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ABSTRACT Buildings account for a significant amount of energy consumption leading to the issues of
global emissions and climate change. Thus, energy management in a building is increasingly explored due
to its significant potential in reducing the overall electricity expenses for the consumers and mitigating
carbon emissions. In line with that, the greater control and optimization of energy management integrated
with renewable energy resources is required to improve building energy efficiency while satisfying indoor
environment comfort. Even though actions are being taken to reduce the energy consumption in buildings
with several optimization and controller techniques, yet some issues remain unsolved. Therefore, this work
provides a comprehensive review of the conventional and intelligent control methods with emphasis on
their classification, features, configuration, benefits, and drawbacks. This review critically investigates the
different optimization objectives and constraints with respect to comfort management, energy consumption,
and scheduling. Furthermore, the review outlines the different methodological approaches to optimization
algorithms used in building energymanagement. The contributions of controller and optimization in building
energy management with the relation of sustainable development goals (SDGs) are explained rigorously.
Discussions on the key challenges of the existing methods are presented to identify the gaps for future
research. The review delivers some effective future directions that would be beneficial to the researchers
and industrialists to design an efficiently optimized controller for building energy management toward
targeting SDGs.

INDEX TERMS Building energy management, controller, optimization, scheduling, sustainable
development goals.

I. INTRODUCTION

Presently, buildings take the lead in consuming a substantial
amount of energy, indicating about 40% of global energy
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consumption, which is responsible to release one-third of
greenhouse gas (GHG) emissions [1], [2]. Another report
demonstrates that buildings hold 49% of the total energy
worldwide in which 60% of the energy is consumed for
heating and cooling purposes [3], [4]. The poor manage-
ment and ineffective control approach of appliances used in
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FIGURE 1. The structure of BEMS with intelligent controllers, energy consumption, scheduling and comfort index optimization.

the building may result in a significant loss of energy in a
building’s energy economy [5]. Hence, nowadays, the effi-
cient utilization of energy in buildings and their impacts on
global warming and climate change are the most challenging
issues [6], [7]. Although a few efforts have been made by
replacing the traditional appliances with energy-saving appli-
ances or by applying simple strategies to reduce total energy
consumption, yet the outcomes remain unsatisfactory [8], [9].
Therefore, the design of an enhanced building energy man-
agement system (BEMS) is becoming increasingly pop-
ular for monitoring and controlling a building’s energy
requirements [10]–[13]. BEMS integrates a set of opera-
tional processes to control energy effectively which in turn
reduces the world energy consumption and carbon emissions
significantly [14], [15].
A BEMS includes detection, communication, calibration,

and even decision making. The overall architecture of a
typical BEMS is shown in Fig. 1. The main components
of BEMS are divided into five parts: Smart meter, sens-
ing devices, information and communication technologies
(ICT), smart appliances, and the core is the energy man-
agement controllers [16]. A smart meter keeps the record
of the time-based data measurement and then transfers the
data to the desired locations. Sensing devices detect different
parameters such as current, voltage, temperature, motion,
light, and occupancy [17]. ICT develops the connection
between the sensor, devices, meters andmonitoring or control
unit. Smart appliances allow the devices to be monitored
and controlled remotely using intelligent communication
systems [18]. Sensing devices sense the desired parameters
(e.g., illumination, temperature, and air quality) at different
locations and send the signals to a centralized management
system. Based on the sensed parameters, smart devices can
be monitored, controlled, or scheduled to operate at required
intervals [19]. Accordingly, optimizationmethods are applied
to compute the optimal conditions satisfying the user needs

and system constraint. In this way, a maximum comfort
level with optimal resource utilization is achieved [20], [21].
Moreover, renewable energy resources (RESs), such as pho-
tovoltaics (PV), batteries, and wind generators, are con-
nected to the BEMS to provide energy to buildings during
peak hours, thereby reducing the utility load on the elec-
tricity network [22], [23]. Through the use of intelligent
control techniques, BEMS can be optimized to maximize
energy efficiency and integrate RESs while reducing the
cost of energy and maintaining the required user satisfaction
levels [24], [25]. The advanced control methods not only
achieve the desired comfort level but also reduce the oper-
ational and maintenance cost, thus improving the energy
performance of the building [26], [27].

Researchers have been focusing to optimize the build-
ing energy performance with a target to minimize the
energy cost and adverse environmental impacts [28], [29].
In this setting, BEMS can play a vital role to help end-
users by optimizing overall energy consumption, energy cost,
reduce peak demand and environmental impacts, without
compromising comfort [30]. Numerous research works
on various objectives, control schemes, optimization algo-
rithms have made great efforts in developing an intel-
ligent control system for efficient BEMS [31], [32].
However, achieving end-user satisfaction and comfort while
maintaining the energy cost at the minimum level remains
a challenge [33], [34]. Thus, the achievement of BEMS
needs further investigation. In this context, this paper aims at
reviewing the most efficient control and optimization algo-
rithms in this discipline and concludes the optimized con-
trollers for enhancement of BEMS efficiency.

A BEMS uses a centralized computer-controlled automa-
tion system that can monitor and control a small number
of stations situated in the building aiming to reduce the
energy cost, ensure safety and provide a comfortable envi-
ronment [35], [36]. BEMS is connected to diverse systems in
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a building through microprocessor-based wireless controllers
to manage and optimize the operation of electrical equipment
including lighting, humidity control, heating, ventilation, and
air conditioning (HVAC) system, security systems and fire
systems [37], [38]. Generally, BEMS is configured using the
hardware, software, and communication protocols [39]. The
hardware devices include various sensors, controllers, output
devices and terminal interfaces. The sensor keeps a record
of temperature, humidity, lighting level and then transmits
the required information to the controllers. The controllers
are the heart of the BEMS that receive the information
from the sensors and then send instructions to the HVAC
system. Then, the relays and actuators are used to follow
the commands or requirements based on the decisions of
the controllers. Afterward, exchange of information between
each component and adjustment can be carried out using the
user interface or terminal [39]. A work in [40] introduced
a three-layered software infrastructure for HVAC systems in
the building. The integration layer allows the interoperability
of heterogeneous devices through the LinkSmart network and
an interface called proxy by applying IEEE 802.15.4, ZigBee,
UWB and EnOcean wireless sensor nodes. The middleware
layer permits peer-to-peer (P2P) communication that helps
to develop control schemes and rules to minimize energy
consumption. The application layer manages event-based
applications and provides feedback to end-users. Besides,
BEMS can be integrated with various standards and internet
protocols such as LonWorks, BACnet and ModBus [41].
BEMS with the application of advanced controller and

optimization creates an opportunity not only in terms of
saving energy, and carbon emissions reduction but also with
regard to improve health and wellbeing, new innovation,
infrastructure, job openings, and cost-effective energy sup-
ply. The impact of BEMS is critical for socio-economic and
environmental perspectives which can be directly contributed
to many objectives of sustainable development goals (SDGs).
Thus, the role of BEMS is significant in achieving the current
global challenges including reliable and affordable energy,
energy efficiency, emission reduction, green jobs, economic
growth, sustainable cities that can be correlated with the
target of SDGs. Several notable articles have been published
on BEMS. Mariano-Hernández [5] surveyed the literature
related to different management strategies for BEMS high-
lighting demand-side management, model predictive control
and optimization in residential and non-residential build-
ings. However, the authors did not highlight the different
intelligent controls and optimization algorithms in detail.
Molina-Solana [42] discussed the application of data sci-
ence in BEMS concerning building energy load, operation,
infrastructures, fault detection and economic evaluation. Nev-
ertheless, the authors did not outline the methodological
framework of optimization algorithms, controller schemes
and related issues. Runge et al. overviewed the artificial
intelligence (AI) [43] and deep learning techniques [44] to
predict energy use in buildings, however, the control opera-
tion and optimizations in BEMS were not covered in detail.

Boodi et al.[45] focused on the intelligent BEMS empha-
sizing occupant comfort and different models. However,
the authors did not explore the optimization objectives,
constraints related to comfort index parameters, energy
consumption and scheduling. Shakeri et al. [46] pre-
sented the BEMS considering the demand response pro-
grams, load management techniques, smart grid, different AI
and optimization-based home energy management systems
(HEMS). However, the authors did not provide the catego-
rization of controllers and optimizations. Petroşanu et al. [47]
investigated the machine learning models and sensor devices
to achieve energy efficiency, enhanced sensing and optimized
BEMS. Nonetheless, a detailed explanation of controllers
and optimization of BEMS and relation with SDGs were not
studied in detail.

To bridge the existing limitations, this review unveils new
contributions with a detailed investigation of controllers and
optimization in BEMS in connection with SDGs. The main
contributions of this review are highlighted as follows:

• This work delivers a comprehensive review of the differ-
ent control strategies towards efficient energy manage-
ment in buildings with respect to classification, features,
configuration, benefits, and drawbacks.

• This research critically examines the different energy
management optimization techniques focusing on opti-
mization objectives and constraints related to comfort
management, energy scheduling, electricity expenses,
and energy consumption. This work also includes the
different frameworks, implementation processes, and
applications of different metaheuristics optimization
algorithms employed by different researchers.

• This work establishes the relationship of energy
management in buildings with SDGs highlighting the
influences of optimized control and efficient energy
management towards future sustainability with regard to
low carbon emissions, sustainable cities, green employ-
ment, cost-effective energy supply, and healthier living
conditions.

• This research illustrates the scope, suitability, key issues
and challenges of different control and optimization
algorithms. The analysis, key findings, and recom-
mendations would be helpful towards the develop-
ment of efficient and sustainable energy management in
buildings.

II. CONTROL OPERATION OF BUILDING ENERGY

MANAGEMENT SYSTEM

The main target of BEMS is to enhance the heating and cool-
ing performance by limiting the energy involved in the pro-
duction, use, and maintenance phases of buildings [48], [49].
The most effective strategy to reduce energy consumption
during the use phase is to develop a robust control tech-
nique [50], [51]. Nevertheless, designing an effective control
strategy is a key challenge [52], [53]. The control methods
in BEMS are classified into two approaches; one is the
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conventional method and the other is the intelligent
method [54]–[56], as shown in Fig. 2. The conventional con-
trollers are built using certain loops and mathematical mod-
els. They arewidely used due to simple tuning and robustness.
However, the performance of the conventional controller is
not satisfactory in noisy and non-linear processes. Moreover,
a certain extent of knowledge is required in conventional
control while designing different models. On the other hand,
intelligent controllers do not require system modeling and
are designed based on certain rules or self-learning skills.
They are promising due to their adaptability to operate under
uncertainties [57]–[59]. In general, these methods are charac-
terized by their robust computational skill, variable degree of
complexity, fast response, enhanced stability and reliability,
improved efficiency and higher energy savings [60], [61].

FIGURE 2. Various Control schemes in BEMS.

A. CONVENTIONAL CONTROL

Few conventional control systems have already been
employed in BEMS such as thermostats, proportional-
integral (PI) and proportional–integral–derivative (PID).

1) THERMOSTAT CONTROL

A thermostat is an instrument that maintains the temperature
within the boundary set by the users [62], [63]. When the
temperature exceeds the threshold limit, the thermostat cuts
off the supply and accordingly restores the supply when the
temperature drops under that required [64], [65]. Usually,
the thermostats are used for heating or cooling to a set point
temperature and can be installed in water heaters, ovens,
refrigerators and HVAC systems [66], [67]. The internal con-
figuration of a typical thermostat is shown in Fig. 3 [68].

The thermostat is employed in BEMS with respect to min-
imizing power fluctuations [69]; reducing cooling electricity
cost [70]; controlling space heating [71]; improving thermal
comfort [72], and increasing energy efficiency [73]. This
method has the simplest control operations; nevertheless,
the controlled devices always operate at full or at a default
capacity when they are ON, thus, resulting in a large amount
of power being consumed in each operation [74]. Besides,
the ON-OFF operation may generate oscillations of the con-
trolled temperature, which leads to wastage of energy in
residential buildings. Sometimes, ON-OFF-based controllers
cannot be effective in complex energy systems and hence,

FIGURE 3. The Structure of a typical thermostat.

the appropriate control of variables and objectives cannot be
fulfilled with only discrete ON or OFF values [75]. To tackle
these issues, PID controllers are introduced in the subsequent
subsections.

2) PID CONTROL

APID control is considered as themost straightforward effec-
tive method in the control industry due to its three-dimension
functionality to operate in both transient and steady-state
responses [76]. A block diagram of the PID controller is
shown in Fig. 4 [77]. The expressions of the transfer function
in the ‘‘parallel form’’ and the ‘‘ideal form’’ can be written
in (1) and (2).

G(s) = Kp + Ki
1

s
+ Kd s (1)

G(s) = Kp

(

1 +
1

Tis
+ Td s

)

(2)

FIGURE 4. An FLC integrated into a closed-loop control system.

where Kp, Ki, and Kd denote the proportional gain, the inte-
gral gain, the derivative gain, respectively. Ti and Td stand for
the integral time constant, and the derivative time constant,
respectively. The control output u(t) of the PID controller in
a continuous form can be shown as follows,

u(t) = Kpe(t) + Ki

∫ t

0
e(t)dt + Kd

de(t)

dt
(3)

Generally, the inputs of PID controller are the reference point
and controller output. In [78], the PID controller takes input
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as the temperature difference between the surrounding air
and the ground for cooling or heating the air to control the
earth–air heat exchanger, leading to a reduction of energy
consumption up to 87%. Besides, the PID controller has
been successfully implemented in various sections in build-
ings such as light control [79] power tracking performance
improvement [80] and vibration control [81] and energy
consumption reduction [78]. Although P, PI, and PID are
closed-loop/feedback control systems, their performance is
not reasonable in noisy and non-linear processes due to the
poor control performance, thus resulting in significant time
delays [82]–[84]. The control technologies of PID have
proven to become more efficient than thermostats; how-
ever, the selection of correct gains is still a demanding
task [85], [86]. Thus, further exploration is required on pre-
dictive, optimal and adaptive techniques to improve the con-
trol performance of PID [15], [87]. To overcome the issues
of PID controllers, intelligent control techniques explained
in the following subsections have gained vital importance.

B. INTELLIGENT CONTROL

The intelligent control employed in BEMS with regard to
advanced energy and comfort management control can be
categorized as (i) Learning-based methods, including fuzzy
systems [88], neural networks [89], fuzzy with conventional
controls [90], and adaptive fuzzy neural network (ANFIS)
systems [91], [92], etc.; (ii) the model-based predictive con-
trol (MPC) technique [93], [94]; and (iii) agent-based control
systems [15].

1) FUZZY CONTROLLER

The fuzzy logic controller (FLC) is applied to numerous
fields to solve the imprecise control problems using the
computer. The performance of FLC is more accurate, robust
and superior than the PID controller [95], [96]. The fun-
damental of fuzzy control is based on fuzzy logic theory,
in which decisions are made by a set of ‘‘if-then’’ state-
ments called the fuzzy rules [62], [97], [98]. These linguistic
rules are generally written based on observations made by
the controlle’s designer and the system operators’ knowl-
edge [99], [100]. The block diagram of a FLC integrated
into a closed-loop control system is depicted in Fig. 4 [101].
As noticed in Fig. 4 that the FLC involves four steps
including fuzzification, rule-base, inference mechanism, and
defuzzification [102]–[104].
FLC has been successful in BEMS with the con-

trol of heating, cooling [105] and reduction of energy
consumption [106]. Besides, FLC is more often used in tem-
perature control [101], [107]. Moreover, FLC is applied in
illumination management [108], thus leading to a decrease
in energy consumption. Furthermore, the FLC employed in
HVAC systems results in a significant drop in monetary
cost, and peak to average ratio (PAR) [109]. Nevertheless,
FLC has shortcomings in terms of selecting the appropriate
parameter values [110]. Hence, FLC is often incorporated
with optimization techniques such as genetic algorithm (GA),

particle swarm optimization (PSO) to improve the control
performance in many sections of buildings such as power
optimization, temperature control, and variable speed control.

2) PID-FUZZY CONTROLLER

The classical PID controller parameters are usually tuned
only at a particular operating range with constant controller
gains; however, the control parameters including the rise
time, settling time and steady-state error of the system
undergo drastic change if the operating range is changed [90].
The way forward could be to tune the PID controller online,
which would improve the control system parameters under a
wide operating range [111]. The configuration of the fuzzy
online gain tuner is shown in Fig. 5 [112]. The structure is
designed using the PID controller cascaded with a fuzzy con-
troller [113]. The controller gains are adjusted online using
the predictions of a fuzzy predictor, thereby improving the
controller performance under all operating conditions [114].
The combination of the PID and fuzzy controller brings
benefits to both control schemes, hence allowing to address
the limitations in each control system [15].

FIGURE 5. Fuzzy online gain tuned PID controller structure employed
in BEMS.

This method is employed in energy optimization and com-
fort management in buildings [90]. The results indicate the
better results of the fuzzy-PID controller than the simple
On-Off controller, demonstrating its ability to successfully
adjust the indoor temperature to its desired reference with
lower fluctuations. Besides, the performance of Fuzzy-PID is
excellent in controlling heating [85], HVAC systems [112],
as well as achieving thermal comfort [115] and visual
comfort [116].

3) ARTIFICIAL NEURAL NETWORK CONTROL

The artificial neural network (ANN) is a multi-dimensional
information space that can learn information patterns.
ANN exhibits strong computation intelligence, which can
predict any complex and non-linear system [117]–[119]
ANN has the advantage to manage and control several types
of problems with its improved learning ability and without
depending on the mathematical functional relationship [120],
[121]. ANN is employed in building energy management
scheduling controller, [122], as shown in Fig. 6.

In the mentioned study, The ANN controller is
structured using five inputs: room temperature (Tac),

VOLUME 9, 2021 41581



K. Parvin et al.: Intelligent Controllers and Optimization Algorithms for Building Energy Management

FIGURE 6. ANN-based controller used in demand-side management of
residential buildings.

