inputs jI and output states jx for each PE

are set.

• For each PE in the output layer calculate the scaled local error)(kk od −

and obtain the variations of weighting functions from relations (6.9) and

(6.10), respectively.

() () ()))(1(kkkkk IfIfodoe −••−= (6.9)

[] []1][−⋅=∆ sxselcsw ijij (6.10)

• For each PE in layer s, which is located below the output layer and above

the input layer, obtain the scaled relative error and the variation in

weighting functions from relations (6.11) and (6.10), respectively.

[] [] [] [] []{ }∑ ++−=
k

kjikjjj swsesxsxse 11)1.(

(6.11)

• Update all of the weighting functions by adding the variations to the old

values.

 Inserting momentum terms, derivative corrections, and fast back propagation

techniques are also deployed to enhance the convergence speed of the algorithm.

The number of samples required for the training procedure in general depends

on the complexity of the source and network dynamics. The use of neural

networks provides a simpler approach for the task of modeling because it works

based on indirect learning of the source or network dynamics. The learning

schema relies on the information available in a number of samples.

6.3.2 Modeling Individual Traffic Patterns

 In the proposed approach, a fixed structure perceptron neural network is used

for the task of modeling. The network consists of an input layer with up to eight

neurons, four hidden layers with twenty neurons in each layer, and an output

layer with one neuron. The inputs of the network are eight consecutive samples

of the traffic pattern and the output of the network is the ninth sample, which is

supposed to be predicted. Based on the richness of the dynamic, it might be

possible to reduce either the number of the neurons in the input layer or the

number of hidden layers, but as the standard structure, the above mentioned

structure is used unless otherwise stated. In the following, three different

approaches based on the type of input samples used for training of the neural

network are introduced.

 The first method makes direct use of the available traffic samples. In order

not to deal with very large numbers, the sample with value one is inserted to the

neural network when the source is active and the sample with value zero is

inserted in the neural network when the source is passive. This, indeed, is the

normalized version of the peak packet generation rate divided by the peak rate.

 The method suffers from a major drawback though. Since the samples

provided for the network are discrete values equal to either zero or one, the

network learning speed is very low. In fact, having a continuously distributed

sample spectrum over the interval []1,0 leads to having a much faster learning

procedure.

 The second method can be used in cases of generating artificial traffic

patterns by chaotic maps. The approach simply accomplishes the task of

modeling by inserting a level of indirection, i.e., the neural network concentrates

on predicting consecutive samples of the chaotic map as the packet traffic

generator. It is motivated by the fact that the evolution of a state variable over a

discrete time period for simple classes of chaotic systems can be used to model

packet traffic sources. The modeling task relies on establishing a relationship

between the state variable and the source activity. One elegant approach is to

consider the source to be active and generating traffic at a peak rate if the state

variable exceeds a threshold, and to be idle otherwise. This is specially attractive

when one tries to predict the behavior of ON-OFF source models. Please see

Yousefizadeh[1] for further details. By modeling the chaotic map and generating

its samples, it would be very easy to generate the same artificial traffic pattern

using the same threshold value as far as the neural network is able to follow the

corresponding chaotic map. This, indeed, is a combination of the approaches

introduced in prior research work as neural network modeling of chaotic maps

and as chaotic modeling of bursty traffic [7,8].

 The third method provides a sophisticated and elegant learning approach for

well-behaved sources. A well-behaved source is defined as a source that does

not generate more than a specified number of packets in a time frame, i.e., there

is an upper limit on the number of packets generated by the source. The most

significant point about this approach is that it uses the real traffic samples where

the samples have been arranged to create a continuous range of numbers

distributed in []1,0 interval. Suppose that the source generates no more than a

specified number of traffic packets, say P in a period of time T . Then,

considering an origin for the time, the cumulative distribution function of the

traffic pattern for the period T is defined as the number of packets generated

since the beginning of the time divided by the maximum number of packets

Pp / . Obviously, this is a monolithic increasing function starting at zero and

ending at one. Note that if the source generates a number of packets less than the

maximum number, a monolithic function ending at a value less than one will be

observed. The samples of these functions can be used to provide the desired

sample set. At the end of the period, the desired output is compared with the

network output and if the value of error has not entered the acceptable bound,

the training procedure is repeated. Relying on these three training algorithms,

the fixed structure neural network is used to model a number of artificial traffic

patterns generated by single and double intermittency chaotic maps described as:

Single:







≤≤
−
−

≤≤++
=+

)1(:
1

)0(:

1
n

n

n
m

nn

n
xd

d

dx

dxcxx
x

ε
 Where

md

d
c

−−= ε1
 (6.12)

Double:







≤≤−−+−
≤≤++=+

)1(:)1(

)0(:

22

1

n
m

nn

n
m

nn
n

xdxcx

dxcxx
x

ε
ε

 Where
md

d
c

−−
= 1

1

1 ε
 (6.13)

 Single and double intermittency maps represent a class of piecewise

linear/nonlinear maps that can be used to generate an artificial self-similar traffic

pattern. In either case, the source is generating packets at a maximum rate for as

long as the map is in the active period 1≤≤ nxd . The main objective of the

packet generation model is the steady state behavior of the idle periods that are

related to many fractal properties observed in actual data and corresponded to

self-similar patterns. Interestingly enough, both single and double intermittency

maps show fractal properties namely, slowly decaying variances, long range

dependence, and 1/f noise. Yousefizadeh[1] includes further details. The

generated traffic patterns can, hence, be considered self-similar patterns. Figures

6.2 and 6.3 show the single and double intermittency maps.

 The use of artificial traffic patterns provides the possibility of comparing the

results obtained from all three approaches. Figures 6.4 and 6.5 show the

modeling results in the case of single and double intermittency maps for initial

conditions 1.00 =x and ,3.00 =x respectively. The number of samples required

for training of the neural network before reaching the sync stage is 698,500 in

the case of single intermittency map and 889,710 in the case of double

intermittency map. Comparing all three approaches, it seems that the second

approach provides the best results in terms of tracking. Comparing the first and

third approaches, it is easy to observe that the third approach provides more

reliable results as it is able to follow the traffic in a longer period of time.

 As can be seen from the figures, the familiar ON-OFF follow-up learning

pattern is observed, i.e., the neural net learns to follow the traffic pattern after

approximately 700,000 and 890,000 iterations in cases of single and double

intermittency maps, respectively, and is able to stay within the acceptable error

bound for the next 60 samples in the case of the third learning algorithm. The

network then goes out of sync and needs to be trained again in order to be able

to follow the pattern properly.

Single Intermittency Map (SIM)

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

X

Y

SIM

Y=X

Figure 6.2: Single Intermittency Map Shown for 5=m and .7.0=d

Double Intermittency Map (DIM)

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

X

Y

DIM

Y=X

Figure 6.3: Double Intermittency Map Shown for 5=m and .7.0=d

Neural Net Modeling of Single Intermittency Map

0

1

2

3

4

1 6

1
1

1
6

2
1

2
6

3
1

3
6

4
1

4
6

5
1

5
6

6
1

Post-Sync Iterations

Third Method

Second Method

First Method

Artificial Pattern

Figure 6.4: Results of Modeling the ON-OFF Traffic Pattern Generated by

Single Intermittency Map for the Initial Condition 1.00 =x . The Horizontal

Axis Displays the Time while the Vertical Axis Displays the Normalized Packet

Generation at a Peak Rate.

Neural Net Modeling of Double Intermittency Map

0

1

2

3

4
1 7

1
3

1
9

2
5

3
1

3
7

4
3

4
9

5
5

6
1

Post-Sync Iterations

Third Method

Second Method

First Method

Artificial Pattern

Figure 6.5: Results of Modeling the ON-OFF Traffic Pattern Generated by

Double Intermittency Map for the Initial Condition 3.00 =x . The Horizontal

Axis displays the Time while the Vertical Axis Displays the Normalized Packet

Generation at a Peak Rate.

6.3.3 Modeling Aggregated Traffic Patterns

 In the following discussion, each source is assumed to generate packets with

a pattern following the double intermittency map packet generation model

described in the previous section. By using different initial conditions and/or

different threshold values, different traffic patterns are obtained for different

sources.

 For example, the model may be considered as an ATM queuing system with

a number of Virtual Channels (VCs) with each VC belonging to a traffic source.

In these models, the queuing behavior is separated into burst and cell scale

components as the result of relying on cell rates rather than interarrival time.

 There is a finite capacity buffer corresponding to each source, which keeps

the generated packets before they get transmitted. The occupancy of each buffer

is determined by the flow of cells from the corresponding source and the rate at

which the cells are serviced. In this model a queue is identified by its buffer

capacity maxC , and its server capacity maxO . In each queue, the generation rate

is compared with the service rate to determine whether the size of the queue is

increasing or decreasing as well as whether the queue is losing cells.

 Here, the objective is to model the traffic pattern of the queue. Using the

following notation

),(kiI : The input rate of the i-th channel at time k.

),(kiO : The output rate of the i-th channel at time k.

),(kiQ : The queuing rate of the i-th channel at time k.

),(kiL : The loss rate of the i-th channel at time k.

),(kiC : The queue size of the i-th channel at time k.

the state of the queue for each channel is specified by

),(),(),(),(kiLkiQkiOkiI ++= (6.14)

at any instant of time as shown in Figure 6.6. Note that besides Q values that

could be positive or negative, all the other values are always positive.

Q (i,k)

L (i ,k)

I(i ,k)

O (i,k)

Figure 6.6: The Queuing Diagram of the I-th Source at Time k.

Originally, all of the queues are empty. A queue begins to form when the source

input rate exceeds the service rate. Hence, the queue rate),(kiQ and the loss rate

),(kiL remain zero as far as the input rate is less than or equal to the service rate,

i.e.,





=
<

=
maxmax

max

),(:

),(:),(
),(

OkiIO

OkiIkiI
kiO (6.15)

 The queue size),(kiC begins to increase as soon as the input rate exceeds

the service rate maxS . While the queue is not empty, the output rate is always

equal to the queue server capacity and the total queuing rate is the difference

between the input rate and queue server capacity. The loss rate is zero at this

stage.

 The queue size keeps increasing and finally becomes full if the input rate

remains higher than the queue server capacity. In that situation, the queuing rate

is zero and the excess input rate is the cell loss rate as

),(),(),(kiOkiIkiL += (6.16)

with max),(OkiO = . The effect of a change in the input rate is not immediately

apparent if there are packets in the queue waiting to be transmitted. It is the

queuing rate that changes according to

),()1,(),()1,(kiIkiIkiQkiQ −++=+ (6.17)

 The queue size begins to decrease in size when the input rate becomes less

than the server capacity, i.e., max),(OkiI < , and the queuing rate goes below

zero as the result, i.e., 0max <Q . The queue becomes empty if this situation

lasts. The output rate is obtained from the following equation,





=
≥

=
0),(),(

0),(
),(

max

kiCkiI

kiCO
kiO (6.18)

 After providing a brief queuing analysis for individual queues, now it is time

to take look at the system from a high level point of view. For the rest of this

section and the following two sections, it is assumed that a number of sources

are sharing the total bandwidth available from the main channel. Each source

has an ON-OFF model and is generating traffic at a peak rate when it is active.

The source becomes active as soon as the state variable of the describing chaotic

map goes beyond the threshold value and becomes passive as soon as the state

variable goes below the threshold. The double intermittency map is chosen to be

the chaotic map used for the packet generation as it generates a self-similar

traffic pattern. The traffic pattern of each source is separated from the other one

by choosing a different initial condition.

.

.

.

S 1

S 2

S 3

S n

S w itch

S O URC E S Q UE UE
O U TP U TS

.

.

. .
.
.

Figure 6.7: A sample network used to demonstrate the modeling power of

neural networks for modeling aggregated level bursty traffic.

 The following scenario illustrates neural network modeling of bursty traffic

at the aggregated level. In order to be able to access an aggregated traffic

pattern, a system consisting of 100 individual sources and a queue as indicated

in Figure 6.7 is considered. This might be realized as an example of a real

network with a number of nodes sending their packets to the network gateway.

The traffic pattern might include a variety of different packets such as telnet, ftp,

rlogin, mail, etc. The arrived packets are stored in a relatively large size buffer

before being forwarded to corresponding destinations. In order to be able to

simulate the real network, each individual source is replaced by an artificial

generator following an ON-OFF pattern. The generated traffic, hence, can be

considered self-similar. It is important to note that the objective here is merely to

predict the traffic pattern arrived at the gateway. A fixed structure perceptron

neural network is used for the task of modeling. The network consists of an

input layer with eight neurons, three hidden layers with twenty neurons in each

layer, and an output layer with one neuron. This is the same typical structure as

indicated in Figure 6.1. The inputs of the network are eight consecutive samples

of the traffic pattern and the output of the network is the ninth sample that is

supposed to be predicted.

 The traffic pattern of each source is obtained from double intermittency map

and is distinguished from the other sources by assigning a different threshold

value to the corresponding map. Figure 6.8 shows the result of a neural network

modeling task. Again, the familiar tracking period followed by a divergent

behavior is observed. The only difference is that self-similarity increases the

speed of convergence at the aggregated level. It is important to note that the

burstiness of the aggregated level traffic increases as the trained network can

follow the pattern for a smaller number of samples before going out of sync. In

this example, the neural network learning algorithm converges approximately

after 280,000 iterations and is able to follow the main pattern for the next 55

arrivals.

Aggregated Traffic Modeling Results

0

10

20

30

40

50

60

70

80

90

100

1 7

1
3

1
9

2
5

3
1

3
7

4
3

4
9

5
5

6
1

Post-Sync Iterations

Modeling Pattern

Gateway Pattern

Figure 6.8: Aggregated traffic modeling results with neural networks.

 Knowing that a statistically self-similar traffic pattern exhibits a fractal-like

behavior in the sense that aggregated streams of such traffic pattern typically

intensify burstiness instead of smoothing it, the observed result is very

interesting. The result shows self-similarity provides an extra source of

information that can be interpreted as some kind of correlation among the

generated traffic patterns. The conclusion is that the simple nonlinear dynamic

of neural networks is able implicitly to capture self-similarity and hence neural

networks may be viewed as suitable generators of self-similar traffic.

6.4 APPLICATIONS OF TRAFFIC MODELING

In this section, the applications of the modeling scheme introduced earlier are

investigated. Consider a system that consists of a number of sources sharing the

space available in a central buffer and generating packets following an ON-OFF

source model. Figure 6.9 shows the structure of a multiple source queuing

system. The challenge is the dynamic assignment of the buffer space such that

the probability of loss is minimized. In this study, two different scheduling

algorithms are considered. These are fixed time division multiplexing (FTDM)

and statistical time division multiplexing (STDM). In FTDM each source takes

advantage of a fair portion of the buffer space and there is no sharing, while in

STDM the unused portion of buffer space assigned to each source might be used

to service packets generated by other sources.

O utp ut

.

.

.

S 1

S 2

S 3

S n

S w itch

.

.

.

.

.

.

.

.

.

Figure 6.9: The structure of a multiple source queuing system.

6.4.1 Packet Loss Prevention

 The first application of this section introduces a dynamic buffer management

algorithm relying on the modeling power of neural networks. There are a

different number of buffer management algorithms studied in literature. The

simplest method is complete sharing in which the buffer space is shared among

all the existing sources without enforcing any capacity allocation mechanism.

This method introduces an unfair consumption of buffer by greedy sources

while providing the lowest loss rates. The second method is called complete

partitioning in which the available capacity of the buffer is equally shared

among the existing sources. This method has the best fairness characteristic

while it greatly suffers from efficiency degradation by introducing the highest

loss rate. In the presence of a specified scheduling algorithm, a threshold buffer

management algorithm is introduced as the third alternative solution. In a

threshold method, each source has its own fixed portion of the buffer space that

can only be used for buffering packets generated by that specific source. There

is also an additional portion of the buffer completely shared among the existing

sources. This method is called partial sharing. A dynamic buffer management

algorithm is classified under the threshold methods with the ability to adjust the

buffer size of each source dynamically. In order to show the performance of the

modeling approach, four different buffer management scenarios are compared

in the presence of FTDM and STDM scheduling algorithms.

• The first scenario happens when complete sharing (CS) mechanism is

enforced. This is a simple queuing mechanism in which all of the generated

packets are directly sent to the central buffer and wait there until getting

transmitted. This method introduces maximum efficiency for the available

buffer space. The drawback is that the space may not be used fairly. Hence,

a source with a high output rate is able to consume a big portion of the

buffer space and cause the queue to overflow.

• The second method is a simple implementation of complete partitioning (CP)

scheme in the presence of FTDM and STDM in which the capacity of the

central buffer is distributed equally among the sources. The most important

characteristic of the method is that the buffer space is distributed fairly.

FTDM suffers from a possible low efficiency rate compared to STDM, i.e.,

sources with lower generation rates may not use the whole portion of the

bandwidth assigned to them while sources with higher generation rates have

packets ready to be transmitted. This does not happen when STDM is

employed as the unused portion of the server bandwidth is used if there is

any packet ready to be transmitted.

• The third method is a simple implementation of static partial sharing (SPS)

scheme that has equal portions for the sources with an additional shared

portion that can be shared among all the sources.

• The fourth method, known as dynamic neural sharing (DNS), is the dynamic

assignment of the buffer space relying on the results obtained from the

perceptron network prediction algorithm, i.e., adjusting the buffer space

according to the packet generation pattern of each source. This is a

generalization of the third method, keeping the shared portion size fixed and

adjusting the buffer space size of each source dynamically.

 It is important to mention that for the last three methods, there is a separate

queue for each source, which holds the packets generated by that source. The

difference between the third and the fourth scenario is that, in the third scenario,

the buffer space assigned to each source is fixed and each source is able to send

its generated packets to either its own buffer or the shared buffer if space is

available, while in the fourth scenario, the portion of the buffer space assigned

to the source with a higher packet generation rate is increased in case other

sources are not generating enough packets to use their assigned share of the

buffer space.

 In order to investigate the performance of the method, a triple source system

is used. The traffic patterns of the first, second, and third source consist of an

artificial pattern generated by 30, 40, and 50 individual double intermittency

map packet generators, respectively. The traffic generated by each source is

collected and sent to the corresponding buffer in a round robin manner. It is

especially important to note that there is a slight difference among the number of

packets generated by each source as the result of having a different number of

ON-OFF packet generators per source. In order to evaluate the performance of

different methods, the overall and per-source loss probability of the system for

different choices of buffer size with a fixed service rate are compared. The

buffer space can be shared among all of the sources or may be divided into equal

portions for individual source usage. The server bandwidth may also be used

according to FTDM or STDM scheduling mechanisms.

 Figures 6.10 through 6.13 show the total and single source packet loss

probability vs. packet size diagram for the triple source queuing system in the

presence of FTDM and STDM scheduling algorithms. The single source is the

source with the lowest generation rate to compare the fairness of different

schemes. The simulation results have been obtained from an iterative algorithm

with a total number of ten million iterations per choice of buffer size. Applying

a continuous learning algorithm, the fixed structure neural network has been

able to follow the traffic pattern within the specified error range between 20 and

30 times covering an average of 50 samples per time. Worth mentioning is that

the performance of various methods is very different as the result of applying

different methods for traffic management of a heavily utilized system. It is

clearly observed from the figures that, for both FTDM and STDM using neural

sharing scheme, the total loss rate compared to complete partitioning scheme as

well as per-source loss rate compared to complete sharing scheme are reduced.

The results may be interpreted as a sign that the neural sharing scheme has come

up with a solution between the two extreme cases. Comparing SPS and DNS

results shows the higher efficiency of the latter method. This is a significant

improvement compared to the other three schemes.

1.E+05

1.E+06

1.E+07

1.E+08

0 2 4 6 8 10 12

Normalized Buffer Size

CP

SPS

DNS

Figure 6.10: The Total Packet Loss Probability vs. Buffer Size Diagram for the

Triple Source Queuing System Using CP, SPS, and DNS in Presence of FTDM.

1.E+05

1.E+06

1.E+07

1.E+08

0 2 4 6 8 10 12

Normalized Buffer Size

CP

SPS

DNS

Figure 6.11: The Single Source Packet Loss Probability vs. Buffer Size

Diagram for the Triple Source Queuing System Using CP, SPS, and DNS in

Presence of FTDM.

1.000E+00

1.000E+01

1.000E+02

1.000E+03

1.000E+04

1.000E+05

1.000E+06

1.000E+07

1.000E+08

0 2 4 6 8 10 12

Normalized Buffer Size

CP

SPS

DNS

CS

Figure 6.12: The Total Packet Loss Probability vs. Buffer Size Diagram for the

Triple Source Queuing System Using CP, SPS, DNS, and CS in Presence of

STDM.

1.000E+00

1.000E+01

1.000E+02

1.000E+03

1.000E+04

1.000E+05

1.000E+06

1.000E+07

1.000E+08

0 2 4 6 8 10 12

Normalized Buffer Size

CP

SPS

DNS

CS

Figure 6.13: The Single Source Packet Loss Probability vs. Buffer Size

Diagram for the Triple Source Queuing System Using CP, SPS, DNS, and CS in

Presence of STDM.

6.4.2 Packet Latency Prediction

 The second application introduces a neural based approach for predicting the

queuing delay as the dominant delay factor observed in a finite buffer used as an

interface for transmitting a number of packets generated by a number of sources

in a multiple source system. Hence, it might be considered as a part of packet

scheduling algorithms that is able to estimate packet latency. Packet latency

prediction is addressed by counting on the predictive power of neural networks

directly. Packet latency is defined as the time each packet spends in the queue

before getting transmitted.

 Again, consider the above triple source system sharing the buffer space of

the central buffer following complete sharing scheme in the presence of STDM

scheduling. For the case of packet latency estimation, the system load varies

based on the value of service rate. The case chosen as the objective here is to

determine the queuing delay of the generated packets. Supposing each packet

carries a sequence number indicating the order in which it was sent to the central

buffer, the objective is then to predict the average number of time units a packet

spends in the queue before leaving the buffer. The task is approached by

applying the neural network modeling scheme to predict the total number of

generated packets. Knowing the buffer service rate, average latency can be

calculated directly from the arrival rate of the buffer. The dominant average

latency factor in most of the cases is the queuing latency. This, indeed, is a

problem of predicting the state of the queue. Again the prediction tool is the

fixed structure neural network that is supposed to learn the dynamic of the

arrival pattern of the buffer.

 The real and estimated average latency vs. service time diagram for the triple

source queuing system is shown in Figure 6.14. The typical system consists of

120 sources generating traffic according to an ON-OFF pattern and sending the

generated packets to a central buffer. The buffer size is assumed to be fixed and

large enough to prevent loss. The average latency has been calculated over all of

the time periods in which the neural network is able to follow the arrival pattern

of the central buffer.

 As can be observed from Figure 6.14 the estimation results are quite

acceptable within the three percent error range as long as the averaging period is

long enough in order for the neural network to be able to follow the traffic

pattern a number of times within the specified error bounds and as long as the

buffer service rate does not exceed an existing threshold value. As a matter of

fact, it is observed that the average packet latency drops very sharply with an

order of ten or more choosing a value beyond the threshold value. As the result

of having very small average latencies, the neural network latency estimation

findings are not acceptable for service rate values beyond the threshold value.

The value of the threshold generally depends on the dynamics of the system and

for the triple source system is the normalized value 13. Rememeber that for this

complete sharing case, the modeling scheme relies on the combined dynamics of

all of the sources to achieve the latency estimation as there is only one queue in

the system. It is important also to note that the same qualitative approach may be

used in cases of having separate queues.

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

2 4 6 8 10 12 14

Normalized Service Rate

EAL

MAL

Figure 6.14: Estimated Average Latency (EAL) and Measured Average Latency

(MAL) of the Packets vs. Service Rate Diagram for the Triple Source Queuing

System. CS Buffer Management and STDM Scheduling Have Been Employed.

6.4.3 Experimental Observations

 The following section briefly discusses some of the practical findings in the

implementation of the algorithm, which are the direct conclusion of dealing with

complicated nonlinear dynamics.

 The specific problem can be explained by the chaotic nature of traffic, i.e.,

that traffic patterns with self-similar characteristics have been shown to exhibit

chaotic behavior. Please see Erramilli et al.[3] for a detailed discussion. To

explain the problem, it can be simply said that, although it is possible to reach to

a very small network error at some steps during the learning phase, if the

network error is studied for further samples, it is observed that this error begins

to grow as time proceeds. The reason is summarized in the chaoticness of the

system, i.e., since the nonlinear network wants to model a chaotic system, it

becomes chaotic itself. In this situation, a small error may be considered as a

small difference between two close initial conditions of the desired output and

the network output and as a characteristic of a chaotic system. The error begins

to grow very soon, which is nothing more than high sensitivity to the variations

of initial conditions. As a matter of fact, this can be interpreted as a good sign

for the network that has been trained to model a chaotic map and has become

chaotic itself. One way to relieve the effect of having an error component that

grows over time is to repeat periodically the learning phase followed by the

recalling phase; otherwise the results exceed the acceptable error range. In

practice, after the first learning phase with a several million examples, the neural

network can predict less than 100 samples before requiring repetition of the

learning phase as in the previous recalling phase and so on to bring the results

within the acceptable error range.

 Based on the same line of reasoning, all of the convergence results are

affected strongly by the choice of initial conditions. It can be said that the initial

values of the parameters play a crucial role in the convergence of the algorithm.

It is even possible to have a divergent algorithm, if the initial values of the

parameters are chosen unsuitably. As a practical result, it is better to set the

initial values of the parameters on small numbers, e.g., jiwij ,01.0 ∀= .

 Finally, it has to be mentioned that the choice of initial conditions has

another important impact on the performance of the application. The issue can

be addressed by saying that in case of loss prevention application, it is very

important for the algorithm to be able to predict the traffic pattern generated by

all the sources. The very wild behavior of a self-similar traffic pattern generally

leads to an out-of-sync prediction power for different initial conditions, i.e., the

acceptable error bounds are not reached after having the same number of

iterations for all the sources. The only way of dealing with this problem is to

choose the initial conditions suitably and find the time intervals by which all of

the traffic patterns can be predicted by the neural network.

6.5 SUMMARY

This chapter was dedicated to the application of neural networks in

modeling self-similar traffic patterns of computer communication networks.

Neural networks rely on the information available in a number of samples in

order to capture complex dynamics of packet traffic phenomena. This feature

makes them practical for the task of modeling, as they do not need to deal with

analytical complexities involved with stochastic and chaotic systems' approach.

Neural networks are used to predict the behavior of the ON-OFF source

models based on some threshold levels. This, in particular, can be related to the

prior research work in which neural networks are used to predict the complex

behavior of a class of discrete-time chaotic maps. Artificial load generation is,

hence, an elegant application of neural networks in this area. The approach

allows the generation of complex traffic patterns using relatively simple models

that can be incorporated into traffic streams. There is a scope to investigate

efficient software implementation. The statistical features of generated traffic

can be compared to those of real traffic in order to show that there are some

match points for the generated traffic.

Neural networks are additionally used for modeling of the single and

aggregated traffic patterns. A traffic pattern may either correspond to a single

source or a number of sources. Multiplexing and splitting of traffic streams

where each source is modeled by a neural network is the method used for

dynamic buffer management and packet loss reduction. This approach can, in

fact, introduce an interesting application in ATM networks supporting a number

of virtual channels. Neural networks are also used to predict the latency time for

the packets generated by a traffic source. The latter includes the time each

packet spends in the queue before transmission.

REFERENCES

1. Yousefizadeh, H., Performance modeling of a class of queuing systems

with self-similar characteristics, Ph.D. Dissertation, University of

Southern California, 1997.

2 . Leland, W.E. and Wilson J., Statistical analysis and stochastic

modeling of self-similar data traffic, ITC, Vol. 14, 319, 1994.

3. Erramilli, A., Gordon, J., and Willinger, W., Applications of fractals in

engineering for realistic traffic processes, ITC, Vol. 14, 35, 1994.

4 . Leland W.E. and Wilson J., On the self-similar nature of Ethernet

traffic, IEEE/ACM Trans. on Networking, Vol. 2, No. 1, 1, Feb. 1994.

5. Erramilli, A. and Singh, R.P., An application of deterministic chaotic

maps to model packet traffic, Bellcore Technical Memorandum, 1992.

6 . Ramaswami, V., Traffic performance modeling for packet

communication: whence, where, and whither, Proc. of Australian

Teletraffic Seminar, Nov. 1988.

7. Yousefizadeh, H. and Jonckheere, E.A., Neural network modeling of

discrete-time chaotic maps, Submitted to: IEEE Trans. On Circuit and

Syst., Part II.

8 . Yousefizadeh, H., Shafiee, M., and Zilouchian, A., Chaotic arrays

modeling with neural networks, Proc. of the Iranian Conf. of Electrical

Eng., Vol. 4, 667, May 1993.

9. Hellstern, K.M. and Wirth, P., Traffic models for ISDN data users:

office automation application, Proc. ITC-13, Denmark, 1991.

10. Erramilli, A., Gosby, D., and Willinger, W., Engineering for realistic

traffic: a fractal analysis of burstiness, Proc. of ITC Special Congress,

India, 1993.

11. Fowler, H.J. and Leland, W.E., Local area network traffic

characteristics, with implications for broadband network congestion

management, IEEE JSAC, Vol. 9, No. 7, Sep. 1991.

12. Sriram, K. and Whitt, W., Characterizing superposition arrival

processes in packet multiplexers for voice and data, IEEE JSAC, Vol.

SAC-4, NO. 6, Sep. 1986.

13. Heffes, H. and Lucantoni, D.M., A Markov modulated characterization

of packetized voice and data traffic and related statistical multiplexer

performance, IEEE JSAC, Vol. 9, No. 7, Sep. 1991.

14. Duffy, D.E. and Willinger, W., Statistical analysis of CCSN/SS7 traffic

data from working CCS subnetworks, IEEE JSAC, 1994.

15. Bolotin, V.A., Modeling call holding time distributions for CCS

network design and performance qnalysis, Preprint 1993.

16. Smith, D.E., On the holding times of data calls, Bellcore Technical

Memorandum, 1986.

17. Mandelbort, B., The fractal geometry of nature, Freeman, NY, 1983.

18. Erramilli, A., Singh, R.P., and Pruthi, P., Chaotic maps as models of

packet traffic, ITC Vol. 14, 329, 1994.

19. Beran, J., et al., Variable bit rate video traffic and long range

dependence, IEEE/ACM Trans. on Networking, Vol. 2, No. 3, Apr.

1994.

20. Pitts, J.M., et al., An accelerated simulation technique for modeling

burst scale queuing behavior in ATM, ITC Vol. 14, 777, 1994.

21. Self-similarity in high speed packet traffic: analysis and modeling of

Ethernet measurements, Statistical Science, 1994.

22. Mandelbort, B. and Taqqu, M.S., Robust R/S analysis of long run serial

correlation, Proc. 42nd Edition ISI, 69, 1979.

23. Van Ooyen, A. and Neihuis, B., Improving the convergence of back

propagation algorithm, Neural Networks, Vol.5, No.3, 1992.

24. Guo, H. and Gelfland, S., Analysis of gradient descent learning

algorithms for multilayer feedforward neural networks, IEEE Trans. on

Circuit & Syst., Vol. 38, No.8, Aug. 1991.

7
APPLICATION OF NEURAL

NETWORKS IN OIL

REFINERIES

Ali Zilouchian and Khalid Bawazir

7.1 INTRODUCTION

In response to demands for increasing oil production levels and more stringent

produ ct quali ty speci fications, the inten sity and compl exity of proce ss

operations at oil refineries have been exponentially increasing during the last

three decad es. To allev iate the opera ting requi rements assoc iated with these

rising demands, plant designers and engineers are increasingly relying upon

automatic control systems. It is well known that model based control systems

are relatively effective for making local process changes within a specific range

of operation [1]. However, the existence of highly nonlinear relationships

betwe en the proce ss varia bles (inpu ts) and the produ ct strea m prope rties

(outputs) have bogged down all efforts to come up with reliable mathematical

models for large scale crude fractionation sections of an oil refinery. In addition,

the old inferred property predictors are neither sufficiently accurate nor reliable for

utilization of advanced control applications [2]. On the other hand, the

implementation of intelligent control technology based on soft computing

methodologies such as neural network (NN), fuzzy logic (FL), and genetic

algorithms (GA) can remarkably enhance the regulatory and advanced control

capabilities of various industrial processes such as oil refineries [3]-[11].

Presently, in the majority of oil refineries (such as Ras Tanura located in

Saudi Arabi a), produ ct sampl es are colle cted once or twice a day accor ding to

the type of analysis to be performed and supplied to the laboratory for analysis.

If the laboratory results do not satisfy the specifications within an acceptable

toler ance, the produ ct has to be repro cessed to meet the requi red speci fication

[2]. This procedure is costly in terms of time and dollars. In the first phase, an

off-line specification product should be first routed to a holding facility. In the

secon d phase , the proce ss shoul d be tuned befor e any furth er processin g is

carried out. In order to resolve this problem in a timely fashion, a continuous

on-li ne metho d for predi cting produ ct strea m prope rties and consi stency with

and pertinence to column operation of the oil refinery are needed.

In general, on-line analyzers can be strategically placed along the process

vessels to supply the required product quality information to multivariable

controllers for fine tuning of the process. However, on-line analyzers are very

costly and maintenance intensive. To minimize the cost and free maintenance

resources, alternative methods should be considered.

In this chapter, the utilization of artificial neural network (ANN) technology

for the inferential analysis of a crude fractionation section of the Ras Tanura Oil

Refinery at Dhahran is presented. The implementation of several neural network

models using back propagation algorithm based on collection of real-time data

for a three-months operation, of the plant is presented. The proposed neural

network architectures can accurately predict various properties associated with

crude oil production. The simulation results for modeling of several products

such as naphtha 95% cut point and naphtha Reid vapor pressure are analyzed.

The resul ts of the propo sed work can ultim ately enhance the on-li ne predi ction

of crude oil product quality parameters for the crude fractionation processes of

various oil refineries.

The chapter is organized as follows. Section 7.2 covers various steps

pertaining to collection of plant data that are used during the training and

verification phases of the neural network program. A systematic procedure to

construct a NN model is also presented in this section. In section 7.3, selection

of appro priate data sets as well as data analy sis proce dures are discu ssed.

Section 7.4 is devoted to various steps in the implementation phase of neural

network models in the crude oil fractionation process. In sections 7.5 and 7.6,

the training procedures as well as the results of modeling for naphtha 95% Cut-

point and napht ha Reid vapor press ure produ cts are analy zed. It is shown that

the propo sed NN model s predi ct produ cts quali ties well withi n the speci fied

error goals in both training and verification phases. Various implementation

issue s such as model build ing, model data analy sis, effec ts of neuro n

distribution on training, and model robustness are also discussed in this section.

Finally, section 7.6 summarizes the contributions of this chapter.

7.2 BUILDING THE ARTIFICIAL NEURAL NETWORK

The mathematical algorithms developed to model neurons can be adapted for

many useful predictions in processing plants. The complexity of the pattern to

be recognized dictates the complexity of the required algorithm. Some very

useful predictions can be constructed in processing plants using algorithms

whose coefficients are discovered through training. Figure 7.1 is a graphical

representation of the artificial neural network structure.
A neural network predictor is built by discovering the weights as shown in

Figure 7.1. N1K1 through N1Kn are the corresponding weights of the first

neuron. The output Qp is the predicted inferred process stream property (%H2S,

95% cut-point, etc.)The coefficients of the model are discovered by training a
neural network program using back propagation algorithms [12, 13, 17]. The
inputs of NN consist of plant data such as temperature, flow rate and pressure
where, the respective product quality is considered as desired output of the
program model. The neural network program will be trained by adjusting the
weigh t coeff icients until the diffe rence betwe en the predi cted produ ct quali ty
and the measured product quality is within acceptable limits. When the

coefficients have been determined, they should be tested by comparing the
predicted quality to the measured quality for data sets which were not used in
finding the coefficients. The process of finding the ANN coefficients is called
training the network [13], [14].

Figure 7.1: Graphical representation of ANN structure.

7.2.1 Range of Input Data

Neural networks will not be an accurate predictor if the operating
inputs/output data are outside their training data range. Therefore, the training
data set should possess sufficient operational range including the maximum and
minimum values for both input/output variables.

K1

ΣΣΣΣ

PV1

Predicted
Quality

X
N2K2

X
N2Kn-1

PVn

ΣΣΣΣ

Signal
Summer

X
N1K1

X
N
1
K
2

X
N1Kn-1

X
N1Kn

....

..........

INPUT LAYER "HIDDEN" LAYER OUTPUT LAYER

Output Limiting
Function

"HIDDEN" NEURON

#2

"HIDDEN" NEURON

#1

QpK2

SCALE
(0 to 1.0)

(1+e-Σ)

1

X
N2Kn

X
N2K1

PV2 SCALE
(0 to 1.0)

SCALE
(0 to 1.0)

PV
n-1

SCALE
(0 to 1.0)

Output Limiting
Function

(1+e-Σ)

1

Output Limiting
Function

ΣΣΣΣ

Signal
Summer

....

7.2.2 Size of the Training Data Set

A minimum of two valid data sets is required for each coefficient in the

training algorithm. A large number of valid data sets provide much better

accuracy in the prediction phase. However, some training data sets are not valid

either due to the dynamic nature of a process or as the result of inaccuracies in

data acquisition techniques. A large data set will average out various

inaccuracies within a system.

7.2.3 Acquiring the Training Data Set

The least intrusive technique for obtaining the training data set is to take data

during the course of normal operations. This procedure probably will not

satisfy the required variations in some process variables. However, plant tests

can be accomplished by varying the process variables within the region of

interest to complete the gaps within the required data. In general, it is not

necessary to have field analyzers to develop a neural network predictor for a

stream quality. Samples can be taken and sent to the laboratory for analysis at

the same time that data (flow, temperature, and pressure) are taken from field

transmitters.

7.2.4 Validity of the Training Data Set

In many industrial applications accuracy is not as important as repeatability.

For example, a network trained for a pressure transmitter with a 15 pound per

square inch (PSI), zero shift will predict accurately - unless the transmitter is re-

calibrated; however, the lack of repeatability exhibited in data taken from hand-

written shift logs has proven too unrepeatable to use as a training set. The

training data set can be taken from the Distributed Control System (DCS) or the

supervisory control and data acquisition computer.

Many of the processes have significant time constants and dead times [8].

Unless it is desired to include these time constants and dead times in the

prediction, the process should have been operating at steady-state for a period

equal to at least two time constants before including the operating data in the

data set. Flow and pressure inputs should be averaged to eliminate the problem

of signal noise.

7.2.5 Selecting Process Variables

Initial process variable selection is not critical; almost anything upstream of

the measurement point could be useful. As many process variables should be

included as can be handled. The training process will automatically determine

which are important and which can be deleted from the calculation.
For example, the process variables shown in Figure 7.2 are selected to

predict Reid vapor pressure (RVP) in the bottom of a stripper column. Their

relative importance, determined by neural network training, is shown in Table 1.
If those process variables chosen initially do not give the required accuracy of
prediction, less important variables should be dropped and other parameters
added.

Figure 7.2: Process Variable Selection in the Stripper Column.

ΣΣΣΣ

Signal

Summer

D-300

REFLUXDRUM

21

2

1
3

LC-

143

E-302

AI

RVP
NAPTHA

STORAGE

1

40

2

FC-

TI-

TI-

E-305

1

E-300A/B

15-G-300

1

E-301

ΣΣΣΣ

Signal

Summer

Weighting

Coefficients

Output

Limiting

Function K1

K2

ΣΣΣΣ

PC-

TC-

4

TC

2

20FEED

3

FC-

OutputLimiting
Function

FC-

N2K8
*

N2K7
*

N2K6
*

N2K5
*

N2K4
*

N2K3
*

N2K2
*

N2K1
*

N1K8
*

N1K7
*

N1K6
*

N1K5
*

N1K4
*

N1K3
*

N1K2
*

N1K1
*

*

*

Input Layer Hidden Layer Output Layer

 Table 7.1: Relative Importance of Process Variables Determined by NN

FEED FLOW RATE F-1 4 %

REFLUX FLOW RATE F-2 8 %

OVERHEAD PRESSURE P-1 6 %

FEED TEMPERATURE T-1 13 %

REBOILER RETURN TEMPERATURE T-2 27 %

TRAY 2 TEMPERATURE T-3 36 %

COLUMN TOP TEMPERATURE T-4 5 %

DISTILLATE FLOW RATE F-3 2 %

7.3 DATA ANALYSIS

The first step in data analysis is to ensure that all column parameters are

collected properly. Data unavailable due to transmitter downtime or calibration

at the time of data collection should be identified. Since artificial neural

networks require that all model parameters be available all the time, unavailable

data for any of the parameters force the elimination of the complete data set that

is collected at that time. This includes lab data, which is not collected at the

scheduled sampling time. The definition of a complete data set includes all

process parameters plus one lab value. Lab analyzed properties (95% cut-point,

sulfur content, freeze point, etc.) are analyzed individually to generate neural

network models.

Once a compl ete set of param eters is colle cted, the neura l netwo rk model

can then be used to do a complete data analysis. the neural network model

allows the user to specify which data set will be used for model building

(teaching phase), and which for model verification (testing phase). A statistical

method can be used to eliminate a suspected bad lab data set. The main

assumption of the statistical method is that there has to be a correlation between

model inputs (process parameters) and model output (lab value).

7.3.1 Elimination of Bad Lab Values

Bad lab values can be identified as follows: The neural network model is

given three data sets for model verification (out of 180 data sets), and the rest of

the data sets are used for model building. All data sets are switched between

model verification mode to model building mode until all data are tested. At any

point during the above process, if any of the three model verification points fall

outside the lab repeatability, the degree of deviation from repeatability is

recorded. At the end of this analysis, all deviant points are completely removed

from model building. Thus, it can be established that all remaining data sets

conform to the general trend of the correlation.

As a final step, each of the deviant points is again individually added to the

model and tested as a verification point by itself. If this point still falls outside

lab repeatability, then it is permanently eliminated. Otherwise, the point is

returned to the model.

The elimination of data sets during this step does not necessarily reflect only

bad lab value. It is possible that the lab analysis is done correctly; however,

either the snapshot of the process values taken do not coincide with the time of

sampling by operators, or the plant is not operating at steady state conditions at

the time of sampling.

7.3.2 Process Parameters and Their Effect on NN Prediction

All identified process parameters do not necessarily have an effect on each of

the lab value s (prop erties). The final step of data analy sis is to ident ify the

most important process parameters that have a significant effect on the inferred

analysis and eliminate those parameters which have little or no effect. Two

methods can be used to perform the elimination process. The first is using

engineering judgment to realize which process parameters can have little or no

effect on the model. An example of this is to remove all naphtha stabilizer

parameters when the network is being used to model riesel sulfur.

The second method is to utilize the neural network model itself. The neural

network program can generate an analysis of the final weights given to each of

the process parameters to fit the data. This method of elimination, however, is

not as straightforward as one might expect. The neural network model relies

more on process parameters with a large degree of variance. It is possible that

the most important parameter that affects a particular lab data set keeps the same

value in all the gener ated data sets. The neura l netwo rk progr am will ignor e

such a parameter. Thus elimination should not include variables which, from an

engineering point of view, should have a contribution on the inferred analysis.

For example, a fuel gas density analyzer in the plant under investigation

gives density measurements (used for heating value) about five minutes after

they would be useful to improve furnace (and the affected crude column)

stability. Data for the fuel gas supply pressure, burner gas pressure (P-236),

burner gas pressure (P-120), heater coil outlet temperature (T-178), and gas

pressure controller output to valve (PC-120 VO) are used as the inputs for a

neural network training set − with the output of the density analyzer (A-156) as

the stream quality to be predicted. The block diagram of the plant is shown in

Figure 7.3. The data sets are used to train a neural network predictor with five

hidden sigmoidal neurons. The training result can be found in reference [3].

However, the output of NN model indicates that the algorithm does not predict

the stream quality (gas density) with enough accuracy to be useful. It was

concluded that an input which would prevent the predicted quality from varying

when the measured quality is constant is not in the training set.

If the missing input (fuel gas flow rate) is added to the data set, the algorithm

predi cts gas densi ty by using the diffe rence in defer ential press ure resul ting

from flow through a fixed and a variable orifice − and becomes useful for

eliminating upsets introduced by rapid fuel gas density (and heat of combustion)

fluctuations. The simulation results indeed have shown an accurate model

prediction after adding the fuel gas flow rate to the data set [3]. Note that it is

necessary to align data from different inputs to get a data set whose elements

occur simultaneously.

Figure 7.3: Block Diagram of Fuel Gas Supply System.

 (F.G. K.O.= Fuel Gas Knock Out)

PC

TC

F-100A

CRUDE COLUMN

FEED HEATER

178

SP

FC
132A

FY
132A

BIAS

HC

FI
1XX

120

FI

146

169

F.G.

K.ODrum

D-1

AT
156

VENT

7.4 IMPLEMENTATION PROCEDURE

The major steps that are involved in implementing the ANN predictor are shown

in Figure 7.4.

Figure 7.4: Major Steps for Implementing of ANN in the Crude Oil

Fractionation Process.

7.4.1 Identifying the Application

The first step for construction of an NN model is the appropriate

identification of a potential application. For example, suppose Ethane is burned

as fuel gas and propane with 2% ethane can be sold for $18/barrel in the market.

The operating objectives of a de-ethanizer unit will be to minimize the propane

St ar t

Run Training Program

Collect Plant Dat a

Model

Resu lt s

On-Line
App licat ion

Plant Test

Bet t er Dat a

Exce l

Spreadsheet

On-Line DCS

Prog ram

Not Enough Dat aNot
Enough
Var iat ion Model OK

YesNo

?

Ident ify t he Applicat ion

Ident ify Input s t o Model

Def ine Range of Variables

in the overhead product and maintain slightly less than 2% Ethane in the

column bottoms.

On the other hand, if ethane, with 1.5% propane sells for $16/barrel and

propane is used as fuel gas, the operating objectives of the de-ethanizer will be

different from the above case: to minimize ethane in the column bottoms and

keep the propane in the overhead as near 1.5% as possible, without exceeding

the sales limit. To achieve either set of the above objectives, a continuous

measurement of propane in the column overhead and ethane in the bottoms is

necessary.

7.4.2 Model Inputs Identification

The neural network algorithm will not match a random number set. For

prediction model to work, there must be some relationships between

input/output variables [9], [11]. Training will quantify such a relationship. If a

neural network will not train with a good data set, a significant variable may not

have been included in the data set. If a rigorous mathematical equation can be

written between the inputs and the output, a neural network is unnecessary.

As an example, a double product (overhead and bottoms) distillation

column as shown in Figure 7.5 has two variables: the heat balance and the

material balance, which determine its separation capability, and two product

quality variables: heavy key in the overhead (propane in the de-ethanizer

overhead product) and the light key in the bottoms (ethane in the de-ethanizer

bottoms). Those process measurements, flows, pressures, and temperatures,

which could be used to calculate the heat and material balances, should be

chosen as inputs to the neural network. To predict propane in the de-ethanizer

overhead we start with the input variables as shown in Table 7.2.

Table 7.2: Process Variables for Propane Prediction

(MBD = Million barrels per day; MPPH = Thousand pounds per hour)

Process Variable Tag Range

Tray 27 temperature TI-6 100-300 °F

Overhead Temperature TI-5 100-300 °F

Reflux Temperature TI-7 100-300 °F

Feed Temperature TI-4 0-200 °F

Reflux Rate FI-2 0-20MBD

Distillate Rate FI-3 0-10MBD

Feed Rate FI-6 0-80MBD

Reboiler Steam FI-4 0-30MPPH

Bottoms Product FI-5 0-80MBD

A good starting point for ethane prediction in the bottoms would use the

process variables as shown in Table 7.3.

Table 7.3: Process Variables for Ethane Prediction

(MBD= Million barrels per day, MPPH= Thousands pound per hour)

Process Variable Tag Range

Tray 1 temperature TI-1 100-400 °F

Bottoms Temperature TI-3 100-400 °F

Tray 18 Temperature TI-8 100-300 °F

Feed Temperature TI-4 0-200 °F

Re-boiler Return Temperature TI-2 100-400 °F

Distillate Rate FI-3 0-10MBD

Feed Rate FI-6 0-80MBD

Re-boiler Steam FI-4 0-30MPPH

Bottoms Product FI-5 0-80MBD

If the plant data include significant variation in each of these process

variables and the neural network coefficients for a process variable are very

small, that process variable can be dropped from the model. If the network will

not train, and other conditions are met, other process variables based on

engineering experience should be included in the model.

7.4.3 Range of Process Variables

The range of the process variables in the training data set should include the

entire operating range. The data set should include data for each process variable,

evenly distributed throughout the range for which prediction is desired.

7.5 PREDICTOR MODEL TRAINING

For the naphtha 95% cut point and naphtha Reid vapor pressure stream

properties, the plant data, including the stream quality desired to predict, are

collected in a Microsoft Excel™ spreadsheet to facilitate data manipulation. The

data are then scaled to a fraction of the transmitter range so that they are

confined to a sub-interval of [0…1]. A practical region for the data is chosen to

be [0.1…0.9]. In this case each input or output parameter p is normalized as pn
before being applied to the neural network according to:

pn = [(0.9 - 0.1) / (pmax - pmin)] * (p - pmin) + 0.1

where pmax and pmin are the maximum and minimum values, respectively, of

data parameter p. The spreadsheet file is then converted to text file and loaded

into the MATLAB™ neural network toolbox [14]. The MATLAB software

program uses a back propagation training algorithm to adjust the weights of the

network in order to minimize the sum-squared error of the network. This is done

by continually changing the values of the network weights in the direction of

steepest descent with respect to the error [11]-[17]. The change in each weight is

proportional to that element’s effect on the sum-squared error of the network.

Figure 7.5: De-ethanizer Column Process Flow Diagram.

29

28

27

26

25

1

2

PC

1

FI

1

FC

2

FC

3

LC

1

AC

1

TI

2

TI

3

TI

1

PI

3 FC

4

60# STEAM

AC

2

FC

5

LC

2

FC

6

TI

4

TI

5

TI

6

TI

7

TI

8

LC

3

Initially, one hidden layer with five neurons is built (additional neurons

and/or layers can be added if necessary) and all weights are randomly initialized

to small numbers. Next, training parameters are defined. These parameters

include the following: maximum number of training iterations and acceptable

error between desired and predicted values.

The neura l netwo rk progr am using back propa gation train ing algor ithm

starts training and through this process it will look for the specified error on a

multidimensional surface. By selecting the minimum error to be a very small

number (10
-3

 for example) the program will end up in one of the following

states:

1. Minimum error goal is matched before exceeding the limit on

maximum allowed iterations. In this case, the objective of the training

is successfully met.

2. Program cannot achieve this minimum error but, in the process, it

locates the global minimum (optimum solution). In this case, the

number of hidden neurons and/or the number of hidden layers can be

increased to achieve the desired minimum error.

3. Train ing diver ges. The error incre ases as the train ing proce ss

continues. (Training data sets are not valid.) In this case it is necessary

to construct valid data sets.

7.6 SIMULATION RESULTS AND DISCUSSIONS

As discussed earlier, the objective of the proposed work is to eliminate the

dependency on laboratory and/or on-line sample analyzers for sampling of

product qualities. The goal can be achieved by the construction of neural

networks to predict those particular product qualities to meet the more stringent

market specifications. In doing so, the neural network model, from a practical

viewpoint, should adhere to two constraints: The optimization of process control

and the reduction on the cost of maintenance and operations, which would

ultimately result in an increase in profit [3].

First, the neural network model accuracy of prediction should be consistent

and within the defined acceptable tolerance of the desired product quality it is

set to predict. It is highly crucial to have a neural network that provides accurate

predictions. It is a plant requirement to have the neural network predicted output

fed as one of the inputs to a multivariable controller. This will provide the

controller with the knowledge of the final product quality, and how close to or

far from the desired set point it is. With the aid of this knowledge, the controller

will act promptly to keep the process in its targeted path, thus eliminating any

off-specs product from taking place.

Secondly, it is a requirement to have the neural network running on-line

with fast execution time during both training and prediction phases. The

multivariable controller is gathering information about the process and at the

same time it is looking at the neural network to provide its prediction. The

controller will perform its tight control actions as long as the neural network

prediction is made available to the controller at the right moment, not a couple

of minutes late. Also, operational objectives often change to meet market needs

and in doing so the desired process set points have to change as well to provide

the desired product specifications. Retraining the neural network on the new sets

of process variables and desired product properties is inevitable. The faster the

neural network program predicts after retraining, the faster it provides its output

to the controller [3], [9].

7.6.1 Naphtha 95% Cut Point

Modeling of the naphtha 95% cut point property was carried out using a

back propagation neural network algorithm. Various configurations, in terms of

the number of hidden layers and the number of hidden neurons, have been

tested. For the application presented here, two-layer networks consisting of a

single hidden layer and an output layer have proved to be adequate. Although a

three-layer network is theoretically capable of modeling more general and

arbitrary functions than a two-layer network [17], the naphtha 95% cut point

data used in training and verification modes were sufficiently well behaved that

three-layer networks did not perform better than the ones consisting of two

layers.

To demonstrate the modeling capability of a back propagation network, 85

data sets were analy zed. Each data set consi sted of 33 proce ss varia bles as

inputs to the model and one product quality (naphtha 95% cut point) as an

output. A total of 70 data sets were used in the training phase and 15 data sets

were used in the verification phase. Table 7.4 summarizes the simulation results.

For the first case, a single hidden layer consisting of five neurons was

utilized. The model could not achieve the desired error goal of 0.01 after

performing 10,000 iterations, which was the maximum allowed number of

iterations. A maximum error of 7.84°F at training phase was obtained. . In the

verification phase, a maximum error of 11.59°F. was detected. Figures 7.6 and

7.7 shows the results of the training and verification phases, respectively.

For further investigation, a first-momentum term was added to the back

propagation algorithm. However, the model still could not achieve the desired

error goal after 10,000 iterations as shown on the table. Finally, with the same

model as above, an adaptive learning rate was added, and the neural network

model achieved the desired sum squared error goal of 0.01 in 3180 iterations.

Next, the number of hidden neurons was increased. Table 7.5 also shows the

training and verification results using eight neurons in the hidden layer. The

model was able to achieve an acceptable error in the training phase of 1.35°F but

failed to achieve comparable results in the verification phase where the

maximum absolute error was 6.82°F. Further increase in the number of hidden

neurons only improved the results in the training phase. The verification phase

continued to show error values too significant to be accepted for good prediction

of the Naphtha 95% cut point property.

The next step in the simulation was to increase the number of hidden layers.

Two hidden layers were selected and the number of neurons in each layer was

varied. Figures 7.8 and 7.9 show the training and verification results using eight

neurons in the first hidden layer and four neurons in the second hidden layer.

The result shows slight improvement in the verification phase but more accurate

prediction is still required. It can be noticed that in the training phase the models

performed well, however, in the verification phase all the tested models could

not predict with enough accuracy. It was suspected that the neural network

models were memorizing the relationship between the inputs and the output

since they were trying to adhere to a very small error goal in the training phase.

Table 7.4: Initial Simulation Results for Naphtha 95% Cut Point

Training Phase Verification Phase
 Hidden
 Neurons Error goal Iterations Final SSE Max. Error

°F
Final SSE Max.

Error
°F

5 BP 0.01 10000 0.045 7.84 0.45 11.59

5M 0.01 10000 0.031 1.57 0.22 7.92

5 0.01 3180 0.01 2.17 0.28 5.49

8 0.01 4563 0.01 1.35 0.25 3.29

10 0.01 2088 0.01 1.83 0.27 7.95

8-4 0.01 4302 0.01 1.33 0.14 4.81

It is important to prevent the neural network model from memorizing the

input/output relationship. A neural network with enough hidden neurons given

enough iterations and a very small error goal will actually memorize a given

relationship between model inputs and outputs. In other words, a network

memorizes relationships between outputs and inputs when the model building

points are allowed to conform to a degree much less than lab repeatability. It

means that an acceptable sum squared error goal in the training phase should

gener ate a degre e of accur acy very close to lab repea tability. A typic al value

used for lab repeatability for the naphtha 95% cut point is 3.6°F. If one insists

on achieving a degree of accuracy greater than lab repeatability, the network

memorizes the relationship during the training process; this is known as

overfitting. When overfitting occurs, each data point during the training is fit

perfectly but the network is not able to predict with the same accuracy during

the verification phase. A two-layer network with 12 neurons in the hidden layer

was trained with an error goal of 0.05 (Table 7.5) to yield a maximum error of

1.7 °F in the training phase. The maximum error in the verification phase was

5.79°F. The network could not generalize. It memorized the relation between

inputs and outputs in the training phase and did not follow the general trend of

the relation between inputs and targets.

Table 7.5: Simulation Results for Naphtha 95% Cut Point

Training Phase Verification Phase

Hidden
Neurons

Error goal Iterations Final SSE Max. Error
°F

Final SSE Max. Error
°F

5 0.1 374 0.1 3.21 0.091 4.17

0.3 196 0.3 6.61 0.432 13.76

8 0.1 238 0.1 2.87 0.097 3.29

0.05 681 0.05 1.8 0.111 3.99

0.01 5686 0.01 1.37 0.161 4.7

12 0.1 385 0.1 3.18 0.117 4.87

0.05 1237 0.05 1.7 0.145 5.79

5 - 2 0.1 269 0.1 3.03 0.098 5

0.2 211 0.2 3.81 0.127 5.45

Table 7.5 shows a summary of the simulation results. The best model

architecture (in terms of better prediction in both training and verification

modes) consists of eight neurons in one hidden layer. Both hidden and output

layers use sigmoidal activation functions as the nonlinear element for their

neurons. The model is trained to achieve a sum squared error goal of 0.1. The

sum squared error goal in the verification mode is 0.097.

In this application it is important that the neural network output is equal to or

less than the acceptable error. As mentioned earlier, the acceptable error value is

based on lab repeatability. For the naphtha 95% cut point, this value is 3.6°F.

Further data analysis is performed to look at the absolute error in each data set

in both the training and verification modes. The maximum absolute error in the

training data sets is 2.87°F, whereas in the verification mode the maximum

absolute error is 3.29°F.

Figure 7.6: Linf Error Norm in the Training Phase.

(Hidden Layer Neurons: 5, Error Goal=0.01, Max. Error=7.84°F)

Figure 7.7: Linf Error Norm in the Verification Phase.

(Hidden Layer Neurons = 5, Error Goal = 0. 01, Max. Error = 7.84°F)

Figure 7.8: Linf Error Norm in the Training Phase.

(Hidden Layers Neurons = 8,4; Error Goal = 0.01, Max. Error =1.33°F)

Figure 7.9: Linf Error Norm in Verification Phase.

(Hidden Layers Neurons = 8,4; Error Goal = 0.01, Max. Error = 4.81°F)

7.6.2 Naphtha Reid Vapor Pressure

To demonstrate the modeling capability of a back propagation algorithm for

RVP prediction parameters, 83 data sets were analyzed. Each data set consisted

of seven process variables (Table 7.6) as inputs to the model and one product

quality (Reid vapor pressure) as an output. A total of fifty five data sets were

used in the training phase and 28 data sets are used in the verification phase.

Table 7.6: Inputs to the RVP Neural Network Model

Process Variables
FEED FLOW RATE

REFLUX FLOW RATE

OVERHEAD PRESSURE

FEED TEMPERATURE

REBOILER RETURN TEMP.

TRAY 2 TEMPERATURE

COLUMN TOP TEMPERATURE

The best model architecture (in terms of better prediction in both training

and verification modes) consisted of five neurons in one hidden layer. Both

hidden and output layers use sigmoidal activation functions as the nonlinear

element for their neurons. The model is trained to achieve a sum squared error

goal of 0.1. The sum squared error goal in the verification mode is 0.097. The

maximum absolute error in the training data sets is 0.21 psi, whereas in the

verification mode the maximum absolute error is 0.48 psi. The detail work can

be found in reference [3].

7.7 CONCLUSIONS

In this chapter, various neural network architectures are proposed for the

prediction of product quality of an oil refinery. The important parameters

involved in acquiring valid data sets are considered. Close attention is paid to

the proper selection of the input data. Finally, two product quality properties,

namely, naphtha 95% cut point and naphtha Reid vapor pressure, were

successfully modeled using neural network.

After the generation of the neural network models, the central processing

computer system of an oil refinery may use them on-line. Using the NN model

on-line is straightforward except for one point of caution. The network was

train ed withi n a speci fic range for the differe nt proce ss varia bles and the lab

data. It is important to realize that while neural network models are excellent

interpolators, they can be bad extrapolators due to the non-linearity of the

corre lation gener ated. It is, there fore, impor tant to check proces s param eters

used in the prediction and to make sure that these parameters fall within the

range that was used to create the model. If parameters fall out of range, then the

predicted lab value is questionable. Lab data collected while process parameters

are outside the range can be used to further expand the window of operation of

the neural network model. As the variability in plant operation increases, and

the netwo rk windo w expan ds, the gener ation model s can becom e more and

more reliable.

REFERENCES

1. Antsaklis, P. J. and Passino, K.M. (eds.), An Introduction to Intelligent

and Autonomous Control, Kluwer Academic Publishers, Norwell, MA,

1993.

2. Ras Tanura Refinary Facilities Manual, Ras Tanura Refinary: Refining

Division, Section 3, 2nd ed., 1995.

3. Bawazeer, K. H., Prediction of Crude Oil Product Quality Parameters

Using Neural Networks, MS Thesis, Florida Atlantic University, Boca

Raton, FL, August, 1996.

4. Bawazeer, K.H. and Zilouchian, A., Prediction of Crude Oil Production

Quality Parameters Using Neural Networks, Proc. of 1997 IEEE Int. Conf.

on Neural Networks., New Orleans, 1997.

5. Borman, S., Neural Network Applications in Chemistry Begin to Appear,

Chemical Eng. News, Vol. 67, No. 17, 24-29, 1989.

6. Parlos, A. G., Chong, K.T., and Atiya, A.F., Application of Recurrent

Neural Multilayer Perceptron in Modeling Complex Process Dynamic,

IEEE Trans. on Neural Networks, Vol. 5, No. 2, March, 1994.

7. Nekovie, R., and Sun,Y., Back Propagation Network and its Configuration

for Blood Vessel Detection in Angiograms, IEEE Trans. on Neural

Networks, Vol. 6, No. 1, 1995.

8. Berkan, R.C., Upadhyaya, B., Tsoukalas, L., Kisner, R., and Bywater, R.

Advanced Automation Concepts for Large-Scaled Systems, IEEE Control

Syst. Mag., Vol. 11, No. 6, 4−13, Oct., 1991.

9. Draeger, A., Engell, S., and Ranke, H., Model Predictive Control Using

Neural Networks, IEEE Control Mag.. Vol. 15, No.5, 61-67, 1995.

10. Ray, W., Polymerization Reactor Control, IEEE Control Syst. Mag., Vol.

6, No. 4, 3−9, August, 1986.

11. Bhat, N., Minderman, P., McAvoy, T., and Wang, N., Modeling Chemical

Process Systems via Neural Network Computation, IEEE Control Syst.

Mag., Vol. 10, No.3, 24−31, April, 1990.

12. Rosenblatt, A., Principles of Neurodynamics, Spartan Press, Washington,

DC, 1961.

13. Fausett, L., Fundamentals of Neural Networks, Prentice-Hall, Englewood

Cliffs, NJ, 1994.

14. Demuth, H. and Beale, M., Neural Network Toolbox for Use with

MATLAB , the Math Works Inc. , Natick, MA, 1998.

15. Miller, W.T., Suton, R., and Werbos, P. (eds.), Neural Networks for

Control, MIT Press, MA, 1990.

16. Lippmann, R.P., An Introduction to Computing with Neural Network;

IEEE Acoustic, Speech, and Signal Proc. Mag, 4−22, April, 1987.

 17. Kosko, B., Neural Networks and Fuzzy Systems, Prentice-Hall, Englewood

Cliffs, NJ, 1991.

8
INTRODUCTION TO FUZZY SETS:

BASIC DEFINITIONS AND

RELATIONS

Mo Jamshidi and Aly El-Osery

8.1 INTRODUCTION

One of the more popular new technologies is intelligent control, which is

defined as a combination of control theory, operations research, and artificial

intelligence (AI). Judging by the billions of dollars worth of sales and close to

2000 patents issued in Japan alone since the announcement of the first fuzzy

chips in 1987, fuzzy logic still is perhaps the most popular area in AI. Thanks to

tremendous technological and commercial advances in fuzzy logic in Japan and

other nations, today fuzzy logic continues to enjoy an unprecedented popularity

in the technological and engineering fields including manufacturing. Fuzzy logic

technology is being used in numerous consumer and electronic products and

systems, even in the stock market and medical diagnostics. The most important

issue facing many industrialized nations in the next several decades will be

global competition to an extent that has never before been posed. The arms race

is diminishing and the economic race is in full swing. Fuzzy logic is but one

such front for global technological, economical, and manufacturing competition.

In order to understand fuzzy logic it is important to discuss fuzzy sets. In

1965, Zadeh [1] wrote a seminal paper in which he introduced fuzzy sets, i.e.,

sets with unsharp boundaries. These sets are generally in better agreement with

the human mind that works with shades of gray, rather than with just black or

white. Fuzzy sets are typically able to represent linguistic terms, e.g., warm, hot,

high, low. Nearly ten years later Mamdani [2] succeeded in applying fuzzy logic

for control in practice. Today, in Japan, U.S.A, Europe, Asia and many other

parts of the world fuzzy control is widely accepted and applied. In many

consumer products like washing machines and cameras, fuzzy controllers are

used in order to obtain intelligent machines (Intelligent Machine Quotient--

MIQ) and user friendly products. A few interesting applications can be

mentioned: control of subway systems, image stabilization of video cameras,

image enhancement and autonomous control of helicopters. Although the U.S

and Europe hesitated in accepting fuzzy logic, they have become more

enthusiastic about applying this technology.

Fuzzy set theory is developed comparing the precepts and operations of

fuzzy sets with those of classical set theory. Fuzzy sets will be seen to contain

the vast majority of the definitions, precepts, and axioms that define classical

sets. In fact, very few differences exist between the two set theories. Fuzzy set

theory is actually a fundamentally broader theory than current classical set

theory, in that it considers an infinite number of degrees of membership in a

set other than the canonical values of 0 and 1 apparent in classical set theory. In

this sense, one could argue that classical sets are a limited form of fuzzy sets.

Hence, it will be shown that fuzzy set theory is a comprehensive set theory.

Conceptually, a fuzzy set can be defined as a collection of elements in a

universe of information where the boundary of the set contained in the universe

is ambiguous, vague, and otherwise fuzzy. It is instructive to introduce fuzzy

sets by first reviewing the elements of classical (crisp) set theory.

This chapter is organized as follows. Section 8.2 briefly describes classical

sets, followed by introduction to classical set operations in section 8.3.

Properties of classical sets are given in section 8.4. Section 8.5 is a quick

introduction to fuzzy sets. Fuzzy set operations and properties are given in

sections 8.6 and 8.7, respectively. Section 8.8 presents fuzzy vs. classical

relations. Finally, a conclusion is given in section 8.9.

8.2 CLASSICAL SETS

In classical set theory, a set is denoted as a so-called crisp set and can be

described by its characteristic function as follows:

µC U: ,→ { }0 1 (8.1)

In Equation 8.1, U is called the universe of discourse, i.e., a collection of

elements that can be continuous or discrete. In a crisp set each element of the

universe of discourse either belongs to the crisp set (µC= 1) or does not belong to

the crisp set (µC= 0).

Consider a characteristic function µChot representing the crisp set hot, a set

with all hot temperatures. Figure 8.1 graphically describes this crisp set,

considering temperatures higher than 40°C as hot. (Note that for all temperatures

T, we have T∈U).

µChot

1

0 40 T
Figure 8.1: The Characteristic Function µChot.

8.3 CLASSICAL SET OPERATIONS

Let A and B be two sets in the universe U , and µA(x) and µ B(x) be the

characteristic functions of A and B in the universe of discourse in sets

A and B, respectively. The characteristic function µA(x) is defined as follows:

µA x
x A

x A
()

,

,
=

∈
∉





1

0
(8.2)

and µB(x) is defined as

µB x
x B

x B
()

,

,
=

∈
∉





1

0

(8.3)

Using the above definitions, the following operations are defined [3].

Union The union between two sets, i.e., BAC U= , where U is the union

operator, represents all those elements in the universe which reside in either the

set A or set B or both [4], (see Figure 8.2). The characteristic function µC is

defined in Equation 8.4.

Figure 8.2: Union.

∀ ∈ = []x U x xC A B: max (), ()µ µ µ (8.4)

The operator in Equation 8.4 is referred to as the max-operator.

Intersection The intersection of two sets, i.e., C A B= I , where I is the

intersection operator, represents all those elements in the universe U which

reside in both sets A and B simultaneously (see Figure 8.3). Equation 8.5 shows

how to obtain the characteristic function µC.

∀ ∈ = []x U x xC A B: min (), ()µ µ µ (8.5)

The operator in Equation 8.5 is referred to as the min-operator.

Figure 8.3: Intersection.

Complement The complement of a set A, denoted A , is defined as the collection

of all elements in the universe which do not reside in the set A (see Figure 8.4).

The characteristic function
A

µ is defined by Equation 8.6.

∀ ∈ = −x U x
A A: ()µ µ1 (8.6)

Figure 8.4: Complement.

8.4 PROPERTIES OF CLASSICAL SET

Properties of classical sets are very important to consider because of their

influence on the mathematical manipulation. Some of these properties are listed

below [5].

Commutativity:
A B B A

A B B A

U U

I I

=

=
(8.7)

(8.8)

Associativity:

A B C A B C

A B C A B C

U U U U

I I I I

() ()

() ()

=

=

(8.9)

(8.10)

Distributivity:

A B C A B A C

A B C A B A C

U I U I U

I U I U I

() () ()

() () ()

=

=

(8.11)

(8.12)

Idempotency:
A A A

A A A

U

I

=

=
(8.13)

(8.14)

Identity:

A A

A X A

A

A X X

U

I

I

U

φ

φ φ

=

=

=

=

(8.15)

(8.16)

(8.17)

(8.18)

Excluded middle laws are very important since they are the only set

operations that are not valid for both classical and fuzzy sets. Excluded middle

laws consist of two laws. The first, known as Law of Excluded Middle, deals

with the union of a set A and its complement. The second law, known as Law of

Contradiction, represents the intersection of a set A and its complement. The

following equations describe these laws:

Law of Excluded Middle

A A XU = (8.19)

Law of Contradiction

φ=AA I (8.20)

8.5 FUZZY SETS

The definition of a fuzzy set [1] is given by the characteristic function

µF U
~

: ,→ []0 1 (8.21)

In this case the elements of the universe of discourse can belong to the fuzzy

set with any value between 0 and 1. This value is called the degree of

membership. If an element has a value close to 1, the degree of membership, or

truth value is high. The characteristic function of a fuzzy set is called the

membership function, for it gives the degree of membership for each element of

the universe of discourse. If now the characteristic function µFhot is considered,

one can express the human opinion, for example, that 37°C is still fairly hot, and

that 38°C is hot, but not as hot as 40°C and higher. This result in a gradual

transition from membership (completely true) to non-membership (not true at

all). Figure 8.5 shows the membership function µFhot for the fuzzy set Fhot.

µFhot

1

0 40 T35 45

Figure 8.5: The Membership Function µFhot.

8.5.1 Fuzzy Membership Functions

The membership functions for fuzzy sets can have many different shapes,

depending on definition. Figure 8.6 provides a description of the various

features of membership functions. Some of the possible membership functions

are shown in Figure 8.7.

x0

1

)(xµ
core

boundaryboundary

support

Figure 8.6: Description of Fuzzy Membership Functions [4].

Figure 8.7 illustrates some of the possible membership functions, we have:

(a) the Γ-function: an increasing membership function with straight lines; (b) the

L-function: a decreasing function with straight lines; (c) Λ-function: a triangular

function with straight lines; (d) the singleton: a membership function with a

membership function value 1 for only one value and the rest is zero. There are

many other possible functions such as trapezoidal, Gaussian, sigmoidal or even

arbitrary.

α β

1

γ δ

1

 (a) Γ-function (left shoulder) (b) L-function(right shoulder)

α β

1

γ α

1

(c) Λ-function (triangular) (d) Singleton

Figure 8.7: Examples of Membership Functions.

A notation convention for fuzzy sets that is popular in the literature when the

universe of discourse U, is discrete and finite, is given below for a fuzzy set A

by

A

x

x

x

x

x

x

A A A i

ii
~

~ ~ ~

() () ()

= + + =∑
µ µ µ1

1

2

2

K
(8.22)

and, when the universe of discourse U is continuous and infinite, the fuzzy set A

is denoted by

A

x

x

A

~

~

()

= ∫
µ (8.23)

8.6 FUZZY SET OPERATIONS

As in the traditional crisp sets, logical operations, e.g., union, intersection, and

complement, can be applied to fuzzy sets [1].

