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Abstract Field operations should be done in a

manner that minimizes time and travels over

the field surface. Automated and intelligent path

planning can help to find the best coverage path

so that costs of various field operations can be

minimized. The algorithms for generating an op-

timized field coverage pattern for a given 2D field

has been investigated and reported. However, a

great proportion of farms have rolling terrains,

which have a considerable influence on the de-

sign of coverage paths. Coverage path planning

in 3D space has a great potential to further op-

timize field operations and provide more precise

navigation. Supplementary to that, energy con-

sumption models were invoked taking into ac-

count terrain inclinations in order to provide the

optimal driving direction for traversing the par-

allel field-work tracks and the optimal sequence

for handling these tracks under the criterion of

minimizing direct energy requirements. The re-

duced energy requirements and consequently the

reduced emissions of atmospheric pollutants, e.g.

CO2 and NO, are of major concern due to their
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contribution to the greenhouse effect. Based on

the results from two case study fields, it was shown

that the reduction in the energy requirements

when the driving angle is optimized by taking

into account the 3D field terrain was 6.5 % as an

average for all the examined scenarios compared

to the case when the applied driving angle is opti-

mized assuming even field terrain. Additional re-

duction is achieved when sequence of field tracks

is optimized by taking into account inclinations for

driving up and down steep hills.

Keywords Route planning · DEM ·

Optimization · Genetic algorithm

1 Introduction

Around 36 % of direct energy use in agriculture

is gas oil/diesel for field operations. The largest

users are the arable crop sectors (66 %), the dairy,

beef and sheep sectors use an additional 31 %

and the horticultural field crops sector uses 3 %.

Savings can be made by the producers themselves

by correct tractor ballasting, tyre selection and

implement matching but it is thought unlikely that

these measures have the potential to save more

than 10 % of the total fuel used [15]. According

to a Food and Agriculture Organization (FAO),

the food sector around the globe has an over de-

pendence on fossil fuels that may limit the sector’s
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ability to meet global food demands. With the

high and fluctuating prices of fossil fuels there is

a need for new strategies. Several recommenda-

tions were suggested in every step of food pro-

duction such as the use of more efficient engines

and improving energy efficiency [2]. In addition

to the economic impact of the reduced energy

consumption in field operations, the agricultural

vehicles used in various field work activities emit

significant levels of atmospheric pollutants, which

include carbon dioxide (CO2) and nitrogen oxide

(NO), both of which are of major concern due

to their contribution to the greenhouse effect.

Reducing pollutant outputs through reduced fuel

consumption therefore yield both environmental

and financial benefits [14].

Fuel consumption may be reduced by devel-

oping optimized in-field coverage planning for

agricultural machines. Recently, a number of au-

tomated coverage planning algorithms have been

developed for the optimization and automation

of autonomous field operations. For example,

Oksanen and Visala [11] and Jin and Tang [9]

developed algorithmic approaches to find efficient

2D coverage paths involving field area decom-

position in sub-regions and optimal driving line

direction. Hameed et al. [6] presented a fully

automated 2D coverage path planning approach

which is able to cover any field regardless of

its shape complexity with the option of using a

user-defined driving angle or by driving paral-

lel to the longest edge of the field as the opti-

mal driving direction. Bochtis and Vougioukas [1]

presented the algorithmically-computed optimal

fieldwork patterns, the B-patterns, which provide

the optimal field-work track sequencing according

to the criterion of the minimization of the non-

working travelled distance of an agricultural vehi-

cle. Hameed et al. [4] derived a genetic algorithm

based approach for the simultaneous selection of

the driving direction and the sequence of tracks

that minimizes operational time and overlapped

area. Hameed et al. [5] developed a genetic al-

gorithm based coverage path planning approach

for covering fields with obstacle areas by clus-

tering the field tracks into independent blocks

and finding the optimum sequence of blocks in a

manner which minimizes the connection distance

between blocks.

A critical factor, however, that has not been

taken into account in the above studies is the

effect attributed to varying terrain conditions. The

rolling terrains of many farms have considerable

influence on the design of coverage paths: only

47 % of cropland in the United States is only less

than 2 % slopes; 48 % of the cropland is on slopes

between 2 % and 10 %. Therefore, coverage path

planning for three dimensional (3D) terrain fields

has a great potential for further optimizing field

operations [12]. Only limited research on devel-

oping area coverage planning for 3D terrain has

been reported. For example, Jin and Tang [10]

developed an optimized 3D terrain field coverage

path planning algorithm that classifies the field

terrain into flat and sloppy areas and then applies

the most appropriate path planning strategy to

each region in terms of minimized headland turn-

ing cost, soil erosion cost, and skipped/overlapped

area cost. Hameed et al. [8] developed a cover-

age path planning method for agricultural vehi-

cles carrying time-depended loads over 3D terrain

with the objective of reducing energy consump-

tion by finding the best driving direction. The

terrain characteristics are expected to have sig-

nificant influence on the design and optimiza-

tion of the coverage path planning. Especially in

terms of elevation variations, elevation changes,

or slopes have considerable influence on soil ero-

sion, skips and overlaps between furrows, and

vehicle’s fuel consumption [10].