WH temperature (Twh), total power consumption (Tot), time
of the system (Tim), and demand response (DR) and four out-
puts namely, air conditioner (AC), water heater (WH), wash-
ing machine (WM) and refrigerator (REF). The designed
ANN-based controller is used to control the ON/OFF of
four selected electrical appliances; AC, WH, WM, and REF
according to the consumer requirement, comfort management
and preference of appliances.
Due to the superior performance and improved effi-

ciency, ANN has been successfully utilized in differ-
ent areas of BEMS including energy forecasting [123],
energy cost [124], energy consumption [125], demand-side
management [126] and thermal comfort [127]. However,
ANN needs a large amount of quality data and may suf-
fer from computation complexity such as being trapped in
local minima, slow convergence speed and long training
duration [110], [128] Recently, deep learning methods have
received wide attention for the enhancement of energy fore-
casting in BEMS [129], [130].

4) ADAPTIVE NEURO-FUZZY INFERENCE SYSTEM

Adaptive neuro-fuzzy inference system (ANFIS) is one of the
most used artificial intelligent algorithms which combines
the advantages of ANN and fuzzy logic theory[91], [110].
ANN methods are excellent in data-driven processes while
the fuzzy systems are outstanding in logic-based systems,
thus, the integration of the two approaches offers bene-
fits in data-driven and logical systems [131]. ANFIS con-
troller exhibits improved learning performance, adaptabil-
ity, and robustness which does not rely on mathematical
modeling [91], [132]. However, the learning phase of ANFIS
can be lengthy and computationally expensive [110]. The
structure of ANFIS is designed using five layers, as depicted
in Fig. 7. [133].
The effectiveness of the ANFIS controller is demonstrated

in [134] highlighting its contributions in optimizing energy
usage, electricity cost, and user comfort. ANFIS is also
employed to develop an automated BEMS to find the best
scenario for energy consumption. In [135], the ANFIS-based
intelligent control method is proposed to monitor the legacy
appliances, allowing the BEMS to handle both smart and non-
smart home appliances.

FIGURE 7. The configuration of ANFIS used in building energy
management.

5) MODEL-BASED PREDICTIVE CONTROL

The control methodology of model predictive control (MPC)
is based on the optimal control actions of a dynamical system
and its predictions in future evolution [136], thus providing
an advanced control strategy for complex building energy
systems [75]. Most of the MPC is designed using the discrete
linear models achieved by either developing linear autore-
gressive models with exogenous variables (ARX) models
from empirical data or linearizing the state-space models
around a certain steady-state point. Certain MPC formula-
tions utilize physics-based models to generate the discretized
forms of continuous model equations. The MPC can be inte-
grated with the comprehensive model built-in EnergyPlus,
TRNSYS, and Matlab Simulink to carry out the control
performance and optimization in BEMS [137]. Besides a
system model, predictive controllers require an optimizer
to minimize some performance metrics, such as cost min-
imization or drive the system to a pre-defined setpoint
trajectory [138]. The flow diagram of a typical MPC used
in BEMS is depicted in Fig. 8 [139]. It is noticed that the
structure is formed using a series of control signals for a
defined prediction horizon, which is examined by the appro-
priate model and a distinct cost function.

MPC has been recognized as the most popular control
approach for BEMS in the literature because of its ability
to shift the loads from peak hours, adaptation to unexpected
disturbances, and capacity to exploit the thermal mass of
buildings considering energy price, weather, and occupancy
predictions [93], [94]. Besides, MPC has strong points of
being able to decrease energy costs by taking into account
user comfort. In comparison with conventional control meth-
ods, MPC can handle constraints, uncertainties, dynamics
and future system variable predictions [94]. A simulation
study [74] compares MPC performance with both thermo-
static and PI controllers, demonstrating that MPC achieves
the best results, contributing to a reduction in energy con-
sumption and improving overall costs. In [140], MPC is pro-
posed to design an intelligent building energy management
system to reduce the energy consumption in consideration
of the user’s behavior, and the weather prediction. In [141],
MPC is used to control the HVAC, battery storage system
and renewable energy effectively in a multi-zone building
to minimize the peak power demand while maintaining the
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FIGURE 8. MPC concept towards build energy management.

thermal comfort of industry benchmarks. However, MPC has
drawbacks in selecting a suitable model due to the costly
installation [142]. Besides, the model development is a labo-
rious task that could be time-consuming and even more com-
plicated than the controller design itself [141]. Furthermore,
the parameters tuning, choice of the cost function and the
reformulation of the optimal control problem are some of the
key challenges to be overcome [143].

6) NEURAL NETWORK-PREDICTIVE CONTROL

The neural network-predictive control (NN-PC) is designed
using an estimator with ANN block and a dynamic optimizer
with MPC block, as shown in Fig. 9 [144]. The operations
of the NN-PC scheme start with the optimization of the
measured data of a system to evaluate the control signal
values [145]. Then, an optimal input signal is examined by
reducing a specified performance standard [93]. After that,
the first part of the optimal input signal executes until new
measurements are accessible [146]. Finally, the control loop
is repeated for the following period by a return to the first
step [138], [144].

FIGURE 9. The block diagram of NN-MPC.

The idea of utilizing MPC to conserve energy in buildings
derives from the principle of supervisory control. With the
application of NN-MPC at the supervisory layer, the con-
trol objective is formulated to achieve one or more of the
following:

• Minimum energy usage [147]–[152],
• Optimum thermal comfort [147], [149], [150], [152],
• Optimum indoor air quality (IAQ) at an acceptable
level [153],

• Minimum operating cost [148], [151], [154], [155],
• Optimum visual comfort [152],
• Minimum retrofit cost [156], and
• Minimum thermal discomfort hours [156].
• Minimum operating cost [148], [151], [154], [155],

A comparison of various controllers employed in BEMS
with their pros and cons is shown in Table 1.

III. OPTIMIZATION IN BUILDING ENERGY

MANAGEMENT SYSTEM

The contributions of optimization in BEMS are significant
for enhancing building energy performance [157]. A BEMS
with optimization algorithms can perform many operations
such as control the appliances by switching OFF or ON,
air-conditioner temperature adjustment, refrigerator, electric
water heaters, choose when to charge or discharge battery
storage system and decide when to buy or sell electricity to
the grid [158]. The BEMS is responsible not only to achieve
the specific objectives stated above but also to accomplish
consumer comfort and preference [147]. Nevertheless, such
a situation results in management problems that can conflict
with the objectives [159]. For instance, end-use wants to cut
down the electricity cost on the condition that the quality
of energy services would not be compromised, thus impos-
ing limitations on the control operations [160]. Therefore,
the development of a robust optimization algorithm is essen-
tial which can deliver the best results while ensuring all the
constraints with regard to the electricity expenditures reduc-
tion and end-users dissatisfaction minimization [161], [162].
In other words, the objectives of optimization are related to
two problems; one is a comfort management problem and the
other is scheduling problems that are narrated in the following
subsection.

A. OPTIMIZATION OBJECTIVES

The construction of the objective function is important in
optimization to obtain the desired performance [163]–[165]
Generally, the objective function is chosen based on the
requirements subject to satisfying the constraints of many
variables [166], [167]. In BEMS, several things can be opti-
mized [168]–[170]. Different works of literature have used
different algorithms/methods to optimize energy manage-
ment in the building [171]–[174] Most of the studies focus on
either comfort factors or economic factors for the formulation
of the objective function [175]–[179] Other factors include
the minimization of the PAR in the load demand or the
reduction of the production price [180].

1) COMFORT INDEX PARAMETERS

Researchers have employed many factors to achieve com-
fort management in buildings, as depicted in Table 2. Some
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TABLE 1. Comparative analysis of different control methods used in BEMS.

authors have tried to find comfort for thermal, visual, air qual-
ity, and sound; others have tried to optimize the temperature,
humidity, illumination, airflow, and heat radiation. In [181],
the fuzzy-based GA control strategy is proposed to enhance
the comfort index, and minimize power consumption. The
following equation is used to express the comfort index.

comfort = β1

[

1 − (eT /Tset)
2
]

+ β2

[

1 − (eL/Lset)
2
]

+β3

[

1 − (eA/Aset)
2
]

(4)

where ‘‘comfort’’ presents the overall comfort level ranging
from 0 to 1. β1, β2 and β3 are user-defined comfort; eT , eL
and eA are error difference between the actual value and
the optimized value with regard to temperature, illumination,
and air-quality, respectively; Tset , Lset , and Aset are the user

setting parameters of temperature, illumination, and air-
quality, respectively.

In [183], a microgrid demand-side management (DMS) is
proposed to control the heating, ventilation, and air condition-
ing (HVACs) in a building optimally by taking into account
occupancy schedule, temperatures and solar radiation fore-
casts. A multi-objective function is formulated to optimize
the energy cost and the thermal comfort, as shown in the
following equation,

Tot (t) =

N
∑

j=1

Totj (t) =

N
∑

j=1

(

kEj (t) + (1 − k)Cj (t)
)

(5)

where Ej and Cj are the energy score and thermal score of
building j, respectively. k denotes the scaling factor where
the range 0 < k < 1 defines the trade-off between energy and
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TABLE 2. Summary of different algorithms focused on optimization objectives related to comfort index parameters.

comfort. The values k → 0 and k → 1 are given importance
toward thermal comfort and energy savings, respectively.

In [184], a novel control algorithm is proposed for micro-
grids comprising buildings incorporated with renewable
energy sources and energy storage units. The objective of the
proposed model was to ensure thermal comfort by consid-
ering the energy generation and consumption with the occu-
pant behavior. In line with this, scalable and robust demand
response programs were designed using a local closed-loop
feedback controller to reduce the energy cost and thermal
discomfort of the microgrid.

In [185], an improved energy management strategy is
developed using a fuzzy-based artificial bee colony (ABC)
algorithm to optimize illumination, temperature, and air qual-
ity. Likewise, in [186], effective energy management in a
residential building is proposed using the BAT algorithm
optimizing temperature, illumination, and air quality. After,

FLC computes the dissimilarities between the environmen-
tal parameters and optimized parameters to deliver energy
to the actuators. In [187], an intelligent energy manage-
ment and control strategy are introduced based on ANN and
GA algorithms to improve the indoor environment quality
by optimizing the HVAC system. In [188], a methodology
for building optimization energy is designed using a multi-
objective particle swarm optimization (MOPSO) method to
examine cooling, heating, and lighting electricity consump-
tion. In [21], an improved optimization function is developed
using GA, and PSO to maximize user comfort. In [189],
a combined neuro-fuzzy model is established to regulate
the ON or OFF operation of the HVAC system. In [190],
the authors proposed a coupling model using a nonlinear
autoregressive with exogenous input (NARX) neural network
and fuzzy logic to control the HVAC system. NARX neural

network model considers indoor temperature, outdoor tem-
perature, air relative humidity, and wind speed to develop
an indoor temperature forecast in the past state and accord-
ingly fuzzy logic uses the indoor temperature forecast to
drive the controller in the present state. In [192], an intelli-
gent multi-objective control system for buildings is proposed
using a hybrid multi-objective genetic algorithm (HMOGA)
and a fuzzy controller. The results show that the HMOGA
achieves the indoor building environment comfort with 8.1%
improvement of comfort index. In [195], a multi-agent com-
fort and energy system (MACES) model is suggested based
on Markov decision problems (MDP) considering occupant
preferences, occupant schedules, actual thermal zones, and
temperature. The comfort results indicate an improvement
of 5 % in the proposed model in comparison to other control
techniques. In [196], a machine learning model based opti-
mized building energy management scheme is proposed for
multi-thermal-zone buildings concerning

HVAC system to reduce energy consumption and elec-
tricity cost while achieving human comfort. The objective
function to minimize the building energy cost can be written
as follows,

Min

NT
∑

t

NZ
∑

t

pDAPt .

(

PFLt,z + PDLt,z + PRLt,z

)

+

NT
∑

t

NZ
∑

t

p
dp
t,z · θt,z

+

NT
∑

t

NZ
∑

t

p
lp
t,z

(

E
light
t,z − Ebest

)2
+

NT
∑

t

NZ
∑

z

p
tp
t,z · 1T

tp
t,z (6)

where P defines the energy, DAP, FL, DL and RL stand for
day-ahead price, fixed load, regulatable load and deferrable
load, respectively. E light is the light illuminance, 1T is the
temperature limit, θ is workload parameter, pdp, plp and
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ptp denote overload penalty price, visual penalty price and
thermal penalty price, respectively; t, z represent time slot and
NZ building thermal zone number, respectively.
In [197], an optimized control strategy for BEMS is pro-

posed to coordinate renewable power generation, battery stor-
age system andHVAC aiming to reduce the peak load demand
while satisfying thermal comfort. A MPC was applied to
regulate HVAC demand while taking into account renewable
generation status, battery state of charge and building thermal
dynamics and related constraints. An optimization problem is
formulated using the following equations,

min
P={R,C}

1

N

N
∑

k=1

Nz
∑

j=1

(

Tm1j (m) − T e1j (k)
)

(7)

where P is an unknown vector where the values of R and
C are determined using data collected from the zone, k,
N and Nz denote the time step, number of measurements,
number of thermal zones, respectively. Tm1j and T

e
1j represent

the measured zone air temperature and estimated zone air
temperature a time step k, respectively.
In [198], the authors applied the particle swarm optimiza-

tion (PSO) and internet of things (IoT) platform to zero
energy buildings aiming to achieve a comfortable visual envi-
ronment through the utilization of the natural light while
enhancing the indoor air conditioner energy consumption
(ACEC). In [199], human comfort including thermal comfort
and visual comfort-based control strategy was proposed to
reduce the energy consumption in buildings effectively dur-
ing peak hours. The thermal comfort was evaluated based on
six key indicators such as the metabolic rate of the occupant,
clothing, relative humidity, mean radiant temperature, indoor
air temperature and air velocity. The two key features of
the thermal condition including predicted mean vote (PMV)
and the predicted percentage of dissatisfied (PPD) can be
expressed using the following equations,

PMV =
[

0.303 exp (−0.036M) + 0.028
]

L

PPD = 100 − 95 exp
(

−0.03353PMV 4 − 0.2179PMV 2
)

(8)

where M and L denote the metabolic rate and thermal load
of the human body, respectively.
In [200], the authors discussed the influence of low-cost

sensing toward efficient energy management and indoor air
quality (IAQ) in building highlighting the key challenges and
prospects. In [201], the authors focused on the assessment of
the IAQ, building energy consumption and changing air flow
rate connecting to HVAC systems. The results illustrated a
substantial amount of energy saving, indicating 50% reduc-
tion in air flow rate resulted in a decrease of 45.2% energy
consumption with only slight variations in IAQ.

2) ENERGY CONSUMPTION AND SCHEDULING INDEX

PARAMETERS

The minimization of power consumption, energy price, PAR
and optimal scheduling considering different electricity tariff
rates are the most frequently used objective functions in
BEMS, as listed in Table 3. In [202], the authors proposed
a demand-side management scheme using teacher learning-
based optimization (TLBO) and enhanced differential evolu-
tion (EDE). The energy cost is calculated using day-ahead
pricing, real-time pricing, and critical peak pricing. The
results prove that the proposedmodel outperforms other state-
of-the-art schemes with respect to PAR reduction and energy
cost. In [203], residential load scheduling is introduced
using a hybrid optimization algorithm including GA and
binary PSO (BPSO). The developed model is evaluated using
day-ahead and critical time pricing reflecting a significant
reduction in energy price while maintaining minimum user
discomfort. In [204], a HEMS is established based on GA,
crow search algorithm (CSA) and cuckoo search optimization
algorithm (CSOA) considering real-time pricing and critical
time pricing. The proposed model demonstrates effectiveness
in achieving electricity bills and PAR reduction. In [205], effi-
cient energy management for the residential area is suggested
using flower pollination algorithm (FPA) and bacterial forag-
ing optimization algorithm (BFOA). The results indicate an
alleviation in energy cost and PAR. In [206], an optimized
HEMS combined with renewable RES and energy storage
system (ESS) is proposed based on GA, bacterial forag-
ing optimization (BFO), wind-driven optimization (WDO),
BPSO, and hybrid GA-PSO (HGPO) algorithms. The report
illustrated that a reduction of 19.94% and 21.55% was noted
in energy bills and PAR respectively with the combination
of RES and ESS. In [207], various machine learning models
were used including decision trees, Gaussian naive Bayes
and K-Neighbors to analyze the building energy efficiency.
Besides, the performance of different classifiers is compared
and analyzed. In [208], a novel methodology was developed
to evaluate the performance of buildings based on an inter-
pretable machine learning model. In [209], a support vector
machine (SVM) was utilized to predict the building energy
consumption using various inputs such as global solar radia-
tion, temperature relative humidity and household consump-
tion level. In [210], a feed-forward multilayer perceptron
(MLP) neural network was employed to forecast the maxi-
mum and minimum points in the estimated demand profile in
buildings. In [211], a deep learning algorithm was applied to
predict the building energy consumption under different time
resolution and time horizons. In [212], the authors introduced
reinforcement learning to improve energy efficiency of build-
ings, indicating 10% energy savings in HVAC applications
and 20% savings for water heaters.
In [213], the grid integrated solar photovoltaic (PV) based

microgrid energy management system (EMS) is designed
consisting of buildings with diverse occupancy patterns.
A multi-objective optimization-based EMS was developed
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TABLE 3. Summary of different algorithms focused on optimization objectives related to energy consumption and scheduling.