Union The union operation (and the intersection operation as well) can be

defined in many different ways. Here, the definition that is used in most cases is

discussed. The union of two fuzzy sets
~
A and

~
B with the membership functions

)(
~

xAµ and)(
~

xBµ is a fuzzy set
~
C , written as

~~~
BAC U= , whose membership

function is related to those of 
~
A  and 

~
B  as follows:

∀ ∈ = 





x U x xC A B: max ( ), ( )
~ ~ ~

µ µ µ
(8.24)

Figure 8.8: Union of Two Fuzzy Sets.

Intersection According to the min-operator the intersection of two fuzzy sets
A
~

and B
~

 with the membership functions µA x
~

( )and µB x
~

( ) , respectively, is a

fuzzy set C
~

, written as C A B
~ ~ ~

= I , whose membership function is related to

those of 
~
A  and B

~
 as follows:

∀ ∈ = 





x U x xC A B: min ( ), ( )
~ ~ ~

µ µ µ
(8.25)



Figure 8.9: Intersection of Two Fuzzy Sets.

Complement  The complement of a set A
~

, denoted A
~

, is defined as the

collection of all elements in the universe which do not reside in the set 
~
A .

∀ ∈ = −x U x
A A: ( )
~ ~

µ µ1 (8.26)

x

µ

0

1
~
A

~
A

Figure 8.10: Complement of a Fuzzy Set.

Keep in mind that even though the equations of the union, intersection, and

complement appear to be the same for classical and fuzzy sets, they differ in the

fact that )(
~

xAµ and )(
~

xBµ  can take only a value of zero or one in the case of

classical set, while in fuzzy sets they include the whole interval from zero to

one.

8.7      PROPERTIES OF FUZZY SETS

Similar to classical sets, fuzzy sets also have some properties that are important

for mathematical manipulations [5,6].  Some of these properties are listed below.

Commutativity:

A B B A

A B B A

~ ~ ~ ~

~ ~ ~ ~

U U

I I

=

=

(8.27)

(8.28)



Associativity:

~~~~~~

~~~~~~

)()(

)()(

CBACBA

CBACBA

IIII

UUUU

=

= (8.29)

(8.30)

Distributivity:

)()()(

)()()(

~~~~~~~

~~~~~~~

CABACBA

CABACBA

IUIUI

UIUIU

=

= (8.31)

(8.32)

Idempotency:

~~~

~~~

AAA

AAA

=

=

I

U (8.33)

(8.34)

Identity:

XXA

A

AXA

AA

=

=

=

=

U

I

I

U

~

~

~~

~~

φφ

φ (8.35)

(8.36)

(8.37)

(8.38)

Most of the properties that hold for classical sets (e.g., commutativity,

associativity, and idempotence) hold also for fuzzy sets except for following two

properties [5]:

1 .  Law of contradiction ( φ?
~~
AAI ): One can easily notice that the

intersection of a fuzzy set and its complement results in a fuzzy set with

membership values of up to _ and thus does not equal the empty set (as in

the case of classical sets) as shown in Figure 8.11.

x0

1
~
A

~
A

~~
BAIµ

Figure 8.11: Law of Contradiction.



2.  Law of excluded middle ( A A U
~ ~

U ≠ ): The union of a fuzzy set and its

complement does not give the universe of discourse (see Figure 8.12).

x0

1
~
A

~
A

~~
BAUµ

Figure 12: Law of Excluded Middle.

8.7.1 Alpha-Cut Fuzzy Sets

It is the crisp domain in which we perform all computations with today s

computers.  The conversion from fuzzy to crisp sets can be done by two means,

one of which is

alpha-cut sets.

Given a fuzzy set 
~
A , the alpha-cut (or lambda cut) set of 

~
A  is defined by

A x xAα µ α= ≥





~

( )
(8.39)

Note that by virtue of the condition on )(
~

xAµ in Equation 8.39, i.e., a

common property, the set Aα in Equation 8.39 is now a crisp set.  In fact, any

fuzzy set can be converted to an infinite number of cut sets.

8.7.2 Extension Principle

In fuzzy sets, just as in crisp sets, one needs to find means to extend the

domain of a function, i.e., given a fuzzy set 
~
A  and a function f(⋅), then what is

the value of function f(
~
A )? This notion is called the extension principle which

was first proposed by Zadeh.

Let the function  f  be defined by

f U V: → (8.40)



where U and V are domain and range sets, respectively.  Define a fuzzy set

~
A ⊂U as,

A
u u u

n

n
~

= + + +








µ µ µ1

1

2

2

K
(8.41)

Then the extension principle asserts that the function f is a fuzzy set, as well,

which is defined below:

B f A
f u f u f u

n

n
~ ~

( )
( ) ( ) ( )

= = + + +








µ µ µ1

1

2

2

K
(8.42)

The complexity of the extension principle would increase when more than

one member of u1 x u2 is mapped to only one member of v; one would take the

maximum membership grades of these members in the fuzzy set 
~
A .

Example 8.1

Given two universes of discourse U1=U2={1,2, ,10} and two fuzzy sets

(numbers) defined by

Approximately 2  =
3

8.0

2

1

1

5.0
++

and

Approximately 5  =
5

1

4

8.0

3

6.0
++

It is desired to find approximately 10

SOLUTION:

The function f u u v= × →1 2:  represents the arithmetic product of these two

fuzzy numbers and is given by

"approximately 10"  = + +



 × + +



 = +

+ + + +

+ +

0 5

1

1

2

0 8

3

0 6

3

0 8

4

1

5

0 5 0 6

3

0 5 0 8

4

0 5 1

5

1 0 6

6

1 0 8

8

1 1

10

0 8 0 6

9

0 8 0 8

12

. . . . min( . , . )

min( . , . ) min( . , ) min( , . ) min( , . )

min( , ) min( . , . ) min( . , . )
++ =

= + + + + + + + +

min( . , )

. . . . . . . .

0 8 1

15

0 5

3

0 5

4

0 5

5

0 6

6

0 8

8

0 6

9

1

10

0 8

12

0 8

15



The above resulting fuzzy number has its prototype, i.e., value 10 with a

membership function 1 and the other 8 pairs are spread around the point (1, 10).

Example 8.2

Consider two fuzzy sets (numbers) defined by

Approximately 2 =
3

5.0

2

1

1

5.0
++

and

Approximately 4 =
4

1

3

9.0

2

8.0
++

It is desired to find approximately 8

SOLUTION:

The function f u u v= × →1 2:  represents the arithmetic product of these two

fuzzy numbers and is given by

"approximately 8"  = + +



 × + +



 = +

+ +

+ + +

0 5

1

1

2

0 5

3

0 8

2

0 9

3

1

4

0 5 0 8

2

0 5 0 9

3

0 5 1 1 0 8

4

1 0 9 0 5 0 8

6

1 1

8

0 5 0 9

9

0

. . . . min( . , . )

min( . , . ) max[min( . , ), min( , . )]

max[min( , . ), min( . , . )] min( , ) min( . , . )

min( .. , ) . . . . . .5 1

12

0 5

2

0 5

3

0 8

4

0 9

6

1

8

0 5

9

0 5

12
= + + + + + +

8.8      CLASSICAL RELATIONS VS. FUZZY RELATIONS

Classical relations are structures that represent the presence or absence of

correlation or interaction among elements of various sets.  There are only two

degrees of relationship between elements of the sets in a crisp relation, namely,

the relationships completely related  or not related .  Fuzzy relations, on the

other hand, are developed by allowing the relationship between elements of two

or more sets to take an infinite number of degrees of relationship between the

extremes of completely related  and not related  [6,7].

The classical relation of two universes U and V is defined as

U V u v u U v V× = ∈ ∈{ }( , ) , (8.43)

which combines ∀u∈U and ∀v∈V in an ordered pair and forms unconstrained

matches between u and v.  That is, every element in universe U is related

completely to every element in universe V .  The strength of this relationship



between ordered pairs of elements in each universe is measured by the

characteristic function, where a value of unity is associated with complete

relationship and a value of zero is associated with no relationship, i.e., the

binary values 1 and 0.

As an example, if U={1,2} and V={a,b,c}, then UxV={(1,a), (1,b), (1,c),

(2,a), (2,b), (2,c)}. The above product is said to be crisp relation, which can be

expressed by either a matrix expression

a b c

R U V= × =










1

2

1 1 1

1 1 1
(8.44)

Or in a so-called Sagittal diagram (see Figure 8.13)

U V

1

2

a

b

c
Figure 8.13: Sagittal Diagram.

Fuzzy relations map elements of one universe to those of another universe,

through Cartesian product of the two universes.  Unlike crisp relations, the

strength of the relation between ordered pairs of the two universes is not

measured with the characteristic function, but rather with a membership function

expressing various degrees of the strength of the relation on the unit interval

[0,1].  In other words, a fuzzy relation 
~
R is a mapping:

R U V
~
: [ , ]× → 0 1 (8.45)

The following example illustrates this relationship, i.e.,

µ µ µ µR A B A Bu v u v u v
~ ~ ~ ~ ~

( , ) ( , ) min( ( ), ( ))= =× (8.46)



Example 8.3

Consider two fuzzy sets 
21~

1

9.02.0

xx
A +=  and 

321~
2

15.03.0

yyy
A ++= .

Determine the fuzzy relation between these sets.

SOLUTION:

The fuzzy relation 
~
R  is

R A A
~

~ ~

.

.
. .

min( . , . ) min( . , . ) min( . , )

min( . , . ) min( . , . ) min( . , )

. . .

. . .

= × =








 × [ ] = 







 =

=










1 2

0 2

0 9
0 3 0 5 1

0 2 0 3 0 2 0 5 0 2 1

0 9 0 3 0 9 0 5 0 9 1

0 2 0 2 0 2

0 3 0 5 0 9

Let 
~
R be a relation that relates elements from universe U to universe V, and

let 
~
S be a relation that relates elements from universe V to universe W .  Is it

possible to find the relation 
~
T that relates the same elements in universe U that

~
R contains to elements in universe W that 

~
S contains?  The answer is yes, using

an operation known as composition.

In crisp or fuzzy relations, the composition of two relations, using the max-

min rule, is given below.  Given two fuzzy relations ),(
~

vuR  and ),(
~

wvS , then

the composition of these is

T R S u v v w
v V

R S
~ ~ ~

~ ~

max min( ( , ), ( , )= = 





∈

o µ µ
(8.47)

or using the max-product rule, the characteristic function is given by

µ µ µT
v V

R Su w u v v w
~

( , ) max ( , ) ( , )
~ ~

= ⋅





∈

(8.48)

The same composition rules hold for crisp relations.

Example 8.4

Consider two fuzzy relations

R
~

. .

. .
=











0 6 0 8

0 7 0 9
 and S

~

. .

. .
=











0 3 0 1

0 2 0 8



It is desired to evaluate 
~~
SRo and 

~~
RSo

SOLUTION:

Using the max-min composition for 
~~
SRo we have

R S
~ ~

. .

. .
o =











0 3 0 8

0 3 0 8

where, for example, the element (1,1) is obtained by max{min(0.6,0.3),

min(0.8,0.2)}=0.3.

For 
~~
RSo  we get the following result

S R R S
~ ~ ~ ~

. .

. .
o o=









 ≠

0 3 0 3

0 7 0 8

Using the max-product rule, we have

R S
~ ~

. .

. .
o =











0 18 0 64

0 21 0 72

where, for example, the element (2,2) is obtained by max{(0.7)(0.1),

(0.9)(0.8)}=0.72.

For 
~~
RSo  we get the following result

S R R S
~ ~ ~ ~

. .

. .
o o=









 ≠

0 18 0 24

0 56 0 72

8.9      CONCLUSION

In this chapter a quick overview of classical and fuzzy sets was given.  Main

similarities and differences between classical and fuzzy sets were introduced.

In general, set operations are the same for classical and fuzzy sets.  The

exceptions were excluded middle laws.  Alpha-cut sets and extension principle

were presented followed by a brief introduction to classical vs. fuzzy relations.

This chapter presented issues that are important in understanding fuzzy sets and

their advantages over classical sets.  A set of problems at the end of the book

will further enhance the reader s understanding of these concepts.

REFERENCES

1. Zadeh, L. A, Fuzzy sets, Information and Control, Vol. 8, 338−353, 1965.

2 .  Mamdani, E. H., Applications of fuzzy algorithms for simple dynamic

plant, Proc. IEE, 121, No. 12, 1585−1588, 1974.



3. Jamshidi, M., Titli, A., Zadeh, L.A. and Bverie, S. (eds.), Applications of

Fuzzy Logic - Toward High Machine Intelligence Quotient Systems, Vol. 9,

Prentice Hall series on Environmental and Intelligent Manufacturing

Systems (M. Jamshidi, ed. ), Prentice Hall, Upper Saddle River, NJ, 1997.

4. Ross, T. J., Fuzzy Logic with Engineering Application, McGraw-Hill, New

York, 1995.

5. Jamshidi, M., Vadiee, N. and Ross, T. J. (eds.), Fuzzy Logic and Control:

Software and Hardware Applications. Vol 2. Prentice Hall Series on

Environmental and Intelligent Manufacturing Systems, (M. Jamshidi, ed.).

Prentice Hall, Englewood Cliffs, NJ, 1993.

6. Dubois, D. and Prade, H., Fuzzy Sets and Systems, Theory and Applications,

Academic, New York, 1980.

7. Zimmermann, H., Fuzzy Set Theory and Its Applications, 2
nd

 ed., Kluwer

Academic Publishers, Dordrecht, Germany, 1991.



9 INTRODUCTION TO FUZZY

LOGIC

Mo Jamshidi, Aly El-Osery, and Timothy J. Ross

9.1 INTRODUCTION

The need and use of multilevel logic can be traced from the ancient works of

Aristotle, who is quoted as saying, “There will be a sea battle tomorrow.” Such a

statement is not yet true or false, but is potentially either. Much later, around AD

1285-1340, William of Occam supported two-valued logic but speculated on

what the truth value of “if p then q” might be if one of the two components, p or

q, as neither true nor false. During the time period of 1878-1956, Lukasiewicz

proposed a three-level logic as a “true” (l), a “false” (0), and a “neuter” (1/2),

which represented half true or half false. In subsequent times, logicians in China

and other parts of the world continued on the notion of multi-level logic. Zadeh,

in his seminal 1965 paper [1], finished the task by following through with the

speculation of previous logicians and showing that what he called “fuzzy sets”

were the foundation of any logic, regardless of the number of truth levels

assumed. He chose the innocent word “fuzz” for the continuum of logical values

between 0 (completely false) and 1 (completely true). The theory of fuzzy logic

deals with two problems 1) the fuzzy set theory, which deals with the vagueness

found in semantics, and 2) the fuzzy measure theory, which deals with the

ambiguous nature of judgments and evaluations.

The primary motivation and “banner” of fuzzy logic is the possibility of

exploiting tolerance for some inexactness and imprecision. Precision is often

very costly, so if a problem does not require precision, one should not have to

pay for it. The traditional example of parking a car is a noteworthy illustration.

If the driver is not required to park the car within an exact distance from the

curb, why spend any more time than necessary on the task as long as it is a legal

parking operation? Fuzzy logic and classical logic differ in the sense that the

former can handle both symbolic and numerical manipulation, while the latter

can handle symbolic manipulation only. In a broad sense, fuzzy logic is a union

of fuzzy (fuzzified) crisp logics [2]. To quote Zadeh, “Fuzzy logic’s primary aim

is to provide a formal, computationally-oriented system of concepts and

techniques for dealing with modes of reasoning which are approximate rather

than exact.” Thus, in fuzzy logic, exact (crisp) reasoning is considered to be the

limiting case of approximate reasoning. In fuzzy logic one can see that

everything is a matter of degrees.

This chapter is organized as follows.  In section 9.2, a brief introduction to

predicate logic is given.  In section 9.3, fuzzy logic is presented, followed by

approximate reasoning in section 9.4.



9.2 PREDICATE LOGIC

Let a predicate logic proposition P be a linguistic statement contained within a

universe of propositions that are either completely true or false.  The truth value

of the proposition P can be assigned a binary truth value, called T(P), just as an

element in a universe is assigned a binary quantity to measure its membership in

a particular set.  For binary (Boolean) predicate logic, T(P) is assigned a value of

1 (truth) or  0 (false).  If U  is the universe of all propositions, then T is a

mapping of these propositions to the binary quantities (0,1), or

T U: ,→ { }0 1 (9.1)

Now let P  and Q be two simple propositions on the same universe of

discourse that can be combined using the following five logical connectives

(i) disjunction (∨)

(ii) conjunction (∧)

(iii) negation (−)

(iv) implication (→)

(v) equality (↔ or ≡)

to form logical expressions involving two simple propositions. These

connectives can be used to form new propositions from simple propositions.

  Now define sets A and B from universe X where these sets might represent

linguistic ideas or thoughts. Then a propositional calculus will exist for the case

where proposition P measures the truth of the statement that an element, x, from

the universe X  is contained in set A and the truth of the statement that this

element, x, is contained in set B, or more conventionally

P: truth that x ∈ A

Q: truth that x ∈ B, where truth is measured in terms of the truth value, i.e.,

If x ∈ A, T(P)= 1; otherwise T(P)= 0.

If x ∈ B, T(Q) = 1; otherwise T(Q) = 0, or using the characteristic function
to represent truth (1) and false (0):

χ A x
x A

x A
( )

,

,
=

∈

∉




1

0
(9.2)

The above five logical connectives can be used to create compound

propositions, where a compound proposition is defined as a logical proposition

formed by logically connecting two or more simple propositions. Just as one is

interested in the truth of a simple proposition, predicate logic also involves the

assessment of the truth of compound propositions. Given a proposition

AxPAxP  :,: , the resulting compound propositions are defined below in

terms of their binary truth values:



Disjunction:
P Q x A B

T P Q T P T Q

∨ ⇒ ∈

∨ =

 or 

           Hence,  ( ) max( ( ), ( ))
(9.3)

Conjunction:
P Q x A B

T P Q T P T Q

∧ ⇒ ∈

∧ =

 and 

           Hence,  ( ) min( ( ), ( ))
(9.4)

Negation:

If  then  If ,  then T P T P T P T P( ) , ( ) ; ( ) ( )= = = =1 0 0 1 (9.5)

Equivalence:
P Q x A B

T P Q T P T Q

↔ ⇒ ∈

↔ ⇒ =

,

( ) ( ) ( )           Hence,  
(9.6)

Implication:
P Q x A x B

T P Q T P Q

→ ⇒ ∉ ∈

→ =

 or 

           Hence,  ( ) ( )U
(9.7)

The logical connective implication presented here is also known as the

classical implication, to distinguish it from an alternative form due to

Lukasiewicz, a Polish mathematician in the 1930s, who was first credited with

exploring logic other than Aristotelian (classical or binary) logic. This classical

form of the implication operation requires some explanation.

For a proposition P defined on set A and a proposition Q defined on set B,

the implication “P implies Q” is equivalent to taking the union of elements in

the complement of set A with the elements in the set B.  That is, the logical

implication is analogous to the set-theoretic form.

P Q A B is true  either " not in A" or "in B → ≡ ≡U   " (9.8)

So that ( ) ( )P Q P Q→ ↔ ∨

T P Q T P Q T P T Q( ) ( ) max( ( ), ( ))→ = ∨ = (9.9)

This is linguistically equivalent to the statement, “P implies Q is true” when

either “not A” or “B” is true [6]. Graphically, this implication and the analogous

set operation are represented by the Venn diagram in Figure 9.1. As noted, the

region represented by the difference A \ B is the set region where the implication

“P implies Q” is false (the implication fails). The shaded region in Figure 9.1

represents the collection of elements in the universe where the implication is

true, i.e., the shaded area is the set:



A B A B A B

If x is in A and x is not in B then

A B fails A\B (difference)

\ ( )= =

→ ≡

U I

   

(9.10)

Figure 9.1:  Classical Implication Operation (Shaded Area is Where Implication

Holds) [2].

Now, with two propositions (P and Q) each being able to take on one of two

truth values (true or false, 1 or 0), there will be a total of 2
2
 = 4 propositional

situations. These situations are illustrated in Table 9.1, along with the

appropriate truth values for the propositions P and Q and the various logical

connectives between them in the truth table.

To help understand this concept, assume you have two propositions P and Q.

P: you are a graduate student and Q: you are a university student.  Let us

examine the implication “P implies Q”.  If you are a student in general, and a

graduate student in particular, then the implication is true.  On the other hand,

the implication would be false if you are a graduate student without being a

student.  Now, let us assume that you are an undergraduate student; regardless

whether you are graduate or not, then the implication is true (since in the case

you are not a graduate student does not negate the fact that you are an

undergraduate).  Then, we come to the final case: you are neither a graduate nor

undergraduate student.  In this case the implication is true, because the fact that

you are not a graduate or undergraduate student does not negate the implication

that for you to be a graduate student you have to be a student at the university.

Table 9.1

P Q P P Q∨ P Q∧ P Q→ P Q↔

True True False True True True True

True False False True False False False

False True True True False True False

False False True False False True True

Suppose the implication operation involves two different universes of

discourse, P is a proposition described by set A, which is defined on universe X,



and Q is a proposition described by set B, which is defined on universe Y.  Then

the implication “P implies Q” can be represented in set theory terms by the

relation R, where R is defined by

R A B A Y A B

x A  x X, A X

y B  y Y, B Y

= × × ≡

∈ ∈ ⊂

∈ ∈ ⊂

( ) ( )U IF ,  THEN 

If           (where )

Then      (where )

(9.11)

where A × B and A × Y are Cartesian products [3].
This implication is also equivalent to the linguistic rule form: IF A, THEN B.

The graphic shown in Figure 9.2 represents the Cartesian space of the product X

× Y, showing typical sets A and B, and superimposed on this space is the set

theory equivalent of the implication.  That is,

P Q x A y B P Q A B→ ⇒ ∈ ∈ → ≡IF ,  then ,  or U (9.12)

Figure 9.2:  Cartesian Space Demonstrating IF A THEN B [3].

The shaded regions of the compound Venn diagram in Figure 9.2 represent

the truth domain of the implication, IF A, THEN B (P implies Q).

9.2.1 Tautologies

In predicate logic it is useful to consider compound propositions that are

always true, irrespective of the truth values of the individual simple

propositions.  Classical logic compound propositions with this property are

called tautologies.  Tautologies are useful for deductive reasoning and for

making deductive inferences.  So, if a compound proposition can be expressed

in the form of a tautology, the truth-value of that compound proposition is

known to be true.  Inference schemes in expert systems often employ

tautologies.  The reason for this is that tautologies are logical formulas that are

true on logical grounds alone [3].

One of these, known as Modus Ponens deduction, is a very common

inference scheme used in forward chaining rule-based expert systems.  It is an



operation whose task is to find the truth-value of a consequent in a production

rule, given the truth-value of the antecedent in the rule.  Modus Ponens

deduction concludes that, given two propositions, a and a-implies-b, both of

which are true, then the truth of the simple proposition b is automatically

inferred.  Another useful tautology is the Modus Tollens inference, which is used

in backward-chaining expert systems. In Modus Tollens an implication between

two propositions is combined with a second proposition and both are used to

imply a third proposition.  Some common tautologies are listed below.

B B X

A X X

A X X

A A B B Modus Ponens

B A B A Modus Tollens

U

U

U

↔

↔

↔

∧ → →

∧ → →

( ( )) ( )

( ( )) ( )

(9.13)

(9.14)

(9.15)

(9.16)

(9.17)

9.2.2 Contradictions

Compound propositions that are always false, regardless of the truth-value of

the individual simple propositions comprising the compound proposition, are

called contradictions. Some simple contradictions are listed below.

B B

A

A

I

I

I

↔

↔

↔

φ

φ φ

φ φ

(9.18)

(9.19)

(9.20)

9.2.3 Deductive Inferences

The Modus Ponens deduction is used as a tool for inferencing in rule-based

systems. A typical IF–THEN rule is used to determine whether an antecedent

(cause or action) infers a consequent (effect or action). Suppose we have a rule

of the form,

IF ,  THEN A B (9.21)

This rule could be translated into a relation using the Cartesian product sets A

and B, that is

R A B A Y= × ×( ) ( )U (9.22)

Now suppose a new antecedent, say A’, is known.  Can we use Modus

Ponens deduction to infer a new consequent, say B’, resulting from the new

antecedent? That is, in rule form



IF ,  THEN A B' ' ? (9.23)

The answer, of course, is yes, through the use of the composition relation.

Since “A implies B” is defined on the Cartesian space X × Y, B’ can be found
through the following set-theoretic formulation,

B A R A A B A Y' ' ' (( ) ( ))= = × ×o o U (9.24)

Modus Ponens deduction can also be used for the compound rule,

CBA  ELSE, THEN , IF (9.25)

Using the relation defined as,

R A B A C= × ×( ) ( )U (9.26)

and hence RAB o''= .

Example 9.1

Let two universes of discourse be described by X={1,2,3,4,5,6} and

Y={1,2,3,4} and define the crisp set A={2,3} on X and B={3,4} on Y.  Determine

the deductive inference IF A, THEN B.

SOLUTION

Expressing the crisp sets in Zadeh’s notation,

A

B

= + + +

= + + + + +

0

1

1

2

1

3

0

4

0

1

0

2

1

3

1

4

0

5

0

6

Taking the Cartesian product A  B×  which involves taking the pairwise min

of each pair from the sets A and B [3]

A B× =



















1 2 3 4 5 6

1

2

3

4

0 0 0 0 0 0

0 0 1 1 0 0

0 0 1 1 0 0

0 0 0 0 0 0

Then computing A Y×



A

Y

= + + +

= + + + + +

1

1

0

2

0

3

1

4

1

1

1

2

1

3

1

4

1

5

1

6

A Y× =



















1 2 3 4 5 6

1

2

3

4

1 1 1 1 1 1

0 0 0 0 0 0

0 0 0 0 0 0

1 1 1 1 1 1

again using pairwise min for the Cartesian product.

The deductive inference yields the following characteristic function in matrix

form, following the relation,

R A B A Y= × × =



















( ) ( )U

1 2 3 4 5 6

1

2

3

4

1 1 1 1 1 1

0 0 1 1 0 0

0 0 1 1 0 0

1 1 1 1 1 1

9.3 FUZZY LOGIC

The extension of the above discussions to fuzzy deductive inference is

straightforward.  The fuzzy proposition 
~
P  has a value on the closed interval

[0,1].  The truth-value of a proposition 
~
P  is given by

T P x  A A( ) ( )
~ ~ ~

= ≤ ≤µ µwhere 0 1 (9.27)

Thus, the degree of truth for P x A
~ ~
: ∈ is the membership grade of x in A.  The

logical connectives of negation, disjunction, conjunction, and implication are

similarly defined for fuzzy logic, e.g., disjunction.

Negation:

T P T P( ) ( )
~ ~

= −1 (9.28)

Disjunction:

P Q x A B

T P Q T P T Q

~ ~ ~

~ ~ ~ ~

( ) max( ( ), ( ))

∨ ⇒ ∈

∨ =

 or 

           Hence,  

~
(9.29)



Conjunction:
P Q x A B

T P Q T P T Q

~ ~ ~

~ ~ ~ ~

( ) min( ( ), ( ))

∧ ⇒ ∈

∧ =

 and 

           Hence,  

~
(9.30)

Implication:
P Q x A x B

T P Q T P Q T P T Q

~ ~

~ ~ ~ ~ ~ ~

( ) ( ) max( ( ), ( ))

→ ⇒

→ = ∨ =

 is ,  then  is 
~ ~

(9.31)

Thus, a fuzzy logic implication would result in a fuzzy rule

P Q x A y B
~ ~

→ ⇒ If  is ,  then  is 
~ ~

(9.32)

and the equivalent to the following fuzzy relation

R A B A Y
~ ~ ~ ~

( ) ( )= × ×U (9.33)

with a grade membership function,

µ µ µ µR A B Ax y x
~ ~ ~ ~

max ( ( ) ( )), ( ( ))= ∧ −





1
(9.34)

Example 9.2

Consider two universes of discourse described by X={1,2,3,4} and

Y={1,2,3,4,5,6}.  Let two fuzzy sets 
~
A  and 

~
B  be given by

A

B

~

~

. .

. . .

= + +

= + + +

0 8

2

1

3

0 3

4

0 4

2

1

3

0 6

4

0 2

5

It is desired to find a fuzzy relation 
~
R  corresponding to ' THEN ,' IF 

~~
BA .

SOLUTION

Using the relation in Equation 9.33 would give

A B
~ ~

. . . .

. . .

. . . .

× =



















1 2 3 4 5 6

1

2

3

4

0 0 0 0 0 0

0 0 4 0 8 0 6 0 2 0

0 0 4 1 0 6 0 2 0

0 0 3 0 3 0 3 0 2 0

            



A Y
~

. . . . . .

. . . . . .

× =



















1 2 3 4 5 6

1

2

3

4

1 1 1 1 1 1

0 2 0 2 0 2 0 2 0 2 0 2

0 0 0 0 0 0

0 7 0 7 0 7 0 7 0 7 0 7

                

and hence R A B A Y
~ ~ ~ ~

max{ , }= × ×

R
~

. . . . . .

. . .

. . . . . .

=



















1 2 3 4 5 6

1

2

3

4

1 1 1 1 1 1

0 2 0 4 0 8 0 6 0 2 0 2

0 0 4 1 0 6 0 2 0

0 7 0 7 0 7 0 7 0 7 0 7

                

9.4 APPROXIMATE REASONING

The primary goal of fuzzy systems is to formulate a theoretical foundation for

reasoning about imprecise propositions, which is termed approximate reasoning

in fuzzy logic technological systems [4,5].

Let us have a rule-based format to represent fuzzy information.  These rules

are expressed in conventional antecedent-consequent form, such as

Rule 1:    IF  is ,  THEN  is 
~ ~

x A y B (9.35)

where 
~~
 and  BA represent fuzzy propositions (sets).

Now let us introduce a new antecedent, say '  
~
A , and we consider the

following rule:

' is  THEN ,' is  IF   :2 Rule
~~
ByAx (9.36)

From the information derived from Rule 1, is it possible to derive the

consequent Rule 2, '  
~
B ?  The answer is yes, and the procedure is a fuzzy

composition.  The consequent '  
~
B  can be found from the composition operation

~~~
'' RAB o= (9.37)

Example 9.3

Reconsider the fuzzy system of Example 9.2. Let a new fuzzy set '
~
A b e

given by
3

2.0

2

1

1

5.0
'

~
++=A . It is desired to find an approximate reason

(consequent) for the rule ' THEN ,' IF
~~
BA .

SOLUTION

The relations 9.33 and 9.37 are used to determine '
~
B .

]505060805050[''
~~~

.  .  .  .  .  .RAB == o

or

6

5.0

5

5.0

4

6.0

3

8.0

2

5.0

1

5.0
'

~
+++++=B

where the composition is of the max-min form.

Note the inverse relation between fuzzy antecedents and fuzzy consequences

arising from the composition operation.  More exactly, if we have a fuzzy

relation R A B
~ ~ ~
: → , then will the value of the composition 