Material handling operations with time-

depending loads carried by the agricultural

vehicles specifically presents a potential for saving

direct energy consumption in elevated terrains by

optimizing the relation between the inclination of

a specific part of the area, the driving direction,

and the load carried by the vehicle while operating

on this part. These operations involve traversing

the field with varying loads depending on the

emptying or state of the carrying unit. The

capacity constraints require that the vehicle has to

execute a number of routes with varying loads in

order to complete the operation (e.g., harvesting

and fertilizing) [8].

The objective of this paper is to develop and

implement a 3D coverage planning approach for

material input operations that minimizes the en-

ergy requirements. The approach will be based on



J Intell Robot Syst (2014) 74:965–983 967

developed tools for 2D geometrical representa-

tion and expanded to a 3D representation, and a

simulation tool for field operations under capacity

constraints. The approach will be supplemented

with energy consumption models taking into ac-

count terrain inclinations in order to provide the

optimal driving line direction for traversing the

parallel field-work tracks under the criterion of

minimized direct energy requirements. In addi-

tion, a further reduction in fuel consumption is

achieved through the use of an integer-valued ge-

netic algorithm to find the best sequence of field-

work tracks that enable an agriculture machine or

a robot to drive up and down steep hills using the

minimum fuel consumption.

2 Methodology

2.1 General

The approach provides, for a given field and given

machinery characteristics, the optimal driving di-

rection and/or the optimal sequence for traversing

the parallel field-work tracks in terms of mini-

mized direct energy requirements. This process

can be carried out in two different ways as follows.

2.1.1 2D/3D Genetic Algorithm Based Approach

The decision variables of this optimization prob-

lem are the driving angle, which is defined as the

angle between the driving line direction and the

horizontal axis of the applied Euclidean coordi-

nates system, and the sequence of field tracks.

The method is divided into two levels. At the

first level, nonworking in-field travelled distance

cost and hence the total field operational time is

minimized. An existing 2D field representation

generation tool (described in Section 2.2) is ap-

plied and a genetic algorithm (GA) is used to find

the best possible driving angle which enables an

agriculture machine or a robot to cover the field

area using the minimum number of field tracks

and hence the minimum headland turning cost.

Headland turning cost is defined as the distance

travelled over headland area in turnings which

can be further reduced by using simple turning

types which does not require complex maneuver-

ing over headland area. In this level, the optimiza-

tion process takes place using the 2D field repre-

sentation since elevation does not appear in the

governing equations used for calculating turning

distance over headland area [4]. At the second

level of the optimization process, the generated

2D field representation for the optimized driving

angle is combined with the information provided

by the digital elevation model (DEM) of the field

area to generate the 3D representation of the field

under consideration. A fuel consumption models

(described in Section 2.5) are used for estimating

the direct energy requirements for the execution

of the operation by driving through each single

track from one end to the other end and vice

versa. Fuel consumption is estimated in terms of

the percentage gradient of the vehicle’s route and

therefore there is always a difference in fuel con-

sumption depending on the direction the vehicle

used to enter each track. The optimal entrance

directions for all the field tracks are then obtained

and the best sequence of tracks is obtained in

such a way to enable a vehicle to cover all tracks

with the minimum headland turning cost and the

minimum possible fuel consumption. To sum up,

the main task of the second level of this process

is to further optimize the fuel consumption by

finding the best sequence of tracks that can use the

less gradient routes to drive up the field’s steep

hills. A flowchart of the proposed optimization

approach is shown in Fig. 1.

2.1.2 3D Exhaustive Search Approach

As a decision variable of the optimization prob-

lem is considered the driving angle, which is

defined as the angle between the driving line

direction and the horizontal axis of the applied

Euclidean coordinates system. The method is

based on an exhaustive search among all possible

integer values of driving angles between 1◦ and

180◦. The stages involved in the search are de-

scribed in Fig. 2. In the first stage an existing 2D

field representation generation tool (described in

Section 2.2) is applied. In a next stage (described

in Section 2.3), by combining the generated 2D

representation and the information provided by

the digital elevation model (DEM) of the field, a
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Fig. 1 Flowchart of the
2D/3D GA-based
optimization approach

3D representation is generated. Then an existing

simulation tool for input material handling op-

erations with capacity constraints is applied (de-

scribed in Section 2.4). The simulation provides

the path followed by the agricultural vehicle for

a complete field coverage and the corresponding

carried load in each way-point. In the last stage,

using fuel consumption models (described in

Section 2.5), the total direct energy requirements

for the execution of the operation using the tested

driving angle are estimated. The tested driving

angle with the minimum estimated direct energy

requirements is selected as the optimal one.