to optimize the energy cost and thermal comfort by con-
sidering intermittent characteristics of solar PV and occu-
pancy scheduling. The case study developed in EnergyPlus
proved the effectiveness of the proposed method with regard
to changing energy demand intelligently and automatically
using occupants’ information and behavior.
In [214], an effective HEMS through power scheduling for

the smart home is designed using earliglow algorithm (EA).
The results demonstrate that the proposed model reduces
electricity price by 43.25% and 13.83% under the critical
peak pricing and time of use market prices, respectively.
The objective function is developed using electricity cost and
energy consumption as expressed in the following equations,

Minimize

N
∑

a=1

T
∑

t=1

(

X
app
a,t (t) × ℘ × EPricea,t

)

(9)

Pconsumption
T
∑

t=1

N
∑

a=1

℘ × X
app
a,t (t) (10)

where Xappa,t denotes for the state of the load as OFF or ON
(0 = OFF and 1 = ON), ℘ denotes the power rating of
the individual load, presents the electricity bill at any time
duration t , a denotes the total number of loads in a household,
and Pconsumption denotes the shiftable and non-shiftable load
energy consumption.
In [215], An optimized home energy management con-

troller is developed using a genetic harmony search algorithm
(GHSA) aiming decrease electricity price and average wait-
ing time. Two tariffs, namely real-time pricing and critical
time pricing are employed to examine PAR and electricity
expenses. The objective function can be expressed using the

following equations,

CostT =

T
∑

t=1

An
∑

ai

ε (t) × ζai (t) × ζ (t)

(

T
∑

t=1

An
∑

ai

ζai (t) × ε (t) × ζ (t)

)

max

(11)

WT =

T
∑

t=1
Wavg (t)

(

T
∑

t=1
Wavg (t)

)

max

(12)

Minimzeω1 (CostT ) + ω2 (WT ) (13)

where ε (t) is the electricity tariff at time interval t; ζai (t) is
the energy consumed by the appliances at time interval t. The
first term of Eq. (13) represents the minimization of cost and
the second term denotes the average waiting time of the load.
Two equal weights, ω1 and ω2 are assigned to both terms of
the objective function amounting to 0.5.
In [216], an optimal energy trading in building microgrid

is proposed integrating the optimization of electric vehi-
cles and batteries in the day-ahead electricity market aim-
ing to maximize the profit, reduce the power demand and
decrease the renewable energy curtailment during peak hours.
In [217], an optimization-based scheduling and bidding strat-
egy for day-ahead bi-directional electricity trading in BEMS
is introduced achieving optimal operation of building loads
and distributed energy resources as well as a considerable
reduction in energy cost and user inconveniences. In [218],
a SynergyChain model-based decentralized and blockchain-
assisted Peer-to-Peer (P2P) energy tradingmodel is suggested
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FIGURE 10. Optimization techniques for BEMS.

resulting in 39.7% improvement in energy consumption per-
formance and 18.3% enhancement in the overall profitabil-
ity of the system. In [219], blockchain-based distributed
energy-trading models and smart contracts are proposed to
provide a secure transaction for P2P energy trading and pro-
mote energy conservation integrated with renewable and edge
energy products.

B. OPTIMIZATION CONSTRAINTS

The constraints are chosen to impose the limit of vari-
ables of any system so that updated values or positions
always locate inside the boundary region while the opti-
mization algorithm tries to achieve the desired objective
function [220]–[222]. Commonly, the constraints are
assigned to the maximum or minimum bounds of variables.
For instance, in BEMS, constraints with respect to user com-
fort are generally allocated to maximum orminimummargins
of temperature [223], [224]. In [225], the authors consigned
temperature and peak power constraints to maximize user
comfort in a building power management scheme. In [226],
the authors selected the battery and scheduling constraints to
minimize the daily electricity expenses. Besides, user pref-
erence constraint, energy requirement constraint and timing
constraint are grouped in [227] for scheduling optimization
of a smart home appliance. Energy constraint is defined in
such a way so that load demand does not exceed the pre-
defend limit [228], [229]. Timing constraints, on the other
hand, are put to ensure uninterrupted operation, sequential
processing or operation according to user time preferences.

In [180], the power consumed by the mixture of real-time and
scheduled appliances is taken as constraints to be held lower
than a target value at any time frame to ensure that demand
does not rise considerably in peak hours

IV. OPTIMIZATION ALGORITHMS

Several research works have been carried out on different
optimization algorithms for BEMS, as shown in Fig. 10. The
metaheuristics optimization algorithms have strong points
in terms of low memory and flexible time requirements in
comparison to other algorithms [230]. Thus, these algorithms
have been widely used in BEMS optimization.

A. METAHEURISTICS OPTIMIZATION ALGORITHMS

Themetaheuristic optimization algorithm is based on the pro-
cedure of randomization and local search, which leads to the
optimization and path of global search [231]. The classifica-
tion of metaheuristics optimization algorithms implemented
for BEMS is shown in Fig. 11. Single individual algorithms
only evaluate one potential solution at a time, while the
population-based algorithms can deliver a set of potential
solutions simultaneously to move toward goals [232].

1) SINGLE INDIVIDUAL ALGORITHMS

a: SIMULATED ANNEALING

Simulated annealing (SA) is a famous heuristic optimization
technique, which is inspired by metallurgy annealing. In SA,
the crystalline solid is iteratively heated and cooled down
slowly until it achieves its minimum lattice energy state [233].
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FIGURE 11. Metaheuristics optimization techniques implemented
in BEMS.

Likewise, the SA algorithm produces a new potential solu-
tion to the problem according to a predefined criterion at
each virtual annealing temperature [234]. The approval of the
new state is then based on the fulfillment of the metropolis
criterion, and this process is repeated until convergence takes
place [233], [235]. A common flow diagram of SA is shown
inFig. 12 [236]. SA is applied in BEMSoptimizing electricity
costs and user satisfaction [237]. Furthermore, SA is applied
in optimal energy management [238], thermal building opti-
mization [239] and utility bill calibration [170].

b: TABU SEARCH

Tabu search (TS) concentrates on the local exploration of
search space to achieve the optimal solutions iteratively.
TS exhibits memory adaption, which supports to obtain the
searching approach in a flexible way from the search space.
The first move of TS comes from the initial position that
finds the best neighborhood and assists to search for the
optimal solution. The located neighbors either are present in
the tabu list or absent from the list but hold true to fulfill
the conditions. On these terms, if TS is incapable to obtain a
better result, the different approaches are utilized to discover
more search spaces. The aforementioned steps are continued
until a stopping condition is satisfied [240]. In [241], TS is
employed to develop a home energy management controller
aiming to lessen appliances’ power consumption, PAR while
satisfying user comfort level.

2) POPULATION-BASED ALGORITHMS

The population-based algorithm stores the entire set of solu-
tions, where each solution is corresponding to a distinct
point within the search space being repeatedly updated and
moved toward a near-optimal solution [242]. Population-
basedmethods arewidely employed to address thewide range
of optimization problems in BEMS.

a: PARTICLE SWARM OPTIMIZATION

Particle swarm optimization (PSO) algorithm is a well-
known population-based optimization technique which uses

FIGURE 12. Flowchart of SA algorithm.

the characteristics and movement of a group of bird or fish
to search for food [26]. In stochastic optimization, the PSO
method identifies the optimal solution to a formulated prob-
lem through an iterative process. An objective function
is defined to evaluate the random number of particles in
the problem search space at their present locations [243].
The best results are achieved through the updated veloc-
ity and position of particles which can be formulated as
follows [206]:

V k+1
i = wV k

i + c1r1

(

PkPbest,i − X ki

)

+ c2r2

(

Gbest − X ki

)

(14)

X k+1
i = X ki + V k+1

i (15)

where V k+1
i is the updated velocity vector of the ith particle,

X k+1
i is the updated position of the ith particle, r1 and r2

denote two random numbers in the range [0,1], c1 and c2
are the learning factors and w refers to inertia or momen-
tum weight factor. PPbest,i is the best previous experience of
ith particle that is recorded and Gbest is the best particle
among the entire population. The execution process of PSO
is illustrated in Fig. 13. [188].

FIGURE 13. Flowchart of PSO algorithm.

The PSO method is used in BEMS to optimize energy
prices, energy transfer to the utility grid, and user comfort
level [244]. PSO is also used in the energy management of
a residential building with a target to avoid peak formations
while focusing on reducing electricity bills and maintaining
user satisfaction levels [245]. Similarly, the authors employed
PSO to reduce the energy consumption and electricity cost
of a sustainable building while maintaining user comfort at a
high potential value [246].
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b: ANT COLONY OPTIMIZATION

Ant colony optimization (ACO) is developed using the behav-
ior of an ant in a path that is formed using the deposition
of pheromones by the previous ants [247]. The ants use the
pheromone deposition for communication as well as for the
identification of the most followed path which often leads
to the optimal solution. However, the amount of pheromone
relies on the travel length and individual cost which sug-
gests that lower cost is associated with the shortest path
(near-optimal path) and the greater quantity of pheromone
traces [248]. ACO is superior with regard to the
enhanced convergence in comparison to GA, PSO, and
SA methods [249]. The overall process of ACO is illustrated
in Fig. 14 [236].

FIGURE 14. Flowchart of a typical ACO algorithm.

c: ARTIFICIAL BEE COLONY

The principle of an artificial bee colony (ABC) is based on the
natural foraging act of honey bees [250]. The implementation
process of the ABC algorithm is illustrated in Fig. 15 [251].
TheABS ismore advantageous than other optimizationmeth-
ods with respect to simplicity, and flexibility, and robustness.
Moreover, ABC requires a few control parameters and can
be integrated with other optimization techniques to develop a
hybrid system [252].
The ABC optimization method is used in [253] to execute

the DR schemes integrated with renewable energy sources
for residential buildings. In [185], the authors combined the
fuzzy logic and ABC algorithm to improve user satisfaction,
thermal illumination while reducing energy cost and CO2
concentration. In [252], an effective energy management and
control system are developed with ABC algorithm for a
residential building to enhance energy efficiency and user
comfort.

d: HARMONY SEARCH ALGORITHM

The fundamental of harmony search algorithm (HSA) is
based on reproducing themusic improvisation process, where
a perfect state of harmony is searched by the musicians with
their instrument pitches [254]. Three corresponding compo-
nents need to be formalized to get an optimal result, one
is the memory allocation of harmony, and the other is the
randomization and adjustment of pitch. It is similar to the
steps of improvisation of a skilledmusician, plays any famous
piece of music, then plays something similar to a known
music piece and accordingly composes new or random notes.

FIGURE 15. Flowchart of a typical ABC algorithm.

With this process, harmonic checking is performed to ensure
a better solution [255], [256]. The implementation process of
the HSA is shown in Fig. 16 [257].
HSA is used in [258] for appliances scheduling in a smart

home aiming at achieving four objectives: cost saving, PAR
reduction, waiting time minimization, and consumer comfort
maximization. The HSA is also utilized in [259] for schedul-
ing energy storage systems in renewable energy, in which
time of use is in conjunction with the demand charge policy
to assess the electricity expenditures. In the mentioned study,
the authors compared HSA with GA and concluded that the
proposed technique performed better than GA.

FIGURE 16. The basic structure of the HS algorithm.

3) EVOLUTIONARY ALGORITHMS

An evolutionary algorithm (EA) is based on the mechanisms
that are inspired by the social behavior of species or biologi-
cal evolution such as reproduction, mutation, recombination,
and selection [260]. The EA uses the stochastic search proce-
dures to reach the near-optimum solutions to large-scale opti-
mization problems, for which the conventional metaheuristic
algorithms may not deliver satisfactory outcomes.

a: GENETIC ALGORITHM

Genetic Algorithm (GA) is another notable intelligence-
based optimization technique employed in BEMS. The
implementation process of GA is illustrated in Fig. 17 [261].

First, GA uses a set of the randomly generated population
called chromosomes to search for the best solution. The
solutions are ranked based on the assessment of objective
function. Then, the population advances throughmany opera-
tional stages including, reproduction, crossover, andmutation
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FIGURE 17. Flow chart for a typical GA optimization.

to upgrade the objective function and accordingly achieve the
final best solution. These procedures continue until either the
best offspring are not discovered or the condition of termina-
tion is fulfilled [262]. The strength of GA is that it can offer
multiple solutions to problems, and can be easily executed in
the simulation model [263]. However, GA has drawbacks in
addressing multi-objective optimization problems accurately.
Besides, GA has some weak points such as slow optimization
response time and poor convergence due to the movement
towards local optima rather than the global optimum of the
problem [263].
Authors in [264]–[266] applied the GA method in BEMS

for optimizing operating hours of appliances concerning elec-
tricity costs minimization, carbon emission reduction, power
limits, and user preferences. In [138], GA is introduced to
optimize the NN-PC controller effectively for thermal energy
storage in the district cooling system. The superiority of
GA over PSO and ACO in developing an energy manage-
ment controller is reported in [245], showing an improved
performance in terms of user comfort level maximization,
electricity cost, and PAR minimization.

b: DIFFERENTIAL EVOLUTION

The differential evolution (DE) is introduced as a power-
ful tool associated with the evolutionary process to address
non-linear optimization problems. After the population ini-
tialization followed by algorithm parameters, the weighted
difference vector among the last two members of the pre-
vious population is used to generate the new population.
Finally, the optimization solution is achieved through the
mutation and crossover process. The DE procedure is shown
in Fig. 18 [267].

FIGURE 18. Flow chart for a typical DE algorithm.

DE algorithm is used in [268] to lower the power con-
sumption and electricity cost. An enhanced DE is developed
in [269], and its performance is compared to the HSA show-
ing a better performance in terms of energy cost reduction.

c: OTHER ALGORITHMS

In addition to the optimization algorithms mentioned above,
the literature shows that BEMS can be designed using other
prominent optimization methods. Algorithms such as mixed
integer programming algorithm (MIPA), integer program-
ming, and dynamic programming are capable of managing
energy efficiently, however, have drawbacks to control a
large number of appliances [270]. These techniques also
have demerits in dealing with multi-objective problems and
their implementation in real-time due to their deterministic
nature [271]. In [109], the bat algorithm (BAT) is integrated
with the flower pollination (FP) algorithm to develop a new
optimization algorithm named the BAT pollination algorithm.
The developed algorithm is applied for scheduling home
appliances to attain a considerable amount of reduced energy
consumption, energy cost, and PAR. A building comfort
management system based on mixed-integer quadratic opti-
mization (MIQO) is proposed in [270]. In [271], a hybrid
optimization algorithm including HSA and EDE is developed
and applied for BEMS in the smart grid. The results indicate
that the proposed method outperforms HSA and EDE with
regard to cost and PAR. The detailed summary of each
optimization algorithms with its positives and negatives is
illustrated in Table 4.

V. BEMS TOWARD ACHIEVING SUSTAINABLE

DEVELOPMENT GOALS

In 2015, the United Nations (UN) has presented 17 SDGs
aiming to offer a common vision to have a proper life
and peaceful environment for the planet and people [272].
We have found that BEMS affects three areas of sustainability
including social, economic, and environment which have a
strong relationshipwith 7 out of 17 SDGs, as shown in Table 5
and Fig. 19. We have explored several relevant studies
to validate the relationship between BEMS and the target
of SDGs. For instance, BEMS can provide thermal com-
fort [181], visual comfort [185], air quality comfort [186],
temperature control [193], humidity control [190], lighting
control [273], heat radiation [187] which can ensure good
health and well-being that is linked to the target of SDG 3.9.
Besides, BEMS can contribute to sustainable urbanization
through the efficient operation of energy [274], [275] which
is associated with the target of SDG 11.3. Moreover, BEMS
can offer cost-effective energy supply [202], reduction of
power consumption [276] through adopting energy optimiza-
tion [277], optimal scheduling [278], reduction of PAR [215],
energy efficiency [279], [280] and renewable energy gener-
ation [281], [282] that can be related to the target of SDG
7.1, 7.2 and 7.3. Also, manufacturing of the various compo-
nents of BEMS including smart meter, sensing devices, smart
appliances, the controller can create employment opportu-
nities, thus linking to the target of SDG 8.3 [283]–[286].
BEMS can act as a sustainable model to promote economic
growth [287]–[289] which can be linked to the target
of SDG 9.1. The effective utilization of energy between
supply and load can be achieved through the implementation
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FIGURE 19. BEMS links to sustainable development objectives.

of microgrid [290], distributed power generation [291], smart
grid [292], and virtual power plant [293] which is related
to the target of SDG 12.1. Apart from social and economic
insight, BEMS can also contribute to addressing negative
environmental impacts that are linked to climate action in
SDG 13. For instance, in [294], BEMS plays a vital role
in reducing CO2 emissions by 13 % through scheduling
and peak shifting. A work in [295] also reveals that CO2
emissions can be dropped by approximately 72%–78% by
2050 from the building sector by combining energy effi-
ciency measures, electrification, and high renewable energy
penetration.
Overall, the analyzed results show that the intelligent con-

trollers and optimization algorithms of BEMS can achieve
the SDGs efficiently related to cost reduction, CO2 emission,
and GHG reduction, reduce energy consumption, sustain-
able energy management, opening jobs, and ensure efficient
energy utilization and production which contribute towards
achieving the 7 out of the 17 SDGs as illustrated in Fig. 20.
Thus, this study can increase the effort towards achieving
SDG-2030 by controlling and optimizing the building energy
consumption, therefore contributing to social benefits, eco-
nomic growth and environmental protection.

VI. DISCUSSION, CHALLENGES AND PROSPECTS

With the movement towards enhancing the energy cost,
thermal and visual comfort, the complexity in BEMS is
more prominent than before. For achieving the desired
performance, the control and optimization algorithms are

designed while taking into account all the constraints. The
controllers can be constructed using different models such
as energy tariff forecast models, weather forecast models
and electrical appliances load profile models. Nevertheless,
the model development needs laborious efforts and may not
be accurate due to the unpredictable characteristics of dif-
ferent variables which results in poor performance in con-
trol operation. Hence, the existing control methods fail to
deliver satisfactory solutions concerning occupant comfort
and energy consumption.