~~~
BRA =o ? The

answer is no, and one should not expect an inverse to exist for fuzzy

composition. This is not, however, the case in crisp logic, i.e.,

~~~~~~
'' BRARAB === oo , where all these latter sets and relations are crisp [5,6].

The following example illustrates the nonexistence of the inverse.

Example 9.4

Let us reconsider the fuzzy system of Example 9.2 and 9.3.  Let 
~~

' AA =  and

evaluate ' 
~
B .

SOLUTION

we have

B A R A R B
~ ~ ~ ~ ~ ~
' '

. . . . . .
= = = + + + + + ≠o o

0 3

1

0 4

2

0 8

3

0 6

4

0 3

5

0 3

6
which yields a new consequent, since the inverse is not guaranteed.  The reason

for this situation is the fact that fuzzy inference is imprecise, but approximate.

The inference, in this situation, represents approximate linguistic characteristics

of the relation between two universes of discourse.

9.5 CONCLUSION

This chapter introduced, very briefly, classical and fuzzy logic.  For more in

depth details, readers are encouraged to read Ross [3].  Most of the tools needed

to form an idea about fuzzy logic and its operation have been introduced.  These

tools are essential in understanding the next chapter addressing fuzzy control

and stability.

REFERENCES

1. Zadeh, L. A. , Fuzzy Sets, Information and Control, Vol. 8, 338−353,
1965.

2. Jamshidi, M., Vadiee, N., and Ross, T. J. (eds.), Fuzzy Logic and

Control: Software and Hardware Applications, Vol. 2. Prentice Hall



Series on Environmental and Intelligent Manufacturing Systems, (M.

Jamshidi, (ed.). Prentice Hall, Englewood Cliffs, NJ, 1993.

3. Ross, T. J. Fuzzy Logic with Engineering Application, McGraw-Hill,

New York, 1995.

4. Zadeh, L. A., A Theory of Approximate Reasoning, in J. Hayes, D.

Michie, and L. Mikulich (eds.), Machine Intelligence, Halstead Press,

New York, 149−194, 1979.
5. Gaines, B., Foundation of Fuzzy Reasoning, Int. J. Man Mach. Stud.,

vol. 8,  623−688, 1976.
6. Yager, R. R., On the Implication Operator in Fuzzy Logic, Inf. Sci.,

Vol. 31, 141−164, 1983.



10 FUZZY CONTROL AND

STABILITY

Mo Jamshidi and Aly El-Osery

10.1 INTRODUCTION

The aim of this chapter is to define fuzzy control systems and cover relevant

results and development. Traditionally, an intelligent control system is defined

as one in which classical control theory is combined with artificial intelligence

(AI) and possibly OR (Operations Research). Stemming from this definition,

two approaches to intelligent control have been in use. One approach combines

expert systems in AI with differential equations to create the so called expert

control, while the other integrates discrete event systems (Markov chains) and

differential equations [1]. The first approach, although practically useful, is

rather difficult to analyze because of the different natures of differential

equations (based on mathematical relations) and AI expert systems (based on

symbolic manipulations). The second approach, on the other hand, has well

developed and solid theory, but is too complex for many practical applications.

It is clear, therefore, that a new approach and a change of course are called for

here. We begin with another definition of an intelligent control system. An

intelligent control system is one in which a physical system or a mathematical

model of it is being controlled by a combination of a knowledge-base,

approximate (humanlike) reasoning, and/or a learning process structured in a

hierarchical fashion. Under this simple definition, any control system which

involves fuzzy logic, neural networks, expert learning schemes, genetic

algorithms, genetic programming or any combination of these would be

designated as intelligent control.

Among the many applications of fuzzy sets and fuzzy logic, fuzzy control is

perhaps the most common. Most industrial fuzzy logic applications in Japan, the

U.S., and Europe fall under fuzzy control. The reasons for the success of fuzzy

control are both theoretical and practical [1].

From a theoretical point of view, a fuzzy logic rule-base, can be used to

identify both a model, as a “universal approximation,” as well as a nonlinear

controller. The most relevant information about any system comes in one of

three ways—a mathematical model, sensory input/output data, and human

expert knowledge. The common factor in all these three sources is knowledge.

For many years, classical control designers began their effort with a

mathematical model and did not go any further in acquiring more knowledge

about the system, i.e., designers put their entire trust in a mathematical model

whose accuracy may sometimes be in question. Today, control engineers can

use all of the above sources of information. Aside from a mathematical model



whose utilization is clear, numerical (input/output) data can be used to develop

an approximate model (input/output nonlinear mapping) as well as a controller,

based on the acquired fuzzy IF-THEN rules.

Some researchers and teachers of fuzzy control systems subscribe to the

notion that fuzzy controls should always use a model free design approach and,

hence, give the impression that a mathematical model is irrelevant. As indicated

before, the authors, however, believe strongly that if a mathematical model does

exist, it would be the first source of knowledge used in building the entire

knowledge base. From a mathematical model, through simulation, for example,

one can further build the knowledge base. Through utilization of the expert

operator’s knowledge which comes in the form of a set of linguistic or semi-

linguistic IF-THEN rules, the fuzzy controller designer would get a big

advantage in using every bit of information about the system during the design

process.

On the other hand, it is quite possible that a system, such as high dimensional

large-scale systems, is so complex that a reliable mathematical tool either does

not exist or is very costly to attain. This is where fuzzy control (or intelligent

control) comes in. Fuzzy control approaches these problems through a set of

local humanistic (expert-like) controllers governed by linguistic fuzzy IF-THEN

rules. In short, fuzzy control falls into the category of intelligent controllers,

which are not solely model-based, but also, knowledge-based.

From a practical point of view, fuzzy controllers, which have appeared in

industry and in manufactured consumer products, are easy to understand, simple

to implement, and inexpensive to develop. Because fuzzy controllers emulate

human control strategies, they are easily understood even by those who have no

formal background in control. These controllers are also very simple to

implement.

This chapter is organized as follows.  Section 10.2 is a basic definition of

fuzzy control systems and their components.  Section 10.3 introduces different

methods to fuzzy control design and provides an example.  Section 10.4 is an

analysis of fuzzy control systems.  Section 10.5 addresses the stability of fuzzy

control systems, and the conclusion is given in Section 10.6.

10.2 BASIC DEFINITIONS

A common definition of a fuzzy control system is that it is a system which

emulates a human expert. In this situation, the knowledge of the human operator

would be put in the form of a set of fuzzy linguistic rules. These rules would

produce an approximate decision, just as a human would. Consider Figure 10.1,

where a block diagram of this definition is shown. As shown, the human

operator observes quantities by observing the inputs, i.e., reading a meter or

measuring a chart, and performs a definite action (e.g., pushes a knob, turns on a

switch, closes a gate, or replaces a fuse) thus leading to a crisp action, shown

here by the output variable y(t). The human operator can be replaced by a

combination of a fuzzy rule-based system (FRBS) and a block called defuzzifier.

The input sensory (crisp or numerical) data are fed into FRBS where physical



quantities are represented or compressed into linguistic variables with

appropriate membership functions. These linguistic variables are then used in

the antecedents (IF-Part) of a set of fuzzy rules within an inference engine to

result in a new set of fuzzy linguistic variables or consequent (THEN-Part).

Variables are then denoted in this figure by z, and are combined and changed to

a crisp (numerical) output y*(t) which represents an approximation to actual

output y(t).

It is therefore noted that a fuzzy controller consists of three operations: (1)

fuzzification, (2) inference engine, and (3) defuzzification.

Human Expert

Fuzzification
Inference

Engine
Defuzzification

MInputs
Output

y(t)

Approximate

Output

y*(t)

zInputs

Rule Set

Figure 10.1: Conceptual Definition of a Fuzzy Control System.

Before a formal description of fuzzification and defuzzification processes is

made, let us consider a typical structure of a fuzzy control system which is

presented in Figure 10.2. As shown, the sensory data go through two levels of

interface, i.e., the analog to digital and the crisp to fuzzy and at the other end in

reverse order, i.e. fuzzy to crisp and digital to analog.

PLANT

Inference

Engine

-

+ OutputInput

D/A F/C A/DC/F

Sensors

Figure 10.2: Block Diagram for a Laboratory Implementation of a Fuzzy

Controller.

Another structure for a fuzzy control system is a fuzzy inference, connected

to a knowledge base, in a supervisory or adaptive mode. The structure is shown

in Figure 10.3. As shown, a classical crisp controller (often an existing one) is

left unchanged, but through a fuzzy inference engine or a fuzzy adaptation

algorithm the crisp controller is altered to cope with the system’s unmodeled

dynamics, disturbances, or plant parameter changes much like a standard

adaptive control system. Here the function h(⋅) represents the unknown
nonlinear controller or mapping function h:e →  u which along with any two



input components e1 and e2 of e represents a nonlinear surface, sometimes

known as the control surface [2].

PLANT

Fuzzy

Adaptation

Algorithm

(Inference Engine)

U=h(e)

Controller

(crisp)

Control

u
Output

y

Error

e

Desired

Output

y
d

-

-

+

Figure 10.3: An Adaptive (Tuner) Fuzzy Control System, Fuzzification.

The fuzzification operation, or the fuzzifier unit, represents a mapping from a

crisp point x = (x1  x2  …  xn)
T∈X into a fuzzy set A∈X, where X is the universe

of discourse and T denotes vector or matrix transposition
*
.   There are normally

two categories of fuzzifiers in use.  The first is singleton and the second is

nonsingleton.  A singleton fuzzifier has one point (value) xp as its fuzzy set

support, i.e., the membership function is governed by the following relation:

µA

p

p

x
x x X

x x X
( )

,

,
=

= ∈
≠ ∈





1

0

(10.1)

The nonsingleton fuzzifiers are those in which the support is more than a

point.  Examples of these fuzzifiers are triangular, trapezoidal, Gaussian, etc.  In

these fuzzifiers, 1)( =xAµ at x=xp, where xp may be one or more than one point,

and then )(xAµ decreases from 1 as x moves away from xp or the “core” region

to which xp belongs such that )( pA xµ remains 1 (see Section 10.5).  For

example, the following relation represents a Gaussian-type fuzzifier:

µ
σA

p
T

p
x

x x x x
( ) exp

( ) ( )
= −

− −










2

(10.2)

                                                            
*
 For convenience, in this chapter, the tilde (~) sign that was used earlier to express fuzzy sets will
be omitted.



where the variance,
2σ , is a parameter characterizing the shape of )(xAµ .

10.2.1 Inference Engine

The cornerstone of any expert controller is its inference engine, which

consists of a set of expert rules, which reflect the knowledge base and reasoning

structure of the solution of any problem.  A fuzzy (expert) control system is no

exception and its rule base is the heart of the nonlinear fuzzy controller.  A

typical fuzzy rule can be composed as [3]

IF A is A1 AND B is B1 OR C is C1

THEN U is U1

(10.3)

where A, B, C and U are fuzzy variables, A1, B1, C1 and U1 are fuzzy linquistic

values (membership functions or fuzzy linguistic labels), “AND”, “OR”, and

“NOT” are connectives of the rule.  The rule in Equation 10.3 has three

antecedents and one consequent.  Typical fuzzy variables may in fact, represent

physical or system quantities such as: “temperature,” “pressure,” “output,”

“elevation,” etc. and typical fuzzy linguistic values (labels) may be  “hot”, “very

high,” “low,” etc.  The portion “very” in a label “very high” is called a linquistic

hedge.  Other examples of a hedge are “much,” “slightly,” “more,” or “less,”

etc.  The above rule is known as Mamdani type rule.  In Mamdani rules the

antecedents and the consequent parts of the rule are expressed using linguistic

labels.  In general in fuzzy system theory, there are many forms and variations

of fuzzy rules, some of which will be introduced here and throughout the

chapter.  Another form is Takagi-Sugeno rules in which the consequent part is

expressed as an analytical expression or equation.

Two cases will be used here to illustrate the process of inferencing

graphically. In the first case the inputs to the system are crisp values and we use

max-min inference method.  In the second case, the inputs to the system are also

crisp, but we use the max-product inference method.  Please keep in mind that

there could also be cases where the inputs are fuzzy variables.

Consider the following rule whose consequent is not a fuzzy implication

liByAxAx iii ,...,2,1for  , is   THEN  is  AND  is  IF i
2211 = (10.4)

where 
i

A1 and 
i

A2  are the fuzzy sets representing the ith-antecedent pairs, and
i
B are the fuzzy sets representing the ith-consequent, and l is the number of

rules.

Case 10.1: Inputs x1 and x2 are crisp values, and max-min inference method is

used. Based on the Mamdani implication method of inference, and for a set of

disjunctive rules, i.e, rules connected by the OR connective, the aggregated

output for the l rules presented in Equation 10.4 will be given by



lixxy iii AAiB
,...,2,1for  )]],(),([min[max)( 21

21

== µµµ (10.5)

 Figure 10.4 is a graphical illustration of Equation 10.5, for l=2, where 
1
1A  and

1
2A  refer to the first and second fuzzy antecedents of the first rule, respectively,

and 
1B  refers to the fuzzy consequent of the first rule. Similarly, 

2
1A  and 

2
2A

refer to the first and second fuzzy antecedents of the second rule, respectively,

and 
2B  refers to the fuzzy consequent of the second rule.  Because the

antecedent pairs used in general form presented in Equation 10.4 are connected

by a logical AND, the minimum function is used.  For each rule, minimum value

of the antecedent propagates through and truncates the membership function for

the consequent.  This is done graphically for each rule.  Assuming that the rules

are disjunctive, the aggregation operation max  results in an aggregated

membership function comprised of the outer envelope of the individual

truncated membership forms from each rule.  To compute the final crisp value of

the aggregated output, defuzzification is used, which will be explained in the

next section.

1
1A

µµµµ
1
2A

µµµµ
1B

µµµµ

x1 x2

min

y

Rule 1

2
1A

µµµµ
2
2A

µµµµ
2B

µµµµ

x1 x2

min

y

Rule 2

µµµµ

y

Figure 10.4

Case 10.2: Inputs x1 and x2 are crisp values, and max-product inference method

is used. Based on the Mamdani implication method of inference, and for a set of

disjunctive rules, the aggregated output for the l rules presented in Equation 10.4

will be given by

lixxy iii AAiB
,...,2,1for  )],()([max)( 21

21

=?= µµµ (10.6)



Figure 10.5 is a graphical illustration of Equation 10.6, for l=2, where 
1
1A  and

1
2A  refer to the first and second fuzzy antecedents of the first rule, respectively,

and 
1B  refers to the fuzzy consequent of the first rule. Similarly, 

2
1A  and 

2
2A

refer to the first and second fuzzy antecedents of the second rule, respectively,

and 
2B  refers to the fuzzy consequent of the second rule.  Since the antecedent

pairs used in general form presented in Equation 10.4 are connected by a logical

AND, the minimum function is used again.  For each rule, minimum value of the

antecedent propagates through and scales the membership function for the

consequent.  This is done graphically for each rule.  Similar to the first case, the

aggregation operation max  results in an aggregated membership function

comprised of the outer envelope of the individual truncated membership forms

from each rule.  To compute the final crisp value of the aggregated output,

defuzzification is used.

1B
µ

y

2B
µ

y

µ

y

1
1A

µ 1
2A

µ

x 1
x2

min

Rule 1

2
1A

µ 2
2A

µ

x1 x2

min

Rule 2

Figure 10.5

10.2.2 Defuzzification

Defuzzification is the third important element of any fuzzy controller.  In this

section, only the center of gravity defuzzifier, which is the most common one, is

discussed.  In this method the weighted average of the membership function or

the center of gravity of the area bounded by the membership function curve is

computed as the most typical crisp value of the union of all output fuzzy sets:

y
y y dy

y dy
c

A

A

=
⋅∫

∫
µ

µ

( )

( )
(10.7)



10.3 FUZZY CONTROL DESIGN

One of the first steps in the design of any fuzzy controller is to develop a

knowledge base for the system to eventually lead to an initial set of rules. There

are at least five different methods to generate a fuzzy rule base [4]:

1. Simulate the closed-loop system through its mathematical model,

2. Interview an operator who has had many years of experience controlling the

system,

3. Generate rules through an algorithm using numerical input/output data of

the system,

4.  Use learning or optimization methods such as neural networks (NN) or

genetic algorithms (GA) to create the rules, and

5. In the absence of all of the above, if a system does exist, experiment with it

in the laboratory or factory setting and gradually gain enough experience to

create the initial set of rules.

Example 10.1

Consider the linearized model of the inverted pendulum Figure 10.6, described

by the equation given below,

˙
. .

x x u=






+






0 1

15 79 0

0

1 46

with l=0.5m, m=100g, and initial conditions 
TTT

x ]01[)]0()0([)0( == θθ & .

It is desired to stabilize the system using fuzzy rules.

Force, u

m

θθθθ&&&&

θθθθ

θθθθsinmg
l

Figure 10.6: Inverted Pendulum.

Clearly this system is unstable and a controller is needed to stabilize it.  To

generate the rules for this problem only common sense is needed, i.e., if the pole

is falling in one direction then push the cart in the same direction to counter the



movement of the pole.  To put this into rules of the form Equation 10.4 we get

the following:

u_Positive is   THEN _Negativeè is  AND è_Negative is  IF

u_Negative is   THEN _Positiveè is  AND è_Positive is  IF

u

u

&&

&&

θθ

θθ

where the membership functions described above are defined in Figure 10.7.

-1.57 1.570
θ

µ

-8 80

θ&

µ

11

- 180 1800

u

µ

1

è_Negative è_Positive _Negativeè& _Positiveè&

u_Negative u_Positive

Figure 10.7: Membership Functions for the Inverted Pendulum Problem.

As shown in Figure 10.7, the membership functions for the inputs are half-

triangular, while the membership function of the output is singleton.  By

simulating the system with fuzzy controller we get the response shown in Figure

10.8.  It is clear that the system is stable.  In this example only two rules were

used, but more rules could be added in order to get a better response, i.e., less

undershoot.

10.4 ANALYSIS OF FUZZY CONTROL SYSTEMS

In this section, some results of Tanaka and Sugeno [5] with respect to analysis

of feedback fuzzy control systems will be briefly discussed.  This section would

use Takagi-Sugeno models to develop fuzzy block diagrams and fuzzy closed-

loop models.

Consider a typical Takagi-Sugeno fuzzy plant model represented by

implication P
i
 in Figure 10.9.



)1()(           

)1()()1(  THEN

 is )1( AND  AND  is )(          

AND  is )1( AND  is )( IF:

1

10

1

1

+−++

++−+++=+

+−

+−

mkubkub

nkxakxaakx

BmkuBku

AnkxAkxP

i
n

i

i
n

iii

i
n

i

i
n

ii

K

K

K

K

(10.8)

 
(a) (b)

Figure 10.8: Simulation Results for Example 10.1: (a) )(tθ  , and (b) )(tθ& .

Pi

u(k) x(k+1)

Figure 10.9:   Single-Input, Single-Output Fuzzy Block Represented by ith

Implication P
I 
.

where ),,2,1(, liP
i

K=  is the ith implication, l, is the total number of

implications, ),,2,1(, npaip K=  and ),,2,1(, mqbiq K=  are constant

consequent parameters, k  is time sample, )1(,),( +− nkxkx K  are input

variables, n and m are the number of antecedents for states and inputs,

respectively.  The terms i
pA  and i

pB  are fuzzy sets with piecewise-continuous

polynomial (PCP) membership functions.  PCP is defined as follows.



Definition 10.1

A fuzzy set A satisfying the following properties is said to be a piecewise-

continuous polynomial (PCP) membership function A(x) [4]:

(a) A x

x x p p

x x p ps s s

( )

( ), [ , ]

( ), [ , ]

=
∈

∈









−

µ

µ

1 0 1

1

M

where µi(x)∈[0,1] for x∈[pi-1, pi], i=1,2,…,s, and

-∞<p0<p1< ... <ps-1<ps<∞.

(b) µi j
i j

j

n

x c x
i

( ) =
=
∑

0

where i
jc are known parameters of polynomials )(xiµ .

(10.9)

(10.10)

Given the inputs

T

T

mkukukuk

nkxkxkxk

)]1()1()([)(

)]1()1()([)(

+−−…

+−−…

K

K

u

x
(10.11)

Using the above vector notation, Equation 10.11 can be represented in the

following form,

P k k

x k a a x k p b u k q

i i i

i i
p
i

p

n

q
i

q

m

: IF  is  AND  is  

      THEN   

x A u B( ) ( )

( ) ( ) ( )+ = + − + + − +
= =

∑ ∑1 1 10

1 1

(10.12)

whereA
i i i

n
i T

A A A≡ [ ]1 2 K ,  B
i i i

m
i T

B B B≡ [ ]1 2 K ,  and " ( )x Ak
i

 is  " are

equivalent to antecedent “   is )1( AND  is )( 1
i
n

i
AnkxAkx +−K ”.

 The final defuzzified output of the inference is given by a weighted average of

x
i
(k+1) values:

x k

w x k

w

i i

i

l

i

i

l
( )

( )

+ =
+

=

=

∑

∑
1

1
1

1

(10.13)



where it is assumed that the denominator of  Equation 10.13 is positive, and

x
i
(k+1) is calculated from the ith implication, and the weight w

i
 refers to the

overall truth value of the ith implication premise for the inputs in Equation

10.12.

Since the product of two PCP fuzzy sets can be considered as a series

connection of two fuzzy blocks of the type in Figure 10.9, it is concluded that

the convexity of fuzzy sets in succession is not preserved in general. Now let us

consider a fuzzy control system whose plant model and controller are

represented by fuzzy implications as depicted in Figure 10.10. In this figure, r(k)

represents a reference input. The plant implication P
i
 is already defined by

Equation 10.12, while the controller’s jth implication is given by

C k k

f k c c x k p

j j j

j j
p
j

p

n

: IF  is  AND  is  

      THEN  

x D u F( ) ( )

( ) ( )+ = + − +
=

∑1 10

1

(10.14)

whereD
j j j

n
j T

D D D≡ [ ]1 2 K , F
i i i

m
i T

F F F≡ [ ]1 2 K , and of course u(k)=r(k)-f(k).

The equivalent implication S
ij
 is given by

S k k

x k a b c b r k

a b c x k p

ij i j i j

ij j i j i

p
j i

p
j

p

n

: IF  is (  AND ) AND  is  (  AND ) 

      THEN  

                                       

x A D v B F( ) ( )

( ) ( )

( ) ( )

∗

=

+ = − + +

− − +∑

1

1

0 0

1

(10.15)

where i=1,…,l1,  j=1,…,l2, and l1 and l2 are the total number of implications for

the plant and the controller, respectively.  The term v∗(k) is defined by

v k r k e x k r k e x k

r k m e x k m
T

∗ ∗ ∗

∗

= − ( ) − − −( )[
− + − − +( )]

( ) ( ) ( ) , ( ) ( ) ,

, ( ) ( )

 

               

1 1

1 1K

(10.16)

where e∗(⋅) is the input-output mapping function of block C
j
 in Figure 10.10, i.e.,

f(k)=e∗(x(k)).

Pi

Cj

PLANT

CONTROLLER

u(k)

f(k)

x(k+1)r(k)
+

- Sij
u(k) x(k+1)

Figure 10.10: A Fuzzy Control System Depicted by Two Implications and its

Equivalent Implication [4].



Example 10.2

Consider a fuzzy feedback control system of the type shown in Figure 10.10

with the following implications:

)1()()1(  THEN  is )( IF:

)1()()1(  THEN  is )( IF:

)(22.2)1(135.0)(56.2)1(  THEN  is )( IF:

)(35.0)1(65.0)(85.1)1(  THEN  is )( IF:

2
2

2
1

222

1
2

1
1

111

222

111

−−=+

−−=+

+−−=+

+−−=+

kxkkxkkfDkxC

kxkkxkkfDkxC

kukxkxkxAkxP

kukxkxkxAkxP

It is desired to find the closed-loop implications S
ij
, i=1,2, and j=1,2.

SOLUTION

Noting that u(k)=r(k)-f(k) in Figure 10.10 and the implications in Equation

10.15, we have

)(22.2)1()22.2135.0(           

)()22.256.2()1(  THEN ) AND ( is )( IF:

)(22.2)1()22.2135.0(           

)()22.256.2()1(  THEN ) AND ( is )( IF:

)(35.0)1()35.065.0(           

)()35.085.1()1(  THEN ) AND ( is )( IF:

)(35.0)1()35.065.0(           

)()35.085.1()1(  THEN ) AND ( is )( IF:

2
2

2
1

222222

1
2

1
1

211221

2
2

2
1

122112

1
2

1
1

111111

krkxk

kxkkxDAkxS

krkxk

kxkkxDAkxS

krkxk

kxkkxDAkxS

krkxk

kxkkxDAkxS

+−−−

+−=+

+−−−

+−=+

+−−−

+−=+

+−−−

+−=+

10.5 STABILITY OF FUZZY CONTROL SYSTEMS

One of the most important issues in any control system fuzzy or otherwise is

stability.  Briefly, a system is said to be stable if it would come to its equilibrium

state after any external input, initial conditions, and/or disturbances have

impressed the system. The issue of stability is of even greater relevance when

questions of safety, lives, and environment are at stake as in such systems as

nuclear reactors, traffic systems, and airplane autopilots. The stability test for

fuzzy control systems, or lack of it, has been a subject of criticism by many

control engineers in some control engineering literature [6].



Almost any linear or nonlinear system under the influence of a closed-loop

crisp controller has one type of stability test or as other. For example, the

stability of a linear time-invariant system can be tested by a wide variety of

methods such as Routh-Hurwitz, root locus, Bode plots, Nyquist criterion, and

even through traditionally nonlinear systems methods of Lyapunov, Popov, and

circle criterion. The common requirement in all these tests is the availability of a

mathematical model, either in time or frequency domain. A reliable

mathematical model for a very complex and large-scale system may, in practice,

be unavailable or unfeasible. In such cases, a fuzzy controller may be designed

based on expert knowledge or experimental practice. However, the issue of the

stability of a fuzzy control system still remains and must be addressed. The aim

of this section is to present an up-to-date survey of available techniques and tests

for fuzzy control systems stability.

From the viewpoint of stability a fuzzy controller can be either acting as a

conventional (low-level) controller or as a supervisory (high-level) controller.

Depending on the existence and nature of a system’s mathematical model and

the level in which fuzzy rules are being utilized for control and robustness, four

classes of fuzzy control stability problems can be distinguished.  These four

classes are:

Class 1: Process model is crisp and linear and fuzzy controller is low level.

Class 2: Process model is crisp and nonlinear and the fuzzy controller is low

level.

Class 3: Process model (linear or nonlinear) is crisp and a fuzzy tuner or an

adaptive fuzzy controller is present at high level.

Class 4: Process model is fuzzy and fuzzy controller is low level.

Figures 10.11-10.14 show all four classes of fuzzy control systems whose

stability is of concern. Here, we are concerned mainly with the first three

classes. For the last class, traditional nonlinear control theory could fail and is

beyond the scope of this section. It will be discussed very briefly. The

techniques for testing the stability of the first two classes of systems (Figures

10.11 and 10.12) are divided into two main groups—time and frequency.

Time-Domain Methods

The state-space approach has been considered by many authors [7]-[15]. The

basic approach here is to subdivide the state space into a finite number of cells

based on the definitions of the membership functions. Now, if a separate rule is

defined for every cell, a cell-to-cell trajectory can be constructed from the

system’s output induced by the new outputs of the fuzzy controller. If every cell

of the modified state space is checked, one can identify all the equilibrium

points, including the system’s stable region. This method should be used with

some care since the inaccuracies in the modified description could cause

oscillatory phenomenon around the equilibrium points.



Fuzzy Controller
Linear Process

Model-

+ e u yyd

Figure 10.11: Class 1 of Fuzzy Control System Stability Problem.

Fuzzy Controller
Nonlinear

Process

Model-

+ e u yyd

Figure 10.12: Class 2 of Fuzzy Control System Stability Problem.

Conventional

Crisp

Controller

Process

Model-

+ e

u

yyd

Fuzzy

Adaptation

(Tuner)

Figure 10.13: Class 3 of Fuzzy Control System Stability Problem.

Fuzzy Controller
Fuzzy Process

Model-

+ e u yyd

Figure 10.14: Class 4 of Fuzzy Control System Stability Problem.

The second class of methods is based on Lyapunov’s method. Several

authors, [5], [10], [11], [13] [16]-[23], have used this theory to come up with

criterion for stability of fuzzy control systems. The approach shows that the time



derivative of the Lyapunov function at the equilibrium point is negative semi

definite. Many approaches have been proposed. One approach is to define a

Lyapunov function and then derive the fuzzy controller’s architecture out of the

stability conditions. Another approach uses Aiserman’s method [7] to find an

adopted Lyapunov function, while representing the fuzzy controller by a

nonlinear algebraic function u=f(y), when y is the system’s output. A third

method calls for the use of so called facet functions, where the fuzzy controller

is realized by boxwise multilinear facet functions with the system being

described by a state space model. To test stability, a numerical parameter

optimization scheme is needed.

The hyperstability approach, considered by other authors [24]-[26] has been

used to check stability of systems depicted in Figure 10.11. The basic approach

here is to restrict the input-output behavior of the nonlinear fuzzy controller by

inequality and to derive conditions for the linear part of the closed-loop system

to be satisfied for stability.

Bifurcation theory [13] can be used to check stability of fuzzy control

systems of the class described in Figure 10.12. This approach represents a tool

in deriving stability conditions and robustness indices for stability from small

gain theory. The fuzzy controller, in this case, is described by a nonlinear vector

function. The stability in this scheme could only be lost if one of the following

conditions becomes true: (1) the origin becomes unstable if a pole crosses the

imaginary axis into the right half-plane—static bifurcation, (2) the origin

becomes unstable if a pair of poles would cross over the imaginary axis and

assumes positive real parts—Hopf bifurcation—or (3) new additional

equilibrium points are produced.

The last time-domain method is the use of graph theory [13]. In this approach

conditions for special nonlinearities are derived to test the BIBO stability.

Frequency-Domain Methods

There are three primary groups of methods which have been considered here.

The harmonic balance approach, considered in references [27]-[29], among

others, has been used to check the stability of the first two classes of fuzzy

control systems (see Figures 10.11 and 10.12). The main idea is to check if

permanent oscillations occur in the system and whether these oscillations with

known amplitude or frequency are stable. The nonlinearity (fuzzy controller) is

described by a complex-valued describing function and the condition of

harmonic balance is tested. If this condition is satisfied, then a permanent

oscillation exists. This approach is equally applicable to MIMO systems.

The circle criterion [8],[26],[30],[31] and Popov criterion [32],[33] have

been used to check stability of the first class of systems (Figure 10.11). In both

criteria, certain conditions on the linear process model and static nonlinearity

(controller) must be satisfied. It is assumed that the characteristic value of the

nonlinearity remains within certain bounds, and the linear process model must

be open-loop stable with proper transfer function. Both criteria can be

graphically evaluated in simple manners.  A summary of many stability

approaches for fuzzy control systems has been presented in Jamshidi[4].



10.5.1 Lyapunov Stability

One of the most fundamental criteria of any control system is to ensure stability

as part of the design process.  In this section, some theoretical results on this

important topic are detailed.

We begin with the ith Takagi-Sugeno implication of a fuzzy system:

)1()()1(  THEN       

  is )1( AND  is )( IF:

10

1

+−+++=+

+−

nkxakxaakx

AnkxAkxP

i
n

iii

i
n

ii

K

K
(10.17)

with i=1,…,l.  It is noted that this implication is similar to Equation 10.12 except

since we are dealing with Lyapunov stability, the inputs u(k) are absent.  The

stability of a fuzzy control system with the presence of the inputs will be

considered shortly.  The consequent part of Equation 10.17 represents a set of

linear subsystems and can be rewritten as [5]

)()1(  THEN       

  is )1( AND  is )( IF: 1

kk

AnkxAkxP

i

i
n

ii

xAx =+
+−K

(10.18)

where )(kx is defined by Equation 10.11 and n×n matrix iA is

Ai

i i
n
i

n
i

a a a a

=























−1 2 1

1 0 0 0

0 1 0 0

0 0 1 0

L

L

L

M M O M M

L

(10.19)

The output of the fuzzy system described by Equations 10.17-10.19 is given by

x

A x

( )

( )

k

w k

w

i
i

i

l

i

i

l
+ = =

=

∑

∑
1 1

1

(10.20)

 where w
i
 is the overall truth value of the ith implication and l is the total number

of implications.  Using this notation we then present the first stability result of

fuzzy control systems [5].

Theorem 10.1

The equilibrium point of a fuzzy system Equation 10.20 is globally

asymptotically stable if there exists a common positive definite matrix P for all

subsystems such that



.,,10 lifori
T
i K=<−PPAA (10.21)

 It is noted that the above theorem can be applied to any nonlinear system which

can be approximated by a piecewise linear function if the stability condition

(10.21) is satisfied.  Moreover, if there exists a common positive definite matrix

P , then all the Ai matrices are stable.  Since Theorem 10.1 is a sufficient

condition for stability, it is possible not to find a P > 0 even if all the Ai matrices

are stable.  In other words, a fuzzy system may be globally asymptotically stable

even if a  P > 0 is not found.  The fuzzy system is not always stable even if all

the Ai’s are stable.

Theorem 10.2

Let Ai be stable and nonsingular matrices for i=1,...,l. Then AiAj are stable

matrices for i,j=1,...,l, if there exists a common positive definite matrix P such

that

.,,10 lifori
T
i K=<−PPAA (10.22)

Example 10.3

Consider the following fuzzy system:

)1(4.0)()1(  THEN  is )( IF:

)1(6.0)(2.1)1(  THEN  is )( IF:

222

111

−−=+

−−=+

kxkxkxAkxP

kxkxkxAkxP

where  A
i
 are fuzzy sets shown in Figure 10.15.  It is desired to check the

stability of this system.

0 1-1 0 1-1

1A
µ

2A
µ

Figure 10.15: Fuzzy Sets for Example 10.3.

 SOLUTION

The two subsystems’ matrices are

A A1 2

1 2 0 6

1 0

1 0 4

1 0
=

−





=
−





. .
,

.

The product of matrix A1A2 is

A A1 2

0 6 0 48

1 0 4
=

−
−







. .

.



whose eigenvalues are λ1,2=0.1±j0.48 which indicates that A1A2 is a stable

matrix.  Thus, by Theorem 10.2 a common P exists, and if we use P with the

following,

P =
−

−






2 1 2

1 2 1

.

.

then both equations 2,10 =<− ifori
T
i PPAA  are simultaneously satisfied.

This result was also verified using simulation.  Figure 10.16 shows the

simulation result, which is clearly stable.

Figure 10.16: Simulation Result for Example 10.3.

Thus far, the criteria which have been presented treat autonomous (either closed-

loop or no input) systems.  Consider the following non-autonomous fuzzy

system:

)1()(                                       

)1()()1(  THEN       

 is )1( AND AND  is )(             

 AND   is )1( AND AND  is )( IF:

1

10

1

1

+−++

++−+++=+

+−

+−

mkxbkub

nkxakxaakx

BmkuBku

AnkxAkxP

i
m

i

i
n

iii

i
m

i

i
n

ii

K

K

K

K

(10.23)

Here, we use some results from Tahani and Sheikholeslam [23] to test the

stability of the above system.  We begin with a definition.

Definition 10.2

The nonlinear system

]),(),([],),(),([)1( kkkkkkk uxgyuxfx ==+ (10.24)

 is totally stable if and only if for any bounded input u(k) and bounded initial

state x0, the state x(k) and the output y(k) of the system are bounded, i.e., we

have



For all    and for all    and  x u x y0 < ∞ < ∞ ⇒ < ∞ < ∞( ) ( ) ( )k k k (10.25)

 Now, we consider the following theorem:

Theorem 10.3

The fuzzy system Equation 10.23 is totally stable if there exists a common

positive definite matrix P such that the following inequalities hold

.,,10 lifori
T
i K=<−PPAA (10.26)

 where Ai is defined by Equation 10.19.  The proof of this theorem can be found

in Sheikholeslam [34].

Example 10.4

Consider the following fuzzy system:

)(22.2)1(25.0)(56.0)1(  THEN  is )( IF:

)(35.0)1(25.0)(85.0)1(  THEN  is )( IF:

222

111

kukxkxkxAkxP

kukxkxkxAkxP

+−−=+

+−−=+

where  A
i
 are fuzzy sets shown in Figure 10.17.  It is desired to check the

stability of this system.  Assume that the input u(k) is bounded.

0 0.60.3 0.4 0.70

1A
µ 2A

µ

Figure 10.17: Fuzzy Sets for Example 10.4.

SOLUTION

The two subsystems’ matrices are

A A1 2

0 85 0 25

1 0

0 56 0 25

1 0
=

−





=
−





. .
,

. .

If we choose the positive definite matrix P

P =
−

−






3 1

1 1

then it can be easily verified that the systems is totally stable.

The product of matrix A1A2 is

A A1 2

0 23 0 21

0 56 0 25
=

−
−







. .

. .



The eigenvalues of product of matrix A1A2 eigenvalues are λ1,2=0.012±j0.25
which indicates that A1A2 is a stable matrix.

10.5.2 Stability via Interval Matrix Method

Some results on the stability of time varying discrete interval matrices by Han

and Lee [35] can lead us to some more conservative, but computationally more

convenient, stability criteria for fuzzy systems of the Takagi-Sugeno type shown

by Equation 10.17. Before we can state these new criteria some preliminary

discussion will be necessary.

Consider a linear discrete time system described by a difference equation in state

form:

0)0(),())(()1( xxxGAx =+=+ kkk (10.27)

where A is an n×n constant asymptotically stable matrix, x is the n×1 state
vector, and G(k) is an unknown n×n time varying matrix on the perturbation

matrix’s maximum modulus, i.e.,

kk m  allfor,)( GG ≤ (10.28)

where the ⋅  represents the matrix with modulus elements and the inequality

holds element-wise.  Now, consider the following theorem.

Theorem  10.4

The time varying discrete time system Equation 10.27 is asymptotically stable if

ρ( )A G+ <m 1 (10.29)

 where ρ ⋅( )stands for spectral radius of the matrix.  The proof of this theorem
is straightforward, based on the evaluation of the spectral norm )(kx or x(k)

and showing that if condition Equation 10.29 holds, then 
k

x k
→ ∞

=lim ( ) 0 .

The proof can be found in Han and Lee [35].

Definition 10.3

An interval matrix AI(k) is an n×n matrix whose elements consist of intervals

[bij,cij] for i,j=1,…,n, i.e.,

A I

n n

ij ij

n n nn nn

k

b c b c

b c

b c b c

( )

[ , ] [ , ]

[ , ]

[ , ] [ , ]

=
















11 11 1 1

1 1

L

M M

L

(10.30)

Definition 10.4

The center matrix, Ac and the maximum difference matrix, Am  of A I(k) in

Equation 10.30 are defined by

2
,

2

BC
A

CB
A

−
=

+
= mc

(10.31)



where  B={bij} and  C={cij}.  Thus, the interval matrix AI(k) in 10.30 can also be

rewritten as

)(],[)( kk cmcmcI AAAAAAA ∆+=+−= (10.32)

with mk AA ≤∆ )( .

Lemma 10.1

The interval matrix AI(k) is asymptotically stable if matrix Ac is stable and

1)( <+ mc AAρ (10.33)

 The proof can be found in Han and Lee [35].  The above lemma can be used to

check the sufficient condition for the stability of fuzzy systems of Takagi-

Sugeno type given in Equation 10.18.  Consider a set of m fuzzy rules like

Equation 10.18,

)()1(  THEN       

  is )1( AND  is )( IF

)()1(  THEN       

  is )1( AND  is )( IF

1

1

11
1

kk

AnkxAkx

kk

AnkxAkx

m

m
n

m

n

xAx

xAx

=+
+−

=+
+−

K

M

K

(10.34)

where Ai matrices for i=1,…,m are defined by Equation 10.19.  One can now

formulate all the m matrices Ai, i=1,…,m as an interval matrix of the form 10.30

by simply finding the minimum and the maximum of all elements at the top row

of all the Ai matrices.  In other words, we have

A I

n n n n

k

a a a a a a a a

( )

[ , ] [ , ] [ , ] [ , ]

=























− −1 1 2 2 1 1

1 0 0 0

0 1 0 0

0 0 1 0

L

L

L

M M O M M

L

(10.35)

where ii aa  and , for i=1,…,n are the minimum and maximum of the respective

element of the first rows of Ai in Equation 10.19, taken element by element.

Using the above definitions and observations, the fuzzy system Equation 10.34

can be rewritten by

)()1(  THEN       

  is )1( AND  is )( IF 1

kk

AnkxAkx

i
I

i
n

i

xAx =+

+−K (10.36)

where i=1,...,m and 
i
IA  is an interval matrix of form Equation 10.35 except that

iii aaa == .  Now, finding the weighted average, one has



x

A x

( )

( )

k

w k

w

i
I
i

i

l

i

i

l
+ = =

=

∑

∑
1 1

1

. (10.37)

Theorem 10.5

The fuzzy system Equation 10.37 is asymptotically stable if the interval matrix

AI(k) is asymptotically stable, i.e., the conditions in Lemma 10.1 are satisfied.

Example 10.5

 Reconsider Example 10.3.  It is desired to check its stability via the matrix

interval approach

SOLUTION

The system’s two canonical matrices are written in the form of an interval

matrix (10.30) as

A I k( )
[ , . ] [ . , . ]

=
− −





1 1 2 0 6 0 4

1 0

The center and maximum difference matrices are

A Ac m=
−





=






1 1 0 5

1 0

0 1 0 1

0 0

. .
,

. .

Then, condition 10.33 would become,

ρ ρ( )
. .

.A Ac m+ =






= >
1 2 0 6

1 0
1 58 1

Thus the stability of the fuzzy system under consideration is inconclusive.  In

fact, it was shown to be stable.

Consider the following fuzzy system:

P x k A x k x k x k

P x k A x k x k x k

1 1 1

2 2 2

1 0 3 0 5 1

1 0 2 0 2 1

:IF  is  THEN  

: IF  is  THEN  

( ) ( ) . ( ) . ( )

( ) ( ) . ( ) . ( )

+ = + −

+ = + −
where  A

i
 are fuzzy sets shown in Figure 10.17.  It is desired to check the

stability of this system using matrix interval method.

SOLUTION

The two subsystems’ matrices are

A A1 2

0 3 0 5

1 0

0 2 0 2

1 0
=







=






. .
,

. .

The systems’ two canonical matrices are written in the form of an interval

matrix 10.30 as



Figure 10.18: Simulation Result for Example 10.6.

A I k( )
[ . , . ] [ . , . ]

=






0 2 0 3 0 2 0 5

1 0

The center and maximum difference matrices are

A Ac m=






=






0 25 0 35

1 0

0 05 0 15

0 0

. .
,

. .

Then, condition 10.33 would become,

ρ ρ( )
. .

.A Ac m+ =






= <
0 3 0 5

1 0
0 873 1

Thus the system is stable.  This result was also verified by simulation (see

Figure 10.18).

10.6 CONCLUSION

This chapter introduced the building blocks of fuzzy control systems.  Both

Mamdani rules and Takagai-Sugeno rules were presented.  Stability analysis of

Takagi-Sugeno type fuzzy systems was addressed.  Fuzzy control systems are

very desirable in situations where precise mathematical models are not available

and the human involvement is necessary.  In that case fuzzy rules could be used

to mimic human behavior and actions.

REFERENCES

1 .  Wang, L.-X, Adaptive Fuzzy Systems and Control, Prentice Hall,

Engelwood Cliffs, NJ, 1994.

2 .  Jamshidi, M., Vadiee, N., and Ross, T. J. (eds.), Fuzzy Logic and

Control: Software and Hardware Applications, Vol 2. Prentice Hall

Series on Environmental and Intelligent Manufacturing Systems, (M.

Jamshidi, ed.), Prentice Hall, Englewood Cliffs, NJ, 1993.



3. Ross, T. J., Fuzzy Logic with Engineering Application, McGraw-Hill,

New York, 1995.

4 .  Jamshidi, M., Large-Scale Systems—Modeling, Control and Fuzzy

Logic, Prentice Hall Series on Environmental and Intelligent

Manufacturing Systems (M. Jamshidi, ed.), Vol. 8, Saddle River, NJ,

1996.

5. Tanaka, K. and Sugeno, M., Stability Analysis and Design of Fuzzy

Control Systems, Fuzzy Sets and Systems, 45, 135−156, 1992.
6. IEEE Control Syst. Mag., Letters to the Editor, IEEE, Vol. 13, 1993.

7 .  Bretthauer, G. and Opitz, H.-P, Stability of fuzzy systems, Proc.

EUFIT’94. Aachen, Germany, Sept., 1994, 283−290, 1994.
8.  Aracil, J., Garcia-Cezero, A., Barreiro, A., and Ollero, M., Stability

Analysis of Fuzzy Control Systems: A Geometrical Approach,

Kulikowski, C.A. and Huber, R.M. (eds.), AI, Expert Systems and

Languages in Modeling and Simulation, North Holland, Amsterdam,

323−330, 1988.
9. Chen, Y. Y. and Tsao, T. C., A description of the dynamical behavior

of fuzzy systems, IEEE Trans. on Syst., Man and Cyber., 19, 745−755,
1989.

10. Wang, P.-Z., Zhang, H. –M, and Xu, W., Pad-Analysis of Fuzzy

Control Stability, Fuzzy Sets and Systems, 38, 27−42, 1990.
11. Hojo, T., Terano, T., and Masui, S., Stability Analysis of Fuzzy Control

Systems, Proc. IFSA ’91, Engineering, Brussels, 44−49, 1991.
12. Hwang, G.-C and Liu, S. C., A Stability Approach to Fuzzy Control

Design for Nonlinear Systems, Fuzzy Sets and Systems, 48, 279−287,
1992.

13. Driankov, D., Hellendoorn, H., and Reinfrank, M., An Introduction to

Fuzzy Control, Springer-Verlag, Berlin, 1993.

14. Kang, H., Stability and Control of Fuzzy Dynamic Systems via Cell-

State Transitions in Fuzzy Hypercubes, IEEE Trans. on Fuzzy Systems,

1, 267−279, 1993.
15. Demaya, B., Boverie, S., and Titli, A., Stability Analysis of Fuzzy

Controllers via Cell-to-cell Root Locus Analysis, Proc. EVFIT ’94,

Aachen, Germany, 1168−1174, 1994.
16. Langari, G. and Tomizuka, M., Stability of Fuzzy Linguistic Control

Systems, Proc. IEEE Conf. Decision and Control, Hawaii, 2185-2190,

1990.

17. Bouslama, F. and Ichikawa, A., Application to Limit Fuzzy Controllers

to Stability Analysis, Fuzzy Sets and Systems, 49, 103−120, 1992.
18. Chen, C.-L, Chen, P.-C., and Chen, C.-K, Analysis and Design of a

Fuzzy Control System, Fuzzy Sets and Systems, 57, 125-140, 1993.

19. Chen, Y. Y., Stability Analysis of Fuzzy Control –a Lyapunov

Approach, IEEE Ann. Conf. Syst., Man, and Cyber., 19, 1027-1031,

1987.

20. Franke, D., Fuzzy Control with Lyapunov Stability, Proc. European

Control Conf., Groningen, 1993.



21. Gelter, J. and Chang, H. W., An Instability Indicator for Expert

Control, IEEE Trans. on Control Syst., Vol. 31, 14−17, 1986.
22. Kiszka, J. B., Gupta, M. M., and Nikiforuk, P. N., Energistic Stability

of Fuzzy Dynamic Systems, IEEE Trans. on Syst., Man and Cyber., 15,

783-792, 1985.

23. Tahani, V. and Sheikholeslam, F., Extension of New Results on

Nonlinear Systems Stability of Fuzzy Systems, Proc. EUFIT’94,

Aachen, Germany, 638−686, 1994.
24. Barreiro, A. and Aracil, J., Stability of Uncertain Dynamical Systems.

Proc., IFAC Symp. on AI in Real-Time Control, Delft,  177−182, 1992.
25. Opitz, H. P., Fuzzy Control, Teil 6: Stabilitat von Fuzzy-Regelungen,

Automatisierungstechnik, 41, A21−24, 1993.
26. Opitz, H.P., Stability Analysis and Fuzzy Control, Proc. Fuzzy

Duisburg ’94, Int. Workshop on Fuzzy Technologies in Automation and

Intelligent Systems, Duisburg, 1994.

27. Braee, M. and Rutherford, D. A., Selection of Parameters for a Fuzzy

Logic Controller, Fuzzy Set and Syst., 49, 103−120, 1978.
28. Braee, M. and Rutherford, D. A., Theoretical and Linguistic Aspects of

the Fuzzy Logic Controller,  Automatica, 15, 553−577, 1979.
29. Kickert, W. J. and Mamdani, E.H., Analysis of Fuzzy Logic Controller,

Fuzzy Sets and Syst., 1, 29−44, 1978.
30. Ray, K. S. and Majumder, D. D., Application of Circle Criteria for

Stability Analysis Associated with Fuzzy Logic Controller, IEEE

Trans. on Syst., Man and Cyber., 14, 345-349, 1984.

31. Ray, K. S., Ananda, S. G., and Majumder, D. D., L-stability and the

Related Design Concept for SISO Linear Systems Associated with

Fuzzy Logic Controller, IEEE Trans. on Syst., Man and Cyber., 14,

932−939, 1984.
32. Böhm, R., Ein Ansatz Zur Stabilitätasalyse von Fuzzy-Reglern.

Forschungsberichte Universitäte Dortmund, Fakultät fur

Elektrotechnik, Band Nr. 3,2. Workshop Fuzzy Control des GMA-UA

1.4.2. am 19/20.11.1992, 24−35, 1992.
33. Bühler, H., Stabilitatsuntersuchung von Fuzzy-Regelungssystemem,

Proc., 3, Workshop Fuzzy Control des GMA-UA 1.4.1, Dortmund, 1-

12, 1993.

34. Sheikholeslam, F, Stability Analysis of Nonlinear and Fuzzy Systems,

M.Sc. Thesis, Department of EECS Isfahan University of Technology,

Isfahan, Iran, 1994.

35. Han, H. S. and Lee, J. G, Necessary and Sufficient Conditions for

Stability of Time-varying Discrete Interval Matrices, Int. J.  Control,

Vol. 59, 1021−1029, 1994.



11
SOFT COMPUTING APPROACH

TO SAFE NAVIGATION OF

AUTONOMOUS PLANETARY

ROVERS

Edward Tunstel, Homayoun Seraji, and Ayanna Howard

11.1  INTRODUCTION

During the past decade, the National Aeronautics and Space Administration

(NASA) has been engaged in the conceptualization and implementation of space

flight missions to planet Mars. As an integral part of its initiatives to explore the

planet’s surface, NASA has opted to employ mobile robots that are designed to

rove across the surface in search of clues and evidence about the geologic and

climatic history of the planet.  These planetary rovers must have mobility

characteristics that are sufficient for traversing rough and rugged terrain.

Moreover, due to the extreme remoteness of their operating environment, Mars

rovers must be capable of operating autonomously and intelligently.

The first autonomous planetary rover, named Sojourner, was deployed on

Mars in the summer of 1997.  This planetary rover was a part of the payload on

the NASA Mars Pathfinder lander, which also carried a stereo imaging system,

various science instruments, and a telecommunications system that served as a

communications relay between Earth and the rover. Sojourner was used to

demonstrate the viability of exploring planetary surfaces using mobile robot

technology; its mission was limited to minimal scientific surface exploration

confined to an area in close proximity to the lander. At NASA, the focus of

ongoing research for subsequent rover deployments is on enhanced mobility and

increased autonomy.  In 2003, NASA plans to launch a follow up Mars mission

that will use two rovers to explore distinct regions of the planet’s surface.  These

Mars exploration rovers will have greater mobility and autonomy than Sojourner

since they are expected to traverse up to 100 meters each Martian day and to

conduct exploration independent of a surface lander.  The longer-term

technology requirements for future Mars missions call for rovers that are

capable of traversing distances on the order of kilometers over high risk and

challenging terrain.  This chapter describes fundamental research aimed at

achieving such long term objectives through application of soft computing

techniques for safe and reliable autonomous rover navigation

11.1.1 Practical Issues in Planetary Rover Applications

Autonomous rovers designed for planetary surface exploration must be

capable of point-to-point navigation in the presence of varying obstacle

distributions (rocks, boulders, etc.), surface characteristics, and hazards.

Mobility and navigation hazards include extreme slopes, sand/dust-covered pits,



ditches, cliffs and otherwise unstable surfaces.  As in the Mars Pathfinder

mission scenario, the navigation task can be facilitated by knowledge of a series

of waypoints (path sub goals) furnished by mission operations personnel or an

automated path planner, which lead to designated intermediate goals. Waypoints

can be selected with the aid of images taken at the scene local to the rover. This

mode of operation may also prevail on the 2003 rover mission, albeit with

significantly longer traverse distances to locations viewable within the images

captured by the rovers’ onboard cameras.  The round trip communication time

delay between Earth and Mars, coupled with lack of frequent opportunities for

communication with landed resources on Mars, makes direct control of a Mars

rover all but impractical. Supervised autonomous control of the rover must

therefore be achieved without the luxury of continuous or frequent remote

communication between the Earth-based mission operations facility and the

Mars rover.

Advanced rovers must have autonomy sufficient to avoid hazards and

negotiate (if necessary) challenging terrain if they are to be of practical use for

carrying out the goals of scientific exploration in an environment as harsh as the

Martian surface.  In essence, a capacity for safe navigation and survivability is

required for the types of long-duration missions included on the NASA

“roadmap” for Mars exploration.  For typical missions, rover autonomy

capabilities must be provided under significant constraints on power,

computation, weight, and communications bandwidth. To further increase the

challenge, many popular and fast state-of-the-art processors that enable

advanced capabilities in laboratory research robots are infeasible for planetary

rover applications.  This is due to the fact that space flight projects require the

use of proven, radiation-hardened or otherwise space-flight-qualified electronics

that will survive and operate in the harsh temperature and radiation extremes of

space. The meager availability of fast and/or powerful space-qualified

processors for onboard computation intensifies the need for efficient algorithms

for implementing the necessary onboard autonomy.

In order to advance rover navigation capabilities beyond those of Sojourner,

and even the twin Mars exploration rovers planned for the NASA 2003 Mars

mission, advanced algorithms and computational approaches to autonomy and

intelligent control must be pursued that comply with the practical constraints.

Our research has revealed that the various components of soft computing hold

promise as strong candidate technologies that can enable significant advances.

The flexibility in applying soft computing techniques, individually or as a hybrid

system, facilitates the formulation of efficient solutions to the problems of safe

rover navigation in challenging terrain.  We have developed a fuzzy-logic-based

reasoning and control framework that is complemented by neural networks and

visual perception algorithms to realize a practical rover navigation system.

In the following sections, we describe the various components of the safe

navigation system and several ways in which soft computing techniques have

been applied to solve different aspects of the rover navigation problem. Section

11.2 provides a high level description of the navigation system and its fuzzy

logic foundation.  In section 11.3, fuzzy logic methods for reasoning about rover



vehicle health and safety are described. Next, a methodology for factoring

perception of terrain quality into the navigation logic is presented in section

11.4.  Section 11.5 describes the fuzzy behavior-based approach and elemental

motion behaviors of the system.  The soft computing algorithms have been

implemented on a commercial mobile robot used as a testbed for outdoor

navigation research. In section 11.6, we discuss experimental investigations with

this robot that demonstrate the various component technologies.  This is

followed by a summary and concluding remarks.

11.2  NAVIGATION SYSTEM OVERVIEW

Upon viewing images of the Martian landscape (see Figure 11.1), one would

agree that the terrain could be difficult to traverse even for a human driver of an

off-road vehicle.  The difficulty of the problem increases by orders of magnitude

for an autonomous robotic rover. Nonetheless, human driver performance is a

worthy goal to strive for in the design of a rover navigation system.  In our

design, we exploit the fact that fuzzy logic provides a viable means for

endowing a computing system with human-like algorithmic reasoning

capabilities.  In part, we have sought to develop fuzzy inference systems for

navigation that emulate human judgment and reasoning as derived from off-road

driving heuristics [1] and loose analogies to rating systems used by rock

climbers to assess the difficulty of traversing rough terrain [2].

Figure 11.1: Mars Pathfinder Landing Site, 1997.

The safe navigation system is comprised of the various modules and

components shown in Figure 11.2.  With the exception of the low-level rover

motion control system, each component is implemented using soft computing

techniques — primarily fuzzy reasoning and control along with artificial neural

networks, embedded within a behavior-based structure.  The system consists

primarily of modules dedicated to rover safety reasoning and strategic

navigation control.  These are accompanied by associated perception and

actuation functionality.  The safety reasoning module focuses on vehicle



survivability and health, while the strategic navigation module focuses on

mission and goal-directed motion from place to place.

Figure 11.2: Modular System Diagram.

11.2.1 Fuzzy Behavior-Based Structure

We have adopted a fuzzy behavior-based approach [3] for implementation of

the knowledge-based reasoning and control components. The architectural

design is based on the premise that autonomous navigation functionality can be

decomposed into a finite number of special purpose task achieving and decision-

making behaviors. The basic building block, then, of the navigation strategy is a

behavior. A behavior represents a mapping, from perceptions or goals to actions

or decisions, aimed at achieving a given desired objective. That is, behaviors

may be of two general types: control behaviors and decision behaviors.  Fuzzy

control behaviors are encoded as fuzzy rule bases with distinct control policies

governed by fuzzy inference. The control behaviors are typically simple and

self-contained behaviors that serve a single purpose while operating in a reactive

(nondeliberative) or reflexive (memoryless) fashion.  Within each control

module, fuzzy control behaviors perform nonlinear mappings from different

subsets of the available sensor suite to set-points for common actuators.  If X

and U are input and output universes of discourse of a behavior with a rule base

of size n, the usual fuzzy IF-THEN rule takes the following form

IF  is ,  THEN  is x C u Ai i (11.1)

where x and u represent input and output fuzzy linguistic variables, respectively,

and Ci and Ai (i = 1...n) are fuzzy subsets denoting linguistic values of x and u,

which represent possible conditions and actions.  In our case, the input x refers

to sensory data; u refers to motion control variables that influence rover

translation and rotation.  The control variables serve as set points for low level

classical PID (proportional integral derivative) motor controllers. In general, the

rule antecedent consisting of the condition x  is C i could be replaced by a

compound fuzzy proposition consisting of conjunctions, disjunctions, or

complements of similar propositions. Similarly, the rule consequent consisting

Sensing & Perception

Safety
Reasoning

Terrain
Assessment

Strategic
Navigation

Motion Control System

stable attitude

traction

homeostasis

seek-goal

traverse-terrain

avoid-obstacle



of the action u  is A i  could be composed of multiple rule base output

propositions.  Equation 11.1 represents a typical rule that expresses the actions

taken by an expert human driver based on the prevailing conditions.

The control behaviors can be executed individually or concurrently to

produce intelligent behavior for goal-directed navigation.  Concurrent execution

of fuzzy behaviors is facilitated by fuzzy decision-making modules, which

combine the individual capabilities by implementing a fuzzy set theoretic

approach to inferring control gains and computing control inputs for the rover.

Within each decision module, fuzzy decision behaviors map perceptual and goal

information to appropriate gains based on the current situation or context.

Reasoning is governed by rules of the following form

IF  is ,  THEN  is x S w Gk k (11.2)

where x and w are fuzzy linguistic variables that represent sensor/goal data and

control behavior gains, respectively. Here, Sk and Gk are fuzzy subsets of x and

w, which represent possible navigational situations and adjustable gains.

Implementation details of each component are presented in the following

sections.  In the next section, we discuss relevant rover health and safety issues.

We then describe how fuzzy logic can be applied to provide an intrinsic safety

cognizance and a capacity for reactive mitigation of navigation risks.  Having

described how a nominal level of safety assurance can be achieved, we move on

in subsequent sections to discuss higher-level cognitive components of the

system that provide the strategic navigation capabilities necessary to perform

mission- and goal-directed tasks.

11.3 FUZZY-LOGIC-BASED ROVER HEALTH AND SAFETY

Built-in safe operation and health cognizance are essential for autonomous

traversal through challenging terrain over extended time and distance. In many

existing systems [4, 5], it is common to consider basic monitoring of individual

hardware components for proper operation, but without explicit autonomous

reaction or counteraction by the rover. Efficient management of onboard

resources, such as power and science data storage capacity and regulation of

energy and internal temperature are common concerns for maintaining vehicle

health [5-7].  In addition to vehicle health, operational safety is of primary

importance.  Navigation systems have also been developed which account for

some measure of risk mitigation with respect to accidental damage (as due to

tipover) and/or vehicle entrapment [8, 9].  However, few field mobile robot

systems have been reported in the literature that feature efficient implementation

of both active vehicle health and safety countermeasures.

11.3.1 Health and Safety Indicators

The ability of a system to provide substantial safety countermeasures depends

upon its capacity for assessing vehicle status with respect to the operating



environment. Various observable states, events, and terrain features can be

considered for online assessment of a rover’s operational status.  Table 11.1 lists

a number of possible health and safety indicators (HSIs) associated with rover

on-board subsystems, which convey some aspect(s) of rover operational well

being as it relates to safe terrain traversal. At any given moment, the amount of

power available to a rover system is perhaps the strongest indicator of its

operational health.  Solar energy is the primary power source for planetary

rovers, although some systems have the luxury of rechargeable batteries.  The

attitude (pitch and roll) of the vehicle chassis can be monitored in order to avoid

instabilities associated with ascent/descent of slopes, traversal of rocky terrain,

and turning within vehicle curvature constraints. In addition to surface

irregularities, the type and condition of the terrain surface provide clues for

safety assessment. Human automobile drivers are able to perceive certain road

conditions (e.g., oil slicks, pot holes, and ice patches) as measures of safety,

which can be reacted to in order to reduce the risk of potential accidents.  In a

similar manner, rover potential safety can also be inferred and reacted to based

on knowledge of the terrain type or condition. Wheel-soil interactions are

important mobility considerations in natural terrain.  Excessive wheel slip

reduces the effective traction that a rover can achieve and, therefore, its ability

to make significant forward progress (not to mention the dramatic effect it can

have on the accumulation of errors in estimated position and orientation over

distance and time).  On soft soils, such as sand, excessive wheel slip can often

lead to wheel sinkage and eventual entrapment of the vehicle.  Unfortunately,

wheel slip and sinkage are often difficult to measure and estimate in a simple

manner.  Some progress has been made, however, in developing statistical

estimation approaches for planetary rovers [10].  One simple approach involves

the detection of drive motor stall via current sensing.  A detected stall condition

for one or more drive motors could be indicative of sinking, trapped, or stuck

wheels.  However, additional reasoning beyond speculation of the possible

causes of a stalled motor would likely be necessary to assess the actual vehicle

status.  Other HSIs can be considered that are related to critical internal

environmental conditions such as temperatures of hardware components that are

sensitive to thermal variations.  In addition, general dynamic and kinematic

states can be monitored for compliance with vehicle mechanical capabilities and

constraints.

Table 11.1: Rover Health and Safety Indicators.

Health Safety

Available power Chassis attitude

Component failure or anomaly Terrain type or condition

Component temperature Wheel slip and sinkage

Drive motor stall Dynamic/kinematic compliance

Ultimately, a comprehensive autonomous vehicle health and safety system is

desired to increase rover survivability.  Perhaps consideration of all items in

Table 11.1 would make this possible, but such complete observability is rare in

practice.  To this end, we have concentrated on providing some of the elements



necessary to approach the ultimate goal.  As a baseline set of HSIs, we have

considered chassis attitude, terrain type and condition, and available power.

The safety module will also incorporate a reasoning approach to homeostatic

regulation of onboard resources.  That is, the addition of automated mechanisms

for self-regulation of internal operating condition is planned.  A capability such

as this is analogous to self regulating functions provided by parts of human or

animal physiology.  An example of how this can be done is discussed in Arkin

[11], where a homeostatic control approach for mobile robots is proposed based

on an analogy with the mammalian endocrine system.  In that work, internal

sensing is used to stimulate behavioral reactions through gain modulation and

parameter adjustment, which contribute to regulation of energy and internal

temperature. In our navigation system, this can be achieved through rover speed

modulation and adjustment of relevant fuzzy set membership function

parameters, to contribute to power efficiency and thermal regulation.  A related

approach applied to planetary rover prototypes is described by Huntsberger and

Rose [6].  Reactions to power and internal temperature threshold violations are

automatically invoked in response to internal sensing. The reactions consist of

halting rover motion to cool down or recharge batteries via solar panels, and

activating internal heaters to warm up when necessary.

At this stage of development, the safety module employs concise fuzzy

systems that provide autonomous reasoning to facilitate maintenance of stable

vehicle attitude (pitch and roll) and wheel traction on rough terrain.  The system

employs off-road driving heuristics to facilitate avoidance of hazardous vehicle

configurations and excessive wheel slip.  In each case, our system is designed to

produce safe speed recommendations associated with the current perception of

the safety status of the rover.  In the following section, we discuss the associated

soft computing solutions.

11.3.2 Stable Attitude Control

For indoor mobile robots, mobility and navigation problems can often be

addressed in two dimensions since the typical operating environments consist of

flat and smooth floors.   In sharp contrast to this, mobility and navigation

problems for outdoor rough terrain vehicles are characterized by significantly

higher levels of difficulty.  This is due to the fact that complex motions in the

third dimension occur quite frequently as the vehicle traverses undulated terrain,

encountering multidirectional impulsive and resistive forces throughout.  The

problem is more pronounced for vehicles with more or less rigid suspensions

than it is for vehicles with articulated chassis.  In any case, sufficient measures

must be taken to maintain upright stability of the vehicle in both static and

dynamic configurations.

For safety monitoring, the rover is outfitted with a two-axis inclinometer/tilt-

sensor to measure pitch and roll.  It is model CXTA02, manufactured by

Crossbow Technology, Inc., which features +/- 75º range and 0.05º resolution.

In this case, perhaps the simplest approach is to stop rover motion when either

axis senses tilt beyond a critical threshold.  In a few instances this may be



sufficient.  More often than not, however, dynamic effects such as momentum

will quickly defeat the simplest approach and cause the rover to reach marginal

stability (a point at which the vehicle begins to tip over), or worse yet, to

actually tip over.  Even though planetary rovers are typically driven at low

speeds (e.g., maximum average speed of ~0.3 m/s), more sophistication is

required beyond binary threshold reactions.  We have elected to formulate a

strategy in which the recommended safe speed for the rover is proportionately

modulated in reaction to changes in attitude (pitch and roll).  When the rover

travels on a relatively level surface, a maximum safe speed is recommended.  As

pitch and/or roll approaches extremes near marginal stability, gradual reductions

in safe speed are recommended (including the stop condition). At attitudes

between these extremes, recommended safe speeds are computed by

interpolation via fuzzy sets and logical inference.

By considering various off-road driving heuristics for traversing rock fields,

ravines, and hills (up-, down-, and side-hill), a set of fuzzy logic rules is

formulated to maintain stable rover attitudes for safe navigation.  Fuzzy subset

partitions and membership function definitions for pitch and roll are derived

based on subjective assessment of the problem. Pitch is represented by five

fuzzy sets with linguistic labels {NEG-HIGH, NEG-LOW, ZERO, POS_LOW,

POS-HIGH}, while roll is partitioned using three fuzzy sets with linguistic

labels {NEG, ZERO, POS}.  Here, positive and negative are abbreviated by

“pos” and “neg,” respectively.  Bounds on the universe of discourse for attitude

measurements are chosen in accordance with the rover stability constraints and

the level of acceptable risk. The rules and input membership functions for the

stable attitude control component are shown in Figure 11.3.  As is typical in

fuzzy control systems, the membership functions, used to express uncertainty in

the variables of each system component, take on triangular and/or trapezoidal

shapes.

Figure 11.3: Rules and Input Membership Functions for Attitude Control.

Fifteen fuzzy logic rules are employed to map the range of stable attitudes to

safe driving speed recommendations.  In addition to these rules, a crisp rule is

applied to handle the extreme cases when marginal stability is reached and the

safest reaction is to stop the motion.  However, in contrast to the binary

threshold scheme, as marginal stability is approached the rover speed is

SLOW  MOD  MOD   MOD   SLOW

MOD  MOD  FAST   MOD   MOD

SLOW  MOD  MOD  MOD   SLOW

NH        NL        Z         PL       PH

NEG

Z

POS

pitch
roll

NEG Z POS

NH Z PHPLNL

µµµµ((((ψψψψ))))

ψψψψ

µµµµ((((ρρρρ))))

ρρρρ

0

0



smoothly decreased to near zero due to the interpolation provided by the fuzzy

logic rules.

11.3.3 Traction Management

In the absence of some measure of control, wheeled vehicles are prone to loss

of traction under certain conditions.  On dry paved roads, traction performance

is perhaps maximal for most wheeled vehicles due to the high coefficient of

friction/adhesion between the road and tread (whether rubber or metal as in the

case of some rover wheels).  On off-road terrain, however, a variety of surface

types are typically encountered including sand, gravel, densely packed soil, ice,

mud, and so on.  Based on current knowledge about the surface of Mars, rovers

may encounter additional types of hard and soft surfaces on which rover wheels

are susceptible to slippage.  As mentioned above, loss of traction due to

excessive wheel slip can lead to wheel sinkage and ultimately, vehicle

entrapment. Frequent loss of traction during a traverse from one place to another

will also detract significantly from the ability to maintain good position

estimates.  To improve mobility and navigation performance of rovers, a

mechanism for regulating or minimizing wheel slip is highly desirable.

The problem of traction control is not new.  It is a common problem in

automobile and general transportation vehicle design with a variety of effective

solutions.  In many cases, solutions are derived from analyses based on the

following equation for wheel slip ratio, λ, which is defined nondimensionally as

a percentage of vehicle forward speed, v:

λ
ω

= −






1 100

v

rw w

*  (11.3)

Here, rw is the wheel radius and ωw is the wheel rotational speed.  Equation 11.3

expresses the normalized difference between vehicle and wheel speed.

Therefore, when this difference is nonzero, wheel slip occurs.  The objective of

traction control is to regulate λ to maximize traction.  This is a relatively

straightforward regulation task if v and ωw are observable.  Wheel speed is

typically available from shaft encoders or tachometers.  However, it is often

difficult to measure the actual over-the-ground speed for off-road wheeled

vehicles.  The problem is further complicated by nonlinearities and time varying

uncertainties due to wheel-ground interactions.  Despite this, effective solutions

have been found for automotive applications.  In fact, fuzzy logic is a common

tool for antilock (deceleration) and antislip (acceleration) control [12-15].  In

these cases, measurement of v is facilitated by the even surface on which the

vehicle travels. For example, in Arkin [11] an accelerometer is used to measure

vehicle speed and the slip ratio is estimated based on deceleration of the four

wheels. In Bauer and Tomizuka [13], the measurement of vehicle speed is

facilitated by the use of magnetic markers alongside the road in an intelligent

highway automation system. In this case, the vehicle speed is measured

according to travel time between markers. For application to an electrically



driven locomotive, the solution in Palm and Storjohann [14] makes use of a

model of the friction-slip relationship, which is fixed for the wheel-rail

interaction. On outdoor terrain, the friction-slip relationship varies with surface

type. In large part, the available solutions are not directly transferable to off-road

vehicle applications for which the terrain is uneven as opposed to being

relatively flat, as is the case for automobiles and locomotives.

The use of an accelerometer to measure off-road vehicle speed is problematic

since the gravity effects of traversing longitudinal and lateral slopes will

interfere with the measurement.  For an accelerometer used to measure

horizontal acceleration, any off horizontal vehicle tilt will be sensed as a change

in acceleration; as a result, the integrated velocity will be in error.  This is

realized in Van der Burg and Blazevic [16] where an alternative traction control

concept for rovers is considered.  In that case, a non-driven “free wheel” is

proposed for measuring actual vehicle speed.  Another promising solution was

proposed for rovers with an articulated chassis, which enables active control of

the vehicle center of gravity. For those vehicles, the use of accelerometers in

concert with rate gyroscopes is suggested [17].

In our work, we have elected to take a simple linguistic approach that does not

rely on accurate sensing of vehicle speed.  Instead, visual perception of terrain

surface type is used to infer an appropriate speed of traversal.  Results from

traction tests performed on the actual rover are used to determine appropriate

speeds for a range of potential surface types.  In particular, the rover is tested on

different terrain surfaces (e.g., sand, gravel, densely packed soil, etc.) to

determine the maximum speeds achieved before the onset of wheel slippage.

Given this information, commanded vehicle speed can be modulated during

traversal based on visual classification of the terrain surface type just ahead of

the rover.  This is analogous to the perception-action process that takes place

when a human driver notices an icy road surface ahead and decelerates to

maintain traction.  For the rover, such speed modulation allows management of

traction by mitigating the risk of wheel slippage.

Given the results of actual traction tests, the formulation of fuzzy rules to

achieve speed modulation is relatively straightforward.  The success of the

traction management approach depends more heavily on the ability to perceive

and classify the various terrain surface types.  The problem of off-road surface

type identification would be quite formidable for systems equipped with only

proximity sensors, range finders, and/or tactile probes. However, visual image-

based classification has been found to be particularly promising [18]. We will

now describe an artificial neural network solution to this problem that provides

qualitative information about the expected surface traction ahead of the rover.

This information is used to infer tractive rover speeds via fuzzy inference.

11.3.3.1 Neuro-Fuzzy Solution

Distinct terrain surfaces reflect different textures in visual imagery. The

ability to associate image textures to terrain surface properties such as traction,

hardness, or bearing strength has clear benefits for safe autonomous navigation.

To provide this capability, we make use of an onboard camera pointed such that



its field of view (FOV) covers an area on the ground in front of the rover.  In

this way, the projected image provides a downward looking view of the surface

as illustrated in Figure 11.4a. Using a neural network (Figure 11.4b), texture

analysis is performed on image data acquired by the camera.  That is, a neural

network classifier, trained to associate texture with several surface types,

provides the information needed to make any necessary adjustments to wheel

speed in order to maintain traction on the classified surface. Based on typical

surfaces that the rover may encounter, three texture prototypes are selected:

sand, gravel, and compacted soil (Figure 11.5).

FOV

     
                                      (a)                                                                              (b)

Figure 11.4: (a) Camera Mounted on Rover; (b) Neural Network for Surface

Classification.

The method proceeds as follows.  Assuming the section of the image just

ahead of the front wheels is free of obstacles, a set of 40x40 pixel image blocks

is randomly selected from a camera image of size 320x280 pixels.  To reduce

the large data dimensionality inherent in typical vision-based applications, a

filtering step is performed.  This permits effective extraction of features

embedded in the surface image data set in real time.  The image blocks are

normalized to compensate for lighting variations and the data is used to train the

neural network classifier.  After training the network on typical image data

representing different surface prototypes, we utilize it to classify the surface

types during run time.

Figure 11.5: Terrain Surface Texture Images: Gravel, Sand, Compacted Soil.

The neural network is trained to provide texture prototype outputs in the unit

interval [0, 1], with 0 corresponding to surfaces of very low traction (e.g., ice)

and 1 corresponding to surfaces of high traction (e.g., dry cement).  This is a



design decision motivated by a desire to establish some correlation to actual

wheel-terrain coefficients of friction.  In this way, we can make a qualitative

association between neural network output and expected traction in front of the

rover.  In the sequel, we will refer to the texture prototype output as the traction

coefficient, denoted by Ct.

Wheel-terrain friction coefficients for a variety of tread and surface types are

widely published in the literature on vehicle mechanics.  However, published

friction coefficients for identical tread and surface types vary from source to

source.  This is due to the fact that measured values depend heavily on the

variety of tests and conditions from which they were generated.  Nevertheless,

common ranges of friction coefficients for given tread and surface types are

widely agreed upon.  The following are typical estimates of the friction

coefficient for rubber tires on various surfaces: icy road/snow (0.1), sand (0.3),

slippery/wet road (0.4), hard unpaved road (0.65), grass (0.7), and dry paved

road (0.8-1.0).

Given the uncertainty in associating exact friction coefficients with certain

terrain surface types, and the loose correlation provided by the traction

coefficient, we elect to reason about traction using fuzzy logic.  The range of

traction coefficients, [0,1], obtained from the neural network classifier is

partitioned using three fuzzy sets with linguistic labels {LOW, MEDIUM,

HIGH}.  Triangular membership functions are used which are equally

distributed throughout the universe of discourse.  Based on these definitions, the

following simple fuzzy logic rules are applied to manage rover traction on

varied terrain:

• IF Ct is LOW, THEN v is SLOW.

• IF Ct is MEDIUM, THEN v is MODERATE.

• IF Ct is HIGH, THEN v is FAST.

Here, membership functions for the rover speed v are defined over the range

of tractive speeds that result from traction tests on various surface types.  Note

that the neural network can be trained to map its inputs directly to the actual

range of tractive speeds (rather than the range of Ct).  However, in this neuro-

fuzzy approach, fuzzy inference serves to accommodate uncertainties in both the

surface classification and the subsequent specification of tractive speed.

In summary, the stable attitude and traction management components of the

safety module combine to provide active countermeasures to potential vehicle

tip over and excessive wheel slip.  The minimum of the rover speeds inferred by

the two components is issued as the safe speed recommendation vsafe.  The

interface between the safety module and the strategic navigation module is

depicted in Figure 11.6.  As indicated by the diagram, safe speeds recommended

by the safety module are compared to the strategic speed recommendations, and

the safest speed is issued as the commanded set point for the motion control

system. The determination of safe rover speed is independent of the behavior

fusion process (discussed later) that produces the strategic navigation speed.

This allows recommended safe speeds to override strategic speeds, if necessary,



to ensure vehicle safety.  This is also the approach taken in Murphy and

Dawkins [19] where it is asserted that distributing speed control across all

behaviors makes it difficult to ensure that the interactions will yield a safe speed.

Figure 11.6: Safety and Strategic Navigation Module Interface.

11.4 TERRAIN-BASED FUZZY NAVIGATION

In dealing with day-to-day processes, humans make subjective decisions based

on qualitative information. Their perception of processes is based on qualitative,

rather than quantitative, assessments obtained from imprecise and approximate

measurements. The human control strategy for a process typically consists of

simple, intuitive, and heuristic rules based on prior experience that are brought

to bear to affect the process. For instance, in the process of driving a car, the

human driver turns the steering wheel to the right if the car veers too far to the

left, and vice versa. The driver intuitively determines the degree of course

correction based on driving experience, rather than resorting to mathematical

modeling and formulation of the process. His actions are based on how far from

the lane the car has moved and on how fast the car is moving. Similarly, the

driver adjusts the speed of the car based on his subjective judgment of the road

conditions, e.g., the car speed is decreased in off-road driving on a bumpy and

rough terrain but is increased on a smooth and flat surface. This human control

strategy exhibits characteristics of reactivity, set point tracking, and regulation,

all perceptually guided by qualitative situational assessments. As mentioned

earlier, it is highly desirable to capture the essence of the tight perception-action

control loop exhibited by human drivers for implementation in autonomous

navigation strategies for planetary rovers.

To develop intelligent navigation controllers, we formulate simple and

intuitive fuzzy logic rules that capture the attributes of human driver reasoning

and decision-making. Robust navigation behavior in practical rover systems can

be achieved when perception uncertainty and actuator imprecision is

accommodated by the rover control system. Such is the case when fuzzy logic

control and decision systems are employed.  That is, the linguistic values in the

rule antecedents can be chosen to convey the imprecision associated with on-

board sensor measurements, while those in the rule consequents can represent

the vagueness inherent in the reasoning processes and the imprecision inherent

in actuator operation. Having developed a number of desired navigation



behaviors in this way, one may rely upon the computational mechanisms of

fuzzy logic to provide robust inference and approximate reasoning under

practical uncertainties.  The operational strategies of the human expert driver

then, can be transferred via fuzzy logic tools to the robot navigation strategy in

the form of several fuzzy behaviors. The main advantages of such a navigation

strategy lie in the ability to extract heuristic rules from human experience and to

obviate the need for an analytical model of the process.  To complement this

methodology, we have developed soft computing solutions for robust qualitative

assessment of terrain traversability, which permits further advancement toward

achieving human driver performance.  Our approach is enabled by intelligent

visual perception using terrain imagery captured by cameras onboard the rover.

11.4.1 Visual Terrain Traversability Assessment and Fuzzy Reasoning

Outdoor navigation systems for autonomous field mobile robots must consider

terrain characteristics in order to support safe and efficient traversal from place

to place. Two important attributes that characterize the difficulty of a terrain for

traversal are the slope and roughness of the region.  In current methods of terrain

assessment [20-24], terrain traversability is defined as an analytical function of

the terrain slope and roughness in the region local to the vehicle.  The slope is

determined by finding the least squares fit of a geometric plane covering the

region, while the roughness is calculated as the residual of the best plane fit.

Once the traversability of each region is evaluated, a traversable path for the

robot to follow is then constructed. These analytical representations of the

terrain traversability rely on accurate interpretation of the sensory data, as well

as an exact mathematical definition of the traversability function.  Here, we

present an alternative approach based on fuzzy reasoning.  Real time terrain

assessment is achieved by computing physical properties of the terrain (such as

roughness and slope) using data provided by stereo cameras mounted on the

rover.  The terrain properties are then used to infer traversability according to a

recently introduced measure called the fuzzy traversability index [25, 26].  The

fuzzy traversability index is a simple measure for quantifying the suitability of a

natural terrain for traversal by a mobile robot.  It can be inferred from

knowledge of physical terrain properties, but it also depends on the properties of

the robot mobility mechanism, which determines its hill and rock climbing

capabilities.  In order to quantify the roughness and slope of a region, image

processing algorithms are applied for terrain feature extraction as described

below.

11.4.1.1 Terrain Roughness Extraction

During navigation, images of the viewable scene are periodically captured by

the rover vision system.  An algorithm is applied to a pair of stereo camera

images that determines the sizes and concentration of rocks/ditches in the

viewable scene. These parameters are used to infer terrain roughness, β, which is
represented by fuzzy sets with linguistic labels {SMOOTH, ROUGH,

ROCKY}.  Equally spacing trapezoidal membership functions are used.



The rock size and concentration parameters are represented in terms of a two-

parameter vector r = [rsmall, rlarge], where rsmall denotes the concentration of small

rocks and rlarge represents the concentration of large rocks contained within the

image. In order to compute these parameters, a horizon line extraction program

is run that identifies the peripheral boundary of the ground plane.  This, in

effect, recognizes the point at which the ground and the landscaped backdrop

intersect. The algorithm then identifies target objects located on the ground

plane using a region growing method [27].  In effect, target objects that differ

from the ground surface are identified and counted as rocks for inclusion in the

roughness assessment. The denser the rock concentration, the higher the

calculated roughness of the associated region.  Figure 11.7 shows an example

output of the rock identification algorithm.

Figure 11.7: Visual Terrain Roughness Extraction.

To determine the number of small and large rocks contained within the image,

the number of pixels that comprise a target object are first enumerated. Those

targets with a pixel count less than a user defined threshold are labeled as

belonging to the class of small rocks and those with a count above the threshold

are classified as large rocks. The threshold is determined based on the

mechanical characteristics of the rover, such as wheel size, wheel base, body

height, and so on. This defines fuzzy sets with linguistic labels {SMALL,

LARGE}, which represent the rock sizes, Rs.  All such labeled target objects are

then grouped according to their sizes in order to determine the small and large

rock concentration parameters. These values are then used to populate the two-

parameter vector r, which is characterized by fuzzy sets with linguistic labels

{FEW, MANY} and used as input for the following fuzzy logic rules, where Rc

represents the rock concentration:

• IF Rc is FEW AND Rs is SMALL, THEN β is SMOOTH.

• IF Rc is FEW AND Rs is LARGE, THEN β is ROUGH.

• IF Rc is MANY AND Rs is SMALL, THEN β is ROUGH.

• IF Rc is MANY AND Rs is LARGE, THEN β is ROCKY.

The terrain roughness is thus derived directly from the rock size and

concentration parameters of the associated image scene.



11.4.1.2 Terrain Slope Extraction

Slope characterizes the average incline/decline of the ground surface to be

traversed. To obtain the surface slope, an innovative approach is utilized to

obtain depth information from two uncalibrated cameras. The process involves

training a neural network to learn the relationship between slope and correlated

image points that lie along the horizon line.

Given a pair of camera images, the algorithm first locates correlated points by

determining the position of the largest rocks located along the horizon line and

centered within both images (Figure 11.8).  Once these points are extracted, the

pixel locations in the two images are used as inputs to a trained neural network

for slope extraction.

Figure 11.8: Determination of Correlated Image Points.

Using our algorithm, we wish to find a relationship between corresponding

image points located along the horizon line and the slope of the viewable terrain.

Initially, we train the network by finding a set of weights that will give us the

desired slope output. We utilize a three-layer feedforward neural network with

error backpropagation.  In this process, we present a set of correlated image

points and the corresponding slope value to the network. Given this input, the

network will calculate the output, which is then compared with the desired slope

parameter.  The difference between the network slope output and the desired

slope value is then used to change the network weights, thus minimizing

network error.  In this way, the network can learn the desired relationship

between correlated image points and slope.

Our network has four input nodes corresponding to the image positions of the

correlated points in the two images, and one output node corresponding to the

terrain slope parameter. The hidden layer has two processing elements. After

training the network on typical imagery data representing different positive and

negative sloped examples, we utilize it to extract the slope during run time. The

network output provides the terrain slope parameter, α, whose magnitude is then

converted into the linguistic representation {FLAT, SLOPED, STEEP}, with

membership functions similar to those defined for β.



11.4.1.3 Fuzzy Inference of Terrain Traversability

Once the slope and roughness parameters of the region are determined from

the camera images, the fuzzy traversability index, τ, is inferred and used to
classify the ease of terrain traversal. The index is represented by three

trapezoidal fuzzy sets with linguistic labels {LOW, MEDIUM, HIGH}. The

fuzzy traversability index is defined in terms of the terrain slope α and the
terrain roughness β by a set of simple fuzzy logic relations summarized in

Figure 11.9.  Observe that this approach to terrain assessment gives an intuitive,

linguistic definition of terrain roughness and traversability as used by a human

observer, in contrast to the mathematical definitions (as the residual of the least

squares plane fit and as analytical functions of slope and roughness) used

previously [20-24].  This representation has the advantage of being robust and

tolerant to uncertainty and imprecision in measurements and in the interpretation

of sensor data.  It conveys sufficient qualitative information about the terrain to

permit intelligent assessment of traversability.  In addition, it can be easily

extended to include consideration of additional terrain features in the reasoning

process.