2.2 2D Field Representation

For the 2D geometrical representation of the

field, a tool developed by [6] was used. The 2D

geometrical representation of a field involves the

generation of a geometrical map which is made

divided into discrete geometric primitives, such

as points, lines, and polygons; providing a concise

representation of the environmental data that can

be readily used for operational planning. The in-

put consists of the set of coordinates of the points

on the field boundary, the operating width of the

implement, the number of headland paths, and the

tested driving direction. The tool generates the set

of the parallel field-work tracks for the complete

field area coverage and gives as an output of the

coordinates of the points representing the starting

and the ending point of each track, and of the

points representing the headland paths (Fig. 3).

The tool was implemented using the MATLAB®

technical programming language.

2.3 3D Terrain Representation

In this stage, the 2D field representation is

converted into a 3D field representation. The
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Fig. 2 Flowchart of the
3D exhaustive search
optimization approach

For driving angle = 1 : 180 degrees

2D

representation

generation

Field boundary

Operating width

Headland passes

DEM

2D geometrical

representation

3D

representation

generation

3D geometrical

representation

Simulation
Sequence of way

points and load

Driving angle

Total direct energy

requirements

Energy

requirements

estimation

Application rate

Dosage

Tank capacity

...

(a) (b)

Fig. 3 Example implementation of the 2D geometrical
field representation: a Satellite image of a field (55◦ 32′

10.00′′ N, 10◦ 4′ 1.96′′ E) with the outer field boundary in

blue b The geometrical representation of the field for an
operating width of 9 m, a driving angle of −12.5◦, and a
single headland path
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information regarding the field topography

needed for the generation of a 3D representation

of the field terrain is provided by a digital file,

called digital elevation model (DEM), consisting

of terrain elevation for ground positions at

regularly spaced horizontal intervals. DEM’s data

are structured as a grid of squares or cells [13].

The cell length (m) represents the accuracy of

the terrain representation in 3D space and this

value is defined in the DEM file. A DEM file is

arranged as an ASCI grid file containing, in its

header, the file id, cell length, number of grid lines

along x-axis, number of grid lines along y-axis,

minimum and maximum x values of the grid in

UTM, minimum and maximum y value of the grid

in UTM, and minimum and maximum elevation

values of the grid in UTM. Then elevation values

of the grid cells (i.e., z values) are ordered in rows

in the rest of the file representing the elevation

matrix. The cell length of the field examples used

in this paper is 1.6 m.

The 3D representation of the field is obtained

by dividing each line segment of the 2D field rep-

resentation into small segments each of a length

less than or equal to the cell length of the ele-

vation model (i.e., DEM file) of the field area.

After division, each resultant segment has two

waypoints, namely, starting and ending points in

2D space. A unique cell from the DEM file is

then allocated to each resultant waypoint and

the elevation of each matched cell is assigned

to its relevant waypoint of the 2D representa-

tion. A search sub-routine is used to allocate

each waypoint of the 2D representation to a

DEM cell. A pseudo-code of the developed search

sub-routine is given in Table 1 for converting a

2D field-work track into the corresponding 3D

representation.

Table 1 Elevation search pseudo-code
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2.4 Material Input Operations Simulation Tool

In this stage, the execution of the operation fol-

lowing the tested driving angle is simulated using a

developed model by Hameed et al. [7]. The object

oriented simulation model regards the material

input operations with capacity constraints, where

a quantity of a “commodity” is transported by the

machine and is distributed in the field area (e.g.

the case of the organic fertilizing application). In

the case of material input operations, a number

of routes are required since a full load carried by

the application unit is generally not sufficient for

full area coverage of the field. A “route” consists

of part operations including filling the tanker at a

location out of the field and driving from that lo-

cation to the position where the application is re-

sumed, applying the carried material to the field,

and driving back to the re-filling location. These

activities involve a number of non-productive in-

field transports with either full (in the case of trav-

elling from the refilling location and then back to

the vehicles resuming position) or empty (the op-

posite of the previous explanation above) tanker.

All these in-field transports are directly affected

by the driving angle and have to be included

in the estimation of the total energy require-

ments. The input to the simulation tool includes

the 2D geometrical representation of the field

(provided by the tool described in Section 2.2),

a number of operation-specific information, i.e.

application rate, dosage of the material, aver-

age speeds (working speed, turning speed, and

in-field transport speed), and machinery-specific

information, i.e. minimum turning radius, work-

ing width, and tank capacity. The output of the

simulation model provides the sequence that the

vehicle traverses the waypoints with which has

been defined in the 3D representation stage and

the load carried by the vehicle at the individual

waypoints in both the case of applying the ma-

terial and in the case of the associated in-field

transports.