The review has discussed various control strategies toward
efficient energy management in buildings. The conventional
controller like thermostat controller has low cost and simple
operation but it has low heat capacity and thermal conduc-
tivity. PID controller is cost-effective and has easy execu-
tion, simple structure and quick response, however, it cannot
deliver accurate results if PID parameters are not tuned prop-
erly. In contrast, intelligent control methods have become
increasingly popular in controlling energy consumption and
comfort management effectively in BEMS which result in
significant energy cost reduction. However, they have some
drawbacks. For instance, the fuzzy controller is efficient,
customizable and works efficiently in a non-linear system,
nevertheless it requires lots of data and human expertise. The
PID-Fuzzy controller is robust and can operate under chang-
ing operational settings, nonetheless, it needs accurate tuning
of the fuzzy membership function. ANN controller utilizes a
self-learning algorithm for tuning parameters automatically
that significantly reduces time and human effort to design an
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TABLE 4. Comparative analysis of the commonly used optimization approaches in BEMS.

efficient BEMS. However, the ANN controller needs a long
training duration and a large memory device for data stor-
age. The ANFIS controller has good generalization perfor-
mance and a high degree of tolerance to uncertainty, however,
it has computational complexity issues and low interpretabil-
ity of learned parameters. The MPC can control multiple
variables within the boundary and has improved transient
response, but it has a high number of control parameters and
a high computational burden. The NN-MPC has improved
steady-state and dynamic performance, nonetheless, it has
complex computation in a large-scale system.
The optimization algorithms have been successful

in addressing building optimization problems. However,
the choice of an appropriate optimization algorithm in BEMS
is an open issue to be investigated. SA can incorporate many
cost functions and achieve global optimal solutions; however,
it is sensitive to input parameters and takes a long time to
find a near-optimal solution. TS has fast convergence speed
but it has a local minimum trapping issue. PSO has simple

execution with fewer parameters adjustment and archives
high efficiency and fast convergence speed, nevertheless,
it can converge prematurely. ACO provides guaranteed con-
vergence and has the adaptability to changes in new solutions,
nonetheless, it has uncertain convergence duration and has a
complex theoretical study. ABC has a strong global search
ability but the search space is limited by initial solutions. HSA
has an easy operation process and requires less adjustable
parameters; however, it has premature convergence and poor
exploration in early iterations. GA has an easy implemen-
tation, but it has shortcomings of slow convergence speed.
DE requires fewer parameter settings and can handle multidi-
mensional complex problems, nevertheless, it has drawbacks
of poor convergence and local minima trapping issue.

In the context of the above discussions, an effective
approach needs to be developed not only to address the
shortcomings aforementioned but also to act effectively in
multi-task control in BEMS for minimizing energy con-
sumption and maximizing indoor environment quality (IEQ).
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TABLE 5. The relationship between SDGs and BEMS.

In line with this, the review provides some useful suggestions
in developing an efficient controller and optimization towards
achieving sustainable building energy management, such as,

• A new control approach can be introduced by merging
both conventional and advanced control methods in two
possible ways. The first way could be to combine the
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individual merits, and the second way could be to over-
lap the analogies.

• A new control strategy for advanced HVAC systems
like a dedicated outdoor air system (DOAS) can be
developed to achieve better performance in BEMS.

• More exploration is required to design model-
independent control strategies in BEMS concerning
model matching and parameter tuning.

• Further studies should be conducted on-air changing rate
and indoor air pollutant levels in IEQ management for
improving the energy efficiency of BEMS.

• Further examinations are required on IEQ control algo-
rithm considering the occupancy level and variation of
the air-conditioned zone.

• An in-depth investigation is required to obtain an accu-
rate control response from an intelligent approach focus-
ing on human behavior and occupant comfort.

• An advanced control process can be developed without
the involvement of users with distinct information and
experience.

• The performance of the IEQ could be enhanced with the
self-learning and modifying capability using the closed-
loop, and real-time learning skill.

VII. CONCLUSION

In recent decades, many research works concentrate on
improving building energy performance, technology, control,
cost, thermal comfort, and their impact on carbon emissions.
The appropriate controller and optimization strategies can
ensure the sustainable, resilient, and economic operation of
building energy systems. Nevertheless, intelligent reasoning
and coordination of control techniques, optimizing building
energy, comfort management, including comfort demands,
satisfaction, and behavior remain key challenges to achieve
the desired goal. The impact of building energy management
optimization on SDGs also needs to be evaluated because
SDGs address global challenges related to a prosperous life,
infrastructure, economic sustainability, employment, afford-
able cost, and climate. However, the countries with their
different policies and reluctance approach towards SDGs are
the main barriers to improving the existing scenarios.
This review presents detailed information and analysis

of intelligent controllers and optimization in BEMS toward
sustainable development. As a first contribution, the review
comprehensively analyses the various controller schemes in
BEMS, given importance to peak demand reduction, user
discomfort minimization, energy cost and PAR reduction,
environmental emissions decrease and scheduling of home
appliances. Both conventional and intelligent controllers are
outlined in terms of classification, characteristics, struc-
ture, advantages and disadvantages. The review reveals that
intelligent controllers including fuzzy, fuzzy-PID, ANN,
ANFIS, MPC and NN-MPC are more effective than
the conventional controller in terms of accuracy, robust-
ness, good generalization performance, enhanced transient
response, improved steady-state and dynamic performance.

As a second contribution, this review delivers a detailed
insight into various optimizations in BEMS concerning com-
fort objectives including thermal comfort, visual comfort,
sound comfort, temperature, humidity, illumination and air-
flow control. In line with these, various energy consump-
tion objectives are presented highlighting energy optimiza-
tion, appliances power consumption, optimal scheduling and
cost reduction. This review also delivers the classification of
optimization algorithms in BEMS denoting single individ-
ual algorithms and population-based algorithms. The vari-
ous swarm intelligence and evolutionary algorithms are dis-
cussed with regard to methodological framework, execution
processes, constraints, benefits and shortcomings. As a third
contribution, this review investigates the key barriers and
limitations of the existing building control schemes and opti-
mizations related to computational complexity, implementa-
tion process, convergence speed and exploration capability.
As a fourth contribution, the study reveals the strong connec-
tion of the 7 (out of 17) sustainable development objectives
with the BEMS. The review discusses the significant role
of BEMS in achieving the current global challenges includ-
ing reliable and affordable energy, energy efficiency, emis-
sion reduction, green jobs, economic growth, and sustainable
cities in connection with the target of SDGs.

The key information, results, analysis and suggestions
obtained from this review could play remarkable roles in
developing and executing advanced controllers and opti-
mization in BEMS. Besides, this review can provide com-
prehensive knowledge and information to the academician,
researchers and building engineers on various controllers
and optimizations concerning operation, target, strength and
weakness. Moreover, the vital contributions of the optimized
controller of BEMS technology in achieving SDG objec-
tives can provide inclusive insights about the deployment of
advanced algorithms.

REFERENCES

[1] J. Lizana, R. Chacartegui, A. Barrios-Padura, and J. M. Valverde,
‘‘Advances in thermal energy storage materials and their applications
towards zero energy buildings: A critical review,’’ Appl. Energy, vol. 203,
pp. 219–239, Oct. 2017.

[2] C. K. Mytafides, A. Dimoudi, and S. Zoras, ‘‘Transformation of a uni-
versity building into a zero energy building in Mediterranean climate,’’
Energy Buildings, vol. 155, pp. 98–114, Nov. 2017.

[3] F. Harkouss, F. Fardoun, and P. H. Biwole, ‘‘Multi-objective optimization
methodology for net zero energy buildings,’’ J. Building Eng., vol. 16,
pp. 57–71, Mar. 2018.

[4] Y. Sun, G. Huang, X. Xu, and A. C.-K. Lai, ‘‘Building-group-level per-
formance evaluations of net zero energy buildings with non-collaborative
controls,’’ Appl. Energy, vol. 212, pp. 565–576, Feb. 2018.

[5] D. Mariano-Hernández, L. Hernández-Callejo, A. Zorita-Lamadrid,
O. Duque-Pérez, and F. Santos García, ‘‘A review of strategies for build-
ing energy management system: Model predictive control, demand side
management, optimization, and fault detect & diagnosis,’’ J. Building
Eng., vol. 33, Jan. 2021, Art. no. 101692.

[6] T. Karlessi, N. Kampelis, D. Kolokotsa, M. Santamouris, L. Standardi,
D. Isidori, and C. Cristalli, ‘‘The concept of smart and NZEB build-
ings and the integrated design approach,’’ Procedia Eng., vol. 180,
pp. 1316–1325, 2017.

[7] J. Utracki and M. Boryczka, ‘‘A multi-agent approach to the optimization
of intelligent buildings energy management,’’ Procedia Comput. Sci.,
vol. 176, pp. 2665–2674, 2020.

VOLUME 9, 2021 41595



K. Parvin et al.: Intelligent Controllers and Optimization Algorithms for Building Energy Management

[8] J. Zhu, Y. Shen, Z. Song, D. Zhou, Z. Zhang, and A. Kusiak, ‘‘Data-driven
building load profiling and energy management,’’ Sustain. Cities Soc.,
vol. 49, Aug. 2019, Art. no. 101587.

[9] H. Mehrjerdi and R. Hemmati, ‘‘Energy and uncertainty management
through domestic demand response in the residential building,’’ Energy,
vol. 192, Feb. 2020, Art. no. 116647.

[10] K. Parvin, M. A. Hannan, A. Q. Al-Shetwi, P. J. Ker, M. F. Roslan, and
T. M. I. Mahlia, ‘‘Fuzzy based particle swarm optimization for modeling
home appliances towards energy saving and cost reduction under demand
response consideration,’’ IEEE Access, vol. 8, pp. 210784–210799, 2020.

[11] C. Srivastava, Z. Yang, and R. K. Jain, ‘‘Understanding the adoption and
usage of data analytics and simulation among building energy manage-
ment professionals: A nationwide survey,’’ Building Environ., vol. 157,
pp. 139–164, Jun. 2019.

[12] H. Doukas, K. D. Patlitzianas, K. Iatropoulos, and J. Psarras, ‘‘Intelligent
building energy management system using rule sets,’’ Building Environ.,
vol. 42, no. 10, pp. 3562–3569, Oct. 2007.

[13] D. Lazos, A. B. Sproul, and M. Kay, ‘‘Development of hybrid numerical
and statistical short term horizon weather prediction models for building
energy management optimisation,’’ Building Environ., vol. 90, pp. 82–95,
Aug. 2015.

[14] H. Shareef, M. S. Ahmed, A. Mohamed, and E. Al Hassan, ‘‘Review
on home energy management system considering demand responses,
smart technologies, and intelligent controllers,’’ IEEE Access, vol. 6,
pp. 24498–24509, 2018.

[15] P. H. Shaikh, N. B. M. Nor, P. Nallagownden, I. Elamvazuthi, and
T. Ibrahim, ‘‘A review on optimized control systems for building energy
and comfort management of smart sustainable buildings,’’ Renew. Sus-
tain. Energy Rev., vol. 34, pp. 409–429, Jun. 2014.

[16] A. Zairi and M. Chaabene, ‘‘A review on home energy management
systems,’’ in Proc. 9th Int. Renew. Energy Congr. (IREC), Mar. 2018,
pp. 1–6.

[17] F. Farmani, M. Parvizimosaed, H. Monsef, and A. Rahimi-Kian, ‘‘A
conceptual model of a smart energy management system for a residential
building equipped with CCHP system,’’ Int. J. Electr. Power Energy Syst.,
vol. 95, pp. 523–536, Feb. 2018.

[18] W. Feng, Z. Wei, G. Sun, Y. Zhou, H. Zang, and S. Chen, ‘‘A conditional
value-at-risk-based dispatch approach for the energy management of
smart buildings with HVAC systems,’’ Electr. Power Syst. Res., vol. 188,
Nov. 2020, Art. no. 106535.

[19] D. Zhang, N. Shah, and L. G. Papageorgiou, ‘‘Efficient energy consump-
tion and operation management in a smart building with microgrid,’’
Energy Convers. Manage., vol. 74, pp. 209–222, Oct. 2013.

[20] S. Salimi and A. Hammad, ‘‘Optimizing energy consumption and occu-
pants comfort in open-plan offices using local control based on occupancy
dynamic data,’’ Building Environ., vol. 176, Jun. 2020, Art. no. 106818.

[21] I. Ullah and D. Kim, ‘‘An improved optimization function for maximiz-
ing user comfort with minimum energy consumption in smart homes,’’
Energies, vol. 10, no. 11, p. 1818, Nov. 2017.

[22] Y. Luo, L. Zhang, Z. Liu, J. Yu, X. Xu, and X. Su, ‘‘Towards net
zero energy building: The application potential and adaptability of
photovoltaic-thermoelectric-battery wall system,’’Appl. Energy, vol. 258,
Jan. 2020, Art. no. 114066.

[23] F. Sehar, M. Pipattanasomporn, and S. Rahman, ‘‘An energy management
model to study energy and peak power savings from PV and storage
in demand responsive buildings,’’ Appl. Energy, vol. 173, pp. 406–417,
Jul. 2016.

[24] L. A. Hurtado, P. H. Nguyen, W. L. Kling, and W. Zeiler, ‘‘Building
energy management systems—Optimization of comfort and energy use,’’
in Proc. 48th Int. Universities’ Power Eng. Conf. (UPEC), Sep. 2013,
pp. 1–6.

[25] A. Ahmad and J. Y. Khan, ‘‘Real-time load scheduling, energy storage
control and comfort management for grid-connected solar integrated
smart buildings,’’ Appl. Energy, vol. 259, Feb. 2020, Art. no. 114208.

[26] M. Han, R. May, X. Zhang, X. Wang, S. Pan, D. Yan, Y. Jin, and
L. Xu, ‘‘A review of reinforcement learningmethodologies for controlling
occupant comfort in buildings,’’ Sustain. Cities Soc., vol. 51, Nov. 2019,
Art. no. 101748.

[27] Z. Liang, D. Bian, X. Zhang, D. Shi, R. Diao, and Z. Wang, ‘‘Optimal
energy management for commercial buildings considering comprehen-
sive comfort levels in a retail electricity market,’’ Appl. Energy, vol. 236,
pp. 916–926, Feb. 2019.

[28] Y. Wang and C. Wei, ‘‘Design optimization of office building envelope
based on quantum genetic algorithm for energy conservation,’’ J. Building
Eng., vol. 35, Mar. 2021, Art. no. 102048.

[29] B. Liu and D. Rodriguez, ‘‘Renewable energy systems optimization by
a new multi-objective optimization technique: A residential building,’’
J. Building Eng., vol. 35, Mar. 2021, Art. no. 102094.

[30] A. Costa, M. M. Keane, J. I. Torrens, and E. Corry, ‘‘Building operation
and energy performance: Monitoring, analysis and optimisation toolkit,’’
Appl. Energy, vol. 101, pp. 310–316, Jan. 2013.

[31] Y.-H. Lin, M.-D. Lin, K.-T. Tsai, M.-J. Deng, and H. Ishii, ‘‘Multi-
objective optimization design of green building envelopes and air con-
ditioning systems for energy conservation and CO2 emission reduction,’’
Sustain. Cities Soc., vol. 64, Jan. 2021, Art. no. 102555.

[32] A. Ciardiello, F. Rosso, J. Dell’Olmo, V. Ciancio, M. Ferrero, and
F. Salata, ‘‘Multi-objective approach to the optimization of shape and
envelope in building energy design,’’ Appl. Energy, vol. 280, Dec. 2020,
Art. no. 115984.

[33] K. Bamdad, M. E. Cholette, S. Omrani, and J. Bell, ‘‘Future energy-
optimised buildings—Addressing the impact of climate change on build-
ings,’’ Energy Buildings, vol. 231, Jan. 2020, Art. no. 110610.

[34] M. Emami Javanmard, S. F. Ghaderi, and M. S. Sangari, ‘‘Integrating
energy and water optimization in buildings using multi-objective mixed-
integer linear programming,’’ Sustain. Cities Soc., vol. 62, Nov. 2020,
Art. no. 102409.

[35] M. Manganelli, G. Greco, and L. Martirano, ‘‘Design of a new architec-
ture and simulation model for building automation toward nearly zero
energy buildings,’’ IEEE Trans. Ind. Appl., vol. 55, no. 6, pp. 6999–7007,
Nov. 2019.

[36] V. Marinakis and H. Doukas, ‘‘An advanced IoT-based system for intel-
ligent energy management in buildings,’’ Sensors, vol. 18, no. 2, p. 610,
Feb. 2018.

[37] A. Vosughi, M. Xue, and S. Roy, ‘‘Occupant-location-catered control
of IoT-enabled building HVAC systems,’’ IEEE Trans. Control Syst.

Technol., vol. 28, no. 6, pp. 2572–2580, Nov. 2020.
[38] P. Aparicio-Ruiz, E. Barbadilla-Martín, J. M. Salmerón-Lissén, and

J. Guadix-Martín, ‘‘Building automation system with adaptive comfort
in mixed mode buildings,’’ Sustain. Cities Soc., vol. 43, pp. 77–85,
Nov. 2018.

[39] M. A. Hannan, M. Faisal, P. J. Ker, L. H. Mun, K. Parvin,
T. M. I. Mahlia, and F. Blaabjerg, ‘‘A review of Internet of energy based
building energy management systems: Issues and recommendations,’’
IEEE Access, vol. 6, pp. 38997–39014, 2018.

[40] I. Khajenasiri, J. Virgone, and G. Gielen, ‘‘A presence-based control
strategy solution for HVAC systems,’’ in Proc. IEEE Int. Conf. Consum.
Electron. (ICCE), Jan. 2015, pp. 620–622.