Figure 11.9: Fuzzy Rule Table for Traversability Index.

11.5 STRATEGIC FUZZY NAVIGATION BEHAVIORS

The robot navigation strategy presented in this section is comprised of three

simple motion behaviors: seek-goal, traverse-terrain, and avoid-obstacle. These

behaviors operate at different perceptual resolutions. The fuzzy logic rules for

the seek-goal behavior make use of global information about the goal position to

make recommendations for rover speed and steering. The fuzzy logic rules for

the traverse-terrain behavior incorporate the regional information about the

terrain quality to produce recommendations for rover speed and steering. The

fuzzy logic rules for the avoid-obstacle behavior utilize local information about

en route obstacles to generate the appropriate speed and steering

recommendations. The output of each behavior is a recommendation over all

possible control actions from the perspective of achieving that behavior's

objective. Each control recommendation is represented by a fuzzy possibility

distribution over the space of speed and steering commands.  To facilitate

behavioral rule formulation, the rule set for each motion behavior has been de-

coupled into turn rules and move rules.  In the final stage before commanding

rover actuators, the individual fuzzy recommendations from the three behaviors

are aggregated and defuzzified to yield crisp control inputs. This process of

HIGH         MED         LOW

FLAT     SLOPED    STEEP

SMOOTH

ROUGH

ROCKY

α
β

MED         LOW         LOW

LOW         LOW         LOW



behavior fusion is facilitated by the use of weighting factors inferred from

navigational contexts.  The approach yields an autonomous navigation strategy

for the rover that requires no a priori information (e.g., maps) about the

environment.  We will now describe in detail the individual fuzzy control

behaviors and the behavior fusion approach to realizing goal-directed

navigation.

11.5.1 Seek-Goal Behavior

The problem addressed in this section is to navigate a rover on a natural

terrain from a known initial position to a user-specified goal position.  The rover

control variables for this behavior are the translational speed v and the rotational

speed ω,. The vehicle speed v is represented by four fuzzy sets with linguistic

labels {STOP, SLOW, MODERATE, FAST}. Triangular membership functions

are defined which are equally distributed throughout a range of allowable rover

speeds.  Similarly, the rover turn rate ω is represented by five fuzzy sets with

linguistic labels {FAST-LEFT, SLOW-LEFT, ON-COURSE, SLOW-RIGHT,

FAST-RIGHT}, defined by equally spaced triangular membership functions

over a range of allowable turn rates.

The fuzzy navigation rules for the seek-goal behavior direct the rover to

initially perform an in place rotation toward the goal to nullify the heading error,

φ, which is the relative angle by which the rover needs to turn to face the goal
directly. Once the rover is aligned with the goal direction, it then proceeds

toward the goal position. A similar rule set can also be formulated for robots that

cannot perform in place rotation.

The fuzzy rules for rover rotational motion are listed below, where the

heading error input φ is represented by five fuzzy sets with linguistic labels
{GOAL-FAR LEFT, GOAL-LEFT, GOAL-HEAD ON, GOAL-RIGHT,

GOAL-FAR RIGHT}.  The turn rules are followed by a list of fuzzy rules used

for rover translational motion, where the position error input (goal distance) d is

represented by four fuzzy sets with linguistic labels {VERY NEAR, NEAR,

FAR, VERY FAR}.  The universe of discourse for both φ and d is partitioned by
an equal distribution of triangular membership functions.

• IF φ is GOAL-FAR LEFT, THEN ω is FAST-LEFT.
• IF φ is GOAL-LEFT, THEN ω is SLOW-LEFT.

• IF φ is GOAL-HEAD ON, THEN ω is ON-COURSE.
• IF φ is GOAL-RIGHT, THEN ω is SLOW-RIGHT.

• IF φ is GOAL-FAR RIGHT, THEN ω is FAST-RIGHT.

• IF d is VERY NEAR OR φ is NOT GOAL-HEAD ON, THEN v is STOP.
• IF d is NEAR AND φ is GOAL-HEAD ON, THEN v is SLOW.

• IF d is FAR AND φ is GOAL-HEAD ON, THEN v is MODERATE.

• IF d is VERY FAR AND φ is GOAL-HEAD ON, THEN v is FAST.

The first rule for translational motion keeps the rover stationary while it is

correcting its heading. In the remaining translational motion rules, the rover is



aligned with the goal direction and moves with a speed proportional to its

distance from the goal.

11.5.2 Traverse-Terrain Behavior

This section presents fuzzy logic rules that use the fuzzy traversability index

to infer the vehicle turn rate and speed while moving on natural terrain. It is

assumed that the robot can only move in the forward direction (i.e., reverse

motion is not allowed). The visual sensor coverage area of the terrain region in

front of the rover spans 180°.  This sensor horizon is partitioned into three 60°
sectors, namely: front, right, and left of the rover position, each extending

outward to a distance of up to five meters. The indices for the three sectors, τf,

τr, τl, are inferred in real time from the values of terrain slope and roughness

extracted by the onboard vision system.  The fuzzy rules for determining rover

steering direction based on the terrain traversability data are summarized in

Figure 11.10a (R:RIGHT, L:LEFT, O:No Turn). The rule table in Figure 11.10b

corresponds to steering behavior for obstacle avoidance (discussed below).

These rules emulate the steering actions of the human driver during an off-road

driving session.

Examining Figure 11.10a, we see that a turn maneuver is not initiated when

either the front region is the most traversable, or the right and left regions have

the same traversability indices as the front region.  Also, observe that the

preferred direction of turn is chosen arbitrarily to be LEFT, i.e., when the rover

needs to turn to face a more traversable region, it tends to turn left.  The choice

of LEFT instead of RIGHT is arbitrary, but selection of a preferred turn

direction is essential to avoid the possibility that simultaneous left and right

rotations can result in a no-turn recommendation even though there may be an

impassable region directly ahead of the rover.

Figure 11.10: Turn Rules for (a) Traverse-Terrain and (b) Avoid-Obstacle.



Once the direction of traverse is chosen based on the relative values of τ, the
rover speed v can be determined based on the value τ∗ of the traversability index
τ in the chosen region. This determination is formulated as a set of two simple

fuzzy logic rules for speed of traverse: IF τ∗ is LOW, THEN v is STOP, and IF

τ∗ is MEDIUM, THEN v is SLOW. The effect of these rules is analogous to that

of the human driver adjusting the car speed based on the surface conditions.

11.5.3. Avoid-Obstacle Behavior

In this section, fuzzy logic rules are presented which govern rover behavior

based on the local information about en route obstacles, such as large rocks.  In

general, obstacles may belong to any variety of mobility and navigation hazards

such as extreme slopes, sand/dust-covered pits, crevasses, cliffs and otherwise

unstable terrain.  Also included are so called negative obstacles such as ditches

and craters, and their complements such as ridges and boulders.  Rocks that are

considered obstacles are those with sizes that exceed the obstacle climbing

threshold for which the rover is designed.  In the case of the Mars rover

Sojourner, the threshold was 1.5 wheel diameters.  Without loss of generality,

we may refer to the general category of untraversable patches of terrain as

navigation obstacles.  This local obstacle information is acquired online and in

real time by the proximity sensors mounted on the rover. For space robotics

applications, different types of proximity sensors can be used, ranging from low-

resolution infrared sensors to high-resolution and longer-range laser detectors

[28]. A wider range of options is available for use in more general mobile robot

applications [29]. The range of reliable operation of proximity sensors is

typically 20 to 50 cm, which is about an order of magnitude shorter than that of

regional sensor coverage. Note, however, that precise measurement of the

obstacle distance is not needed, because of the multivalued nature of the fuzzy

sets used to describe it.

In the present implementation, it is assumed that there are three groups of

proximity sensors mounted on the robot facing the three different directions of

front, right, and left. These sensors report the distances between the robot and

the closest front obstacle df, the closest right obstacle dr, and the closest left

obstacle dl within their ranges of operation.  The three obstacle distances are

continuously measured and updated during rover motion. The steering and speed

rules for avoiding obstacles use this local information to maneuver the robot

around the obstacles and to avoid potential collisions. Each obstacle distance df,

dr, or dl is represented by the three fuzzy sets with linguistic labels {VERY

NEAR, NEAR, FAR}.  Equally distributed trapezoidal membership functions

are defined for each obstacle distance. Typically, different fuzzy set bounds are

defined on the universe of discourse for the front obstacle distance and side (left

and right) obstacle distances so that front and side collision detection will have

different sensitivities.

The behavioral objectives of the obstacle avoidance rules are to direct the

rover to:  (a) turn to face a region with the least nearby obstacles, and (b) adjust

its speed of motion depending on the distance to the closest front obstacle. The



goal of the steering rule set is to steer the robot clear of all obstacles. This goal is

accomplished by sensing the three obstacle distances and reacting according to

the fuzzy logic rule sets summarized above in the Figure 11.10b.  The following

points are noted about the above steering rules. First, when df is FAR, i.e., the

front of the rover is clear of obstacles, the rover will not collide with any

obstacles and no corrective action needs to be taken. Therefore, the collision

avoidance steering rules are activated only when the situation is otherwise.

Second, observe that the preferred direction of turn is chosen to be LEFT, i.e.,

when the rover needs to turn to avoid an impending collision, it tends to turn

left. The choice of LEFT instead of RIGHT is arbitrary, but selection of a

preferred turn direction is essential to avoid the possibility that simultaneous left

and right obstacles can result in a no-turn recommendation even though there

may be an obstacle in front of the vehicle.

The speed rules for collision avoidance are very simple. Basically, the robot

is required to slow down as it approaches the closest front obstacle. Again, note

that when the front obstacle distance is FAR, collision avoidance is not activated

and no corrective action needs to be taken.  There are two fuzzy logic rules as

follows: IF df is VERY NEAR, THEN v is STOP, and IF df is NEAR, THEN v is

SLOW.

11.5.4. Fuzzy-Behavior Fusion

The decision-making process used to combine recommendations from

multiple behaviors is commonly referred to as behavior coordination [3]. The

most common approach is behavior arbitration, which employs a prioritization

scheme wherein the control recommendation of only one behavior among

several competing behaviors is taken while recommendations from the

remaining behaviors with lower priorities are ignored. In contrast to this

switching type of arbitration, we advocate using a more comprehensive blending

scheme. The preferred coordination scheme permits more than one behavior to

influence the resultant control action to the extent governed by variable gains or

weighting factors assigned dynamically according to the prevailing context — a

scheme referred to as behavior fusion. Behavior fusion is facilitated by fuzzy set

theoretic computations; however, nonfuzzy implementations are also possible

[8].  Thus, in the proposed approach, weight rules combine elemental behaviors,

not through fixed priority arbitration, but rather through a generalization of

dynamic gains that are determined based on consideration of the situational

status of the rover. The weight rules continuously update the behavior weighting

factors during rover motion based on the prevailing conditions.

The gains or weighting factors s
w
, t

w
, and a

w
 represent the strengths by which

the seek-goal, traverse-terrain, and avoid-obstacle recommendations are taken

into account to compute the final control actions v  and ω .  These weights are

represented by two fuzzy sets with linguistic labels {NOMINAL, HIGH}. Three

sets of decision rules for the respective motion behavior gains are listed below.

• IF d is VERY NEAR, THEN sw is HIGH.
• IF d is NOT VERY NEAR, THEN sw is NOMINAL.



• IF d is NOT VERY NEAR AND df is NOT VERY NEAR, THEN t
w
 is HIGH.

• IF d is VERY NEAR OR df is VERY NEAR, THEN t
w
 is NOMINAL.

• IF d is NOT VERY NEAR, THEN aw is HIGH.
• IF d is VERY NEAR, THEN aw is NOMINAL.

At each control cycle, the above sets of gain rules are used to calculate the

three crisp weighting factors using the center-of-gravity (centroid)

defuzzification method. Note that with this defuzzification method, overlapping

areas between adjacent truncated membership functions in the aggregated fuzzy

set are counted twice. The resulting crisp weights are then used to compute the

final control actions for the rover speed and turn rate.

Fuzzy recommendations from the seek-goal, traverse-terrain, and avoid-

obstacle behaviors are weighted by the corresponding behavior gains prior to

defuzzification, as shown in Figure 11.11. The weighted fuzzy outputs for the

individual behaviors are aggregated into single fuzzy possibility distributions for

both rover speed and turn rate.  The final control actions for each cycle are

computed using the center-of-gravity defuzzification method.

Figure 11.11: Fuzzy-Behavior Fusion.

11.6 ROVER TESTBED AND EXPERIMENTAL RESULTS

Field tests using the Pioneer AT (All-Terrain) rover are conducted on rough

terrain near JPL (Pasadena, California) to test the reasoning and decision-

making capabilities provided by the fuzzy logic navigation strategy.  This

commercially available rover is kinematically quite different from planetary

rovers designed for Mars.  Nonetheless, with certain enhancements it is suitable

as a testbed for developing advanced technology and algorithms for infusion

deffuz.  Weight Rules  

Navigation Rules  

d
e
fu
z
z
if
ic
a
ti
o
n 

deffuz.  Weight Rules  

Navigation Rules  

deffuz.  Weight Rules  

Navigation Rules  

seek -goal behaviour  

traverse -terrain behaviour  

avoid -obstacle behaviour  

rover 

control 

system  

s  , ù  
  s    s  

s  , ù  
  t    t  

s  , ù  
  a    a  

s 
  W 

t 
  W 

a 
  W 

ù,v



into flight rover navigation systems. The Pioneer AT rover, shown on the left of

Figure 11.12, is enhanced with additional onboard processing capability, 8-input

image multiplexer, a vision system for real time terrain assessment, and a tilt

sensor (mentioned in Section 11.3.2).  The vision system consists of eight

CMOS NTSC video cameras.  Six cameras are mounted on a raised platform

and used for terrain-based navigation. The right side of Figure 11.12 shows the

physical layout of the camera platform used specifically to provide terrain

imagery data. These six cameras are placed such that the lens centers are 740

mm above the ground and the optical axis of each camera is tilted down by 8°.
The intersecting origin of all cameras is centered above the support polygon

formed by the rover wheel ground contact points.  In addition, the stereo

baseline length is set to 500 mm. This camera placement scheme provides the

rover a viewable distance of  ~5 m spanning a field of view of  ~180°.  The
remaining two cameras are mounted on a mast below the raised platform and

pointed towards the ground for obstacle detection and surface type

classification.

Figure 11.12: Enhanced Pioneer AT with Terrain Assessment Vision System.

The processing power onboard the rover consists of a 333 MHz Pentium II

processor housed in a CompactPCI chassis running the Linux Operating System.

The system has also been tested using a laptop computer running Windows 95.

Resident on the computer are the image processing algorithms and the fuzzy

logic computation engine (written in the C language) used to calculate the

translational and rotational speed commands issued to control the wheel motors.

Using this hardware platform, rover field tests are performed outdoors in natural

terrain.  We shall now present field test and experimental results for the safety

module and the strategic navigation module.

11.6.1 Safe Mobility

In this section, we describe two field tests and associated laboratory

experiments performed to evaluate the effect of the safe attitude and traction

components. The first test considers reactions to rover pitch and roll during

traversal.  The second test is concerned with mitigation of wheel slippage.



For the stable attitude test, an obstacle-free swath of undulated terrain is

chosen.  The rover is commanded to traverse the swath with and without the

stable attitude component activated. Without active stable attitude management,

the rover traverses the terrain at a nominally fast speed recommended by the

strategic navigation system based on the fact that no significant obstacles are

present.  With active attitude management, the rover traverses the terrain at

various reduced speeds in response to changes in its pitch and roll according to

the fuzzy logic rules in Figure 11.3.  This reactivity reduces the risk of

approaching marginal tilt stability, which leads to tip over.  It also enhances the

ability of rigid suspension vehicles (such as the Pioneer AT) to maintain wheel

contact with the ground.  A comparative effect of the stable attitude component

is shown in Figure 11.13.  The left picture corresponds to the test without active

attitude management; it shows a case where the rear right wheel loses contact

with the ground.  The right picture shows the rover at the same approximate

location with all wheels making ground contact while actively modulating its

speed to maintain stable attitude.

Figure 11.13: Comparative Effect of Stable Attitude Management.

To further illustrate the effect of safe attitude management, we exercise the
component in a laboratory experiment where the rover traverses a swath of
terrain for ten meters. Synthetic attitude measurements are generated by
sinusoidal functions of random amplitude to emulate changes in pitch and roll
experienced on a hypothetical undulated and rough terrain. The amplitudes are
uniformly distributed random numbers bounded by the maximum stable pitch
and roll of the rover. It is assumed that the strategic navigation module
recommends a constant normalized speed of 75 percent (of maximum allowable
speed) throughout the traverse. The results of this experiment are shown in
Figure 11.14 in plots of pitch, roll and vsafe (normalized) vs. distance. The
strategic speed is shown in the speed distance plot as a dashed line. Observe that
vsafe is modulated low in response to near-extreme attitudes.  This is most
apparent when both pitch and roll are simultaneously large in magnitude. 
To test safe traction management, a benign portion of terrain comprising two

distinct surface types (hard compact soil and gravel) is chosen on which the
rover will be susceptible to wheel slippage when traversing the surface transition
at nominally fast speeds.  The scenario is depicted in Figure 11.15 where the
rover is about to transition from a hard compact soil to gravel surface. The rover
is commanded to traverse the transition with and without the safe traction
management component activated. Again, without active traction management,
the rover traverses the terrain at a nominally fast speed.  With active traction
management, the rover reduces its speed upon encountering a surface of lower



perceived traction (as classified by the vision-based neural network classifier
described earlier) according to the fuzzy logic rules presented in section
11.3.3.1. This reactivity mitigates the risk of excessive wheel slippage during
transitions between and traversal on surfaces of different traction characteristics.

Figure 11.14: Speed Modulation for Attitude Management.

.

Figure 11.15: Rover Approaching Surface Type Transition.

To further illustrate the effect of the safe traction management, we exercise

the component in a laboratory experiment where the rover traverses a 12 meter

swath of terrain consisting of different surface types for which the traction

coefficient Ct is 0.5 for 5 m, 0.2 for 3 m, and 0.9 for 4 m.  We assume, for the

sake of discussion, that these values correspond to sand, gravel, and concrete,

and that the surface texture camera has a ground surface view horizon out to 0.3

m in front of the rover wheels.  In this experiment, the strategic navigation

module recommends a constant normalized speed of 80 percent throughout the

12 m traverse.  The result is shown in Figure 11.16 where the recommended



rover speeds are plotted vs. distance; the strategic speed is shown as a dashed

line. Images of the three terrain surface types corresponding to distance are inset

in the figure as well.  As expected, changes in perceived traction result in

reactive management of the safe speed recommended by the safe traction

component to avoid the risk of excessive wheel slippage.  Note that our

laboratory experiment accounts for a reaction delay between classification of the

surface type and the actual change in set points for vsafe.  Thus far, our tests have

revealed that vsafe is consistently lower than the strategic speed, thus exhibiting

the caution of the safety module in reaction to cognizance of vehicle safety and

changing “road” conditions.

Figure 11.16: Speed Modulation for Traction Management.

11.6.2 Safe Navigation

The strategic navigation module was also tested in the field.  In this section,

we present results of a point-to-point navigation run in natural terrain. To

navigate from a starting position to a user-specified goal position, the rover

employs three navigation behaviors — seek-goal, traverse-terrain, and avoid-

obstacle.  The goal position is located approximately 20 m in front of the rover.

Directly in between the starting and the goal positions are two regions having

low traversability — one region contains a highly sloped hill and the other

contains a large cluster of rocks. Figure 11.17 shows the path traversed by the

rover from its original starting position until it has autonomously reached the

specified goal position using its onboard fuzzy logic navigation rules.  The rover

begins by first analyzing the traversability of the three partitioned 60° sectors
(left, front, right) of the terrain located in front of the rover. The front and left

sectors (which contain the large sloped hill) are found to have low traversability.

The rover therefore turns toward the right sector, which is found to be highly

traversable, and proceeds to enter the safe region. Once in the safe region, the

rover turns and navigates toward the goal, while ensuring that it is still

physically located in the highly traversable sector; this corresponds to the last

scene in the top row of images in Figure 11.17. Note that the viewpoint of the



camera recording the path in Figure 11.17 is different for the top and bottom

rows of images.  Images on the top row are captured from a location behind the

rover; the bottom row of images is captured from a location ahead of the rover.

After traversing a distance of about 10 m from start, the rover stops, turns

toward the goal, and re-analyzes the traversability of the terrain ahead of it This

time the front sector is found to have low traversability due to the large cluster

of rocks located in this area. The left region is found to have low traversability

due to the large sloped hill, and the right region is once again found to have high

traversability. The rover thus turns to the right and proceeds into the safe region.

At the point when the rover is within 1.5 m of the goal, the weight on the

traverse-terrain recommendation is reduced automatically, and the seek-goal

behavior becomes dominant. At this point, the rover heads directly toward the

goal and stops when it is reached.

Figure 11.17: Navigation Path using Strategic Navigation Behaviors.  Top-left

Image Shows the Initial Position; Bottom-right Image Indicates Goal

Achievement.

As shown in the sequence of test images, the navigation system directs the

rover through the safest traversable regions. The combination of terrain

assessment, safety, and strategic navigation modules in the safe navigation

system thus demonstrates the viability of soft computing algorithms for enabling

safe traversal of the rover on challenging terrain.

11.7 SUMMARY AND CONCLUSIONS

Safe and autonomous long range navigation of a rover on hazardous natural

terrain offers significant technical challenges. An autonomous planetary rover

must be able to operate intelligently with minimal interaction with mission

operators on Earth. To accomplish this goal, the rover must have the onboard

intelligence needed to traverse highly unstructured, poorly modeled terrain with

a high level of robustness and reliability. For operation over extended time and

distance, some capacity for built-in safe operation and health cognizance is

required.  The rover onboard software intelligence must be capable of

supporting real time navigation and motion planning based on poor and noisy



sensor data. At the same time, it must be realizable in practical rover computing

hardware.  As such, efficient algorithms are essential for intelligent control.

As a goal, we have focused on achieving human driver performance through

the application of soft computing techniques.  This chapter presents the current

state of development of a safe rover navigation system designed with this goal in

mind. Various components of the safe navigation system are described in detail.

Several soft computing solutions to different aspects of the rover navigation

problem are also presented.  Through this research and application experience,

we have found that fuzzy logic provides a natural framework for expressing the

human reasoning and decision-making processes for driving a rover on

hazardous terrain. The human driving strategy can be transferred easily to the

onboard rover navigation system and executed in real time.

Robot navigation strategies based on fuzzy logic offer major advantages over

analytical methods.  First, the fuzzy rules that govern the robot motion are easily

understandable, intuitive, and emulate the human driver's experience. Second,

the tolerance of fuzzy logic to imprecision and uncertainties in sensory data is

particularly appealing for outdoor navigation because of the inevitable

inaccuracies in measuring and interpreting the terrain quality data, such as slope

and roughness. And third, the fuzzy logic strategy has a modular structure that

can be extended very easily to incorporate new capabilities, whereas this

requires complete reformulation for analytical methods. Multiple fuzzy

behaviors can be blended readily into a unified navigation strategy that permits

smooth interpolation between behaviors, thereby avoiding abrupt and

discontinuous behavioral transitions.

The addition of the onboard terrain sensing and traversability analysis,

coupled with the traverse-terrain behavior that takes advantage of this

information, is a significant and novel contribution. These capabilities allow the

navigation system to take preventive measures by looking ahead and preventing

the rover from potential entrapment in rock clusters and other impassable

regions and thus, guiding the vehicle to circumnavigate such regions.  The

technology described herein will lead to survivable rover systems that are of

practical use for performing long duration missions involving long range

traversal over challenging and high risk terrain.

ACKNOWLEDGMENT

The research described in this chapter was performed at the Jet Propulsion

Laboratory, California Institute of Technology, under contract with the National

Aeronautics and Space Administration.

REFERENCES

1. DeLong, B., 4-Wheel Freedom: The Art of Off-Road Driving, Paladin

Press, Boulder, CO, 1996.

2. Graydon, D. and Hanson, K. (eds.), Mountaineering: The Freedom of

the Hills, The Mountaineers, Seattle, WA, 1997.



3. Tunstel, E., Fuzzy-behavior Synthesis, Coordination, and Evolution in

an Adaptive Behavior Hierarchy, in Saffiotti, A. and Driankov, D.

(eds.) Fuzzy Logic Techniques for Autonomous Vehicle Navigation,

Springer-Verlag Studies in Fuzziness and Soft Computing Series,

Berlin/Heidelberg, 2000.

4. Morrison, J. C. and Nguyen, T. T., On-Board Software for the Mars

Pathfinder Microrover, Proc. 2
nd
 IAA Intl. Conf. on Low-Cost Planetary

Missions, IAA-L-0504, 1996.

5. Washington, R., Golden, K., Bresina, J., Smith, D. E., Anderson, C.,

and Smith, T., Autonomous Rovers for Mars Exploration, Proc. IEEE

Aerospace Conf., 1999.

6.  Huntsberger, T.L. and Rose, J., BISMARC: A Biologically Inspired

System for Map-Based Autonomous Rover Control, IEEE Trans. on

Neural Networks, 11(7/8), 1497, 1998.

7.  DeCoste, D., Adaptive Resource Profiling, Proc. Intl. Symp. on AI,

Robotics and Automation in Space, Noordwijk, Netherlands, 285, 1999.

8 .  Rosenblatt, J. K., DAMN: A Distributed Architecture for Mobile

Navigation, J. Experimental and Theoretical AI, 9(2/3), 339, 1997.

9. Kelly A. and Stentz A., An Approach to Rough Terrain Autonomous

Mobility, Proc. Intl. Conf. on Mobile Planetary Robots, 1, 1997.

10. Wilcox, B.H., Non-Geometric Hazard Detection for a Mars

Microrover, Proc. NASA/AIAA Conf. on Intelligent Robotics in Field,

Factory, Service, and Space, 675, 1994.

11. Arkin, R.C., Homeostatic Control for a Mobile Robot: Dynamic

Replanning in Hazardous Environments, J. Robotic Syst., 9(2), 197,

1992.

12. Mauer, G. F., A Fuzzy Logic Controller for an ABS Braking System,

IEEE Trans. Fuzzy Syst., 3(4), 381, 1995.

13. Bauer, M. and Tomizuka, M., Fuzzy Logic Traction Controllers and

Their Effect on Longitudinal Vehicle Platoon Systems, California

PATH Research Report, UCB-ITS-PRR-95-14, Univ. of California,

Berkeley, 1995.

14. Palm, R. and Storjohann, K., Slip Control and Torque Optimization

using Fuzzy Logic, in Jamshidi, et al., (eds.), Applications of Fuzzy

Logic: Towards High Machine Intelligent Quotient Systems, 8,

Prentice-Hall PTR, Upper Saddle River, NJ, 1997.

15. Colyer, R. E. and Economou, J. T., Soft Modeling and Fuzzy Logic

Control of Wheeled Skid-Steer Electric Vehicles with Steering

Prioritization, J. Approx. Reasoning, 22, 31, 1999.

16. Van der Burg, J. and Blazevic, P., Anti-Lock Braking and Traction

Control Concept for All-Terrain Robotic Vehicles, Proc. IEEE Intl.

Conf. on Robotics and Automation, 1400, 1997.

17. Sreenivasan, S. V. and Wilcox, B. H., Stability and Traction Control of

an Actively Actuated Micro-Rover, J. Robotic Syst., 11(6), 487, 1994.

18. Marra, M., Dunlay, R. T., and Mathis, D., Terrain Classification using

Texture for the ALV, Proc. Mobile Robots III, SPIE 1007, 64, 1988.



19. Murphy, R. R. and Dawkins, D. K., Behavioral Speed Control Based

on Tactical Information, Proc. IEEE Intl. Conf. on Intell. Robots and

Syst., 1715, 1996.

20. Gennery, D. B., Traversability Analysis and Path Planning for a

Planetary Rover, J. Autonomous Robots, 6, 131, 1999.

21. Krotkov, E., Hebert, M., Henriksen, L., Levin, P., Maimone, M.,

Simmons, R., and Teza, J.,  Field Trials of a Prototype Lunar Rover

under Multi-Sensor Safeguarded Teleoperation Control, Proc. Am.

Nuclear Society 7
th
 Topical Meeting on Robotics and Remote Syst., 1,

575, Augusta, 1997.

22. Langer, D., Rosenblatt, J. K., and Hebert, M.,  A Behavior-Based

System for Off-Road Navigation, IEEE Trans. on Robotics and

Automation, 10(6), 776, 1994.

23. Shiller, Z. and Gwo, Y. R., Dynamic Motion Planning of Autonomous

Vehicles, IEEE Trans. on Robotics and Automation, 7(2), 241, 1991.

24. Iagnemma, K., Genot, F., and Dubowsky, S. Rapid Physics-Based

Rough-Terrain Rover Planning with Sensor and Control Uncertainty,

Proc. IEEE Intl. Conf. on Robotics and Automation, 3, 2286, Detroit,

1999.

25. Seraji, H., Traversability Index: A New Concept for Planetary Rovers,

Proc. IEEE Intl. Conf. on Robotics and Automation, 3, 2006, Detroit,

1999.

26. Seraji, H., Fuzzy Traversability Index: A New Concept for Terrain-

Based Navigation, J. Robotic Syst., 17(2), 75, 2000.

27. Horn, B., Robot Vision, MIT Press, MA, 1986.

28. Volpe, R. and Ivlev, R. A Survey and Experimental Evaluation of

Proximity Sensors for Space Robotics, Proc. IEEE Intl. Conf. on

Robotics and Automation, 4, 3466, San Diego, 1994.

29. Everett, H. R., Sensors for Mobile Robots: Theory and Application, A

K Peters, Ltd., Wellesley, MA, 1995.



12 
AUTONOMOUS UNDERWATER 

VEHICLE CONTROL USING 

FUZZY LOGIC 

  Feijun Song and Samuel M. Smith  

 

12.1 INTRODUCTION 

 

In this chapter, we will discuss the applications of fuzzy logic in autonomous 

underwater vehicle (AUV) control. In particular, we will discuss a special type 

of fuzzy logic controller named sliding mode fuzzy controller (SMFC) that 

combines the advantages of sliding mode control and fuzzy logic control. We 

will show how to design and tune a sliding mode fuzzy controller. The 

application of such controller structure to AUV control will also be shown. 

As an emerging technique for oceanography measurement and littoral 

survey, AUVs have drawn much attention from researchers with different 

backgrounds. The pitch and heading control of an AUV forms the basis of any 

successful mission. However, the environment that a mission has to face gives 

many difficulties in the controller design. Wave and current are two basic 

environmental factors that are generally treated as external disturbance by a 

controller designer. Sensor measurement in such an environment also lends 

itself to noise. Furthermore, an AUV system is a real time distributed system 

that consists of many different components; therefore, sampling rate becomes 

another problem for the controller designer. Thus, robustness must be 

considered in the controller design yet the controller still needs to perform well.  

Most current robust controller design methodologies require a system model. 

An AUV system is highly nonlinear and difficult to model, this adds more 

difficulties to the controller design. During the past several years of research and 

practice, we found that SMFC is a plausible control scheme for AUVs in tough 

environments. To discuss the application of SMFC in AUVs, we first briefly 

introduce the dynamics of an AUV, then the sliding mode control. The structure 

of SMFC is presented in detail, followed by the presentation of at sea 

experimental results. We conclude this chapter with a discussion of the 

advantages of SMFC. 

 

12.2 BACKGROUND 

 

Pitch and heading control are low level controls in AUV control architecture. 

Many control strategies have been adopted; among them are neural network 

control [1], sliding mode control [2,3], supervisory control [4], linear quadratic 

gaussian/loop transfer recovery method [5], self-tuning control [6], fuzzy logic 

control [7], etc. However, it is difficult to design time optimal controllers for 



 

AUVs due to the fact that most optimal control design methodologies require 

analytical system models (equations of motion) of the AUVs, which is highly 

nonlinear and difficult to obtain. 

Generally, for time optimal control, there exists a nonlinear switching curve 

where the bang-bang control should switch its sign. The curve also represents 

the maximal vehicle maneuvering capabilities in terms of time. A time optimal 

controller should be able to control the AUVs so that the same switching curve 

is always followed. A fuzzy logic controller can approximate this nonlinear 

switching curve since fuzzy systems are universal function approximators 

[8,9,10,11]. 

Sliding mode control is known for its robustness to the external disturbance 

and system modeling error. In order to have a controller that is not only time 

optimal, but also robust, a combination of sliding mode control and fuzzy logic 

control is needed. This results in the SMFC, in which each fuzzy rule output 

function is exactly a sliding mode controller. The slope of the sliding mode 

controller in each rule is determined by the approximate slope of the nonlinear 

switching curve in that partition of the phase plane that the rule covers. The 

nonlinearity of the switching curve thus is approximated by the fuzzy rules.  

The approximation property of fuzzy logic control and robustness property 

of sliding mode control make the SMFC idea for AUV time optimal and robust 

control under rough sea state. However, as in fuzzy logic cotnroller design, the 

parameters for a SMFC are difficult to determine. An experimental method is 

presented in this chapter to determine those parameters. The method makes the 

design of controllers for complex highly nonlinear systems possible without any 

analytical representations of the system. 

The method is based on Pontryagin�s maximum principle [12]. Starting from 

a steady state under maximal rudder or stern plane deflection, an AUV�s open 

loop pitch or heading response generally is a nonlinear curve in a phase plane. 

This curve represents the maximal vehicle maneuvering capabilities in terms of 

time. It also represents the switching line where the bang-bang control should 

switch its sign. A time optimal controller should be able to control the AUV so 

that the same switching curve is always followed. The parameters of a SMFC 

should be selected such that the experimental switching curve is approximated. 

A pitch and a heading controller have been designed with at sea open loop 

experimental data generated by the Ocean Explorer (OEX) series AUVs. The at 

sea closed loop experimental data justified the methodology used to determine 

the controller parameters. 

 

12.3 AUTONOMOUS UNDERWATER VEHICLES (AUVs) 

 

OEX series AUVs were developed at the Ocean Engineering Department of 

Florida Atlantic University. The vehicle is depicted in Figure 12.1. It is 7.14 feet 

long with basic payload and 21 inches in diameter. The maximum cross 

sectional area is 2.4053 ft
2
. Weight in air is 714.2 lbs and displaced weight is 

716.7 lbs. Hull volume is 11.1931 ft
3
. Following is a brief description of the 

basic vehicle configuration. 



 

• A tear-drop shaped fiber glass hull based on a modified version of the 

Gertler Series 58 Model 4154 body shape; 

• Aft-mounted cruciform control surfaces; 

• A 3-bladed propeller 18 inches in diameter; 

• Intelligent Ni-Cd battery packs. The battery packs can supply up to 12 

hours of continuous missions at 3-knot cruising speed; 

• Main computer and electronics board (MC68030 at 50 MHz on the 

VME bus). Each of the components is embedded with a LonWorks 

Neuron node, and the control communication is achieved via LonTalk 

protocol; 

• Sensors include Watson AHRS-C302RS (3-axis acceleration, angles 

and rates), SIMRAD mesotech 809 (altitude), Druck PTX 1649 (water 

depth), Sonic Speed (water speed), Differential Global Positioning 

System, LBL and USBL positioning system. 

In OEX series AUVs, the control of heading and pitch is achieved through 

the adjustment of rudder and stern plane. We will design two time optimal 

controllers for pitch and heading control of OEX series AUVs. The inputs for 

the pitch controller are the pitch error and pitch error rate. The output of the 

pitch controller is the deflection of the stern plane. The inputs for the heading 

controller are heading error and heading error rate. The output of the heading 

controller is the deflection of the rudder. 

For a detailed system dynamics of the AUV, please refer to reference 

[13,14]. 

Nose Cone / Payload

CTD

Batteries

Batteries

Batteries

Batteries

Gear

box

Fin

Main PV

Propeller

GPS Antenna

Dropweight

DVL

AHRS

Thruster

Servos

Control Box

 
 

Figure 12.1: OEX Series AUVs. 

 

12.4 SLIDING MODE CONTROL 

 

A sliding mode controller (SMC) is a variable structure controller (VSC). 

Basically, a VSC includes several different continuous functions that can map 

plant state to a control surface; the switching among different functions is 

determined by plant state that is represented by a switching function. 

Without loss of generality, consider the design of a sliding mode controller 



 

for the following second order system: 

)(),,( tbutxxfx += &&&                                   (12.1) 

Here we assume 0>b .  )(tu  is the input to the system. The following is a 

possible choice of the structure of a sliding mode controller [15,16]: 

equsku += )sgn(                                        (12.2) 

where equ  is called equivalent control which is used when the system state is in 

the sliding mode [16,17]. k  is a constant. k  is the maximal value of the 

controller output. s  is called switching function because the control action 

switches its sign on the two sides of the switching surface 0=s . s  is defined as 

[15,18]: 

ees λ+= &                                              (12.3) 

where dxxe −=  and dx  is the desired state. λ  is a constant. )sgn(s  is a sign 

function, which is defined as: 







>

<−=
11

01
)sgn(

sif

sif
s                                 (12.4) 

The control strategy adopted here will guarantee the system trajectories 

move toward and stay on the sliding surface 0=s  from any initial condition if 

the following condition is met: 

sss η−≤&                                                (12.5) 

where η  is a positive constant that guarantees the system trajectories hit the 

sliding surface in finite time [15]. 

Using a sign function often causes chattering in practice. One solution is to 

introduce a boundary layer around the switch surface [17]: 

equ
s

ksatu += )(
φ

                                      (12.6) 

where constant factor φ  defines the thickness of the boundary layer. )(
φ
s

sat  is a 

saturation function that is defined as: 











>

≤
=

1)sgn(

1

)(

φφ

φφ
φ s

if
s

s
if

s

s
sat

                                (12.7) 

This controller is actually a continuous approximation of the ideal relay 

control [15,16]. The consequence of this control scheme is that invariance of 

sliding mode control is lost. The system robustness is a function of the width of 

the boundary layer.  



 

s 

u

k

k−

s 

u

k

s 

u

φ−
k−

φ

k

k−
 

Figure 12.2: Various Sliding Mode Controllers. 

 
Figure 12.3: Control Surfaces for Various Sliding Mode Controllers. 

A variation of the above controller is to use a hyperbolic tangent function 

instead of a saturation function [3,19]: 



 

equ
s

ku += )tanh(
φ

                                         (12.8) 

Figure 12.2 shows different sliding control laws for a two-dimensional 

system, Their corresponding control surfaces are shown in Figure 12.3. 

It is proven that if k  is large enough, the sliding model controllers in 

equations 12.2, 12.6 and 12.8 are guaranteed to be asymptotically stable [16,19]. 

 

12.5 SLIDING MODE FUZZY CONTROL (SMFC) 

 

Pontryagin�s maximum principle states that for two-dimensional time optimal 

controller design, there exists a nonlinear switch curve so that the control can 

have maximal value on one side of the switching curve and minimal value on 

the other side of the curve. The nonlinear switching curve often has the form 

depicted in Figure 12.4. Figure 12.4 also shows there can be a switching band 

around the switching line to alleviate chattering. 

   e

  e&

Switching line
Trajectory

 
Figure 12.4: A Nonlinear Switching Curve. 

 

There are two problems associated with nonlinear time optimal controller 

design: First, how to get the true switching curve because for nonlinear systems, 

this switching curve is very difficult to get analytically. The second problem is 

how to approximate the nonlinear curve. 

To solve the first problem, we could use system open loop experimental 

data. Under the maximal control command, the system output should be 

saturated after a period of time. The nonlinear open loop response can be used as 

a switching curve since it represents the system�s fastest response. For example, 

if the maximal rudder angle is delivered to an AUV constantly, then the yaw rate 

of the AUV will be gradually saturated as segment AB in Figure 12.5. The 

delivering of minimal rudder angle in the opposite direction generates the 

segment CD shown in Figure 12.5. 

This open loop response actually represents the maximal maneuvering 

capability of the AUV. In other words, the curves AB and CD are the quickest 

way the AUV can move. These curves can be used as switching curves in time 

optimal controller design.  

Another approach to obtain this nonlinear switching line is to use computer 

aided controller automatic design and optimization methods. We have developed 

a very efficient and effective cell state space based search algorithm to 

automatically optimize a general type of controller. For a detailed description of 



 

this algorithm and other related materials, please refer to references 

[20,21,22,23,24]. 

Heading

A

B

Yaw Rate

C

D

 
Figure 12.5: Open Loop Step Response for Maximal and Minimal Rudder. 

 

The advantage of the open loop experimental approach for obtaining a 

nonlinear switching line is that a mathematical model of the system is not 

necessary. However, due to sensor noise and other factors, the experimental 

switching line might not be exact, which leads to a less optimal controller. 

Computer aided automatic method can achieve higher accuracy, but a 

computational model is always needed. 

Once the switching line is obtained, the next step is to approximate this line. 

Obviously, traditional linear controller design can only linearly approximate this 

nonlinear curve. We could very well use a Takagi-Sugeno (TS) type fuzzy logic 

controller to approximate this nonlinear curve. Fuzzy logic controller has been 

proven to be able to approximate any nonlinear curve with arbitrary accuracy 

[9]. 

Generally, a time optimal controller is not robust. The performance of a time 

optimal controller degrades severely with the external disturbance, measurement 

noise, or system dynamics changes. To add robustness to a time optimal 

controller, we need to combine sliding mode control and fuzzy logic control. 

In a TS type FLC, the rule output function typically is a linear function of 

controller inputs. The mathematical expression of this function is similar to a 

switching function. This similarity indicates that the information from a sliding 

mode controller can be used to design a fuzzy logic controller, resulting in a 

sliding mode fuzzy controller. Wu proposed such an approach in which 

parameters in the output functions for different rules that cover different 

partitions of the state space are determined by different sliding mode controllers 

that also cover the corresponding partitions of the state space [25]. The resulting 

controller is still a typical TS type FLC. In fact, since a fuzzy system can 

seamlessly connect different control strategies into one system, one can take an 

even more direct approach to incorporate sliding mode controllers into a fuzzy 

logic controller [26]. In Xu�s approach, each rule is a sliding mode controller. 

The SMC in each rule can have various forms. The boundary layer and the 

coefficients of the sliding surface become the coefficients of the rule output 

function. 

The i th rule for an SMFC is expressed as follows: 



 

IF e  is iA  and e&  is iB , THEN )(
i

ii
i

cee
ksatu

φ
λ ++

=
&

 

Notice that the rule output function is not necessarily a saturation function. It 

could be a sign function or hyperbolic tangential function too. The fuzzification 

of e  and e&  are illustrated in Figure 12.6. 

e&

   e

PS
NE

NS

NS

ZE

PS

 
Figure 12.6: Fuzzification of e  and .e&  

The constant coefficients of iλ  and ic  are determined by the open loop 

experimental data. They are determined in such a way that the slope of the 

nonlinear switching curve is followed. Usually, the at sea data has oscillation 

that reflects the environmental disturbance and measurement noise. The 

magnitude of the oscillation can be used to determine the coefficient iφ . 

Notice that in Figure 12.4 the switching curve can be either a function of e , 

or a function of e& . Fewer rules are needed to approximate this one-dimensional 

function. This is how an SMFC reduces the rule base size. A typical rule for the 

simplified rule base is the following: 

IF e  is iA , THEN )(
i

ii
i

cee
ksatu

φ
λ ++=

&
 

We will use this simplified rule to construct a pitch and a heading controller 

for an AUV. 

 

12.6 SMFC DESIGN EXAMPLES 

 

A sliding mode fuzzy pitch controller and a sliding mode fuzzy heading 

controller have been designed for the OEX series AUVs. The inputs to the 

sliding mode fuzzy heading controller are heading error and heading error rate.  

The output is rudder deflection. Figure 12.7 shows the fuzzy sets for the 

heading errors. There are no fuzzy sets for heading error rate. Table 12.1 shows 

the rule base of the heading controller. 

 



 

1.0

0.5

-3 0 3

NM ZERO PM

Universe of Discourse

-5 5 8-8 60-60

NB PB

degree

 
 

Figure 12.7: Fuzzy Sets for Heading Error. 

 

Table12.1: Rule Base for the Sliding Mode Fuzzy Heading Controller 

5 rules for the sliding mode fuzzy heading controller, k = 20 degree 

Antecedents Output Functions 

Heading error e  Thickness iφ  Slope iλ  Offset ic  

PB 2.5 0.01  13.5 

PM 3.0 1.50    1.0 

ZERO 3.0 2.00    0.0 

NM 3.0 1.50   -1.0 

NB 2.5 0.01 -13.5 

 

1.0

0.5

-3 0 3

NM ZERO PM

Universe of Discourse

-4 4 7-7 60-60

NB PB

degree

 
 

Figure 12.8: Fuzzy Sets for Pitch Error. 

 

The inputs to the pitch controller are pitch error and pitch error rate. The 

output is stern plane deflection. Figure 12.8 shows the fuzzy sets for the pitch 

errors. There are no fuzzy sets for pitch error rate. Table 12.2 shows the rule 

base of the pitch controller. 

Figure 12.9 and Figure 12.10 show the control surface and its contour of the 

sliding mode fuzzy heading controller. Figures 12.11 and 12.12 show the control 

surface and its contour of the sliding mode fuzzy pitch controller. 

Again, we need to emphasize that although the parameters in Table 12.1 and 

Table 12.2 are from AUV experimental data, there should be trials and errors 

before we determine the final values. The offset ic  helps to adjust the contour of 

the resultant control surface. Each time we come to a set of parameters, the 

corresponding control surface and contour will be plotted. The parameters will 

be ajdusted slightly to generate a better shaped control surface and contour. 

 



 

Table 2: Rule Base for the Sliding Mode Fuzzy Pitch Controller 

5 rules for the sliding mode fuzzy pitch controller, k = 20 degree 

Antecedents Output Functions 

Pitch error e  Thickness iφ  Slope iλ  Offset ic  

PB 1.5 0.01  13.5 

PM 3.0 2.00    1.5 

ZERO 3.0 3.00    0.0 

NM 3.0 2.00   -1.5 

NB 1.5 0.01 -13.5 

 

Another issue that must be clarified here is that although the original values 

for the controller parameters are from experimental data, the tuning (trial and 

error) was done in a simulation environment where the OEX series AUVs were 

modeled by a six degree-of-freedom (DOF) nonlinear model. Each time the 

controller parameters were adjusted, the new controller would be tested in the 

simulation environment. The final controller was then ported to vehicles for at-

sea tuning. The at sea tuning of the controller took about one week. The use of 

simulation toolbox for controller tuning will be covered in other publications. 

The design and tuning of an SMFC are summarized in the following steps: 

Step 1: Determine a nonlinear switching line and its necessary boundary as 

in Figure 12.4. As discussed before, there are two ways to find such a line and 

its boundary. The first way is to use experimental open loop system repsonse to 

the maximal physical control command. The difference among repeated 

experiments will give us a rough idea of how thick the boundary layer should 

be. This difference generally reflects typical sensor noise level, typical external 

disturbance level and system parameter changes, etc. A properly selected 

boundary will conpensate for those changes in real control. The second way to 

find a switching line is to use a system model. With a system model, the system 

response to the maximal physical control command can be easily obtained and 

be used in determining the switching line. However, with a system model, the 

thickness of a boundary layer is not so easy to obtain since there is no means to 

reflect sensor noise level and external disturbance by model computation. In this 

case, the specifications of the sensors used in the system can be utilized to 

determine the thickness of a boundary layer, that is, to determince iφ . 

Step 2: Fuzzify the controller inputs as in Figure 12.7 and Figure 12.8. In 

this step, we need to determine the number of membership functions for each 

controller input. We also need to determine what kind of membership function 

should be used. This step is very important to the successful approximation of 

the nonlinear switching line found in step 1. Intuitively, the more the 

membership functions, the better the approximation. However, more 

membership functions mean more rules and more computation complexity. A 

rule of thumb is to have at least three and at most nine membership functions for 

each controller input [27]. Generally, for a number of membership functions less 

than five, gaussian type functions are prefered. Triangle functions are adequate 

if the number of membership functions is more than five [28]. 



 

Step 3: Construct a rule base. After all the controller inputs have been 

fuzzified, a rule base can be constructed. Some rule reduction method can be 

applied here although sliding mode fuzzy control already has the potential to 

reduce a rule base. 

Step 4: Choose a defuzzification method. Since real physical systems often 

require a crisp control command, we need to defuzzify a controller output. There 

are many defuzzification methods [29,30,31,32]. The most adopted one is 

averaged sum. 

Step 5: Determine rule output function parameters. That is, determine 

different iφ , iλ  and ic . Once the controller inputs are fuzzified and the 

switching line is obtained, the only way to better approxmiate the switching line 

is to tune the rule output function parameters. Often, initial values for iφ , iλ  and 

ic  are chosen based on the switching line and boundary layer found in step 1. 

After that, the parameters are tuned to have a better approximation. A trial and 

error method is often adopted in this step. A few guildelines on how to tune 

these parameters are given later in this chapter. If the slidng mode fuzzy 

controller can not approximate the switching line satisfactorily by tuning iφ , iλ  

and ic  only, the designer may need to increase the membership functions for 

each controller input. In this case, the design goes back to step 2. 

 
Figure 12.9: Control Surface of the Sliding Mode Fuzzy Heading Controller. 



 

-60 -40 -20 0 20 40 60
-15

-10

-5

0

5

10

15

heading error (degree)

h
ea

d
in

g
 e

rr
o
r 

ra
te

 (
d
eg

re
e/

se
co

n
d

)
-15 -1

5

-1
5

-1
5

-10

-1
0

-1
0

-10 -5

-5

-5

-5

-5

0

0

0

0

0

55

5

5

5

10

1
0

1
0

1
0

1515

1
5

1
5

 
Figure 12.10: Contour Plot of the Control Surface in Figure 12.9. 

 
Figure 12.11: Control Surface of the Sliding Mode Fuzzy Pitch Controller. 



 

-60 -40 -20 0 20 40 60
-15

-10

-5

0

5

10

15

pitch error (degree)

p
it

ch
 e

rr
or

 r
at

e 
(d

eg
re

e/
se

co
n

d
)

-15 -15

-1
5

-1
5

-15-10

-1
0

-1
0

-10-10

-5

-5

-5

-5

-5

0

0
0

00

5

5

5

5

5

10

1
0

1
0

1010

1515

15
15

15

 
Figure 12.12: Contour Plot of the Control Surface in Figure 12.11. 

 

Step 6: Check the designed sliding mode fuzzy controller performance with 

a system  model. If a system model is not available, this step can be skipped. In 

this step, the controller rule output function parameters can be further tuned in 

order to have a better performance instead of a better approximation. This step 

can save lots of field test efforts if the controllers are properly tuned. 

Step 7: Field experiments. This is the last step in the controller tuning. Once 

the controller design is done and all the rule ouput function parameters are tuned 

in the steps above, the performance of the controller should be tested with the 

real system. In this step, controller input membership functions are generally 

unchaged, but the rule output function parameters can be further tuned to have 

satisfactory field performance. 

 

12.7 GUIDELINES FOR ONLINE ADJUSTMENT 

 

One of the advantages of SMFC over conventional TS type fuzzy logic control 

is that all the parameters in a sliding mode fuzzy controller have their own 

physical meanings, making the online adjustment of a sliding mode fuzzy 

controller much easier than the online adjustment of a fuzzy logic controller. 

One can use the experience and knowledge on sliding mode control to adjust the 

rule output functions of a sliding mode fuzzy controller. Furthermore, the 

structure of a sliding mode fuzzy controller also opens the door to the online 



 

adaptive control. As one may notice, the parameters of a typical TS type FLC 

have no physical meaning. An online adaptive fuzzy controller scheme often 

involves complicated adaptation on every piece of rule in each adaptation 

iteration. However, with a sliding mode fuzzy controller, one can adapt only one 

rule, or a subset of the rule base. The computation would be much less, which is 

another attractive feature in real time systems. 

Below are some salient features associated with sliding slope λ  and 

thickness of boundary layer φ  that can be used as guidelines for sliding mode 

fuzzy controller online adjustment. 

 

12.7.1 Sliding Slope λ  Effects 

 

Sliding slope will have much influence on how fast the controller responds. 

The bigger the sliding slope, the faster the controller and the less stable it tends 

to be. 

When the slope is larger, the controller is more robust, but the chattering 

might be worse. This is equivalent to a high gain controller; the rise time could 

be smaller, the overshoot bigger, and the settling time larger; the robustness to 

varying sample rates is worse, whereas the robustness to parameter variations 

and disturbance is better. 

 

12.7.2 Thickness of the Boundary Layer φ  Effects 

 

When thickness of the boundary layer is larger, chattering decreases or 

disappears; robustness to varying sample rates could be better, but robustness to 

parameter variations and disturbance could be worse; the steady-state error can 

be larger. 

 

12.8 AT SEA EXPERIMENTAL RESULTS 

 

Figure 12.13 shows at sea test data. The commanded heading was first set to 20
o
 

and then to 200
o
. The heading controller successfully controlled the vehicle to 

the desired heading. There is a two degree oscillation in the at sea heading data. 

This is normal since the sea environment is not clean. 

Figure 12.14 shows the performance of the pitch controller. Since in the at 

sea test the vehicle cannot have a constant pitch with limited sea depth, the 

performance of the pitch controller was tested through the depth controller. In 

OEX series AUVs, the depth control is done through the pitch control. The 

control output from the depth controller is a desired pitch angle. It is the 

responsibility of the pitch controller to drive the vehicle to the desired pitch. The 

depth controller used in the test is a linear proportional-derivative controller. In 

Figure 12.14, the pitch controller successfully drives the vehicle to a five meter 

depth. 

 



 

0 100 200 300 400 500 600
0

20

40

60

80

100

120

140

160

180

200

220

time (second)

h
e
a
d
in

g
 (

d
e
g
re

e
)

at-sea data is done on 6th Feb, 1998 from log file:lgr.020698.1949

 

Figure 12.13: At Sea Test for Sliding Mode Fuzzy Heading Controller. 

 

 

0 50 100 150 200 250 300 350 400
0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

time (second)

d
e
p
th

 (
m

e
te

r)

at-sea data is done on 13th Feb, 1998 from log file: lgr.021398.2114

 

Figure 12.14: At Sea Depth Test for Sliding Mode Fuzzy Pitch Controller. 



 

12.9 SUMMARY 

 

The structure of sliding mode fuzzy control was presented in this chapter. A 

sliding mode fuzzy controller inherits the interpolation property of fuzzy logic 

control and robustness property of sliding mode control, therefore making it 

ideal for time optimal robust control. The at sea experimental data shows that 

sliding mode fuzzy control can be successfully applied to AUVs, therefore 

making them another alternative for the robust time optimal control problem. 

Moreover, since the physical meaning of the rule output function parameters for 

a sliding mode fuzzy controller is straightforward, the online tuning is made 

easy. This is exactly why sliding mode fuzzy control is adopted in AUV 

development at Florida Atlantic University. 

 

REFERENCES 

 

1. Yuh, J., A Neural Net Controller for Underwater Robotic Vehicles, 

IEEE J. of Oceanic Eng., vol.15, no.3, pp.161-166, 1990. 

2. Yoerger, D.R. and Slotine, J. E., Robust Trajectory Control of 

Underwater Vehicles, IEEE J. of Oceanic Eng., vol.10, no.4, pp.462-

470, 1985. 

3. Healey, A.J. and Lienard, D., Multivariable Sliding Mode Control for 

Autonomous Diving and Steering of Unmanned Underwater Vehicles, 

IEEE J. of Oceanic Eng., vol.18, no.3, pp.327-339, 1993. 

4. Yoerger, D.R., Newman, J.B., and Slotine, J. E., Supervisory Control 

System for the JASON ROV, IEEE J. of Oceanic Eng., vol.11, no.3, 

pp.392-399, 1986. 

5. Triantafyllou, M.S. and Grosenbaugh, M.A., Robust Control for 

Underwater Vehicle Systems with Time Delays, IEEE J. of Oceanic 

Eng., vol.16, no.1, pp.146-151, 1991. 

6. Goheen, K.R. and Jefferys, E.R., Multivariable Self-Tuning Autopilots 

for Autonomous and Remotely Operated Underwater Vehicles, IEEE J. 

of Oceanic Eng., vol.15, no.3, pp.144-151, 1990. 

7. Smith, S.M., Rae, G.J.S., and Anderson, D.T., Applications of Fuzzy 

Logic to the Control of an Autonomous underwater Vehicle, IEEE Int. 

Conf. on Fuzzy Syst., pp.1099-1106, San Francisco, CA, 1993. 

8. Zadeh, L.A., Fuzzy Sets, Inf. and Control, vol.8, pp.338-353, 1965. 

9. Ying, H., General Takagi-Sugeno Fuzzy Systems Are Universal 

Approximators, IEEE Int. Conf. on Fuzzy Syst., pp.819-823, 

Anchorage, AL, 1998. 

10. Mamdani, E.H. and Assilian, S., An Experiment in Linguistic Synthesis 

with a Fuzzy Logic Controller, Int. J. of Man-Machine Stud., vol.7, 

no.1, pp.1-12, 1975. 

11. Takagi, T. and Sugeno, M., Fuzzy Identification of Systems and Its 

Applications to Modeling and Control, IEEE Trans. on Syst., Man, and 

Cybern., vol. 15, pp.116-132, 1985. 

12. Pontryagin, L.S., Boltyanskii, V.G., Gamkrelidze, R.V., and 



 

Mishchenko, E.F., The Mathematical Theory of Optimal Processes, 

Interscience Publishers, Inc., New York, 1962. 

13. Humphreys, D.E., Vehicle Hydrodynamics & Maneuvering Model for 

the FAU Ocean Explorer Vehicle (OEX), V.C.T. Technical 

Memorandum 96-05, Vehicle Control Technologies, Inc., 1996. 

14. Humphreys, D.E., Correlation of VCT Maneuver Model with FAU 

Ocean Explorer In-water Test Data, V.C.T. Technical Memorandum 

97-05, Vehicle Control Technologies, Inc., 1997. 

15. Hung, J. Y., Gao, W., and Hung, J. C., Variable Structure Control: A 

Survey, IEEE Trans. on Ind. Electron., vol.40, no.1, pp.2-21, 1993. 

16. Slotine, J.J., Sliding Controller Design for Nonlinear Systems, Int. J. of 

Control, vol.40, no.2, pp.421-434, 1984. 

17. Slotine, J.J. and Sastry, S.S., Tracking Control of Nonlinear Systems 

Using Sliding Surfaces with Application to Robot Manipulators, Int. J. 

of Control, vol.38, no.2, pp.465-492, 1983. 

18. Utkin, V.I., Sliding Modes in Control and Optimization, Springer-

Verlag, NY, 1992. 

19. Glower, J.S. and Munighan, J., Designing Fuzzy Controllers from a 

Variable Structures Standpoint, IEEE Trans. on Fuzzy Syst., vol.5, 

no.1, pp.138-144, 1997. 

20. Song, F. and Smith, S.M., Cell State Space Based Incremental Best 

Estimate Directed Search Algorithm for Takagi-Sugeno Type Fuzzy 

Logic Controller Automatic Optimization, IEEE Int. Conf. on Fuzzy 

Syst., pp.19-24, San Antonio, TX, 2000. 

21. Song, F. and Smith, S.M., How Blind Can a Blind Fuzzy Logic 

Controller Design Be? Analysis of Cell State Space Based Incremental 

Best Estimate Directed Search Algorithm, IEEE Int. Conf. on Fuzzy 

Syst., pp.134-139, San Antonio, TX, 2000. 

22. Song, F. and Smith, S.M., Cell State Space Based Incremental Best 

Estimate Directed Search Algorithm for Robust Fuzzy Logic Controller 

Optimization with Multi-model Concept, IEEE Int. Conf. on Fuzzy 

Syst., pp.1001-1004, San Antonio, TX, 2000. 

23. Song, F. and Smith, S.M., Design of Sliding Mode Fuzzy Controllers 

for an Autonomous Underwater Vehicle without System Model, 

OCEANS�2000 MTS/IEEE, pp.835-840, Providence, RI, 2000. 

24. Song, F. and Smith, S.M., Automatic Design and Optimization of 

Fuzzy Logic Controllers for an Autonomous Underwater Vehicle, 

OCEANS�2000 MTS/IEEE, pp.829-834, Providence, RI, 2000. 

25. Wu, J.C. and Liu, T.S., A Sliding-Mode Approach to Fuzzy Control 

Design, IEEE Trans. on Control Syst. Techn., vol.4, no.2, pp.141-150, 

1996. 

26. Xu, M., High Performance and Robust Control, Ph.D. Dissertation, 

Florida Atlantic University, 1996. 

27. Miller, G. A., The Magical Number Seven, Plus or Minus Two: Some 

Limits on Our Capacity for Processing Information, The Psychological 

Review, vol.63, no.2, pp.81-97, 1956. 



 

28. Rondeau, L., Levrat, E., and Bremont, J., Analytical Formulation of the 

Influence of Membership Functions Shape, IEEE Int. Conf. on Fuzzy 

Syst., pp.1314-1319, New Orleans, LA, 1996. 

29. Lee, C.C., Fuzzy Logic in Control Systems: Fuzzy Logic Controller-

Part I, II, IEEE Trans. on Syst., Man and Cybern., vol.20, no.2, pp.404-

435, 1990. 

30. Cordon, O., Herrera, F., and Peregrin, A., Applicability of the Fuzzy 

Operators in the Design of Fuzzy Logic Controllers, Fuzzy Sets and 

Syst., vol.86, no.1, pp.15-41, 1997. 

31. Kiendl, H., Non-translation-invariant Defuzzification, IEEE Int. Conf. 

on Fuzzy Syst., pp.737-742, Barcelona, Spain, 1997. 

32. Runkler, T.A., Extended Defuzzification Methods and Their Properties, 

IEEE Int. Conf. on Fuzzy Syst., pp.694-700, New Orleans, LA, 1996. 

 

 

 



13
APPLICATION OF FUZZY

LOGIC FOR CONTROL OF

HEATING, CHILLING, AND

AIR CONDITIONING SYSTEMS

Reza Talebi -Daryani

13.1 INTRODUCTION

The building energy management (BEMS) concept was introduced in the early

1970s during the world’s first  big energy crisis. The oil crisis was the driving

force of the intelligent building. It was the first sign of the rising awareness that

energ y res ource s  are exha us t i bl e.  The second dri vi ng fo rce of int el l i gent 

building was the raising awareness of environmental pollution by inefficient

consumption of energy in production lines as well as in buildings in the

beginning of the 1980s.

 The expansion of computer technology in the early 1980s introduced a

“smart” or “intelligent” building which was one step towards a new digital

computer era. It provided energy efficiency as well as optimum environmental

conditions. Managing the high tech buildings in an energy efficient manner and

to the occupants’ satisfaction would have become an impossible task without

intelligent control systems. On the other hand, an intelligent building is one that

creates an  environment that maximizes the efficiency of the occupants of the

building while at the same time allowing effective management of energy

resources with minimum costs. The intelligence of a building depends on the

elements that go to make up its intelligence. There are at least three attributes

that an intelligent building should possess:

1 .  The building should know what is happening inside and immediately

outside.

2. The building should decide the most efficient way of providing a convenient

comfortable and productive environment for the occupants.

3. The building should „ response“ quickly to occupants’ requests.

These attributes may be translated into a need for various technology and

management systems. The successful integration of these systems will produce

the intelligent building containing a building automation system in order  to

enable the building to respond to external climate factors and conditions.

Simultaneous sensing, control, and monitoring of the internal environment and

storage of the data generated as knowledge of the building performance in a

central computer system, is an important feature of an intelligent building .[1]



This chapter is organized as follows. Section 13.2 describes general features
of the building energy management systems. Section 13.3 is devoted to the
Fuzzy control vs distributed digital control (DDC) for an air condition system.
Section 13.4 discuss the fuzzy control for the operation of a complex chilling
system. The description of various fuzzy control blocks are presented in this
section. Fuzzy control for energy management of a heating center is introduced
in section 13.5. Finally section 13.6 provides the conclusion of this chapter.

13.2 BUILDING ENERGY MANAGEMENT SYSTEM (BEMS)

13.2.1 System Requirements

The thermodynamic processes involved either intend to ensure the
well being of the occupants of the building or consist of ancillary production
conditions of a physical nature. This should be controlled by means of a
technical future-oriented automation system which is physically ideal,
economical, cost effective and efficient in terms of energy consumption. An
integrated building automation system should also include all other technical and
administrative processes that may be automated for reasons of security and
rationalization, in order to increase the productivity of the building. The
assignment of the BEMS is to run the building in such a way that following
requirements as the state of the art should be fulfilled: [2]

• reducing the energy consumption  and  environmental pollution
• security for  man, machine, production  and environment
• improving the efficiency of the process and reducing  processing time
• improving transparency of the process features by useful instrumentation
•  operation-oriented maintenance management of technical installations in

order to   increase machine running time and reduce maintenance costs

Figure13.1:  Building Energy Management System with Fuzzy Control.



• historical and dynamic data processing,  presentation,  and analysis
• ensuring the well being of the occupants in order to improve productivity
• ensuring  ancillary production and research-oriented climate conditions
• reducing  energy consumption by optimal operation of the system.

To realize all of these   functions, it is  evident that a powerful control and
automation system  with different levels of information processing , as shown in
Figure 13.1, must be installed in the building.

A perfect integrated building automation system allows both physical and
functional access to all the data in the building. Integration cannot be said to
exist unless data communication among the various systems is possible in
accordance with requirements. For this purpose, an analysis of information
requirements is essential i.e., safe access to the right information in a structured
fashion at the right place.

Functions suited to inclusion in an integrated building energy management
system could be, for example as shown in Figure 13.2:
- heating, ventilation, air conditioning, cooling (HVAC) - automation systems

in buildings
- supervisory systems for energy management and  operational tasks
- automation and networking of production facilities
- video monitoring and personal surveillance
- clocking-in systems, fire alarms
- optical and acoustic information processing
- lighting control, elevator control
- further administrative, communication and data processing functions
- maintenance and facility management.

heating
fan   air conditioning

Building

sanitary

heat energy

electrical

lighting

         waste-

management

safety

transformer

elevator

video   acoustics

 emergency power supply

PC

Figure13.2:  Application Field for Integrated Building Automation System.



13.2.2 System Configuration

At the heart of building energy management is the building supervisory

control system, which consists of a hierarchically organized, function oriented

control system having separate intelligent automation units. The following

aspects have to be taken into account:

• each level must be able to operate independently

• data interchange must be reduced to a minimum

• the operational readiness of machinery may not be impaired by a breakdown

in communication  interchange.

Regarding the control aspects, a powerful supervisory system is based on

distributed intelligence. The distributed intelligence concept is a concept where

intelligent outstations (controllers) are connected with each other by a

communication bus (network). The building supervisory control systems with

it’s distributed intelligent is configured  into four hierarchical Information

processing levels, as shown in Figure 13.1.

13.2. 3 Automation Levels

1. Information and Management Level

At this level, physical and technical data relating to the building and

emanating from the lower control and  automation levels may be accessed in a

condensed form and processed. In the main, this is done on workstations using

user-friendly software interfaced to the various automation levels. The initial

function of this level is to analyze the operating status of the systems.

2. Supervisory Control Level

The main function of this level is to control, monitor and log the processes

within the building as a whole, but it serves also for configuring automation units

and measurements and control units at a level three and setting their parameters.

Further functions at level two are:

- data processing, data recording

- maintenance management of technical installations

- energy management

3. Automation Level

The automation level houses the distributed intelligence for mathematical -

and physical-based operation functions as outstation multicontrollers. The

purpose of the distributed  digital control (DDC) is to monitor and control the

most important statuses and processes within the building.

The control system, which also provides programmable controller (PLC)

functions, allows a  logical link to be set up in the form of time or status

elements, in order to guarantee optimum performance and security of



installations. This level consists of a number of DDC controller outstations. Each

panel is fully programmable and autonomous in operation. They coordinate

communication upwards to the central computer, horizontally to other

outstations.

4. Field Level

This level is the most basic level and houses the sensors and actuators which

are, to a large extent, directly linked to the automation systems at level three.

Most of these sensors and actuators are only available as analogue units so

communication with levels two and one is only possible via level three. Within

the field of application of the intelligent building, more and more bus-

compatible-systems will be available on the market in future.

13. 3 AIR CONDITIONING SYSTEM: FLC VS DDC

The aim of the realized project, introduced here, was the application of a

temperature cascade control system based on fuzzy logic for a common non

linear air conditioning. The inner controller of the cascade control system has

fuzzy PID characteristics.

 In order to reduce the number of rules, the integral part of the controller is

realized in the output of the fuzzy controller. The realization of the integral part

through a second output is a unique solution with three advantages : reduction of

rules, easy adjustment of the integral part, and use of the additional information

of the input.

The additional inputs besides temperature are also to be fuzzified in order to

give the controller a better characteristic for fine tuning.

The controller is adjustable over the whole output range independently from

the nonlinear working characteristics of the process. The inner controller consists

of 99 rules. The fuzzy controller can be adjusted independent of a working point

so that the adjustment for the whole output range is optimal.

Fuzzy controller is superior to the digital controller for open loops with

intensive nonlinear characteristics like the air supply system. The resulting

improvement of the fuzzy control loop behavior is proved by comparing the

system result with the loop response of a digital control system.

13.3.1 Process Description

The air conditioning system (Figure.13.3), with its control loops for a

temperature cascade control, is used for education and research on building

energy management systems. In its structure it is equivalent to common

industrial applications. The room temperature ϑ is controlled by conditioned

supply air. The supply air system consists of motorized dampers (Damp), a

preheat exchanger (Ph), a chillier (Ch) and a second heat exchanger (Sh) to



condition the air temperature. The steam humidifier (Hu) and filter (Fi) are not

taken into account for the temperature control. [3]

Figure 13.3:  Cascade Control Schematic of an Air Conditioning System.

13.3.2 Process Control

The open loop of the supply air temperature of an air conditioner is known

within the HVAC- system as one of the most difficult controlled open loops on

account of its large degree of time delay and  the nonlinear characteristics of the

heat exchangers,  as shown in Figure 13.4.

Figure 13.5 illustrates the open loop gain of the system as a function of the

control valve position. In order to compensate the nonlinear behavior of the

system, a cascade controller is used in order to compensate for the nonlinear

characteristic of the heat exchanger and improve the control loop behavior.

Fan

Damp

Fi Ch Hu Sh

exhaust air system

supply air system

PID PI

Fan

P0 0,2 0,4 0,6 0,8 1,0

1,0

0,8

0,6

0,4

0,2

∆
Θ
2 2

2'

1
1'

∆P
∆P

0

control valve position

st
an

d
ar

is
ed

 o
u
tp

u
t 

 Θ

out max
Θ=

ϑ

outϑ1

=G1
∆Θ1 > =G2

∆Θ 2

∆PP∆

∆
Θ

no
n 

lin
ea

r
 li

ne
ar

Figure 13.4:  Heat Exchanger Operation Characteristic [4].

The structure of the cascade controller shown in Figure 13.3 permits a

subdivision of the open loop and the solving of the control problem in several



steps with simpler control circuits. The nonlinearity of the open loop is partially

compensated outwards by the cascading of the room air temperature loop, but the

nonlinear characteristics of the heat exchangers still remain.

0 0,2 0,4 0,6 0,8 1,0
0

control valve position  

1

2

3

G = 1 

o
p
e
n
 l
o
o
p
 g
a
in
 G

non linear:G{     >G>0}

P

linear

8

Figure 13.5:  Nonlinear Open Loop Gain of the Heat Exchanger.

13.3.3 Digital PID Controller

Equation 13.1.a describes a digital PID controller for A/C system:[3]

2K21K1K01KK e*qe*qe*qyy −−− +++= (13.1.a)

We can generalize the Equation 13.1a in the  following way:

2K21K1K01K*1K e*qe*qe*qyPy −−− +++= (13.1.b)

The structure of  Equation 13.1b has some generalized features: there are

only three free determinable parameters, q0, q1, q2, for the optimal working

behavior of the control loop. If there is an integral part in the control algorithms,

we have to introduce  the parameter P1 with the value of 1.

A digital  controller for the air conditioning system is optimized by means of

practical adjustment rules of Takahashi. The response behavior of the processes

were received and evaluated [3]. The disadvantage of this method is that the

control loop is only optimized for a fixed working point.

Now we can recognize that optimal control loop behavior is only guaranteed

when we extend the parameters of the PID controller in order to cover the whole

range of the working point of the controlled process.

 The following method ensures an enhanced DDC/PID algorithms The

current set point error ek in combination with q0 is presenting the current state of

the process, where the set point errors e k-1 and e k-2 are presenting the passed



states of the process, and therefore are presenting the dynamic behavior of the

system. In order to optimize the control loop behavior, it is important to extend

Equation 13.1.b with further set point errors of the control loop. Additional

information about the control loop behavior can be obtained if we also consider

all the control output values (y k-1...y k-n) to any state of the system which occur

the set point errors. Now we have to extend the PID algorithms as follows.

111011 ...... −−−− ++++++= knkknknkk eqeqeqypypy (13.2)

Equation 13.2 consists of n optimization parameters. Using Equation 13.2 for

real AC control problems is a time consuming process, because there are many

optimization parameters which have to be evaluated and calculated. Now we can

realize that the experimentally oriented optimization methods and all other

empirical methods used by the control industry will fail, in order to fulfil the

requirements for the PID algorithm of  n degree.

The consequence is that almost all nonlinear control loops have in fact a

stable dynamically behavior for the whole working range of the process, but the

quality of the control loop is very poor because of the very weak gain factor of

the control loop.

The target is to enable an operator to adjust an air conditioning controller

optimally for the whole working range. It will be described in the following

section how to implement an HVAC technician’s knowledge and experience

onto a controller by using fuzzy logic. The linguistic variables and rules of a

Fuzzy controller are similar to the technician’s memory power and therefore

easier to formulate than any abstract mathematical formula. Local changes in the

sets of rules generate local changes in the characteristics of the fuzzy controller.

13.3.4    Fuzzy Cascade Controller

For a fuzzy PID supply air temperature controller the following four input

variables as shown in Figure 13.6 are utilized:[3]

• set point error e;

• differential of process variable (dx/dt);

• difference of set point error ∆e (increase or decrease) ; and

• reference output uo.

The set point error (e) is defined as the difference between the set point ref.

and the process value x (ϑs) according to Equation 13.3 for a maximum range of

emax = ± 5K with seven sets. If the actual set point error (e) is on a larger scale,

the set point error (e) will be determined on e = emax, so that, apart from these

limits, the controller generates a maximal output.

e ref x=  - (13.3)



The fuzzy system supports a maximal of seven sets with Λ-, Π-, Z- and S -

functions. For fine control, thin sets are utilized around the set point, e = 0

(ns, zr, ps). The set width increases with distance from the set point for rough

control. In case of a large set point error the control system should first bring the

process variable quickly with a rough control near to the set point. Second the

controller has to zoom in carefully with a fine control. This fine tuning method

for the sets helps to avoid the overshoot and undershoot of  the process variable.

Because of the extreme nonlinear characteristic of the preheat exchanger, the

definition range of the set point error is ± 5 K. If the process variable is moving

with a maximal speed towards the set point for a big set point response, the

controller has  to start very soon with the control mode, i.e. at ±  5 K set point

error before reaching the set point.

For surpressing noise changes of the output signal caused by noise signals in

the range e = ±0.08, the Π-function is chosen for the set zero (zr). The valve is

spared by such a defined dead band, otherwise any slight set point error will

cause a change of the controller output. Subsequent to this dead band the value

of the set point error e will be smaller than ± 0.15 K.

   fuzzy

inference

Figure 13.6:   Fuzzy PID Supply Air Temperature Controller.



The second input differential of process value (dx/dt) is calculated by

Equation 13.4 and is determined in the range  ± (1 K/10s). This is congruent with

the real maximal speed of the process variable. For the second  input variable

there are also seven sets defined:

( ) ( ) ( )
Tc

1kxkx
dt/dx

−−
= (13.4)

with x(k)≡ process variable in cycle, x(k-1)  ≡ process variable in cycle k-1,

Tc≡ scan time.

 The third input is difference of set point error ( ∆e), calculated according to

Equation 13.5 (∆emax is defined in the range ±(1K/10s), according to the

differential of process variable). Only two sets are defined for this variable. It is

possible to recognize with this input variable whether the process variable is

moving towards the set point (set n) or whether the set point error is increasing

(set ). This additional information is necessary for set e = zero because it accepts

negative and positive measured values.

 The input difference of set point error ∆e is associated with the patches

e = zr ∩ (dx/dt) = ns or ps only. For example the set point error is positive but

still within the set e = zero. That means the process value is a bit too deep

(set ∆e = negative). The set (dx/dt) = positive small shows an increasing process

value. In this case the output signal should not change as the process value

zooms into the set point.  If the set point error is negative within the set

e = zero, the process value is slightly too high. On an increasing process value

the set dx/dt is still positive small. But in this case the set point error is

increasing (set ∆e = positive). The controller output must be reduced, in order to

avoid on overshooting of the process value:

The fourth input is the reference output (u0) which is not utilized in common

PID controllers. The reference output shows the controller which unit is the

active one (= heat exchanger, chiller or damper). By combining the specific rules

for each unit the controller behavior can be adapted locally in its control range by

changing single rules. The Fuzzy controller utilizes the following two outputs:

• change of controller output ∆u and

• change of reference output ∆u 0.

The defuzzification results from the method of the center of gravity. The

output change of controller output ∆u is defined in the range ±50% and contains

7 singletons.

( )
( ) ( )

Tc

keke
ke

1−−
=∆ 

(13.5)



 The fuzzy PD characteristics are included in this variable. The addition of

the Fuzzy PD output (∆u) to the reference output u0 gives the complete output of

the inner controller:
uuu 0total ∆+= (13.6)

The inner controller output (utotal) is a positional signal in contrast to a speed

signal. Note that the end position 4095 bit of the total controller output is

possible immediately only if the reference output (u0) is 2047 or larger.

In this application a sequence wiring with four units is utilized. Therefore a

change of the fuzzy controller output of  percent causes a bounce over two units

only. The second output change of the reference output (∆uo) is defined in the

range ±2% and contains 7 singletons. This variable generates the fuzzy integral

characteristics. The integral characteristics are implemented in the calculation of

the reference point u0. The reference output is calculated as:

( ) ( )u k u k u0 0 01= − + ∆ (13.7)

Within the rule base the sets of set point error and the sets of differential of

proce s s  vari abl e (dx/ dt ) are as s oci at ed wi t h the set s  of change of referenc e

output (∆u0). In comparison the common realization of the integral part is in need

of an  addi t i ona l  vari abl e  at  the in put  whi ch is  cal cul a t ed throug h the

rectangular integration Equation 13.8. These statements correspond because ∆u0
of Equation 13.7 and (Tc/Tn).e(k) of Equation 13.8  are nearly the same.

( ) ( ) ( )ke
T

T
kuku

n

c .1 +−= (13.8)

 ∆u 0  is calculated once per scan time cycle which corresponds to the scan

time Tc and the integral acting time Tn of is a digital integral control algorithm,

and presented in the order of the membership functions of ∆u0. The realization of

the integral part through a second output shows three major advantages:

• reduction of rules;

• easy adjustment of the integral part; and

• use of the additional information of the D-input.

The reduction of rules is a result of an removed integral input to the output of

the fuzzy controller. It is self evident that the handling of a controller with fewer

rules is easier, but there is another aspect for the optimization which gives a

rather easy adjustment of the integral part.

After a set point bounce or any disturbances, the controller has to bring the

reference output u0 near to the next available steady condition quickly.  The sets

of change of reference output ∆u0 are associated with the sets of the variable e

and additionally with the sets of the variable (dx/dt). The control behavior is

clearly improved by using the additional information of the D-input.



The Fuzzy Lead Controller with PI characteristics

The lead controller for room temperature control loop has considerably fewer

input variables and therefore fewer rules than the inner controller for the supply

temperature control loop. Instead of the fuzzy PID characteristics, a fuzzy PI

characteristics is implemented only (Figure.13.7). The fuzzy lead controller

utilizes one input and two outputs:

• set point error of the room temperature etr;

• change of reference set point ∆ref0; and

• set point change ∆ref.

The input e tr, is defined for a range of ± 4 K with 7 sets. The output set point

change ∆ref is defined in the range ± 100 percent and contains 7 singletons.

Because of the large range of the set point change, both end positions, 15°C and

35°C, are immediately available. Within this output there is a fuzzy PI behavior

only implemented. In order to realize the integral characteristics the same

method as for the inner controller is used (Equation. 13.9).

( ) ( ) 000 ref1krkref ∆+−= (13.9)

The second output change of reference set point ∆r0 generates the fuzzy

integral  behavior, with a scan time of 30 s. This variable is defined for a range

of ± 0,6K ≡ ± 3% and contains 7 singletons. This fuzzy controller has seven rules

only. Each rule associates one input set with two output sets.

r

   fuzzy
inference

Figure 13.7:  The Lead Controller with Fuzzy PI Characteristics.



13.3.5 DDC vs FLC

To compare the control loop behavior, the method of control time (TC)
measurement is chosen here. The inner controller is optimized for set point
responses. The control time TC is 900 s with the digital controller (Figure 13.8)
whereas the fuzzy controller needs only 460 s (Figure. 13.9) for the same task.
The reason for this large time difference is the big overshoot The fuzzy
controller brings the process variable  to the new set point and avoids an
overshooting of the process variable as a result of the specific rules.

co
n
tr
o
ll
er
 o
u
tp
u
t

Figure 13.8:  Digital Control Loop Behavior for a Set Point Step Response.

Figure 13.9:   Fuzzy Control Loop Behavior for a Set Point Step Response.

35

31

27

23

19

15

100

80

60

40

20

 0
0 500 1000 1500

te
m

p
e
r
a
tu
r
e

ϑ °C

time
t
s

u %

T   = 900 s

air temperature

c controller output

35

31

27

23

19

15

4095

3044

1794

1050

 0

0 200 400

te
m

p
er

at
u
re 

ϑ °C

time t
s

u b
it

T   = 460 s

air temperature

controller output

600

c

te
m

p
e
ra

tu
re

 

co
n
tr

ol
le

r 
o
u
tp

u
t



13.4 FUZZY CONTROL FOR THE OPERATION MANAGEMENT
OF A COMPLEX  CHILLING SYSTEM

The optimization  potentials for the operation of a chilling system within

building supervisory control systems are  limited to the  abilities of the

programmable logical controller (PLC) functions with their binary-logic-

oriented operations. Little information about thermal behavior of the building

and the chilling system is considered by the operation of chilling systems with

plc-based control strategies. The main goal of this project was, to replace the plc

s t r at egy  by fuzzy cont r ol .  A conc ept  of kno wl edg e eng i neer i ng by mea s uri n g

and  analyzing of  system behavior is necessary, since no expert knowledge exists

for formulating the fuzzy rules.

The focus of the optimization strategy by Fuzzy control is to ensure an

optimal operation  of  a chilling system. Optimal operation means:

• reducing  operation time and operation costs of the system; and

• reducing cooling energy generation  and consumption costs.

 Different optimization strategies have been defined for developing  proper

fuzzy controllers. Missing expert knowledge and online measurement of

different physical values and their evaluation are the basis for the fuzzy control

system. Few rules for each controller are necessary in order to have  fine tuning

of the fuzzy control system. Three fuzzy controllers are necessary in order to

reach maximum efficiency by operation of different components of the chilling

system. The realized fuzzy control system is able to forecast the maximum

cooling power of the building and also to determine the cooling  potential of the

outdoor air. Operation of  the systems by fuzzy control enormously reduces the

cost of cooling power. The system has been successfully commissioned and

remarkable improvement of the system behavior has bee reached. This project

opens new application fields for the market of building automation. [5]

13.4.1     Process Description

The chilling system described here supplies chilled water to the air

conditioning systems (AC systems) installed in different research laboratories

and computer rooms at the Max Plank Institute for Radio Astronomy in Bonn.

The amount of cooling power for the building is the sum of internal cooling and

the external cooling load, which depends on outdoor air temperature (Tout) and

sun radiation through the windows. The cooling machines installed here use the

compression cooling method. The principle of a compression cooling machine