2.5 Energy Requirements Estimation Model

In order to model the agricultural vehicle energy

consumption as a function of the inclination of

the field terrain, the case of the injector system

for organic fertilizer was used. Specifically, the

estimation of the required power was based on the

following parametric equation introduced Fröba

and Funk by [3]:

P = (p1 + v · w · p2) +
(

p3 + d · v2 · p4

)

w

+ (0.115M · v · a/3600) + Pair

+ (g · m · v · rrc/1800) (1)

where P is the required power (kW), v is the

vehicle speed (km/h), w is the working width of

the injector (m), d is the working depth (cm), M

is the total vehicle and implement mass including

the tank load, m is the vehicle and implement

mass, (kg), a is the inclination of the terrain (%),

g is the gravitational acceleration (9.81 m/s2), Pair

is the total power account for air conditioner

and compressors (kW), rrc is the rolling resistance

coefficient (rrc equals 0.06 for good surface condi-

tions, 0.12 for medium surface conditions, and 0.25

for bad surface conditions), p1 and p2 are pump

constants (p1 = −0.2683 and p2 = 0.06775), and

p3 and p4 are injector factors (i.e., p3 = 4.55752

and p4 = 0.03141). Equation 1 is used to estimate

the power required by a tractional unit pulling an

injector traversing each segment of the generated

3D representation of the field according to the

following process.

Let T = {1,2,3,. . . } be the set of the field-

work tracks generated by the 2D representation

process. Each track is divided into a number of

segments ni, i ∈ T according to the 3D represen-

tation process. In each of the above mentioned

segments, an inclination ai
j, i ∈ T, j = 1, . . . ni is

allocated (in the 3D representation process). To

calculate the inclination in a specific segment of

a track, the change in elevation between two

sequential cells in the direction of the track is

divided by the length of the cell edge. In the

case of time-depended loads in each segment,

a mass value Mi
j = m + li

j, i ∈ T, j = 1, . . . , ni is

allocated and this equals the summation of the

machinery (tractor + implement) mass, m (kg),

and the load mass (li
j, i ∈ T, j = 1, . . . , ni) (this

value is provided by the simulation tool output).

Consequently, the required power for driving over
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each individual segment can be obtained using the

following equation:

Pi
j =

⎧

⎨

⎩

(p1+v.w.p2)+
(

i1 + d.v2.i2

)

w+
(

0.115.

[

m+li
j

]

.v.ai
j/3600

)

+Pair+(g.m.v.rrc/1800) , if ai
j >0

(p1+v.w.p2)+
(

i1+d.v2.i2

)

w+Pair +
(

g.v.rrc

/

1800
)

, otherwise
(2)

The tank load for each segment is obtained using

the equation:

l1
1 = C

li
1 = li−1

ni−1
− r.w.di

1, i ∈ T\ {1}

li
j = li

j−1 − r.w.di
j, i ∈ T, j = 2, . . . , ni (3)

where r is the application rate in (kg/m2), di
j is the

segment length, and C is the tank capacity (kg).

The energy model Eq. 2 is a simplification ig-

noring the full effect of driving in a negative slope.

As it can be seen in the case of the negative slope

the energy requirements have been assumed to

be equal to the one while driving in zero slope.

Although that this assumption has no effect in the

optimality of the solution, the resulted values of

the energy requirements are not true values but

higher and have to be regarded as the output of

the objective function of the optimization problem

and not as the real energy requirements of the

system.

The energy required for traversing each indi-

vidual segment is obtained using:

Ei
j = 3.6

Pi
j · di

j

v
(4)

The total energy required for covering the main

field body is then estimated as:

E =

|T|
∑

i=1

⎛

⎝

ni
∑

j=1

Ei
j

⎞

⎠ (5)

As mentioned, in each route executed by the

vehicle an empty tanker in-field transport and

a full-tanker in-field transport are involved. For

each of these in-field transports, the simulation

tool provides the sequence of the way points. The

energy requirements for each individual segment

traversed by the vehicle in an in-field transport

is estimated using Eq. 2 where for the case of

an empty tanker the total vehicle mass equals m,

while in the case of a full-load tanker equals m + c,

where c is the tanker capacity. The total energy

requirements for the in-field transports equal:

Etr =

k
∑

i=1

(

Ee
i + E

f
i

)

(6)

where k denotes the number of routes and Ee
i

and E
f
i are the total direct energy requirements

for the empty tanker and the full-loaded tanker,

respectively, in-field transports during route

i ∈ {1, . . .k}.

In the optimization problem, the driving angle

which minimizes the total energy consumed in

covering field area and in the associated in-field

transportations is found. The objective function is

given as follows:

min
ϑ→ϑ∗

(E + Etr) (7)

where ϑ ∈ [0◦, 180◦] is the driving angle and ϑ∗ is

the optimum driving angle which minimizes the

total energy consumption. The model has been

implemented in the MATLAB® programming

environment.