[41] C. B. Jones and C. Carter, ‘‘Trusted interconnections between a
centralized controller and commercial building HVAC systems for
reliable demand response,’’ IEEE Access, vol. 5, pp. 11063–11073,
2017.

[42] M. Molina-Solana, M. Ros, M. D. Ruiz, J. Gómez-Romero, and
M. J. Martin-Bautista, ‘‘Data science for building energy manage-
ment: A review,’’ Renew. Sustain. Energy Rev., vol. 70, pp. 598–609,
Apr. 2017.

[43] J. Runge and R. Zmeureanu, ‘‘Forecasting energy use in buildings using
artificial neural networks: A review,’’ Energies, vol. 12, no. 17, p. 3254,
Aug. 2019.

[44] J. Runge and R. Zmeureanu, ‘‘A review of deep learning techniques for
forecasting energy use in buildings,’’ Energies, vol. 14, no. 3, p. 608,
Jan. 2021.

[45] A. Boodi, K. Beddiar, M. Benamour, Y. Amirat, and M. Benbouzid,
‘‘Intelligent systems for building energy and occupant comfort optimiza-
tion: A state of the art review and recommendations,’’ Energies, vol. 11,
no. 10, p. 2604, Sep. 2018.

[46] M. Shakeri, J. Pasupuleti, N. Amin, M. Rokonuzzaman, F. W. Low,
C. T. Yaw, N. Asim, N. A. Samsudin, S. K. Tiong, C. K. Hen, and
C. W. Lai, ‘‘An overview of the building energy management system
considering the demand response programs, smart strategies and smart
grid,’’ Energies, vol. 13, no. 13, p. 3299, Jun. 2020.

[47] D.-M. Petroşanu, G. Căruţaşu, N. L. Căruţaşu, and A. Pîrjan, ‘‘A review
of the recent developments in integrating machine learning models with
sensor devices in the smart buildings sector with a view to attaining
enhanced sensing, energy efficiency, and optimal building management,’’
Energies, vol. 12, no. 24, p. 4745, Dec. 2019.

41596 VOLUME 9, 2021



K. Parvin et al.: Intelligent Controllers and Optimization Algorithms for Building Energy Management

[48] V.-H. Bui, A. Hussain, Y.-H. Im, and H.-M. Kim, ‘‘An internal trading
strategy for optimal energy management of combined cooling, heat and
power in building microgrids,’’ Appl. Energy, vol. 239, pp. 536–548,
Apr. 2019.

[49] M. G. Yu and G. S. Pavlak, ‘‘Assessing the performance of uncertainty-
aware transactive controls for building thermal energy storage systems,’’
Appl. Energy, vol. 282, Jan. 2021, Art. no. 116103.

[50] S. Huang, Y. Lin, V. Chinde, X. Ma, and J. Lian, ‘‘Simulation-based
performance evaluation of model predictive control for building energy
systems,’’ Appl. Energy, vol. 281, Jan. 2021, Art. no. 116027.

[51] A. Kathirgamanathan, M. De Rosa, E. Mangina, and D. P. Finn,
‘‘Data-driven predictive control for unlocking building energy flexi-
bility: A review,’’ Renew. Sustain. Energy Rev., vol. 135, Jan. 2021,
Art. no. 110120.

[52] H. Alkhatib, P. Lemarchand, B. Norton, and D. T. J. O’Sullivan, ‘‘Deploy-
ment and control of adaptive building facades for energy generation,
thermal insulation, ventilation and daylighting: A review,’’ Appl. Thermal
Eng., vol. 185, Feb. 2021, Art. no. 116331.

[53] D. Ibaseta, A. García, M. Álvarez, B. Garzón, F. Díez, P. Coca,
C. D. Pero, and J. Molleda, ‘‘Monitoring and control of energy con-
sumption in buildings using WoT: A novel approach for smart retrofit,’’
Sustain. Cities Soc., vol. 65, Feb. 2021, Art. no. 102637.

[54] C. Piselli, M. Prabhakar, A. de Gracia, M. Saffari, A. L. Pisello, and
L. F. Cabeza, ‘‘Optimal control of natural ventilation as passive cooling
strategy for improving the energy performance of building envelope with
PCM integration,’’ Renew. Energy, vol. 162, pp. 171–181, Dec. 2020.

[55] P. Huang, M. Lovati, X. Zhang, and C. Bales, ‘‘A coordinated control
to improve performance for a building cluster with energy storage, elec-
tric vehicles, and energy sharing considered,’’ Appl. Energy, vol. 268,
Jun. 2020, Art. no. 114983.

[56] X. Jin, F. Qi, Q. Wu, Y. Mu, H. Jia, X. Yu, and Z. Li, ‘‘Integrated optimal
scheduling and predictive control for energy management of an urban
complex considering building thermal dynamics,’’ Int. J. Electr. Power
Energy Syst., vol. 123, Dec. 2020, Art. no. 106273.

[57] Y. Chen andH. Tan, ‘‘Short-term prediction of electric demand in building
sector via hybrid support vector regression,’’ Appl. Energy, vol. 204,
pp. 1363–1374, Oct. 2017.

[58] C.-H. Yang, K.-C. Lee, and S.-E. Li, ‘‘A mixed activity-based costing and
resource constraint optimal decision model for IoT-oriented intelligent
building management system portfolios,’’ Sustain. Cities Soc., vol. 60,
Sep. 2020, Art. no. 102142.

[59] J. R. Vázquez-Canteli, S. Ulyanin, J. Kämpf, and Z. Nagy, ‘‘Fusing
TensorFlow with building energy simulation for intelligent energy man-
agement in smart cities,’’ Sustain. Cities Soc., vol. 45, pp. 243–257,
Feb. 2019.

[60] A. C. Tsolakis, I. Moschos, A. Zerzelidis, P. Tropios, S. Zikos,
A. Tryferidis, S. Krinidis, D. Ioannidis, and D. Tzovaras, ‘‘Occupancy-
based decision support system for building management: From automa-
tion to end-user persuasion,’’ Int. J. Energy Res., vol. 43, no. 6,
pp. 2261–2280, May 2019.

[61] A. I. Dounis, ‘‘Artificial intelligence for energy conservation in build-
ings,’’ Adv. Building Energy Res., vol. 4, no. 1, pp. 267–299, Jan. 2010.

[62] A. C. Duman, H. S. Erden, Ö. Gönül, and Ö. Güler, ‘‘A home energy man-
agement system with an integrated smart thermostat for demand response
in smart grids,’’ Sustain. Cities Soc., vol. 65, Feb. 2021, Art. no. 102639.

[63] H. Stopps and M. F. Touchie, ‘‘Managing thermal comfort in contempo-
rary high-rise residential buildings: Using smart thermostats and surveys
to identify energy efficiency and comfort opportunities,’’ Building Envi-
ron., vol. 173, Apr. 2020, Art. no. 106748.

[64] F. Nägele, T. Kasper, and B. Girod, ‘‘Turning up the heat on obsolete ther-
mostats: A simulation-based comparison of intelligent control approaches
for residential heating systems,’’ Renew. Sustain. Energy Rev., vol. 75,
pp. 1254–1268, Aug. 2017.

[65] C. Wang, K. Pattawi, and H. Lee, ‘‘Energy saving impact of occupancy-
driven thermostat for residential buildings,’’ Energy Buildings, vol. 211,
Mar. 2020, Art. no. 109791.

[66] N. Aste, M. Manfren, and G. Marenzi, ‘‘Building automation and con-
trol systems and performance optimization: A framework for analysis,’’
Renew. Sustain. Energy Rev., vol. 75, pp. 313–330, Aug. 2017.

[67] Z. Pang, Y. Chen, J. Zhang, Z. O’Neill, H. Cheng, and B. Dong, ‘‘How
much HVAC energy could be saved from the occupant-centric smart
home thermostat: A nationwide simulation study,’’Appl. Energy, vol. 283,
Feb. 2021, Art. no. 116251.

[68] N. Yu, S. Salakij, R. Chavez, S. Paolucci, M. Sen, and P. Antsaklis,
‘‘Model-based predictive control for building energy management: Part
II–Experimental validations,’’ Energy Buildings, vol. 146, pp. 19–26,
Jul. 2017.

[69] M. Xia, Y. Song, and Q. Chen, ‘‘Hierarchical control of thermostati-
cally controlled loads oriented smart buildings,’’ Appl. Energy, vol. 254,
Nov. 2019, Art. no. 113493.

[70] P. C. Tabares-Velasco, A. Speake, M. Harris, A. Newman, T. Vincent, and
M. Lanahan, ‘‘A modeling framework for optimization-based control of
a residential building thermostat for time-of-use pricing,’’ Appl. Energy,
vol. 242, pp. 1346–1357, May 2019.

[71] A. Bruce-Konuah, R. V. Jones, A. Fuertes, L. Messi, and A. Giretti, ‘‘The
role of thermostatic radiator valves for the control of space heating in
UK social-rented households,’’ Energy Buildings, vol. 173, pp. 206–220,
Aug. 2018.

[72] W. Tian, X. Han, W. Zuo, Q. Wang, Y. Fu, and M. Jin, ‘‘An optimization
platform based on coupled indoor environment and HVAC simulation
and its application in optimal thermostat placement,’’ Energy Buildings,
vol. 199, pp. 342–351, Sep. 2019.

[73] H. Kazmi, J. Suykens, A. Balint, and J. Driesen, ‘‘Multi-agent reinforce-
ment learning for modeling and control of thermostatically controlled
loads,’’ Appl. Energy, vol. 238, pp. 1022–1035, Mar. 2019.

[74] A. Fratean and P. Dobra, ‘‘Control strategies for decreasing energy costs
and increasing self-consumption in nearly zero-energy buildings,’’ Sus-
tain. Cities Soc., vol. 39, pp. 459–475, May 2018.

[75] R. Sangi, A. Kümpel, andD.Müller, ‘‘Real-life implementation of a linear
model predictive control in a building energy system,’’ J. Building Eng.,
vol. 22, pp. 451–463, Mar. 2019.

[76] K. Lu, W. Zhou, G. Zeng, and W. Du, ‘‘Design of PID controller based
on a self-adaptive state-space predictive functional control using extremal
optimization method,’’ J. Franklin Inst., vol. 355, no. 5, pp. 2197–2220,
Mar. 2018.

[77] M. A. Hannan, M. S. H. Lipu, P. J. Ker, R. A. Begum, V. G. Agelidis,
and F. Blaabjerg, ‘‘Power electronics contribution to renewable energy
conversion addressing emission reduction: Applications, issues, and rec-
ommendations,’’ Appl. Energy, vol. 251, Oct. 2019, Art. no. 113404.

[78] S. E. Diaz-Mendez, C. Patiño-Carachure, and J. A. Herrera-Castillo,
‘‘Reducing the energy consumption of an earth–air heat exchanger with
a PID control system,’’ Energy Convers. Manage., vol. 77, pp. 1–6,
Jan. 2014.

[79] C. Copot, T. M. Thi, and C. Ionescu, ‘‘PID based particle swarm opti-
mization in offices light control,’’ IFAC-PapersOnLine, vol. 51, no. 4,
pp. 382–387, 2018.

[80] B. Y. Zhao, Z. G. Zhao, Y. Li, R. Z. Wang, and R. A. Taylor, ‘‘An
adaptive PID control method to improve the power tracking performance
of solar photovoltaic air-conditioning systems,’’ Renew. Sustain. Energy
Rev., vol. 113, Oct. 2019, Art. no. 109250.

[81] S. Thenozhi and W. Yu, ‘‘Stability analysis of active vibration control
of building structures using PD/PID control,’’ Eng. Struct., vol. 81,
pp. 208–218, Dec. 2014.

[82] K. Heong Ang, G. Chong, and Y. Li, ‘‘PID control system analysis,
design, and technology,’’ IEEE Trans. Control Syst. Technol., vol. 13,
no. 4, pp. 559–576, Jul. 2005.

[83] B. Yang, T. Yu, H. Shu, D. Zhu, F. Zeng, Y. Sang, and L. Jiang, ‘‘Per-
turbation observer based fractional-order PID control of photovoltaics
inverters for solar energy harvesting via Yin-Yang-Pair optimization,’’
Energy Convers. Manage., vol. 171, pp. 170–187, Sep. 2018.

[84] M. Macarulla, M. Casals, N. Forcada, and M. Gangolells, ‘‘Implementa-
tion of predictive control in a commercial building energy management
system using neural networks,’’ Energy Buildings, vol. 151, pp. 511–519,
Sep. 2017.

[85] G. Ulpiani, M. Borgognoni, A. Romagnoli, and C. Di Perna, ‘‘Comparing
the performance of on/off, PID and fuzzy controllers applied to the heat-
ing system of an energy-efficient building,’’ Energy Buildings, vol. 116,
pp. 1–17, Mar. 2016.

[86] B. Paris, J. Eynard, S. Grieu, and M. Polit, ‘‘Hybrid PID-fuzzy control
scheme for managing energy resources in buildings,’’ Appl. Soft Comput.,
vol. 11, no. 8, pp. 5068–5080, Dec. 2011.

[87] A. Shah, H. Nasir, M. Fayaz, A. Lajis, and A. Shah, ‘‘A review on
energy consumption optimization techniques in IoT based smart building
environments,’’ Information, vol. 10, no. 3, p. 108, Mar. 2019.

[88] D. Kolokotsa, ‘‘Artificial intelligence in buildings: A review of the appli-
cation of fuzzy logic,’’ Adv. Building Energy Res., vol. 1, no. 1, pp. 29–54,
Jan. 2007.

VOLUME 9, 2021 41597



K. Parvin et al.: Intelligent Controllers and Optimization Algorithms for Building Energy Management

[89] M. S. Ahmed, A. Mohamed, H. Shareef, R. Z. Homod, and J. A. Ali,
‘‘Artificial neural network based controller for home energy management
considering demand response events,’’ in Proc. Int. Conf. Adv. Electr.,
Electron. Syst. Eng. (ICAEES), Nov. 2016, pp. 506–509.

[90] A. Esmaeilzadeh, M. R. Zakerzadeh, and A. Y. Koma, ‘‘The comparison
of some advanced control methods for energy optimization and comfort
management in buildings,’’ Sustain. Cities Soc., vol. 43, pp. 601–623,
Nov. 2018.

[91] E. Işik and M. Inalli, ‘‘Artificial neural networks and adaptive neuro-
fuzzy inference systems approaches to forecast the meteorological data
for HVAC: The case of cities for Turkey,’’ Energy, vol. 154, pp. 7–16,
Jul. 2018.

[92] F. Boithias, M. El Mankibi, and P. Michel, ‘‘Genetic algorithms based
optimization of artificial neural network architecture for buildings’ indoor
discomfort and energy consumption prediction,’’ Building Simul., vol. 5,
no. 2, pp. 95–106, 2012.

[93] J. Reynolds, Y. Rezgui, A. Kwan, and S. Piriou, ‘‘A zone-level, building
energy optimisation combining an artificial neural network, a genetic
algorithm, and model predictive control,’’ Energy, vol. 151, pp. 729–739,
May 2018.

[94] Y. Cao, J. Du, and E. Soleymanzadeh, ‘‘Model predictive control of
commercial buildings in demand response programs in the presence of
thermal storage,’’ J. Cleaner Prod., vol. 218, pp. 315–327, May 2019.

[95] G.M. Tamilselvan and P. Aarthy, ‘‘Online tuning of fuzzy logic controller
using Kalman algorithm for conical tank system,’’ J. Appl. Res. Technol.,
vol. 15, no. 5, pp. 492–503, Oct. 2017.

[96] H. Zhang, A. Davigny, F. Colas, Y. Poste, and B. Robyns, ‘‘Fuzzy
logic based energy management strategy for commercial buildings inte-
grating photovoltaic and storage systems,’’ Energy Buildings, vol. 54,
pp. 196–206, Nov. 2012.

[97] A. Keshtkar and S. Arzanpour, ‘‘An adaptive fuzzy logic system for res-
idential energy management in smart grid environments,’’ Appl. Energy,
vol. 186, pp. 68–81, Jan. 2017.

[98] A. Derrouazin, M. Aillerie, N. Mekkakia-Maaza, and J.-P. Charles,
‘‘Multi input-output fuzzy logic smart controller for a residential hybrid
solar-wind-storage energy system,’’ Energy Convers. Manage., vol. 148,
pp. 238–250, Sep. 2017.

[99] N. Kanagaraj, P. Sivashanmugam, and S. Paramasivam, ‘‘Fuzzy coordi-
nated PI controller: Application to the real-time pressure control process,’’
Adv. Fuzzy Syst., vol. 2008, May 2008, Art. no. 691808.

[100] G. Peter, ‘‘Intelligent cost-oriented manufacturing applications to energy
buildings using fuzzy experts,’’ IFAC-PapersOnLine, vol. 52, no. 25,
pp. 523–526, 2019.

[101] M. A. Hannan, Z. A. Ghani, M. M. Hoque, P. J. Ker, A. Hussain, and
A. Mohamed, ‘‘Fuzzy logic inverter controller in photovoltaic
applications: Issues and recommendations,’’ IEEE Access, vol. 7,
pp. 24934–24955, 2019.

[102] L. Ciabattoni, F. Ferracuti, M. Grisostomi, G. Ippoliti, and S. Longhi,
‘‘Fuzzy logic based economical analysis of photovoltaic energy manage-
ment,’’ Neurocomputing, vol. 170, pp. 296–305, Dec. 2015.

[103] S. Hu, C. Hoare, P. Raftery, and J. O’Donnell, ‘‘Environmental and
energy performance assessment of buildings using scenario modelling
and fuzzy analytic network process,’’ Appl. Energy, vol. 255, Dec. 2019,
Art. no. 113788.