can be described in two thermodynamic processes. In the first step of the cooling

process, the heat energy will be transferred from the system to an evaporator of

the chilling system and therefore the liquid gas will evaporate by absorbing the

heating energy.  After the compression of the heated gas in the second part of the

process, the gas condenses again by cooling the gas through the air cooling



system. The chilling system as shown in Figure 13.10 consists of  these

components: three compression cooling machines, three air cooling systems and

two cooling load storage systems. During the operation of the cooling machines,

the air cooling systems will be used in order to transfer the condensation energy

of the cooling machine  to the outdoor air space. If the outdoor air temperature is

much lower than  user net return temperature on heat exchanger one, the air

cooling system should serve as a free cooling system.

The additional cooling load storage systems are installed in order to load

cooling energy during the night, and therefore reduce the cost of electrical power

consumption. They also supply  cooling energy during the operation time, if a

maximum cooling energy is needed and cannot be provided by existing cooling

machines. In both cases the cooling storage system does not reduce energy

consumption, but rather the cost of energy consumption.[4]

Figure 13.10:   Schematic Diagram of the Chilling System.

13.4.2     Process Operation with FLC

Thermal Analysis of the Building and Chilling System

The aim of the thermal analysis of the building is to find measurable

information for the  current cooling load. Measurement of current cooling power

of  the building as shown in Figure 13.11 has  proved that there is not a

significant correlation between outdoor air temperature Tout and the current

cooling power. The current cooling power will increase if Tout gets higher than

23°C. In the summertime, when the Tout increases to about 34°C, the current

cooling power will be more influenced by the Tout. So the Tout can be used for



forecasting the maximum cooling power. Additional information needed for

analyzing the  thermal behavior of the building is  the return temperature of the

user net  (Tr-un). Any change of total cooling load will influence the Tr-un and is

an important input for the fuzzy controller.

160,00

120,00

80,00

40,00

0,00

kW,°C

Figure 13.11:  Course  of  Current Cooling Power and Outdoor Air
Temperature.

 

The Design of the Fuzzy Control System

Considering  the cooling potential  of the outdoor air, the free cooling system

should run before the cooling load storage system (CLS) and cooling machines.

This has to be considered by the fuzzy controller for the operation of cooling

machines. The CLS should run during the daytime before any cooling machine,

if the cooling load of the building is expected to be low. Optimization strategy

for the discharge of CLS will ensure that there will not be a peak in the electrical

power. The cooling machines should run at  their lowest level.

Three different FLC have been developed with a total number of just 70

rules. The designed software -based  FLC with the SUCOsoft fuzzy tech tool[6],

has been translated into a graphical-orientated mathematical and logical

programming language.[7] All the operation instructions implemented in the

Supervisory level of a BEMS will be transferred to the chilling system through

the automation level, as shown in Figure 13.1.[8]

13.4.3 Description of the Different Fuzzy Controllers

Fuzzy Control Block 1

The optimal starting point for the discharge of the cooling load storage

system depends on the maximum cooling power demand, which can differ every

day. For calculation of the maximum cooling power, Tout must be processed by

this fuzzy controller, since the maximum cooling power in the summertime will

be influenced by Tout.. A feedback of current cooling power calculated by Fuzzy

control block 2 (as shown in Figure 13.12) is also necessary, in order to estimate

the maximum cooling power. The input variables of the controller 1 are:

t [h]

outdoor air temperature [°C]

cooling power [kW]

00:00    04:00    08:00    12:00    16:00   20:00  22:00



• Out door air temperature Tout;

• Differential of Tout:  dTout /dt;
• Current cooling power of the cooling machines.

Figure 13.12:  Fuzzy Control System for Operation of the Chilling System.

dTou/dt

fuzzi-
fication

fuzzi-
fication

CP_max

CP_max

PLC

CCP

Fuzzy Controller 1

Fuzzy Controller 2

Fuzzy Controller 3

center

of

maximum

CCP

PLC

e1

e2

dTr_un

dTr_un

PLCPLC

PLC

CFCP

center
of

maximum

center

of

maximum

e1

outdoor

air temp.

CCPT. return

CFCP

set point

T.return

out door

air temp.

Tout

HE1

fuzzy
inference

    fuzzy
inference

     fuzzy
inference

fuzzi-
fication

defuzzi-
fication

defuzzi-
fication

defuzzi-
fication

MIN-
MAX-

operator

MIN-
MAX-
operator

MIN-
MAX-
operator

set point

set of
rules

set of
rules

set of
 rules

CPP

PLC

Tout HE2

Tout HE1 e1

e2

dTr_un

Tout

e1



The second fuzzy variable is calculated by Equation 13.10:

dT dt T k T k TCout out out/ * /= ( ) −( )( )1 (13.10)

With Tout (K) = Outdoor air temperature by K
Th.
 cycle, Tout ( k-1) = Outdoor

air temperature by k-1
 Th. 

cycle, TC = Scan time.

Fuzzy Control Block 2

 The fuzzy controller 2 is the important part for the optimization of the

Control system in order to use the cooling potential of the outdoor air before

starting any cooling machine. This controller consists of 21 rules with the 3 input

variables:

• Set point error“ e1“ at heat exchanger 1,

• Set point error “e2“ at heat exchanger 2,

• Difference between user net return temperature( Tr-un) , and Tset point: ∆ Tr-un

The third input variable presents the difference between user net return

temperature and Set point, which  is determined by Equation 13.11:

intposetunun TTrTr −=∆ −− (13.11)

Calculation of ∆ Tr-un is necessary because Tset pint is variable and, therefore,

∆Trun, contains the real information about the  cooling load of the building. If e1

is zero, or negative, then the capacity of the free cooling system is sufficient for

the required cooling power. The output signal of FC 2 will be zero. In other

cases, FC 2 is responsible for the operation of the cooling machines. In cases,

where  the capac i t y of the  free cool i ng sys t em  is  not  en ough,  e wi l l  have va l ues 

of NS, so  other rules will determine the output of the controller. In that case the

third input variable ∆  Tr -un, is more weighted for the output value of the

controller, because ∆Tr-un  represents the  real alternation of the cooling load.

Fuzzy Control Block 3

This control block is necessary in order to use the cooling potential of the

outdoor air and run the air cooling systems of the cooling machines as free

cooling systems. The cooling potential depends on the difference between user

net return temperature Tr-un, and the outdoor air temperature Tout. The input

variables of the control block 3 are:

• Difference between Tr-un and set point, ∆Tr-un;
• Set point error e1 at heat exchanger 1;

• Different between Tout, and Tr-un, ∆Tout.

An important aspect for the formulation of the rules for this controller is the

cooling potential of the system, which is represented by the input variable 3,

∆Tout. The higher the value of this variable is, the fewer free cooling system



com po nent s  are neces s ary in order t o suppl y t he dem ande d cool i ng power for

t he building. Producing the cooling power by free cooling system reduces the

cost of the cooling energy and the operation time of the cooling machines. This

controller consists of 29 rules.

13.4.4 System Performance and Optimization with FLC

Figure 13.13 shows the course of user net supply temperature before the
optimization of the system operation by fuzzy control. The alternation of the
supply temperature is between 10.5°C and 4.8°C. The reason for such a set point
error range is in the discontinuous  operation of the  system  by PLC. Figure
13.14 presents the course of the supply temperature after commissioning the
fuzzy control system. The course of the supply temperature indicates a
remarkable improvement of the system behavior. This relatively constant supply
temperature will ensure research conditions in the building.

 Operation of  free cooling systems by fuzzy control could reduce the cost of
energy production by factor 27 in comparison with the cost of cooling machines.

time

Figure 13.13.   Course of Supply Temperature with  PLC Operated  System.

t [h]

su
p

p
ly

 t
em

p
er

a
tu

re
 [

°C
]

 1 1 ,0

1 0 ,0

9 ,0

8 ,0

7 ,0

6 ,0

5 ,0

4 ,0
  00       02      04    0 6   08   10   12   1 4   16   18   20   2 2



13.5 APPLICATION  OF FUZZY CONTROL FOR  ENERGY
MANAGEMENT OF A CASCADE HEATING CENTER

Gener at i on and cons um pt i o n of heat  power for dom es t i c dem and shou l d

consider economical and ecological aspects. Optimal demand - oriented heat

power generation by a cascade heat center requires sustainable evaluation of

measurement information of the whole system.

 Fuzzy logic provides, by evaluation of the thermal behavior of the heating

system, a powerful rule base for decision making in order to guarantee optimal

operation of the heating system. Analysis of the dynamically thermal behavior of

the building and the heating center is necessary, in order to select  existing

measurement information as input variables for  different fuzzy controllers.

The  supply temperature control loop of the system is designed and

commissioned as a nonlinear fuzzy PID controller for a nonlinear thermal

process. This kind of controller can be described as a robust control system.

The control system is optimized through the whole working range of the

system and ensures a maximum of control loop quality by a very short

response time of any alternation in the process, and at a negligible overshooting

of the process value during the control operation. The whole system consists of

three different fuzzy controllers with the following functions: a fuzzy PID

controller for a hot water supply temperature control loop;

 a fuzzy controller  for optimal evaluation of heat power demand;

 and a fuzzy co ntroller  for the operation of a cascade heat center with high

efficiency and lowest contaminated exhaust emission. This control and operation

system provides demand -oriented heating energy with  minimum fuel

consumption and therefore  with a minimum of contaminated exhaust gas

emission.

13.5.1   The Heating System

Description of the Heating System

The heating system (which has to be optimized as written here) supplies

heating power and domestic hot water for a public school. The system is known

as a cascade heat center as demonstrated in Figure 13.15. The system consists of

two heaters with controllable gas burners and a hot water boiler. The heating

system supplies through a hot water distributor, heating energy for autonomous

sub control loops and for a hot water boiler.

The control loops in different zones of the building are a  digital control

system and are already in operation. The zone-oriented control loops  operate

only during the lecturing and business hours. After business hours, or  in

summertime, the heating systems should only provide heat energy for the hot

water boiler in an efficient way from economical and ecological points of  view

as described previously.



Operation of the Heating  System

Reducing  fuel consumption by optimal operation of the system means
simultaneously reducing  the operating cost of the system and reducing
environmental pollution. Investigation by  [9,10] as illustrated in Figure 13.16
shows the thermal efficiency of the system by low range operation capacity  of
the heater. Reducing  the environmental pollution is only  possible  when the
system-operation-oriented -emission of the exhaust gas is as little as possible. As
we can see from Figure 13.17, the emission of contaminated exhaust gas has its
maximum at start and stop phase of the operation. The main goal of the project
described here was to reduce the heat capacity of the system by an intelligent
control  and operation strategy, and also  reduce the frequency of the  start/stop
operation mode of the system.

  



 start phase stationer operating mode stop phase

burner operating time

ex
h
au
st
 e
m
is
si
o
n

t

Figure 13.17:  Operation Mode Oriented Exhaust Emission.

13.5.2   FLC for System Optimization

State of the Operation Strategy for a Cascade Heating Center

One of the operating strategies is the serially operated heating system.

Release of the second heater is guaranteed when the first heater reaches

maximum operating capacity. This kind of operating mode reduces the unwanted

start/stop phases of the second heater, and therefore guarantees reduced

pollution. The disadvantages of this operating strategy lie in the reduced thermal

efficiency of the first heater.

The second operating strategy is the parallel operation of the system. As soon

as the first heater reaches its basis capacity of the demanded heat energy, the

second heater will be released for  simultaneous operation. As soon as there is

less demand for heating energy, the second heater will stop, then start again

when the demand of heating energy increases. The disadvantages of this

operation strategy lie in the high frequency for the start/stop phase of the second

heater, and the resulting increase in emission of the contaminated exhaust gases.

Optimal Operation Strategy for the Heating System

As soon as the controller output indicates a heat energy, the first heater starts

with its lowest operating range (12.5 % heat energy). In the next phase, the first

heater is in control mode. As soon as the first heater provides a total heat

capacity of 25 % (this is a significant value), that each heater can operate in its

basis power range of 12.5 % .

This operating strategy ensures that none of the heaters will reach its

maximum capacity, and the start/stop frequency of  heater 2 will be very low. To

reach  thi s  goal  of opt i m a l  operat i o n,  di ffere nt  fuzzy-l ogi c-bas ed  eval uat i o n of

t he thermal behavior  of the system is  necessary, which will be described in the

following section. Figure 13.18 illustrates the different start /stop phase of the

system.[11,12]



 

phase 4

phase 4

phase 3

phase 2

phase 1

phase 1

phase 2

phase 3

heater 1 heater 2 heater 1 heater 2

start phase stop phase

Figure 13.18:  Operation Strategy for a Cascade Heating Center.

13.5.3 FLC Description

In order to realize the described optimization strategy by fuzzy control, it is

important to determine the precise start/stop operating range of the heating

system. The lowest operation range of the first heater  should be modified by a

hysteresis in order to reduce the  frequency of start/stop by varying the low

energ y dem and.  Rel eas e of  the heat e r from  low es t  operat i on range to the

vari a bl e operation range must also consider the real demand of heating energy.

If the outdoor air temperature is very low, the fuzzy control system must

release the control mode of the heater immediately. If the gradient of the heat

dem and is  not  as  bi g,  the fuzzy cont r ol  sys t em  shoul d rel eas e the cont rol  mod e

of the heaters with a time delay.

This strategy ensures that for a long period of time the heater will be in

stationary  operation mode  and the exhaust emission will  be reduced.

The release of the second heater at  lower outdoor air temperature should  be

immediate, in order to avoid the operation of the first heater in a high range of

heat capacity. If the control mode of the first heater is in operation at  mild

outdoor air temperature, the release of the second heater should also delay in

order to reduce to start/stop frequency of the second heater.

The open loop of the supply temperature of a heating system has a big time

delay and  nonlinear characteristics. Therefore the same type of fuzzy PID

controller will be implemented for  control loop as  has been used for the supply

air temperature control loop as,  described in section 13.3.

The fuzzy  control system introduced here is  a software solution within an

existing  industrial  building energy management system. Figure 13.19 shows the

fuzzy control System for optimal operation of the system.



Fuzzy-Control-Block I

This control block controls the system’s supply temperature set point with

PID characteristics. This controller has four input variables:

• set point error e, calculated by Equation 13.3; and

• differential of process value (dx/dt), calculated by Equation 13.4; and

• difference of set point error ∆e , calculated by Equation. 13.5.

The fourth input is the reference output (u0). The controller can be adjusted

independently of a working point. Fuzzy controller I  utilizes two outputs:

• change of controller output  ∆u;  and

• change of reference output  ∆u0.

The integral characteristics are implemented in the calculation of the

reference point u0 . [3]

Fuzzy Control Block II

This fuzzy controller calculates the current power demand capacity and

burner delay time. The following input variables are fuzzified by the fuzzy

control block II:

• Outdoor air temperature  ϑOut;

• Set point temperature; and

• Current flow capacity cft.

  The fuzzy controller utilizes two outputs:

• Heating power demand value Q_t

• Burner control delay time dt.

The definition range of  the first input variable is  between -12°C and

+22°C. The second input variable is the set point, which indicates  the highest set

point of all the active control loops. The current flow capacity cft, of the system

as the third input variable can be calculated by Equation 13.12:

cft

cf i

cf

i

n

total

= =

∑ ( ( ))

*1 100
(13.12)

Cf  represents the flow capacity of each control value by the current valve

position so that the total flow capacity is easily calculated by measuring all

control valve positions in the system. The calculated current heating power

demand by this fuzzy control block is the input variable for fuzzy control III as a

release criterion for the start phase of the heating system.

The second output variable of the fuzzy control block II serves as a time

delaying system for  release of the variable control mode of the first heater. The

cont r ol  mode of  the heat e r wi l l  be rel eas ed earl i er by low out doo r ai r

t em pe rat ure  than by mild outdoor air temperature.





Fuzzy Control Block III

This fuzzy controller determines the start/stop points of the heaters. The third

fuzzy control block is the important part of the fuzzy system for the

determination of the precise start/stop modus of the two heaters.

The following input variables are used  by the fuzzy control block III:

• Current Heating power demand value Q_t;

• Controller output  ys from fuzzy control block I;

• Changing of the controller output dy from fuzzy  control block 1; and

• Heating power demand gradient e_r.

The fuzzy controller utilizes two outputs:

• threshold value Qfg1 for heater 1 and

• threshold value  Qfg2 for heater 2.

The first input value, i.e., current heating power demand value Q_t, is the

most important factor for the evaluation of the start/stop - point of the heaters.

The second input value has been calculated by the first

control  block and determines the position of the control range of the heaters.  As

soon as this value is higher than 40 percent, the start phase of the second heater

will be released. The third input  presents the set point error of the system as well

as its dynamic behavior. The fourth indicates the gradient of the thermal energy,

which is necessary in order to keep the set point temperature of the system

constant. The crisp value of this input is calculated  as:

e r ref x r− −= − (13.13)

Where, in Equation 13.3,  ref ≡ reference set point temperature, and x_r: ≡

system return temperature.

For the determination of the start/stop point of the heaters the threshold

values of both heaters are evaluated by the Fuzzy controller III, as the output

values. The calculation of the crisp number of the threshold values is realized by

Equation 13.14 . As soon as the threshold value Qfg1 for heater 1 is over a limit

of 12.5 % of the total energy demand, the heater’s start phase will be released.

Decreasing of the threshold value Qfg1 for heater 1 under 12.5 % of the total

energy demand , is a crisp signal for stopping of the heater 1.

Qf Qf dQfk kg g g( ) ( )= +− 1 (13.14)

with Qfg(k-1): ≡   threshold value Qfg by  cycle k-1 and dQfg: ≡   change of the

threshold value Qfg .

The release of the second heater is due to the output value of the fuzzy

control block I, when its value reaches 40 percent.



To prove the reliability of the fuzzy control block III, Qfg2 has been
calculated for different outdoor air temperatures as shown in Figure 13.20. For
this experiment, the alternation of the outdoor air temperature had to be
simulated. As we can see from Figure 13.20, increasing  the threshold value
Qfg2 is quite fast by lower outdoor air temperatures (here -5°C). At higher
outdoor air temperatures, e.g., 2°C, to reach the Qfg2 is slow, and at
a ϑout = 10°C, very slow.

0

10

20

30

40

50

60

70

80

90

100

20 220 420 620 820 1020

te
m
p
er
at
u
re
  
[°
C
] 
 r
es
p
. 
 p
er
ce
n
t 
[%

]

0

5

10

15

20

25

30

35

40

45

50

Q
fg
2
 [
%
]

Qfg2 at

 ϑ     = -5°C
Qfg2 at ϑ    out  = 2 °C

 Qfg2 at ϑ  out = 10 °C

 stp=40

start point heater 2   set point

control output value

supply-
temperature

time [sek]

     out

Figure13.20:  Course of  Qfg2 at Different Outdoor Air Temperatures.

13.5.4 Temperature Control: Fuzzy vs Digital

In order to compare the features of the fuzzy system with the existing

DDC system, the heating system was operated during summertime for  providing

domestic hot water in the building. For providing hot water only the first heater

was in operation. Heater 1 had four start/stop  phases as shown in Figure 13.21

where  thi s  sys t em  was  ope rat ed by DDC  sys t em .  For the s am e proces s ,  as  we

can see from Figure 13.22, the fuzzy control-operated heater has only one start/

stop phase. Considering the pollution effect of the heaters, this is a remarkable

improvement of the systems’ features from an ecological point of view.

 Operation of the system with fuzzy control ensures that the release of the

control mode of the heater is time-delay-oriented (ca. 300 sec.), which avoids

s hoot i ng  t he s uppl y tem p erat ure ov er the set  poi nt  and  reduces  t he num ber of

t he start/stop phases of the heater. Also, the working point of the fuzzy PID

controller could keep very low (0%) in order to reduce the speed of the

controller output for low energy demand.



Figure 13.21 shows the system’s behavior for control and operation mode
realized by digital control system. Figure 13.22 shows the system’s behavior for
control and operation mode  realized by fuzzy control system.

Figure 13.22:   Heating System’s Behavior Operated by Fuzzy Control.

  0 

10 

20 

30

40 

50 

60

70

80

- 12:23 12:47 13:11 13:35 13:59 14:23 14:47 15:11 15:35 15:59 16:23 16:47 17:11 17:35

time

te
m

p
er

at
u

re
 [

°C
]  

co
n

tr
o

l 
o

u
tp

u
t 

v
al

u
e 

y
 [

%
]  

    start/stop of heater 1 

supply temperature 

out door air temperature 

set point 

  control out put value 

  for heater 1 

  0 

  20 

  40 

 -20 

  60 

  100 

  80 

Figure 13.21:  Heating System’s Behavior Operated  by Digital Control.

 



13.6 CONCLUSIONS

The objective of building energy management system (BEMS) is to  achieve

more efficient building operation at reduced labor and energy costs while

providing a safe and more comfortable working environment for building

occupants. In the process of meeting these objectives, the BEMS has evolved

from a simple supervisory control system to a totally  integrated computerized

control and management system.

Today’s BEM system requires use of soft computing methodologies in order

to cope with the automation and control problems of the intensive nonlinear

technological  processes in  buildings. The first step  in reaching this goal was

developing  a control system for an air conditioning system based on Fuzzy

logic. A new fuzzy PID characteristic has been developed. The realization of the

integral part of the fuzzy PID through a second output is a unique solution with

three advantages: reduction of rules, easy adjustment of the integral part and  use

of the additional information of the D-input.

The control system is optimized through the whole working range of the

process and ensures a maximum of control loop quality by a very short  response

time of any alternation in the process and at a negligible overshooting of the

process value during the control phase. The fuzzy controller showed enormous

advantages in processes with intensive nonlinearity and is superior to the digital

controller. Proving the applicability of  fuzzy logic  for energy management

tasks,  two new operation and optimization strategies for a complex chilling and

heating  system have been realized and  implemented into the existing industrial

BEMS. The focus of the optimization strategies for both projects  was

- reducing  operation time and operation costs of the system;

- reducing cooling energy generation - and consumption costs;

- forecast the maximum cooling power of the building;

- determine the cooling  potential of the outdoor air;

- optimal evaluation of heat power demand of  the system;

-  optimizing the heating system’s thermal features from the economical and

ecological point of view and reducing  fuel consumption; and

- Increasing thermal  efficiency of the system by lowest  exhaust emission.

Based on the thermal analyses of the building and the chilling  and heating

systems, different optimization strategies have been defined for developing

proper fuzzy controllers. Analyzing and evaluating  the thermal behavior of the

system was necessary in order to formulate  proper input and output variables for

different  fuzzy controllers.

The developed fuzzy control and  operation system could fulfill all the

formulated requirements, and  has been successfully commissioned ; remarkable

improvement of the system behavior has been reached. The projects described in

this chapter open new application fields for fuzzy logic and fuzzy control in  the

market of building automation and building  management.



REFERENCES

1 .  Talebi-Daryani, R., Intelligent Building for Integrated Building
Automation and Building Energy Management System, KEIO
University, Yokohama, Japan, June 1999.

2. Talebi-Daryani, R., Digtitale Gebaeudeautomation und Fuzzy Control,
University of  Applied Sciences, Cologne, 1995.

3.  Talebi-Daryani, R. and Plass, H., Application of Fuzzy Control for
Intelligent Building Part I: Fuzzy Control for an AC System, Proc.  of
the World Auto.  Conf., 745-750, TSI Press Series, Albuquerque, NM,
1998.

4. Talebi - Daryani, R., Control Engineering for Mechanical Engineers,
115 – 120, University of Applied Sciences, Cologne, 1990.

5. Talebi - Daryani, R. and Luther, C., Application of Fuzzy Control for
Intelligent Building, Part II: Fuzzy Control of a  Chilling System, Proc.
World Auto. Conf., 751-756, TSI  Press Series, Albuquerque, NM,
1998.

6. SUCO Soft Fuzzy TECH 4.0, FT4-400-DX2 Application Guide,
Kloeckner Moeller, Bonn, Germany, 1994.

7. Application Guide and Handbook for  GPL, METASYS System, Johnson
Controls International, Essen ,Germany, 1994.

8. Talebi-Daryani, R. and Luther, C., Anwendung der Fuzzy Technologie
in der Gebaeudeautomation Teil II, Sondernummer MSR-Technik,
TAB(Technik am Bau), 41-48, Bertelsmann Fachzeitschriften,
Guetersloh, Germany, 1997.

9. Plannungsanleitung für Gas-Brennwertkessel Veromat, Product
Information, Viessmann, Allendorf, Germany, 1997.

10. Energiewirtschaftliche Beurteilung für Heizungsanlagen,VDI-Richtline
3808, VDI- Düsseldorf , 1993.

11. Talebi-Daryani, R. and Olbring, M., Kesselfolgeschaltung mit Fuzzy

Control, ISH- Jahrbuch 1999, 142-155, Bertelsmann Fachzeitschriften,

Guetersloh, Germany, 1999.
12. Talebi - Daryani, R.,

 
and Olbring. M., Application of Fuzzy Control  for

Energy  Management of a Cascade Heating System, 618-625,  in:  Soft
Computing, Multimedia, and Image Processing, TSI  Press Series,
Albuquerque, NM, 2000.



14
APPLICATION OF ADAPTIVE

NEURO-FUZZY INFERENCE

SYSTEMS TO ROBOTICS

 Ali Zilouchian and David Howard

14.1 INTRODUCTION

During the past three decades, fuzzy logic has been an area of heated debate and

much controversy.  Zadeh, who is considered the founding father of the field,

wrote the first paper in fuzzy set theory [1], which is now considered to be the

seminal paper of the subject.  In that work, Zadeh was implicitly advancing the

concept of human approximate reasoning to make effective decisions on the

basis of available imprecise linguistic information [1]-[3]. The first

implementation of Zadeh’s idea was accomplished in 1975 by Mamdani, which

demonstrated the viability of fuzzy logic control (FLC) for a small model steam

engine [4].  After this pioneer work, many consumer products as well as other

high tech. applications have been developed using fuzzy technology. A list of

industrial applications and home appliances based on FLC can be found in

several recent references [5]-[13].

However, the design of an FLC relies on two important factors: the

appropriate selection of knowledge acquisition techniques, and the availability

of human experts. These two factors subsequently restrict the application

domains of FLC. In this chapter, the application of adaptive neuro fuzzy

inference systems (ANFIS) [14]-[16] to robot manipulators is presented to

overcome such restrictions.  Both kinematics and control of robot manipulators

are addressed to demonstrate the applicability of ANFIS in the design,

implementation, and control of industrial processes.

Within the past fifteen years, the utilization of NN and FL to aid the controls

as well as kinematics mapping of robotic manipulators has been investigated by

many resea rchers [17]- [35]. Ngyen , Patel , and Khora sani descr ibe the solut ion

of forward kinematics equations using NN [17]. The authors therein have used

four different neural networks including back propagation and counter

propagation to check their hypothesis. Wang and Zilouchian [18] presented the

solution of the forward and inverse kinematics using Kohonen self organization

neural network. Further investigations have been conducted in the area of NN to

solve the kinematics equations as well as the control of robot [19]-[24].



On the other hand, the FL has been utilized for the solution of inverse

kinematics as well as control of robot manipulators by several investigators

[24]- [36]. Nedun gadi [24]- [25] prese nted the inver se kinem atics calcu lations of

a four-degree of freedom (DOF) planner robot using Fuzzy Logic. Kim and Lee

[26] investigated the inverse kinematics of redundant robot using fuzzy logic.

Further, in 1993, Xu and Nechyba [27] proposed a general method for the

calculation of inverse kinematics equations of an arbitrary n-DOF manipulator

through FL approach. Lim, and Hiyama [28] presented the initial work related

to control of robot manipulators using FL. In addition, Martinez, Bowles, and

Mills[29] propose a fuzzy logic position system for a thee-DOF articulated robot

arm. The mapping between a robot’s end effector coordinate and joint angle was

also successfully implemented using fuzzy logic [30]. Lea, Hoblit, and Yashvant

[31] have imple mented fuzzy  logic  contr oller for a remot e manip ulator syste m

of the space shuttle. Kumbla, and Jamshidi [32] evaluated the hierarchical

control of a robotic manipulator using fuzzy logic, which also included a fuzzy

solution to the inverse kinematics equations. Several other researchers including

Nianzui, Ruhui, and Maoji [33], Moudgal, et al., [34] and Lee [35] have also

investigated the control of robot manipulators using fuzzy logic.

 In this chapter, an alternate and attractive approach for solution of inverse

kinematics as well as the control of a robotic manipulator is presented.  The

control of a robotic manipulator is hampered by complex kinematics and non-

linear motion.  The proposed solution will solve these problems by using: (i) the

simple forward kinematics equations to train a fuzzy associative memory (FAM)

to map the inverse kinematics solution, and (ii) test data from the DC motor to

train the fuzzy controller. The individual ANFIS controller for each joint

generates the required control signals to a DC servomotor to move the

associated link to the new position. The proposed hierarchical controller is

compared to a conventional proportional-derivative (PD) controller. The

simulation experiments indeed demonstrate the effectiveness of the proposed

method. The detailed work can be found in the Howard’s thesis [36]. The

chapter is organized as follows. In section 14. 2, the concept of ANFIS is

introduced. In section 14.3, the solution of inverse kinematics using ANFIS is

presented. Section 14.4 pertain to the controller design of a microbot with

ANFIS. Finally, section 14.5 includes the conclusions and remarks related to the

proposed method.

14.2 ADAPTIVE NEURO-FUZZY INFERENCE SYSTEMS

An adapt ive neuro -Fuzzy Infer ence Syste m (ANFI S)[14]-[16 ] is a cross 

betwe en an artificial neural network and a fuzzy inference system (FIS).  An

artificial neural network is designed to mimic the characteristics of the human

brain and consists of a collection of artificial neurons.  An adaptive network is a

multi-layer feed-forward network in which each node (neuron) performs a



particular function on incoming signals.  The form of the node functions may

vary from node to node. In an adaptive network, there are two types of nodes:

adaptive and fixed.  The function and the grouping of the neurons are dependent

on the overall function of the network. Based on the ability of an ANFIS to

learn from training data, it is possible to create an ANFIS structure from an

extremely limited mathematical representation of the system. In sequel, the

ANFIS architecture can identify the near-optimal membership functions of FLC

for achieving desired input-output mappings. The network applies a

combination of the least squares method and the back propagation gradient

descent method for training FIS membership function parameters to emulate a

given training data set. The system converges when the training and checking

errors are within an acceptable bound.

The ANFIS system generated by the fuzzy toolbox available in MATLAB

allows for the generation of a standard Sugeno style fuzzy inference system or a

fuzzy inference system based on sub-clustering of the data [37]. Figure 14.1

shows a simple two-input ANFIS architecture.

Figure14.1: ANFIS Architecture for a Two-Input System.

 The above  ANFIS  archi tecture is based  on a Sugen o fuzzy  infer ence

syste m. The sugeno FIS is similar to Mamadani format except the output

memberships are singleton spikes rather than a distributed fuzzy set. Using

singleton output simplifies the defuzzification step.

The ANFIS network shown in Figure 14.1 is composed of five layers.  Each

node in the first layer is a square (adaptive) node with a node function computed

as follows:

B1 

Π 

Π 

B2 

T 

P 

N

N

Σ

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 

f 

A2 

A1 

W1 

W2 

T   P 

T   P 

W1 

W2 

W1 f1 

W2 f2 



O
i Ai

T
1 = µ ( ) (14.1)

Where T is the first input vector and µ  is the membership function for that

particular input. Layer two only consists of circle (fixed) nodes. The output of

each node is the product of the two membership functions:

                 )()(1
2 PTWO BiAii µµ==                                           (14.2)

Layer three only contains circle (fixed) nodes with their normalized firing
strengths in the following form:

21

1
3

WW

W
WO i

i

+
== 2,1=i                                     (14.3)

The fourth layer (square nodes) is computed from the product of consequent

parameter set and the output of the third layer as:

)(4 iiii
i rPqTpWO ++=                                      (14.4)

Finally, layer five, consisting of circle nodes is the sum of all incoming
signals.

O W fi i

i

5 1, = ∑ (14. 5)

The above adaptive architecture is functionally equivalent to Sugeno fuzzy

model. This ANFIS structure can update its parameters according to the gradient

descent procedure. Other ANFIS structures corresponding to different types of

FIS and defuzzification mechanism h are also proposed by the researcher [16].

However, throughout this chapter, we shall utilize the above first order Sugeno

fuzzy model for the microbot application due to its transparency and efficiency.

14.3 INVERSE KINEMATICS

In general, most of controllers in robots require the inverse kinematics solution

to determine the required joint angles.  The inverse kinematics solution provides

each joint angle based on the position of the end effector [38].  Due to the

design of most robots, there are multiple joint angles that provide the same end

effector position.  

There are various methods to generate the inverse kinematics equations such

as inverse transform, iterative and geometric approach [38]-[40].  The method

used in this chapter is based on the using the position vector “p” described

below as outlined in wolovich [38]:

p

p

p

ec c fc c

es c fs c

h es fs

x

y

z

















=

+

+

+ +

















1 2 1 23

1 2 1 23

2 23

 (14.6)

Solving these equations gives the following solutions to the inverse kinematics
problem:



θ1 2=








a

p

p

y

x

tan   Or  θ1 2=
−

−









a

p

p

y

x

tan                      (14.7)

θ2

3 3
2 2

3 3
2 2

2=
−( ) +( ) +

−( ) ± +( ) +















a
p h e fc fs p p

p h fs e fc p p

z x y

z x y

tan
m

                  (14.8)

θ3

2 2 2 2 2 2 2
2

2 2 2 2 2
2

4

=
± − −( ) + + − −[ ]

−( ) + + − −



















a

e f p h p p e f

p h p p e f

z x y

z x y

tan     (14.9)

The above inverse kinematics equations show the multiple solutions for the

microbot joint angles. In this section two different inverse kinematics solutions

using FL and ANFIS are discussed. As was already mentioned, the main

advantage of such methods is the establishment of the inverse kinematics

mapping without any access to the robot kinematics equations.

14.3.1 Solution of Inverse Kinematics Using Fuzzy Logic

In this section, the inverse kinematics of the micro-robot using fuzzy rules

will be developed.  Equations 14.6 from the appendix describe the forward

kinematics model of the microbot.  For some nominal robot configuration θ1, θ2,

θ3, the first variations of Equation 14.6 is given as:

3

3

2

2

1

1

δθ
ƒθ

ƒ
δθ

ƒθ

ƒ
δθ

ƒθ

ƒ
δ xxx

x

PPP
P ++=  (14.10a)

3
3

2
2

1
1

δθ
ƒθ

ƒ
δθ

ƒθ

ƒ
δθ

ƒθ

ƒ
δ yyy

y

PPP
P ++=  (14.10b)

δ
∂
∂θ

δθ
∂
∂θ

δθ
∂
∂θ

δθP
P P P

z
z z z= + +
1

1

2

2

3

3
 (14.10c)

Or in the matrix form:

δ

δ

δ

δθ

δθ

δθ

P

P

P

A A A

B B B

C C C

x

y

z

















=

































1 2 3

1 2 3

1 2 3

1

2

3

 (14.11)

A es c fs c1 1 2 1 23= − +[ ]     [ ]231211 cfccecB +−= 01 =C (14.12a)

[ ]231122 sfccesA +−= [ ]231212 sfssesB +−= 2322 fscecC +=
(14.12b)

[ ]2313 sfcA −= 2313 sfsB −= 233 fcC =
(14.12c)



 In Equation 14.10, 1δθ , 2δθ  and δθ3 are small variations of the joint angles

from their corresponding nominal values ( 1<<iδθ ).  Accordingly, 14.11 is the

linearized version of 14.6 for a given operation point; similar to the method
proposed in Nedungadi [24].  Therefore, Equations 14.11and 14.12 provide
useful information for the development of heuristic fuzzy rules in order to
achieve the desired end effector position of the robot.  In order to develop the
rules, the following seven fuzzy sets are defined:

Positive Big (PB)
Positive Medium (PM)
Positive Small (PS)
Zero (Z)
Negative Small (NS)
Negative Medium (NM)
Negative Big (NB)

Due to the fact that equation 14.11 represents the linearized kinematics of the
microbot in the nominal operation point, the principle of superposition is
utilized when these equations are applied to the individual angle variations.
This superposition concept will be utilized to develop the FAM for the

microbot.  The following fuzzy rules are proposed in order to determine δθ1  for

a given δPx ,δPy  andδPz .

Table 14.1:  Fuzzy Rules.

δθ1 NB NM NS Z PS PM PB

NB PB PM PS Z NS NM NB

NM PB PM PS Z NS NM NB

NS PB PM PS Z NS NM NB

Z Z Z Z Z Z Z Z

PS NB NM NS Z PS PM PB

PM NB NM NS Z PS PM PB

PB NB NM NS Z PS PM PB

Notice the entries of the FAM are obtained through graphical inspection of a
three-dimensional graph.  Similar tables should be developed for B1 and C1 in

order to determine δθ1 .  Each entry in the FAM represents a fuzzy associative

memory rule of the following form:

Ai



If (A1 is NM) and (δPx  is PS) then 1
δθ  is NS

Thus each of 3 banks (i.e., look up tables) A, B, C comprises 49 rules, which

results in 147 rules in order to determine the inverse kinematics solution.

However, the rules can be reduced in order to reduce the computation effort.

However, the above method does not provide a systematic approach for the

solution of inverse kinematics.  In order to build the banks A, B, C, we need to

obtain a 3-D graphical representation of FAM. It can be constructed and

implemented similar to Kim and Lee [26]. In the next section, an alternate

methodology (ANFIS) is proposed.

14.3.2 Solution of Inverse Kinematics Using ANFIS

In this method, a set of training samples is collected from measurements.

This is done by moving the robot to different desired end effector positions (Px,

Py, Pz), and measuring the corresponding angles.  By utilization of such data an

ANFIS is trained with a sufficient number of data points.  The block diagram of

the proposed method is shown is Figure 14.2 as follows:

Figure 14.2: ANFIS Inverse Kinematics Block Diagram.

In the training phase, the membership functions and the weights will be

adjusted such that the required minimum error is satisfied.  In sequel the trained

ANFIS can be utilized in order to provide fast and acceptable solutions of the

inverse kinematics of the Microbot for various applications, such as on-line

control of the robot.

14.3.3 Simulation Experiments

The ability to determine the requirement joint angles has been discussed

previously, which also showed one way of generating the solutions to the

inverse kinematics equations.  The following method is an alternate approach to

mapping the inverse kinematics solutions.  The forward kinematics equations

are relatively straightforward and easy to generate.  The method chosen uses the

forward kinematics equations to generate a collection of data relating the joint

Microbot 

ANFIS 

Σ 
Px, Py, Pz 

θd 

θa 

e 



angles to the resulting Cartesian coordinates of the end effector.  These data are

then used to generate and train an ANFIS.  

The method used to generate the training data is similar to using the

microbot manipulator to create its own inverse kinematics solution.  Instead of

solving the inverse kinematics equation, various angles are applied to the robot

and the resultant Cartesian coordinates (Px, Py & Pz) are determined.  This output

is directly related to the angles input, and is one solution to inverse kinematics

equation.  This allows the ability to select the desired angles at the design stage

and creates a unique mapping between the angles and the resultant Cartesian

coordinates.  This method allows the creation of the inverse mapping based on

actual information from the manipulator.

In the microbot manipulator the angle θ1 is dependent on the X and Y .  This

is confirmed by the physical configuration of the robot.  In the simulation, the

test data were created from the possible ranges of X and Y .  Figure 14.3 shows

the desired mapping between X, Y and θ1.

Figure 14.3: Desired θ1 Mapping.

The following method was used to obtain the fuzzy mapping for θ1.  The first

step was to allow the ANFIS algorithm to generate the membership functions

and number of rules.  Next, the ANFIS was trained with the test data and the

resultant accuracy was determined.  Figure 14.4 shows the initial membership

functions and the resultant mapping after training for 50 epochs.  The initial

fuzzy inference system resulted in an overall root mean squared accuracy of

0.4374, which was not considered acceptable.

 The ANFIS was then regenerated using a greater number of membership

functions.  The membership functions presently used are



(a) (b) (c)

Figure 14.4: Initial θ1 Membership Functions and Mapping.

 

Figure 14.5: θ1 Membership Functions. 

 

These membership functions produce an output surface, which is shown 

below.  Also included is the surface showing the error between the fuzzy angle 

and the desired angle.The maximum error was 6.93° and occurred with X, Y 

equal to [-0.7, 0.058].  The RMS error was 0.0134.   The error associated with 

(b) 

(a) 



the base joint (θ1) is very critical since, with the design of the microbot

manipulator, there is no other joint that can directly compensate for this error.

Figure 14.6: θ1 Surfaces.

The same method was used to generate the fuzzy mapping for θ2.  Both of

the angles θ2 & θ3 are dependent on X, Y and Z.  Based on the training data, the

mapping between X, Y, Z, and θ2 are presented as follow:

(a) (b) (c)

Figure 14.7.   Desired θ2 Mapping.



To generate the inverse kinematics mapping for θ2 &  θ3, the ANFIS

algorithm generated the initial membership functions and number of rules.  The

ANFIS was trained with the test data containing X, Y and Z and the

corresponding angle θ2 or θ3.  Figures 14.8 and 14.9 shows the present

membership functions and surfaces for θ2 respectively:

(a) (b) (c)

Figure 14.8: θ2 Membership Functions.

(a) (b) (c)

Figure14.9: θ2 Fuzzy Inverse Surfaces.

The desired inverse kinematics mappings for θ3 are  presented in figures

14.10 (a, b, c). Figure 14.11 shows the present membership functions.  The

resultant inverse kinematics mapping surfaces for θ3 are also shown (Figure

14.12). Figures 14.13 and 14.14 show the errors between the desired angles and

the fuzzy generated angles for θ2 and θ3, respectively.



       (a)        (b)          (c)

Figure 14.10: Desired θ3 Mapping.

(a) (b) (c)

Figure 14.11: θ3 Membership Functions.

(a) (b) (c)

Figure 14.12: θ3 Fuzzy Inverse Surfaces.



  (a) (b) (c)

Figure 14.13: θ2 Error Plots.

(a) (b) (c)

Figure 14.14: θ3 Error Plots.

Since the inverse kinematics solutions for angles θ2 or  θ3 are

interdependent, the impact of the error is more difficult to describe.  Figure

14.15 shows the impact of the overall error using all three fuzzy angles to

determine the final end effector position.  Each figure represents multiple end

effector positions with the links of the manipulator shown.  The desired link

position and the resultant position due to the fuzzy angles are also shown in

Figure 14.15.  

14.4 CONTROLLER DESIGN OF MICROBOT

Robotic manipulator control is predominately motion control using classical

servomechanism control theory [38].  Due to the non-linearity of the

manipulator motion a wide variety of controls schemes have been devised.

Classical schemes include computed torque, resolved motion, PID decoupled,

model  refer ence adapt ive and resol ved motio n adapt ive, to name a few [38]- 



[41].  These schemes can be very complicated and require intensive computer

resources.  For instance, the computed torque technique uses the Legrange-Euler

or Newton-Euler equations of motion of the manipulator to determine the

required torque to servo each joint in real time to track the desired trajectory as

closely as possible [40].  Model reference adaptive control requires an accurate

reference model of the manipulator to compare against and an adaptive

mechanism to store the adjustable feedback gains.  For comparison purposes,

the simple PD decoupled control scheme will be used, which is described in the

following sections. The corresponding end effector position’s error surfaces are

shown in Figure 14.16.

(a) (b)

Figure 14.15: Overall Error Impact.

14.4.1 Design of a Conventional Controller

In this subsection, the design of a conventional controller for the microbot is

presented. The controller is designed considering each joint as uncoupled, and

usually neglects the effects of motion.  To provide a comparison for the fuzzy

controller, the microbot manipulator will be controlled with a conventional

proportional-derivative type controller.  Figure 14.16 shows the schematic of the

conventional proportional-derivative type controller used in MATLAB to



generate the comparisons.  The proportional-derivative values for the individual

joint were determined by considering each joint as uncoupled from the other,

and calculating the approximate corresponding values.  The proportional-

derivative values were then fine tuned on-line and shown in Table 14.2.
In a conventional controller, the designer would normally generate the

required trajectory of the individual links and end effector.  These trajectories are
based on the function of the manipulator, object avoidance, velocities and
desired accelerations.  For these simulations, the desired trajectory is not
required since overall performance is being evaluated. Also, in the proposed
conventional controller the required joint angles are calculated using the
complex inverse kinematics equations.  The inverse kinematics Equations 14.7-
14.9 are utilized in the conventional controller to convert the desired Cartesian
coordinates of the end effector into joint angles.  There is no way to determine
the comparative computing resources used to solve the inverse kinematics
equations during the simulations, so no quantitative comparison will be made.

Table 14.2: Conventional Control Action: P-D Values.

Initial Values Final Values

Proportional Derivative Proportional Derivative

Joint/Motor 1 100 5 100 8.5

Joint/Motor 2 139 8.5 150 15

Joint/Motor 2 153 10.4 153 10.4

Figure 14.16: Conventional P-D Controller.



Based on the physical limitations of the microbot robot the joints have a

defined acceptable range.  The base, θ1, can rotate from -170° to 170°.  The
elbow joint θ2 and the forearm joint θ3 can also be adjusted from -170° to 170°.
However, due to the existence of the floor, the links and end effector have the

additional constraint of not going below an elevation of zero.  This is accounted

for in the conventional controller by selecting the inverse kinematics solution of

θ2 to be the positive angle and using MATLAB saturation modules.

Based on the allowable ranges of the joints and the possible uses for a

microbot robot, various position changes have been selected to test the fuzzy

controller.  These desired changes were simulated in Matlab and provide a wide

range of change including multiple joint movements at one time.  The plot of

the simulation results for the conventional controller is shown in section 14.4.3,

with the fuzzy logic controller results.

14.4.2 Hierarchical Control

One of the advantages of fuzzy logic control is that the controller can be

designed in the same way a person would think of doing the control.  In the case

of a robotic manipulator point-to-point or trajectory position control, one could

think of a supervisor telling the end effector where to go by specifying the

required joint angles.  In sequel, each joint could individually move to the

desir ed angle .  There fore, the propo sed appro ach is a hiera rchical contr ol

scheme.  A fuzzy mapping of the inverse kinematics solution will supervise the

individual joints.  A fuzzy controller will direct each individual joint to the

desired position as shown in Figure 14.17.

Σ Fuzzy 

Controller 

DC Motor 

for Link 1 

Σ Fuzzy 

Controller 

DC Motor 

for Link 2 

Σ Fuzzy 

Controller 

DC Motor 

for Link 3 

Fuzzy Inverse 

Desired 

Position 

 

   P 

   P 

   P 

 

x 

y 

z 

θ 1 

θ 2 

θ 3 

 

Position 

Error 

 

 

Position 

of  Links 

 

 

Figure 14. 17: Hierarchical Fuzzy Controller. 

 



14.4.3.  ANFIS Controller for Microbot

In this subsection, the ANFIS controller is proposed in conjunction with the
switching curve for each joint of the robot in order to provide the desired end
effector position of the microbot. Due to the interaction and coupling between
the links of the manipulator, applying a constant torque to each joint will
simplify the control of the other joints. In addition, applying the maximum
torque should produce the fastest response.  To produce a fast response, the
premise is to apply a maximum torque in the required direction, then at the last
possible instance apply a braking torque to stop the motion. One method of
determining when to apply the maximum torque is called "switching surfaces."

The concept of sliding surface (“switching curve” or “variable structure”) for
nonlinear systems is well known and was originated by several Russian
mathematicians (e.g., Aizerman and Gantmacher, Filippov). However, the
application of the switching surface creates chattering [39]. In order to smooth
out such effects, the ANFIS algorithm has been utilized. For each joint of
Microbot, the switching curve is a relation between the position error and the
rate of change of position.  The switching curve can be generated analytically if
an accurate model of the motor and joint is known. However, in most cases such
a model is unknown. The practical method is to determine the switching curve
by using the actual manipulator.  In this method, the maximum torque is applied
to the manipulator and the resultant position error vs the rate of change of
position is plotted.  This plot is then inverted to obtain the switching curve as
shown in Figure 14.18. For a DC motor application, for all conditions on one
side of the curve, a maximum positive voltage is applied.  The other side of the
switching curve receives a maximum negative voltage.  The switching curve is
there fore a very steep  trans ition surfa ce that could  induc e insta bility or
chattering in the controller.  To reduce the possibility and effects of this
chattering, a transition region is created.  The transition region is essentially
twice the distance that the manipulator can travel during one sampling period.
The size of the transition region can be determined from the data that created the
switching curve.  The next step in the algorithm is to generate test data and
produ ce the fuzzy  equiv alent of the switc hing curve  for each joint .  The
resultant surfaces are shown in Figure 14.19.  The switching curve is the basis of
the proposed fuzzy controller, but to enable the FLC to handle a dynamic
system with improved response, gains are applied to the inputs of the FLC.
These gains essentially allow the transition region (not curve) to rotate and
account for a fast or slowly changing process.  The value of the gains will be
determined using the functioning system and tuned on-line.

The same algorithm was used to create the fuzzy inference systems for the

remaining joints. The simulation results for point-to-point control of microbot

(cases 1 − 4) compare the conventional PD controller to the fuzzy logic
controller of the robot utilizing the switching curve surfaces.



Figure 14.18: Switching Curve for Base Joint and Motor.

Figure 14.19: 3-D Switching Curve for Base Joint and Motor.

Figure 14.20: Simulation Results: Case 1.



Figure 14.21: Simulation Results: Case 2.

Figure14.22: Simulation Results: Case 3.

Figure 14.23: Simulation Results: Case 4.



The results of comparing the P-D controller with the fuzzy logic controller

(shown in Figures 14.20 through 14.23) show that the FLC performs well.

However, the simulation also displays that coupling exists between the elbow

and the shoulder joints of the microbot manipulator.  One method of accounting

for this coupling is to use a feed-forward controller for each of the joints as

described in Howard[36].

Table 14.3: Point-to-Point Control of the Microbot

Desired final position Actual final position with
PID controller

Actual final position
with ANFIS controller

X Y Z X Y Z X Y Z

1 0.0 0.15 0.812 .1504 .0154 .816 .1517 .1521 .8095

2 0.433 -.433 0.412 .4296 -.4296 .4199 -4334 .4315 .4076

3 0 0 0.9 0. 0 .899 .0003 0 .9

4 .7 0 0.2 0.699 0 .214 0.7 .0015 .1962

5 0.15 0.15 0.812 .1499 .1499 .8111 .1525 .1509 .8101

6 0.0 0.5 0.5 0.0 .4972 .2056 .0016 .4943 .1933

To evaluate the FLC in terms of robustness and sensitivity, additional case

studies were performed.  The original case 1 was performed again with a 100%

increase in mass of link 3.  Additionally, case 1 was performed again with a

change in the time constant (25%) of the elbow joint motor. The simulation

results show the effectiveness of the ANFIS for these cases also.  Due to space

limitation these cases are not reported here and can be found in reference [36].

Cases  1 throu gh 4 demon strate the contr oller perfo rmance for the end

effector  point-to-point control of the microbot. In order to determine the overall

performance of the FLC, case 5 was created using a planned trajectory.  The

desired trajectory in this case is to move the end effector from the home position

(0.7, 0, and 0.2) to an intermediate position (0.5, 0, and 0.2), then to the final

position (0, 0.5, and 0.2) via a circular trajectory.

Case 5 simulated a simple trajectory following scenario. Figure 14.24

displays the PID controller against the FLC with the fuzzy inverse kinematics.

In Figure 14.25,  the Cartesian positions (X,Y,X) of the end effector  are shown.

Figure 14.26 compares the PD and FLC using fuzzy inverse kinematics

solutions. In addition, case 5 has been simulated for PID and  FLC utilizing the

calculated inverse kinematics, and Figure 14.27 displays the results.  Figure

14.27 shows that while the end point error is slightly higher during the transit,

the FLC is actually superior to the P-D controller.  Analysis of both figures



(14.26 and 14.27) indicates the significant difference is due to fuzzy inverse

kinematics portion. Therefore, the inverse kinematics of the robot should be

solved analytically in order to increase the accuracy of the trajectory

performance. It should be point it out here, that an analytical solution of inverse

kinematics is indeed much more accurate that the NN solution if the inverse

kinematics equations are available. Otherwise, the NN inverse kinematics could

be utilized. Of course the proper selection of data for the mapping of the inverse

kinematics using NN  is an important consideration.

Table 14.4: Position Error (L2 Norm)

Desired final position Error

Case X Y Z PD ANFIS

1 0.15 0.15 0.812 .0048 .0044

2 0.433 -.433 0.412 .0125 .0063

3 0 0 0.9 0.009 .0003

4 .7 0 0.2 .0191 .0056

5 0.15 0.15 0.812 .0011 .0039

6 0.0 0. 5 0.5 .0116 .0178

Figure 14.24: Case 5: Simulation Results (Angle Plots).



Figure14.25: Case 5: Simulation Results (X, Y, Z Plots).

Figure 14.26: Case 5: P-D vs. FLC with Fuzzy Inverse (Trajectory Plot).

Figure 14.27: Case 5: P-D vs. FLC with Calculated Inverse (Trajectory Plot).

Desired 

Trajectory Desired 

Trajectory 

Desired 

Trajectory 

Desired 

Trajectory 



14.5 CONCLUSIONS

In this chapter, ANFIS has been utilized to generate the solutions to inverse

kinematics equations of a microbot as well as providing a basic controller.    The

overall goal was to create a simple algorithm that could be used to control

robotic manipulators with a minimum of theoretical modeling. The simulation

experiments indicated that the mappings created by neuo-fuzzy algorithm

adequately produced the solutions to the inverse kinematics equations.  The

fuzzy associative memories (FAMs) were utilized for the selection of a

minimum number of rules and membership functions, and could be increased to

improve the accuracy.  By the use of the ANFIS algorithm, the training of the

FAMs was relatively easy and straightforward.

The individual ANFIS controller for each joint generates the required control

signals to a DC servomotor to move the associated link to the new position. The

proposed hierarchical controller is compared to a conventional proportional-

derivative (PD) controller. The simulation experiments indeed demonstrate the

effectiveness of the proposed method. The analysis performed showed that the

FLC had superior performance in regard to robustness of parameter changes.

The proposed FLC performed essentially the same, in regard to changes in

weight of the end effector and changes in the motor time constants, as the

conventional P-D controller. Finally, the intention was to provide a simple

algorithm to control a robotic manipulator with minimal or no modeling of the

system.  Hierarchical control was chosen since this method is very similar to the

human thought process.  ANFIS was chosen due to the adaptive nature and use

of training data to create a fuzzy inference system.  

Overall, the algorithm is (1) build the desired manipulator; (2) use the

manipulator to generate training data for the mapping between the Cartesian

space and the joint angle space; (3) use the manipulator to create the switching

curves for the implementation of ANFIS controller of the individual joints and

(4) fine tune the controller to achieve the desired performance.

REFERENCES

1. Zadeh, L.A., Fuzzy Sets, Information and Control, Vol. 8, 338−353,
(1965).

2. Yager, R. and Zadeh, L.A. (eds.), An Introduction to Fuzzy Logic

Applications in Intelligent Systems, Kluwer Academic Publishers,

Boston, (1992).

3. Zadeh, L.A., Making the Computers Think Like People, IEEE

Spectrum, (1994).

4. Mamdani, E. H., Application of Fuzzy Algorithms for Control of

Simple Dynamic Plant, Proc. of IEE, Vol. 121, No.12,  (1974).



5. Surgeno, M. (ed.), Industrial Applications of Fuzzy Control, North-

Holland, Amsterdam, (1985).

6. Marks II,R. (ed.), Fuzzy Logic Technology and Applications, IEEE

Press, Piscataway, NJ, (1994).

7. Gupta, M. and Sinha, N.(ed.), Intelligent Control Systems.: Theory and

Applications, IEEE Press, Piscataway, NJ, (1996).

8. Kosko, B. Fuzzy Engineering, Prentice Hall, Upper Saddle River, NJ,

(1997).

9. Relics, A.(ed.), Applied Research in Fuzzy Technology, Kluwer

Academic Publishers, Boston, (1994).

10. Kaufmann, A. and Gupta, M. (eds.), Introduction to Fuzzy Arithmetic

Theory and Applications, Van Nostrand Reinhold, NY, (1985).

11. Nguyen, H., Sugeno, M., Tong, R., and Yager, R., Theoretical Aspects

of Fuzzy Control, John Wiley & Sons, NY, (1995).

12. Zilouchian, A., Hamono, F., and  Jordnidis, T., Recent Trend and

Industrial Applications of Intelligent Control System Using Artificial

Neural Networks and Fuzzy Logic,.in: Tzafestas, S. (ed), Method and

Application of Intelligent Control, Kluwer Academic Publishers,

Boston, (1997).

13. Diaz-Robainas, R., Zilouchian, A., and Huang, M., Application of

Fuzzy Pattern Recognition to Functional  Mapping and Controller

Design, Int. J.  of Intelligent Automation and Soft Computing, Vol. 5,

No. 2.,  95−109, (1999) .
14. Jang, J.S., Self-Learning Fuzzy Controllers Based on Temporal Back

Propagation, IEEE Trans.  on Neural Networks, Vol. 3, No. 5, (1992).

15. Jang, J.S. and Sun,C., Neuro-Fuzzy Modeling and Control, Proc. of

IEEE, Vol. 83, No. 3,  378−406, (1995).
16. Jang, J.S., Sun, C., and Mizutani, E., Neuro Fuzzy and Soft Computing,

Prentice Hall, Upper Saddle River, NJ, (1997).

17. Nguyen, L., Patel, R., and Khorasani, K., Neural Network

Architectures for the Forward Kinematics Problem in Robotics, Proc.

of  IEEE Int. Conf. on Neural Networks, 393−399, (1990).
18. Wang, D. and Zilouchian, A., Solution of Kinematics of Robot

Manipulators Using a Kohonen Self Organization Neural Network,

Proc. of  IEEE Int. Symp. on Intell. Control, (1997).

19. Liu, H., Iberall, T., and Bekey, G., Neural Network Architecture for

Robot Hand Control, IEEE Control Syst., Vol. 9, No. 3, 38−43, (1989).
20. Eckmiller, R., Neural Nets for Sensory and Motor Trajectories, IEEE

Control Syst., Vol. 9, No. 3,  53−59, (1989).
21. Nagata, S., Sekiguchi, M., and Asakewa, K.,  Mobil Robot Control by

a Structured Hierarchical  Neural Network, IEEE Control Syst.Mag.,

Vol. 10,  No. 3,  69 −76, (1990).



22. Handelman, D., Lane, S., and Gelfand, J.,  Integrating Neural Networks

and Knowledge-Based Systems for Intelligent Robotic Control, IEEE

Control Syst. Mag., Vol. 10, No. 3,  77−86, (1990).
23. Rabelo, L.C. and  Avula, X., Hierarchical Neuo-controller Architecture

for Robotic Manipulation, IEEE Control Syst. Mag., Vol. 12, No. 2,

37−41, (1992).
24. Nedungadi, A., Application of Fuzzy Logic to Solve the Robot Inverse

Kinematics Problem, Proc. of Fourth World Conf. on Robotics

Research, 1−14, (1991).
25. Nedungadi, A., A Fuzzy Robot Controller-Hardware Implementation.

IEEE  Int. Conf. on Fuzzy Syst., 1325−1331, (1992).
26. Kim, S.W. and Lee,J.J., Inverse Kinematics Solution based on Fuzzy

Logic for Redundant Manipulators, IEEE Int. Conf. on Intell. Robotics

and Syst., 904−910, (1993).
27. Xu,Y., and  Nechyba, M., Fuzzy Inverse Kinematics mapping: Rule

Generation, Efficiency and Implementation,  IEEE Int. Conf. on Intell.

Robotics and Syst., 911−918, (1993).
28. Lim, C. M. and Hiyama, T., Application of Fuzzy Logic Control to a

Manipulator, IEEE Trans. on Robotics and Automation, Vol. 7, No. 5,

(1991).

29. Martinez, J., Bowles, J., and  Mills, P., A Fuzzy Logic Positioning

System for an Articulated Robot Arm, IEEE Int. Conf. on Fuzzy Syst.,

Vol. 1, 251−257, (1996).
30. Kim, S.W., and  Lee, J.J.,  Resolved Motion Rate Control of

Redundant Robots Using Fuzzy Logic,  IEEE Int. Conf. on Fuzzy Syst.,

333−338, (1993).
31. Lea, R. N., Hoblit, J., and Yashvant, J., Fuzzy Logic Based Robotic

Arm Control in Fuzzy Logic Technology & Application, Mark, R. (ed.),

IEEE Press, Piscataway, NJ, (1994).

32. Kumbla, K. K. and Jamshidi, M., Control of Robotic Manipulator

Using Fuzzy Logic, Proc. of IEEE Int. Conf. on Fuzzy Logic, (1994).

33. Nianzui, Z., Ruhui, Z., and  Maoji, F., Fuzzy Control Used in Robotic

Arm Position Control, IEEE Int. Conf. on Fuzzy Syst., (1994).

34. Moudgal, V. G., Kwong, W. A., Passino, K. M.,and  Yurkovich, S.,

Fuzzy Learning Control for a Flexible-Link Robot, IEEE Trans. on

Fuzzy Syst., Vol. 3, No. 2, (1995).

35. Lee, S., Industrial Robotic Systems with Fuzzy Logic Controller and

Neural Network, IEEE Int. Conf. on Knowledge-based Intell. Electr.

Syst., Vol. 2, 599−602, (1997).
36. Howard, D., Application of Fuzzy Logic for the Solution of Inverse

Kinematics and Hierarchical Control of Robotics Manipulators, MS

Thesis, Florida Atlantic University, Boca Raton, FL (1997).

37. Fuzzy Logic Toolbox User’s Guide, MathWorks, Inc., (1995).



38. Wolovich, W. A., Robotics: Basic Analysis and Design, Holt, Rinehart

and Winston, NY, (1987).

39. Slotine, J.J. and Li,W., Applied Nonlinear Control, Prentice-Hall,

Englewood Cliffs, NJ, (1991).

40.    Lewis, F.L., Abdallah, C.T., and  Dawson, D.M., Control of Robot

Manipulator,  Macmillan, NY, (1993).

41. Baily, E. and Arapostathis, M., Simple Sliding Mode Control Scheme

Applied to Robotics Manipulators, Int. J. Control, Vol. 45, No. 4,

1197−1209, (1987).



15 
APPLICATION OF SOFT 

COMPUTING FOR 

DESALINATION TECHNOLOGY 

 Mutaz Jafar and Ali Zilouchian 

 

15.1 INTRODUCTION 

This chapter will discuss the application of artificial neural networks (ANNs) 

and fuzzy logic control (FLC) in the desalination industries, with particular 

emphasis on implementation of soft computing to a real-time direct seawater 

intake reverse osmosis (RO) plant. The chapter discusses the following as well:  

• The use of back propagation learning techniques as well as radial basis 

function networks (RBFN) to predict critical water parameters for three 

different types of water intakes;  

• Techniques for learning strategy for RBFN that involve a combination 

of supervised and unsupervised learning for redistribution of centers of 

receptive fields; 

• The design of an intelligent control software environment for the 

development of a hybrid combination of NN, and Fuzzy Logic 

Controller (FLC) for real time RO plants;  

• The implementation of the designed soft computing methodology for a 

prototype direct seawater intake RO plant; and  

• The use of adaptive neuro-fuzzy inference system (ANFIS) for 

optimization of membership functions of the variables 

At a time of intensive demand for producing fresh water at a reasonable cost, 

addressing automation, process control and cost optimization of desalination 

plants have become increasingly evident. large scale desalination processes must 

perform at high standards due to the increasing cost of high water quality 

production, equipment utilization, and rising government regulations on labor 

protection and the environment. 

In this chapter, the recent innovation and technological advances in the 

design, implementation and application of soft computing methodologies to 

several desalination processes are addressed. Such advances are mainly due to 

the recent developments of intelligent control design approaches for the 

integration of sensory information, computation, human reasoning and 

decisionmaking. The principal partners in such an intelligent system include 

fuzzy logic (FL), and neural network (NN). In particular, the application of these 

approaches to RO desalination plants is presented.  Various issues related to the 

design and implementation of soft computing methodologies including the   

trade off among tolerance, precision and uncertainty are also addressed. 

The application of NN for quality control of RO plants is one of the main 



 

subjects of this chapter.  Two NN predictive models are proposed based on  

back propagation and RBFN algorithms. These models are applied to three 

different types of RO feed intakes plants in order to verify the applicability of 

the NN models. The predictive models are studied using actual operating data 

for all three RO processes in order to predict various parameters of the plants 

including system recovery, total dissolved solids and ion concentration in brine 

stream. A proposed NN predictive model is presented based on redistributed 

RBFN centers using integration of supervised learning of centers and 

unsupervised learning of output layer weights. Extensive simulations are 

presented to demonstrate the effectiveness of the proposed method. 

As a case study, the design and implementation of an intelligent control 

methodology for a direct Atlantic Ocean RO system located in Boca Raton, 

Florida, is also presented in this chapter. The operation of the prototype plant 

indeed demonstrated the effective and optimum performance of the proposed 

design for two types of membrane modules, spiral wound (SW) and hollow fine 

fiber (HFF), under forced diverse operating conditions. The system achieved a 

constant recovery of 30% and salt passage of 1.026% while salt concentration of 

six major salts as kept below their solubility limits at all times. The 

implementation of the proposed intelligent control methodology achieved a 4% 

increase in availability and reduction in manpower requirements as well as 

reduction in overall chemical consumption of the plant. Therefore, it is believed 

that implementing the developed control strategy can decrease the cost of 

producing fresh water.   

This chapter is organized as follows: in section 15.2, the general background 

on desalination technology is provided with emphasis on the RO process.  

Section 15.3 presents the use of NN for prediction applications. Section 15.4 

presents three case studies of prediction of critical parameters for RO plants. 

Section 15.5 will discuss implementation of a novel soft computing 

methodology to a seawater plant using a hybrid combination of FLC and NN. 

The final section of this chapter will discuss implementation of ANFIS to 

optimize different membership functions. 

 

15.2 GENERAL BACKGROUND ON DESALINATION AND 

REVERSE OSMOSIS 

 

Desalination methods are classified into two major processes: thermal and 

non-thermal. Thermal distillation involves phase changes and it includes multi-

stage flash (MSF), vapor-compression (VC), and multi-effect (ME) [1]. 

Nonthermal processes do not involve phase change and include reverse osmosis 

(RO), electrodialysis (ED) and ion exchange (IE). Other less significant and cost 

intensive processes include vacuum freezing and refrigerant freezing [1], [2]. 

RO is defined as the separation of one component of a solution from another 

component by means of pressure exerted on a semipermeable membrane. RO 

achieves the finest level of filtration available by acting as a barrier to all 

dissolved salts, organic as well as most inorganic molecules with a molecular 

weight greater than 100. On the other hand, water molecules can pass freely 



 

through the membrane creating a purified product stream. Rejection of dissolved 

salts is typically 95 to 99% achieved at transmembrane pressure that ranges from 

200 pounds per square inch (PSI) for brackish water to 1000 PSI for seawater. 

RO is applied to various applications such as brackish and seawater desalination, 

wastewater purification, biomedical separations, and food and beverage 

processing [1−3]. For an ideal aqueous electrolyte solution, Vant Hoff�s law [1] 

theoretically defines the osmotic pressure (π) by a relation of the form: 

ws vnRTx /=π                        (15.1) 

where n is the number of ions per molecule of solute, R is the universal gas 

constant, T is the absolute temperature, xs is the salt mole-fraction, and vw is the 

molar volume of the water. Equation 15.1 gives reasonable approximations of 

osmotic pressures for many solutions. Figure 15.1 shows the osmotic pressure as 

a function of total dissolved solids (TDS) of sodium nitrate, chloride, sulfate and 

seawater at 25°C.  

 

15.2.1 Critical Control Parameters 

 

Permeate flux, system recovery, and TDS are three of the most important 

factors that indicate the performance of the RO system. As an example, a low 

permeate flow combined with high salt passage could indicate colloidal fouling, 

metal oxide fouling or membrane scaling. Low permeate flow combined with 

normal salt passage may indicate biological fouling of the membrane. It is 

therefore essential for early detection of potential problems and proper 

adjustment of operating variables in such a way that fouling or scaling does not 

occur [6]. 

Control parameters may vary from the desired values causing harmful, and 

possibly severe, effects on membrane elements and the materials and 

components of the RO system [7]. Therefore, it is essential to identify any 

operating conditions that might lead to system failure. The following parameters 

have a direct effect on an RO system performance. 

 

15.2.1.1 Temperature 

Temperature variations have a determining factor on the osmotic pressure, 

membrane compaction rate, and hydrolysis rate. In general higher temperatures 

will increase the internal osmotic pressure and therefore lead to lower recovery 

ratio and permeate concentration. To estimate the effect of temperature on 

permeate flow rate of an element provided that the pressure remains constant, 

the temperature correction factor (TCF) can be found from using [4]: 

 

     ]
)273(

1

298

1
([25

T
UEXP

Q

Q
TCF

T +
−==                           (15.2) 

 

where Q25 is the permeate flow rate at 25°C, QT is the permeate flow rate at 

actual temperature T and U is a membrane factor. 



 

 

15.2.1.2 Pressure 

The effective net pressure is one of the most critical parameters to the RO 

membrane since the membrane element comes directly after the high pressure 

pump. System pressure provides brine pressure for the designed mass transfer of 

water and salts and affects compaction rate of the module. In general, the 

pressure is adjusted to achieve the desired recovery and salt rejection. A more 

general definition to Vann Hoff�s law [5] for osmotic pressure is defined as:  

imT Σ+Φ= )15.273(205.1π             (15.3) 

where im  is the molal concentration of ionic and nonionic constituents in the 

feed and Φ  is the osmotic coefficient, which can be calculated based on the 

operating conditions [5]. The mean osmotic pressure (∆π) can be determined 

from feed osmotic pressure ( fπ ) and brine ( bπ ) as: 

2

bf ππ
π

+
=∆             (15.4) 

The effective driving pressure (Peff) is defined as the difference between the 

applied pressure (Pf) reduced by pressure losses (Pl) due to piping and mean 

osmotic pressure reduced by product osmotic pressure ( pπ ): 

plfeff PPP ππ−∆−−= )(                                     (15.5) 

The effects of temperature and pressure variations are shown in Figure 15.2 

for FILMTEC FT30 membrane [4] using a synthetic seawater solution.  

 

15.2.1.3 Recovery 

Recovery is defined as:  

productrineb

feedrineb

TDSTDS

TDSTDS

−

−
=≡

Flow Feed

Flow Permeate
  Y                          (15.6) 

where TDS is the total dissolved solids of the ions considered. 

 

15.2.1.4 Feed pH 

Feed pH affects the permeate flux, salt rejection, hydrolysis and alkaline 

scale control. Cellulose acetate (CA) reacts slowly with water that forms alcohol 

and an acid. The rate of this reaction depends on feed temperature and pH and is 

defined as hydrolysis [8,9]. A pH control can maximize the lifetime of cellulose 

acetate membranes by operating at pH 6 or less, and therefore minimizing the 

hydrolysis rate. For Aramid membranes pH control can minimize the carbonate 

scale formation. 



 

         
 Figure 15.1: Osmotic Pressures of Different Solutions at 25°C  

              (Courtesy of The DOW Chemical Company, 1993). 

 

 
      Figure 15.2: Effects of Feed Temperature and Pressure on Permeate Flux 

          and Salt Rejection (Courtesy of The Dow Chemical Company, 1993). 



 

 

15.2.1.5 Salt Rejection 

Cationic and anionic ions are usually repelled from the surface of the 

membrane to a distance proportional to its valence. This is due to the 

phenomena of di-pole that is formed between the charged ion and a surface with 

an equal and like charge. This electro-chemical interaction between the 

membrane and the salts causes the rejection of the salts. The net effect of the 

repulsion of the salts is the formation of a thin layer of pure water at the surface, 

which in turn is pushed through the pores by the applied pressure [9]. 

Membranes usually achieve high overall salt rejections (97%); however, small 

variations exist for each cation and anion.   Mathematically, salt passage can be 

defined as: 

100
ionConcentratSalt  Feed

ionConcentratSalt  Permeate
PassageSalt  % ×=                 (15.7) 

   PassageSalt 100RejectionSalt  % −=                               (15.8) 

The permeate concentration can be defined as [4]: 

p

E
ffcp

Q

S
TCFpCC ...=        (15.9) 

where Qp is the permeate flow, SE is membrane surface area, fp  is 

concentration polarization, TCF is temperature correction factor, and Cfc is brine 

side concentration. Effects of pH and feed water salinity on permeate flux and 

salt rejection for FT30 membrane is shown in Figure 15.3 for a synthetic 

seawater solution. 

 

15.2.1.6 Scaling 

Scaling and colloidal and biological fouling of the RO membranes can 

seriously impair system performance by lowering salt rejection and product 

recovery [4], [5]. Certain waters frequently contain troublesome constituents 

such as barium, hydrogen sulphide, or strontium. These constituents have to be 

controlled and kept at minimum levels in order to maintain the RO plant at a 

proper operation level. Basically, there are two parameters, which should be 

measured, monitored, and controlled: scaling and silt density index (SDI). 

Calcium sulphate and calcium carbonate scaling prevention involves calculation 

and prediction techniques in order to keep salts below their solubility index.  

Molal concentrations of all ions of the feed must be measured and/or predicted 

in order to determine the stability index.  

The ion product (IP) of a salt AmBn, where A and B are the molal 

concentrations, is defined as [4]: 

IP=A
m
B

n 
                                             (15.10) 

 

And the ionic strength of feed water If , and that of the concentrate stream Ic 

are defined as [5]: 



 

                    [ ]∑=
=

N

i
iif zmI

1

2
.

2

1
                                        (15.11) 

        
Y

II fc −
=

1

1
.                                          (15.12) 

where mi is the i
th

 ion concentration in mol/kg and zi is the charge associated 

with it. Based on the index calculations and the type of ion being considered in 

addition to other limiting factors determined by the system, operating variables 

of the plant have to be adjusted in such a way that scaling will not occur. The 

precipitation of the dissolved salts should be kept below the solubility limit by 

adjusting parameters such as pH of the feed and system recovery.  

The following are the most common salts that have a scaling potential in RO 

desalination: 

• Calcium Carbonate (CaCO3) 

• Calcium Sulfate (CaSO4) 

• Barium Sulfate (BaSO4) 

• Strontium Sulfate (SrSO4) 

• Calcium Fluoride (CaF2) 

• Silica (SiO2) 

 

 
Figure 15.3: Effects of Feed Water Salinity and pH on Permeate Flux 

and Salt Rejection  (Courtesy of The Dow Chemical Company, 1993). 

 

15.3 PREDICTIVE MODELING USING NEURAL NETWORKS 
 

In the development of predictive model for desalination plants, application of 

NN is essential due to non-linearity and complexity of interactions between 

operating variable [7]. In particular, prediction of product quality of RO process 

variables is a key factor to decreasing membrane degradation and the overall 

efficiency of an RO system. We next consider three case studies for different 

types of RO feed intakes. 



 

Predictive modeling can be more efficient if scaling and cross validation are 

carried out prior to training the network. In scaling, the input and output training 

vectors are normalized in such a way that they fall within a specific range. In the 

work presented, training vectors were normalized to the range of [-1,1], and 

having a zero-mean. The input normalization variable Pnorm is given by: 

           
1)(

)(2

minmax

min

−−
−∗

=
PP

PP
P i

norm                                 (15.13) 

Any future input-target vectors are normalized by the same method. The 

output network is then converted back to the original values. 

On the other hand, cross validation provides a guided criterion for selection 

of network parameters and validation of the training data set chosen [17]. When 

a training set is picked from the available data, there is a need to validate the 

model on a data set that is different from the training set. Overfitting can occur 

when too many parameters are selected, while underfitting can occur when few 

parameters are used.  The particular model that gives the best performance, is 

then trained on the full training data set and generalization is then tested on the 

verification set. The available data is partitioned to two sets, training and test set. 

The training set is further partitioned into two sets: training and validation. The 

network is then simulated with the selected training data set.  

The first step in back propagation learning is to initialize synaptic weight and 

threshold levels for the different nodes. Wrong choice of initial weights and 

threshold levels can lead to a premature saturation [10]. This effect causes delay 

in convergence and is different from local minima. On the other hand, proper 

choice of initial values can lead to a more generalized approximating network. 

Throughout the back propagation simulation presented, the network was 

initialized based on the technique of Nguyen and Widrow [11].  

 

15.3.1 Redistributed Receptive Fields of RBFN 

 

Redistributions of centers to locations where input training data possess 

significant effects can lead to more efficient RBFN. The proposed method 

herein is based on clustering of input space vectors and computing weights of 

Euclidian distances. Histogram equalization within each cluster will determine 

the center and width of each receptive field. The supervised part of the algorithm 

includes redistribution of the centers and widths of receptive fields over the 

input space and computation of weight and bias matrix. The unsupervised part 

of the algorithm includes computation of the output weight and bias matrix. 

Figure 15.4 shows a general structure of RBFN network. Summary of the 

various steps involved in the adaptive receptive field training is shown in Figure 

15.5.  

 

15.3.1.1 Data Clustering 

Clustering partitions a data set into subgroups that have similar input-output 

pairs. K-means and fuzzy C-means clustering are two of the most common 

methods that are frequently used with radial basis. Specht [13] used an effective 

clustering method based on determination of radius of influence. Training data 



 

are first normalized to a value between [-1,1]. A radius of influence (r) is then 

specified, and the first point establishes a new cluster center at xi. Each vector x 

in the input space is considered one at a time and if a sample with an absolute 

distance x-xi to the nearest cluster is > ,r  then the vector center becomes the 

center of the new cluster. If the absolute distance of x-xi of the sample is less 

than the distance to any other cluster center and is ,r≤  the vector is assigned to 

that cluster. This procedure performs clustering in a noniterative way and 

requires only one pass through the training set. 

 

15.3.1.2 Histogram Equalization 

Histogram equalization is a method used in digital image enhancement 

techniques. Basically, histogram equalization stretches the contrast of an image by 

uniformly redistributing the gray values. For the selected k
th
 output running sums 

of the i
th
 input vector are evaluated by: 

 

∑=
=

k

i
ik yy

1

                                                     (15.14) 

 

A plot of running sums is evaluated and the number of radial basis functions 

evenly divides the Y-axis. The values of the resultant input vector will be used to 

determine the new Euclidian distances over the input space. 

Once the Euclidian distances are determined, the first layer weights are then 

computed. This involves solving N nonlinear equation of the form,  

 

       [ ]∑ −=−
=

N

i
iii

xxxx
1

2
αα                                 (15.15) 

 

where αxx −  is the desired Euclidian distance of the i
th

 cluster, N is the 

number of clustering centers, xi is the average mean of the input cluster, and xαi 

are the weights to be calculated. The next step involves solving N nonlinear 

equations to solve for the weight matrix. The method of generalized reduced 

gradient nonLinear optimization (GRG2) code developed by Ladson and Waren 

[14] is used for solving the set of nonlinear equations. The solution to the 

minimization of the function yk in Equation 28 determines the set of weights xαi. 

   
2

1

∑ −=
=

N

i
k xxy α                                            (15.16) 

 

15.3.1.3 Widths of Receptive Fields 

In all of the simulations carried out on different data sets, it was found that 

the choice of a single global width value (σ2 ) gave better results than separate 

widths for each cluster [15]. The value of σ2
 in our study was set at the average 

standard deviation of the input vector histogram.  

 



 

 

 

 

       
 

 

 

 

 

   Figure 15.4: RBFN Network Architecture. 

Figure 15.5: Redistributed Receptive Fields Learning Steps. 

 

 

15.4  CASE STUDIES 

 

15.4.1  Example 15.1: Beach Well Seawater Intake 

 

The system is two train membrane seawater type that is operated by the 

Water Desalination Department of the Kuwait Institute for Scientific Research 

in Doha, Kuwait. Each line is designed to operate independently to produce 300 

cubic meter per day (m
3
/D) fresh water fed from a common seashore well. 

Average feed temperature of the beach well was 24°C. Feed flow was at 35m
3
/h 

passing through a pretreatment stage of chemical dosing which included anti-

scalant, sulfuric acid and sodium meta-bi-sulfate followed by a bag filtration. 

Average feed pressure to the membrane was 58 and 70 bar for train one and two, 

respectively. Feed conductivity from the well was 54 micro Siemens per 

centimeter (mS/cm) with an SDI <2. In this example we shall predict the 

permeate TDS using a nine-element input vector consisting of temperature, feed 

TDS, feed flow, pH, SDI, permeate TDS, permeate conductivity, feed pressure, 

and brine pressure. 

Determine Prediction Errors 

on Test Data 

Determine Weights & 

Widths 

Histogram 

Equalization 

Data 

Clustering 
Training Data 

Set 

Receptive 

Fields 

Test Data 

  
 I

n
p

u
t 

V
ec

to
r 

Euclidian 

Distance

W1 

b2 

W2 

b1 

O
u
tp

u
t 



 

15.4.1.1 Simulation Results 

To determine the number of layers and the corresponding number of hidden 

neurons for the back propagation network, the criterion used is smallest number 

of neurons that yield a minimum RMS error with least number of iterations. 

Baugham and Liu [12] found that adding a second layer to the network could 

significantly improve the performance of the network, while adding a third layer 

required longer training. The values of the learning rate η and momentum 

coefficient α were arbitrarily set at small values. The network was simulated on 

500 training data set for various numbers of hidden neurons in each layer. The 

number of layers chosen was two and the number of neurons in each layer was 

selected based on the lowest RMS error. 

Proper choice of the learning η and momentum coefficient α could yield 

convergence that has good generalization characteristics with least number of 

iterations. An experimental procedure is used here for the determination of the 

two coefficients. Using a two hidden layer with 28:13 configurations, Figure 

15.6 shows the results for the RMS error for α∈ {0.05, 0.1,0.5}  for two values of 

learning rate parameter η∈{0.1, 0.6}. 
The learning curves indicate that the smaller values of learning rate resulted 

in slower convergence to the set error minimum. Increase of momentum 

coefficient gave a faster convergence while too high of a momentum rate caused 

instability (α = 0.85 not shown here). Learning rate of 0.1 and momentum 

coefficient of 0.5 resulted in fast convergence and lowest overall RMS error 

minimum. Results of the cross validation curves are shown in Figure 15.7. 

The results, in general, are satisfactory since the test and validation errors 

have similar characteristics. No over or underfitting is visible and, therefore, we 

conclude that the training set and parameters chosen are adequate.  

The simulation was carried out using MATLAB R11 with neural network 

toolbox v3.0 [16]. L2 and L ∞  norms error criteria were used for comparison 

and error analysis [18]. Figures 15.8 and 15.9 show the predicted TDS of the 

product water using back propagation and RBFN. Table 15.1 summarizes the 

error norms for the two methods. 

 
Figure 15.6: Learning Curve for Varying Momentum Coefficient (η = 0.3). 



 

           

 Figure 15.7: LMS and Corresponding Validation        

Curves for Selected Values of Learning Rate (0.05         

Top Curves, 0.1 Middle Curves, 0.5 Bottom Curves).   

 

 

 

Figure 15.8: Back Propagation Prediction of TDS. 



 

 

Figure 15.9: Redistributed RBFN Prediction of Permeate TDS. 

 

15.4.2  Example 15.2: A Ground Water Intake  

 

The system is a two-stage RO system that is operated by the City of Boca 

Raton Public Utilities in Boca Raton, Florida. The number of parallel pressure 

vessels was four in stage one, and two in stage two, and each vessel had seven 

elements. The membrane element type used was Hydronautics ESNA. 

Membrane material was Polyamide, assembled as a thin film composite with a 

negative charge. The size of each element was 4 by 40 inches and the total 

active membrane area was 400 ft
2
. Maximum element recovery was 21% while 

the salt rejection was 80%. Maximum operating pressure for the plant was 400 

PSI while the maximum SDI allowed was 4. Plant capacity was 37 gallon per 

minute (GPM) fed from the well at 43.75 GPM to meet the designed system 

recovery, which was set at 85% at 25°C. 

The feed was ground water set at 44 GPM fed to a pretreatment station of 

dual media filter, composed of silica and garnet, and 5-µm cartridge filter. 

Chemical addition composed of scale inhibitor and sulfuric acid for pH 

adjustment to range between 6.0 and 6.4. The plant was operated and tested over 

a two-year period for the first study.  Input variables used in the input vector 

included feed temperature, feed flow, feed conductivity, feed pressure, and 

permeate conductivity. We attempted to predict the permeate flow rate as our 

output variable. The model for both back propagation and RBFN was developed 

in similar manner as in Example 15.1. Results of back propagation and RBFN 

predictions of permeate flow are shown in Figures 15.10 and 15.11. Summary of 

comparison between the two algorithms is shown in Table 15.2.   



 

15.4.3  Example 15.3: A Direct Seawater Intake 

 

The system is a surface seawater intake located at the Florida Atlantic 

University research facility at Gumbo Limbo Research Park in Boca Raton, 

Florida. The schematic diagram of the RO plant built at FAU research 

laboratory is shown in Figure 15.12. The intake line is 4 inches wide and is 700 

yards deep into the Atlantic Ocean. Two membrane elements were used for the 

research study: spiral wound (SW) and hollow fine fiber (HFF) membranes. 

The membrane type of the HFF configuration was a B10 Aramid made by 

Du Pont chemical. The membrane can achieve salt rejection higher than 98.5% 

under a nominal operating pressure of 800−1000 psi. Temperature range allowed 

is 32−95°F and the pH allowable range is 4−9. Permeate Productivity is 250 

GPD with maximum and minimum brine rates of 2400 and 800 GPD, 

respectively. Pressure vessel material is filament-wound fiberglass epoxy and 

weighs 10 Kg when filled with water. 

The membrane type of the SW configuration was a cellulose triacetate (CT) 

made by Toyobo. The membrane can achieve salt rejection of 99.4% under a 

nominal operating pressure of 60 bar. Temperature range allowed is 5−40°C; pH 