3 Case Studies

3.1 The Experimental Fields

Two experimental fields, referred to as field A

and field B, were used for demonstrating the func-
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tionality of the developed approach. Figure 4a

shows the satellite image of the experimental

field A (+56◦ 30′ 25.64′′ N, +9◦ 35′ 11.45′′ E)

which has an area of 11.24 ha (112,416.45 m2).

The minimum, maximum and average elevations

on this field are 20.89 m, 42.96 m, and 32.88 m,

respectively. The 3D surface area of field A,

the contour view of the field’s elevation model

(i.e., DEM) and two elevation profiles of Field

A are shown also in Fig. 4. Figure 5 shows the

satellite image of the experimental field B (+56◦

30′ 48.10′′ N, +9◦ 34′ 15.61′′ E) which has an

area of 21.22 ha (212,168.67 m2). The minimum,

maximum, and average elevations on this field

are 18.68 m, 42.96 m, and 35.77 m, respectively.

The 3D surface area of field B, the contour view

of the field’s elevation model (i.e., DEM) and

two elevation profiles of field B are shown also

in Fig. 5.

3.2 Results and Discussion

3.2.1 2D/3D GA-Based Approach

At the first stage, the driving angle for experimen-

tal field A is optimized using a binary coded GA of

0.5 crossover probability, 0.2 mutation probability

and for a vehicle of an operating width of 9 m

and a minimum turning radius of 7.5 m derived

at an average speed of 10 km/h in field-work

tracks, 5 km/h in pi-turning type and 2.5 km/h

in omega-turning type (for more details see [7]).

Two different population sizes are used to assess

the performance of the driving angle optimization

algorithm over 2D representation. The optimized

driving angles for a GA of 40 and 150 chromo-

somes in population are found to be 99.36◦ and

99.15◦, respectively, and this solution is obtained

in 0.58 and 1.43 min, respectively, as it is shown in

(a) (b) (c)

(d) (e)

Fig. 4 Experimental Field A: Satellite image (a), 3D surface view (b), contour view based on the DEM information (c),
elevation profile from west (W) towards east (E) (d), and elevation profile from north (N) towards south (S) (e)
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(a) (b) (c)

(d) (e)

Fig. 5 Experimental Field B: Satellite image (a), 3D surface view (b), contour view based on the DEM information (c),
elevation profile from west (W) towards east (E) (d), and elevation profile from north (N) towards south (S) (e)

Table 2. A more accurate solution can be obtained

(i.e., in terms of less non-working distance) for

a larger population size but at the cost of the

computing time. The driving angle is optimized

over 3D field representation using the above GA

where an optimized driving angle of 100◦ is ob-

tained in 23.64 min as it is shown in Table 2.

Table 3 shows a comparison between some

empirical driving angles and the optimized driving

angles over 2D and 3D field terrains. The to-

tal track length for the 2D and 3D optimized

driving angle of the coverage plan are found to

be 11852.94 and 11992.5 m, respectively. Only

139.56 m difference in track length is verified

which has an insignificant impact on the optimized

solution, however, traversing the field at an angle

of 100◦ results in covering the same field area

using 32 tracks compared to 33 tracks in case

of 99◦ and hence less operational time due to a

one less turning over the headland area. The 2D

field representation for a driving angle of 100◦ is

shown in Fig. 6a while its 3D field representation

is shown in Fig. 6b. From the table, it is obvious

that minimizing the non-working distance results

Table 2 Optimized driving angle over 2D and 3D optimization (2D refers to the optimal value obtained in 2D and 3D refers
to the optimal value obtained in 3D)

Run number Population size Optimized angle Computing time Cost

(# of chromosomes) (◦) (min) (nonworking distance m)

12D 40 99.36 0.58 1545.18

22D 150 99.15 1.43 1541.33

33D 150 100.0 23.64 1564.24
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Table 3 A Comparison between some empirical and the optimized driving angles (2D refers to the optimal value obtained
in 2D and 3D refers to the optimal value obtained in 3D) of experimental field A

Driving Number Rows length Nonworking Operational

angle (◦) of rows (m) distance (m) time (h)

0.0 53 11858.33 2493.69 2.10

45.0 48 11958.40 2453.22 2.05

90.0 35 11854.44 4290.14 2.05

99.152D 33 11852.94 1541.32 1.75

100.03D 32 11992.50 1564.24 1.72

135.0 50 11846.44 2540.22 2.07

in a significant reduction in total operational time

by about −15.4 % from the average operational

time of the four selected empirical driving angles

which is 2.07 h. the reduced operational time can

be easily transformed into economic savings in

terms of operational cost and fuel consumption.

In addition to the economic savings, there is the

environmental impact represented in the reduced

emissions of CO2 and other greenhouse gases as

a result of the reduced combustion of fossil fuels.

Also, there is the increased yield as a result of

the reduced driving over headland area and hence

the reduced degradation of soil fertility due to soil

compaction and over driving.

An energy model is used to estimates fuel con-

sumed per each track (l/m2) by a vehicle/tractor

for a good roadway conditions driving through the

field tracks represented in 3D from one end to the

other end (i.e., forward direction) and vice versa

(i.e., return direction), and by driving through the

flat field tracks (i.e., represented in 2D with zero

inclination) are shown in Fig. 7. The difference in

fuel consumption in both forward and return di-

rections emphasis the impact of elevation profile,

(b)(a)

Fig. 6 Driving patterns of the first experimental field A for a 3D optimized driving angle of 100◦: a 2D driving pattern for
optimized driving angle, b 3D terrain driving pattern
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Fig. 7 Diesel
requirements (l) to cover
field tracks of
experimental field A from
both sides in 3D (forward
and return direction) and
2D (flat) for good
roadway conditions

shown in Fig. 4d and e, on fuel consumption where

the field surface is ascending in the west-to-east

(WE) and north-to-south (NS) directions.

A GA is used to find a compromised sequence

of tracks which minimizes the total fuel consump-

tion such as a vehicle travels in a track in one

direction and returns back in the next track in

the reverse direction, as it is shown in Table 4.

From Table 4, a significant reduction in the total

fuel consumption in the range of −8.06 % can

be achieved in the case of applying the optimized

track sequence over 3D terrain.

The driving angle for experimental field B is

optimized over 2D field representation using a

binary GA with the same parameters and condi-

tions used above for experimental field A except

that the proposed vehicle/tractor has a new im-

plement of 18 m working width. The optimized

driving angles for two different population sizes

are shown in Table 5. A minimum non-working

distance of 900.67 m is obtained for a driving

angle of 111.02◦. For this field, it is obvious that

increasing the population size does not improve

the solution quality. In addition, optimizing the

driving angle over 3D field representation which

is found to be 90◦ and is obtained in 14.24 min

did not provide a better solution, as it is shown in

Table 5.

Table 6 shows a comparison between some

empirical driving angles and the optimized driving

angles over 2D and 3D field terrains. The to-

tal track length for the 2D and 3D optimized

driving angle of the coverage plan are found to

be 11445.71 and 12729.28 m, respectively. Due

to the complex terrain of the field, 11445.71 m

difference in track length is verified which has

a significant impact on the optimized solution,

however, traversing the field at an angle of 111◦

Table 4 Opti-
mized/compromised
sequence of tracks of
experimental field A for
good roadway conditions
(first track is forward)

Optimized sequence of tracks Total fuel consumption (l)

2D 3D

default Default GA

sequence sequence optimized

[5 21 14 23 7 27 33 28 11 31 10 6.45 6.38 5.93

18 12 26 9 30 6 19 15 22 1 29

13 25 4 24 3 20 16 17 2 32 8]
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Table 5 Optimized
driving angle for two
different population sizes
of the second field

Run number Population size Optimized Computing Cost (nonworking

(# of chromosomes) angle (◦) time (min) distance m)

12D 40 111.02 0.59 900.67

22D 150 111.22 2.16 902.45

33D 150 90.0 14.24 3761.53

results in covering the same field area using 25

tracks compared to 31 tracks in case of 90◦ and

hence less operational time due to 12 less turning

over the headland area. The 2D field represen-

tation for a driving angle of 111.02◦ is shown

in Fig. 8a while its 3D field representation is

shown in Fig. 8b. From the table, it is obvious

that minimizing the non-working distance results

in a significant reduction in total operational time

by about −10.96 % from the average operational

time of the four selected empirical driving angles

which is 1.46 h. the reduced operational time can

be easily transformed into economic savings in

terms of operational cost and fuel consumption.

In addition to the economic savings, there is the

environmental impact represented in the reduced

emissions of CO2 and other greenhouse gases as

a result of the reduced combustion of fossil fuels.

Also, there is the increased yield as a result of

the reduced driving over headland area and hence

the reduced degradation of soil fertility due to soil

compaction and over driving.

An energy model is used to estimates fuel con-

sumed per each track (l/m2) by a vehicle/tractor

for a good roadway conditions driving through the

field tracks represented in 3D from one end to the

other end (i.e., forward direction) and vice versa

(i.e., return direction), and by driving through the

flat field tracks (i.e., represented in 2D with zero

inclination) are shown in Fig. 9. The difference in

fuel consumption in both forward and return di-

rections emphasis the impact of elevation profile,

shown in Fig. 5d and e, on fuel consumption where

the field surface is descending in the west-to-east

(WE) and north-to-south (NS) directions.

A GA is used to find a compromised sequence

of tracks which minimizes the total fuel consump-

tion such as a vehicle travels in a track in one

direction and returns back in the next track in

the reverse direction, as it is shown in Table 7.

From Table 4, a significant reduction in the total

fuel consumption in the range of −3.24 % can

be achieved in the case of applying the optimized

track sequence over 3D terrain.

3.2.2 Enumeration Approach

The inputs for the simulated operations for both

field A and field B included a machinery system

involving a tractor and an organic fertilizer injec-

tor of a weight of 10.5 t. Four scenarios, in terms

of different working width and tanker capacity

combinations, were simulated, namely, scenario

1 (S1): a 6 m working width with a 15 t tanker

capacity, scenario 2 (S2): a 6 m working width

with a 25 t tanker capacity, scenario 3 (S3): a

9 m working width with a 25 t tanker capacity,

scenario 4 (S4): a 9 m working width with a 35 t

tanker capacity.. The assessed working speed was

8 km/h, and the turning speed was 5 km/h. Finally,

Table 6 Comparison between some empirical and optimized driving angles of experimental field B (2D refers to the optimal
value obtained in 2D and 3D refers to the optimal value obtained in 3D)

Driving Number Rows length Nonworking Operational

angle (◦) of rows (m) distance (m) time (h)

0.0 31 11333.03 1277.12 1.34

45.0 40 11256.48 1642.73 1.39

90.03D 31 12729.28 3761.53 1.73

111.022D 25 11445.71 900.68 1.30

135.0 31 11335.65 1436.58 1.36



978 J Intell Robot Syst (2014) 74:965–983

(b)(a)

Fig. 8 Driving pattern of the second experimental field for a working width of 18 m and for an optimized angle of 111.02◦:
a optimized 2D driving pattern, b optimized 3D terrain driving pattern

Fig. 9 Diesel
requirements (l) to cover
field tracks of
experimental field B from
both sides in 3D (forward
and return direction) and
2D (flat) for good
roadway conditions

Table 7 Optimized/compromised sequence of tracks of experimental field B over 3D field representation for good roadway
conditions (first track is forward)

Optimized sequence of tracks Total fuel consumption (l)

2D 3D

default Default GA

sequence sequence optimized

[7 17 24 14 25 19 22 10 3 15 2 11 7.72 7.71 7.47

20 12 1 18 5 16 6 9 21 8 4 13 23]
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Table 8 Output operational parameters for the optimized driving angle for the experimental fields

Field A Field B

Scenario S1 S2 S3 S4 S1 S2 S3 S4

Operating width (m) 6 6 9 9 6 6 9 9

Tank capacity (t) 15 25 25 35 15 25 25 35

Optimal angle (◦) 100 165 100 165 172 172 36 36

Number of tracks 49 79 32 52 94 94 78 78

Refills 36.0 22.0 22.0 15.0 72.0 43.0 43.0 31.0

Energy requirements for 23,555 19,916 14,812 12,403 52,998 38,749 29,834 24,986

application (MJ)

Energy requirements for 7,994 5,889 5,938 4,407 39,115 22,373 23,836 17,737

full tanker transport (MJ)

Energy requirements for 17,630 9,561 10,799 6,447 46,608 44,113 28,441 23,496

empty tanker transport (MJ)

the application rate was assessed 50 t/ha, refilling

time was 10 min, and good surface conditions

(i.e., for good roadway conditions rrc = 0.06) were

assumed. The results of the method applied in the

experimental fields are listed in Table 8.

For field A, the optimized driving angles were

found to be 100◦ for scenarios S1 and S3 and 165◦

for scenarios S2 and S4. The 3D configuration

of the field work tracks for these two driving

angles are presented in Fig. 10. Figure 11 presents

the energy requirements for the different in-field

part operations (i.e. full tanker transport, empty

tanker transport, and travelled distance during the

application phase which is in this paper called

operational energy) as a function of the tested

driving angles. Respectively, in the case of field

B, the optimized angles were found to be 172◦ for

the scenarios S1 and S2, and 36◦ for scenarios S3

Fig. 10 Field-work tracks
configuration for
experimental field A for
the optimized driving
direction for S1 and S3 a
100◦, and for S2 and S4 b
165◦

(a)

(b)
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(a) S1 / optimal driving angle: 100° (b) S2 / optimal driving angle: 165°

(c) S3 / optimal driving angle: 100° (d) S4 / optimal driving angle: 165°

Fig. 11 Energy consumed in in-field activities for the different driving angles for the experimental field A

and S4. The 3D configuration of the field work

tracks on field B for these two driving angles are

presented in Fig. 12, and the energy requirements

as a function of the driving angle are presented in

Fig. 13.

The computational time for the four scenarios

S1, S2, S3, and S4 were 130.2 min, 127.3 min,

66.0 min, and 60.7 min, respectively, for field

A, and 380.1 min, 274.7 min, 184.7 min, and

189.4 min, respectively, for field B. The high com-

putational requirements are caused by the exhaus-

tive search among all possible integer values of

driving angles between 1◦ and 180◦ which result in

179 executions of the object oriented simulation

for the operation. It is obvious that the compu-

tational time increases with the number of the

travelled distance of the machine for covering the

field area which is a function of the field area (for

all scenarios the computational time for field B is

higher than the corresponding computational time

for field A) and of the working width (for both

field A and field B the computational times for

scenarios S1 and S2 are higher than the computa-

tional times for scenarios S3 and S4, since a longer

working width results in less field work tracks cre-

ated or equivalently in shorter travelled distance
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Fig. 12 Field-work tracks
configuration for
experimental field B for
the optimized driving
direction for S1 and S2 a
172◦, and for S2 and S4 b
36◦

(a)

(b)

realized). In any case, the high computational

requirements of the presented system prohibits

its application as an on-line (e.g. on-board) tool

and its utility is restricted to an off-line decision

making tool.

In order to examine the importance of the opti-

mizing of the driving angle in the 3D space instead

of in the 2D space, all the simulation experiments

were also executed assuming plane field area (the

z-coordinates values in DEM files were replaced

by zero). The resulted optimized driving angles for

optimizing in the 2D space were 100◦ for all sce-

narios in field A, and 4◦ for S1 and S2, and 114◦ for

S3, and S4 in field B. There is a coincidence in the

solution in both 2D and 3D spaces in the case of S1

and S3, field A. Table 8 lists the energy and oper-

ational time requirements for the execution of the

operation (in the 3D space) following the driving

angle that results from the optimization in 2D

space and 3D space. The reduction in the energy

requirements when the driving angle is optimized

by taking into account the 3D configuration of the

field area is 6.4 % for field A (ranged between 0

in S1 and 13.6 in S2) and 6.7 % for field B (ranged

between 6.0 % in S1 and 6.8 % in S2) resulting in

a total average of 6.5 % for all cases.

Regarding the operational time, as it can be

seen in Table 9, the optimization under the cri-

terion of minimizing the energy requirements can

have a negative impact. In the case of field A,

there is an increase in the operational time of

8.7 % in S2 and of 6.7 % in S2 (3.8 % increase in

average for all scenarios in field A), while in the

case of field B there is an increase of 10 % in S1

and of 2.1 % in S2 (3.9 % reduction in average for

all scenarios in field B).

Based on the previous, the implementation of

a multiple-criteria optimization is an objective

for future research where the energy require-

ments and operational time requirements will be
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(c) 9.0 m operating width and 25.0 tons tanker (36°) (d) 9.0 m operating width and 35.0 tons tanker (36°)

(a) 6.0 m operating width and 15.0 tons tanker (172°) (b) 6.0 m operating width and 25.0 tons tanker (172°)

Fig. 13 Energy consumed in in-field activities for the different driving angles for the experimental field B

both taking into consideration. Another future

research objective is a two-step optimization ap-

proach where beyond the driving angle, the tra-

versal sequence of the tracks (default patterns)

will be a second decision variable as it is shown

in the previous approach.

Table 9 Comparison of energy and operational time requirements between the simulated operations when optimizing under
2D and 3D conditions

Field A Field B

S1 S2 S3 S4 S1 S2 S3 S4

Total energy 2D 2354 2113 2086 1937 6941 5898 5998 5129

requirements (MJ) 3D 1827 1701 6493 5471 5610 4798

Discrepancya (%) 0 13.6 0 12.2 6.0 6.8 6.5 6.5

Operational 2D 2.9 2.3 1.9 1.5 6.0 4.7 4.3 3.6

time (h) 3D 2.5 1.6 6.6 4.8 3.7 3.1

Discrepancya (%) 0 −8.7 0 −6.7 −10.0 −2.1 14.0 13.9

a(2D value–3D value)/2D value) × 100 %
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4 Conclusions

Optimized terrain field coverage path planning

approach is developed and an approach for a

multiple-objective optimal coverage planning ap-

proach for field operations is presented. The

analysis of different coverage costs on 2D and 3D

terrains was conducted. A significant reduction in

operational time in the range of 10–15 % and can

be achieved. The fuel consumption can be further

reduced by optimizing the track sequence over

3D field terrain. The combination of a modelling

approach for the 3D geometrical representation

of the field area and an object oriented simulation

tool for field operations under capacity constraints

can provide the optimized driving angle direc-

tion for traversing the parallel field-work tracks

for an agricultural vehicle caring out this type

of operations, under the criterion of minimized

direct energy requirements. The problem presents

itself like a typical decision making task under

the uncertainty problem and the results show

that the inclusion of additional information, here

in the form of field inclinations, improves the

utility of the process. Specifically and based on the

results from two case study fields, it was shown

that the reduction in the energy requirements

when the driving angle is optimized by taking into

account the 3D configuration of the field area was

6.5 % as an average for all the examined scenarios,

compared to the case when the applied driving

angle is optimized assuming even field areas. Re-

duced total energy requirements are subsequently

equivalent to reduced fuel consumption and di-

rect CO2 emissions. Nevertheless, the objective

of minimizing energy requirements could result in

coverage plans that require increased operational

time and potentially add to increased cost.
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