[104] M. Pislaru, I. V. Herghiligiu, and I.-B. Robu, ‘‘Corporate sustainable per-
formance assessment based on fuzzy logic,’’ J. Cleaner Prod., vol. 223,
pp. 998–1013, Jun. 2019.

[105] M. Killian, B. Mayer, and M. Kozek, ‘‘Cooperative fuzzy model pre-
dictive control for heating and cooling of buildings,’’ Energy Buildings,
vol. 112, pp. 130–140, Jan. 2016.

[106] M. Killian and M. Kozek, ‘‘Implementation of cooperative fuzzy model
predictive control for an energy-efficient office building,’’ Energy Build-
ings, vol. 158, pp. 1404–1416, Jan. 2018.

[107] Y.Ma, P. Duan, Y. Sun, and H. Chen, ‘‘Equalization of lithium-ion battery
pack based on fuzzy logic control in electric vehicle,’’ IEEE Trans. Ind.
Electron., vol. 65, no. 8, pp. 6762–6771, Aug. 2018.

[108] R. Khalid, S. Abid, A. Zafar, A. Yasmeen, Z. A. Khan, U. Qasim, and
N. Javaid, ‘‘Fuzzy energy management controller for smart homes,’’ Adv.
Intell. Syst. Comput., vol. 612, pp. 200–207, Jun. 2018.

[109] R. Khalid, N. Javaid, M. H. Rahim, S. Aslam, and A. Sher,
‘‘Fuzzy energy management controller and scheduler for smart
homes,’’ Sustain. Comput., Informat. Syst., vol. 21, pp. 103–118,
Mar. 2019.

[110] Z. Pezeshki and S. M. Mazinani, ‘‘Comparison of artificial neural net-
works, fuzzy logic and neuro fuzzy for predicting optimization of build-
ing thermal consumption: A survey,’’ Artif. Intell. Rev., vol. 52, no. 1,
pp. 495–525, Jun. 2019.

[111] G. Kannayeram, N. B. Prakash, and R. Muniraj, ‘‘Intelligent hybrid
controller for power flow management of PV/battery/FC/SC system
in smart grid applications,’’ Int. J. Hydrogen Energy, vol. 45, no. 41,
pp. 21779–21795, Aug. 2020.

[112] Y. Y. Ghadi, M. G. Rasul, and M. M. K. Khan, ‘‘Design and develop-
ment of advanced fuzzy logic controllers in smart buildings for institu-
tional buildings in subtropical Queensland,’’ Renew. Sustain. Energy Rev.,
vol. 54, pp. 738–744, Feb. 2016.

[113] P. H. Shaikh, N. B. M. Nor, P. Nallagownden, and I. Elamvazuthi,
‘‘Stochastic optimized intelligent controller for smart energy efficient
buildings,’’ Sustain. Cities Soc., vol. 13, pp. 41–45, Oct. 2014.

[114] K. Premkumar and B. V. Manikandan, ‘‘Fuzzy PID supervised online
ANFIS based speed controller for brushlessDCmotor,’’Neurocomputing,
vol. 157, pp. 76–90, Jun. 2015.

[115] F. Calvino, M. La Gennusa, G. Rizzo, and G. Scaccianoce, ‘‘The con-
trol of indoor thermal comfort conditions: Introducing a fuzzy adaptive
controller,’’ Energy Buildings, vol. 36, no. 2, pp. 97–102, Feb. 2004.

[116] D. Kolokotsa, D. Tsiavos, G. Stavrakakis, K. Kalaitzakis, and
E. Antonidakis, ‘‘Advanced fuzzy logic controllers design and evaluation
for buildings’ occupants thermal-visual comfort and indoor air quality
satisfaction,’’ Energy Build., vol. 33, no. 6, pp. 531–543, Jul. 2001.

[117] M. Ilbeigi, M. Ghomeishi, and A. Dehghanbanadaki, ‘‘Prediction and
optimization of energy consumption in an office building using artificial
neural network and a genetic algorithm,’’ Sustain. Cities Soc., vol. 61,
Oct. 2020, Art. no. 102325.

[118] X. J. Luo, ‘‘A novel clustering-enhanced adaptive artificial neural network
model for predicting day-ahead building cooling demand,’’ J. Building
Eng., vol. 32, Nov. 2020, Art. no. 101504.

[119] A. D’Amico, G. Ciulla, M. Traverso, V. Lo Brano, and E. Palumbo, ‘‘Arti-
ficial neural networks to assess energy and environmental performance of
buildings: An Italian case study,’’ J. Cleaner Prod., vol. 239, Dec. 2019,
Art. no. 117993.

[120] B. Yuce, H. Li, Y. Rezgui, I. Petri, B. Jayan, and C. Yang, ‘‘Utilizing
artificial neural network to predict energy consumption and thermal
comfort level: An indoor swimming pool case study,’’ Energy Buildings,
vol. 80, pp. 45–56, Sep. 2014.

[121] S. M. Dawoud, X. Lin, and M. I. Okba, ‘‘Hybrid renewable microgrid
optimization techniques: A review,’’ Renew. Sustain. Energy Rev., vol. 82,
pp. 2039–2052, Feb. 2018.

[122] M.Ahmed, A.Mohamed, R. Homod, andH. Shareef, ‘‘Hybrid LSA-ANN
based home energy management scheduling controller for residential
demand response strategy,’’ Energies, vol. 9, no. 9, p. 716, Sep. 2016.

[123] A. L. Katsatos and K. P. Moustris, ‘‘Application of artificial neuron
networks as energy consumption forecasting tool in the building of reg-
ulatory authority of energy, Athens, Greece,’’ Energy Procedia, vol. 157,
pp. 851–861, Jan. 2019.

[124] Q. Dong, K. Xing, and H. Zhang, ‘‘Artificial neural network for assess-
ment of energy consumption and cost for cross laminated timber office
building in severe cold regions,’’ Sustainability, vol. 10, no. 2, p. 84,
Dec. 2017.

[125] L. Ruiz,M. Cuéllar, M. Calvo-Flores, andM. Jiménez, ‘‘An application of
non-linear autoregressive neural networks to predict energy consumption
in public buildings,’’ Energies, vol. 9, no. 9, p. 684, Aug. 2016.

[126] M. N. Q. Macedo, J. J. M. Galo, L. A. L. de Almeida, and
A. C. de C. Lima, ‘‘Demand side management using artificial neural
networks in a smart grid environment,’’ Renew. Sustain. Energy Rev.,
vol. 41, pp. 128–133, Jan. 2015.

[127] T. Chaudhuri, Y. C. Soh, H. Li, and L. Xie, ‘‘A feedforward neural network
based indoor-climate control framework for thermal comfort and energy
saving in buildings,’’ Appl. Energy, vol. 248, pp. 44–53, Aug. 2019.

[128] A. Y. Abdelaziz and E. S. Ali, ‘‘Cuckoo search algorithm based load
frequency controller design for nonlinear interconnected power system,’’
Int. J. Electr. Power Energy Syst., vol. 73, pp. 632–643, Dec. 2015.

[129] C. Fan, Y. Sun, Y. Zhao, M. Song, and J. Wang, ‘‘Deep learning-based
feature engineering methods for improved building energy prediction,’’
Appl. Energy, vol. 240, pp. 35–45, Apr. 2019.

[130] N. Somu and K. Ramamritham, ‘‘A hybrid model for building energy
consumption forecasting using long short term memory networks,’’ Appl.
Energy, vol. 261, Mar. 2020, Art. no. 114131.

41598 VOLUME 9, 2021



K. Parvin et al.: Intelligent Controllers and Optimization Algorithms for Building Energy Management

[131] S. K. Howell, H. Wicaksono, B. Yuce, K. McGlinn, and Y. Rezgui,
‘‘User centered neuro-fuzzy energy management through semantic-based
optimization,’’ IEEE Trans. Cybern., vol. 49, no. 9, pp. 3278–3292,
Sep. 2019.

[132] R. Soenoko, S. Wahyudi, and E. Siswanto, ‘‘Comparison of intelligence
control systems for voltage controlling on small scale compressed air
energy storage,’’ Energies, vol. 12, no. 5, p. 803, Feb. 2019.

[133] W. Gao, H. Moayedi, and A. Shahsavar, ‘‘The feasibility of genetic pro-
gramming and ANFIS in prediction energetic performance of a building
integrated photovoltaic thermal (BIPVT) system,’’ Sol. Energy, vol. 183,
pp. 293–305, May 2019.

[134] Y. Ozturk, P. Jha, S. Kumar, and G. Lee, ‘‘A personalized home energy
management system for residential demand response,’’ in Proc. 4th Int.
Conf. Power Eng., Energy Electr. Drives, May 2013, pp. 1241–1246.

[135] J. Chung, I. H. Choi, S. H. Yoo, M. T. Lim, H.-K. Lee, M.-K. Song, and
C. K. Ahn, ‘‘Home-legacy device intelligent control using ANFIS with
data regeneration and resampling,’’ in Proc. 15th Int. Conf. Control,

Autom. Syst. (ICCAS), Oct. 2015, pp. 1294–1296.
[136] J. Wang, S. Li, H. Chen, Y. Yuan, and Y. Huang, ‘‘Data-driven model pre-

dictive control for building climate control: Three case studies on different
buildings,’’ Building Environ., vol. 160, Aug. 2019, Art. no. 106204.

[137] A. Afram and F. Janabi-shari, ‘‘Theory and applications of HVAC control
systems–A review of model predictive control (MPC),’’ Building Envi-
ron., vol. 72, pp. 343–355, Feb. 2014.

[138] S. J. Cox, D. Kim, H. Cho, and P.Mago, ‘‘Real time optimal control of dis-
trict cooling system with thermal energy storage using neural networks,’’
Appl. Energy, vol. 238, pp. 466–480, Mar. 2019.

[139] S. Kuboth, F. Heberle, A. König-Haagen, and D. Brüggemann, ‘‘Eco-
nomic model predictive control of combined thermal and electric resi-
dential building energy systems,’’ Appl. Energy, vol. 240, pp. 372–385,
Apr. 2019.

[140] C. Sa, K. Jens, and M. Bauer, ‘‘NEUROBAT–a self-commissioned heat-
ing control system,’’ Sensors Appl., vol. 2, pp. 1–25, Apr. 2001.

[141] E. Žáčeková, Z. Váňa, and J. Cigler, ‘‘Towards the real-life implementa-
tion of MPC for an office building: Identification issues,’’ Appl. Energy,
vol. 135, pp. 53–62, Dec. 2014.

[142] F. Behrooz, N. Mariun, M. Marhaban, M. Mohd Radzi, and
A. Ramli, ‘‘Review of control techniques for HVAC systems—
Nonlinearity approaches based on fuzzy cognitive maps,’’ Energies,
vol. 11, no. 3, p. 495, Feb. 2018.

[143] C. Romijn, T. Donkers, J. Kessels, and S.Weiland, ‘‘Real-time distributed
economic model predictive control for complete vehicle energy manage-
ment,’’ Energies, vol. 10, no. 8, p. 1096, Jul. 2017.

[144] T. F. Megahed, S. M. Abdelkader, and A. Zakaria, ‘‘Energy management
in zero-energy building using neural network predictive control,’’ IEEE
Internet Things J., vol. 6, no. 3, pp. 5336–5344, Jun. 2019.

[145] Y. Chen, Z. Tong, Y. Zheng, H. Samuelson, and L. Norford, ‘‘Transfer
learning with deep neural networks for model predictive control of HVAC
and natural ventilation in smart buildings,’’ J. Cleaner Prod., vol. 254,
May 2020, Art. no. 119866.

[146] H. Huang, L. Chen, and E. Hu, ‘‘A neural network-based multi-zone
modelling approach for predictive control system design in commercial
buildings,’’ Energy Buildings, vol. 97, pp. 86–97, Jun. 2015.

[147] P. M. Ferreira, A. E. Ruano, S. Silva, and E. Z. E. Conceição, ‘‘Neural
networks based predictive control for thermal comfort and energy savings
in public buildings,’’ Energy Buildings, vol. 55, pp. 238–251, Dec. 2012.

[148] H. Huang, L. Chen, and E. Hu, ‘‘A new model predictive control scheme
for energy and cost savings in commercial buildings: An airport terminal
building case study,’’ Building Environ., vol. 89, pp. 203–216, Jul. 2015.

[149] A. Kusiak, G. Xu, and Z. Zhang, ‘‘Minimization of energy consumption
in HVAC systems with data-driven models and an interior-point method,’’
Energy Convers. Manage., vol. 85, pp. 146–153, Sep. 2014.

[150] X. Wei, A. Kusiak, M. Li, F. Tang, and Y. Zeng, ‘‘Multi-objective opti-
mization of the HVAC (heating, ventilation, and air conditioning) system
performance,’’ Energy, vol. 83, pp. 294–306, Apr. 2015.

[151] A. Garnier, J. Eynard, M. Caussanel, and S. Grieu, ‘‘Predictive con-
trol of multizone heating, ventilation and air-conditioning systems in
non-residential buildings,’’ Appl. Soft Comput., vol. 37, pp. 847–862,
Dec. 2015.

[152] W. Kim, Y. Jeon, and Y. Kim, ‘‘Simulation-based optimization of an
integrated daylighting and HVAC system using the design of experiments
method,’’ Appl. Energy, vol. 162, pp. 666–674, Jan. 2016.

[153] A. Kusiak, F. Tang, and G. Xu, ‘‘Multi-objective optimization of HVAC
system with an evolutionary computation algorithm,’’ Energy, vol. 36,
no. 5, pp. 2440–2449, May 2011.

[154] A. E. Ruano, S. Pesteh, S. Silva, H. Duarte, G. Mestre, P. M. Ferreira,
H. R. Khosravani, and R. Horta, ‘‘The IMBPCHVAC system: A complete
MBPC solution for existing HVAC systems,’’ Energy Buildings, vol. 120,
pp. 145–158, May 2016.

[155] Y. M. Lee, R. Horesh, and L. Liberti, ‘‘Optimal HVAC control as demand
response with on-site energy storage and generation system,’’ Energy
Procedia, vol. 78, pp. 2106–2111, Nov. 2015.

[156] E. Asadi, M. G. D. Silva, C. H. Antunes, L. Dias, and L. Glicksman,
‘‘Multi-objective optimization for building retrofit: Amodel using genetic
algorithm and artificial neural network and an application,’’Energy Build-
ings, vol. 81, pp. 444–456, Oct. 2014.

[157] C. Mokhtara, B. Negrou, N. Settou, B. Settou, and M. M. Samy, ‘‘Design
optimization of off-grid hybrid renewable energy systems considering the
effects of building energy performance and climate change: Case study of
Algeria,’’ Energy, vol. 219, Mar. 2021, Art. no. 119605.

[158] Z. Yong, Y. Li-Juan, Z. Qian, and S. Xiao-Yan, ‘‘Multi-objective opti-
mization of building energy performance using a particle swarm opti-
mizer with less control parameters,’’ J. Building Eng., vol. 32, Nov. 2020,
Art. no. 101505.

[159] B. T. Cao, M. Obel, S. Freitag, P. Mark, and G. Meschke, ‘‘Artificial
neural network surrogate modelling for real-time predictions and control
of building damage during mechanised tunnelling,’’ Adv. Eng. Softw.,
vol. 149, Nov. 2020, Art. no. 102869.

[160] R. Sendra-Arranz and A. Gutiérrez, ‘‘A long short-term memory artificial
neural network to predict daily HVAC consumption in buildings,’’ Energy
Buildings, vol. 216, Jun. 2020, Art. no. 109952.

[161] A. Soares, A. Gomes, C. H. Antunes, and C. Oliveira, ‘‘A customized evo-
lutionary algorithm for multiobjective management of residential energy
resources,’’ IEEE Trans. Ind. Informat., vol. 13, no. 2, pp. 492–501,
Apr. 2017.

[162] K. B. Masouleh, ‘‘Building energy optimisation using
machine learning and metaheuristic algorithms,’’ Queensland Univ.
Technol., Brisbane, QLD, Australia, Tech. Rep. 120281, 2018,
doi: 10.5204/thesis.eprints.120281.

[163] M. Roccotelli, A. Rinaldi, M. P. Fanti, and F. Iannone, ‘‘Building energy
management for passive cooling based on stochastic occupants behavior
evaluation,’’ Energies, vol. 14, no. 1, p. 138, Dec. 2020.

[164] B. Bass, J. New, andW. Copeland, ‘‘Potential energy, demand, emissions,
and cost savings distributions for buildings in a utility’s service area,’’
Energies, vol. 14, no. 1, p. 132, Dec. 2020.

[165] Y. Liu, Y. Wang, and X. Luo, ‘‘Design and operation optimization of
distributed solar energy system based on dynamic operation strategy,’’
Energies, vol. 14, no. 1, p. 69, Dec. 2020.

[166] G. Serale, M. Fiorentini, A. Capozzoli, D. Bernardini, and A. Bemporad,
‘‘Model predictive control (MPC) for enhancing building and HVAC
system energy efficiency: Problem formulation, applications and oppor-
tunities,’’ Energies, vol. 11, no. 3, p. 631, 2018.

[167] E. O’Dwyer, L. De Tommasi, K. Kouramas, M. Cychowski, and G. Light-
body, ‘‘Prioritised objectives for model predictive control of building
heating systems,’’ Control Eng. Pract., vol. 63, pp. 57–68, Jun. 2017.

[168] S. Martínez, P. Eguía, E. Granada, A. Moazami, and M. Hamdy, ‘‘A per-
formance comparison of multi-objective optimization-based approaches
for calibrating white-box building energy models,’’ Energy Buildings,
vol. 216, Jun. 2020, Art. no. 109942.

[169] J. Liu, X. Chen, H. Yang, and Y. Li, ‘‘Energy storage and management
system design optimization for a photovoltaic integrated low-energy
building,’’ Energy, vol. 190, Jan. 2020, Art. no. 116424.