allowable range is 3−8. Permeate productivity is 792 GPD with maximum and 

minimum brine rates of 2 and 10 m
3
/day, respectively. Pressure vessel material 

is fiberglass epoxy and weighs 23 Kg when filled with water. Feed conductivity 

from the ocean ranged between 57−59 mS/cm with an SDI <4. The pre-

treatment stage included sulfuric acid for pH adjustment to range of 5.5−7, 

followed by a 5-micrometer cartridge filter. Average feed temperature from the 

ocean inlet was 27.6°C and average feed pressure to the membrane was 60 bar.  

We shall attempt to predict the recovery of the RO system, which will be 

used as part of the fuzzy control methodology described in the next section. A 

ten-variable input vector was used for this simulation and it consisted of feed 

temperature, feed flow, pH, feed conductivity, pressure inlet, transmembrane 

pressure, salt passage, permeate flow, permeate conductivity, and permeate 

pressure. RBFN prediction of system recovery is shown in Figure 15.12. 
 

15.4.3.1 Scaling Simulation 

The ionic strength of feed water was determined from feed water analysis of 

major constituents as: 

{ }])[][][]([4])[][]([
2

1
34

−−++−−++++ ++++×++= ClHCOKNaSOMgCaI f
    (15.17) 

The ionic strength of the concentrate Ic can be calculated from the predicted 

system recovery using equation 15.12. 

 Solubility product (Ksp) of all salts can be determined as a function of the 

ionic strength Ic. The predicted Ic is shown in Figure 15.13 for the HFF 

membrane system as a function of If. 

 

Calcium Sulfate  

The ionic product (IPc) for calcium sulfate (CaSO4) in the concentrate stream 

can be calculated from the predicted recovery Y as: 



 

]
1

1
)[(]

1

1
)[( 4

Y
SO

Y
CaIP f

m
f

m
c −

××
−

×= −−++
                 (15.18) 

 

Results of the ion product IPc are compared with the solubility product Ksp 

for CaSO4. For the example above at 28% recovery, Ksp is equal to 1.8e
-3

. 

Therefore, Ipc=0.45 Ksp and no scaling will occur at this point. If IPc  > 0.8 Ksp 

scaling will form and the system must go into a lower pH set point or lower 

recovery.   

 

Barium Sulfate 

This salt is the most insoluble alkaline sulfate, and may lead to precipitations 

when present in feed water. The ionic product (IPc) for barium sulfate (BaSO4) 

in the concentrate stream can be calculated from the predicted recovery Y as: 

]
1

1
)[(]

1

1
)[( 4

Y
SO

Y
BaIP f

m
f

m
c −

××
−

×= −−++
                 (15.19) 

Figure 15.14 shows the RBFN-predicted IPc value for calcium sulfate and 

barium sulfate of the Aramid membrane (HFF). 

 

Calcium Carbonate  

CaCO3 can be determined using the Stiff and Davis Stability Index (S&DSI) 

by finding the difference between the value of the pH of the concentrate and the 

pH at which the stream is saturated with calcium carbonate: 

  pHs-pHcDSIc&S =                                       (15.20) 

A negative value of S&DSIc indicates that CaCO3 tends to dissolve; however, if 

the calculations turns out to be positive, adjustments must be made to the 

system. The addition of sulphuric acid to the feed solutions converts the 

carbonate ion bicarbonate and converts bicarbonate to CO2 and therefore 

decreases the S&DSIc by the following reaction [5]: 

=− ++→+ 422342 222 SOCOOHHCOSOH                     (15.21) 

 

Strontium Sulfate  

Predictions of SrSO4 are performed in a similar manner to CaSO4 using the 

following equations: 

]
1

1
)[(]

1

1
)[( 4

Y
SO

Y
SrIP f

m
f

m
c −

××
−

×= −−++
                    (15.22) 

 

Silica 

Dissolved silica SiO2 ions are present in most feed waters and can 

polymerize and cause scaling to the membrane when supersaturated. The SiO2 

concentration in the brine is calculated from: 

Y
SiOSiO fc −

×=
1

1
22                                (15.23) 



 

   Table 15.2: Summary of Error Norms for Example 15.2 (permeate prediction) 

Method ε ∞  ε2 Total Neurons Remarks 

Back propagation 2.084 0.876 45       α=0.45; η=0.2 

Redistributed RBFN 2.3 0.582 5        RI=0.3; σ2
=0.92 

    

  

   

              Figure 15.10: Actual and Predicted Permeate Flow for 

             Back Propagation network 

 

 

      Figure 15.11: Actual and Predicted Permeate Flow 



 

 

Figure 15.12: Redistributed RBFN Prediction of Recovery (SW) 

 

            
0 5 0 1 0 0 1 5 0

1 . 0 6

1 . 0 7

1 . 0 8

1 . 0 9

1 . 1

1 . 1 1

1 . 1 2

1 . 1 3

1 . 1 4

1 . 1 5

P
re

d
ic

te
d

 I
o

n
ic

 s
tr

e
n

g
th

 (
Ic

) 
o

f 
c

o
n

c
e

n
tr

a
te

 s
tr

e

D a t a  S e t
     

                   Figure 15.13: Predicted ionic Strength Ic of Concentrate Stream 

 

           
          Figure 15.14: IPc for CaSO4 and BaSO4 in Concentrate Stream 



 

15.5  FUZZY LOGIC CONTROL 
 

RO desalination is a nonlinear process, which has to operate under specific 

conditions that are of utmost importance for plant operation optimization. The 

nonlinearity relates to changing process characteristics such as feed total 

dissolved solids and pH, which in turn cause changes to product quality and 

quantity parameters such as salt rejection and recovery. An RO desalination 

system is usually designed based on a defined set of data analysis such as flow, 

temperature, and feed water composition. However, in reality, plant operation 

has to be flexible in order to respond to changing variables. Integration of key 

process information into the control strategy�s decisionmaking and prediction 

can yield an increase in the lifetime of the membranes, availability, and 

efficiency and optimize plant performance.  

The nature of the membrane separation process and the characteristics of the 

membrane system impose a number of constraints on the system [19], [20]. 

These constraints require continuous monitoring and control if the system is to 

perform economically over a long period. The main operational constraints for 

RO desalination are as follow: 

1. Pretreatment control for suspended solids to obtain biological and 

chemical stability; 

2. Operation between a minimum temperature to provide required flux 

and a maximum temperature allowed by the membrane specifications; 

3. Operation between minimum brine flow to avoid concentration 

polarization and maximum flow with respect to desired recovery; 

4. Operation at a pressure to obtain desired mass transfer and equalization 

of pressure drop; and 

5. Chemical characteristics of feed water and dynamics of mass transfer. 

Loss in salt rejection and loss of permeate flow are the main problems 

encountered in RO plant operation. It is of utmost importance that corrective 

measures are taken as early as possible [21]. Some of the parameters, such as 

temperature and feed water salinity change naturally. Other parameters may 

change as a consequence of other changes that are present in the system. Once 

the problem has been identified, causes must be identified and corrective 

measures must be taken by the system. The RBFN predictions of recovery and 

salt rejection described in previous sections were used as part of the input to the 

FIS. Measured values from sensor information make up the remaining input 

values to the FIS. These inputs include the following: 

1. Temperature 

2. Feed TDS 

3. Feed pH 

4. Feed flow 

5. Feed pressure 

6. Brine pressure 

7. Permeate conductivity 

8. Salt rejection 



 

9. Recovery  

10.    Predicted Scale Index 

The fuzzy system was implemented using Mamdani architecture [22] with 

the following FIS properties: 

And method:   min 

Or method:  max 

Implication:  min 

Aggregation:  max 

Defuzzification:  centroid 

The hardware system configuration is shown in Figure 15.15 and consisted 

of a fuzzy controller and a Siemens PLC interface to the controlled plant.  A 

programmable logic controller (PLC) controlled input-output interface signals, 

and provided for data transfer to the fuzzy controller. The PLC included two 16-

channel analog input and output cards and eight 32-channel digital input and 

output cards. The CPU used 32-bit architecture for all arithmetic and 

comparison operations and an expanded register set. Figure 15.16 shows the 

schematic diagram of the developed fuzzy controller. Figure 15.17 shows the 

process layout of the prototype RO plant built at FAU research laboratories with 

feed intake from the Atlantic Ocean.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 15.15: Hardware Setup for the RO Plant. 

In
p
u
t C

ircu
itry

 

Bus Driver 

    Control Logic 

   C
o

n
tro

ller 

                                                    C
P

U
 9

4
5
U

 

D
A

M
U

X
 

C
o

u
n
ter 

Fuzzy 

Controller

Controlled 

Plant 

PLC 

Sample/hold 

Sample/hold 

A



 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

    Fuzzification 

   Defuzzification 

N
N

 

P
re

d
ic

ti
o

n
s 

R
O

 

P
la

n
t 

F
ig

u
r
e
 1

5
.1

6
: 

S
ch

em
e 

o
f 

th
e 

H
y
b

ri
d

 C
o

n
tr

o
l 

S
y
st

em
. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 15.17: Process Layout of the Implemented RO System. 

 

15.5.1 Chemical Dosing Control 

 

There are two factors that can influence the acid dosing required: desired pH 

value and the actual and/or predicted scaling. The pH set point was set to a value 

determined by S&DSI to be equal to �0.1 for minimum carbonate scaling of the 

HFF membrane, and by the lowest hydrolysis rate for the CTA membrane. Two 

methods were used for scaling calculations: predicted and actual ion 

concentration in the brine stream. In the predicted method, RBFN was used to 

predict the ion product and ion strength of the brine stream and compared with 

the solubility product of the particular salt in question as discussed previously. 

The fuzzy controller provided an external analog input to the acid-dosing pump 

based on the defuzzified output conclusion. 

 

Seawater Input 

Subsystem 

Chemical 

Pretreatment 

Filtration 

Subsystem 

RO Membrane 

  

Fresh Water 

 Tank 



 

15.5.1.1 Fuzzy Rule Base 

The rule base consisted of fuzzy rules based on two inputs and one output. 

The set point is determined by the pH value desired, the output of the system 

consisted of external dosing rate signal to the acid pump, whereas the inputs to 

the fuzzy system were as follows: 

Error = the pH set point minus the process pH. 

Error change = difference between present error of process output (e1) and error 

of previous output (e2). 

 

15.5.1.2 Membership Functions 

Having formulated the control variables, we next define the membership 

functions of the linguistic set. Figures 15.18 and 15.19 show the membership of 

the linguistic properties for each attribute. Input membership functions were 

either triangular or trapezoidal, whereas singleton membership functions were 

used for output attributes throughout. The block diagram of the fuzzy controller 

for the chemical dosing pump is shown in Figure 15.20. 

 

15.5.1.3 Decision Matrix 

The rules are formulated and combined to form a decision table for the fuzzy 

controller to accommodate different situations transpired by the system.  Table 4 

shows the rule base for the two inputs and output of the dosing rate. The 

defuzzified output is converted to a crisp value using the centroid method. The 

decision surface for the fuzzy control of chemical dosing for the two inputs is 

shown in Figure 15.21. 

 

15.5.1.4 Results and Discussion 

Changes in pH set point as a result of ion index calculations and 

disturbances, such as feed pH and feed flow rate and overall system recovery, 

were tested and recorded. The results of these changes contributed vital 

information for controller tuning and improvement of system operation. Figure 

15.23 shows the pH value, control activity, and error signal for chemical dosing 

pump. 

 
Figure 15.18: Membership Functions of the Seven Linguistic Properties 

 for the Attribute �Error�. 



 

 
Figure 15.19: Membership Functions of the Seven Linguistic Properties 

for the Attribute �Error Change�. 

 

             Table 15.3: Look-Up Table for Chemical Dosing Pump 

 ∆∆∆∆ Error 

Error HN SN N Z P SP LP 

LN VH H H H SH SH SL 

N VH SH H SH M M LP 

MN L SH SH SH M SL LP 

Z L M SH M SL SL LP 

MP L M M SL SL L VL 

P SL M M L L L VL 

LP SL SL SL L L VL VL 

 

 

 

 

 

 

 

 

 

 

     Figure 15.20: Block diagram of the Fuzzy Controller for the Chemical. 

 

Changes in feed TDS and temperature may cause changes to system recovery 

and scaling potential and could result in carbonate saturation. Changes to feed 

TDS were induced by feeding the brine stream back into the feed line in forcing 

variables to change from the normal range tested by the fuzzy controller�s 

response to changes in critical variables in order to raise the feed TDS to 

simulate changes in the operating conditions. Heating the feed pipe induced 

change in feed temperature and raised the temperature to approximately 30°C. 

Higher temperatures increased the S&DSI from �0.1 to 0. This change in the 

S Lookup    

 Table 

   Rule Base

pH 
    Error 

∆Error 

        Process 



 

stability index indicated possible scaling potential of CaCO3 and, therefore, 

needed to be adjusted. The pH set point was lowered from 7.0 to 6.4; as a result 

the CaCO3 ion concentration remained constant over the operational period as 

shown in Figure 15.22. 

        Figure 15.21: Decision Surface for the Fuzzy Control of Chemical Dosing 

 

               

               

             

Figure 15.22:  pH Value (Top), Control Activity (Middle) and Error 

(Bottom) Signal for Chemical Dosing Pump.   



 

 
Figure 15.23: CaCO3 Concentration in Brine Stream. 

 

15.5.2  High-Pressure Control 

 

Control of effective high pressure applied depends on water and salt fluxes, 

total dissolved solids, brine discharge, permeate flow, permeate conductivity, 

and feed temperature. The task of the fuzzy controller is to adapt to changes in 

these variables by recalculating new high pressure applied, taking into account 

the maximum allowable operating pressure of the membrane. The defuzzified 

output signal of the fuzzy controller was externally fed into a high pressure 

valve in the brine stream. This in turn determined the percentage of the opening 

or closing of the valve based on the six-input variables. 

 

15.5.2.1 Fuzzy Rule Base 

The rule base consisted of rules for the six inputs and one output. The set 

point for normal pressure was determined based on initial values of 

conductivity, temperature and the effective applied pressure as described 

previously. Each parameter causes changes to other variables and, therefore, the 

pressure needs to be adjusted accordingly in order to compensate for these 

changes and provide a constant water quality − in this case salt rejection.  

 

15.5.2.2 Decision Matrix 

The rules are formulated and combined to form a decision table for the fuzzy 

controller. Examples of such rules are as follows: 

1) If temperature is warm and feed TDS is medium and permeate TDS is 

normal and salt passage is high and feed pressure is medium and salt 

passage is slightly high, then output is low. 

2) If feed TDS is slightly low and permeate flow is high and temperature 

is normal or temperature is warm and permeate TDS is medium low 

and salt passage is slightly low and feed pressure is normal and 

permeate flow is very high, then output is slightly low. 

The rules are combined further to form the decision making for the fuzzy 

controller that accommodates different situations of the six inputs experienced 

by the system.  Table 15.4 lists the look up matrix for two-variable input 

vectors. The corresponding decision surface is shown in Figure 15.24. 



 

15.5.2.3 Results and Discussion 

Changes in temperature, feed TDS, permeate flow, permeate TDS, and 

overall system recovery were tested and recorded. Figure 15.25 shows the 

conductivity, temperature, and control activity for the high pressure pump. The 

system response was then tested by induced variations in TDS and temperature. 

Higher feed TDS was induced by feeding the brine concentrate back into the 

feed line, resulting in increasing the feed TDS from 37500 ppm to 

approximately 40000 ppm. Effects of these changes on permeate flow and 

control activity are shown in Figure 15.26. The feed pressure raised from 60 bar 

to 63 bar, which resulted in higher permeate flow and compensated for the 

changes. Lower TDS was induced by feeding permeate water into the feed 

stream. This resulted in reduction in the concentration of the feed from 37500 

ppm to approximately 33000 ppm. Effects of lower feed water TDS on permeate 

flow and control activity for high pressure were also tested. Lower feed 

temperature was induced by cooling the feed water pipe. This reduced the 

temperature by approximately 5°C. The water was allowed to go back to a 

normal range of 27°C. Effects of these changes and the high-pressure control 

activity are shown in Figure 15.27. Changes in feed TDS and feed temperature 

had diverse effects on the quality of the product. The salt rejection changed 

drastically and caused variations in feed parameters. The results of control 

activity of the high pressure due to these changes kept the salt rejection constant 

over this period. Figure 15.28 shows the salt rejection at constant level of 

98.97%. The permeate flow changed due to changes in TDS and feed 

temperature; however, the flow control signal kept the recovery constant. This 

will be discussed in detail in the next section. 

 

15.5.3 Flow Rate Control 

 

Control of effective flow rate depends on permeate flow, transmembrane 

pressure, scaling index, and recovery. The task of the fuzzy controller is to adapt 

to changes in these variables and control the flow rate required for the feed to 

the RO membrane. The system continuously monitores and adjusts the flow rate 

by adjusting the speed (rpm) of the motor drive. This is done in such a way to 

ensure that the recovery remains constant over the normal operational period. 

Low permeate flow combined with high salt passage indicates that scaling might 

occurs; therefore, the recovery in this case must be lowered. A high differential 

pressure across the membrane is caused by the salts deposits or fouling of the 

membrane on the feed side. The signal from the FLC drove a variable speed 

frequency converter, which in turn determined the flow rate required.  

 

15.5.3.1 Fuzzy Rule Base for Flow Control 

The rule base consisted of rules for the inputs such as differential pressure 

(∆P), feed TDS, salt passage and permeate flow. The set point for normal feed 

flow was determined based on initial values of pressure, temperature, and 

recovery ratio. Each parameter caused changes to other variables and therefore, 

the flow was adjusted accordingly in order to compensate for these changes and 



 

provide a constant water quantity. The output of the system consisted of an 

external signal to the frequency controller, which in turn provided a signal (rpm) 

to the motor based on concluded output. 

          

Table 15.4: Look-Up Table of Valve Position for Temperature  

and Permeate Flow 

 

      Permeate Flow       

   Temperature V_Low Low M_Low S-Low Design High V_High 

V_Cold VH H H MH MH ML ML 

Cold VH H H MH ML ML ML 

Medium MH MH MH M M L L 

Warm ML ML M M ML L L 

Hot L L ML ML L L VL 

V_Hot L L ML ML L VL VL 

 
 

      Figure 15.24: Decision Surface for Control of Valve Position for 

Temperature and Permeate Flow. 



 

 

 
 

 

Figure 15.25: Feed Conductivity (Top), Temperature (Middle), and 

Control Activity of High Pressure Pump (Bottom). 

     

 
Figure 15.26: Effects of Higher Feed Water TDS and Control Activity 

for Applied Pressure. 



 

           

 
Figure 15.27: Effect of Low Temperature on Permeate Flow and                     

High Pressure Control Signal. 

 

 

Figure 15.28: Salt Rejection of the RO System Under Changed 

Conditions. 

 

15.5.3.2 Decision Matrix 

The rules are formulated and combined to form a decision table for the fuzzy 

controller. Examples of such rules are as follows: 

1) If recovery is low and permeate flow is low and ∆P is medium low or 

low and TDS is high and scale is medium and salt passage is normal 

then speed is fast. 

2) If permeate flow is low and feed TDS is medium and ∆P is high and 

temperature is normal and permeate TDS is low and salt passage is 

high and feed pressure is high then speed is medium low. 

3) If ∆P is high and permeate flow is slightly low and recovery is 

medium-low and TDS is normal and salt passage is normal and feed 

pressure is medium high and scale is medium then speed is slow. 



 

The rules are combined further to form the decisionmaking for the fuzzy 

controller that accommodates different situations of the six inputs experienced 

by the system.  

  

15.5.3.3 Results and Discussion 

The speed control response was tested by induced variations in feed TDS, 

temperature, flow, and recovery. Effects of these changes and the motor speed 

control activity are shown in Figure 15.29. The resulting control activity of the 

motor speed kept the recovery and the scale index of the sulfates constant over 

the operational period. The system was tested further on high feed TDS for 

longer period to induce scale formation. The control activity of both the pH and 

the motor speed kept the solubility index at minimum. Figure 15.30 shows the 

ion product for CaSO4 and overall system recovery.  

 

15.6 APPLICATION OF ANFIS TO RO PARAMETERS 

 

FLC and NN can be integrated to get the strength of each system and provide for 

the adaptability and learning aspect to FLC [23]. One of the successful methods 

of such integration is done through adaptive neuro-fuzzy inference system 

(ANFIS), which can identify the near-optimal membership function for 

achieving desired input-output mapping [24]. The network applies a 

combination of the least squares method and the back propagation gradient 

descent method for training FIS membership function parameters to emulate a 

given training data set. The system converges when the RMSE training and 

checking error are within limits.  

 

15.6.1 ANFIS Simulation Results 

 

The training data were divided into two sets: training and checking. Each set 

contained the desired input-output pairs of the form (Input vector, desired 

output). The 200-point input vector included differential pressure and permeate 

flow as input vector set and recovery as the desired output. Other input-output 

vector pairs included temperature, feed pressure, feed conductivity, and 

permeate conductivity as input vectors and salt rejection as the desired output 

vector. Figure 15.31 shows the training and checking root-mean-square error. 

The initial and resultant final membership functions for two inputs are shown in 

Figures 15.32 and 15.33. The results of ANFIS were used to refine the 

membership functions of different attributes and resulted in better system 

responses of the FLC.  

 

15.7 CONCLUSION 

 

The main feature of the developed intelligent system is its ability to diagnose 

and respond to critical variations of key operating parameters to avoid 

permanent damage to equipment, materials, or modules. In addition, the system 

utilized output of NN predictions of ion product concentration in the brine 



 

stream, as well as online calculated ion concentrations, to control the scale 

formation of different salts. The control system adapted for changes in the TDS, 

temperature, permeate flow, feed flow, and pH and was able to keep the 

recovery ratio at 30% and salt rejection at 98.97% throughout the operational 

period. This also kept the solubility concentration well below the saturation 

limits for all salts considered. Furthermore, the control of the pH value kept the 

CaCO3 ion concentration constant over the operational period. 

The use of adaptive neuro-fuzzy inference provided valuable information for 

optimal membership functions for key variables. The final membership 

functions were utilized in the actual running of the FLC and provided better and 

smoother operation, due to overlapping in the regions considered.  

 

 Figure 15.29: Effect of High Permeate Flow on Recovery and Motor 

Speed Control Signal. 



 

       Figure 15.30: Ion Product for CaSO4 (Top), and Recovery (Bottom), 

Under Changed Conditions. 

                Figure 15.31: ANFIS Training (Top), and Checking 

(Bottom) Error Curves for Salt Rejection. 

 

  

 

 

 

 

 

 

   

Figure 15.32: Initial Membership Functions for Temperature            

and Feed Pressure. 

      



 

Figure 15.33: Final Membership Functions Using ANFIS for           

Temperature (Left), and Feed Pressure (right). 

 

REFERENCES 

 

1. Hanbury, W.T., Hodgkeiss, T., and Morris R., Desalination 

Technology, Porthan Limited, Glasgow, UK, 1993. 

2. Ben Hamida A., Seawater Pretreatment for Reverse Osmosis Plants, 

The Int. Symp. on Pretreatmenrt of Feedwater for Reverse Osmosis 

Desalination Plants, March 31−April 2, Kuwait, 1997. 

3. Spiegler, K.S. and El-Sayed, Y.M., A Desalination Primer, Balaban 

Desalination Publications, Santa Maria Imbaro, Italy, 1994. 

4. FILMTECH FT30 Membrane Elements Technical Manual, The DOW 

Chemical Company, December 1993. 
5. DuPont PERMASEP Products Engineering Manual, Wilmington, DE, 

1994. 
6. Jafar, M. and Abdel-Jawad, M., Design, Implementation, and 

Evaluation of a Fully Automated Reverse Osmosis Plant, Desalination 

and Water Reuse, 8(3): 18−19, 1998. 

7. Jafar M., Zilouchian, A., Ebrahim, S., and Safar, M., Design and 

Evaluation of Intelligent Control Methodology for Reverse Osmosis 

Plants, Proc. of the ADA Biannual Conf., Williamsburg, VA, 1998. 

8. Lonsdale, H.K., Merten, U., and R.L. Riley, Applied Polymer Science, 

Vol. 9 pp. 1341−1362, 1965. 

9. Lorch, W., ed., Handbook of Water Purification, John Wiley & Sons, 

2
nd

 Edition, 1986. 

10. Lee, Y.C. and Kim, M., The Effects of Initial Weights on Premature 

Saturation in Back Propagation Learning, Int. Joint Conf. on Neural 

Networks, Vol. 1, pp. 765-770, Seattle, 1991. 

11. Nguyen, D. and Widrow, B., Improving the Learning Speed of 2-Layer 

Neural Networks by Choosing Initial Values of the Adaptive Weights, 

Proc. of the Int. Joint Conf. on Neural Networks, Vol 3, pp. 21−26, 

1990.  

12. Baughman, D. R. and Liu, Y. A., Neural Network in Bioprocessing and 

Chemical Engineering, Academic Press, San Diego, CA, 1995. 



 

13. Specht D.F., A General Regression Neural Network, IEEE Trans. on 

Neural Networks, 2(6): 568−576, 1991. 

14. Lasdon L., Plummer, J., and A. D. Waren , Non-Linear Programming: 

Mathematical Programming for Industrial Engineers,  Indus. Eng., 20, 

pp. 385−485, 1996. 

15. Wettschereck D. and Dietterich, T., Improving the Performance of 

Radial Basis Function Networks by Learning Center Locations, in 

Bruce Spatz, ed., Morgan Kaufmann Publishers, Inc., San Mateo, CA, 

1133−1140, 1992. 

16. MATLAB Neural Networks Toolbox, Version 3, The Mathworks Inc. 

17. Stone, M., Cross-Validatory Choice and Assessment of Statistical 

Predictions J. Royal Stat. Soc., B36, 111−133, 1974. 

18. Ljung, L., System Identification: Theory for the User, Prentice-Hall, 

Inc., Englewood Cliffs, NJ, 1987. 

19. Mindler, A. B. and Epstein, A., Measurement and Control in Reverse 

Osmosis Desalination, Desalination, Elsevier Science Publishers B.V., 

Amesterdam, The Netherlands, 343−379, 1986. 

20. McIhenny, W. F., Measurement and Control of Feed Water and 

Product Water Composition, Desalination, Elsevier Science Publishers 

B.V., Amesterdam, The Netherlands, 445−460, 1986. 

21. Jafar, M. and Zilouchian, A., Design and Implementation of a Real-

Time Fuzzy Controller for a Prototype Reverse Osmosis Plant, Proc. of 

the WAC2000 congress on Automation, Maui, June 2000. 

22. Mamdani, E.H., Application of fuzzy algorithms for control of simple 

dynamic plant, IEEE Proc., Vol. 121, No. 12, 1974. 

23. Lin C.-T. and Lee, C. S. G., Neural-Network-Based Fuzzy Logic 

Control and Decision System, IEEE Trans. on Computers, 

40(12):1320−1336, December 1991. 

24. Wang, L.-X. and Mendel, J. M., Back Propagation Fuzzy Systems as 

Non-Linear Dynamic System Identifiers, Proc. of the IEEE Int. Conf. 

on Fuzzy Sys., San Diego, March 1992.  

 



16 
COMPUTATIONAL 

INTELLIGENCE APPROACH 

TO OBJECT RECOGNITION 

 K. C. Tan, T. H. Lee, and M. L. Wang 
 

16.1 INTRODUCTION 

 

Object recognition is an important function required in many intelligent 

applications, such as autonomous vehicles, medical diagnosis, security, military 

target detection, and etc., [1-3]. These systems are often equipped with multiple 

sensors, which can generate data regarding different properties of the scene of 

interest. The object recognition problem can be described as identifying the 

corresponding object based upon the image data acquired from these multiple 

sensors. In many cases, visual information is the most powerful single source of 

sensory information available to a system for measurement and object 

recognition. The data received from these different sensors, however, often 

incomplete, distorted, noisy, or vague. Moreover, the objects to be recognized 

can have very different appearances in different conditions, such as viewing 

positions, photometric effects (lighting condition), background environment of 

objects, or changes in the shapes of objects, which further add to the difficulty of 

the problem in object recognition. Therefore, the need of a highly intelligent, 

reliable and efficient processing system to recognize objects from these 

imperfect data is obvious.  

Current research on the topic of object recognition can be roughly divided 

into three categories, based upon the concept that regularity across different 

views of one object must be exploited in order to recognize an object by 

matching the images of the object to the stored internal representation [1]. These 

approaches differ in their assumptions and ways of obtaining these regularities. 

The first is the invariant properties method [4], which assumes that certain basic 

properties remain invariant under the transformations or changes that one object 

is allowed to make. The second is called alignment method [5], which 

recognizes an object by aligning the images of the object with the corresponding 

stored model. The third approach is the object decomposition method [6], which 

is based on the principle that an object is constituted by generic components and 

the recognition of the object relies on the recognition of these components on 

their own. 

Object recognition by decomposition of objects into constituent parts 

assumes that each object can be broken into a smaller set of generic components. 

All the objects in the recognition space can then be described by the different 

combination of these basic generic components. Generally, recognition by 

decomposition method is achieved in two steps. First, the image data are 

transformed to the generic parts that describe the objects, which is often 



 

achieved by edge detectors or segmentation algorithms [5], [7]−10]. The second 

step is to combine these parts into a complete object. For this, the approach of 

hierarchical features [11], [12] may be employed to repeat the decomposition 

process by breaking certain parts into simpler parts. Some low-level parts can be 

identified first, and then groups of simple parts are identified together to form 

higher order parts. For example, straight line segments are detected as the most 

basic parts and then parts such as corners and vertices are obtained according to 

the already-detected line segments. Combining these corners, vertices can 

identify higher-level structures, such as triangles. Another approach is structural 

descriptions [7], [13], which employs relations defined among different parts to 

transit the parts to objects. This method assumes that relations among different 

parts of an object are easier to capture and thus can be used to recognize an 

object. For example, the total number of parts of a given type may be invariant 

of the object: a triangle always has three lines, three vertices, and no free line 

termination; a human face always has two eyes, one nose, and one mouth at 

respective positions. 

It is often difficult to recognize objects using parts extracted from multiple 

data sources with high confidence value, since data acquired from the imaging 

devices are usually imperfect, e.g., the same object can have different images if 

the imaging devices are put in different positions. Besides the noise influence 

that exists in almost every stage of image acquisition, objects for recognition in 

the real world are also often surrounded by environmental objects, which could 

result in significant degradation on the image quality. Object recognition using 

decomposition method has received significant attention over the years [7],[8], 

[13]-[16] and has found physiological supports from research work on the visual 

cortex of animals [14], [17]-[18]. However, most of these works only focused on 

low level feature extraction (part decomposition) methods via advanced image 

processing algorithm. Other procedures such as combining features resulting 

from the feature extraction and adaptive adjustment of these feature extractors 

are often ignored. 

This chapter presents the state-of-art computational intelligent technique for 

modulation of feature extractors and high level intelligent combination of 

features, based upon the use of fuzzy logic and artificial neural networks. The CI 

based approach is appropriate since fuzzy logic provides a means of dealing 

with uncertainty, inexactness, and imprecision, which are often encountered 

during the data acquisition process in object recognition. On the other hand, the 

artificial neural network is a distributed computing model largely inspired from 

studies on mechanisms of human neural systems [19]. It is naturally suited for 

the task of feature extraction and has been found to offer better results than 

traditional symbolic computing approaches for many problems. 

 

16.2 OBJECT RECOGNITION BY NEURAL FEATURE 

EXTRACTION AND FUZZY COMBINATION 

 

Based on studies in biology areas, a biological vision system performs 

substantial pre-processing of image data to focus attention and exclude any 



 

irrelevant information [17]. Preference is often given to elements in which the 

observer is paying attention. Given the same stimulus, the response of certain 

neurons might increase dramatically due to the focus of attention. It is believed 

that this preferential treatment of stimulus having interest is caused by state 

dependent signals, which are originated from visual areas other than the retina, 

and are said to modulate the response of neurons to any object on which the 

attention is focused. The signals may come from areas in the visual cortex, or 

from the higher processing areas in the parietal and temporal lobes. This 

phenomenon is called state dependent modulation [17] and is applied in the area 

of processing to superimpose its findings or expectations over other areas. This 

modulation results in the elevation of areas of interest and suppression of any 

unneeded information from the visual data. 

 

Imaging

device
input

Fuzzy Reasoning

Fuzzy Rule Base

Fuzzy Reasoning

Recognized

Objects

State Dependent
Modulation

Feature
Fusion

Fuzzy Structure
Description

Rules

Fuzzy
Modulation

Rules
Object Pre -Recognition

 
 

Figure 16.1: A Prototype of Object Recognition by Neural Feature Extractions 

and Fuzzy Structural Description. 

 

An efficient approach by means of artificial neural network and fuzzy 

reasoning is proposed in this article to generate the state dependent modulation 

signals and to improve the feature extraction process. As shown in Figure 16.1, 

objects are pre-recognized to obtain the category knowledge of image under 

observation and to yield the information for the creation of state dependent 

modulation signals. This involves the normalization of image size, filtering of 

the image, and categorization. A feature may be defined as a rectangular two-

dimensional window with a width of Mi and height of Ni. Different features may 

have different window sizes and the image to be processed by the feature 

extractor is preprocessed to a normalized size and scale of brightness. The 

brightest pixel in an image has a value of 255 and the darkest a value of 0. The 

feature extraction process is achieved using a multi-layer neural network to 

process the information acquired from the imaging devices. After the features 

have been extracted from the image data, the results are further processed with 

feature fusion processing, which uses fuzzy reasoning to combine the results 

based on predefined fuzzy structural description rules to yield the object 



 

recognition results. These fuzzy rules are stored in a rule-base for fuzzy 

reasoning as well as for the construction of the required modulation signals and 

structural descriptions. Note that different objects have their respective fuzzy 

rules and, hence, the recognition process can be executed in parallel for faster 

execution time if desired. 

 

16.2.1 Feature Extraction by Neural Network 

 

An Artificial neural network (ANN) is a computing model that uses 

statistical properties instead of logical rules to transform information. It is 

inspired by the research on neuron physiology and  relies on parallel processing 

of sub-symbols. The basic computation units, neurons, are modeled as a unit that 

can output a stimulus pulse when the input pulses to this neuron reach a 

threshold value. The stimulus may come from other neurons or directly from the 

environment. The stimulus from other neurons is transferred in weighted 

connections between the neurons. In practical applications, the network 

topology of these interconnected neurons is often modeled as layered structure. 

The proposed neural network for feature extraction has three layers, i.e., one 

input layer, one hidden layer and one output layer [19]. The neurons in the input 

layer are directly connected to the inputs with appropriate weights without any 

activation functions. The neurons in the input layer are fully connected to the 

neurons in the hidden layer in the forward direction. The activation functions in 

the hidden layer are chosen as �tangent sigmoid� functions. The neural network 

has one neuron per input image pixel in the input layer. The image data acquired 

to be fed to the neural network can be viewed as a two dimensional matrix with 

each cell giving the gray scale of the corresponding pixel. Since inputs to the 

neurons in input layers are a one-dimensional array, the two dimensional image 

data is thus transformed such that every column of the cells is connected 

sequentially so as to form a single new long column. The feature extraction 

network is presented with a set of training image samples, which are selected so 

that some of them give different views of the features which vary in contrast, 

brightness, perspective of view, etc. Also, other training samples are used to 

provide feature extraction neural network for learning to distinguish images that 

are not views of a feature of interest. Here, the back propagation algorithm [20] 

is used to train the weights and biases of the neural network based on 

comparison of output values of the network and the target output values, so as to 

give a confidence value of one  to views of a feature, and a zero otherwise. 

To apply the trained neural networks for feature recognition, the image to be 

recognized is first normalized to a fixed size. One specific rectangle area of the 

image is then clipped out from the image and the data are passed on to the input 

layer of the neural network. The neuron network works out the confidence value 

in this specific patch of image data for occurrence of the feature that it had 

previously learned. Note that the position of the rectangle is controlled by the 

mechanism of state dependent modulation, and the final output of the feature is a 



 

value between [0, 1] which stands for the confidence of the desired feature 

detected in the input data. 

 

16.2.2 Fuzzy State Dependent Modulation 

 

The idea of state dependent modulation is to focus the attention, or to 

concentrate the computational power, on stimulus of interests while ignoring or 

give lower priority to other irrelevant stimulus. The focus of processing depends 

on the objects on which the attention is focused and the intention of the 

observer. In the case of object recognition, a system is required to obtain 

information regarding the specifics of objects that can help to recognize the 

objects. In the method of recognition by decomposition, especially, the process 

before feature combination is to extract features that can be further used in 

making decisions. In applications such as autonomous robot, computational 

power available for object recognition may be very limited. In order to reduce 

the computational effort needed, a good approach is to schedule the feature 

extraction processes according to different priorities. Features that are likely to 

be useful should be discovered with higher priority, and a larger portion of 

computational power should be allocated to these feature extractors. One way of 

generating these priority allocation signals is to use the state dependent 

modulation signals. 

As mentioned in a previous section, the technique of artificial neural network 

can be applied to recognize certain features of an object from an image for 

feature extraction. Since features are defined in rectanglular windows and the 

positions are unknown to the feature extractor, a tedious and time consuming 

trial-and-error procedure is therefore needed to determine the position of 

features in an image. This, however, could be largely overcome with the use of 

fuzzy reasoning [21] as adapted in this work, where state modulation signals are 

generated via the approach of fuzzy reasoning. As shown in Figure 16.2, the 

priorities and positions of focus centers of feature extractors can be defined by 

fuzzy sets. For example, if a face image is presented and used for the 

recognition, the priority of EYE feature extractor can be regulated by a fuzzy set 

of HIGH_PRIORITY; the focus position of left eye should be at the top left in a 

human face or, more specifically, a fuzzy set named LEFT_EYE_POSITION. 

The featured extractor is then modulated to focus its computation on left eye 

position to extract the left eye feature from a face image running at a higher 

priority. 

A fuzzy rule that modulates the feature extraction process in face recognition 

may be written as 

If FACE_OBJECT is YES 

then EYE_EXTRACTOR_PRIORITY is HIGH_PRIORITY 

if FACE_OBJECT is YES 

then EYE_EXTRACTOR_POSITION is LEFT_EYE_POSITION 

where LEFT_EYE_POSITION, YES are two fuzzy sets that give the degree of a 

face being presented in an image and the degree of an image being at the left eye 



 

position. HIGH_PRIORITY is the measure of priority assigned to a feature 

extractor for allocation of the computational power. Here, the degree of an 

image is the human face given by another processing module (object pre-

recognition), which gives a maximum confidence value of one and a minimum 

confidence value of zero. In the definition of LEFT_EYE_POSITION, the degree 

of membership is given by calculating the percentage divergence of a 2-D 

position coordinate from the original coordinate. 

 

Image

feaure extractor and attention
center controlled by fuzzy rules

FUZZY FULES

1) IF ... Then ...

Else ...

2) IF ... Then ...

Else ....

...

....

... ...

Available feature

extractors

 

Figure 16.2:  State Dependent Modulation by Fuzzy Reasoning. 

 

16.2.3 Combination of Features Extracted from Multiple Sources with 

Fuzzy Reasoning 

 

Fuzzy reasoning is an inference process that is capable of processing data in 

a way similar to human decision-making. By employing linguistic variables, 

fuzzy rules provide a high level and efficient interface for building a system 

with human knowledge. In a fuzzy inference system, the implication rule is 

represented in a fuzzy relation, and the inferred conclusion is obtained by 

applying the compositional rule of inference to the fuzzy implication relation. 

These two properties allow fuzzy reasoning capable of making reasonable 

inference even when the conditions of an implication rule are only partially 

satisfied. 

The problem in image data fusion based on the decomposition and feature 

extraction model can be expressed as follows: Given a number of L images Ij(j = 

1,�, L) representing different data on the observed scene, a feature extraction 

operation is made to extract a set of features out of them. The value that 

associates i
th

 feature Fi(i = 1,�, N) extracted from the j
th

 image Ij is expressed as 

Mij. At this processing stage, the image data input spaces are transformed to a 

feature space. The measures of Mij are then combined to make decisions 

regarding the images to be recognized based on the fuzzy structural description 

of objects. Note that each object has a set of rules that describe the object in 

generic features and different objects have their respective fuzzy rule sets. 



 

This process can be formulated as: For an object k, a decision Ck = F(M11, 

M12,�, Mij,�, MLN) that yields the degree of an object being detected is given 

by evaluating its fuzzy description rules. An object is said to be recognized 

when the feature measures obtained match a set of fuzzy description rules of an 

object. Employment of information from multiple images is achieved in both the 

antecedent clauses of fuzzy rules and the defuzzification stage. The Mamdani 

fuzzy reasoning model [21] may be employed, which consists of the following 

linguistic rules that describe a mapping from U1 × U2 ×�× Ur to W: 

 

 Ri : IF x1 is Ai1 and� and xr is Air THEN y is Ci (16.1) 

 

where xj(j = 1, 2, �, r) are the input variables, y is the output variable, and Aij 

and Ci are fuzzy sets for xj and y respectively. Given inputs of the form: 

 x1 is A'1, x2 is A'2,�, xr is A'r  (16.2) 

 

where A'1, A'2,�, A'r are fuzzy subsets of U1 × U2 ×�× Ur, the contribution of 

rule Ri to the output of Mamdani model is a fuzzy set whose membership 

function is computed by 

 )()...()( 21' yy
ii ciriic µαααµ ∧∧∧∧=  (16.3) 

where iα  is the matching degree (i.e., firing strength) of rule Ri, and ijα  is the 

matching degree between xj and Ri�s condition about xj: 

 

 { })()(sup ' jAjA
x

ij xx
ijj

j

µµα ∧=  (16.4) 

where ∧  denotes the �min� operator. The final output of the model is the 

aggregation output from all rules using the max operator: 

 

 { })(')(')(' ,...,,max)(
21 ycycycc L

y µµµµ =     (16.5) 

Note that the output C is a fuzzy set, which can be defuzzified into a crisp 

output using a defuzzification method, such as the center-of-area (COA) 

approach [21]. 

For example, a face may be recognized based on the detection of left eye, 

right eye, and mouth at the proper positions of an image. A typical rule to 

combine the feature extraction may be 

if (LeftEyeFound is HIGH_CONFI) and (RightEyeFound is LOW_CONFI) 

then FACEFOUND is FACE_FOUND_MID_CONFI 

where HIGH_CONFI, FACE_FOUND_MID_CONFI, and LOW_CONF in the 

antecedent clause are linguistic variables that represent the fuzzy sets whose 

membership functions determine the degree of features for the respective class 

detected. Here, the fuzzy operator �OR� is chosen to combine all information for 

the same feature from different sensors, while the fuzzy operator �AND� is used 

to make the recognition process more selective and reliable. 



 

16.3 A FACE RECOGNITION APPLICATION 

 

In this section, a face recognition problem is studied to validate the proposed 

neural-fuzzy based object recognition methodology. The block diagram of the 

proposed methodology is shown in Figure 16.3. Two gray scale images are 

acquired by capturing a human face before the cameras in different conditions 

and then normalized to a fixed size. The input images are normalized to a fixed 

size of 120 × 100, and 256°of gray level: maximum of 255 for the brightest 

pixel, and minimum of 0 for the darkest pixel. The two images for the same face 

after the normalization are illustrated in Figure 16.4. 

  Input Images

    Recognition Results

   Fuzzy Feature Combination

 Generation of state

dependent signals

   Image Preprocessing

- Normalization

- Pre-recognition

   ANN Feature Extraction
State Dependent Signals

 

Figure 16.3:Block diagram of the Neuro-fuzzy Based Face Recognition System. 

Input Images 

1
st
 image 2

nd
 image 

  
A B 

Figure 16.4: The Input Image for Face Recognition. 



 

Results obtained after the pre-recognition process of an image are used to 

generate the state dependent modulation signals for the feature extractors. The 

priorities are graded as 16 levels, in which a priority value of 0 gives the highest 

computational power to a feature extractor while a value of 15 gives the lowest. 

The fuzzy rules that are used to generate the sate dependent modulation signals 

are given as follows: 

 

If FACE_OBJECT is YES 

then EYE_EXTRACTOR is HIGH_PRIORITY 

else EYE_EXTRACTOR is LOW_PRIORITY 

If FACE_OBJECT is YES 

then MOUTH_EXTRACTOR is HIGH_PRIORITY 

else MOUTH_EXTRACTOR is LOW_PRIORITY 

 

The membership functions of YES, HIGH_PRIORITY, and LOW_PRIORITY 

are showed in Figures 16.5(a) and 16.5(b), respectively. 

 

 

(a) Membership Function of YES. 

 

 

(b) Membership functions of HIGH_PRIOIRITY and LOW_PRIORITY 

 

Figure 16.5: Membership Functions of the State Dependent Modulation Signals. 



 

The result of the object pre-recognition is given as 0.82 and the fuzzy 

reasoning for allocating different computational power for the three feature 

extractors is given in Table 16.1. Here the three extractors are assigned the same 

highest computation priority, as desired. Three neural networks are constructed 

and trained to extract the three features from these images. The structure of these 

neural networks is summarized in Table 16.2. In each neural network, all 

neurons are arranged in layers and fully connected in the feed-forward direction. 

The neural network for left eye has a total of 26 × 14 = 104 input neurons, and 

each pixel in the window that defines the feature has a corresponding input 

neuron in the input layer. The hidden layer has 30 neurons, and the �tangent 

sigmoid� activation function is used [19]. The output layer has only one neuron, 

where simple �linear� transfer function is employed. 

The neural network for extraction of right eye has exactly the same number 

of neurons, type of transfer functions, and number of layers. Similarly, the 

neural network for mouth extraction has 39 × 20 = 780 neurons at the input layer 

and 100 neurons at the hidden layer, respectively. The training of these three 

neural networks to recognize the features is performed using standard supervised 

back-propagation algorithm [20], which gives a value of 1 when the feature is 

presence and a value of 0 otherwise. 

 

Table 16.1: Reasoning Results of State Dependent Modulation 

Extractor Priority 

(before rounding) 

Priority (0 - 15) 

(after rounding) 

Left eye 1.62 1 

Right eye 1.62 1 

Mouth 1.62 1 

 

Table 16.2: Structure Summary of the Neural Feature Extraction 

Neural Network Left Eye Extractor Right Eye Extractor Mouth Extractor 

Neurons In 

Input Layer 
26 × 14 =104 

None 

26 × 14 =104 

None 

39 × 20 =780 

None 

Neurons In 

Hidden Layer 

30, 

Tangent sigmoid 

30, 

Tangent sigmoid 

100, 

Tangent sigmoid 

Neurons In 

Output Layer 

1, 

Linear 

1, 

Linear 

1, 

Linear 

Training 

Method 

Standard 

Supervised BP 

Standard Supervised

BP 

Standard 

Supervised BP 

 

The neural network feature extractors are then executed, which give values 

between [0, 1] indicating the confidence degree for each feature to be present in 

the image. The feature extraction results are then combined to obtain an overall 

recognition output, which indicates the confidence level for recognizing a face 

from these two images, i.e., a value of one means maximum confidence that a 

face is recognized and a value of zero stands for the lowest confidence. In this 



 

application, the fuzzy description rules used for the combination of feature 

extraction results are given as follows: 

 

if ((F11 is HIGH_CONFI) or (F21 is HIGH_CONFI)) 

and ((F12 is HIGH_CONFI) or (F22 is HIGH_CONFI)) 

and ((F13 is HIGH_CONFI) or (F23 is HIGH_CONFI)) 

then FaceFound is HIGH_CONFI 

 

if ((F11 is LOW_CONFI) or (F21 is LOW _CONFI)) 

and ((F12 is LOW _CONFI) or (F22 is LOW _CONFI)) 

and ((F13 is HIGH_CONFI) or (F23 is HIGH_CONFI)) 

then FaceFound is LOW _CONFI 

 

if ((F11 is LOW_CONFI) or (F21 is LOW _CONFI)) 

and ((F12 is HIGH _CONFI) or (F22 is HIGH _CONFI)) 

and ((F13 is HIGH_CONFI) or (F23 is HIGH_CONFI)) 

then FaceFound is MID _CONFI 

 

if ((F11 is HIGH_CONFI) or (F21 is HIGH _CONFI)) 

and ((F12 is LOW _CONFI) or (F22 is LOW _CONFI)) 

and ((F13 is HIGH_CONFI) or (F23 is HIGH_CONFI)) 

then FaceFound is MID _CONFI 

 

where Fij(i = 1, 2; j = 1, 2, 3) represents the j
th

 feature extracted from the i
th

 

image. The associated fuzzy membership functions are given in Figure 16.6, and 

the overall results of the fuzzy combinations are shown in Table 16.3. It can be 

seen that the results give a high confidence value of 0.9 for the first  image and a 

low value of 0.06 for the second image, as expected. The overall confidence 

value of 0.72 for the face recognition indicates that the recognized image 

resembles the original image satisfactorily, which is consistent with the quality 

of the two images as shown in Figure 16.4. 

 

 

Figure 16.6: Membership Functions for the Fuzzy Combination of Features. 

 



 

 

Table 16.3: Results of the Fuzzy Combination 

Feature 1
st
 Image 2

nd
 Image 

Left Eye 0.90 0.06 

Right Eye 0.48 0.96 

Mouth 0.91 0.71 

Face Recognition Result 0.72 

 

 

16.4 CONCLUSIONS 

 

A CI based object recognition methodology by decomposition, neural feature 

extraction, and fuzzy structural description from multiple sensory data has been 

presented. The originality of this article lies in: (1) the feature extraction process 

is modulated by state dependent modulation signals inspired by biological 

discovery, and (2) the combination of feature extraction results is realized by 

fuzzy description rules to address the inherent ambiguity in image data or object 

description. State dependent modulation has been employed to generate signals 

for facilitating the feature extraction process by scheduling the computational 

power between different feature extractors. The validity of the proposed neural-

fuzzy based object recognition technique has been illustrated via an application 

example of face recognition. 

It should be noted that object recognition by decomposition requires the 

objects to have parts clearly distinguishable, which may not be the case for 

certain applications. For example, the current decomposition method cannot be 

easily applied to objects that do not decompose into parts naturally, i.e., the 

decomposition of a loaf of bread. Also, it may be difficult to determine by which 

criteria the objects should be decomposed. Low-level description based on 

simple generic parts, such as edges and line segments, often results in structural 

description that is highly complex, while high-level description often fails to 

provide enough distinction between different objects. 

In most decomposition descriptions, the constituent parts of an object are 

usually considered to have similar significance to the recognition process. 

However, this assumption is generally untrue for many applications. For 

example, in the recognition of human faces, the recognition of eyes is generally 

more important than other parts of the face. This kind of knowledge should be 

transferred to the stages of intelligent structural description and recognition. 

Also, the knowledge of structural description is mostly based upon human 

perception and cognition, which are built upon the sensory inputs of human 

beings. It is obvious that the recognition machines have totally different sensory 

inputs varying many fold from  human beings.� How to bridge these gaps and to 

develop a specific knowledge for machine systems will be an interesting topic 

for further explorations. 



 

REFERENCES 

 

1. Ullman, S., High-Level Vision: Object Recognition and Visual 

Cognition, Cambridge, MA, MIT Press, 1996. 

2. Nagata, T. and Zha, H. B., Recognizing and Locating a Known Object 

From Multiple Images, IEEE Trans. On Robotics and Automation, 

7(4), 434, 1991. 

3. Hebb, D. O., The Organization of Behaviour,  John Wiley & Sons, NY, 

1949. 

4. Mundy, J. L., and Zisserman, A., Towards a New Framework for 

Vision, Geometric Invariance in Computer Vision, MIT Press, 1, 1992. 

5. Bennamoun, M. A., Contour-based Part Segmentation Algorithm, 

Proc. of the IEEE ICASSP�94, Adelaide, Australia, 41, 1994. 

6. Huttenlocher, D. P. and Ullman, S., Recognizing Solid Objects by 

Alignment with an Image, Int.  J.  Computer Vision, 5(2), 195, 1990. 

7. Bennamou, M., and Boashash, B.A., Structural-Description-Based 

Vision System For Automatic Object Recognition, IEEE Trans. On 

Syst., Man and Cybern. - Part B: Cybern., 27(6), 893, 1997. 

8. Levine, M.D., Vision in Man and Machine, NY, McGraw-Hill, 1985. 

9. Canny, J., Computational Approach to Edge Detection, IEEE Trans. on 

Pattern Analy. Machine Intell., 8, 679, 1986. 

10. Paik, J. K, and Katsaggelos, A. K., Edge Detection Using a Neural 

Network, Proc. of IEEE Int. Conf. on Acoustics, Speech, Signal, 

Tampa, FL, 2145, 1990. 

11. Nair, D., and Aggarwal, J. K., Hierarchical, Modular Architectures for 

Object Recognition by Parts, Proc. of 13
th

 Int., Conf. on Pattern 

Recognition, 1, 601, 1996. 

12. Gidas, B., and Zelic, A., Object Recognition via Hierarchical Syntactic 

Models, Proc. of The 13
th
 Int. Conf. on Digital Signal Processing, 1, 

315, 1997. 

13. Lenaghan, A, Malyan, R., and Jones, G. A., Matching Structural 

Descriptions Of Handwritten Characters Using Heuristic Graph Search, 

IEE Third European Workshop on Handwritting Analy. and 

Recognition, October 1998. 

14. Siddiqi, K., and Kimia, B. B., Parts Of Visual Form: Computational 

Aspects, IEEE Trans. on Pattern Analy. and Machine Intell., 17(3), 

239, 1995. 

15. Rivlin, E., Dickinson, S., and Rosenfeld, A., Recognition by Functional 

Parts, Computer Vision, Graphics and Image Processing: Image 

Understanding, 62(2), 164, 1995. 

16. Horikoshi, T. and Suzuki, S., 3D Parts Decomposition from Sparse 

Range Data Using Information Criterion, 1993 IEEE Proc. of 

Computer Vision And Pattern Recognition, 168, 1993. 

17. Maunsell, J. H., The Brains; Visual World: Representation Of Visual 

Targets In Cerebral Cortex, Science, 270, 764, 1995. 



 

18. Biederman, L.,  Human Image Understanding: Recent Research and 

Theory, Computer Vision, Graphics and Image Processing, 32, 29, 

1985. 

19. Haykin, S., Neural Networks: a Comprehensive Foundation, 2
nd

 ed., 

Prentice Hall, Upper Saddle River, NJ, 1999. 

20. Rumelhart, D.E., Hinton, G.E., and Williams, R.J., Learning 

Representations by Back Propagation Errors,  Nature, 323, 533, 1986. 

21. Yen, J. and Langari, R., Fuzzy Logic:Intelligence, Control, and 

Information, Prentice Hall, Upper Saddle River, NJ, 1999. 



 

17 
AN INTRODUCTION TO 

EVOLUTIONARY 

COMPUTATION 

Gerry Dozier, Abdollah Homaifar, Edward Tunstel, and Darryl Battle  

 
17.1 INTRODUCTION 
 
Simulated evolution is quickly becoming the method of choice for complex 

problem solving especially when more traditional methods cannot be efficiently 

applied or produce unsatisfactory solutions [1]. Simulated evolution has been 

shown to be a robust method for developing solutions to a wide variety of 

complex optimization and machine learning problems [2-7]. 

Evolutionary computation (EC) is the field of research devoted to the study 

of problem solving via simulated evolution. Over the past 30 years the field of 

EC has itself been evolving. Originally, the first generation of EC consisted of 

three evolution-based paradigms: evolution strategies [8], evolutionary 

programming [9], and genetic algorithms (GAs) [4].  Each of these evolutionary 

techniques was developed for solving distinct problems [1, 10, 11].  

The second generation of EC techniques consisted of a number of new and 

equally exciting paradigms. The two most prominent of second generation ECs 

were methods that evolved populations of data structures rather than string 

representations [6], and GAs that evolved populations of programs (known as 

genetic programming) [5, 12]. At present, a third generation of ECs has emerged 

with the addition of cultural algorithms [13], DNA-based computing [14], 

particle swarm optimization [15], and ant colony optimization [16]. Each of 

these methods, like the other ECs of previous generations, has been used to 

solve a wide variety of problems.   

This chapter will focus on two of the more popular types of EC, GAs and 

genetic programming. In section 17.2 we provide an overview of genetic search 

and in section 17.3 we present the fundamental theorem that has been used to 

explain the search behavior of GAs [17]. In Section 17.4, we provide a brief 

introduction to the field of genetic programming and in section 17.5 we provide 

a brief summary.  

 
17.2  AN OVERVIEW OF GENETIC SEARCH 

 
GAs [4], as do all EC techniques, differ from more traditional search algorithms 

in that they work with a number of candidate solutions rather than just one 

candidate solution or partial solution.  Each candidate solution of a problem is 

represented by a data structure known as an individual. An individual has two 

parts: a chromosome and a fitness. The chromosome of an individual is made up 

of genes. The values that can be assigned to a gene of a chromosome are 



 

referred to as the alleles of that gene.  A group of individuals collectively 

comprise what is known as a population. For most GAs, the size of the 

population remains constant for the duration of the search. 

Individuals selected from the current population, called parents, are selected 

based on their fitness and are allowed to create offspring. Usually, individuals 

with above average fitness have an above average chance of being selected. 

After selection, reproductive operators such as crossover and mutation are 

applied to the parents. In crossover, parents contribute copies of their genes to 

create a chromosome for an offspring. This is analogous to the way offspring of 

living organisms are created as a genetic mixture of their parents. Mutation 

requires only one parent. An offspring created by mutation usually resembles its 

parent with the exception of a few altered genes.  

After the children have been created, the candidate solutions that they 

represent are evaluated and each child receives a fitness. Before the children can 

be added to the population, some individuals in the current population must die 

and be removed to make room for the children. Usually, individuals are removed 

based on their fitness with below average individuals having an above average 

chance of being selected to die. This process of allowing individuals to procreate 

or die based on their relative fitness is called natural selection. Individuals that 

are better fit are allowed to live longer and procreate more often.  

An interesting aspect of GAs (and EC in general) is that the initial population 

of individuals need not be very good. In fact, each individual of an initial 

population usually represents a randomly generated candidate solution.  By 

repeatedly applying selection and reproduction, GAs evolve satisfactory 

solutions quickly and efficiently. 

GAs can be characterized in terms of eight basic attributes: (1) the genetic 

representation of candidate solutions, (2) the population size, (3) the evaluation 

function,  (4) the genetic operators,  (5) the selection algorithm, (6) the 

generation gap, (7) the amount of elitism used, and (8) the number of duplicates 

allowed.  

 

17.2.1 The Genetic Representation of Candidate Solutions 

 

For most GAs, candidate solutions are represented either by binary or real 

coded chromosomes. In binary coded chromosomes [17], every gene has two 

alleles. In real coded chromosomes [2, 6, 18], each variable of a chromosome is 

represented by one gene. These genes may be assigned any value from a k-

valued set of alleles. Thus, for real coded chromosomes the set of alleles 

corresponds to the domain of values that can be assigned to a variable (gene). 

It is difficult to compare these two types of representation because, 

depending on the problem, one representation may be more appropriate than the 

other. However, one advantage of using a binary coded representation is that a 

large amount of research has been done on binary coded GAs. Real coded 

representations have the advantage of being closer to the way candidate 

solutions are expressed in a problem. Real coded representations typically allow 

for more accurate solutions as well.  



 

 

17.2.2  Population Size 

 

The population size  [19] is the number of individuals that are allowed in the 

population maintained by a GA. If the population size is too large, the GA tends 

to takes longer to converge upon a solution. However, if the population size is 

too small, the GA is in danger of premature convergence upon a suboptimal 

solution. This is primarily because there may not be enough diversity in the 

population to allow the GA to escape local optima. 

 

17.2.3 Evaluation Function 

 

The evaluation function of a GA is used to determine the fitness of an 

individual. Figures 17.1 and 17.2 show the process that most GAs go through in 

assigning a fitness value to an individual. The evaluation function used in 

Figures 17.1 and 17.2 determines the fitness of an individual to be  f(d(x)) = 

d(x)
2 

,  where the evaluation function is f(x) = x
2
 for 2 ≥ x ≥ 1. For binary coded 

representations, d(ub,lb,l,x) = (ub-lb) decode(x)/2
l
-1 + lb, where ub denotes the 

upper bound of an input value to the evaluation function f, lb denotes the lower 

bound of an input value to the evaluation function f, decode returns the integer 

equivalent of the binary representation, and l denotes the user specified length of 

the chromosome.  

In Figure 17.1, the binary coded chromosome, also known as a genotype, of 

an individual must first be decoded into a candidate solution (phenotype [3]) that 

the individual represents. Next, the candidate solution is evaluated and the result 

of the evaluation is assigned as the fitness of the individual. In Figure 17.2, the 

real coded chromosome of an individual is actually a phenotype. No decoding is 

necessary.  

 

 

 

Indi vi dual  

Ch ro mosome: 00101  

 

Fitness  =       ????? 

d(2,1,5,00101) = 

1.16 
f(1.16) = 1.35 

Indi vi dual  

Ch ro mosome:  00101 

 

 Fitness  =       1.35 

Figure 17.1: The  Fitness  Ass ignment Process for Binary Coded 

Ch ro mosomes (ub=2, lb=1, l=5). 



 

 
Figure 17.2: The Fitness Assignment Process for Real Coded  

Chromosomes. 

 

 

17.2.4  Genetic Operators 

 

Offspring are created as a result of applying genetic operators to individuals 

that are selected to be parents. There are basically two types of operators used in 

genetic algorithms: crossover and mutation [2, 4, 17]. Crossover operators create 

offspring by recombining the chromosomes of selected parents. Mutation is used 

to make small random changes to a chromosome in an effort to add diversity to 

the population.  

Genetic operators tend to be problem specific; however, the two crossover 

operators that will be presented have enjoyed a fair amount of success on a 

variety of different problems. These operators were originally developed for 

binary coded representations but can be applied to real coded representations as 

well.  

 

17.2.4.1  Single Point Crossover 

The most common type of crossover operator is called single point crossover 

[17]. This operator takes two parents and randomly selects a single point 

between two genes to cut both chromosomes into two parts. This point is known 

as a cut point. The crossover operator then takes the first part of the first parent 

and combines it with the second part of the second parent to create the first 

child. Then, in similar fashion, the crossover operator takes the second part of 

the first parent and combines it with the first part of the second parent to create a 

second child. Figure 17.3 shows an example of how the single point crossover 

operator works. The cut point in Figure 17.3 is between the third and fourth 

genes. The first three genes of Parent1 are combined with the last four genes of 

Parent2 to create Child1. To create Child2, the first three genes of Parent2 are 

combined with the last four genes of Parent1. Notice that single point crossover 

can only generate a subset of all possible offspring of two parents. This is 

because two parents can only be crossed over at one point. For example, Parent1 

and Parent2 are unable to produce 1010011 because this would require more 

than one cut point. Figure 17.4 shows how single point crossover can be applied 

 

Individual  

Chromosome:  1.16  

 

Fitness =      ????? 

f (1.16) = 1.35 

Individual  

Ch ro mosome: 1.16 

 

Fitness =      1.35 



 

to real coded representations. In Figure 17.4, the alleles for each gene are taken 

from the set {0, 1, ... , 9}. As in Figure 17.3, the cut point is between the third 

and fourth genes. 

 

17.2.4.2  Uniform Crossover 

Figure 17.3: An Example of Single Point  

Crossover Between the Third and Fourth Genes 

Applied to Binary Coded Chromosomes. 

Figure 17.4: An Example of Single Point  

Crossover Between the Third and Fourth Gene  

Applied to Real Coded Chromosomes. 

Another type of crossover used in many GAs is called uniform crossover [11]. 

In uniform crossover, the value of each gene of an offspring�s chromosome is 

randomly taken from either parent. This process can be repeated to create a 

second offspring. Uniform crossover is able to produce all possible offspring of 

two parents. Notice in Figure 17.5 that the value of each gene of Child1 has 

been taken randomly from one of the corresponding genes of the parents.  Also 

notice that Child1 could not have been created using single point crossover. 

Figure 17.6 shows how uniform crossover can be applied to real coded 

chromosomes. 

Figure 17.5: An Example of Uniform Crossover 

Applied to Binary Coded Chromosomes. 

 

Parent1   1 0 0 0 0 1 0 
Parent2   1 1 1 0 0 0 1 
 
Child1    1 0 0 0 0 0 1 
Child2    1 1 1 0 0 1 0 
 

Parent1   0 1 2 3 4 5 6 
Parent2   7 8 9 0 1 2 3 
 
Child1    0 1 2 0 1 2 3 
Child2    7 8 9 3 4 5 6 
 

Parent1   1 0 0 0 0 1 0 
Parent2   1 1 1 0 0 0 1 
 
Child1    1 0 1 0 0 1 1 
 



 

 

17.2.4.3 Mutation 

 In mutation, each gene of an offspring is mutated based on, pµ, the mutation 

rate [17]. In Figure 17.7, Child1 and Child2 are created via single-point 

crossover and mutation. The cut point is between the third and fourth gene. Each 

gene of each offspring is mutated with a mutation rate of 0.01. Notice that 

Child1 was 1000001 after Parent1 and Parent2 were crossed but had its fourth 

gene mutated making it 1001001. Similarly, Child2 was 1110010 after Parent1 

and Parent2 were crossed but had its first and fifth genes mutated, making it 

0110110. Notice that even though the mutation rate is 0.01 it is possible for 

more than one gene to be mutated because every gene is mutated with the same 

probability.  Figure 17.8 is the same as Figure 17.7 except that single point 

crossover with a mutation rate of 0.01 is performed on real coded chromosomes. 

Notice that the fourth gene of Child1 and the first and fifth genes of Child2 are 

mutated by randomly selecting a value from alleles of those genes. A better 

method of mutating real coded chromosomes is to use Gaussian mutation rather 

than uniform mutation [3]. 

17.2.5  The Selection Algorithm 

 

Every GA has a subprocedure, called its selection algorithm  [20], which is 

used to select parents from the current population to be mated with one another 

Parent1   0 1 2 3 4 5 6 
Parent2   7 8 9 0 1 2 3 
 
Child1    0 8 9 3 1 5 6 
 
 

Figure 17.6: An Example of Uniform Crossover 

Applied to Real Coded Chromosomes. 

Parent1   1 0 0 0 0 1 0 
Parent2   1 1 1 0 0 0 1 
 
Child1    1 0 0 1 0 0 1 
Child2    0 1 1 0 1 1 0 
 

Figure 17.7 : An Examp le of Sing le-point Crossover 

Between the Th ird and Fourth Genes with a  Mutation  

Rate of 0.01 Applied to Binary Coded Chro mosomes. 



 

to create children that are then evaluated and included in the next population of 

individuals. 

The selection of an individual to become a parent is primarily based on 

fitness. The better an individual�s fitness the greater its chance of being selected 

to be a parent. The rate at which a selection algorithm selects individuals with 

above average fitness is commonly referred to as its selective pressure [6]. The 

rate at which individuals with below average fitness are selected is commonly 

referred to as the algorithm's diversity of selection. If the selection algorithm 

does not provide enough selective pressure, the population will fail to converge 

upon a solution. If there is too much selective pressure, the population may not 

have enough diversity and converge prematurely. 

GA researchers have developed a variety of selection algorithms that provide 

the type of harmony between selective pressure and diversity needed to enable 

GAs to search efficiently and robustly. There are basically three types of 

selection algorithm: (1) proportionate selection, (2) linear rank selection, and (3) 

tournament selection. 

 

17.2.5.1  Proportionate Selection 

In proportionate selection [20], individuals are selected based on their fitness 

relative to all other individuals in the population.  Proportionate selection works 

as follows. First, S, the sum of the fitnesses of the individuals in the population, 

is computed. Then a number, R, is randomly selected within the interval [0..S]. 

Once R has been randomly selected, the fitnesses of individuals chosen at 

random are added to an accumulator, T, until T ≥ R.  The individual whose 

fitness, when added to T causes T ≥ R, is selected to be a parent. To select 

another parent another R is randomly selected, T is reset to zero, and the process 

is repeated.  

This process of selecting parents is similar to spinning a roulette wheel to 

determine which individual is chosen to be a parent. The better is an individual's 

fitness the bigger is the piece of the roulette wheel that is taken up by the 

individual and the greater is the probability that it will be selected as a parent. 

One advantage of using proportionate selection is that its selective pressure 

varies with the distribution of fitness within a population. A disadvantage is that, 

Parent1   0 1 2 3 4 5 6 
Parent2   7 8 9 0 1 2 3 
 
Child1    0 1 2 5 1 2 3 
Child2    4 8 9 3 0 5 6 
 

Figure 17.8: An Example of Sing le point Crossover 

Between the Th ird and Fourth Gene with a  Mutation 

Rate of 0.01  Applied to Real Coded Chromosomes. 



 

as the population converges upon a solution, the selective pressure decreases. 

This loss of selective pressure may not allow the GA to find better solutions. 

 

17.2.5.2  Linear Rank Selection 

In linear rank selection [2, 6, 17, 20, 21], the current population of 

individuals is first sorted from best to worst by order of the fitness they received 

from the evaluation function. Then each individual in the population is assigned 

a new fitness, called its subjective fitness (to distinguish it from the candidate 

solution�s raw fitness which is often called its objective fitness), based on 

applying a linear ranking function to the rank of the individual within the current 

population. Equation 17.1 is an example of a linear ranking function where max 

and min represent the maximum and minimum subjective fitness determined by 

the user, r is the rank of an individual, P is the population size and sf(r) is the 

subjective fitness assigned to the individual ranked r in a population: 

 sf(r)= (P-r)(max-min)/(P-1) + min.                             (17.1)  

The slope of the above linear ranking function is (max-min)/(P-1). By 

assigning values to max, min, and P the user is able to determine the slope of the 

linear ranking function which in turn determines the selective pressure of linear 

rank selection. 

Once subjective fitness values are assigned to the individuals in a population, 

parents are selected by spinning a roulette wheel similar to the roulette wheel 

used in proportionate selection. An advantage of using linear rank selection is 

that the selective pressure, once determined by the user, remains constant. 

However, a disadvantage is that the population must be sorted. Another 

disadvantage is that individuals with the same fitness will not have the same 

probability of being selected.  

 

17.2.5.3  Tournament Selection 

In tournament selection [6], one parent is selected by randomly comparing b 

individuals in the current population and selecting the individual with the best 

fitness. A second parent may be selected by repeating the process. The selection 

pressure of tournament selection increases as b increases. Perhaps the most 

widely used type of tournament selection method is called binary tournament 

selection. In binary tournament selection, b is equal to two. Of the three 

selection algorithms presented, tournament selection is the most popular method 

because of its simplicity.  

 

17.2.6  Generation Gap 

 

The generation gap [2, 17] is a real number between 0.0 and 1.0 that 

represents the fraction of the current population that gets replaced by the 

offspring. For example, let the population size be 20 and the generation gap be 

1.0. This means that, each generation, 20 offspring will be created and that these 

20 offspring will replace the 20 individuals of the current population. When the 

generation gap is somewhere between 0.0 and 1.0 it is necessary to determine 



 

which individuals in the current population die. Various approaches have been 

developed [11] for selecting which individuals will be allowed to be present in 

the next population and which individuals will be replaced. The most common 

and probably the easiest strategy is to replace the worst individuals of a 

population. It is not uncommon to see GAs which only replace one or two 

individuals per generation. These types of GAs are called steady state GAs.  

 

17.2.7 Elitism 

 

Elitism [2, 17] can also be considered as a real value between 0.0 and 1.0. 

This value represents the fraction of the best individuals of a population that will 

not get selected to die. For example, if the population size is 20 and the elitism is 

0.1, the best two individuals of the current population do not get replaced.   

 

17.2.8  Duplicates 

 

Individuals that represent the same candidate solution are known as duplicate 

individuals.  It has been shown [2] that eliminating duplicates increases the 

efficiency of a genetic search and reduces the danger of premature convergence.  

 
17.3  GENETIC SEARCH 

 
The simple genetic algorithm (SGA) [17, 19, 23] is a well known class of GA. 

SGAs are called simple because they use a binary coded representation, 

proportionate selection, single-point crossover, mutation, a generation gap of 

1.0, elitism of 0.0, and allow an unlimited number of duplicates.  Robust 

parameter settings [22] for population size, crossover, and mutation are within 

the intervals of [20..50], [0.6..0.95] and [0.001..0.09]. In SGAs, once these 

parameters are set they remain static.  

The Schema Theorem [4] has been used by many GA researchers [2, 17, 20, 

23, 24] to explain the quick and efficient search of SGAs and GAs in general. A 

schema is a similarity template that resembles a chromosome with the value of 

each gene being either the �don't care� symbol, #, or a value from the set of 

alleles of that gene. Chromosomes that belong to the set defined by a schema are 

called instances or representatives of that schema. A schema has six properties: 

its base, its defining length, its order, the number of instances it defines, the 

number of instances it defines within a population, and the average fitness of the 

instances it defines within a population. 

The base of a schema is the cardinality of the largest domain of values (or set 

of alleles) for a variable (or gene) of a candidate solution (or chromosome). For 

example, schemata represented by binary coded chromosomes are base 2 

schemata. This means that each position of a base 2 schema can take on one of 3 

values which make up its alphabet: the 2 values in the set of alleles for each 

gene and the �don't care� symbol, #. In general, base n schemata represent 

chromosomes where the cardinality of the set of alleles for each gene is n. This 



 

means that each position of a base n schema can take on one of (n+1) values 

which make up its alphabet.  

To illustrate the other five properties of schemata, let H = #1##10 be a base 2 

schema with the alphabet {#, 0, 1}. The defining length of H, δ(H), is the 

distance between the outermost nonwildcard values.  The defining length of H is 

6-2=4 because the outermost nonwildcard values correspond to the second and 

the sixth positions when counting from left to right.  

The order of a schema, o(H), is the number of nonwildcard symbols in the 

schema. Therefore o(H) is equal to 3. The number of instances of a schema is a 

function of its defining length and order. A schema, H, represents exactly   2
l-o(H)

 

binary coded instances where l is the length of each chromosome.  The number 

of instances of a schema, denoted m(H,t), and the average fitness of those 

instances, denoted f(H,t), for any population t  are two properties of a schema 

that are dynamic. As individuals of a population die and are replaced, the 

number of instances that some schemata represent within a population may 

increase or decrease. As schemata gain and lose instances, their average fitness 

will tend to fluctuate as well. 

To demonstrate how SGAs search based on the Schema Theorem, let favg(t)  

represent the average fitness of all schemata with at least one instance in 

generation t, let pχ represent the rate that single-point crossover is used, and let 

pµ represent the mutation rate. Also, assume that better individuals have larger 

fitness values assigned to them.  

A selection algorithm that selects binary coded individuals based on fitness 

also implicitly selects schemata based on their average fitness. If an individual 

has an above average fitness, then that individual has an above average chance 

of being selected to reproduce.  Similarly, if a schema has a �better than 

average� fitness then it has a �better than average� chance of being present in 

the next generation. For now let us envision an SGA with no genetic operators. 

The selection algorithm of this SGA selects a new population from the old 

population. For example, if the population size were 20 then the 20 parents 

selected would form the next population. Since SGAs allow duplicates, a 

population would eventually evolve where every member is a duplicate. For this 

SGA, we can predict the number of instances of schema H there will be in a 

population at generation t+1 by the following equation: 

m(H,t+1) = m(H,t) f(H,t) / favg(t).                                     (17.2) 

The fraction f(H,t) / favg(t) represents the probability that an instance of H will be 

selected to be a parent. 

Since better than average individuals have a better than average chance of 

being selected to be a parent, let us suppose that at generation t there is a 

schema, H, whose average fitness exceeds the average fitness of all schemata 

within the population by some constant c (where c>0). We can rewrite the 

previous equation as: 

m(H,t+1)=m(H,t) (favg(t)+cfavg(t)) / favg(t).                             (17.3) 

By factoring out favg(t) we can reduce Equation 17.2 to: 

m(H,t+1)=m(H,t)(1+c).                                            (17.4) 



 

Now suppose that there is at least one instance of H at generation t=0. Then 

m(H,0)>0, and we can rewrite Equation 17.4 in the following manner:  

m(H,t)=m(H,0)(1+c)
t
.                                              (17.5) 

Equation 17.5 shows that a selection algorithm that selects individuals in 

proportion to their fitness actually allocates exponentially increasing trials to 

above average schemata. In GAs, this process of allocating exponentially 

increasing trials to above average schemata is done for a large number of 

schemata at the same time and is referred to as implicit parallelism [24, 25]. 

GAs need to use genetic operators in order to create new individuals; 

however, genetic operators can disrupt schemata. A disrupted schema is one that 

loses instances due to the application of genetic operators. In order to predict 

how many instances of a schema will be present in a population at generation 

t+1, the probability that a schema does not get disrupted must be figured into 

Equation 17.2. Let pχ represent the crossover rate and let pµ represent the 

mutation rate.   

The probability that schema H does not get disrupted by using single point 

crossover depends on the number of cut points within an individual's 

chromosome, δ(H), and pχ. A chromosome with l genes has l-1 cut points.  A 

schema is disrupted via single point crossover when a cut point is generated 

between its two defining positions. The probability of H surviving single point 

crossover, Sχ(H), is  

Sχ(H) =1- [pχδ (H)/(l-1)].                               (17.6) 

Mutation can also disrupt a schema when it changes the value of a 

nonwildcard symbol within the schema. This depends on o(H) and pµ. The 

probability that H will survive mutation, Sµ(H), is 

       Sµ(H) = (1- pµ )
o(H)

.                                         (17.7) 

By figuring the probability that a schema will not be disrupted by single 

point crossover and mutation into Equation 17.2, we can predict a lower bound 

on the number of instances of a schema that will be in the population at 

generation t+1 by the following equation:  

m(H,t+1)  ≥ m(H,t) f(H,t)/f(t) Sχ(H) Sµ(H) .                    (17.8) 

Equation 17.8 is called the Schema Theorem. It is also known as the 

Fundamental Theorem of Genetic Algorithms. By observing Equation 17.8 more 

closely one can see that some schemata have a greater probability of losing 

instances while others have a greater probability of gaining instances. In fact, 

one can see that the schemata with the greatest probability of gaining instances 

are those schemata that have a short defining length, a low order, and have an 

above average fitness. This observation forms the basis of what is known as the 

building block hypothesis. This hypothesis says that GAs converge upon 

solutions by actually building them from the bottom up. The Fundamental 

Theorem of Genetic Algorithms shows how building blocks of a particular 



 

problem can be placed together to build larger building blocks ultimately 

resultingin the GA's development of a solution. 

 
17.4    GENETIC PROGRAMMING 

 
Genetic programming is an attempt to apply the given notion, �How can 

computer programs learn to solve problems without being explicitly 

programmed?� [26]. According to Koza [5], founder of genetic programming, 

allowing computers to seek solutions in the form of programs is the basis for 

achieving nonexplicit programming. 

 

17.4.1 Structure Representation 

 
The structures undergoing adaptation in genetic programming are noted as 

hierarchically formed programs (individuals represented in parse tree form) 

which dynamically change size and shape. The set of possible structures in 

genetic programming is primarily based on the set of all possible valid 

compositions that can be constructed from the set of n problem dependent 

functions from F = {f1, f2, ..., fn} and the set of n terminals from T = {t1, t2,..., tn}. 

Arithmetic operations, conditional operators, mathematical and Boolean 

operations, or any defined functions specific to the problem may describe 

functions within the function set.  They may also refer to standard programming 

operations.  Each respective function takes a prespecified number of arguments, 

primarily based upon its operability, which can be either terminals or other 

functions. 

Terminals within the terminal set may represent a variety of atoms that are 

generally problem dependent.  These atoms are either represented in constant or 

variable form.  Generally, terminals can be viewed as the inputs to the as-yet-

undiscovered computer program. 
Consider the following function (F) and terminal (T) sets: F = {+, −, sqrt}, 

and T = {A, B, C, π}. The representation of a possible structure that may be 

generated from these sets is shown in Figure 17.9.  We refer to this type of 

representation as a rooted point labeled tree with ordered branches.  Note that 

the internal points in the tree are denoted by functions, and terminals denote the 

external points (leaves). 

 

17.4.2 Closure and Sufficiency 

 

When determining the function and terminal sets, the satisfaction of the 

closure and sufficiency properties is desirable. The closure property requires that 

each element being a member of the chosen function set be able to accept any 

function or terminal in their respective sets.  More specifically, each function 

should be well defined.  In practical problems, however, this property is difficult 

to satisfy.  Thus special approaches or provisions are frequently used to preserve 

closure.  Consider a problem where the division operator is present in the 

function set.  One case, when zero is randomly chosen as the divisor, is 



 

considered undefined.  The use of a protected division operator is a simple 

approach that effectively guarantees closure.  Consequently, when zero is 

encountered, the use of the operator automatically returns a value of one. 

The second desirable property that should be satisfied is sufficiency.  The 

terminal and function sets chosen for a problem being capable of generating a 

solution to the problem characterizes sufficiency.  Expert knowledge of a 

particular problem generally allows the user�s chosen sets to satisfy this 

requirement. 

 

17.4.3 Fitness Evaluation  

 

The fitness measure for a given application can be described as the driving 

mechanism for the evolutionary process.  This measure basically determines the 

probability of an individual surviving to the age of reproduction and 

successfully reproducing.  The nature of the fitness measure varies with the 

problem.  Considering that it is fully defined, the fitness measure should be 

capable of evaluating any individual that it encounters within a run.  Usually 

fitness is evaluated over a set of fitness cases that is generally chosen to 

sufficiently represent the domain space.  This serves as the basis for generalizing 

evolved individuals to the entire search space.  

(A + B) ∗  [sqrt (3.142) + B] 

Figure 17.9: Illustration of Parse Tree Structure. 

 
17.4.4 Genetic Operators 

 

The initial populations in genetic programming are produced by randomly 

generating computer programs composed of functions and terminals appropriate 

to the problem domain.  Thus, the initial population is a blind search of the 

search space of the problem represented as computer programs.  However, 

breeding of successive generations is done by using three primary genetic 

operators: Darwinian reproduction, crossover (sexual recombination), and 

mutation. The use of Darwinian reproduction increases the probability of 

stronger individuals (programs having higher fitness) receiving multiple copies 

in the next generation while the weaker individuals receive fewer copies and 

eventually become extinct.  The use of crossover provides variation in the 

population by producing offspring that are essentially a product of genetic 

material taken from its two parents.  Figure 17.10 shows an example of this type 

of recombination using the same function and terminal sets used in Figure 17.9.  

sqrt 

3.142 

* 

A  B  B  

+ + 



 

Note that, unlike the ordinary genetic algorithm, genetic programming allows 

the flexibility of mating individuals to cross material at different points.  This 

provides greater flexibility in sampling the search space as well as enhances the 

opportunity for genetic programming to deliver some counterintuitive solutions. 
Finally, to reintroduce diversity in a population that may tend to converge 

prematurely, the mutation operator is introduced.  Mutation is implemented by 

performing random alterations in the program structures.   
 
17.5 SUMMARY 

 

In this chapter we provided a brief introduction to the field of EC and an 

overview of GAs. We also presented the fundamental theorem of GAs, the 

Schema Theorem, which describes the behavior of genetic search. Finally, we 

provided a brief overview of another EC technique for which research interest is 

rapidly growing, genetic programming.  

Presently, there is a promising trend underway. Researchers are now 

combining evolutionary, neural, and fuzzy computing techniques to form hybrid 

systems that are even more efficient and robust [27, 28]. In the chapters to 

follow, the reader will be introduced to a number of these exciting new hybrids. 

 

Figure 17.10: Crossover in Genetic Programming. 

 

 ACKNOWLEDGMENTS  

This work is partially funded by grants from NASA Autonomous Control 

Engineering Center (ACE) at North Carolina A&T SU under grant # NAG2-

1196 and NASA Dryden Flight Research Center under grant # NAG4-131.  The 

authors wish to thank the ACE Center and NASA Dryden for their financial 

support. A portion of the research described in this chapter was performed at the 

Jet Propulsion Laboratory, California Institute of Technology, under contract 

with the National Aeronautics and Space Administration. 
 

REFERENCES 

 

1. Bäck, T., Hammel, U., and Schwefel, H.P., Evolutionary Computation: 

Comments on the History and Current State., IEEE Trans. on 

Evolutionary Computation, Vol. 1, No. 1, 3-17, 1997. 

Offspring 

sqrt 

3.145 

sqrt 

3.142 

sqrt 

3.145 

sqrt 

* 

+ 

B 

Parent 1 

sqrt 

3.142 

* 

A B B 

+ + 

Parent 2 

sqrt 

3.142 

* 

A B B 

+ + 



 

2. Davis, Lawrence, Handbook of Genetic Algorithms, Van Nostrand 

Reinhold, New York, 1991. 

3. Fogel, D. B., Evolutionary Computation: Toward a New  Philosophy of 

Machince Intelligence, IEEE Press, 1995. 

4. Holland, J. H., Adaptation in Natural and Artificial Systems, University 

of Michigan Press, Ann Arbor, MI, 1975. 

5. Koza, J.R., Genetic Programming: On the Programming of Computers 

by Natural Selection, MIT Press, Cambridge, MA, 1992. 

6. Michalewicz, Z., Genetic Algorithms + Data Structures = Evolution 

Programs, 2
nd

 ed., Artificial Intelligence Series, Springer-Verlag, 

Berlin, 1994. 

7. Spears, W.M., De Jong, K.A., Bäck, T., Fogel, D.B., and De Garis, H., 

An Overview of Evolutionary Computation, Proc. of the 1993 

European Conf. on Machine Learning,  442-459, 1993. 

8. Bäck, T., Hoffmeister, F., and Schwefel, H.-P., A Survey of Evolution 

Strategies, Proc. of the Fourth Int. Conf. on Genetic Algorithms, 2-9, 

Morgan Kaufmann Publishers, San Francisco, CA, 1991. 

9. Fogel, L.J., Owens, A.J., and Walsh, M.J., Artificial Intelligence 

Through Simulated Evolution, John Wiley & Sons, NY, 1966. 

10. De Jong, K. and Spears, K., On the State of Evolutionary Computation, 

Proc. of the Fifth Int. Conf. on Genetic Algorithms, 618-623, Morgan 

Kaufmann Publishers, San Francisco, CA, 1993. 

11. Syswerda, G.,  Uniform Crossover in Genetic Algorithms. Proc.  of the 

Third Int. Conf. on Genetic Algorithms, 2-9, Morgan Kaufmann 

Publishers, San Francisco, CA, 1989. 

12. De Garis, H., Genetic Programming: Modular Evolution of Darwin 

Machines, Proc.  of  1990  Int. Joint Conf. on Neural Networks, 194-

197, 1990. 

13. Reynolds, R.G., An Introduction to Cultural Algorithms, Proc. of 

Evolutionary Program, (EP-94), 131-139, San Diego, CA, 1994. 

14. Adleman, L.M., Molecular Computation of Solutions to Combinatorial 

Problems, Science, Vol. 266,  1021-1024, 1994. 

15. Kennedy, J. and Eberhart, R., Particle Swarm Optimization, Proc.  of 

the 1995 IEEE Int. Conf. on Neural Networks, 1942-1948, 1995. 

16. Dorigo, M. and Gambardella, L.M., Ant Colony System: A 

Cooperative Learning Approach to the Traveling Salesman Problem, 

IEEE Trans. on Evolutionary Computation, Vol. 1, No. 1, 53-66, 1997. 

17. Goldberg, D. E., Genetic Algorithms in Search, Optimization & 

Machine Learning, Addison-Wesley Publishing Company, Inc., 

Reading, MA, 1989. 

18. Eshelman, L. J. and Schaffer, J. D., Real-Coded Genetic Algorithms 

and Interval Schemata, in Foundations of Genetic Algorithms II, 

Whitley, L.D., (ed.)  Morgan Kaufman Publishers, San Francisco, CA,  

1993. 

 



 

19. Schaffer, J. D., Caruna, R., A., Eshelman, L.A., and Das, R., A Study 

of Control Parameters Affecting Online Performance of Genetic 

Algorithms for Function Optimization, Proc.  of the Third Int. Conf. on 

Genetic Algorithms, 51-60, Morgan Kaufmann Publishers, San 

Francisco, CA,  1989. 

20. Baker, J. E., Reducing Bias and Inefficiency in the Selection 

Algorithm, Proc. of the Second Int. Conf. on Genetic Algorithms and 

Their Appl., 14-21, Erlbaum, Cambridge, MA, 1987. 

21. Whitley, D., The Genitor Algorithm and Selection Pressure: Why 

Rank-Based Allocation of Reproductive Trials is Best, Proc.  of the 

Third Int. Conf. on Genetic Algorithms,  116-121, Morgan Kaufmann 

Publishers, San Francisco, CA, 1989. 

22. Grefenstette, J.J., Optimization of Control Parameters for Genetic 

Algorithms, IEEE Trans. on Sys., Man & Cybern. SMC-16, Vol. 1,  

122-128, 1986. 

23. Bridges, C. L. and Goldberg, D. E., An Analysis of Reproduction and 

Crossover in a Binary-Coded Genetic Algorithm, Proc. of the Second 

Int. Conf. on Genetic Algorithms, 9-13, Erlbaum, Cambridge, MA, 

1987. 

24. Grefenstette, J. J. and Baker,L. How Genetic Algorithms Work: A 

Critical Look at Implicit Parallelism, Proc.  of the Third International 

Conference on Genetic Algorithms, 20-27, Morgan Kaufmann 

Publishers, San Francisco, CA, 1989. 

25. Vose, M.D., Generalizing the Notion of Schema in Genetic Algorithms,  

Artif. Intell., 50, 385-396, 1991. 

26. Samuel, A., Some Studies in Machine Learning Using the Game of 

Checkers, IBM J. of Res. and Develop.,  3(3), 210-229, 1959. 

27. Homaifar, A. and McCormick, E., Simultaneous Design of 

Membership Functions and Rule Sets for Fuzzy Controllers Using 

Genetic Algorithms, IEEE Trans. on Fuzzy Systems, Vol. 3, No. 2, 129-

139, 1995. 

28. Yao, X., Evolving Artificial Neural Networks, Proc. of the IEEE, 

87(9), 1423-1447, September, 1999. 

 



EVOLUTIONARY CONCEPTS 

FOR IMAGE PROCESSING 

APPLICATIONS18
Madjid Fathi and Lars Hildebrand

18.1    INTRODUCTION

This chapter describes how evolutionary concepts can be used to improve the

performance of operators for image processing applications. The evolutionary

concepts are based on evolution strategies, which are almost unknown outside

Europe and explained in more detail here. Evolution strategies provide a good

alternative to genetic algorithms if real valued problems have to be solved. This

chapter gives an overview of evolution strategies. These principles are

described using mathematical formulas as well as two- and three-dimensional

example diagrams. The second part of this chapter consists of two applications

examples in which evolutionary concepts are applied. 

18.2 OPTIMIZATION TECHNIQUES

18.2.1 Basic Types of Optimization Methods

The term “optimization” is understood as the process by which the most favor-

able parameters for a system are chosen with respect to the system’s objective

function while taking the restrictions into account. If the structure of such a sys-

tem can be formulated in the form of a mathematical model and a quantitative

description of the optimal state can be given, then optimization procedures can

be developed to determine the values of the parameters needed to reach the opti-

mal state of the system. If the optimal state is defined by a single value or a set

of individual values, then the optimization procedure used is called parameter

optimization. If the optimum is defined by a function, then the procedure used is

called functional optimization. If, in the following discussion, the word optimi-

zation is used, it will always refer to parameter optimization. 

The optimization is either a linear or a nonlinear optimization depending on

the kinds of restrictions. Nonlinear optimizations can be further divided into two

classes: convex and concave. For a characterization of these classes, see [1]. 



18.2.2 Deterministic Optimization Methods

All optimization methods in which the changes in the variables during an opti-

mization phase are determined in a deterministic fashion are united under the

general term “deterministic optimization methods”. This means that for an ini-

tial state  of an optimization problem, the state  can always be reached in

the same manner. The path from the initial state  to the optimal state 

is always reached through the same intermediate states . A complete opti-

mization is uniquely characterized by the optimization method used, the corre-

sponding control parameters, and the states  and . In the following

text, a few examples of deterministic methods are given [2].

18.2.2.1 Minimization in the Direction of the Coordinates

Given is the function  and a starting point . Starting at this point,

the minimum  is searched for in a specific direction. From this new point, a

new minimum  is searched for in a new direction, etc. Any direction at all

can be chosen, but it must be ensured that the sequence of directions chosen

includes all dimensions of the search space. One possible sequence of search

directions is given in [3]: The unit vectors of the coordinate system are chosen

one after the other as the direction for the search. If the search has gone

through all elements of the base vector, then one starts again with the first ele-

ment chosen. This procedure ends when the distance between two vectors

found,  and , does not exceed a certain length , i.e. 

where  is the distance between the two points  and  in the

-dimensional space. 

18.2.2.2 Minimization in the Direction of the Steepest Slope

Again, the function  and a starting point  are given. To reach the

minimum of the function  from a point, one only has to follow the neg-

ative gradient . The minimum  in the direction of  is

determined, and from this point the minimum  in the direction of 

is determined, etc. These steps are repeated until a point  is reached which

corresponds to the minimum within a certain tolerance range.

One characteristic of this method is that the search directions are always

perpendicular to each other because the search for the minimum near  in the

direction  means that the derivative of the function in the direction of

 is 0 at , i.e.  is true, meaning that the gradient is

perpendicular to . A disadvantage of this method is that the direction of

the search cannot be adjusted according to the function, resulting in the fact

that the method converges to the minimum slowly [3]. Path of optimization is

in the direction of the steepest slope.

Z0 Zj

Z0 Zopt

Zi

Z0 Zopt

F x( ) x0
x1

x2

xi 1– xi ε xi 1– xi– ε<
xi 1– xi– xi 1– xi

n

F x( ) x0
F x( )

b F x( )∇–= x1 F x0( )∇
x2 F x1( )∇

xopt

xi
bi 1–

bi 1– xi bi 1– F x i( )∇ 0=

bi 1–



18.2.2.3 Simplex Minimization

The EVOP (Evolutionary Operation) optimization method has been

expanded by Spendley, Hext, and Himswoth to become the so called simplex

method [4] - [6]. When applying the simplex method in an -dimensional

space, the simplest geometric figure that can be made with  vertices is

drawn, although this figure cannot be drawn in an -dimensional space

anymore. A simplex in a two- dimensional space is a triangle, a simplex in a

three-dimensional space is a tetrahedron, and for higher dimensional spaces,

there is no visual representation of the corresponding simplex anymore. A reg-

ular simplex is a simplex for which all vertices of the figure are equidistant

from each other. 

Starting with a randomly chosen regular simplex, the values of the function

at the  vertices of the simplex are evaluated. The point with the worst

value of the function is thrown out, and a new vertex point is determined

which corresponds to the projection of this point through the center of gravity

of the surface defined by the remaining  points. In the course of the optimi-

zation process, it can occur that the reflected point is the worst point of the

new simplex. In this case, the process will oscillate. In order to avoid this, the

second worst point will be reflected instead of the worst point. If the process

approaches the optimum, then the succession of new simplexes will rotate

around one vertex. If the succession of rotating simplexes reaches the initial

simplex of the rotation, then the length of the edges of the last simplex are

halved and the process continues until a certain break criteria is reached. 

A disadvantage of this optimization method is the fact that the size of the

simplexes can only be reduced, thereby reducing the step size when approach-

ing the optimum. An enlargement of the simplex is not taken into account, and

if the size of the initial simplex is too small or one of the simplexes created

during a local optimization lies in an area of steeply sloped gradients, then the

process will converge slowly.

18.2.3 Probabilistic Optimization Methods

In contrast to the deterministic optimization methods, probabilistic optimi-

zation methods contain at least one random component or a corresponding cal-

culation step [7] - [11]. At this point, it is important not to assume that the term

random means without having any specific plan in mind. The term probabilis-

tic is not used to identify methods that randomly evaluate points in the search

space without following a certain strategy or without learning after each step.

An example of such a method is the blind search method thought out by

Brooks. This method will be explained in a little more detail here in order to

differentiate it from probabilistic optimization methods [11].

The starting point is an -dimensional vector which is restricted by 

intervals , where  and . The minimum of

n

n 1+

n 1–

n 1+

n

n n

ai xi bi≤ ≤ ai bi≠ i 1 …, n{ , }∈



 within the bounds of this interval is to be determined. A few points are

chosen at random and evaluated to do this. The probability density for points

outside the interval bordered by  are set to 0, and inside this area

the densities are evenly distributed so that the following is true:

, (18.1)

whereby  is the volume of the -dimensional space created by the interval.

This is calculated using

. (18.2)

The point with the smallest value of the function is considered to be the

optimum. Due to the random control characteristic of this optimization

method, only one probability can be given which describes whether or not the

optimum will be found within  attempts. To determine this, a new volume 

is selected which contains all points in the search space that fulfill the condi-

tions for the optimum. The probability that the optimum can be found within

 attempts is then determined by

(18.3)

For low dimensional search spaces, this method appears to be promising.

For a desired determination probability  of 0.99 and a target volume 

where , the number of attempts  can be determined using

(18.4)

resulting in . In addition, the effect of a reduction of the volume on

the length of the interval can be determined with

(18.5)

For  and , this results in a value of 0.1 for the reduced

interval length . This means that when we assume that the optimal values

correspond to 1% of the two-dimensional search space, and that these are to be

found with a probability of 0.99, then 459 random values within the search

space must be evaluated. The borders of the interval which contains the opti-

F x( )

ai xi bi≤ ≤

p x( ) 1 V,⁄       for all ai xi bi≤ ≤

0,   else  






=

V n

V bi ai–( )
i 1=

n

∏=

N v

N

p 1 1 v V⁄–( )N–=

p v

v V 100⁄= N

N
1 p–( )ln

1
v

V
---– 

 ln

------------------------=

N 459=

d

D
----

v

V
--- 
 

n=

v V 100⁄= n 2=

d



mum are reduced to 10% of the original interval area. 90% of the defined area

per interval can be excluded from the search. Unfortunately, this method fails

when optimization problems of higher order dimensions are attempted to be

solved. For  and assuming the same conditions as above, this results in

the same number of attempts , but the interval area is not reduced to 10% of

the original interval, rather it is now 63%. In order to achieve a 90% reduction

in the interval area, we would have to reduce the target volume by a factor of

 of the search space. The number of attempts can be determined using

(18.4) and becomes then . 

Schwefel has shown that a blind search for all probabilities 

with  is a less effective search method than the grid method,

which has an optimal behavior for non directional probabilistic methods [11].

In spite of this, methods such as the blind search are still useful as all search

steps can be carried out at the same time, and, when processed in parallel, this

method results in a good run time behavior. 

If one removes the requirement that all attempts must be made independent

of each other, then one has a directional probabilistic method. These methods

are able to “learn” in which direction to search by allowing previous attempts

to influence the current attempt. A few of the methods from this field will be

presented in the following section: -, -, and - evolution

strategies. 

18.3 EVOLUTION STRATEGIES

Evolution strategies are based on the fact that biological evolution represents

an almost perfect method to adapt an individual to the environment. The fun-

damental evolutionary concepts were transferred to the technical field of opti-

mization methods by Rechenberg in 1964 [12, 13]. These fundamental

concepts will be explained in this section.

18.3.1 Biological Evolution

In 1859, Darwin produced the theory that all creatures have developed

from more primitive forms over a long period of time [14]. He observed three

basic principles of nature:

1. Nature creates a potential overpopulation of life forms. In spite of this,

the size of a population does not generally change very much.

2. No life form is an identical copy of another life form. There are always

at least a few minor differences. 

3. Changes in a life form that have proven to be favorable can often be

found in their offspring.

n 10=

N

10
10–

N 4,6 10
10⋅≈

p pcritical>
pcritical 0.63≈

1 1+( ) µ 1+( ) µ λ,( )



Darwin derived the following from his observations. There exist life forms

which have been able to survive better in their environment than others. The

reason for this can be found in the minute differences between individual life

forms. These differences can be passed on to later generations. 

Through Mendel’s research, the basic principles of inheritance were recog-

nized. In 1865, he formulated three laws:

1. Reciprocity:

When two pure breed (F0 generation) individuals, i.e., individuals

which are not the result of cross breeding and which differ in at least

one aspect, are crossed, then the members of the following generation

(F1 generation) will have a uniform, equal appearance.

2. Division:

The second filial generation F2 is not uniform. The appearance of indi-

vidual, inherited characteristics occurs according to a numerical model

discovered by Mendel. The possible ratios are 3:1, 1:2:1 and 9:3:3:1,

whereby the individual numbers stand for the various combinations of

characteristics in the offspring. 

3. Recombination:

Mendel’s third law states that genes can be assembled in new combina-

tions. This recombination is extremely significant with respect to the

variety of forms which a given life form may take and is therefore the

basis for evolution. 

The formulation of these laws raised many questions concerning the

encoding and replication of genetic information. Through the research con-

ducted by Avery (1944) and Watson and Crick (1953), the significance of

nucleic acids, as well as the assembly and structure of the two most important

representatives of the nucleic acids (deoxyribonucleic acid - DNA and ribonu-

cleic acid - RNA), were discovered. With only a few exceptions, DNA con-

sists of a two-stranded winding chain (double helix) of deoxyribose and

phosphate, as well as the purine bases adenine (A), cystosine (C), guanine (G)

and thymine (T). The combination of these purine bases in groups of 3 results

in about 20 amino acid codes.

These amino acids then constitute the basis for the polypeptides and there-

fore for the synthesis of proteins. Chromosomes constitute the carrier for the

DNA, and a complete set of chromosomes is called a genome. The basic

mechanism for inheritance is the division of the DNA double helix into indi-

vidual strands, the interpretation of these strands, and the synthesis of the

encoded amino acids. At the same time, the DNA double helix can duplicate

itself due to the complimentary character of the double helix. A single strand

of DNA can complete itself and become a DNA molecule again. These com-

plex processes have a tendency to go wrong, i.e., a mutation can occur. Possi-



ble mutation forms are genome mutations (a change in the number of

chromosomes), chromosome mutations (a change in the structure of the chro-

mosome), and gene mutations (a change in the nucleic acids). These basic

principles, such as the encoding of all information concerning a life form,

duplication, mutation, and selection have been carried over into the field of

technical optimization in the form of evolution strategies. 

18.3.2 Mechanisms of Evolution Strategy

In this section, the transfer of the basic biological evolutionary principles

to the field of optimization will be explained. This transfer is a direct transfer

in many cases, but it will be shown that only a portion of the principles of bio-

logical evolution are applicable to evolution strategies. In the field of evolu-

tion strategies, single potential solutions of an optimization problem are

regarded as individuals. A set of individuals which belong to the same optimi-

zation step in the optimization process builds a population. In order to differ-

entiate between the populations, each population is classified as being a

generation. The various operations, for example recombination, mutation, and

selection, are carried out during the transition from one generation to the next.

As evolution strategies are probabilistic optimization methods, a few terms

from probability theory have to be used, see [15].

The encoding of an individual serves as the basis for all further examina-

tions. Given is an -dimensional optimization problem in . An individual

 is described as a point in an -dimensional space by:

, (18.6)

for  and , where

 is the object variable and 

and  are the strategy variables. 

The object variable  gives the position of the individual  in the search

space. In addition to the position of the individual, there are two other pieces

of information belonging to each individual  which are called the strategy

components. The component  gives the step size in each of the coordinate

directions of the search space, and using the component , the angle between

the various step directions can be set. The importance of the strategy compo-

nents will be explained using an example after having defined the step size

and the mutation operation. 

An individual  must be assigned a fitness value 

which states the “goodness” of an individual regarding the optimization prob-

lem, and which therefore has a direct influence on the individual´s chance for

survival. The function  is only determined using the object variable . The

influence of  and  on the fitness of an individual can only be indirectly

determined through the fitness of the object variable . A new individual 

n IR
n

I n s a+ +( )

I x σ α, ,( )
T

IR
n

IR
s× π– π,[ ]a×∈=

s 1 … n, ,( )∈ a 0 … n n 1–( )( ) 2⁄, ,( )∈
x x1 … xn, ,( )T IR

n∈= σ σ1 … σs, ,( )T IR
s∈=

α α1 … αa, ,( )T π– π,[ ]a∈=

x I

I

σ
α

I Ψ I( ) Ψ x( ) IR∈=

Ψ x

σ α
x I '



can be created by mutating the individual . The following is true for the

mutation:

. (18.7)

Equation (18.7) states that an individual  is mutated by mutating each of

its components, the object variable , and the strategy variables  and .

Each of these components is mutated differently. 

The step vector  is mutated by mutating all coordinates  according to

, (18.8)

where . The term  is determined once for the individ-

ual, and the term  is calculated anew for each coordinate .

Schwefel recommends the following to determine the values of the parameters

 and  [11]:

, . (18.9)

The angle vector  is mutated by mutating the elements  according to 

, (18.10)

where . The term  is determined for each coordinate

. Schwefel also recommends a value for the parameter  [11]:

. (18.11)

After having introduced the mutation functions for the strategy parameters,

the mutation of the object variables  can be defined using them. The object

vector  is mutated using

(18.12)

whereby  specifies the covariance of an -dimensional normal distri-

bution. In the following, a two-dimensional example will be given which dem-

onstrates the effect of each of the mutation steps of an individual  on an

offspring . The section of the search space shown in the diagrams ranges

over the interval  on both the - and the -axes (the -

and -axes are shown without any specific units). The probability  that

the offspring  will be assigned a particular location in this section of the

search space is represented in the diagram for  by a variation in

the gray scale in the area near . In Figure 18.1,  and  for

I

mut I( ) mut x σ α, ,( )=

mut x( ) mut σ( ) mut α( ), ,( )=

I

x σ α

σ σi

σ’i σie
τ’N 0 1,( ) τNi 0 1,( )+( )

=

i 1 … s, ,( )∈ τ’N 0 1,( )
τNi 0 1,( ) σi

τ τ’

τ 1

2 n

--------------≈ τ’ 1

2n
----------≈

α αi

α’i αi βNi 0 1,( )+=

i 1 … a, ,( )∈ Ni 0 1,( )
αi β

β 0 873 rad( ) 5°≅,=

x

x

x’ x N 0 C σ’ α’,( ),( )+=

σ’ α’,( ) n

I

I ’

4– 4[ , ] 4– 4[ , ]× IR
2∈ x y x

y p I ’( )
I ’

p I ’( ) 0 01,>
I σi 1= αj 0=



 and .

Figure 18.1: Mutation with  and .

By changing the strategy parameters  and , the probability  of a

possible new individual  at a certain location can be influenced. The values

of the coordinates  and  contain the step sizes in the direction of the corre-

sponding coordinate , and the ratio  determines the shape of the

ellipse around . Figure 18.2 shows  for .

Figure 18.2: Mutation with  and .

Additionally, if one allows the ellipse described by  and  to be rotated

by defining a rotation angle , then the shape and location of the ellipse can

i 1 … n, ,( )∈ j 1 … n n 1–( ) 2⁄, ,( )∈

-4

-2

0

2

4

-4

-2

0

2

4

0

0.05

0.1

0.15

0.2

-4

-2

0

2

4

σ 1 1,( )T= α 0( )=

σ α p I ’( )
I ’

σi σ
i σ1 σ2⁄

I p I ’( ) σ 2 1,( )T=

-4

-2

0

2

4

-4

-2

0

2

4

0

0.02

0.04

0.06

0.08

0.1

-4

-2

0

2

4

σ 2 1,( )T= α 0( )=

I σ
α



be adjusted as shown in Figure 18.3.

Figure 18.3: Mutation with  and .

In summary, a change in the step size vector  changes the shape of the

ellipse, and a change in the orientation vector  rotates the ellipse around the

origin of the coordinate system. The ellipse determines the probability of a

given position of the new individual  for a given initial position of the indi-

vidual .

If one applies this concept to an -dimensional space, then  describes a

hyperellipse in which each element  describes the length of an axis of the

ellipse, and in which each element  of  describes the angle of rotation

between two coordinate axes. Figure 18.4 shows the control possibilities for

the two-dimensional case once again.

Figure 18.4: Meaning of the Strategy Parameters  and  in .

-4

-2

0

2

4

-4

-2

0

2

4

0

0.02

0.04

0.06

0.08

0.1

-4

-2

0

2

4

σ 2 1,( )T= α 0.7–( )=

σ
α

I ’

I

n σ
σi

αj α

-4 -2 0 2 4

-4

-2

0

2

4

σ

σ1

2

α12

x2

x1

σ α IR
2



The position of an individual in the search space is changed by the muta-

tion. The step size for this change in position is the standard deviation. At the

beginning of an optimization, the individuals should be well spread out

throughout the search space so that possible optima can be quickly found.

The mutation operation is not able to find these optima even in its optimum

form as the limited standard deviation decreases the possibility that large step

sizes can be used, and a mutation of the step size to obtain a larger value can

require the computation of several generations. For this reason, the recombi-

nation operator was introduced. Similar to chromosome mutation in biology,

the information inherited from the previous generations is also mutated,

whereby inheritance information from two individuals is exchanged between

the individuals. As with mutation, strategy and object variables can be recom-

bined in many ways.

A new individual  can be created by recombination using at least two

individuals  and  from a parent generation  with  individuals.

The following is true for the recombination:

. (18.13)

Before the individual recombination operations are described, an extra

function used to index the individuals will be introduced. The function 

produces a value in the interval  for a given . The choice of

this value is determined by a discrete, constant distribution over the range

. In contrast to the various mutation operations, the recombination

operations are very similar to each other as each operator can be applied to

each component of an individual. Four recombination methods are generally

used:

1. Discrete recombination: Two parents  and  are chosen from the

set of all parents. An offspring  is created by selecting the corre-

sponding element from either  or  for all elements of :

, (18.14)

where  and .

I ’

I 1 I 2 P t( ) µ

rec P t( )( )=

rec I 1 … I µ, ,( )=

rec x1 … xµ, ,( ) rec σ1 … σµ, ,( ) rec α1 … αµ, ,( ), ,(=

Gn
1 n,[ ] IN∈ n 0>

1 n,[ ]

I 1 I 2

I ’

I 1 I 2 I ’

f I 1 I 2,( ) f

I 1
1 I 1

2,

I 2
1 I 2

2,

… …,

I n
1 I n

2, 
 
 
 
 
 
  I 1

G2

I 2
G2

…

I n
G2
 
 
 
 
 
 
 

= =

I 1 I Gµ
= I 2 I Gµ

=



2. Global discrete recombination:

For each element of the offspring , one parent individual  is chosen

from the set of all parents. In contrast to discrete recombination, the set

of possible parents is not limited to two individuals:

(18.15)

3. Intermediate recombination:

Two parents  and  are chosen from the set of all parents. An off-

spring  is created by selecting for all elements of  the average val-

ues of the elements from  and :

, (18.16)

where  and .

4. Global intermediate recombination:

For each element of the offspring , two parent individuals are chosen

from the set of all parents. An element of  is then the average value

of the corresponding elements from  and :

(18.17)

I ’ I

f I 1 … I µ, ,( ) f

I 1
1 … I 1

µ, ,

I 2
1 … I 2

µ, ,

… … …, ,

I n
1 … I n

µ, , 
 
 
 
 
 
  I 1

Gµ

I 2
Gµ

…

I n
Gµ

 
 
 
 
 
 
 

= =

I 1 I 2

I ’ I ’

I 1 I 2

f I 1 I 2,( ) f

I 1
1 I 1

2,

I 2
1 I 2

2,

… …,

I n
1 I n

2, 
 
 
 
 
 
  I 1

1 I 1
2+( ) 2⁄

I 2
1 I 2

2+( ) 2⁄

…

I n
1 I n

2+( ) 2⁄ 
 
 
 
 
 
 

= =

I 1 I Gµ
= I 2 I Gµ

=

I ’

I ’

I 1 I 2

f I 1 … I µ, ,( ) f

I 1
1 … I 1

µ, ,

I 2
1 … I 2

µ, ,

… … …, ,

I n
1 … I n

µ, , 
 
 
 
 
 
  I 1

Gµ
I 1

Gµ
+( ) 2⁄

I 2
Gµ

I 2
Gµ

+( ) 2⁄

…

I n
Gµ

I n
Gµ

+( ) 2⁄ 
 
 
 
 
 
 

= =



The difference between discrete and intermediate recombination is shown

in Figures 18.5 and 18.6. In addition to the recombination, the influence of

 mutations is also shown.

Figure 18.5: Probabilities for the Position of a New Individual.

Figure 18.6: Probabilities for the Position of a New Individual Through

Mutation and Intermediate Recombination.

N 0 1,( )

-4

-2

0

2

4

-4

-2

0

2

4

0

0.05

0.1

0.15

-4

-2

0

2

4

I´

I´

I

I1

2

-4

-2

0

2

4

-4

-2

0

2

4

0

0.05

0.1

0.15

-4

-2

0

2

4

I´

I

I1

2



By choosing a parameter  (see Equation (18.18)), it is possible to

transfer the individuals recombined using intermediate recombination to a sin-

gle parent. The influence of each parent is then determined by:

, where . (18.18)

Up to now, only methods that alter single individuals have been intro-

duced. In the next section, three different types of evolution strategies will be

discussed. Schwefel introduced the following notation to differentiate among

the three types [11]. An evolution strategy with  parent individuals and 

offspring is designated with . If the parents and the offspring are taken

into consideration during the selection process, then it is a  strategy.

When only the offspring are taken into consideration, then it is a  strat-

egy. This notation has been extended by Schöneburg [16] and Bäck/Hoffmeis-

ter [17] in order to reflect further characteristics of the natural selection

process. These extensions will not be discussed in this paper, though, as they

serve more to make evolution strategies better reflect natural evolution than to

improve the speed and probability of convergence.

18.3.3 The (1+1) Evolution Strategy

As the name says, this variation of an evolution strategy deals with one

parent and one offspring. An individual  consists of the compo-

nents  and . The object component  describes the position of the individ-

ual in the search space, and the strategy component  consists of a single

element which contains the standard deviation, and therefore the step size, for

each element  of  for an  normal distribution. The following algo-

rithm represents an implementation of such a strategy.

1 t:=0;

2 initialize ;

3 evaluate ;

4 while termination_criteria  not fulfilled 

5 ;

6 evaluate ;

7 if 

8 then ;

9 else ;

10 t:=t+1;

11 end 

The mutation operation (line 5) is carried out in two steps:

γ 1 2⁄≠

I ' γI i
1 1 γ–( )I i

2+= γ 0 1[ , ] IR⊂∈

µ λ
µ+, λ( )

µ+λ( )
µ,λ( )

I IR
n

IR+×∈
x σ x

σ

xi x N 0 σ,( )

t( ): x σ,( ){ }=

Ψ P t( )( ) Ψ x( )=

T P t( )( )
x' σ',( ) mut x σ,( )( )=

Ψ x'( )
Ψ x'( ) Ψ x( )≤

t 1+( ): x' σ',( ){ }=

P t 1+( ) P t( )=



. (18.19)

In the first step, a new standard deviation is computed using 

(18.20)

Schwefel recommends  [11], which he derived from the opti-

mal standard deviation for the sphere model, as the value of the constant .

The parameter  must be reevaluated for each generation, and gives ratio of

successful mutations to the total number of mutations. In the second step, the

object component  is mutated using the new standard deviation by determin-

ing a new element  for all elements  from  according to

. (18.21)

The selection operation (lines 7 - 9) selects the individual with the best fit-

ness  value from the parents and offspring. As this selection is a so called

-selection, it is possible that a parent with a high fitness value  will sur-

vive over many generations. At regular intervals, the survival behavior of the

parents and offspring are checked (18.20). If the fitness value of the offspring

is too high ( ) then the search space is enlarged. It is assumed here that

the reason for the large number of successful mutations is that we are far away

from the optimum. If, however, a parent individual survives too many genera-

tions , then the step size is decreased in order to reduce the size of the

search space. This “1/5 success rule” has been empirically determined by

Rechenberg [12]. One disadvantage of this rule is that for optimization prob-

lems which do not achieve a reasonable success rate due to their topology, the

step size will constantly decrease upon each application of the deterministic

operation , so that the evolution strategy will eventually stagnate at a

local optimum.

18.3.4 The (µ+1) Evolution Strategy

As the (1+1) evolution strategies only contain one parent per generation,

the recombination concept taken from biological evolution cannot be applied.

In order to apply recombination, Rechenberg developed the (µ+1) evolution

strategy where  [12]. This variation has  parents and produces one off-

spring from these parents. Due to the +-selection, one parent (usually the par-

ent with the lowest fitness value ) is replaced by the offspring when at least

one of the parent individuals has a lower fitness value than the offspring. If

mut mutx°mut
σ

=

σ' mut
σ
σ( ) mutσ σ( )

σ c⁄  , if p 1 5⁄>
σ c⋅  , if p 1 5⁄<
σ  , if p 1 5⁄=






= = =

c 0.817=

c

p

x

x'i xi x

x'i xi N 0 σ',( )+=

Ψ
+ Ψ

p 1 5⁄>

p 1 5⁄<

mutσ

µ 1> µ

Ψ



one compares this method to the extended simplex method, then one realizes

that both methods operate according to the principle of “throw the worst point

out”. Rechenberg did not find a satisfactory extension of his “1/5 success rule”

for the mutation operation, and therefore only the recombination operation

will be introduced in this section. A combination of mutation and recombina-

tion operations in connection with a high quality control of the strategy param-

eters can be found in the following section. The following algorithm

represents an implementation of such a strategy.

1 t:=0;

2 initialize ;

3 evaluate ;

4 while termination_criteria  not fulfilled 

5 ;

6 evaluate ;

7  ;

8 t:=t+1;

9 end 

The recombination operation (line 5) creates one offspring from  parent

individuals. This is done by applying the recombination operations (18.14) to

(18.17). The selection operation  selects the best  from the popula-

tion  which contains  individuals. The discussion of the

(µ+1) evolution strategy ends here, as it has only served to present the inter-

mediate step between the (1+1)- and the (µ,λ) evolution strategies.

18.3.5 The (µ,λ) Evolution Strategy

An individual  consists of the components ,  and .The start popula-

tion  is initialized by assigning random vectors from the search space to

the object component ,  to the strategy component  and

 to the strategy component  (line 2). The evaluation of an indi-

vidual is done through the evaluation of the object component  (lines 4

and 9). The recombination operation (line 6) is carried out  times in order to

produce  offspring from  parents (see Equation (18.13)). All of the recom-

bination types given in Equation (18.14) through Equation (18.17) may also

be applied. Schwefel recommends a global intermediate strategy for the strat-

egy components and a discrete recombination for the object components [11].

This recommendation should be reevaluated according to the specific applica-

tion, however. A general statement as to which recombination type is suited to

which component does not exist. After producing  offspring through the

P t( ): x1 … xµ, ,{ }=

Ψ P t( )( ) Ψ x1( ) … Ψ xµ( ), ,( )=

T P t( )( )
x' rec P t( )( )=

Ψ x'( )
P t 1+( ): sel

µ 1+
µ x'{ } P t( )∪( )=

µ

sel
µ 1+
µ µ

x'{ } P t( )∪( ) µ 1+

I x σ α
P 0( )

x 1 … 1, ,( )T σ
0 … 0, ,( )T α

Ψ x( )
λ

λ µ

λ



recombination, the offspring are mutated according to (18.7). Mutations car-

ried out according to Equation (18.8) through Equation (18.12) can occur

depending on the complexity of the strategy components. The number of indi-

viduals in a population is not changed by the mutation, so that the selection

operation (line 10) selects  individuals from  individuals. These  indi-

viduals will become the parent individuals in the next generation. The follow-

ing algorithm represents an implementation of such a strategy.

1 t:=0;

2 initialize ;

3 // where  for all /

/

4 evaluate ;

5 while termination_criteria  not fulfilled

6 ; 

7 ; 

8 ;

9 evaluate ;

10 ; 

11 ;

12 end 

The (µ,λ) evolution strategy is the only strategy of those presented in this

paper in which one is able to comprehensively adapt the strategy parameters

of the optimization problem, and therefore adapt the strategy to the topology

of the optimization problem. The basis for this is the ratio of the number of

elements contained in the strategy components  and  to the number of par-

ent individuals  and offspring . In order to be able to adapt the strategy

components, at least  offspring should be produced per genera-

tion. One problem is the quadratic growth of the number of orientation angles

 with  for optimization problems of higher dimensions.

This fact has lead to the exclusion of the use of the orientation angles for opti-

mization problems with approximately ten dimensions or more. For these opti-

mization problems, the only adaptation carried out is the adaptation using

various step sizes.

18.4 IMAGE PROCESSING APPLICATIONS

The authors have shown that the use of single methods from the field of com-

putational intelligence, as well as the use of combinations of methods, can

lead to powerful applications. Examples can be found for the design of com-

posite materials [18, 19], the optimization of fuzzy rule-based systems [20] -

µ λ µ

P t( ): I 1 t( ) …, I µ t( ){ , }=

I i IR
n

IR
s× π– π[ , ]×

α
∈ i 1 … µ, ,( )=

Ψ P t( )( ) Ψ x1 t( )( ) … Ψ xµ t( )( ), ,( )=

T P t( )( )
k 1 …, λ{ , }∈( ):I’k t( ): rec P t( )( )=∀
k 1 …, λ{ , }∈( ):I’’k t( ): mut I’k t( )( )=∀

P’’ t( ): I’’1 t( ) …, I’’λ t( ){ , }=

Ψ P’’ t( )( ) Ψ x’’
1

t( )( ) … Ψ x’’λ t( )( ), ,( )=

P t 1+( ): selµ
λ

P’’ t( )( )=

t: t 1+=

σ α
µ λ

s a+( ) 10⁄

αi i n n 1–( ) 2⁄=



[22], or the combined application of neural networks, evolution strategies, and

fuzzy logic [23] - [25]. The following two examples are image processing

applications, in which the combined use of evolution strategies and fuzzy

logic allows a powerful extension of the image processing operators [26, 27].

18.4.1 Generating Fuzzy Sets for Linguistic Color Processing

This section describes how fuzzy based color processing can benefit from

optimization techniques. The example is part of mechanical engineering appli-

cation, in which the quality of welding spots has to be determined [27] - [30].

18.4.1.1 Resistance Spot Welding

Resistance spot welding is a welding process that uses the inherent resis-

tance of metal workpieces to join two sheets of metal by the flow of electrical

current. Typical areas are the automotive, aerospace, and engineering industry.

Resistance spot welding can easily be automated and in most cases only assis-

tant helpers or robots are needed to supply the material. This fact has lead to

the economical success of resistant spot welding as well as to the need for

quality testing systems. Most of the quality testing systems have to destroy the

welding joint in order to obtain quality measures like longitudinal and trans-

verse tensile strength, bend strength, or hardness. Microscopic and macro-

scopic examination of the joint also require destructive operations.

Nondestructive tests often need large and expensive equipment, like gamma or

X-ray tubes, or are too sensitive to be used directly at the welding machine,

like most ultrasonic sensors [31].

Human experts are able to check the quality of a welding spots using opti-

cal criteria. Color is one of the most important criteria. Typical areas that carry

quality information are a blue or red inner and outer spot, and the impact zone

with its color. Standard techniques of image processing are able to detect these

different areas in the images. Figure 18.7 shows two examples, one for good

quality and one for poor quality [27]. 

Figure 18.7: Example of a Good (Left) and Poor (Right) Welding Spot.



It can be seen that color carries a lot of information, but processing of color

information is a complex task. One approach is the modeling of color informa-

tion using sophisticated fuzzy sets to hold linguistic color names [27]. 

18.4.1.2 Linguistic Color Processing

Many color representations are based on technical demands. Examples are

the red, green, and blue division of colors for televisions or the cyan, magenta,

and yellow division for the printing media. These two representations reflect

the additive and subtractive mixing of a few base colors to obtain a large set of

displayable or printable colors. Technical representations are suitable for dis-

playing colors, but fail if a deeper understanding of color is needed.

Human description of colors is not based on the additive or subtractive

mixing of base colors [27, 32]. It is more oriented by characteristics like hue,

brightness or lightness. Apart from technical color models, another class of

color models exists that fulfills these human demands.

The HSI-model is well suited for the linguistic processing of color because

colors that are similar for humans are grouped together and there is a clear dis-

tinction of colors and grays [33] - [35]. The 3-dimensional model can be easily

reduced to a 2-dimensional one, by simply dropping the intensity coordinate

when the pure and light colors are important, or by dropping the saturation

coordinate when pure and dark colors are important. These operations result in

the HS- and HI-sub models that are used throughout approach. 

A fuzzy set over the HS-color model is defined by eight points. Each point

contains two components to represent the angle (hue) and the radius (intensity

or saturation). This results in an extension of the polar coordinate system of

the HS-color space towards a cylindrical coordinate system. Each point repre-

sents one corner of the fuzzy set. This shape is chosen to reduce the computa-

tional demands and to accelerate computation time. A typical shape of such a

fuzzy set is shown in Figure 18.8 [27]:

Figure 18.8: Fuzzy Set for Linguistic Color Processing.



If all significant colors are labelled, one can build a fuzzy rule system that

allows a linguistic oriented way of expressing quality assessments. Below is

an extract of such a rule system [22].

IF COLOR_OF_INNER_SPOT IS BLUE 

THEN QUALITY IS GOOD

IF COLOR_OF_OUTER_SPOT IS LIGHT_BLUE

THEN QUALITY IS GOOD

IF COLOR_OF_IMPACT_ZONEIS DARK_RED

THEN QUALITY IS GOOD

IF COLOR_OF_INNER_SPOT IS LIGHT_RED

THEN QUALITY IS POOR

IF COLOR_OF_OUTER_SPOT IS BLUE

THEN QUALITY IS POOR

IF COLOR_OF_OUTER_SPOT IS RED

THEN QUALITY IS POOR

IF COLOR_OF_IMPACT_ZONEIS LIGHT_RED

THEN QUALITY IS POOR

This set of rules can be evaluated using standard fuzzy techniques in com-

bination with the described methods to calculate the membership values of

colors. Any fuzzy system that allows addition of new functions for the calcula-

tion of membership values can be extended to benefit from fuzzy color pro-

cessing. The colors that exist in a sample image, as well as their frequency, can

be expressed using a frequency distribution. Two examples of frequency dis-

tributions are shown in Figures 18.8 and 18.10 [36, 37]:

Figure 18.9: Typical Frequency Distribution of a Good Sample Point.



Figure 18.10: Typical Frequency Distribution of a Poor Sample Point.

To generate proper fuzzy sets an evolution strategy can be used. The object

parameters are the definition points of the fuzzy set. The whole object vector

consists of eight two-dimensional coordinates, yielding a 16-figure vector.

The dimension is average so different step sizes for each figure in the vector

can be used. The fitness function calculates the difference of the frequency

distribution and the surface of the optimized fuzzy set. The smaller the differ-

ence, the better is the fitness value. As a result, fuzzy sets are created which

are a good approximation of the sampled color frequency, as shown in Figures

18.11 and 18.12.

Figure 18.11: Dark Color as Fuzzy Set for Linguistic Color Processing.



Figure 18.12: Light Color as Fuzzy Set for Linguistic Color Processing.

18.4.2 Developing Specialized Digital Filters

A common task during image processing is the enhancement of certain

image features. This task is performed if a direct analyzing of the image is not

possible (arrow in Figure 18.13). Well known are the techniques for edge

detection, or the use of digital filters to enhance vertical or horizontal lines

[38, 39]. These filters yield only poor results, however, if more complex fea-

tures have to be detected. The following paragraph shows how digital filters in

combination with evolution strategies can be used to generate image enhance-

ment methods that are able to detect circular features.

Figure 18.13: Image Processing.



18.4.2.1 Digital Image Filters

Digital image filters use a matrix of filter coefficients that is applied to

each pixel in the input picture. The pixel and its neighbors are used to calcu-

late the value of the output pixel. The whole process is described by the coeffi-

cients of the filter matrix.

Figure 18.14: Digital Filter.

Some matrix filters are well known, the Frei/Chen-, Sobel-, Prewitt-, or

Kirsch filter [38, 39]. The result of these filters applied to a welding spot

image is shown in the next figures.

Figure 18.15: Frei/Chen Digital Filter.



Figure 18.16: Frei/Chen Digital Filter.

Figure 18.17: Prewitt Digital Filter.

Figure 18.18: Kirsch Digital Filter.

It can be seen that all four filters are not able to enhance the circular struc-



ture, that is necessary for the image description. Due to the fact, that the filter

matrix can be expressed as a real valued vector, the use of evolution strategies

to optimize the filter matrix is possible and allows a faster optimization com-

pared to other types of evolutionary algorithms, e. g. genetic algorithms.

18.4.2.2 Optimization of Digital Filters

The matrix can be rearranged to build a vector, as shown in Figure 18.19.

The low dimensionality allows the use of all types of self adaptation and evo-

lution strategy variants. The fitness function compares the filtered image with

a control image, in which the relevant features are enhanced by hand.

Figure 18.19: Rearranging a Matrix to a Vector.

After the optimization a new filter matrix is created that enhances circular

features as shown in Figure 18.20. The values for the amtrix elements after the

optimization took place are :(7.77, -11.31, 0.13, -8.32, 10.77, 3.52, -6.11,

14.41, -5.35).

18.5 CONCLUSION

Image processing techniques can be optimized and enhanced in many ways.

This chapter demonstrates the use of specialized digital filters and the use of

fuzzy logic for linguistic oriented techniques. The use of fuzzy logic is a pow-

erful extension and allows the use of human-like feature descriptions, as

shown for linguistic color processing. Fuzzy sets that are used can be gener-

ated and optimized using evolutionary concepts, in this case the use of evolu-

tion strategies. 

If the numerical values of some image processing operators can be altered,

evolutionary concepts can be used to find optimal values for these operators.

The example shown uses this technique to generate high specialized digital fil-

f

f

f

f

ff

f

f f

( )f , f , f , f , f , f f , f , f,11 12 13 21 22 23 31 32 33

1 24444444 34444444

(

)

f , f , f ,

f , f , f

f , f , f

,

11 12 13

21 22 23

31 32 33



ters for feature detection in images. 

Figure 18.20: Optimized Filter for Detection of Circular Features.

REFERENCES

1. Bronstein, I. N., Taschenbuch der Mathematik (handbook of mathemat-

ics), ergänzende Kapitel (additional chapters), 6. edition, BSB Teubner,

Leipzig, 1990.

2. Vanderplaats, G. N., Numerical Optimization Techniques for Engineer-

ing Design, McGraw-Hill, New York, 1984.

3. Brandt, S., Datenanalyse, 3. edition, BI Wissenschaftsverlag, Man-

nheim, 1992.

4. Nelder, J. A. and Mead, R., A Simplex Method for Function Minimiza-

tion, Computer, 6, pp. 308 - 313, 1965.

5. Spendley, W., Hext, G. R., and Himsworth, F. R., Sequential Application

of Simplex Design in Optimization and Evolutionary Operation, Techno-

metrics, 4, 1962.

6. Box, G. E. P., Evolutionary Operation - A Method for Increasing Indus-

trial Productivity, Appl. Stat., 6, 1957.

7. DeJong, K., An Analysis of the Behavior of a Class of Genetic Adaption

Systems, Ph.D. Thesis, University of Michigan, MI, 1975.

8. Fogel, L. J., Owens, A. J., and Walsh, M. J., Artificial Intelligence

Through Simulated Evolution, John Wiley & Sons, New York, 1966.

9. Goldberg, D. E., Genetic Algorithms in Search, Optimization and

Machine Learning, Addison-Wesley, Reading, PA, 1989.

10. Holland, J. H., Adaption in Natural and Artificial Systems, University of

Michigan Press, Ann Arbor, 1975.

11. Schwefel, H.-P., Evolution and Optimum Seeking, John Wiley & Sons,

New York, 1994.



12. Rechenberg, I., Cybernetic Solution Path of an Experimental Problem,

Royal Aircraft Establishment, Farnborough, 1965.

13. Rechenberg, I., Evolutionsstrategie: Optimierung technischer Systeme

nach Prinzipien der biologischen Evolution, Frommann-Holzboog,

Stuttgart, 1973.

14. Darwin, C., On the Origin of Species by Means of Natural Selection,

1859.

15. Bronstein, I. N., Taschenbuch der Mathematik, 24. edition, BSB Teub-

ner, Leipzig, 1989.

16. Schöneburg, E., and Heinzmann, F. and Feddersen, S., Genetische Algo-

rithmen und Evolutionsstrategien, Addison-Wesley, Bonn, 1995.

17. Bäck, T. and Hoffmeister, F., Extended Selection Mechanisms in Genetic

Algorithms, in Belew, R. K. and Booker, L. B., Proc. of the Fourth Int.

Conf. on Genetic Algorithms and their Applic., Morgan Kaufmann, San

Mateo, CA, 1991.

18. Hildebrand, L. and Fathi, M., Multi Agent Based Design of Composite

Materials, in: Proc. Int. Conf. on Composite Eng. ICCE/6 '99, Hawaii,

USA, pp. 213 - 215, 1999. 

19. Fathi, M. and Hildebrand, L., Intelligent Design Methods for Smart

Materials, in: Proc. IPMM’99 Int. Conf. on Intell. Proc. and Manufactur-

ing of Materials, Honolulu, Hawaii, pp. 1011 - 1015, 1999.

20. Fathi, M. and Hildebrand, L., Intelligent Methods for the Optimization of

Composite Materials, in: Proc. IPMM97, Australasia-Pacific Forum on

Intell. Proc. & Manufacturing of Materials, Gold Coast, Australia, 1997.

21. Fathi, M. and Hildebrand, L., Evolution Strategies for the Optimization

of Fuzzy Rules, Proc. of the “IPMU”, Paris, 1994.

22. Fathi, M. and Hildebrand, L., The Application of Evolution Strategies to

the Problem of Parameter Optimization in Fuzzy Rulebased System,

Proc. of the IEEE Int. Conf. on Evolutionary Computing, Perth, 1995.

23. Hildebrand, L., Jäger, M. and Fathi, M., Learning of Linguistic and

Numerical Knowledge - Application of Neural Networks and Evolution-

ary Algorithms, in: Proc. Eng. of Intell. Syst. EIS’98, La Laguna, Spain,

1998. 

24. Hildebrand, L. and Fathi, M., Evolutionary Design of Screw Rotor Pro-

files, in: Proc. Int. Conf. on Composite Eng. ICCE/5 '98, Las Vegas,

1998. 

25. Fathi, M. and Hildebrand, L., Complex System Analysis Using CI-Meth-

ods, in: Proc. AeroSense - SPIE 13th Ann. Int. Symp. on Areospace/

Defense Sensing, Simulation, and Controls, Orlando, FL, 1999. 

26. Hildebrand, L. and Fathi, M., Soft Computing as a Methodology for

Color Processing, in: Proc. Eusflat - Estylf Joint Conf., Palma de Mal-

lorca, Spain, 1999.



27. Hildebrand, L. and Reusch, B., Fuzzy Color Processing, in: Kerre, E.

and Nachtegael, M., (Ed.) Fuzzy Techniques in Image Processing,

Springer-Verlag, Heidelberg, Germany, pp. 267 - 286, 2000.

28. Hildebrand, L. and Fathi, M., Probabilistic Optimization - Evolution

Strategies, in Real World Applications of Intelligent Technologies, in:

National Institute for Reasearch and Development in Microtechnologies,

Bucharest, Romania, 1997. 

29. Hildebrand, L. and Fathi, M., Vision Systems for the Inspection of Resis-

tance Welding Joints, in: Proc. Electron. Imaging 2000, IS&T/SPIE 12th

Inter. Symp., San Jose, CA, 2000.

30. Hildebrand, L. and Fathi, M., Detection of 3-Dimensional Image Fea-

tures Using a Single Camera, in: Proc. Inter. Forum on Multimedia and

Image Process., World Automation Congress, Hawaii, 2000.

31. Waschkies, E., Process-Integrated Resistance Spot Welding Testing

Using Ultrasonic Techniques, Welding in the World 39, No. 6, 1997.

32. Silverstein, L. D., Human Factors for Color CRT Displays, Soc. for Inf.

Displays, 1982.

33. Teichner, W. H., Color and Information Coding, Proc. of the Soc. for Inf.

Displays, Vol. 20, 1970.

34. Watt, A. H., Fundamentals of Three-Dimensional Computer Graphics,

Addison-Wesley, Wokingham, England, 1989.

35. Wyszecki, G. and Siles, W. S., Color Science, 2nd Edition, John Wiley.

New York, 1982.

36. Hildebrand, L. and Fathi, M., Linguistic Color Processing for Human-

Like Vision Systems, in: Proc. Electron. Imaging 2000, IS&T/SPIE 12th

Int. Symp., San Jose, CA, 2000.

37. Reusch, B., and Fathi, M. and Hildebrand, L., Fuzzy Color Processing

for Quality Improvement, in: Proc. Int. Forum on Multimedia and Image

Process., World Automation Congress, Anchorage, Alaska, pp. 841 -

848,1998. 

38. Rosenfeld, A. and Kak, A. C., Digital Picture Processing, Vol. 1 and 2,

2nd Edition, Academic Press, San Diego, CA, 1982.

39. Foley, J., VanDam, A., and Feiner, S., Computer Graphics: Principles

and Practice, 2nd Edition, Addison-Wesley, Reading, MA, 1990.



19 
 

EVOLUTIONARY FUZZY 

SYSTEMS  

 Mohammad -R. Akbarzadeh-T. and A. -H. Meghdadi  

 

19.1 INTRODUCTION 
 
Fuzzy logic has been described as a practical, robust, economical, and intelligent 

alternative for modeling and control of complex systems. This long list of 

superior traits, however, can only be realized if quality expert knowledge exists 

and is made available to the control engineer. This is while, in conventional 

applications of fuzzy logic, there is not yet a systematic way of acquiring such 

expert knowledge. Quality expert knowledge often does not exist, for example, 

in remote environments that humans have not experienced such as the surface of 

Mars or the hazardous environment of an underground nuclear waste storage 

tank. Even when such expert knowledge does exist, it is not clear whether the 

expert would be able to objectively present his knowledge in terms of a 

constrained set of rules and membership functions, and whether such expertise 

would indeed be optimal. In solving this paradox, fuzzy logic has been 

complemented by various strategies such as neural networks, fuzzy clustering, 

gradient based methods, and evolutionary optimization algorithms.  

Evolutionary optimization algorithms have been particularly appealing 

various scientific circles, primarily because such algorithms allow autonomous 

adaptation/optimization of fuzzy systems without human intervention, are not 

easily trapped in locally optimal solutions, allow parallel exploitation of an 

optimization parameter space, and do not require gradient evaluation of the 

objective function. Evolutionary fuzzy systems are hybrid fuzzy systems in 

which evolutionary optimization algorithms are used to optimize/adapt fuzzy 

expert knowledge. The evolutionary optimization algorithms operate by 

representing the optimization parameters via a gene-like structure and 

subsequently utilizing the basic mechanisms of Darwinian natural selection to 

find a population of superior parameters.  

There are various approaches to evolutionary optimization algorithms 

including evolution strategies, evolutionary programming, genetic programming 

and genetic algorithms. These various algorithms are similar in their basic 

concepts of evolution and differ mainly in their approach to parameter 

representation [1]. Genetic algorithms (GA), in particular, is an evolutionary 

method which has performed well in noisy, nonlinear, and uncertain 

optimization landscapes typical of fuzzy systems. In this chapter, we will 

explore further why and how GA is used for optimization of fuzzy systems and, 

in particular, fuzzy controllers. Various issues such as determining the set of 

parameters, designing the transformation function for representing the parameter 



 

space in genetic domain, creating the initial population, and determining the 

fitness function will be discussed. Finally, application of GA will be illustrated 

in optimizing fuzzy control of a DC motor.  

 

19.1.1 The Problem Statement and Design Outline 
 

Based on the universal approximation theorem [2], we know that, for every 

continuous and nonlinear/linear function g , a fuzzy system f exists which can 

approximate g to any desirable degree of accuracy. In other words, if there exists 

a desirable nonlinear function g which meets a given system�s performance 

criteria, there also exists a fuzzy function f closely approximating g . Fuzzy 

controller design can therefore be viewed as a complex optimization problem in 

the search space of all possible nonlinear controllers. The type and 

characteristics of this search space determines the best optimization method to 

automate this design process. These characteristics include a large parameter 

space, a non-differentiable objective function involving uncertainty and noise, 

and, finally, multi modality and deceptiveness, i.e., similar sets of membership 

functions and rule sets may perform quite differently.  

Genetic algorithms are particularly suitable for such optimization and hence 

automating the above design process. As we will see later in this chapter, 

genetic algorithms can easily encode a large number of parameters, are based on 

function evaluation as compared with gradient evaluation, always keep and 

combine a population of potential solutions in parallel and hence can easily 

avoid local optima, and, due to their guided evolutionary mechanism, are more 

computationally efficient when compared with random search [3].   

In many ways, GA can be likened to a piece of sculpting wax, its designer to 

a sculptor, and the whole design process of a GA to an art. Like a sculptor, a GA 

designer has great many choices which, when combined, create a unique GA. As 

a sculptor patiently forms the base, the body, the hands, and finally the head of 

his creation, the GA designer has to complete several stages of design before a 

genetic algorithm is completely defined and capable of optimizing a particular 

system. 

As illustrated in Figure 19.1, the first step involves identifying the 

parameters that need to be optimized. Reducing the number of free parameters 

usually reduces the complexity of the optimization task, thereby achieving a 

faster convergence of the optimization algorithm. However, genetic algorithms 

can typically handle a large number of parameters efficiently. Also, by 

constricting too many of the parameters, we might just be eliminating the 

optimal solution set from the GA search landscape. So a careful trade off exists 

between complexity of the optimization task and convergence of the genetic 

algorithm. 

Genetic algorithms operate on populations of individuals that are usually 

binary strings.  Since in most applications a phenotype (a solution in problem 

parameter space) consists of real numbers, an encoding function is required to 

map the phenotype to its representation in GA space (genotype). Step II is, 

therefore, to determine this encoding (interpretation) function. In designing this 



 

interpretation function, a higher number of bits per real number produces a 

higher degree of accuracy in the representation, but also a longer GA string 

(increased complexity). Additionally, an interpretation function should be 

designed to minimize competing conventions and deception. The problem of 

competing conventions arises when two or more completely different genotypes 

(individuals in GA domain) represent one phenotype (an individual in problem 

domain). In such cases, crossover of such individuals is not likely to yield 

improved individuals. Due to a high number of parameters and their interaction 

in fuzzy logic systems, the interpretation function and design of fitness function 

can significantly affect performance of a genetic algorithm. 

Step III is creation of the initial population, or the starting points of the 

optimization process. As with any optimization task, GA can be expected to 

perform better when provided with a fitter initial population. As we will see, 

however, this issue is not as trivial as it may seem. In fact, there are occasions 

when a GA performs poorly even with a highly fit initial population. 

Step IV is defining the fitness function (objective function). Since the theme 

of GA is the �survival of the fittest,� GA is inherently an optimization algorithm 

(as compared with a minimization algorithm).  So, the improved individuals in a 

given population are assigned higher fitness values. Every candidate solution for 

a problem is evaluated to determine the degree of fitness for that solution. Since 

the type of the fitness function determines the shape of the search space and 

since there is a great degree of freedom in choosing a fitness function, design of 

fitness function has a large impact on the performance of the algorithm. 

Step I. What are the free 

parameters of the system? 

Step II. What is the 

interpretation function? 

Step III. What is the initial 

population? 

Step IV. What are the critical 

measures of performance and how 

are they integrated to form a fitness 

function? 

Figure 19.1: The Four Stages of Design.



 

As we will see in this chapter, the inherent flexibility of the evolution based 

optimization algorithms and the large number of the free parameters in a fuzzy 

system have created a large diversity and variety in how these two 

complementary approaches are coupled. Different methods vary in their answers 

to the above questions. For the rest of this chapter, we will use GA as the 

optimization algorithm and name the resulting hybrid system as GA-fuzzy 

system. GA-fuzzy systems are in fact the most common evolution based fuzzy 

system. 

 

19.2 FREE PARAMETERS 

 

Fuzzy expert knowledge can be divided into two basic components: Domain 

knowledge and Meta Knowledge. The Domain knowledge is generally the 

conscious operating knowledge about a particular system such as the 

membership functions and the fuzzy rule set. The Meta knowledge is the 

unconscious knowledge that is also needed to completely define a fuzzy system 

such as the mechanism of executing the fuzzy rules, methods of implication, rule 

aggregation, and defuzzification.   

Most of the existing methods in evolutionary fuzzy systems attempt to 

optimize parameters of the domain knowledge only (namely membership 

functions and rule set) while ignoring the effect of meta knowledge. 

Consequently, there are 4 basic methods of optimization as follows 

1)  Automatic optimization of membership functions while there is a 

fixed and known rule set; 

2) Automatic selection of the rule set with fixed membership functions; 

3) Optimization of both the membership functions and rule set in two 

steps. First selecting the optimal rule set with fixed known 

membership functions and then tuning the membership functions with 

the resulting rule set; and  

4)  Simultaneous optimization of fuzzy rule set and membership 

functions. 

Note that the number of membership functions or rules can also be optimized 

in the algorithm. There may be various reasons for a method to be selected. 

Some of those advantages and disadvantage are mentioned below: 

1) Since the rule set and membership functions are codependent, they 

should be defined simultaneously. This can lead to more optimal 

solutions. [4][5]; 

2) Since the performance of a fuzzy system is more dependent on fuzzy 

rules rather than membership functions, fine tuning of the fuzzy system 

is better possible by tuning of membership functions. So it seems that it 

is better first to select the optimal rule set (coarse tuning) and then tune 

the membership functions (third method); 

3) Even though various methods exist to encode both the rule base and 

membership functions, such encoding can have several potential 

difficulties. In addition to the level of complexity and large number of 



 

optimization parameters, the problem of competing conventions may 

arise and the landscape may unnecessarily become multi-modal.  
 

19.2.1 Competing Conventions 
 

Competing conventions means that there are different chromosomes 

representing the same exact nonlinear function in the evaluation space. In other 

words, there is more than one string in GA domain (genotype), which 

corresponds to only one solution in problem domain (phenotype). To illustrate 

this, consider the following example from Akbarzadeh[3].  
 

Example 19.1: 

Consider two fuzzy rules related to temperature control of a room: 

• Individual A says: �If temperature is hot, turn on the cooler� 

• Individual B says: �If temperature is cold, turn on the cooler� 

Under normal circumstances, these two rules are expected to be 

contradictory. If evaluated using same membership functions, one will result in 

proper control compensation and the other will result in an uncomfortably cold 

room. However, consider if parameters defining the membership functions for 

the fuzzy sets cold and hot temperatures are interchanged for individual B, 

which may happen if both rules and membership functions are optimized 

simultaneously. Then both of these rules are essentially the same nonlinear 

function with same control action for same input variables. 

As will be illustrated in the example, even though the GA might produce two 

highly fit individuals (with two competing conventions), the genetic operators, 

such as crossover, will not yield fitter individuals if both membership functions 

and rules are to be evaluated under the same string structure. Consider the 

following two individuals: 

• Individual A says: �If temperature is hot, turn on the cooler� 

• Individual B says: �If temperature is cold, turn on the heater� 

Both of these individuals are expected to perform well in an evaluation. Now 

let us perform a crossover operator by interchanging part of the genetic code 

corresponding to the output as follows: 

• Individual A says: �If temperature is hot, turn on the heater� 

• Individual B says: �If temperature is cold, turn on the cooler� 

Obviously, these two individuals will not fare well in a performance 

evaluation. As is illustrated here, the design of the transformation function can 

significantly alter the behavior of GA. 

 

19.3 DESIGN OF INTERPRETATION (ENCODING) FUNCTION 

 

In this section, we will explore various possible ways that genetic algorithms 

can optimize membership functions and rules of a fuzzy expert system. 



 

19.3.1 Membership Functions (MF) 

 

Fuzzy partitioning is the process of partitioning a variable�s universe of 

discourse [u-,u+] by defining fuzzy sets. Figure 19.2 shows a fuzzy partitioning 

with five fuzzy sets. 

 

 One may choose to partition a fuzzy variable�s universe of discourse with 

any desirable number of fuzzy sets. Membership functions can be all or some 

part of a genetic representation (chromosome) of the system. Their genetic 

representation is named MFC (membership function chromosome). 

Every fuzzy set in a fuzzy partitioning is defined by its type and shape as 

shown below; 

• Type of the membership functions: triangular, trapezoidal, gaussian, ...  

• Shape of the membership function: important points and parameters of 

a membership function such as left base, center, base width, etc. 

Thus the encoding problem is divided into two parts: 

 

1. Selection of free parameters: 

Selecting free parameters is in fact a compromise between more optimal 

solutions and less complex spaces. Higher numbers of free parameters may 

yield a higher fit final solution, but also yield a more complex landscape with 

higher multimodality and more difficulty in finding the optimal parameters in 

the landscape. Consequently, the GA designer has to decide which parameters 

to fix and which parameters to tune. For example, we can assume only 

triangular membership functions with fixed base width and tune the center of 

the membership functions. Triangular membership functions are widely used in 

evolutionary fuzzy systems. So we discuss them separately. 

 

 

Figure19.2: Fuzzy Partitioning of a Variable�s Universe of  

Discourse by Fuzzy Sets. 

u+ u- 

1.
0 



 

2.  Encoding of Chosen Parameters: 

Several methods exist for encoding MF parameters; among them, binary 

string encoding is the most common.   

 

19.3.1.1 Triangular Membership Functions 

There are different types of coding methods for triangular membership 

functions as discussed below, 

1. In this method a triangular membership function is defined by its three 

parameters: left base, center, and right base. A binary string MFC is 

developed as shown in the figure below where each parameter is 

encoded as a binary string. 

2. Symmetric triangular membership functions are assumed here; thus two 

parameters are sufficient to define a membership function, left base 

(starting point) and right base (ending point). 

3.  In this method, triangular membership functions are symmetric and have 

fixed centers, only their base widths are tuned. Thus for every 

membership function, there is only one encoded parameter. 

 

Figure 19.5: Genetic Representation of Symmetric Triangular 

Membership Function with Fixed Center. 

Center 

Base Width 

001101Base Width  

Figure 19.3: Binary Encoded Triangular Membership  

Function Chromosome. 

Left Base Right Base Center 

00011   00100    00101 

Left base     Center     Right base   

Figure 19.4: Symmetric Triangular Membership Function and Its MFC. 

Left Base Right Base 

00011 00101

 Left base     Right base   



 

4. In this method, triangular membership functions with fixed base width are 

assumed and only their centers are encoded and tuned. Thus there is only 

one free parameter. 

5. In this method, symmetric triangular membership functions are assumed 

while their centers and widths are encoded and tuned, yielding two free 

parameters. 

 

 

 

 

 

 

 

 

 

 

 

Here, the MFs are assumed to be normalized, i.e.,  y-axis is fixed. 

 

19.3.1.2 Non-triangular Membership Functions 

To use other types of membership functions, another parameter in an MFC 

is needed in order to completely define the membership functions. This 

coding,  for  example,  includes an  index  referring  to  the  available  types  of  

 

 

 

 

 

 

 

 

 

 

 

Figure 19.6: Genetic Representation of Triangular Membership Functions 

with Fixed Base Width. 

000101Center

Center

Figure 19.7: Genetic Representation of Symmetric Triangular 

Membership Functions by Its Center and Base Width. 

Center 

Base Width Base Width  

000101 

Center  

001110 

010 00011      00101  

Type Starting 

Point 

Ending 

Point 

001 Triangular membership 

function 

010 Trapezoidal membership 

function  

011 Gaussian membership 

function 

100 Sigmoidal membership 

function 

� � 

Starting Point Ending Point 

Figure 19.8: Non-triangular Membership Function. 



 

membership functions. To simplify the problem we may use only symmetric 

membership functions and thus encode every membership function with three 

parameters, the type of the function, starting point and ending point, with a 

fixed ratio of points in between starting and ending points.  

 

19.3.1.3 General Method of MF Encoding: 

To define and encode any unknown membership function, a method 

presented in [6] is presented here. In this method all the membership functions 

in a domain of a variable are encoded together in a matrix form. Every column 

of this matrix is a gene and is associated with a real value x in the domain X.  

The gene is a vector having n elements, where n is the number of the 

membership functions in that partition. Every element is the membership value 

of all membership functions at x. In practice, a finite number of the points in 

the partition are considered and thus this method is a discrete representation of 

the membership functions. Thus, if p points in the domain are considered and 

there are n membership functions, n*p parameters are encoded. The figure 

below is a genetic representation of the domain where a and b are the starting 

and ending points of the domain. Although this method is very general and can 

be implemented for every membership function in the domain, it has the 

disadvantage that the number of the encoded parameters can be very large and 

thus enlarge the search space. 

 
 

 

 

 

 

 

 

 

 

 

 

19.3.2 Rule Encoding 

 

Rule set encoding can be more complicated than membership function 

encoding. An important problem is the simultaneous cooperation and 

competition of the fuzzy rules in a fuzzy rule set. This means that, although each 

rule is in competition with others for being selected in the rule set, the impact of 

each rule in the system is dependent on other rules that concurrently exist in the 

rule set. For example, two fuzzy rules may be highly fitted if they both exist in 

the rule set while neither of the two rules may be desirable separately. Rule set 

optimization is widely used in fuzzy classification problems, which can be 

generally categorized as either the Michigan approach or the Pittsburgh 

approach.  

µ1(b) 

µn(b) 

µ1(a) 

µn(a) 

Chromosome = 

First Gene     � Last Gene 

Figure 19.9: Genetic Representation of a Fuzzy Partitioning. 

a b x1 

x 

µ1(x1)

µ2(x1)



 

 

The Michigan approach: 

In this approach every individual in the GA is a fuzzy rule encoded as a 

string with fixed length. The GA operates on the individual rules and more fit 

rules are combined together via genetic operators to create the next population 

of rules. The fitness function is designed so as to show the fitness of one rule. 

The method was first introduced by Holland and Retain in 1983. The most 

important disadvantage of this method is the problem of competing convention. 

 

The Pittsburgh approach: 

In this approach, every individual in the GA is a fuzzy rule set encoded as a 

string with variable length. Fitness function, therefore, operates on the rule sets 

and higher fit rule sets are combined via genetic operators to produce rule sets 

with higher fitness. This method is more desirable because of the competing 

convention problem. This method was first developed in 1980 by Smith and 

named LS-1. For the rest of this chapter, we will use this approach. 

 

19.3.2.1 A Control System Problem Formulation: 

Consider a fuzzy system with n inputs and 1 output, referral to as multi input 

single output (MISO). Let i
th

 input have mi fuzzy sets as input membership 

functions and the only output variable to have p fuzzy sets as output 

membership functions. The MISO can be easily generalized to multi input multi 

output (MIMO).  

Thus we have R fuzzy rules where the maximum number of the rules in the 

system will be:  

 

 

R could be either a fixed or free number. Each rule is associated with a 

selection of the n-input membership functions and 1-output membership 

functions from the possible MFs. Thus parameters of the fuzzy rules are indices 

rather than real variables. The indices specify which membership functions are 

to be selected for the antecedent and consequent parts of the fuzzy rules.  

Now let us define the following for the MISO fuzzy system: 

xi : i
th 

input to the system. 

mi: the number of the fuzzy variables (membership functions) for the i
th

 input. 

y  : output of the system (single output). 

 

Controller 

Figure 19.10: MISO Control System. 

(19.1) ∏
=

=≤
n

i

imRR

1

max



 

IMF(i,j)=IMFij :  the membership function of the fuzzy variable of the i
th

 input 

in the j
th

 rule in a rule set. 

OMFj: the membership function of the output fuzzy variable in the j
th 

rule. 

n: the number of the inputs to the system. 

q: the number of the fuzzy variables of the output. 

R: the number of rules. 

And: 

ISET(i) : ordered set of the membership functions corresponding to fuzzy 

variables of the i
th

  input. 

ISET(i)={IMF(i,1),IMF(i,2), � , IMF(i,mi)} , i=1,�,n 

OSET: ordered set of the membership functions corresponding to fuzzy variables 

of the output. 

OSET={OMF (1), OMF (2)�OMF (q)} 

Thus fuzzy rule set of the system can be shown as below: 

Rule 1, Rule 2� Rule j�Rule R 

where the j
th

 rule can be represented as: 

If (x1 is IMF1j & x2 is IMF2j & � & xn is  IMFnj )  Then   y is OMFk 

where 

IMFij∈  ISET (i), OMFk ∈  OSET, and qk ≤≤1 , 

For the case of two-input, one-output system, the fuzzy rule set−also known 

as fuzzy associative memory (FAM)−can be shown graphically in a table every 

cell shows the output membership function of a fuzzy rule with known input 

membership functions.  

 

Example 19.2 

Referring to Figure 19.11, the fuzzy if-then rules of the rule set are 

 

If (x1 is IMF11 & x2 is IMF21)  then  y is OMF2 

If (x1 is IMF11 & x2 is IMF22)  then  y is OMF10 

If (x1 is IMF12 & x2 is IMF22) then  y is OMF7 
. 
. 
. 
 

 

 

 

 

 

 

 

 

Figure 19.11 A Sample Fuzzy Rule Set Table 

for m2=m1=4. 

  IMF11 IMF12 IMF13 IMF14 

IMF21 OMF2 OMF1 OMF13 OMF14 

IMF22 OMF10 OMF7 OMF9 OMF5 

IMF23 OMF3 OMF11 OMF8 OMF4 

IMF24 OMF16 OMF6 OMF12 OMF15 

(19.3) 

(19.4) 

(19.2) 



 

If R<Rmax, some of the cells in the table are don�t care and can be shown with a 

0 or * in the cell.  In the case of more input variables, the table can be extended 

to higher dimensional arrays. 

Regarding the above table, every fuzzy rule set is defined with Rmax free 

parameters, where Rmax is defined previously. These parameters are indices that 

represent an output membership function among q membership functions in 

OSET. We can use only indices of the membership functions and build a matrix 

of indices named P. 

 

 

 

 

 

 

 

 

 

 

 

 

P=[pkl]=[p(k,l)], pkl∈ Z, 0≤ pkl ≤ q 

k∈ [1,m2],l∈ [1,m1] 

Similarly, in the case of three inputs, we have a three dimensional array P such 

that: 

P=Array[pskl]=p(s,k,l) 

Pskl∈ Z ,0≤ pskl ≤ q 

s∈ [1,m3] ,  k∈ [1,m2] , l∈ [1,m1] 

 

Genetic Representation 

Having the indices array of the rule set, P, it is possible to use either string or 

array representation of the rule set. Naturally, in the case of nonstring 

representation, genetic operators should be modified so as to be useful for that 

representation. One of the simple array representations of the rule set is the 

matrix representation in two input systems. We will discuss the matrix 

representation, which has been introduced in Kinzel et al.[6]. 

 

a) String representation: 

String representation of the rule set table can be obtained in two steps: 

Step 1: encoding all the elements of matrix P (defined previously). Binary 

encoding is a common method to encode the parameters. S is the resulting 

matrix after encoding. 

Skl=Decimal_to_Binary(pkl) 

p15 p14 p13 p12 p11 

p25 p24 p23 p22 p21 

p35 p34 p33 p32 p31 

p45 p44 p43 p42 p41 

p55 p54 p53 p52 p51 

Figure 19.12: Two- Dimensional Array of 

Indices, P. 

(19.6) 

(19.7) 

(19.8) 

(19.5) 



 

S=[skl] ,    k∈ [1,m2],   l∈ [1,m1]                      (19.8) 

Step 2: Obtaining the string representation of the table using the rows of the S 

matrix as follows: 

Chromosome = s11 s12 s13�s1m1 s21 s22 s23�s2m1� � � sm21sm22 �sm2m1          (19.9)

Number of the bits in every chromosome will be 

KmN

n

i

i *)(

1

∏
=

=  

where K is the number of the bits in every element of S (skl), and is the greatest 

integer in the following inequality: 

)1(log2 +≥ qK  

where q is the number of the output fuzzy sets. 

The genetic operators in this type of representation can be the same as the 

standard genetic algorithms. 
 

b) Matrix representation: 

Because of the matrix nature of the rule set, a matrix representation seems to 

be more efficient. A matrix chromosome and a set of genetic operators are 

needed to operate on this chromosome. We will discuss the method presented in 

reference [6] for two input systems. Kinzel et al. used the previously defined 

array of indices as the chromosome (Figure 19.12 ). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 19.13: Point-Radius Crossover.  

p15 p14 p13 p12 p11 

p25 p24 p23 p22 p21 

p35 p34 p33 p32 p31 

p45 p44 p43 p42 p41 

p55 p54 p53 p52 p51 

 

q15 q14 q13 q12 q11 

q25 q24 q23 q22 q21 

q35 q34 q33 q32 q31 

q45 q44 q43 q42 q41 

q55 q54 q53 q52 q51 

 
Parents 

p15 p14 p13 p12 p11 

p25 p24 p23 q22 p21 

p35 p34 q33 q32 q31 

p45 p44 p43 q42 p41 

p55 p54 p53 p52 p51 

 

q15 q14 q13 q12 q11 

q25 q24 q23 p22 q21 

q35 q34 p33 p32 p31 

q45 q44 q43 p42 q41 

q55 q54 q53 q52 q51 

Offspring�s 

Crossover 

(19.10) 

(19.11) 



 

In this method, a Point-Radius crossover is used where each crossover is 

determined with a circle with known center and radius. The region in the table 

that is surrounded by the circle is exchanged with the similar region in the other 

chromosome (Figure 19.13). 

 

Example 19.3: 

Consider a two input system where the set of output membership functions is 

OSET={A, B, C, D, E}. Notice that it is not necessary to use integers for the 

indices. Here, every output fuzzy set is determined with an alphabet between A 

and E. Figure 19.13 shows two sample chromosomes and the crossover 

operation between them. 

Mutation in this method is simply the alternation of one index in the table 

with a different index in OSET. Figure 19.14 is an example of the mutation 

operator in the matrix representation. 

Note: Genetic programming (GP) also seems to be a good alternative to GA 

for optimization of fuzzy rules. This is because optimization of fuzzy rules has a 

symbolic nature as compared with optimization of numeric information (such as 

in membership functions). Here, we want to find the optimum arrangement of a 

few objects in a table just like making a puzzle.  

 

Rule Firing Strength 

Although it is common to consider only the antecedent and consequent parts 

of a fuzzy rule as the free parameters of optimization, it is possible to introduce 

other parameters as well. Lee and Esbensen [7] introduced degree of hedging as 

another free parameter. Let  µ(x1, x2, � , xn ) be the rule firing strength for a 

fuzzy rule. A free parameter named p is used to increase or decrease the rule 

firing strength and is named degree of hedging. The modified firing strength is 

obtained as below: 

 

Modified Firing Strength = µ 
p
 ( x1 , x2 ,�, xn ). 

 

 

B D B C A 

A E A D E 

C B E C D 

A B A C A 

D D B E D 

 

B D B C A 

A E A B E 

C B E C D 

A B A C A 

D D B E D 

 
Figure 19.14: Mutation. 

t

Mutation 

 

!!!! 

(19.12) 



 

19.4         THE INITIAL POPULATION 

 

In many applications of genetic algorithms, initial population is chosen 

purely randomly. Many times this is an obligation because there is no initial 

knowledge about the system. However, since human knowledge is often 

available and also applicable in fuzzy system, it may be reasonable to include 

such knowledge in an initial population in order to decrease the time needed to 

reach the optimal solution, even though such knowledge may not be optimal. 

But nonrandom initial population is not always better than random initial 

population even though such a population may initially exhibit a higher average 

fitness. The following example by Lee and Takagi[8] shows how and whether a 

random initial population can be more desirable than nonrandom initial 

populations.  

 

Example 19.4 

Lee and Takagi used a genetic fuzzy controller for an inverted pendulum. 

Inverted pendulum is a system consisting of an inverted beam (pole) on a 

moving cart. The task of the controller is to stabilize the pole angleθ and the cart 

position x by applying the force F to the cart. The inverted pendulum is a 

nonlinear system with an unstable equilibrium point and thus is a common 

platform for testing in control systems technology. 

Simulation results in four different cases are sketched in Figure 19.16 

 

 

 

 

 

 

 

 

 

 

 

M 

θ m,

F 

x 

Figure 19.15 Inverted Pendulum System. 

(d
)

(c) 

Figure 19.16: Evolution of Fitness Function for 1000 generation. 

fitness values 

(a) 

(b) 

  1           10          100        1000

2k 

4k 

6k 

8k 

      generations

10k



 

(a) Symmetrical rules (even number of rules) � human knowledge initial 

population. 

(b) Symmetrical rules (even number of rules) � random initial population. 

(c) Non-symmetrical rules - human knowledge initial population. 

(d) Non-symmetrical rules - random initial population. 

It can be seen that GA with random initial population in case (b) reaches its 

optimum value in less time than case (a) where initial population is selected 

based on human knowledge. Also, symmetrical rules are more preferable. 

In the above example, the reason for the faster convergence of the random 

initial population is because of the lack of diversity in initial population. Due to 

the stochastic nature of the GA, it is very important to have sufficient diversity 

in the initial population such that GA can exploit the landscape properly and 

efficiently. Therefore, incorporating a priori expert knowledge in optimization 

process needs be done with consideration for diversity. Akbarzadeh and 

Jamshidi in 1998 proposed a method for maintaining diversity in initial 

population while utilizing a priori expert knowledge. The following section from 

Akbarzadeh [3] discusses the grandparenting method. 

 

19.4.1 Grandparenting: A Method of Incorporating a priori Expert 

Knowledge 

 

The method presented here is based on a grandparenting scheme where the 

grandparent is the genotype representation of one expert�s control strategy in the 

form of a fuzzy controller.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 19.17: The Grandparenting Technique in Creating Initial 

Population. 

Acquire expert knowledge 

Transform expert knowledge �Grandparent� 

To GA domain (String of numbers) 

Is the  

population size 

sufficient? 

Perform mutation on the 

�Grandparent� 

Add the new string to the initial

population STOP 

Yes 

No 



 

 

 

 

All members of the initial population are binary mutations of the 

grandparent. Figure 19.17 illustrates the process of creating the initial 

population. The mutation rate is a significant factor since, as the mutation rate 

increases, diversity among members of the initial population increases as well. 

One important concern about this approach is the diversity issue. If all 

members of the initial population are to be derived from one individual (the 

grandparent), will there be enough diversity among them such that the GA may 

exploit the landscape properly? In fact, this is one of the reasons why one might 

ignore the initial knowledge altogether and start with a totally random 

population. Let us look at two extreme situations. 

�    One extreme: The mutation rate is set to zero. Hence all members of 

population are exactly alike (no diversity). The initial population will 

consequently have a high average fitness and very low diversity. Individuals in 

the initial population cannot recombine to create more fit individuals unless the 

mutation rate in the algorithm is set to a high value. This is because all members 

are alike and therefore crossover is not a productive operator. This sort of initial 

population often leads to premature convergence. 

�   Second extreme: The mutation rate is set to one. In this case, a totally 

random initial population is created with a low average fitness and a high 

diversity. This type of initial population will in general result in a faster learning 

rate, but since the initial fitness is low, it will take a long time to converge. 

From above, it is clear that in most cases, mutation rate should be set to a 

value between zero and one. The lower mutation rate indicates a higher degree 

of confidence that the optimal string is in close proximity/similarity to the 

grandparent�s string. In other words, if the expert knowledge is already 

performing well and we only require fine tuning, exploiting the whole parameter 

vector space may not be necessary. In exchange, by setting mutation rate to a 

low value, we ensure faster convergence, which helps the implementation of GA 

in a real time system environment. 

In contrast, the higher mutation rate indicates a low degree of confidence in 

the expert and the need for exploring the rest of the representation space more 

fully and with a higher diversity. Depending on the complexity of the problem, 

this means a poorly fit initial population and longer convergence time. However, 

it may be the only feasible alternative if expert knowledge is not available. In 

short, the grandparenting technique adds a control variable, the mutation rate, as 

a new parameter by which the GA designer can weight diversity vs. 

convergence and average fitness of the initial population. 

The following example from Akbarzadeh [3] illustrates the mechanism of the 

grandparenting method and its benefits in a higher fit initial condition and faster 

convergence. 
 



 

Example 19.5 

Determine the parameters, bi,, such that the following fitness function, f(B), is 

maximized: 

∑
=

==
8

1

.)(
i

i

T bBBBf  

where, B = [b1, b2,�,bi,�,b8] is a an 8-bit binary row vector. Also given is an 

expert opinion about the possible values for the optimal solution B*, 

Bexpert=[1,1,1,0,1,1,1,1]. 

Solution: Intuitively, the solution may be clear to the reader: 

B*=[1,1,1,1,1,1,1]. However, it is interesting to see how GA finds the optimal 

solution automatically, and furthermore how the grandparenting method 

enhances the GA performance in contrast with the method of random initial 

population. Using the standard random initial population and from the law of 

averages, it can be concluded that the average fitness of a random initial 

population is finitial=4 for the above problem. Now let us compare the above with 

the grandparenting method. The grandparenting method requires an expert 

opinion. In our situation, the expert (or the grandparent) offers the following as a 

possible solution: B expert = [1,1,1,0,1,1,1,1]. The fitness of this grandparent is 

seven, which is, as expected, higher than average fitness of random initial 

population. Figure 19.18 illustrates the evolution of an initial population 

generated through the proposed grandparenting technique.  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The initial population developed through the �grandparenting� technique has 

an average fitness of finitial = 6.5 which is significantly higher than average 

(19.13) 

Expert: 11101111 

11101101 11101110 11101111 11111011 

11101101 11111011 11111011 11101111 

11101011 11110110 11101011 1111111 

Fitness of Expert=7.0 

Average Fitness=6.5 

Maximum Fitness=7.0 

Average Fitness=6.5 

Maximum Fitness=8.0 

Intermediate  

Population 

Initial Condition 

P(mutation)=0.25 

Reproduction 

Crossover 

First Generation 

P(mutation)=0.01 

Figure 19.18: An Example of the Grandparenting Method.  



 

fitness of a random initial population. In this example, the Pmutation=0.25 is used 

for creating the initial population. Furthermore, the optimal solution B* is found 

in only one generation as compared to several generations required if starting 

with a random initial population. Note that the intermediate population is not 

counted since it is an �intermediate� step in creating the new population and its 

fitness is not evaluated. 

The above example illustrates the method by which grandparenting tech-

nique utilizes a priori expert knowledge to improve the fitness of individuals 

within the initial population while keeping diversity in the population, hence 

improving the performance of GA. Moreover, in many control systems, there is 

usually access to more than one expert. Often, views and opinions of various 

experts are different. This difference in opinion, although complicating the 

process of knowledge acquisition, is not a weakness; is, in fact, the strength of 

biological systems. The evolution in nature is not limited to manipulating genes 

and chromosomes. In fact, the diversity in human minds is indeed the strength of 

man where each human may differ in perspective and opinion if faced with the 

same constraints and criteria. It is therefore no surprise that, if several experts 

are interviewed in regard to a control system, each would give us differing 

heuristics. The grandparenting idea provides ability to combine multiple experts� 

opinions in the above process by repeating the process for each expert. Hence, 