[170] J. J. Robertson, B. J. Polly, and J. M. Collis, ‘‘Reduced-order modeling
and simulated annealing optimization for efficient residential building
utility bill calibration,’’ Appl. Energy, vol. 148, pp. 169–177, Jun. 2015.

[171] Y. Sun, X. Luo, and X. Liu, ‘‘Optimization of a university timetable con-
sidering building energy efficiency: An approach based on the building
controls virtual test bed platform using a genetic algorithm,’’ J. Building
Eng., vol. 35, Mar. 2021, Art. no. 102095.

[172] A. T. Nguyen, D. Rockwood, M. K. Doan, and T. K. Dung Le, ‘‘Per-
formance assessment of contemporary energy-optimized office buildings
under the impact of climate change,’’ J. Building Eng., vol. 35, Mar. 2021,
Art. no. 102089.

[173] R. Foroughi, S. Asadi, and S. Khazaeli, ‘‘On the optimization of energy
efficient fenestration for small commercial buildings in the united states,’’
J. Cleaner Prod., vol. 283, Feb. 2021, Art. no. 124604.

VOLUME 9, 2021 41599

http://dx.doi.org/10.5204/thesis.eprints.120281


K. Parvin et al.: Intelligent Controllers and Optimization Algorithms for Building Energy Management

[174] Q. Wen, G. Liu, W. Wu, and S. Liao, ‘‘Genetic algorithm-based operation
strategy optimization and multi-criteria evaluation of distributed energy
system for commercial buildings,’’ Energy Convers. Manage., vol. 226,
Dec. 2020, Art. no. 113529.

[175] D.-K. Bui, T. N. Nguyen, A. Ghazlan, N.-T. Ngo, and T. D. Ngo,
‘‘Enhancing building energy efficiency by adaptive Façade: A compu-
tational optimization approach,’’ Appl. Energy, vol. 265, May 2020,
Art. no. 114797.

[176] Y. Zhang, X. Zhang, P. Huang, andY. Sun, ‘‘Global sensitivity analysis for
key parameters identification of net-zero energy buildings for grid inter-
action optimization,’’ Appl. Energy, vol. 279, Dec. 2020, Art. no. 115820.

[177] B. Si, Z. Tian, X. Jin, X. Zhou, and X. Shi, ‘‘Ineffectiveness of optimiza-
tion algorithms in building energy optimization and possible causes,’’
Renew. Energy, vol. 134, pp. 1295–1306, Apr. 2019.

[178] J. Liu, M. Wang, J. Peng, X. Chen, S. Cao, and H. Yang, ‘‘Techno-
economic design optimization of hybrid renewable energy applications
for high-rise residential buildings,’’ Energy Convers. Manage., vol. 213,
Jun. 2020, Art. no. 112868.

[179] R. A. Kishore, M. V. A. Bianchi, C. Booten, J. Vidal, and R. Jackson,
‘‘Optimizing PCM-integrated walls for potential energy savings in U.S.
buildings,’’ Energy Buildings, vol. 226, Nov. 2020, Art. no. 110355.

[180] A. Basit, G. Ahmad Sardar Sidhu, A. Mahmood, and F. Gao, ‘‘Efficient
and autonomous energy management techniques for the future smart
homes,’’ IEEE Trans. Smart Grid, vol. 8, no. 2, pp. 917–926, Mar. 2017.

[181] S. Ali and D.-H. Kim, ‘‘Optimized power control methodology using
genetic algorithm,’’Wireless Pers. Commun., vol. 83, no. 1, pp. 493–505,
Jul. 2015.

[182] C. Deb, L. S. Eang, J. Yang, and M. Santamouris, ‘‘Forecasting energy
consumption of institutional buildings in Singapore,’’ Procedia Eng.,
vol. 121, pp. 1734–1740, 2015.

[183] C. D. Korkas, S. Baldi, and E. B. Kosmatopoulos,Grid-ConnectedMicro-
grids: Demand Management via Distributed Control and Human-in-the-

Loop Optimization, vol. 2. Amsterdam, The Netherlands: Elsevier, 2018.
[184] C. D. Korkas, S. Baldi, I. Michailidis, and E. B. Kosmatopoulos,

‘‘Occupancy-based demand response and thermal comfort optimization
in microgrids with renewable energy sources and energy storage,’’ Appl.
Energy, vol. 163, pp. 93–104, Feb. 2016.

[185] F. Wahid and D. H. Kim, ‘‘An efficient approach for energy consumption
optimization and management in residential building using artificial bee
colony and fuzzy logic,’’ Math. Problems Eng., vol. 2016, Jun. 2016,
Art. no. 9104735.

[186] M. Fayaz and D. H. Kim, ‘‘Energy consumption optimization and user
comfort management in residential buildings using a bat algorithm and
fuzzy logic,’’ Energies, vol. 11, no. 1, p. 161, 2018.

[187] N. Nassif, ‘‘Modeling and optimization of HVAC systems using artificial
neural network and genetic algorithm,’’ Building Simul., vol. 7, no. 3,
pp. 237–245, Jun. 2014.

[188] N. Delgarm, B. Sajadi, F. Kowsary, and S. Delgarm, ‘‘Multi-objective
optimization of the building energy performance: A simulation-based
approach bymeans of particle swarm optimization (PSO),’’ Appl. Energy,
vol. 170, pp. 293–303, May 2016.

[189] M. Collotta, A. Messineo, G. Nicolosi, and G. Pau, ‘‘A dynamic fuzzy
controller to meet thermal comfort by using neural network fore-
casted parameters as the input,’’ Energies, vol. 7, no. 8, pp. 4727–4756,
Jul. 2014.

[190] A. Marvuglia, A. Messineo, and G. Nicolosi, ‘‘Coupling a neural network
temperature predictor and a fuzzy logic controller to perform thermal
comfort regulation in an office building,’’ Building Environ., vol. 72,
pp. 287–299, Feb. 2014.

[191] H. F. Scherer, M. Pasamontes, J. L. Guzmán, J. D. Álvarez, E. Camponog-
ara, and J. E. Normey-Rico, ‘‘Efficient building energy management
using distributed model predictive control,’’ J. Process Control, vol. 24,
no. 6, pp. 740–749, Jun. 2014.

[192] P. H. Shaikh, N. B. M. Nor, P. Nallagownden, I. Elamvazuthi, and
T. Ibrahim, ‘‘Intelligent multi-objective control and management for
smart energy efficient buildings,’’ Int. J. Electr. Power Energy Syst.,
vol. 74, pp. 403–409, Jan. 2016.

[193] J. Lim and G. Yun, ‘‘Cooling energy implications of occupant factor in
buildings under climate change,’’ Sustainability, vol. 9, no. 11, p. 2039,
Nov. 2017.

[194] S. Ali and D. H. Kim, ‘‘Building power control and comfort management
using genetic programming and fuzzy logic,’’ J. Energy Southern Afr.,
vol. 26, no. 2, pp. 94–102, 2015.

[195] L. Klein, J.-Y. Kwak, G. Kavulya, F. Jazizadeh, B. Becerik-Gerber,
P. Varakantham, and M. Tambe, ‘‘Coordinating occupant behavior for
building energy and comfort management using multi-agent systems,’’
Autom. Construct., vol. 22, pp. 525–536, Mar. 2012.

[196] Y. Gao, S. Li, X. Fu, W. Dong, B. Lu, and Z. Li, ‘‘Energy management
and demand response with intelligent learning for multi-thermal-zone
buildings,’’ Energy, vol. 210, Nov. 2020, Art. no. 118411.

[197] E. Biyik and A. Kahraman, ‘‘A predictive control strategy for optimal
management of peak load, thermal comfort, energy storage and renew-
ables in multi-zone buildings,’’ J. Building Eng., vol. 25, Sep. 2019,
Art. no. 100826.

[198] Y. Zhang, Y. Zhong, Y. Gong, and L. Zheng, ‘‘The optimization of visual
comfort and energy consumption induced by natural light based on PSO,’’
Sustainability, vol. 11, no. 1, p. 49, Dec. 2018.

[199] H. Park, ‘‘Human comfort-based-home energy management for demand
response participation,’’ Energies, vol. 13, no. 10, p. 2463, May 2020.

[200] P. Kumar, C. Martani, L. Morawska, L. Norford, R. Choudhary,
M. Bell, and M. Leach, ‘‘Indoor air quality and energy management
through real-time sensing in commercial buildings,’’ Energy Buildings,
vol. 111, pp. 145–153, Jan. 2016.

[201] F. Mancini, F. Nardecchia, D. Groppi, F. Ruperto, and C. Romeo, ‘‘Indoor
environmental quality analysis for optimizing energy consumptions vary-
ing air ventilation rates,’’ Sustainability, vol. 12, no. 2, p. 482, Jan. 2020.

[202] N. Javaid, A. Ahmed, S. Iqbal, and M. Ashraf, ‘‘Day ahead real time
pricing and critical peak pricing based power scheduling for smart homes
with different duty cycles,’’ Energies, vol. 11, no. 6, p. 1464, Jun. 2018.

[203] N. Javaid, F. Ahmed, I. Ullah, S. Abid, W. Abdul, A. Alamri, and
A. Almogren, ‘‘Towards cost and comfort based hybrid optimization for
residential load scheduling in a smart grid,’’ Energies, vol. 10, no. 10,
p. 1546, Oct. 2017.

[204] S. Aslam, Z. Iqbal, N. Javaid, Z. Khan, K. Aurangzeb, and S. Haider,
‘‘Towards efficient energy management of smart buildings exploiting
heuristic optimization with real time and critical peak pricing schemes,’’
Energies, vol. 10, no. 12, p. 2065, Dec. 2017.

[205] M. Awais, N. Javaid, K. Aurangzeb, S. Haider, Z. Khan, and D. Mah-
mood, ‘‘Towards effective and efficient energy management of single
home and a smart community exploiting heuristic optimization algo-
rithms with critical peak and real-time pricing tariffs in smart grids,’’
Energies, vol. 11, no. 11, p. 3125, Nov. 2018.

[206] A. Ahmad, A. Khan, N. Javaid, H. M. Hussain, W. Abdul, A. Almogren,
A. Alamri, and I. A. Niaz, ‘‘An optimized home energy management sys-
tem with integrated renewable energy and storage resources,’’ Energies,
vol. 10, no. 4, p. 549, Apr. 2017.

[207] C. Benavente-Peces and N. Ibadah, ‘‘Buildings energy efficiency analysis
and classification using various machine learning technique classifiers,’’
Energies, vol. 13, no. 13, p. 3497, 2020.

[208] C. Fan, F. Xiao, C. Yan, C. Liu, Z. Li, and J. Wang, ‘‘A novel method-
ology to explain and evaluate data-driven building energy performance
models based on interpretable machine learning,’’ Appl. Energy, vol. 235,
pp. 1551–1560, Feb. 2019.

[209] Z. Ma, C. Ye, H. Li, and W. Ma, ‘‘Applying support vector machines
to predict building energy consumption in China,’’ Energy Procedia,
vol. 152, pp. 780–786, Oct. 2018.

[210] A. Ghofrani, S. D. Nazemi, and M. A. Jafari, ‘‘HVAC load synchro-
nization in smart building communities,’’ Sustain. Cities Soc., vol. 51,
Nov. 2019, Art. no. 101741.

[211] E. Mocanu, P. H. Nguyen, M. Gibescu, and W. L. Kling, ‘‘Deep learning
for estimating building energy consumption,’’ Sustain. Energy, Grids
Netw., vol. 6, pp. 91–99, Jun. 2016.

[212] K. Mason and S. Grijalva, ‘‘A review of reinforcement learning for
autonomous building energymanagement,’’Comput. Electr. Eng., vol. 78,
pp. 300–312, Sep. 2019.

[213] C. D. Korkas, S. Baldi, I. Michailidis, and E. B. Kosmatopoulos, ‘‘Intel-
ligent energy and thermal comfort management in grid-connected micro-
grids with heterogeneous occupancy schedule,’’ Appl. Energy, vol. 149,
pp. 194–203, Jul. 2015.

[214] O. Samuel, S. Javaid, N. Javaid, S. Ahmed, M. Afzal, and F. Ishmanov,
‘‘An efficient power scheduling in smart homes using Jaya based opti-
mization with time-of-use and critical peak pricing schemes,’’ Energies,
vol. 11, no. 11, p. 3155, Nov. 2018.

[215] H. Hussain, N. Javaid, S. Iqbal, Q. Hasan, K. Aurangzeb, and
M. Alhussein, ‘‘An efficient demand side management system with a new
optimized home energy management controller in smart grid,’’ Energies,
vol. 11, no. 1, p. 190, Jan. 2018.

41600 VOLUME 9, 2021



K. Parvin et al.: Intelligent Controllers and Optimization Algorithms for Building Energy Management

[216] A. T. Eseye, M. Lehtonen, T. Tukia, S. Uimonen, and R. J. Millar, ‘‘Opti-
mal energy trading for renewable energy integrated building microgrids
containing electric vehicles and energy storage batteries,’’ IEEE Access,
vol. 7, pp. 106092–106101, 2019.

[217] M. S. H. Nizami, M. J. Hossain, B. M. R. Amin, and E. Fernandez, ‘‘A
residential energy management system with bi-level optimization-based
bidding strategy for day-ahead bi-directional electricity trading,’’ Appl.
Energy, vol. 261, Mar. 2020, Art. no. 114322.

[218] F. Ali, O. Bouachir, O. Ozkasap, and M. Aloqaily, ‘‘Synergy-
Chain: Blockchain-assisted adaptive cyberphysical P2P energy trad-
ing,’’ IEEE Trans. Ind. Informat., early access, Dec. 23, 2021, doi:
10.1109/TII.2020.3046744.

[219] M. Aloqaily, A. Boukerche, O. Bouachir, F. Khalid, and S. Jangsher,
‘‘An energy trade framework using smart contracts: Overview and chal-
lenges,’’ IEEE Netw., vol. 34, no. 4, pp. 119–125, Jul. 2020.

[220] N. Amani and E. Kiaee, ‘‘Developing a two-criteria framework to rank
thermal insulation materials in nearly zero energy buildings using multi-
objective optimization approach,’’ J. Cleaner Prod., vol. 276, Dec. 2020,
Art. no. 122592.

[221] J. Zhao and Y. Du, ‘‘Multi-objective optimization design for windows
and shading configuration considering energy consumption and thermal
comfort: A case study for office building in different climatic regions of
China,’’ Sol. Energy, vol. 206, pp. 997–1017, Aug. 2020.

[222] A. Ebrahimi-Moghadam, P. Ildarabadi, K. Aliakbari, and F. Fadaee, ‘‘Sen-
sitivity analysis and multi-objective optimization of energy consumption
and thermal comfort by using interior light shelves in residential build-
ings,’’ Renew. Energy, vol. 159, pp. 736–755, Oct. 2020.

[223] D. Lindelöf, H. Afshari, M. Alisafaee, J. Biswas, M. Caban, X. Mocellin,
and J. Viaene, ‘‘Field tests of an adaptive, model-predictive heating con-
troller for residential buildings,’’ Energy Buildings, vol. 99, pp. 292–302,
Jul. 2015.

[224] R. Halvgaard, P. Bacher, B. Perers, E. Andersen, S. Furbo, J. B. Jørgensen,
N. K. Poulsen, andH.Madsen, ‘‘Model predictive control for a smart solar
tank based on weather and consumption forecasts,’’ Energy Procedia,
vol. 30, pp. 270–278, 2012.

[225] D. L. Ha, S. Ploix, E. Zamai, and M. Jacomino, ‘‘A home automation
system to improve household energy control,’’ IFAC Proc. Volumes,
vol. 39, no. 3, pp. 15–20, 2006.

[226] A. Barbato, A. Capone, G. Carello, M. Delfanti, M. Merlo, and
A. Zaminga, ‘‘House energy demand optimization in single and multi-
user scenarios,’’ in Proc. IEEE Int. Conf. Smart Grid Commun. (Smart-
GridComm), Oct. 2011, pp. 345–350.

[227] F. A. Qayyum, M. Naeem, A. S. Khwaja, A. Anpalagan, L. Guan, and
B. Venkatesh, ‘‘Appliance scheduling optimization in smart home net-
works,’’ IEEE Access, vol. 3, pp. 2176–2190, Jun. 2015.

[228] M. Wang, T. Zhang, P. Wang, and X. Chen, ‘‘An improved harmony
search algorithm for solving day-ahead dispatch optimization problems
of integrated energy systems considering time-series constraints,’’ Energy
Buildings, vol. 229, Dec. 2020, Art. no. 110477.

[229] M. Wang, H. Yu, R. Jing, H. Liu, P. Chen, and C. Li, ‘‘Combined multi-
objective optimization and robustness analysis framework for building
integrated energy system under uncertainty,’’ Energy Convers. Manage.,
vol. 208, Mar. 2020, Art. no. 112589.

[230] I. Mauser, ‘‘Multi-modal Building Energy Management,’’ Karlsruhe
Inst. für Technol. (KIT), Karlsruhe, Germany, Tech. Rep., 2017,
doi: 10.5445/IR/1000070625.

[231] I. Ullah and S. Hussain, ‘‘Time-constrained nature-inspired optimization
algorithms for an efficient energy management system in smart homes
and buildings,’’ Appl. Sci., vol. 9, no. 4, p. 792, Feb. 2019.

[232] C.-M. Wang and Y.-F. Huang, ‘‘Self-adaptive harmony search algorithm
for optimization,’’ Expert Syst. Appl., vol. 37, no. 4, pp. 2826–2837,
Apr. 2010.

[233] P. Cao, Z. Fan, R. X. Gao, and J. Tang, ‘‘Harnessing multi-objective simu-
lated annealing toward configuration optimization within compact space
for additive manufacturing,’’ Robot. Comput.-Integr. Manuf., vol. 57,
pp. 29–45, Jun. 2019.

[234] D. Aleksendrić and P. Carlone, ‘‘Composite materials–modelling, predic-
tion and optimization,’’ in Soft Computing in the Design and Manufac-
turing of Composite Materials. Amsterdam, The Netherlands: Elsevier,
2015, pp. 61–289.

[235] M. Schmidt and C. Åhlund, ‘‘Smart buildings as cyber-physical systems:
Data-driven predictive control strategies for energy efficiency,’’ Renew.
Sustain. Energy Rev., vol. 90, pp. 742–756, Jul. 2018.

[236] F. Kheiri, ‘‘A review on optimization methods applied in energy-efficient
building geometry and envelope design,’’ Renew. Sustain. Energy Rev.,
vol. 92, pp. 897–920, Sep. 2018.

[237] M. Zillgith, D. Nestle, and M. Wagner, ‘‘Security architecture of the
OGEMA 2.0 home energy management system,’’ in Proc. Int. ETG-

Congr.; Symp. 1: Secur. Crit. Infrastruct. Today, Nov. 2013, pp. 1–6.
[238] R. Velik and P. Nicolay, ‘‘Energy management in storage-augmented,

grid-connected prosumer buildings and neighborhoods using a modi-
fied simulated annealing optimization,’’ Comput. Oper. Res., vol. 66,
pp. 248–257, Feb. 2016.

[239] L. Junghans and N. Darde, ‘‘Hybrid single objective genetic algorithm
coupled with the simulated annealing optimization method for building
optimization,’’ Energy Buildings, vol. 86, pp. 651–662, Jan. 2015.

[240] M. Bereta, ‘‘Regularization of boosted decision stumps using tabu
search,’’ Appl. Soft Comput., vol. 79, pp. 424–438, Jun. 2019.

[241] S. Shafiq, S. Asif, I. Fatima, K. Yousaf, W. Safat, and N. Javaid, ‘‘An
approach towards efficient scheduling of home energy management sys-
tem using backtracking search optimization and tabu search,’’ in Proc.
32nd Int. Conf. Adv. Inf. Netw. Appl. Workshops (WAINA), May 2018,
pp. 226–231.

[242] G. Li, W. Wang, W. Zhang, Z. Wang, H. Tu, and W. You, ‘‘Grid search
based multi-population particle swarm optimization algorithm for mul-
timodal multi-objective optimization,’’ Swarm Evol. Comput., vol. 62,
Apr. 2021, Art. no. 100843.

[243] M. A. Hossain, H. R. Pota, S. Squartini, and A. F. Abdou, ‘‘Modified PSO
algorithm for real-time energy management in grid-connected micro-
grids,’’ Renew. Energy, vol. 136, pp. 746–757, Jun. 2019.

[244] J. Zhu, F. Lauri, A. Koukam, and V. Hilaire, ‘‘Scheduling optimization of
smart homes based on demand response,’’ in Proc. IFIP Int. Conf. Artif.
Intell. Appl. Innov., vol. 458, 2015, pp. 223–236.

[245] S. Rahim, N. Javaid, A. Ahmad, S. A. Khan, Z. A. Khan, N. Alrajeh,
and U. Qasim, ‘‘Exploiting heuristic algorithms to efficiently utilize
energy management controllers with renewable energy sources,’’ Energy
Buildings, vol. 129, pp. 452–470, Oct. 2016.

[246] L. Wang, Z. Wang, and R. Yang, ‘‘Intelligent multiagent control system
for energy and comfort management in smart and sustainable buildings,’’
IEEE Trans. Smart Grid, vol. 3, no. 2, pp. 605–617, Jun. 2012.

[247] K. Bamdad, M. E. Cholette, L. Guan, and J. Bell, ‘‘Ant colony algorithm
for building energy optimisation problems and comparison with bench-
mark algorithms,’’ Energy Buildings, vol. 154, pp. 404–414, Nov. 2017.

[248] C. I. Okonta, A. H. Kemp, R. O. Edopkia, G. C. Monyei, and
E. D. Okelue, ‘‘A heuristic based ant colony optimization algorithm
for energy efficient smart homes,’’ in Proc. 5th Int. Conf. Exhib. Clean
Energy, 2016, pp. 1–12.

[249] B. N. Silva and K. Han, ‘‘Mutation operator integrated ant colony
optimization based domestic appliance scheduling for lucrative demand
side management,’’ Future Gener. Comput. Syst., vol. 100, pp. 557–568,
Nov. 2019.

[250] J. C. Bansal, S. S. Jadon, R. Tiwari, D. Kiran, and B. K. Panigrahi,
‘‘Optimal power flow using artificial bee colony algorithm with global
and local neighborhoods,’’ Int. J. Syst. Assurance Eng. Manage., vol. 8,
no. S4, pp. 2158–2169, Dec. 2017.

[251] S. Wang, J. Yang, G. Liu, S. Du, and J. Yan, ‘‘Multi-objective path
finding in stochastic networks using a biogeography-based optimization
method,’’ Simulation, vol. 92, no. 7, pp. 637–647, Jul. 2016.

[252] F. Wahid, R. Ghazali, and L. H. Ismail, ‘‘An enhanced approach of
artificial bee colony for energy management in energy efficient residen-
tial building,’’ Wireless Pers. Commun., vol. 104, no. 1, pp. 235–257,
Jan. 2019.

[253] Y. Zhang, P. Zeng, and C. Zang, ‘‘Optimization algorithm for home
energy management system based on artificial bee colony in smart grid,’’
in Proc. IEEE Int. Conf. Cyber Technol. Autom., Control, Intell. Syst.

(CYBER), Jun. 2015, pp. 734–740.
[254] E. Valian, S. Tavakoli, and S. Mohanna, ‘‘An intelligent global harmony

search approach to continuous optimization problems,’’Appl.Math. Com-
put., vol. 232, pp. 670–684, Apr. 2014.

[255] I. A. Doush, M. Q. Bataineh, and M. El-Abd, ‘‘The hybrid framework
for multi-objective evolutionary optimization based on harmony search
algorithm,’’ in Proc. 1st Int. Conf. Real Time Intell. Syst., vol. 756, 2019,
pp. 134–142.

[256] M. Fesanghary, M. Mahdavi, M. Minary-Jolandan, and Y. Alizadeh,
‘‘Hybridizing harmony search algorithm with sequential quadratic pro-
gramming for engineering optimization problems,’’ Comput. Methods
Appl. Mech. Eng., vol. 197, nos. 33–40, pp. 3080–3091, Jun. 2008.

VOLUME 9, 2021 41601

http://dx.doi.org/10.1109/TII.2020.3046744
http://dx.doi.org/10.5445/IR/1000070625


K. Parvin et al.: Intelligent Controllers and Optimization Algorithms for Building Energy Management

[257] J. H. Kim, ‘‘Harmony search algorithm: A unique music-inspired algo-
rithm,’’ Procedia Eng., vol. 154, pp. 1401–1405, 2016.

[258] S. Muhammad Mohsin, N. Javaid, S. A. Madani, S. K. Abbas,
S. M. A. Akber, and Z. A. Khan, ‘‘Appliance scheduling in smart homes
with harmony search algorithm for different operation time intervals,’’
in Proc. 32nd Int. Conf. Adv. Inf. Netw. Appl. Workshops (WAINA),
May 2018, pp. 51–60.

[259] Z. W. Geem and Y. Yoon, ‘‘Harmony search optimization of renewable
energy charging with energy storage system,’’ Int. J. Electr. Power Energy
Syst., vol. 86, pp. 120–126, Mar. 2017.

[260] A. Figueiredo, J. Kämpf, R. Vicente, R. Oliveira, and T. Silva, ‘‘Com-
parison between monitored and simulated data using evolutionary algo-
rithms: Reducing the performance gap in dynamic building simulation,’’
J. Building Eng., vol. 17, pp. 96–106, May 2018.

[261] M. W. Ahmad, M. Mourshed, B. Yuce, and Y. Rezgui, ‘‘Computational
intelligence techniques for HVAC systems: A review,’’ Building Simul.,
vol. 9, no. 4, pp. 359–398, Aug. 2016.

[262] A. Arabali, M. Ghofrani, M. Etezadi-Amoli, M. S. Fadali, and
Y. Baghzouz, ‘‘Genetic-algorithm-based optimization approach for
energy management,’’ IEEE Trans. Power Del., vol. 28, no. 1,
pp. 162–170, Jan. 2013.

[263] M. Fadaee andM. A. M. Radzi, ‘‘Multi-objective optimization of a stand-
alone hybrid renewable energy system by using evolutionary algorithms:
A review,’’ Renew. Sustain. Energy Rev., vol. 16, no. 5, pp. 3364–3369,
Jun. 2012.

[264] A. Soares, Á. Gomes, C. H. Antunes, and H. Cardoso, ‘‘Domestic
load scheduling using genetic algorithms,’’ in Proc. Eur. Conf. Appl.

Evol. Comput. (Lecture Notes in Computer Science), vol. 7835. Berlin,
Germany: Springer, 2013, pp. 142–151.

[265] Z. Zhao, W. Cheol Lee, Y. Shin, and K.-B. Song, ‘‘An optimal power
scheduling method for demand response in home energy manage-
ment system,’’ IEEE Trans. Smart Grid, vol. 4, no. 3, pp. 1391–1400,
Sep. 2013.

[266] A. Soares, C. H. Antunes, C. Oliveira, and Á. Gomes, ‘‘A multi-objective
genetic approach to domestic load scheduling in an energy management
system,’’ Energy, vol. 77, pp. 144–152, Dec. 2014.

[267] V. Kachitvichyanukul, ‘‘Comparison of three evolutionary algorithms:
GA, PSO, and DE,’’ Ind. Eng. Manage. Syst., vol. 11, no. 3, pp. 215–223,
Sep. 2012.

[268] L. Tang, Y. Zhao, and J. Liu, ‘‘An improved differential evolution algo-
rithm for practical dynamic scheduling in steelmaking-continuous casting
production,’’ IEEE Trans. Evol. Comput., vol. 18, no. 2, pp. 209–225,
Apr. 2014.

[269] Z. A. Khan, A. Zafar, S. Javaid, S. Aslam, M. H. Rahim, and N. Javaid,
‘‘Hybrid meta-heuristic optimization based home energy management
system in smart grid,’’ J. Ambient Intell. Humanized Comput., vol. 10,
no. 12, pp. 4837–4853, Apr. 2019.

[270] V. Rostampour and T. Keviczky, ‘‘Probabilistic energy management for
building climate comfort in smart thermal grids with seasonal stor-
age systems,’’ IEEE Trans. Smart Grid, vol. 10, no. 4, pp. 3687–3697,
Jul. 2019.

[271] J. Zhang, Y. Wu, Y. Guo, B. Wang, H. Wang, and H. Liu, ‘‘A hybrid har-
mony search algorithm with differential evolution for day-ahead schedul-
ing problem of amicrogrid with consideration of power flow constraints,’’
Appl. Energy, vol. 183, pp. 791–804, Dec. 2016.

[272] J. D. Moyer and S. Hedden, ‘‘Are we on the right path to achieve the
sustainable development goals?’’ World Develop., vol. 127, Mar. 2020,
Art. no. 104749.

[273] S. E. Diaz-Mendez, A. A. Torres-Rodríguez, M. Abatal,
M. A. E. Soberanis, A. Bassam, and G. K. Pedraza-Basulto, ‘‘Economic,
environmental and health co-benefits of the use of advanced control
strategies for lighting in buildings of Mexico,’’ Energy Policy, vol. 113,
pp. 401–409, Feb. 2018.

[274] B. Li and R. Yao, ‘‘Urbanisation and its impact on building energy
consumption and efficiency in China,’’ Renew. Energy, vol. 34, no. 9,
pp. 1994–1998, Sep. 2009.

[275] P. Sheng and X. Guo, ‘‘Energy consumption associated with urbanization
in China: Efficient- and inefficient-use,’’ Energy, vol. 165, pp. 118–125,
Dec. 2018.

[276] A. Khan, N. Mushtaq, S. H. Faraz, O. A. Khan, M. A. Sarwar, and
N. Javaid, ‘‘Genetic algorithm and earthworm optimization algorithm for
energymanagement in smart grid,’’ inProc. Int. Conf. P2P, Parallel, Grid,
Cloud Internet Comput., 2018, pp. 447–459.

[277] M. Ali, S. Abid, A. Ghafar, N. Ayub, H. Arshad, S. Khan, and N. Javaid,
‘‘Earth worm optimization for home energy management system in smart
grid,’’ in Proc. Int. Conf. Broadband Wireless Comput., Commun. Appl.,
2018, pp. 583–596.

[278] A. Manzoor, F. Ahmed, M. A. Judge, A. Ahmed, M. A. Ul Haq Tahir,
Z. A. Khan, U. Qasim, and N. Javaid, ‘‘User comfort oriented residential
power scheduling in smart homes,’’ in Proc. Int. Conf. Innov. Mobile

Internet Services Ubiquitous Comput., 2018, pp. 171–180.
[279] P. Rocha, A. Siddiqui, and M. Stadler, ‘‘Improving energy efficiency via

smart building energy management systems: A comparison with policy
measures,’’ Energy Buildings, vol. 88, pp. 203–213, Feb. 2015.

[280] E. Annunziata, F. Rizzi, and M. Frey, ‘‘Enhancing energy efficiency in
public buildings: The role of local energy audit programmes,’’ Energy
Policy, vol. 69, pp. 364–373, Jun. 2014.

[281] N. T. Mbungu, R. C. Bansal, R. Naidoo, V. Miranda, and M. Bipath,
‘‘An optimal energy management system for a commercial building with
renewable energy generation under real-time electricity prices,’’ Sustain.
Cities Soc., vol. 41, pp. 392–404, Aug. 2018.

[282] Z.-S. Li, G.-Q. Zhang, D.-M. Li, J. Zhou, L.-J. Li, and L.-X. Li, ‘‘Applica-
tion and development of solar energy in building industry and its prospects
in China,’’ Energy Policy, vol. 35, no. 8, pp. 4121–4127, Aug. 2007.

[283] (2017). World Green Building Council. Accessed: Jan. 21, 2020.
[Online]. Available: https://www.worldgbc.org/news-media/green-
building—driver-decent-jobs-economic-growth

[284] M. S. Hossain Lipu, T. Jamal, and T. F. Karim, ‘‘An approach towards
sustainable energy performance by green building: A review of current
features, benefits and barriers,’’ Int. J. Renew. Sustain. Energy, vol. 2,
no. 4, pp. 180–190, 2013.

[285] (2020). Benefits of Green Buildings. Accessed: Jan. 21, 2020. [Online].
Available: https://www.worldgbc.org/benefits-green-buildings

[286] (2016). Canada Green Building Council. Accessed: Jan. 21, 2020.
[Online]. Available: https://www.cagbc.org/News/EN/2016/20160210_
News_Release.aspx

[287] C. Dipasquale, R. Fedrizzi, A. Bellini, M. Gustafsson, F. Ochs, and
C. Bales, ‘‘Database of energy, environmental and economic indicators of
renovation packages for European residential buildings,’’ Energy Build-
ings, vol. 203, Nov. 2019, Art. no. 109427.

[288] E. Klumbyte, R. Bliudzius, and P. Fokaides, ‘‘Development and appli-
cation of municipal residential buildings facilities management model,’’
Sustain. Cities Soc., vol. 52, Jan. 2020, Art. no. 101804.

[289] S. Copiello, ‘‘Economic parameters in the evaluation studies focusing
on building energy efficiency: A review of the underlying rationale,
data sources, and assumptions,’’ Energy Procedia, vol. 157, pp. 180–192,
Jan. 2019.

[290] O. Pisacane, M. Severini, M. Fagiani, and S. Squartini, ‘‘Collaborative
energy management in a micro-grid by multi-objective mathematical
programming,’’ Energy Buildings, vol. 203, Nov. 2019, Art. no. 109432.

[291] W. Kim, S. Katipamula, and R. Lutes, ‘‘Application of intelligent
load control to manage building loads to support rapid growth of dis-
tributed renewable generation,’’ Sustain. Cities Soc., vol. 53, Feb. 2020,
Art. no. 101898.

[292] R. Tang, S. Wang, and H. Li, ‘‘Game theory based interactive demand
side management responding to dynamic pricing in price-based demand
response of smart grids,’’ Appl. Energy, vol. 250, pp. 118–130, Sep. 2019.

[293] L. F. M. van Summeren, A. J. Wieczorek, G. J. T. Bombaerts, and
G. P. J. Verbong, ‘‘Community energy meets smart grids: Reviewing
goals, structure, and roles in virtual power plants in Ireland, Belgium
and The Netherlands,’’ Energy Res. Social Sci., vol. 63, May 2020,
Art. no. 101415.

[294] J. Louis, A. Caló, and E. Pongrácz, ‘‘Smart houses for energy efficiency
and carbon dioxide emission reduction,’’ in Proc. 4th Int. Conf. Smart
Grids, Green Commun. IT Energy-Aware Technol., 2014, pp. 44–50.

[295] J. Langevin, C. B. Harris, and J. L. Reyna, ‘‘Assessing the potential to
reduce U.S. building CO2 emissions 80% by 2050,’’ Joule, vol. 3, no. 10,
pp. 2403–2424, Oct. 2019.

[296] E. Georgopoulou, Y. Sarafidis, S. Mirasgedis, C. A. Balaras, A. Gaglia,
and D. P. Lalas, ‘‘Evaluating the need for economic support poli-
cies in promoting greenhouse gas emission reduction measures in the
building sector: The case of Greece,’’ Energy Policy, vol. 34, no. 15,
pp. 2012–2031, Oct. 2006.

41602 VOLUME 9, 2021