the resulting population will consist of variations of multiple expert systems 

competing with each other for the right to survival. 

  

19.5 FITNESS FUNCTION 
 
In any genetic algorithm, fitness function plays an important rule because GA 

depends on fitness function to guide the direction of its search. There is no 

general way to define a fitness function for a problem; however, it is often 

designed such that the more desirable solutions correspond to higher fitness. So, 

the GA optimization is usually regarded as a search for the parameters which 

maximize the fitness function. Obviously, a fitness function needs to include all 

the pertinent parameters which need to be optimized (free parameters). One of 

the objectives of the optimization problem is to find the systems with higher 

performance, so it is common to include some of the performance measures of 

the system into the fitness function. Other requirements can also be considered. 

For example in Example 19.6, the number of rules is included in the fitness 

function as a measure of complexity to reduce the number of rules in the system. 

 

Example 19.6: 

In a simple control system, the shape of the step response can be a good 

measure of the controller operation. A fast and accurate response with lower 

overshoot is often desired. So a fitness function can be of the form below: 

 
 ∫ ++

= f

i

t

t
dt

e
fitness

1

1
22 γ

(19.14) 



 

 

where e represents the error between desired and system response and γ 

represents overshoot. ti and tf are the starting and ending time of simulation. 

A more general form for a normalized fitness function regarding time domain 

response has been proposed in Akbarzadeh [3]: 

dt
pkpkpktt

pppf f

i

t

t

nnif

n ∫
++++−

=
γ

γ
22

22
2

11

21
...

1
),...,,(   

where pi, i=1,�,n are time varying system parameters, ki are positive constant 

multipliers as weighting functions to emphasize or de-emphasize a parameter 

significance, and γ is a positive constant which sets the slope of the fitness 

function near its optimal solution. A common problem with many fitness 

functions is that once the algorithm nears the neighborhood of the optimal 

solution, it cannot reach the optimal point because it cannot accurately 

differentiate between near-optimal and optimal solutions. The nearer the slope 

of the fitness function is to its optimal solution, the more it can distinguish 

between optimal and near-optimal solutions. The proposed fitness function has 

the advantage that this slope can be controlled by γ. Smaller values of γ 

correspond to greater slopes. 

 

Example 19.7: 

Lee and Takagi [8] introduced a fitness function for the inverted pendulum 

control problem (Example 19.4). The objective of controlling the inverted 

pendulum is to balance the system in the shortest amount of time for a specific 

range of initial conditions. The fitness function for a trial is evaluated in two 

steps: 

Step1: first define a score function of ending time (tend) for the trial, based on 

the termination conditions. It is possible to consider three different termination 

conditions. Figure 19.19 illustrates how the scoring function evaluates the score 

for a trial. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

• 

Score(tend) 

tend tmax 

b. tend 

a1(tmax-tend )+a2 . reward 

reward 

Figure 19.19: Scoring Function for Inverted Pendulum. 

(19.15) 



 

 

Condition 1: the system balanced the pole before time is expired.  

(|θ |≤ ε°
   tend <t< tmax

 
) 

Condition 2: time is expired and the system could not balance the pole.  

(ε°≤ |θ |≤ 90
°
   t<tend =tmax) 

Condition 3: the pole fell over before ending time.  

(|θ |≥ 90
°  

tend <t< tmax
 
) 

The score function has been defined as: 

score(tend)= a1(tmax-tend)+a2 . reward if   condition 1 

score(tend)=reward   if   condition 2  

score(tend)= b. tend    if   condition 3 

where θ  is the angle of the pole, ε  is a real number defined so that for |θ |≤ ε°
 

the system is considered as stable, and a1 , a2 , b and reward are constants. 

(Figure 19.19) 

The general idea is that if the system balances the pole (condition 1), a 

shorter time for tend is ranked higher, but if the pole falls over, a longer time for 

tend means that it is kept from falling for a longer period of time and thus is 

ranked higher.  

Step 2: The fitness function is not only a function of the score. To consider 

steady state error and to penalize systems according to the number of the rules in 

the system, fitness function is defined as below: 

 

  

 

The steady state error is a summation of the pole angle displacement weighted 

with constant c.  Offsetrules is a parameter which controls the degree of penalty 

for the number of rules.  

19.6 SPEED REGULATION OF A DC MOTOR 

 

In this section, we will examine one of the recent successful applications of GA- 

fuzzy systems in detail. The following example is adapted from Akbarzadeh et 

al. [16]. 

LaRa

+
Vf

_

+

Va

_

Vb

ββββ

J

ωωωωia

 
 

Figure 19.20: The Drive System of the Separately Excited DC Motor. 

rules

0

offset + rules ofnumber 

|)|)(( ∑+
=

endt

tend ctscore

fitness

θ

(19.16) 

(19.17) 

(19.18) 

(19.19) 

(19.20) 



 

In this example, a GA fuzzy system is simulated for velocity control of a DC 

motor. Due to its excellent speed control characteristic, the DC motor has been 

widely used in industry even though its maintenance costs are higher than the 

induction motor. As a result, speed control of the DC motor has attracted 

considerable research and several methods have evolved. Proportional-integral 

(PI) and Proportional-integral-derivative (PID) controllers have been widely 

used for speed control of the DC motor. Kim and Baek [17] surveyed the current 

state of the PI, PID and command matching controllers for speed regulation of 

DC motors. To reduce the loading effect and minimize time delay, they added a 

feed-forward controller to the PID controller. In Iracleos and Alexandridis[18], 

the feedback gains of a PI controller are first nominally determined and 

thereafter tuned using fuzzy logic. Yousef [19] determined a fuzzy logic based 

controller with superior performance over a DC motor PI controller. Yousef 

controlled both speed and current variables. In Fisher et al. [20] three different 

intelligent control architectures are considered. There, a feedforward/feedback 

control strategy is used to ensure effective, high performance tracking of 

reference speed trajectories. 

        The above works indicate successful utilization of fuzzy logic over 

nonfuzzy PI and PID controllers in regulating DC motor drive systems. Yet, for 

best response, the above approaches have no capability to search for an optimal 

knowledge base. Here, an automatic way of searching for optimal knowledge is 

proposed and applied to the speed regulation problem. 

        This section is organized as follows. First, the system model of a DC motor 

is formulated. Next, the simulation results of the corresponding system are 

compared with nonfuzzy PID and nonoptimized fuzzy PID controllers. 

Let us now consider a separately excited DC motor as is shown in Figure 

19.20. Where ( )tω  is rotational speed, ( )tia
 armature circuit current, ( )tT1

 

constant torque-type load, ( )tR a
 armature circuit resistance, β  coefficient of 

viscous-friction, k  torque coefficient, J  moment of inertia, and aL  armature 

circuit inductance. In state space form, if we let 

( ) ( ) ( ) )(,)(),()(),( 121 tTtdtVtuttxtitx aa ==== ω  

be our choice of state and control variables, then the state space model of the 

system can be represented by the following: 

( ) [ ]T
txtxtX )(),( 21=  

( ) ( ) ( )
( )tCXty

tEdtButAXtX

=
++=

)(

,)(&  

 

and: 

[ ]











−==














=



















−

−−

=
J

ECLB

JJ

k

L

k

L

R

A
a

aa

a

1
0

,10,

0

1

,
β

 

 

(19.21) 

(19.22) 

(19.23) 

(19.24) 



 

where the load torque is considered as disturbance input. 
 

Numerical Values 

The DC motor under study has the following specifications and parameters: 

a) Specifications: 1 hp, 220 Volts, 4.8 Amperes, 1500 rpm 

b) Parameters: 

rad

V
k

rad
mNmkgJmHLR aa

.sec
1.1,

sec
...002.0,.07.0,5.46,25.2 2 ====Ω= β  

 

19.6.1 The Control Architecture  

 

        The control architecture used here is the standard application of genetic 

algorithms on fuzzy controllers with proportional, integral, and derivative 

variable inputs, with the difference that the idea of grandparenting is used to 

shape the initial population. Through the GA, various combinations of candidate 

solutions are evaluated and the best, fittest, solution is chosen to control the 

actual system.  The GA has the capability to alter the shape of the membership 

functions of individual inputs. Figure 19.21 illustrates a block diagram of the 

closed loop control system. 

 
Figure 19.21: GA Optimized Fuzzy PID Control Architecture for a DC Motor. 

 

19.6.2 Results 

 

        Here, three different controllers are simulated and compared. The first 

simulation involves a model based PID controller as discussed by Kim and Baek 

[17]. The corresponding control law is as follows: 

( ) ( ) ( )
dt

td
RdtQ

t

P
tu

ft

t
r

ωωω
ω

−∫ −+−=
0

)(

 

where 
sec

0.10
rad

r =ω  is the reference input, 1712.1=P , 236.13=Q , 03.0=R . The 

second simulation is a fuzzy PID control law ( )tu  based on a nonoptimized a 

priori expert knowledge. 

( ) ( )∫= eeeftu ,, &  

where f is a nonlinear function determined by the fuzzy associative

(19.26) 

(19.25) 



 

memory and parameters of input and output membership functions, ωω −= re , 

ωω &&& −= re , and: 

( )∫ −=∫
t

r dte
0

ωω  

 In the third simulation, GA is used to optimize parameters of the above 

fuzzy controller. In order to minimize the parameter set, GA is applied to 

optimize only the input membership parameters of the fuzzy controller as is 

shown in Figure 19.21. Other parameters in the knowledge base are not allowed 

to vary. This will reduce simulation processing time and will still demonstrate 

the potential utility of GA. The following fitness function was used to evaluate 

various individuals within a population of potential solutions: 

( )dt
kekektt

fitness
f

i

t

tif

∫
+++−

=
1

11
2

3
2

2
2

1 γ&

 

where e  and e&  represent the errors in angular position and velocities, γ  

represents overshoot, and 1k , 2k , and 3k  are design parameters. Consequently, a 

fitter individual is an individual with a lower overshoot and a lower overall error 

(shorter rise time) in its time response. The above fitness function is normalized 

such that a fitness of 1 represents a perfectly fit individual with zero error and 

overshoot. Similarly, a divergent response receives a fitness of zero. In this 

simulation, the following values were used 

251 =k , 1502 =k , 13 =k . 

Figure 19.22 shows the maximum and average fitness of each GA 

generation. A total of 40 generations were simulated; each generation included 

100 individuals.  The performance measure never reaches steady state since it is 

constantly trying out new directions of search through mutation. As is shown in 

Figure 19.22, the curve for the maximum fitness converges very quickly, i.e., 

within the first two generations. However, the fitness of the whole population 

converges within 20 generations. The mutation rate for creating the initial 

population was set to 0.1. Thereafter, the mutation rate was set to 0.033. The 

probability of crossover was set to 0.6. 

 
 
 
 
 
 
     
 
 
 

 

 

 

(19.28) 

(19.27) 

Figure 19.22: Plot of Maximum and 

Average Fitness Values of GA for a 

DC Motor. 

Figure 19.23: Comparison of PID, 

Fuzzy PID, and GA-Optimized Fuzzy 

PID Controllers for a DC Motor. 



 

Figure 19.23 illustrates the three controllers� time responses. The GA 

optimized fuzzy controller is a significant improvement over the initial fuzzy 

controller based on crude expert knowledge. While keeping the same rise time, 

the GA optimized controller has no oscillations and almost no overshoot. When 

compared with the model based PID controller, the GA-optimized fuzzy 

controller also shows significant improvement. In this respect, the overshoot and 

rise time are reduced by over 50%. 

 

19.7 CURRENT PROBLEMS AND CHALLENGES  

 

Real time implementations 

The capabilities of evolutionary algorithms will be highly increased if they can 

be implemented online. Even with the aid of new computers with high 

computational speeds, real time GA implementation is still a challenging 

problem. Such real time evolutionary algorithms can have many applications 

such as in design of more intelligent robots with a higher degree of autonomy. 

For example, robots used for hazardous material handling or space robots 

commonly operate in unstructured and noisy environments.  Such robots often 

need to be locally controlled with an intelligent controller [21] and with little or 

no contact with a human supervisor. Online evolutionary methods can enable 

these robots to learn from past experiences and evolve their performance and 

adapt themselves to the environment while in operation.  Therefore, one of the 

important research activities is to develop and implement genetic algorithms 

with higher levels of computational efficiency.  

Side effects of evolutionary fuzzy systems 

G.V. Tan and X. Hu [10] introduced some of the undesired side effects that 

can surface when using evolutionary fuzzy systems.  The main problem is that 

evolutionary optimization algorithms may drastically alter the control system 

Controller 

 
System 

GA Optimizer 

y(t) 

 u(t) r(t) 

Figure 19.24: Online Genetic Optimizer for Control System. 

e(t) 



 

architecture (acting autonomously) to the extent that the resulting system would 

no longer be identifiable by a human operator. This is particularly true for fuzzy 

systems where an intuitive human understanding of the control system is a 

significant aspect of a control system. Indeed, the meaningful relation between 

membership functions and associated fuzzy rules may be lost from a human 

point of view. Figure 19.25 shows a fuzzy partition after optimization that is 

meaningless for humans. 

To overcome this problem, some constraints should be included in the 

optimization algorithm such as limiting the system to a symmetric rule set and 

uniformly distributed membership functions for a more meaningful fuzzy 

system. 

 

 

 

 

 

 

 

 

 

 

 

19.8 SUMMARY AND RESULTS 

 

As we enter the era of more complex systems, the need for more intelligent and 

ultimately autonomous controllers arises. This need is currently being addressed 

by applying fuzzy logic to bridge the gap between machine number processing 

capability and human thinking. Even though the power of original thinking and 

innovation is what we look for in intelligent and autonomous systems, fuzzy 

logic, in its conventional form, does not provide that power. That is why we 

equip fuzzy logic with nature based evolutionary algorithms in search of 

machine self innovation. Through genetic operations such as mutation and 

crossover, GA is able to invent and recombine new search paths. 

In this chapter, several design aspects of such fuzzy and GA improved fuzzy 

controllers were discussed. Following summary remarks can be made: 

 
• Genetic algorithms fill the existing gap between fuzzy logic and its 

application to complex systems by removing the need for optimal human 

expert knowledge, and instead allowing machine self innovation.  

• GA is a relatively robust alternative for automatic design and optimization 

of fuzzy systems. Successful applications of such hybrid GA fuzzy 

architecture are abundant in the literature. 

Figure 19.25: An Example of Optimized Fuzzy Partitioning. 



 

• There is not a unique approach to implementation of GA fuzzy systems. 

Various approaches often differ in their selection of free parameters, genetic 

representation of the parameters, and fitness functions. 

• Selection of free parameters for optimization is a compromise between 

more complex and larger search spaces and less optimal solutions.  

• The main parameters of a fuzzy system that are usually selected for 

optimization are membership function parameters and fuzzy if-then rule 

parameters. They can be optimized simultaneously or in steps. 

• After selection of the free parameters and the way they are optimized, the 

most important parts of the optimization are 

- Genetic representation of the parameters 

- Definition of the genetic operators 

- Definition of the fitness function for evaluation of the solutions. 

- Selection of the initial population. 

• The time needed for optimization and the computational time in every 

generation is an important property of an optimization algorithm because 

real time implementation of the algorithm would be possible if the 

computation delay were small enough. 

 

ACKNOWLEDGMENT 

 

The authors gratefully acknowledge the support of the Center for Autonomous 

Control Engineering, The University of New Mexico, in writing this chapter. 

 

REFERENCES 

 

1.  Fogel, L. J., Intelligence Through Simulated Evolution, John Wiley & 

Sons, NY, 1999. 

2. Wang, L. X. and Mandel, J. M., Fuzzy Basis Functions, Universal 

Approximation, and Orthogonal Least- Square Learning, IEEE Trans. 

on Neural Networks, Vol. 3, No 5, September, 1992. 

3. Akbarzadeh-T, M. R., Fuzzy Control and Evolutionary Optimization of 

Complex Systems, Ph.D. thesis, The University of New Mexico, 1998.  

4. Homaifar A. and McCormick, E., Simultaneous Design of Membership 

Functions and Rule Sets for Fuzzy Controllers Using Genetic 

Algorithms, IEEE Trans. on Fuzzy Systems, Vol. 3, No 2, 129−139, 

May 1995.  

5. Shi, Y. et al., Implementation of Evolutionary Fuzzy Systems, IEEE 

Trans. on Fuzzy Systems, Vol. 7, No 2, 109−119, April 1999. 

6. Kinzel, J. et al., Modification of Genetic Algorithms for Design and 

Optimizing Fuzzy Controllers, IEEE Int. Conf. on Fuzzy Systems,  

28−33, 1994. 

7. Lee, M. and Esbensen, H., Evolutionary Algorithms Based Multi 

objective Optimization Techniques for Intelligent Systems Design, 

FUZZ-IEEE�96, 360−364, 1996. 



 

8. Lee, M.A. and Takagi, H. , Integrating Design Stages of Fuzzy Systems 

using Genetic Algorithms, in Proc. 2nd IEEE Int. Conf. Fuzzy Systems, 

612-617, San Francisco, 1993.   

9. Karr, C.L. and Gentry, E. J. , Fuzzy Control of pH Using Genetic 

Algorithms, IEEE Trans. on Fuzzy Systems, Vol. 1, No 1, 46-53, 

February 1993. 

10. Tan, G. V. and Hu, X., On Designing Fuzzy Controllers using Genetic 

Algorithms, IEEE Int. Conf. on Fuzzy Systems, 905−911, 1996. 

11. Cooper, M. G. and Vidal, J. , Genetic Design of Fuzzy Controllers: The 

Cart and Jointed -Pole Problem, IEEE Int. Conf. on Fuzzy Systems, 

1332−1337, 1994. 

12. Xu, H. Y. and Vukovich, G. , Fuzzy Evolutionary Algorithms and 

Automatic Robot Trajectory Generation, FUZZ-IEEE�94, 595-600, 

1994. 

13. Moon, S.Y. and Kwon, W.H., Genetic-based Fuzzy Control for 

Automotive Active Suspensions, FUZZ-IEEE�96, 923−929, 1996. 

14. Wang, C.H. et al., Integrating Fuzzy Knowledge by Genetic 

Algorithms, IEEE Trans. on Evolutionary Computations, Vol. 2, No 4, 

138−149, Nov 1998. 

15. Park, Y.J., Lee, S.Y., and Cho, H. S., A Genetic Algorithm-Based 

fuzzy Control of an Electro-Hydraulic Fin Position Servo System,  

1999 IEEE Int. Fuzzy Systems Conf. Proc., Aug. 22−25, Seoul, Korea, 

1999. 

16. Akbarzadeh-T, M. R. et al. , Evolutionary Fuzzy Speed Regulation for 

a DC Motor, The 29
th

 Southeastern Symp. on Syst. Theory, Cookeville, 

TN, March 1997. 

17. Kim, Y.T. and Baek, S.H., The Speed Regulation of a DC Motor Drive 

System with a PI, PID, and Command Matching Controllers, Dongguk 

Journal, (in Korean), Vol. 29, 1990, 525−541. 

18. Iracleous, D. P. and Alexandridis, A. T. Fuzzy Tuned PI controllers for 

Series Connected DC Motor Drives, Proc. of the IEEE Int. Symp. on 

Industrial Electronics, Athens, Greece,  495−499, 1995. 

19. Yousef , H. and Khalil, H. M. , Fuzzy Logic-based Control of Series 

DC Motor Drives, Proc. Of the IEEE Int. Symp. on Industrial 

Electronics, Athens, Greece, 1995. 

20. Fisher, M.E., Ghosh, A. and Sharaf, A.M., Intelligent Control 

Strategies for Permanent Magnet DC Motor Drives, Proc. of the IEEE 

Int. Conf. on Power Electron., New Delhi, India, 1996. 

21. Akbarzadeh-T, M. R., et al., Genetic Algorithms and Genetic 

Programming: Combining Strengths in One Evolutionary Strategy, 

Proc. of the 1998 Joint Conf. on the Environment, Albuquerque, NM, 

March-April 1998. 

 



 

20 
GENETIC AND EVOLUTIONARY 

METHODS FOR MOBILE ROBOT 

MOTION CONTROL AND PATH 

PLANNING  
 Abdollah Homaifar, Edward Tunstel, Gerry Dozier, and Darryl Battle 

 
 

20.1 INTRODUCTION 

 
A variety of evolutionary algorithms, operating according to Darwinian 
concepts, have been proposed to solve problems of common engineering 
applications.  Applications often involve automatic learning of nonlinear 
mappings that govern the behavior of control systems, as well as parallel search 
strategies for solving multiobjective optimization problems.  In many cases, 
hybrid applications of soft computing methods have proven to be effective in 
designing intelligent control systems. This chapter presents two instances of 
such hybrid applications to problems of mobile robot control. In particular, 
evolutionary computation and fuzzy logic are combined to solve robot motion 
control and path planning problems.  The first part of the chapter describes a 
methodology for applying genetic programming (GP) to design a fuzzy logic 
steering controller for mobile robot path tracking. Genetic programming is 
employed to learn the rules and membership functions of the fuzzy logic 
controller, and also to handle selection of fuzzy set intersection operators (t-
norms).  The second part of the chapter describes an application of fuzzy logic 
to enhance the performance of an evolutionary robot path planning system.  In 
this case, fuzzy logic is employed in the selection phase of the simulated 
evolution process. 
 
20.2 GENETIC PROGRAMMING FOR PATH TRACKING CONTROL 

 
In applications of genetic and evolutionary methods, the data structures of 
individuals being evolved are different depending upon the specific type of 
evolutionary algorithm employed. Genetic programming is a method of program 
induction introduced by Koza [1].  It has been demonstrated to be useful as an 
approach to learning fuzzy logic rules for mobile robot control and navigation 
[2, 3].  It has also proven useful for the classical cart centering control problem 
[4]. The data structures undergoing adaptation in GP are noted as hierarchically 
formed programs of a given host programming language.  In the host language, 
individuals are represented as parse trees, which dynamically change size and 
structure during simulated evolution. 

The set of possible structures produced by GP is primarily based on the set of 
all possible valid compositions that can be constructed from the set of n problem 
dependent functions defined in a function set, F = {f1, f2, ..., fn}, and the set of m 



 

terminals (function arguments, variables, and/or constants) defined in a terminal 
set, T = {t1, t2, ..., tm}. 

In order to appreciate the utilization of GP for the design of fuzzy logic 
controllers, we introduce the steering control problem next and follow it by 
discussing some of the important implementation issues to be considered for the 
application of GP. 
 
20.2.1 Path Tracking Formulation 
 

The first of two control problems examined in this chapter is a path tracking 
problem, which was formulated by Hemami et al. [5, 6] for a class of low speed 
(less than 2 m/s) tricycle-model vehicles.  Essentially, the control objective is to 
successfully navigate a mobile robot or automated guided vehicle along a 
desired path in a two-dimensional environment.  We wish to automatically 
design a multiple input, single output fuzzy controller that will achieve this 
objective. The inputs consist of a measurable position error, εd, and a measurable 
orientation error, εθ, associated with path following in the plane (see Figure 
20.1).  The output is the steering angle, δ, which is the corrective control action 
that would cause the errors to approach zero and, thus, force the robot to follow 
the desired path.  The position error is taken as the deviation of the center of 
gravity, C, or any other desired point of the robot from the nearest point on the 
path.  The orientation error is the angular deviation of the robot from the tangent 
of the desired path. 
 

 
 
 
 
 
 
 
 
 

 
Figure 20.1:  Tracking Control and Error Variables. 

 
Hemami et al. derived a state-space kinematic model for this robot where the 

state vector comprised the pose errors described.  The resulting kinematic model 
is repeated herein for clarity in the discussion that follows.  The reader is 
referred to reference [5] or [6] for details of the derivation, which culminates in 
the following: 









±








+
















=









θθθ η
η

δ
ε
ε

ε
ε

&

&

&

&
d

u
dud

V
MP

MPMCV
tan

/1

/

00

0
  (20.1) 

where Vu is forward linear velocity of the robot, and Ý η d  and Ý η θ  are rates of 
change of the effects of path curvature.  In Hemami et al. [6] it is concluded 

A

P
δ

d
ε

X

YW
U

θε

d e s ir e d
h

b
a

M
C

2 d

V

UV

WV

a c tu a l
h

Q
δ



 

(based on dynamic analysis of the same vehicle) that for small steering angle, δ 
(tan δ = δ), Equation (20.1) approximates the slow dynamics of the vehicle 
when its forward velocity is low.  In the simulations presented later, we have 
simplified the robot kinematic model by taking this small steering angle 
approximation into account.  Furthermore, we apply the controller to straight 
line path following and, therefore, neglect the model effects of path curvature. 
Such a simplification does not preclude autonomous tracking of reasonably 
complicated paths since multisegment paths can be defined to be piecewise 
linear. 

To allow for control of the mobile robot, some means of measuring the input 
information is needed to feed into the system in order to generate a desired 
output.  Thus the system under control is assumed to have some suitable sensory 
apparatus.  For our implementation, we assume that the robot has dead-
reckoning/odometry sensors that provide access to the error states at all times, or 
permit calculations thereof.  This sensory input data is then mapped to control 
outputs according to the desired control policy. In path following simulations, 
the position and orientation errors in Equation (20.1) are updated using the 
fourth-order Runge-Kutta method, which is widely used in computer solutions 
to differential equations [7]. 
 
20.2.2 GP Solution 

 
The path tracker to be learned by GP is a two input, single output fuzzy 

controller that will map the error states into a proper steering angle at each time 
step.  A population of candidate solutions is created from which a solution will 
emerge.  The allowance for rule bases of various sizes enhances the diversity of 
the population.   That is, the GP system creates individuals in the initial 
population that each have possibly different numbers of rules within a finite 
range (15-30) specified before a run. In the process of learning fuzzy control 
rules and membership functions, GP manipulates the linguistic variables directly 
associated with the controller.  Given a desired motion behavior, the search 
space is contained in the set of all possible rule bases that can be composed 
recursively from a set of functions and a set of terminals.  The function set 
consists of membership function definitions (describing controller inputs), 
components of the generic fuzzy if-then rule, and common fuzzy logic 
connectives.  More specifically, these include functions for fuzzy sets, rule 
antecedents and consequents, fuzzy set intersection and union, and fuzzy 
inference.  The terminal set is made up of the input and output linguistic 
variables and the corresponding membership functions associated with the 
problem. 

Selection of appropriate t-norms is automated, thereby giving the GP system 
greater control of the evolutionary design.  That is, the influence of GP is 
extended to include selection of the type of t-norm employed to compute the 
conjunction of fuzzy propositions in the antecedent of a rule. The two most 
commonly used t-norms for fuzzy control are Mamdani's min and Larsen's 
product [8].  T-norms for each conjunctive rule are selected at random by GP for 



 

rule bases in the initial population, and are carried along based on fitness in 
successive generations. 

To achieve the goal of evolving membership functions and rules for FLCs, 
the GP system must conform to strong syntactic constraints when breeding 
individuals. Special rules of construction were introduced in Tunstel and 
Jamshidi [2] and later extended using algorithms described in references [9] and 
[10].  We refer the reader to Homaifar et al. [11] for a detailed description of the 
resulting syntactic rules, the full design algorithm, and other GP implementation 
issues related to fuzzy controller design. 
 
20.2.2.1 Controller Fitness Evaluation 

Each rule base in the current population is evaluated to determine its fitness 
value for steering the robot from initial locations near the desired path to final 
locations on the path such that steady state and final pose errors are minimized.  
This evaluation involves frequent simulation of the robot�s motion from each of 
a finite number of initial conditions until either the goal state is achieved or the 
allotted time expires.  The initial conditions are referred to as fitness cases in the 
GP community.  For this problem we use eight different initial conditions, which 
is a logical choice given the pair-wise symmetry of the possible error categories 
illustrated in Figure 20.2.  Consider error category (d), which represents a case 
where the robot is located on the left of the desired path with a negative heading 
orientation.  There also exists a symmetric case where the robot is located on the 
right of the desired path with a positive heading orientation.  These symmetric 
cases are each represented by error category (d).  The same holds for categories 

(a), (b) and (c) illustrated in the figure, yielding a total of eight fitness cases that 
fully describe the possible combinations of errors with respect to the path. 

 The fitness function is a measure of performance used to rank each 
individual relative to others in the population.  We compute path tracking 
performance by summing the Euclidean norms (normalized) of the final error 
states plus the average control effort (δ ) over all eight fitness cases. Thus, the 
following fitness function drives the evolution process 
 

Raw Fitness = ∑ ++
=

8

1

222 )(
i

id δεε θ
                    (20.2) 

where ε
d

 and εθ  are the position error and orientation error existing at the end 
of each fitness case simulation.  The objective of this fitness function is to 
minimize final path tracking errors as well as the control effort expended.  As 
such, a perfect fitness score is zero and, in general, lower fitness values are 
associated with better controllers.  
 Simulations show that adding average control effort as part of the path 
tracking metric significantly reduces undesired steering oscillations.  Fitness 
functions based solely on final error states sometimes yielded impractical 
controllers that exhibited rapid oscillations in the steering control signal, which 
would cause damage to the steering mechanism of a real mobile robot. 

The path tracking success of an individual in the population is also based on 
its ability to minimize the error states to within the following specified 



 

tolerances, | εd |<0.15m and |εθ |<0.26 radians, for each fitness case.  A fitness 
case simulation in which these tolerances are satisfied is considered a hit, or 
successful trial.  Thus, each individual has the potential of receiving a total of 
eight hits during fitness evaluation for this path tracking problem. 

 

(a)  ε  = 0, ε  <0  
d          θ (b) ε  <0, ε  = 0  

d         θ 

(c) ε  <0, ε  <0  
d         θ (d) ε  >0, ε  <0  

d         θ 

tangent to path 

 
Figure 20.2. Error Categories for Path Tracking Control Problem. 

 
20.3 PATH TRACKING SIMULATION RESULT 

 
In this section, we present representative results of simulated path tracking 
performance for an evolved controller.  Results are presented, in particular, for a 
fuzzy controller designed with t-norms selected randomly during co-evolution of 
rules and membership functions. Selection of appropriate t-norms is one of 
several design decisions that could lengthen the manual trial-and-error 
procedure typically used by FLC designers.  We elect to automate this decision 
and thereby give the GP system greater control of the evolutionary design.  To 
achieve this, the GP system is allowed to choose at random between the two 
common t-norms mentioned above.  T-norms for each conjunctive rule are 
selected at random by GP for rule bases in the initial population, and are thus 
carried along based on fitness in successive generations. 

The simulated robot is based on Hemami's kinematic model with dimensions 
taken from the Heathkit Hero-1 mobile robot.  The Hero-1 has a tricycle wheel 
configuration in which the front wheel is driven by a DC motor and steered by a 
stepper motor.  Its two rear wheels are passive.  Dimensions employed are 0.3 m 
for the wheelbase, and 0.2 m for the offset from the rear axle to the front wheel.  
These dimensions correspond to the constant lengths 2d and MP of Figure 20.1, 
respectively.  All simulations were conducted assuming a controller sampling-
rate of 20 Hz and run for a maximum of 10 seconds.  In each case, the robot 
travels at a constant nominal forward speed of 1.5 m/s unless otherwise stated. 

All GP runs for the path tracking problem were executed on a 260 MHz 
MIPS DECstation using a restructured version of the simple genetic 
programming in C (SGPC) system [12].  Five consecutive runs (initialized using 
different random number generator seeds) were executed using the GP control 



 

parameters listed in Table 20.1.  About one hour of computation time is required 
for a run of this magnitude.   
 

Table 20.1: GP Control Parameters. 

Parameter Value 

Population size 200 

Number of generations 50 

Mutation probability 0.001 

Crossover probability 0.600 

Maximum mutation depth 4 

Reproduction probability 0.399 

Maximum new tree depth 5 

Maximum depth after crossover 7 

 
A rule base of 25 rules emerged as the fittest among all five runs.  This rule 

base used five conjunctive rules, three employing the Mamdani t-norm and two 
employing the Larsen t-norm. The evolved input membership functions 
associated with the best rule base are shown in the left half of Figure 20.3. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Figure 20.3: Co-Evolved Input Membership Functions and Fixed Output 
Membership Functions. 

 
Co-evolved rules are listed in Table 20.2, where the notations NB, NS, Z, PS, 

and PB represent fuzzy linguistic terms of �negative big,� �negative small,� 
�zero,� �positive small,� and �positive big,� respectively.  Terms describing the 
inputs, εd and εθ, are preceded with the prefixes �p� and �o,� respectively.  The 
fixed output membership functions are shown in the right half of Figure 20.3, 
where the linguistic terms are labeled without prefixes. 

0 0.27-0.27 0.360.6-0.3-0.54 1.0-1.0

pNB pNS pZ pPS pPB

µεd

εd (meters)

µεθ

εθ (rad)
0 0.17-0.13 0.52 0.88-0.55-0.92 1.04-1.04

oNB oNS oZ oPS oPB
0−π/4

NB NS Z PS PB

µδ

δ (rad)
−π/6 −π/12 π/6π/12 π/4



 

 Table 20.2: Best Evolved Rule Base.                         

1 IF oZ THEN NS
2 IF pPB THEN Z 
3 IF pNB THEN Z 
4 IF pPS THEN NB 
5 IF pNS and oPS THEN NS (Mamdani�s min) 
6 IF pNB THEN PB 
7 IF oNS THEN Z 
8 IF oNB THEN PS  
9 IF pNS THEN NS 
10 IF pNS and oZ THEN PB (Larsen�s prod) 
11 IF oPB THEN NB 
12 IF pNS and oPB THEN NB (Larsen�s prod) 
13 IF pPS THEN NS 
14 IF oNS THEN PB 
15 IF pPB THEN NB 
16 IF oZ THEN PS 
17 IF oNB THEN PB 
18 IF pNS and oNS THEN PB (Mamdani�s min) 
19 IF pNS THEN Z 
20 IF oPS THEN NB 
21 IF pZ THEN PS 
22 IF pPB and oZ THEN Z (Mamdani�s min) 
23 IF pPB THEN PS 
24 IF oPS THEN PS 
25 IF oNS THEN PS 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 20.4: Co-evolved FLC Path Tracking Performance. 
 

The evolved controller received a raw fitness of 0.1091 with 8 hits.  In 
Tunstel and Jamshidi [2], an FLC designed manually, through a lengthy process 
of trial and error, is presented which also used 25 rules.  Hours of iterative 
refinement of membership functions and rules were invested before arriving at a 

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

time (s)

P
o
s
it
io

n
 E

rr
o
r 

(m
)

0 2 4 6 8 10
-1

-0.8

-0.6

-0.4

-0.2

0

time (s)

O
ri
e
n
ta

ti
o
n
 E

rr
o
r 

(
ra

d
)

0 2 4 6 8 10
-0.1

0

0.1

0.2

0.3

time (s)

S
te

e
ri
n
g
 A

n
g
le

 C
o
n
tr

o
l 
(

ra
d
)

----- GP-Evolved FLC 
- - -  Hand-Derived FLC 



 

suitable design.  In comparison, the hand derived FLC received a comparable 
raw fitness (0.08 with 8 hits) for the identical tracking problem.  Figure 20.4 
shows the temporal responses of position error, orientation error, and control 
effort for the evolved controller and for the hand derived controller.  This result 
corresponds to error category (d) of Figure 20.2, with initial conditions of ε

d
 = 

0.8 m and εθ  = -0.9 rad.  As was shown in Hemami et al.[6], this error category 
is the most general for studying path tracking by tricycle-type vehicles, in the 
sense that corrective vehicle steering from states in other error categories 
ultimately leads to vehicle error status in category (d) or its counterpair. The 
evolved controller achieved comparable response characteristics to those of the 
hand derived controller using an equivalent number of rules. 
 
20.3.1 Evolved Controller Robustness 

 
Given the capability to evolve FLCs that can effectively follow paths, an 

important next step is to examine their robustness to practical perturbations.  To 
test the noise robustness of the evolved controller, simulations were performed 
with the imposition of a noise signal upon the sensor measurement related to 
heading (orientation).  We assume that the error states are derived from sensor 
measurements which, due to their imperfect nature, introduce an additive 
sinusoidal noise signature of small amplitude and low frequency (relative to the 
controller sampling frequency) that corrupts the orientation error.  For this 
investigation we impose the sensor noise signal, n(t) = 0.15cos(3t) with t = kT, 
where k=1,2,3,... is the sampling instant, and T is the sampling period.  Thus, the 
noise amplitude is bounded by 0.15 radians (10°), and at any sampling instant 
the corrupted orientation error signal lies in the range of (εθ ± 0.15) radians. 

In addition to the additive noise, we also increased the constant nominal 
forward speed of the robot by 20%, which resulted in a simulated speed of 1.8 
m/s.  A typical result is shown in Figure 20.5, which illustrates the performance 
of both the evolved controller and the hand derived controller when induced 
with noise and an increased vehicle speed.  While the oscillatory effects of the 
added noise are clearly evident in the steady state response, the controller 
successfully navigates the robot onto the path and maintains the steady state 
errors within the tolerances specified earlier.  Thus, this evolved fuzzy controller 
exhibits path tracking robustness to the imposed perturbations.  This result is 
representative of temporal responses for each of the remaining fitness cases.  In 
simulations completed thus far, the most robust fuzzy controllers were those 
evolved when GP was allowed to randomly select t-norms.  

The performance assessment of the evolved controller with regard to 
robustness is based upon the assumption that low frequency oscillations within 
the control signal of amplitude less than 0.026 radians (1.5°) are practical.  In 
light of this assumption, the results indicate that the evolved FLC was able to 
navigate the robot along the desired path with the imposed perturbation of 
sensor noise and the increase in the robot�s nominal speed. 
 
 



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 20.5: Co-evolved FLC Response to Sensor Noise and Increased Forward 

Speed. 
 
20.4 EVOLUTIONARY PATH PLANNING 

 
Thus far, we have discussed genetic programming techniques for solving a 
mobile robot tracking problem.  We now move on to a related application of 
evolutionary methods for mobile robot motion planning. Mobile robots that are 
capable of tracking paths can be used effectively in mapped environments where 
specific paths from location to location can be designated.  If autonomy is 
desired, the robot software should be capable of using map-based information to 
plan suitable paths in the operating environment.  In the very least, a facility for 
offline path planning should be available to generate suitable paths for the robot.  
What constitutes a suitable path depends on the specific features of the 
application and robot functionality.  A single objective, or multiple objectives, 
may be imposed to define suitable paths for a given application.  Many path 
planning systems consider shortest paths as the primary criterion.  However, the 
shortest path may not always be the most efficient.  For example, path 
smoothness could be of considerable importance.  In general, the path planning 
problem can often be posed as a multiobjective optimization problem.  
Depending on the nature of the objectives to be met for suitable paths, the 
formulation of an effective closed-form, multiobjective function to be optimized 
could be quite difficult.  As a way to circumvent such difficulties, a 
multiobjective selection method has been developed for use with an 
evolutionary path planning system. 

The remainder of this chapter presents an approach to path planning that 
employs evolutionary methods to find suitable paths in a robot�s operating 
environment. The main attributes and evolutionary mechanisms of the path 
planner are described. In addition, a technique for enhancing path planning 
performance using fuzzy logic in the evolutionary process is presented. 

 

0 2 4 6 8 10
-0.2

0

0.2

0.4

0.6

0.8

time (s)

P
o
si

tio
n
 E

rr
o
r 
(m

)

0 2 4 6 8 10
-1

-0.5

0

0.5

time (s)

O
ri
e
n
ta

tio
n
 E

rr
o
r 
(

ra
d
)

0 2 4 6 8 10
-0.1

0

0.1

0.2

0.3

time (s)

S
te

e
ri
n
g
 A

n
g
le

 C
o
n
tr
o
l (

ra
d
)

----- GP-Evolved FLC 
- - - Hand-Derived FLC 



 

20.4.1 Evolutionary Path Planning System 

 
In this section, we present the salient attributes of an evolutionary path 

planning system called GEPOA (global evolutionary planning and obstacle 
avoidance system), which has been applied to robot planning problems [13].  
GEPOA uses steady state reproduction, flat crossover [14] with Gaussian 
mutation, and uniform mutation in an effort to develop feasible paths.  In each 
generation of path evolution, two parents are selected using tournament 
selection with a tournament size of two.  If the first parent selected represents an 
infeasible path, it is repaired 50 percent of the time using a method called 
visibility-based repair (VBR), described below.   If the first parent selected is 
feasible then the two parents create one offspring, which replaces the worst 
individual in the population.  The following attributes of GEPOA will be briefly 
described: environment and path representation, visibility-based repair, path 
evaluation and selection functions, and evolutionary operators. 
 
20.4.1.1 Environment and Path Representation 

An obstacle within the robot�s environment is represented as a set of 
intersecting line segments.  Each line segment connects two distinct vertices.  
Associated with each vertex within the environment is a value, which represents 
the number of obstacles that contain it.  This value is referred to as the 
containment value (CV) of a vertex.  If a vertex lies along the boundary of an 
environment its CV is assigned a value of infinity.  Figure 20.6 provides an 
example of how obstacles are represented in GEPOA.  Notice that the four-sided 
obstacle (Obstacle 1) is represented by only two lines in GEPOA.  

An individual in the evolving population of candidate paths (CPs) contains 
four fields. The first field is a chromosome, which contains a gene 
corresponding to the Cartesian coordinates of each node of the path (where 
nodes of a path are connected by a straight-line segment).  The second field is 
called the seed. The seed of an individual is the gene that will be crossed or 
mutated to created an offspring. Initially, an individual will have only three 
genes: the start gene, the seed gene, and the destination gene. Repair genes are 
inserted into the chromosome by the VBR algorithm each time a straight-line 
segment of an individual is found to pass through an obstacle. The third field is a 
value referred to as the violation distance. The violation distance represents the 
Euclidean distance of the CP, which cuts through one or more obstacles. The 
fourth field records the Euclidean distance of the path from the start to 
destination genes.  
 

20.4.1.2. Visibility-Based Repair of Candidate Paths 

VBR facilitates construction of valid paths through free space and is 
performed as follows. When an obstacle, oi, lies along a straight-line segment 
between two nodes P and Q, each line of oi is checked to see if it is intersected 
by PQ.  If a line of oi is intersected by PQ, then a repair node is created using 
the following set of rules: 

1. if the CVs of a line's vertices are both equal to one, then the repair node  



 

is selected to be a point along an extension (the distance outside an 
obstacle at which a repair node is placed is a user-specified parameter); 

2. if the CVs of a line's vertices are different, then the repair node is 
selected to be a point just outside the vertex which has the lower CV; 

3. if the CVs of a line's vertices are greater than one and equal, then the 
repair node is selected to be a point just outside of the vertex which is 
farther from the point of intersection. 

v(1,1) v(1,2)  

v(1,3) v(1,4)  

v(1,1) v(1,2)  

v(1,3) v(1,4)  

Line 2 

Line 1 

Obstac le 1  

Conventional repres entation  GEPOA  Repres entation  

v(1,3)  

v(2,5) 

v(2,1)  

v(2,2)  

v(2,3) v(2,4) 

v(2,5)  

v(2,1) 

v(2,2)  

v(2,3)  
v(2,4)  

Obstac le 2  

Line 1 

Line 2 
Line 3 

 
Figure 20.6: Obstacle Representation in GEPOA. 

 

 
v  (1 ,1 ) v  (1 ,2 ) 

v  (1 ,3 ) v  (1 ,4 ) 

v  (1 ,1 ) 

v  (1 ,2 ) 

v  (1 ,3 ) v  (1 ,4 ) 

Obs tacle 1 
Obs tacle 2 

Obs tacle 3 

v  (1 ,1 ) v  (1 ,2 ) 

v  (1 ,3 ) v  (1 ,4 ) 

v  (1 ,1 ) v  (1 ,2 ) 

v  (1 ,3 ) v  (1 ,4 ) 

Obs tacle 1 
Obs tacle 2 

Obs tacle 3 

X  

P 

T 
X  

A  

P 
B C 

T 

(a) Before  VBR (a) A fter VBR 

 
 Figure 20.7: Visibility Based Repair of Paths. 



 

 

Figure 20.7 shows an example of how VBR can be used to transform an 
infeasible path into one that is feasible. In Figure 20.7a, an infeasible path XPT 
is shown. The path XPT is infeasible because the line segment XP passes 
through Obstacle 1 and the line segment PT passes through Obstacle 3.  Before 
proceeding further, notice that each vertex in the environment shown in Figure 
20.7a has a CV of one.  

Using VBR, the line segment XP can be repaired to XAP. Since XP intersects 
Line 1 of Obstacle 1, a repair node corresponding to a point just outside either 
v(1,1) or v(1,3) must be selected.  By applying Rule 1, Node A, which 
corresponds to a point just outside vertex v(1,1), is selected as the repair node.  
Similarly, the line segment PT can be repaired to PBCT. Again Rule 1 must be 
applied to Line 1 and Line 2 of Obstacle 3.  The repair node that results from the 
intersection of PT and Line 1 is Node B.  The repair node that results from the 
intersection of PT and Line 2 is Node C.  Figure 20.7b shows the result of using 
VBR on XPT.  The repaired, feasible version of XPT is XAPBCT. 

Given a candidate path, the VBR algorithm used by GEPOA works as 
follows.  Each obstacle within the environment is checked with each straight 
line segment from the start gene to the destination gene of the candidate path 
until a segment is found that passes through the obstacle. The infeasible segment 
is repaired via VBR and the process is repeated using the next obstacle.  As an 
example of how this repair algorithm works, notice once again Figure 20.7.  
When given the path XPT the algorithm works as follows.  Obstacle 1 is 
checked to see if it is violated by segment XP.  Since it is, a repair gene (Node 
A) is generated and Obstacle 2 is then considered. Obstacle 2 is checked to see if 
it is �cut� by segment XA. Since it is not cut by segment XA, Obstacle 2 is 
checked with segment AP then segment PT. Since there are no more segments to 
inspect, Obstacle 3 is considered. Obstacle 3 is checked to see if it is cut by 
segments XA, and AP.  Finally, Obstacle 3 is checked to see if it is cut by PT. 
Since it is, two repair genes are generated (Nodes B and C) and the algorithm 
terminates. 

Since this repair algorithm considers an obstacle only once, it is possible for 
a repair gene to be generated that creates a line segment that cuts through a 
previously considered obstacle. Therefore, a candidate path may need to be 
repaired by this VBR algorithm more than once. 
 
20.4.1.3.  Path Evaluation, Selection, and Evolutionary Operators 

The evaluation function computes the Euclidean distance of each straight line 
segment of the path that an individual represents as well as the violation 
distance. GEPOA uses a modified version of tournament selection, with a 
tournament size of two, to select individuals to become parents. The selection 
process is as follows. Two individuals are randomly selected from the current 
population. If the violation distances of the two are different, then the individual 
with the smaller violation distance is selected to be a parent.  If the violation 
distances are the same then the individual with the smaller overall distance is 
selected to be a parent.  



 

GEPOA uses two operators along with VBR to create and/or refine 
individuals. The two operators are as follows: (1) a version of Radcliffe's flat 
crossover [14], which we refer to as seed crossover and (2) a version of uniform 
mutation, which we refer to as uniform seed mutation. Seed crossover proceeds 
as follows. Given two seed genes s1 = (x1,y1) and s2 = (x2,y2),  a seed gene for an 
offspring is created as follows:    
 

soff = (rnd(x1,x2) + N(0,4.0) rnd(y1,y2)+ N(0,4.0))  (20.3) 
 
where rnd is a uniform random number generator and N(0,4.0)  is a Gaussian 
random number with zero mean and a standard deviation of 4.0.  The resulting 
offspring has a chromosome containing three genes: a gene corresponding to the 
node representing the current position of R(X), the seed node, and the 
destination node.  The offspring then undergoes VBR and may have additional 
repair genes added by the VBR algorithm.  In uniform seed mutation, either the 
x or y coordinate of a parent is mutated using uniform mutation to create a seed 
gene for an offspring. A resultant offspring created by seed mutation is similar 
to one created by seed crossover in that it also has a chromosome containing 
three genes.  Once again the offspring undergoes VBR and may have additional 
repair genes added by the VBR algorithm. 
 

20.5 PATH EVOLUTION WITH FUZZY SELECTION 

 
During evolution of candidate paths the selection of the parent paths that 
undergo reproduction is based on several objective criteria.  This section 
describes a tournament selection procedure that employs fuzzy logical inference 
to enhance the performance of the GEPOA system. The fuzzy tournament 
selection algorithm (FTSA) selects CPs to be parents and undergo reproduction 
based on: 

1. the Euclidean distance of a path from the origin to its destination, 
2. the sum of the changes in the slope of a path, 
3. the average change in the slope of a path. 
As such, the overall objective of the FTSA is to allow evolutionary path 

planners to evolve CPs that feature minimal distances from start to destination, 
minimal sums of the changes in slope (SCS), and minimal average changes in 
slope (ACS).  Given two candidate paths (CP1 and CP2) that are randomly 
chosen from the current population, the FTSA takes six inputs � the path 
distances, the SCS, and the ACS.  It returns one output in the continuous interval 
[-1, 1], which corresponds to the CP that should be selected to be a parent.  Any 
output less than zero indicates that CP1 is to be selected, while any output 
greater than zero indicates that CP2 is to be selected. 
 
20.5.1 Fuzzy Inference System 

 
 Let (d1, s1, a1) and (d2, s2, a2) denote the distance, SCS, and ACS for CP1 and 
CP2, respectively.  These six inputs are converted into three derived parameters, 



 

d, s, and a, whose computed values lie in [-1,1] according to the following 
expressions: 
 




+
−=

+
−=


+
−=

21

21

21

21

21

21 ,,
aa

aa
a

ss

ss
s

dd

dd
d   (20.4) 

 
Note that for values of d, s, and a, which are less than zero, the more 

desirable attribute belongs to CP1 and vice versa for CP2.  Each of the derived 
inputs has a domain partitioned by three fuzzy subsets defined using overlapping 
membership functions. Figure 20.8 shows the three membership functions, 
where x is d, s, or a.  If the value of x is nonpositive then it is a member of the 
fuzzy set �less than,� LT, which represents the set of all tuples (x1 ,x2) such that 
x1 < x2.  Similarly, values of x that are nonnegative are members of the fuzzy set 
�greater than,� GT, and represent the set of tuples (x1 ,x2) for which x1 > x2.  All 
values of |x| < X are members of the fuzzy set �equal,� EQ, representing the set 
of all tuples (x1 ,x2) for which x1 and x2  are approximately equal.  By varying the 
value of X, the FTSA has the ability to focus on optimizing a particular 
objective.  In the sequel, X is D, S, or A. 

The fuzzy rules are formulated as listed below. For each of the seven rules, P 
represents the singleton consequent of the rule. If the consequent of a rule is (P 
= -1), then the rule has specified that CP1 should be selected to be a parent.  
Similarly if a rule's consequent is (P = 1) then it has specified that CP2 should be 
selected. The defuzzification method used is the Mean of Maxima. 
 

• IF d is LT THEN P = -1 
• IF d is EQ(D) AND s is LT THEN P = -1 
• IF d is EQ(D) AND s is EQ(S) AND a is LT THEN P = -1 
• IF d is EQ(D) AND s is EQ(S) AND a is EQ(A) THEN P =  0 
• IF d is EQ(D) AND s is EQ(S) AND a is GT THEN P =  1 
• IF d is EQ(D) AND s is GT THEN P =  1 
• IF d is GT THEN P =  1 

-1.0          -X           0.0             X         1.0 

1.0 
 
 
 
0.5 
 
 
0 

x 

µ   (x)         µ  (x,X)          µ    (x)      
  LT                    EQ                         GT 

 
Figure 20.8. FTSA Membership Functions for LT, EQ(X), and GT. 

 



 

20.5.2 Experimental Example 

 
Here, we present an illustrative example of the utility of the FTSA for 

enhancing the GEPOA path planning system described above.  For fuzzy 
tournament selection to be effectively used in this type of system, it must be able 
to adequately rank individuals of a population. Hereafter, let GEPOA+FTS 
denote GEPOA with fuzzy tournament selection. 

Using a hypothetical environment consisting of obstacles distributed 
throughout enclosed free space, we compared paths evolved by GEPOA and 
GEPOA+FTS. The parameters for each of these algorithms were as follows: the 
population size was 20, the flat crossover rate with Gaussian mutation (standard 
deviation = 4.0) was 0.66, and the uniform mutation rate was 0.34. After the 
initial population was created, both algorithms were allowed to run for 500 
generations, thus, creating a total of 520 individuals. For GEPOA+FTS, we set 
D = 0.15, S = 0.15, and A = 0.15. 

Figure 20.9: Path Population of GEPOA: Generation 0 (left); after 
Generation 500 (right). 

Figure 20.10: Path Population of GEPOA+FTS: Generation 0 (left); after 
Generation 500 (right). 
 



The left halves of Figures 20.9 and 20.10 show the initial populations that were

randomly generated by GEPOA and GEPOA+FTS, respectively. Since GEPOA

and GEPOA+FTS use a visibility based algorithm to repair infeasible paths, it is

not uncommon for feasible (but suboptimal) paths to appear in the initial

population.

The right half of Figure 20.9 shows the population of paths developed by

GEPOA after 500 steady state generations.  Notice that GEPOA has converged

upon the two equal and shortest paths; however, these paths are quite rugged. By

contrast, the right half of Figure 20.10 shows the population of paths developed

by GEPOA+FTS after 500 steady state generations. First of all notice that

GEPOA+FTS has converged upon a number of good paths.  Notice also that

among the paths evolved with GEPOA+FTS, the shortest path is still

represented. The fact that it is infeasible is not a major concern because it has a

chance of being repaired!  Not only does fuzzy tournament selection allow

evolutionary search to converge upon the best path, but it also allows for a great

deal of valuable and much needed diversity.

20.6 SUMMARY AND CONCLUSIONS

GP was successfully applied to discover FLCs capable of navigating a mobile

robot to track straight-line paths in the plane.  The overall performance of the

best evolved rule bases was comparable to that of a manually designed rule base

that utilized more rules in most instances.  Instances of simultaneous evolution

of membership functions and rules showed that GP was capable of evolving a

FLC that demonstrated satisfactory responsiveness to various initial conditions

while utilizing minimal human interface.  Suboptimal solutions with respect to

the employed fitness function were consistently found, demonstrating that GP

performs well as a global adaptive search method.  Further automatic

improvement towards optimal solutions can be made by synthesizing a hybrid

between GP and a localized search method such as hill climbing [15, 16].

GP was also applied to larger population sizes facilitated by the dramatic

speed increase of our coding implementation in C vs. the previously investigated

LISP implementation.  The 82% increase in speed of evolution alone serves as a

strong basis for practical application of GP in the controller design process.  The

approach provides a means for expeditious design of FLCs that can be directly

applied to a physical system.  Alternatively, human experts can use the rapidly

evolved FLCs as design starting points for further manual refinement [4].  To

assess the practicality of the GP solutions, robustness characteristics of evolved

FLCs were examined.  The controllers evolved with random selection of fuzzy t-

norms were particularly robust when subject to imposed perturbations of sensor

noise and an increase in nominal robot speed.  The results support the notion

that a genetically evolved fuzzy logic controller can have practical utility.

 Fundamental features of the GP system include manipulation of linguistic

variables directly associated with the fuzzy system (as opposed to numerical

encoding/decoding), a syntactic structure that provides context preservation via



structure preserving genetic operators, and provision for evolving rule bases of

various sizes in a single population.  These features were inherited from our

previous implementation in LISP.  Beyond these, the implementation proposed

herein provides several improvements and extensions that make GP a more

powerful tool for FLC design.  Namely, we have dramatically improved upon

the required speed of evolution and extended the system to handle full FLC

design, including evolution of the most appropriate t-norms for the controlled

system.

In the second part of the chapter we presented an evolutionary algorithmic

approach to robot path planning.  It serves as an effective means of

circumventing the difficulties associated with formulating complex

multiobjective functions for suitable paths. A multiobjective selection method

based on fuzzy logic was applied with an evolutionary path planning system.

The fuzzy tournament selection algorithm can be used for multiobjective path

planning by almost any evolutionary based motion planning system.  Despite the

simple nature of the fuzzy inference system employed, the FTSA exhibits

complex behavior.  The approach allows evolutionary search to converge upon a

diversity of optimal and/or near optimal paths.  The availability of alternative

feasible paths is important in the event that a local navigation system cannot

traverse a particular global path. This can happen, for example, when

unfavorable conditions are sensed locally, replanning becomes necessary, or

task constraints intervene.

ACKNOWLEDGMENTS

This work is partially funded by grants from NASA Autonomous Control

Engineering Center (ACE) at North Carolina A&T SU under grant # NAG2-

1196 and NASA Dryden Flight Research Center under grant # NAG4-131.  The

authors wish to thank the ACE Center and NASA Dryden for their financial

support. A portion of the research described in this chapter was performed at the

Jet Propulsion Laboratory, California Institute of Technology, under contract

with the National Aeronautics and Space Administration.

REFERENCES

1. Koza, J. R., Genetic Programming: On the Programming of Computers

by Means of Natural Selections, MIT Press, Cambridge, MA, 1992.

2. Tunstel, E. and Jamshidi, M., On Genetic Programming of Fuzzy Rule-

Based Systems for Intelligent Control, Intl. J. Intell. Automation Soft

Computing, 2(3), 271, 1996.

3. Tunstel E., Lippincott, T., and Jamshidi, M., Behavior Hierarchy for

Autonomous Mobile Robots: Fuzzy-Behavior Modulation and

Evolution, Intl. J. Intell. Automation  Soft Computing, 3(1), 37, 1997.

4 .  Alba, E., Cotta, C., and Troyo, J., Type-Constrained Genetic

Programming for Rule-Base Definition in Fuzzy Logic Controllers, 1
st

Ann. Conf. on Genetic Program., 28, Palo Alto, CA, 1996.



5 .  Hemami, A., Steering Control Problem Formulation of Low-Speed

Tricycle-Model Vehicles, Intl. J. Control, 61(4), 783, 1995.

6.  Hemami, A., Mehrabi, M., and Cheng, R., Optimal Kinematic Path

Tracking Control of Mobile Robots with Front Steering, Robotica,

12(6), 563, 1994.

7.  Gerald, C. and Wheatley, P., Applied Numerical Analysis, Addison-

Wesley, Reading, MA, 1989.

8. Lee, C., Fuzzy Logic in Control Systems: Fuzzy Logic Controller, Part

I, IEEE Trans. Syst., Man & Cybern., 20(2), 404, 1990.

9 .  Battle, D. D., Implementation of Genetic Programming for Mobile

Robot Navigation,  M.S. Thesis, Department of Electrical Engineering,

North Carolina A&T State Univ., Greensboro, NC, 1998.

10. Homaifar, A. and McCormick,E., Simultaneous Design of Membership

Functions and Rule Sets for Fuzzy Controllers using Genetic

Algorithms, IEEE Trans. Fuzzy Systems, 3(2), 129, 1995.

11. Homaifar, A., Battle, D., Tunstel, E., and Dozier, G., Genetic

Programming Design of Fuzzy Logic Controllers for Mobile Robot

Path Tracking, Intl. J. Knowledge-Based Intell. Eng. Syst., 1999.

12. Tackett, W. and Carmi, A., SGPC: Simple Genetic Programming in C,

Prime Time Freeware for AI, 1(1), 1993.

13. Dozier, G., Esterline, A., Homaifar, A., and Bikdash, M., Hybrid

Evolutionary Motion Planning Via Visibility-Based Repair, IEEE Intl.

Conf. on Evolutionary Computation, 1997.

14. Eshelman, L. J. and Shaffer, J. D., Real-Coded Genetic Algorithms and

Interval-Schemata, in Foundations of Genetic Algorithms II, Whitley,

L. D. (ed.), Morgan Kaufmann, San Francisco, CA, 1993.

15. Dozier, G., Bowen, J., Homaifar, A., and Esterline, A., Solving

Randomly Generated Static and Dynamic Fuzzy Constraint Networks

using Microevolutionary Hill-Climbing, Intl. J. of Intell. Automation

Soft Computing, 3(1), 51, 1997.

16. O’Reilly, U.M., An Analysis of Genetic Programming, Ph.D.

Dissertation, School of Computer Science, Carleton University,

Ottawa, Ontario, 1995.



21 PROBLEMS AND MATLAB

PROGRAMS

Ali Zilouchian and Mo Jamshidi

21.1 INTRODUCTION

This appendix serves two purposes.  First, it provides readers with problems and

exercises related to NN and FL and their applications. Second, it presents the

MATLAB programs and solutions to problems in the text. The problems are

identified based on the subject matter as discussed in the book.

21.2 NEURAL NETWORK PROBLEMS

Chapter 2

1.    Consider following the sigmoid function:

xe
xf

α−+
=

1

1
)(

(a) What are the upper and lower limit of this function for  constant α?
Obtain the value of f(x) at x=0

(b) Show that the derivative of f(x) with respect to x is given by:

)](1)[(.)(
'

xfxfxf
dx

df
−== α

(c) How would you modify f(x) such that its value at x=0 is equal

(i) 0.125; (ii)0.8

(d) What is the value of f’(x) at the origin?

2. Consider the following hyperbolic activation function

xx

xx

ee

ee
xg

αα

αα

−

−

+

−
=)(

(a) What are the upper and lower limits of this function?

(b) Show the derivative of g(x) is given as

)](1[2)(
2'

xgxg
dx

dg
−== α



(c) What is the value of g’(x) at the origin?

3.   Consider the activation function f(x) shown below:

(a) Formulate f(x) as a function of x

(b) Obtain f(x) if  either a or b or both are allowed to approach zero.

4. A neuron m receives sensory information from five inputs with the values

of 8, -10, 4, -2 and 5. The synaptic weights of neuron m are 0.8, 2.0, 1.0, -

0.9 and 0.6. Calculate the output of neuron for the following three

situations:

(a) The neuron is a linear model

(b) The neuron is represent by a McCulloch-Pitts model. (Hard limit

activation function with negative threshold zero)

(c) The neuron is represented based on a sigmoid function as follows:

)exp(1

1
)(

x
xf

−+
=

5. Consider the following network:

θ2=1

θ3=0

W23=.6

W21=-1

W12=-.6

W11=1

W22=-1

W13=.5

W11=1

W11=1

W03=0

x2=2

x1=1

θ1=0

Y

x

f(x)

b

-b

-a

a



Obtain the output Y for the following cases:

(a) All the neurons are represented by a McCulloch-Pitts model (hard limit

activation function with negative threshold zero)

(b) All the neurons are represented based on a sigmoid activation function.

6.   Suppose you would like to implement the following logic gates using NN

(a) OR gate

(b) AND gate

(c) XOR gate

for each case, could you  utilize  one (or two) hidden  layer(s) with linear

activation function to achieve your goal?

If your answer is yes, justify your answer.

If your answer is no, suggest an alternative solution.

Chapter 3

1. Consider a multi layer feed forward network, all the neurons, which operate

in their linear regions. Justify the statement that such a network is

equivalent to a single layer feed forward network.

2. Consider the following network with the inputs and outputs as follow:

i1=0.8, i2=1, i3=0.9 with do=d1=1

i   1  

2 

o[1] 

O[0] 

0.3 

0.3 

0.7 

0.9 

0.6 

0.1 

0.9 

0.2 

0.1 

0.4 

j[0] 

j[1] 

i   

3 
i   

(a) Derive a step-by-step procedure using back propagation algorithm for

two complete iterations of the network with the sigmoid activation

functions at the first stage and linear function at the output stage with

the initial weights as shown.

(b) Solve (a) using MATLAB.

(c) Solve (a) using MATLAB with tangent hyberbolic activation function

at the first stage and the linear function at the output stage.



(d) Suppose you select different initial conditions. Are the final weights the

same? Justify your answer.

(e) Generate three different random initial weights. Obtain the final weight

of the network after training with 0.1 error goal. Compare your results.

3. Suppose for problem 2, the inputs and the outputs are as follow:

i1= 12 , i2=3, i3=8  and  do= 9, d1=1

Solve the problem with appropriate scaling of the inputs and outputs data

sets.

4. Repeat problem 2 for a radial basis function network.

5. Compare the radial basis functions neural network and back propagation in

term of various aspects such as training phase, recall phase, convergence,

and applications.

6. Consider a two link serial robot manipulator as shown:

(a) Write the forward kinematics equation for the robot.

(b) Show how an NN architecture can be used to solve the forward

kinematics problem. Is the solution unique?

(c) How do you solve inverse kinematics of the robot using NN. Is the

solution unique? Justify your answer,

7. Consider the two-link robot manipulator of the previous example with

L1 =2(m), and L2 =3(m).

(a) Generate at least 100 data points for x and y, given the following

trajectory:

θ1=0.005*t

θ2=0.005*t

where θ1and θ2 are uniformly distributed in the first quarter and the

range of t is from 0 to 500.

θ2

θ1

L1

L2



(b) Use two different back propagation algorithms (with the adaptive rate

and one hidden layer) to solve the forward kinematics problem of the

two link robot. The first 80 data points from data set as generated in

part (a) should be used in the training phase.

(c) Change the number of hidden layers to 2 and solve the problem as

indicated in (c).

(d) Use radial basis network to solve (b).

(e) Compare your results for (b)-(d).

(f) Confirm the fidelity of your trained NN using the remaining 20 data

sets for each part (b-e). Draw the error plots for the comparison.

8. Consider a Hopfield network made up of five neurons, which is required to

store the following three fundamental memories:

[ ]T111111̀ +++++=ζ

[ ]T11111`2 −+−−+=ζ

[ ]T11111`3 ++−+−=ζ

(a) Evaluate the 5-by-5 synaptic weight matrix of the network.

(b) Demonstrate that all three fundamental memories,ξ1, ξ2,and ξ3 satisfy
the alignment condition, using asynchronous updating.

(c) Show that

[ ]T111111̀ −−−−−=ζ

[ ]T11111`2 +−++−=ζ

[ ]T11111`3 −−+−+=ζ

are also fundamental memories of the Hopfield network.

9.  Consider a simple Hopfield network made up of two neurons. The synaptic

weight matrix of the network is

�
�

�
�
�

�

−

−
=

01

10
W

The threshold applied to each neuron is zero. The four possible states of the

network are

[ ]
T

S 111 ++=   , [ ]
T

S 112 +−=

[ ]
T

S 113 −−= [ ]
T

S 114 −+=



(a) Using the alignment (stability condition), show that states S2 and S4

are stable.

(b) What are the statuses of S1and S3?

10. Consider a simple Hopfield network made up of four neurons. The synaptic

weight matrix of the network is given as:

�
�
�
�

�

�

�
�
�
�

�

�

−−−

−

−

−

=

0111

1011

1101

1110

W

The threshold applied to each neuron is zero. There are 2^4=16 possible

states of the network.

(a) Using the alignment stability condition, obtain the stable states

(fundamental memories).

(b) Show the architectural graph of the Hopfield network.

(c) Suppose the network is initialized at  x0=[1, 1, 1, 1]. Show that the

network will converge to the nearest fundamental memory (equilibrium

state) after iteration.

21.3 FUZZY LOGIC PROBLEMS

Chapter 8

1. Design membership functions to describe the linguistic terms “tall”,

“average”, and “short”.

2. Let
3

2.0

2

1

1

3.0

~
++=A  and 

3

2.0

2

6.0

1

5.0

~
++=B . Find the following:

(a) 
~~
BA �

(b) 
~~
BA �

(c) 
~~
BA �

(d) 
~~
BA �

3. Let 
7654321

~

01.05.075.085.09.01

xxxxxxx
A ++++++= .

Find the α-cut sets A1, A0.8, A0.2, and A0.



4. For fuzzy sets A, B, and C defined on the universe

X={0, 1, 2, 3, 4, 5, 6, 7,8}

A={0.1/2, 0.7/3, 1/4, 0.3/5, 0.2/6}

B={0.2/1, 0.3/2, 0.6/3, 1/4, 0.7/5, 0.4/6, 0.1/7}

C={.4/2, .8/4, 1/5, .6/7, .4/8}

Answer the following questions:

(a) Compute the intersections and unions of the fuzzy sets A, B, and C.

(b) Determine the intersection and union of the complements of fuzzy set B

and C.

(c) What are the cardinalities and relative cardinalities of the above fuzzy

sets?

(e) Which of the above fuzzy sets are convex and which are not?

5. Consider two fuzzy sets 
4321~

1

5.02.03.01.0

xxxx
A +++=  and

321~
2

3.015.0

yyy
A ++= .

Determine the fuzzy relation among these sets.

6. Consider two fuzzy relations

�
�
�

�

�

�
�
�

�

�

=

2.03.00

9.06.08.0

3.01.01

~
R  and 

�
�
�

�

�

�
�
�

�

�

=

1.06.07.0

9.04.02.0

2.07.05.0

~
S

It is desired to evaluate 
~~
SR� using (a) min-max, and (b) max-product.

7. Let S and R be the matrix representation of fuzzy relations

�
�
�

�

�

�
�
�

�

�

=

2.09.08.0

1.03.06.0

R  and 

�
�
�

�

�

�
�
�

�

�

=

1.05.0

9.08.0

8.05.0

S

Calculate SSRSRSR ���� )(&,  using  (a) min-max, and (b)

max-product.



Chapter 9

1. Prove the truth value of the modus ponens deduction

)())(( PonensModusBBAA →→∧

2. Prove the truth value of the modus tollens inference

)())(( TollensModusABAB →→∧

3. Let two universes of discourse be described by X={3,4,5,6} and Y={1,2,3}

and define the crisp set A={4,5} on X and B={1,3} on Y.  Determine the

deductive inference IF A, THEN B.

4. Let three universes of discourse be described by X={5,6,7}, Y={1,2,3,4,5}

and define the crisp set A={5,6} on X, B={1,3,5} on Y and C={1,6} on Y.

Determine the deductive inference IF A, THEN B, ELSE C.

Chapter 10

1. Given 3 fuzzy sets

-1 0 1 x

)(xAµ

0.50 1 y

)( yBµ



-2 0 1 z

)(zCµ

Find the consequent, z, of the following rule

CCzBAyBAx ���  is  THEN  is  AND  is  IF

2. Design a set of fuzzy rules to control a braking system of a car.  Use car

speed and distance from an object as the input fuzzy variable, and the

strength of braking as the output variable.

3. A fuzzy system is represented by

)1(5.0)()1(  THEN  is )1( IF:

)1(5.0)(2)1(  THEN  is )1( IF:

222

111

−−−=+−

−−=+−

kxkxkxAkxP

kxkxkxAkxP

where A
i
, i=1,2 are shown in Chapter 10, Figure 10.15.  Check if the system

is stable by Lyapunov’s method.  Use x(0)=-1 and x(1)=0 and verify your

answer by simulation.

4. Consider a fuzzy feedback control system of the type shown in Chapter 10

Figure 10.10 with the following implications:

)1()()1(  THEN  is )( IF:

)1()()1(  THEN  is )( IF:

)(22.2)1(135.0)(56.2)1(  THEN  is )( IF:

)(35.0)1(65.0)(85.1)1(  THEN  is )( IF:

2
2

2
1

222

1
2

1
1

111

222

111

−−=+

−−=+

+−−=+

+−−=+

kxkkxkkfAkxC

kxkkxkkfAkxC

kukxkxkxAkxP

kukxkxkxAkxP

where A
i
, i=1,2 are shown in Chapter 10, Figure 10.17.

Find the closed-loop implications S
ij
, i=1,2, and j=1,2.  Notice that in this case

only three rules are needed to describe the closed-loop system.  Also find the

appropriate feedback gains to stabilize the system.



21.4 APPLICATIONS

1.  Consider a nonlinear multivariable dynamic process with two inputs and two

outputs. The actuator inputs and the measured outputs data as well as the

desired outputs of the plant are provided.

(a) Draw an identification block diagram to obtain the model of the physical

process by NN. What are the advantages/disadvantages to utilized your

proposed method in comparison to conventional identification

algorithms?

(b) Suppose you would like to control the given process, explain how you

would design a NN controller to achieve your goals.  What type of NN

algorithm would you utilize for your proposed design and why? Draw

the block diagram of your design and various steps to achieve the

design goals.

(c) How would you design a controller using both the NN and conventional

methodologies? Draw the block diagrams and explain your design

strategy.

2. Consider the D.C. motor  given in the figure below. Suppose the transfer

function and the tacho-generator of the DC motor are given as:

G(s) =
θ(s)

Vi(s)
 =

KM

S+2

Vo(t)=KT θ(t)

KM=100, KT=20



(a) Design a fuzzy controller for angular velocity control of the system.

(b) Please provide step-by-step implementation procedures for the

controller design.

(c) Simulate the system using  simulink and fuzzy toolbox.

(d) For two various inputs (e.g. step inputs and ramp) simulate your design.

(e) How is the robustness of your proposed fuzzy controller in the present

of 10% on DC gain (K), and pole variations?

3.  Consider a three-link serial robot manipulator (planar) as shown :

(a) Write the forward kinematics equation for the robot.

(b) How do you solve inverse kinematics of the robot using ANFIS? Is the

solution unique?

(c) Simulate the inverse kinematics of the robot for the given values (L1=1

m, L2=1.5 m, L3=1.2 m) using  fuzzy logic toolbox.

(d) Draw three dimension plots of joint angles v.s.  x and y similar to fuzzy

demo plots in  fuzzy logic toolbox.

L1

L2

L3



(e) Obtain the errors (both L2 and Linf) in comparison with the original

values.

4. Consider the controller design for a central air condition system. Suppose

you would like to have a steady room temp. around 84° F. The outside
temperature  can be varied relative to the room temperature depending upon

various seasons and weather conditions. The ranges of changes include

“very cold”, “cold”, “medium”, “hot”, and “very hot” temperature.

(a) Design a fuzzy logic controller (FLC) for this system. Draw the major

block diagrams for the process as well as FLC.

(b) Show step-by-step your FLC design.

21.5 MATLAB PROGRAMS

Example 3.1:

The following is the MATLAB code for Example 3.1. A simple feed forward

network has been defined and trained to map the input P to output T.

P=[1; 0; 1];   % Input Sample

T=[0; 1];        %Desired Output

% Creating the network

net = newff([0 1 ; 0 1 ; 0 1],[2 2],{'tansig' 'purelin'},'traingd');

net.iw{1,1}=[0.1 0.6 0.8;0.2 0.3 0.9]; % Input Weights

net.b{1}=[0; 0];  % Input Threshold Weights = 0

net.lw{2,1}=[0.5 0.7;0.6 0.5]; % Hidden Layer weights

% Printing the Weights

input_layer_weight = net.iw{1,1}

Hidden_layer_weight = net.lw{2,1}

Bias_weights = net.b{1}

Initial_Output=sim(net,P);

% Setting Training Parameters

net.trainParam.lr = 0.5;

net.trainParam.epochs = 50;

net.trainParam.goal = 0.001;

net = train(net,P,T);  % Training the Network

% Evaluating the results

Final_Output = sim(net,P)

input_layer_weight = net.iw{1,1}

Hidden_layer_weight = net.lw{2,1}

Bias_weights = net.b{1}

Example 3.2:

   The following MATLAB code is for Example 3.2. It is trained to solve the

forward kinematics of a robot manipulator. A path is defined in an excel file for

the following trajectory:



θ1=0.03 t

θ2=0.03 t

The network is trained and then the result is compared to the desired value.

% Reading the training set from excel file.

A = wk1read('A:\hmwk55.wk1',0,3,'D1..E201');

B = wk1read('A:\hmwk55.wk1',0,6,'G1..H201');

Theta=A';

X=B';

% Creating the Network

net = newff([-pi pi;-pi pi],[15 2],{'tansig' 'purelin'});

% Setting Training Parameters

net.trainParam.goal = 0.001;

net.trainParam.epochs = 50;

net = train(net,Theta,X); % Training the network

Output=sim(net,Theta); % Evaluating the output to the same input data

plot(Output(1,:),Output(2,:),'k+', X(1,:),X(2,:),'ko');

 % Plotting the desired value and output of the Network

Example 3.3:

   The following is the MATLAB code for solving Example 3.3. In the example,

the problem 3.1 has been solved using a radial basis function network. Then the

results have been evaluated for an input similar to the training input.

P=[1; 0; 1]  % Input Sample

T=[0; 1] % Desired Output

net = newrb(P,T) % Defining RBFN

Output=sim(net,P) % Evaluating Output

P1=[1.1; -0.3; 0.9]; % A Sample Input other than training set

Output=sim(net,P1) % Output of the network for sample Input

Example 3.4:

This is the MATLAB code for Example 3.4. It solves forward kinematics of

robot manipulator of problem 3.2 using an RBFN.

% Reading the training set from excel file.

A = wk1read('A:\hmwk55.wk1',0,3,'D1..E201');

B = wk1read('A:\hmwk55.wk1',0,6,'G1..H201');

Theta=A';

X=B';

net = newrb(Theta,X,0.001); % Creating  and Training of the Network

Output=sim(net,Theta); % Calculating the Output

plot(Output(1,:),Output(2,:),'k+',X(1,:),X(2,:),'ko'); % Plotting the Result



Example 3.5:

 The following is the MATLAB code for Example 3.5. A Kohonen network

has been defined and trained with an input path. It can be seen that the weights

of the network are in the form of the training path.

angles = -0.5*pi:0.5*pi/99:0.5*pi;

P=[sin(angles);cos(angles)];

figure(1);

plot(P(1,:),P(2,:),'k+');

net=newsom([0 1;0 1],[10]);

net.trainParam.epochs=1200;

net=train(net,P);

figure(2);

plotsom(net.iw{1,1},net.layers{1}.distances)

Example 3.6:

 The following is the MATLAB code for Example 3.6. In this example 1000

random input points have been generated. Then a Kohonen network has been

trained using this input set. The plot of the weights after training shows that the

weights of the network have a uniform distribution.

figure(1);

T=rands(2,1000); % Creating 1000 Random Inputs

plot(T(1,:),T(2,:),'k+'); % Plotting the original random input pattern

net=newsom([0 1;0 1],[5 6]);

figure(2);

plotsom(net.iw{1,1},net.layers{1}.distances); % Plotting the Initial Weights

net.trainParam.epochs=1500;

net=train(net,T); % Training the Network

figure(3);

plotsom(net.iw{1,1},net.layers{1}.distances); % Plotting the Final Pattern


	Intelligent Control Systems Using Soft Computing Methodologies
	PREFACE
	ABOUT THE EDITORS
	CONTRIBUTORS
	ABBREVIATIONS
	TABLE OF CONTENTS
	1 - INTRODUCTION
	1.1 MOTIVATION
	1.2 NEURAL NETWORKS
	1.2.1 Rationale for Using NN in Engineering

	1.3 FUZZY LOGIC CONTROL
	1.3.1 Rationale for Using FL in Engineering

	1.4 EVOLUTIONARY COMPUTATION
	1.5 HYBRID SYSTEMS
	1.6 ORGANIZATION OF THE BOOK
	REFERENCES

	2 - FUNDAMENTALS OF NEURAL NETWORKS
	2.1 INTRODUCTION
	2.2 BASIC STRUCTURE OF A NEURON
	2.2.1 Model of Biological Neurons
	2.2.2 Elements of Neural Networks
	2.2.2.1 Weighting Factors
	2.2.2.2 Threshold
	2.2.2.3 Activation Function


	2.3 ADALINE
	2.4 LINEAR SEPARABLE PATTERNS
	2.5 SINGLE LAYER PERCEPTRON
	2.5.1 General Architecture
	2.5.2 Linear Classification
	2.5.3 Perceptron Algorithm

	2.6 MULTI-LAYER PERCEPTRON
	2.6.1 General Architecture
	2.6.2 Input-Output Mapping
	2.6.3 XOR Realization

	2 .7 C O N C L U S I O N
	REFERENCES

	3 - NEURAL NETWORK ARCHITECTURES
	3.1 INTRODUCTION
	3.2 NN CLASSIFICATIONS
	3.2.1 Feedforward and Feedback Networks
	3.2.2 Supervised and Unsupervised Learning Networks

	3.3 BACK PROPAGATION ALGORITHM
	3.3.1 Delta Training Rule
	Selection of Number of Hidden Layers
	Normalization of Input and Output Data Sets
	Network Testing


	3.4 RADIAL BASIS FUNCTION NETWORK (RBFN)
	Finding the center Ui of each neuron
	Finding the diameter of the receptive region

	3.5 KOHONEN SELF-ORGANIZATION NETWORK
	3.5.1 Training of the Kohonen Network
	3.5.2 Examples of Self ŒOrganization

	3.6 HOPFIELD NETWORK
	3.7 CONCLUSIONS
	REFERENCES:

	4 - APPLICATIONS OF NEURAL NETWORKS IN MEDICINE AND BIOLOGICAL SCIENCES
	4.1 INTRODUCTION
	4.2.TERMINOLOGY AND STANDARD MEASURES
	4.3 RECENT NEURAL NETWORK RESEARCH ACTIVITY IN MEDICINE AND BIOLOGICAL SCIENCES
	4.3.1 ANNs in Cancer Research
	4.3.2 ANN Biosignal Detection and Correction
	4.3.3 Decision-making in Medical Treatment Strategies

	4.4 SUMMARY
	REFERENCES

	5 - APPLICATION OF NEURAL NETWORK IN DESIGN OF DIGITAL FILTERS
	5.1 INTRODUCTION
	5.2 PROBLEM APPROACH
	5.2.1 Neural Network for Identification
	5.2.2 Neural Network Structure

	5.3 A TRAINING ALGORITHM FOR FILTER DESIGN
	5.3.1 Representation
	5.3.2 Training Objective
	5.3.3 Weight Adjustment
	5.3.4 The Training Algorithm

	5.4 IMPLEMENTATION ISSUES
	5.4.1 Identifying a System in Canonical Form
	5.4.2 Stability,Convergence,Learning Rate and Scaling

	5.5 2-D FILTER DESIGN USING NEURAL NETWORK
	5.5.1 Two-dimensional Signal and Digital Filters
	5.5.2 Design Techniques
	5.5.3 Neural Network Approach

	5.6 SIMULATION RESULTS
	5.6.1 1-D Filters
	5.6.2 Two-dimensional Filters

	5.7 CONCLUSIONS
	REFERENCES

	6 - APPLICATION OF COMPUTER NETWORKING USING NEURAL NETWORK
	6.1 INTRODUCTION
	6.2 SELF SIMILAR PACKET TRAFFIC
	6.2.1 Fractal Properties of Packet Traffic
	Second-Order Self-similarity
	Degree of Self-similarity
	Mathematical Explanation of Self-similarity

	6.2.2 Impacts of Fractal Nature of Packet Traffic
	Heavy-Tailed Service Densities
	Packet Loss
	Fractal Queuing


	6.3 NEURAL NETWORK MODELING OF PACKET TRAFFIC
	6.3.1 Perceptron Neural Networks and Back Propagation Algorithm
	6.3.2 Modeling Individual Traffic Patterns
	6.3.3 Modeling Aggregated Traffic Patterns

	6.4 APPLICATIONS OF TRAFFIC MODELING
	6.4.1 Packet Loss Prevention
	6.4.2 Packet Latency Prediction
	6.4.3 Experimental Observations

	6.5 SUMMARY
	REFERENCES

	7 - APPLICATION OF NEURAL NETWORKS IN OIL REFINERIES
	7.1 INTRODUCTION
	7.2 BUILDING THE ARTIFICIAL NEURAL NETWORK
	7.2.1 Range of Input Data
	7.2.2 Size of the Training Data Set
	7.2.3 Acquiring the Training Data Set
	7.2.4 Validity of the Training Data Set
	7.2.5 Selecting Process Variables

	7.3 DATA ANALYSIS
	7.3.1 Elimination of Bad Lab Values
	7.3.2 Process Parameters and Their Effect on NN Prediction

	7.4 IMPLEMENTATION PROCEDURE
	7.4.1 Identifying the Application
	7.4.2 Model Inputs Identification
	7.4.3 Range of Process Variables

	7.5 PREDICTOR MODEL TRAINING
	7.6 SIMULATION RESULTS AND DISCUSSIONS
	7.6.1 Naphtha 95%Cut Point
	7.6.2 Naphtha Reid Vapor Pressure

	7.7 CONCLUSIONS
	REFERENCES

	8 - INTRODUCTION TO FUZZY SETS:  BASIC DEFINITIONS AND RELATIONS
	8.1 INTRODUCTION
	8.2 CLASSICAL SETS
	8.3 CLASSICAL SET OPERATIONS
	8.4 PROPERTIES OF CLASSICAL SET
	8.5 FUZZY SETS
	8.5.1 Fuzzy Membership Functions

	8.6 FUZZY SET OPERATIONS
	8.7 PROPERTIES OF FUZZY SETS
	8.7.1 Alpha-Cut Fuzzy Sets
	8.7.2 Extension Principle

	8.8 CLASSICAL RELATIONS VS. FUZZY RELATIONS
	8.9 CONCLUSION
	REFERENCES

	9 - INTRODUCTION TO FUZZY LOGIC
	9.1 INTRODUCTION
	9.2 PREDICATE LOGIC
	9.2.1 Tautologies
	9.2.2 Contradictions
	9.2.3 Deductive Inferences

	9.3 FUZZY LOGIC
	9.4 APPROXIMATE REASONING
	9.5 CONCLUSION
	REFERENCES

	10 - FUZZY CONTROL AND STABILITY
	10.1 INTRODUCTION
	10.2 BASIC DEFINITIONS
	10.2.1 Inference Engine
	10.2.2 Defuzzification

	10.3 FUZZY CONTROL DESIGN
	10.4 ANALYSIS OF FUZZY CONTROL SYSTEMS
	10.5 STABILITY OF FUZZY CONTROL SYSTEMS
	10.5.1 Lyapunov Stability
	10.5.2 Stability via Interval Matrix Method

	10.6 CONCLUSION
	REFERENCES

	11 - SOFT COMPUTING APPROACH TO SAFE NAVIGATION OF AUTONOMOUS PLANETARY ROVERS
	11.1 INTRODUCTION
	11.1.1 Practical Issues in Planetary Rover Applications

	11.2 NAVIGATION SYSTEM OVERVIEW
	11.2.1 Fuzzy Behavior-Based Structure

	11.3 FUZZY-LOGIC-BASED ROVER HEALTH AND SAFETY
	11.3.1 Health and Safety Indicators
	11.3.2 Stable Attitude Control
	11.3.3 Traction Management
	11.3.3.1 Neuro-Fuzzy Solution


	11.4 TERRAIN-BASED FUZZY NAVIGATION
	11.4.1 Visual Terrain Traversability Assessment and Fuzzy Reasoning
	11.4.1.1 Terrain Roughness Extraction
	11.4.1.2 Terrain Slope Extraction
	11.4.1.3 Fuzzy Inference of Terrain Traversability


	11.5 STRATEGIC FUZZY NAVIGATION BEHAVIORS
	11.5.1 Seek-Goal Behavior
	11.5.2 Traverse-Terrain Behavior
	11.5.3.Avoid-Obstacle Behavior
	11.5.4.Fuzzy-Behavior Fusion

	11.6 ROVER TESTBED AND EXPERIMENTAL RESULTS
	11.6.1 Safe Mobility
	11.6.2 Safe Navigation

	11.7 SUMMARY AND CONCLUSIONS
	ACKNOWLEDGMENT
	REFERENCES

	12 - AUTONOMOUS UNDERWATER VEHICLE CONTROL USING FUZZY LOGIC
	12.1 INTRODUCTION
	12.2 BACKGROUND
	12.3 AUTONOMOUS UNDERWATER VEHICLES (AUVs)
	12.4 SLIDING MODE CONTROL
	12.5 SLIDING MODE FUZZY CONTROL (SMFC)
	12.6 SMFC DESIGN EXAMPLES
	12.7 GUIDELINES FOR ONLINE ADJUSTMENT
	12.7.1 Sliding Slope • Effects
	12.7.2 Thickness of the Boundary Layer • Effects

	12.8 AT SEA EXPERIMENTAL RESULTS
	12.9 SUMMARY
	REFERENCES

	13 - APPLICATION OF FUZZY LOGIC FOR CONTROL OF HEATING,CHILLING,AND AIR CONDITIONING SYSTEMS
	13.1 INTRODUCTION
	13.2 BUILDING ENERGY MANAGEMENT SYSTEM (BEMS)
	13.2.1 System Requirements
	13.2.2 System Configuration
	13.2.3 Automation Levels
	1.Information and Management Level
	2.Supervisory Control Level
	3.Automation Level
	4.Field Level


	13.3 AIR CONDITIONING SYSTEM:FLC VS DDC
	13.3.1 Process Description
	13.3.2 Process Control
	13.3.3 Digital PID Controller
	13.3.4 Fuzzy Cascade Controller
	The Fuzzy Lead Controller with PI characteristics

	13.3.5 DDC vs FLC

	13.4 FUZZY CONTROL FOR THE OPERATION MANAGEMENT OF A COMPLEX CHILLING SYSTEM
	13.4.1 Process Description
	13.4.2 Process Operation with FLC
	Thermal Analysis of the Building and Chilling System
	The Design of the Fuzzy Control System

	13.4.3 Description of the Different Fuzzy Controllers
	Fuzzy Control Block 1
	Fuzzy Control Block 2
	Fuzzy Control Block 3

	13.4.4 System Performance and Optimization with FLC

	13.5 APPLICATION OF FUZZY CONTROL FOR ENERGY MANAGEMENT OF A CASCADE HEATING CENTER
	13.5.1 The Heating System
	Description of the Heating System
	Operation of the Heating System

	13.5.2  FLC for System Optimization
	State of the Operation Strategy for a Cascade Heating Center
	Optimal Operation Strategy for the Heating System

	13.5.3 FLC Description
	Fuzzy-Control-Block I
	Fuzzy Control Block II
	Fuzzy Control Block III

	13.5.4 Temperature Control:Fuzzy vs Digital

	13.6 CONCLUSIONS
	REFERENCES

	14 - APPLICATION OF ADAPTIVE NEURO-FUZZY INFERENCE SYSTEMS TO ROBOTICS
	14.1 INTRODUCTION
	14.2 ADAPTIVE NEURO-FUZZY INFERENCE SYSTEMS
	14.3 INVERSE KINEMATICS
	14.3.1 Solution of Inverse Kinematics Using Fuzzy Logic
	14.3.2 Solution of Inverse Kinematics Using ANFIS
	14.3.3 Simulation Experiments

	14.4 CONTROLLER DESIGN OF MICROBOT
	14.4.1 Design of a Conventional Controller
	14.4.2 Hierarchical Control
	14.4.3.ANFIS Controller for Microbot

	14.5 CONCLUSIONS
	REFERENCES

	15 - APPLICATION OF SOFT COMPUTING FOR DESALINATION TECHNOLOGY
	15.1 INTRODUCTION
	15.2 GENERAL BACKGROUND ON DESALINATION AND REVERSE OSMOSIS
	15.2.1 Critical Control Parameters
	15.2.1.1 Temperature
	15.2.1.2 Pressure
	15.2.1.3 Recovery
	15.2.1.4 Feed pH
	15.2.1.5 Salt Rejection
	15.2.1.6 Scaling


	15.3 PREDICTIVE MODELING USING NEURAL NETWORKS
	15.3.1 Redistributed Receptive Fields of RBFN
	15.3.1.1 Data Clustering
	15.3.1.2 Histogram Equalization
	15.3.1.3 Widths of Receptive Fields


	15.4 CASE STUDIES
	15.4.1 Example 15.1: Beach Well Seawater Intake
	15.4.1.1 Simulation Results

	15.4.2 Example 15.2: A Ground Water Intake
	15.4.3 Example 15.3: A Direct Seawater Intake
	15.4.3.1 Scaling Simulation
	Calcium Sulfate
	Barium Sulfate
	Calcium Carbonate
	Strontium Sulfate
	Silica



	15.5 FUZZY LOGIC CONTROL
	15.5.1 Chemical Dosing Control
	15.5.1.1 Fuzzy Rule Base
	15.5.1.2 Membership Functions
	15.5.1.3 Decision Matrix
	15.5.1.4 Results and Discussion

	15.5.2 High-Pressure Control
	15.5.2.1 Fuzzy Rule Base
	15.5.2.2 Decision Matrix
	15.5.2.3 Results and Discussion

	15.5.3 Flow Rate Control
	15.5.3.1 Fuzzy Rule Base for Flow Control
	15.5.3.2 Decision Matrix
	15.5.3.3 Results and Discussion


	15.6 APPLICATION OF ANFIS TO RO PARAMETERS
	15.6.1 ANFIS Simulation Results

	15.7 CONCLUSION
	REFERENCES

	16 - COMPUTATIONAL INTELLIGENCE APPROACH TO OBJECT RECOGNITION
	16.1 INTRODUCTION
	16.2 OBJECT RECOGNITION BY NEURAL FEATURE EXTRACTION AND FUZZY COMBINATION
	16.2.1 Feature Extraction by Neural Network
	16.2.2 Fuzzy State Dependent Modulation
	16.2.3 Combination of Features Extracted from Multiple Sources with Fuzzy Reasoning

	16.3 A FACE RECOGNITION APPLICATION
	16.4 CONCLUSIONS
	REFERENCES

	17 - AN INTRODUCTION TO EVOLUTIONARY COMPUTATION
	17.1 INTRODUCTION
	17.2 AN OVERVIEW OF GENETIC SEARCH
	17.2.1 The Genetic Representation of Candidate Solutions
	17.2.2 Population Size
	17.2.3 Evaluation Function
	17.2.4 Genetic Operators
	17.2.4.1 Single Point Crossover
	17.2.4.2 Uniform Crossover
	17.2.4.3 Mutation

	17.2.5 The Selection Algorithm
	17.2.5.1 Proportionate Selection
	17.2.5.2 Linear Rank Selection
	17.2.5.3 Tournament Selection

	17.2.6 Generation Gap
	17.2.7 Elitism
	17.2.8 Duplicates

	17.3 GENETIC SEARCH
	17.4 GENETIC PROGRAMMING
	17.4.1 Structure Representation
	17.4.2 Closure and Sufficiency
	17.4.3 Fitness Evaluation
	17.4.4 Genetic Operators

	17.5 SUMMARY
	ACKNOWLEDGMENTS
	REFERENCES

	18 - EVOLUTIONARY CONCEPTS FOR IMAGE PROCESSING APPLICATIONS 18
	18.1 INTRODUCTION
	18.2 OPTIMIZATION TECHNIQUES
	18.2.1 Basic Types of Optimization Methods
	18.2.2 Deterministic Optimization Methods
	18.2.2.1 Minimization in the Direction of the Coordinates
	18.2.2.2 Minimization in the Direction of the Steepest Slope
	18.2.2.3 Simplex Minimization

	18.2.3 Probabilistic Optimization Methods

	18.3 EVOLUTION STRATEGIES
	18.3.1 Biological Evolution
	18.3.2 Mechanisms of Evolution Strategy
	18.3.3 The (1+1) Evolution Strategy
	18.3.4 The (+1 ) Evolution Strategy
	18.3.5 The (,) Evolution Strategy

	18.4 IMAGE PROCESSING APPLICATIONS
	18.4.1 Generating Fuzzy Sets for Linguistic Color Processing
	18.4.1.1 Resistance Spot Welding
	18.4.1.2 Linguistic Color Processing


	18.4.2 Developing Specialized Digital Filters
	18.4.2.1 Digital Image Filters
	18.4.2.2 Optimization of Digital Filters

	18.5 CONCLUSION
	REFERENCES

	19 - EVOLUTIONARY FUZZY SYSTEMS
	19.1 INTRODUCTION
	19.1.1 The Problem Statement and Design Outline

	19.2 FREE PARAMETERS
	19.2.1 Competing Conventions

	19.3 DESIGN OF INTERPRETATION (ENCODING) FUNCTION
	19.3.1 Membership Functions (MF)
	19.3.1.1 Triangular Membership Functions
	19.3.1.2 Non-triangular Membership Functions
	19.3.1.3 General Method of MF Encoding:

	19.3.2 Rule Encoding
	The Michigan approach:
	The Pittsburgh approach:
	19.3.2.1 A Control System Problem Formulation:
	Genetic Representation
	a) String representation:
	b) Matrix representation:

	Rule Firing Strength



	19.4 THE INITIAL POPULATION
	19.4.1 Grandparenting: A Method of Incorporating a priori Expert Knowledge

	19.5 FITNESS FUNCTION
	19.6 SPEED REGULATION OF A DC MOTOR
	19.6.1 The Control Architecture
	19.6.2 Results

	19.7 CURRENT PROBLEMS AND CHALLENGES
	19.8 SUMMARY AND RESULTS
	ACKNOWLEDGMENT
	REFERENCES

	20 - GENETIC AND EVOLUTIONARY METHODS FOR MOBILE ROBOT MOTION CONTROL AND PATH PLANNING
	20.1 INTRODUCTION
	20.2 GENETIC PROGRAMMING FOR PATH TRACKING CONTROL
	20.2.1 Path Tracking Formulation
	20.2.2 GP Solution
	20.2.2.1 Controller Fitness Evaluation


	20.3 PATH TRACKING SIMULATION RESULT
	20.3.1 Evolved Controller Robustness

	20.4 EVOLUTIONARY PATH PLANNING
	20.4.1 Evolutionary Path Planning System
	20.4.1.1 Environment and Path Representation
	20.4.1.2. Visibility-Based Repair of Candidate Paths
	20.4.1.3. Path Evaluation, Selection, and Evolutionary Operators


	20.5 PATH EVOLUTION WITH FUZZY SELECTION
	20.5.1 Fuzzy Inference System
	20.5.2 Experimental Example

	20.6 SUMMARY AND CONCLUSIONS
	ACKNOWLEDGMENTS
	REFERENCES

	21 - PROBLEMS AND MATLAB PROGRAMS
	21.1 INTRODUCTION
	21.2 NEURAL NETWORK PROBLEMS
	Chapter 2
	Chapter 3

	21.3 FUZZY LOGIC PROBLEMS
	Chapter 8
	Chapter 9
	Chapter 10

	21.4 APPLICATIONS
	21.5 MATLAB PROGRAMS
	Example 3.1:
	Example 3.2:
	Example 3.3:
	Example 3.4:
	Example 3.5:
	Example 3.6:




