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In large and complex project schedule networks, existing algorithms to determine the critical path are considerably slow.
,erefore, an algorithm with a faster convergence is needed to improve the efficiency of the critical path computation. ,e ant
colony algorithm was first applied to the travelling salesman problem to determine the shortest path. However, many problems
require the longest path in practice; the critical path in the scheduling problem is the longest path in the scheduling network. In
this study, an improved ant colony algorithm to determine the critical path by setting the path distance and time as negative, while
the transition probability remains unchanged, is proposed. ,e case of a coal power plant engineering, procurement, and
construction (EPC) project was considered. ,e results show that a peak number of optimal solutions appeared at approximately
the 9th iteration; however, instabilities and continued fluctuations were observed even afterward, indicating that the algorithm has
a certain randomness. Convergence is apparent at the 29th iteration; after the 34th iteration, a singular optimal solution, the longest
or critical path, is obtained, indicating that the convergence rate can be controlled and that the critical path can be obtained by
setting appropriate parameters in the solution method. ,is has been found to improve the efficiency of calculating the critical
path. Case validation and algorithm performance testing confirmed that the improved ant colony algorithm can determine the
critical path problem and make it computationally intelligent.

1. Introduction

With the growing number of large, complex, and sys-
tematic projects, there has been an increase in the number
of units, work packages, and activities in project sched-
uling. When over a thousand activities are involved, the
computational speed of existing algorithms can no longer
meet the demand of scheduling management; therefore, an
intelligent algorithm should be used to improve computing
efficiency. ,e traditional Dijkstra method is a network
optimisation analysis of operational research that can
determine the longest and shortest paths in a network, and
the Dijkstra’s algorithm searches to find the globally
shortest path between two nodes of a graph [1]. It is
recognised as the best method for finding the shortest path
of a network [2, 3], but it has too many iterations and thus
performs at a low computational speed for large and

complex project networks. Primavera 6, project, and other
scheduling software offer methods of critical path com-
putation centred on the analysis of conventional operation
research optimisation methods.

,e project scheduling problem was first proposed in the
1960s, and the research of Conway et al. [4] on the
scheduling problem is usually regarded as the formal be-
ginning of scheduling theory research. Subsequently,
Pritsker et al. [5] proposed a resource-constrained project
scheduling problem in 1969.

,e critical path methodology (CPM) is a tool for
planning, scheduling, and coordinating complex engineer-
ing projects [6]. It is used to determine the shortest con-
struction period of the project by estimating the floating
time of each logical path in its scheduling network. ,e
critical path determines the sequence of activities in the
network; its floating time is zero.,e activities on the critical
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path are the most important ones in the project; this path is
the longest of the entire project scheduling network.

Determining the critical path involves finding the lon-
gest path in the entire project scheduling network. It can be
estimated with the program evaluation and review technique
(PERT), the double-code network diagram, or the single-
code network diagram. However, in a large and complex
project scheduling network, conventional computation
methods converge considerably slowly. ,erefore, a method
of faster convergence is needed to improve the computa-
tional efficiency of the critical path.

Xu et al. [7] proposed an algorithm to generate all critical
paths in the order of increasing path length, which simplifies
its data structure. Wang [8] proposed a new algorithm for
solving critical paths without topological sorting, which led
to graph storage and the algorithm-solving process occu-
pying less space and reduced its time complexity. Li et al. [9]
proposed the free time-difference theorem and k-order key
route algorithm, which realise global optimisation through
local optimisation and simplify the calculation workload.
Wang et al. [10] proposed a subcritical route algorithm on
the CPM network based on the characteristics of node time
difference; a layer-upon-layer simplification of the CPM
network was performed, after which the subcritical route
was rapidly solved. Zhang et al. [11] applied object-oriented
technology to realise active network diagrams and critical
path algorithms, which reduced the complexity of storage
and computation. Han et al. [12] proposed a critical path
algorithm involving the optimisation of matrix multiplica-
tion to improve its real-time performance. Han et al. [13]
proposed a reasoning model for emergency measures that
can be applied in the scheduling control of industrial
projects, which is an excellent way to provide effective case
support and decision data for the improvement of early
warning and feedback tracking theory in project scheduling
control. Han [14] proposed a WBS-free scheduling method
based on the database relational model, which solves the
problem of diversity in the scheduling form and implements
the innovation of the scheduling method. Guo et al. [15]
proposed a coastal ship path planning model based on the
optimized deep Q network (DQN) algorithm in order to
better realize the ship path planning in the process of
navigation. Deng et al. [16] proposed an improved differ-
ential evolution (HMCFQDE) combining the quantum
computing characteristics of the quantum evolutionary al-
gorithm (QEA) and the divide-and-conquer idea of the
cooperative coevolution evolutionary algorithm (CCEA) in
order to overcome the low solution efficiency, insufficient
diversity in the later search stage, slow convergence speed,
and a high search stagnation possibility of the differential
evolution (DE) algorithm. Deng et al. [17] proposed an
enhanced MSIQDE (improved QDE with multistrategies)
algorithm based on mixing multiple strategies. Deng et al.
[18] designed an improved quantum evolutionary algorithm
(QEA) based on the niche coevolution strategy and en-
hanced particle swarm optimization (PSO) and proposed an
IPOQEA-based gate allocation method to allocate the flights
to suitable gates within different periods to solve this bot-
tleneck of gate resource.

Since the beginning of the century, most explorations of
critical path algorithms have been carried out by optimi-
sation methods such as sorting, time difference, and image;
however, they do not consider the computational speed of
scheduling networks with thousands of activities. ,is study
was the first study to use the ant colony algorithm for critical
path determination.

,e ant colony algorithm is a swarm intelligence algo-
rithm, which can make the computation of the critical path
converge faster and obtain the critical path intelligently. In
this study, the ant colony algorithm was utilised to develop a
novel, efficient, and convenient method to compute the
critical path and to optimise project scheduling. ,e study
focuses on the intelligent critical path computation algo-
rithm of the project scheduling network.

2. Project SchedulingNetwork andCritical Path

,e project scheduling network is a directed acyclic graph
with start and endpoints, in which the critical path is simply
the longest one.,ere are two representations of activities in
the network diagram: activity on node (AoN), which is a
single-code network diagram, where nodes represent the
activities as shown in Figure 1 and activity on arc (AoA),
which is a double-code network diagram, where arcs (arrow
lines) represent the activities as shown in Figure 2.

,e digraph is marked as D� (V, A), where D denotes
the project scheduling network as a function of V and A,
while V and A represent the node (i.e., the set of activities in
the network) and arc (i.e., the logical relations connecting
the activities) of D, respectively. Additionally, (i, j) ∈ A
denotes all activities i and j related, such that activity i
precedes activity j.

3. Ant Colony Algorithm

,e ant colony algorithm simulates and uses the charac-
teristics of the foraging behaviour of ants to determine the
shortest path. For example, ants can detect pheromones in
their neighbourhood and can accordingly release them in
response; however, the pheromone volatilises over time. In
the double-bridge experiment, artificial ants were designed
to simulate movement in a double-bridge system and thus
determine the shortest path. Artificial ants have effective
mechanisms for the renewal and volatilisation of phero-
mones. Moreover, the path-finding ability of ants can be
used to avoid repeated searches and premature convergence.
Artificial ants, similar to real ones, can communicate
through pheromones and cooperate with each other to
complete tasks through local behaviours based on proba-
bility decision-making, and all of them are self-organised
[19].

,e ant colony algorithm had its earliest application in
the travelling salesman problem (TSP). A TSP is an opti-
misation problem involving n cities and aims to determine
the shortest path through all of them while passing through
each of them only once. ,e parameters of the algorithm are
as follows:Q is the number of ants in the colony, Bi (T) is the
number of ants in city i at time T, Dij is the distance between
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cities i and j, ηij is the visibility of edge (i, j) and remains
unchanged, τijis the pheromone track intensity on edge (i, j),
Δτij is the amount of pheromone per unit length left by ants
on edge (i, j), Psij(t) is the transfer probability of ants s from
cities i to j, i is the current city of the ants, and j is the city that
is yet to be visited. ,erefore, at time t, the transfer prob-
ability of ants in cities i and j can be calculated as follows:

Psij(t) �

τaij(t)η
b
ij(t)

∑e∈allowedsτaie(t)ηbie(t), j ∈ alloweds,

0, otherwise,


(1)

where alloweds � 0, 1, 2, . . . , n − 1{ } indicates that the cities
allowed to be selected by the ants in the next step will change
with the process of ants s, while a and b reflect the relative
importance of the accumulated and heuristic information in
the process of ant path selection, respectively.

,e advantages of this algorithm are as follows:

(i) As a population-based evolutionary algorithm, it is
easier to realise parallel computing

(ii) ,e algorithm has high reliability and stability, is
not easily disturbed, and has a wide range of
applications

(iii) ,e algorithm has strong adaptability and can be
combined with other heuristic algorithms to further
improve its performance

In other words, the ability of the ant colony algorithm to
obtain the best solution is satisfactory and suitable for
solving longest path problems, such as determining the
critical path.

4. Intelligent Critical Path Algorithm Based on
the Improved Ant Colony Algorithm

An improved ant colony algorithm is proposed to solve the
longest path problem by setting the path distance and time to
be negative and keeping the transition probability
unchanged.

4.1. Estimating the Critical Path. ,e critical path problem is
a typical combination optimisation problem. Using the dual-
code network chart to show the project network, we define
the collection of n as a set of events; this makes the critical
path problem equivalent to determining the longest path to
the event.

Let event 1 and event n, both of which are unique, be the
initial and end nodes of the project scheduling network. Let
Dij be the distance between events i and j, and the critical
path problem of the network can be represented by the
digraph D� (V, A), where V is the set of events and A is the
set of distances between events.

To determine the longest path, the distance between
events i and j is defined as −dij. If each ant has the same
speed, the ant will first arrive at the j event where −dij is
smaller, whichmeans that the j event at dij is larger.,us, the
problem of finding the longest path is effectively solved.

bi(t)(i � 1, 2, 3, . . . , n) is the number of ants in event i at
time t, and m � ∑n

i�1 bi(t) is the total number of ants in all n
events.

Each ant has the following characteristics:

(i) Each ant moves between events at the same speed,
denoted by v

(ii) ,e time taken by each ant to move from event i to j
is negative, expressed as (−dij/v)

(iii) ,e probability of an ant moving from event i to j is
determined by, and is directly related to, the
pheromone concentration between the two events

(iv) Each ant starts from event i (start node), makes its
way to event n (end node), and then returns the
same way to event i; the smaller the time t (negative
value) of the return to event i, the earlier does the
ant arrive.

(v) Each ant moving from event i to j leaves an
equivalent amount of pheromone in the unit length
of the activity (i, j)

Let τij(t) be the pheromone intensity of activity (i, j) at
time t. ,e ant selects the next event j from event i at time t
and arrives at event j at time t + (−dij/v).,erefore, ifm ants
transferm times in (t, t + (−dij/v)) as an iteration of the ant
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Figure 1: Single-code network diagram representation of project
planning network activities (AoN).
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Figure 2: Double-code network diagram representation of project
planning network activities (AoA).
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colony algorithm, then each iteration of the algorithm takes
2n movements for each ant to complete a round trip.

τij t +
−dij

v
( ) � ρτij(t) + Δτij. (2)

Here, ρ, where 0< ρ< 1, is the degree of pheromone
volatilisation.,e longer the time, the greater is the degree of
pheromone volatilisation.

Δτij � ∑
m

k�1

Δτkij. (3)

Here, Δτkij is the pheromone quantity per unit length of
the ant on activity (i, j) between time t and time t + (−dij/v).
It can be calculated as

Δτkij �

Q

Lk
, If the kth ant goes through activity(i, j),

0, If the kth ant doesn’t go through activity(i, j),


(4)

where Q is a constant, and Lk is the length of the path taken
by the kth ant. Let τij(0) � c. ,is denotes that the phero-
mone intensity of activity (i, j) at the beginning of the ex-
periment is some constant c.

To satisfy the constraint that each ant passes through all
n events, each ant is associated with data from a tabu table.
,e tabu table stores data on all the events that have been
passed by the ants till time t and prevents them from passing
any of those same events again until after 2n iterations are
complete. ,is can be used to calculate the ant’s current
solution after completing a round trip. Tabuk(s) is defined as
a dynamic growth vector including the tabu table of the kth

ant; tabuk is a set of elements from this vector, and tabuk(s)
denotes the sth element in the table (i.e., the current event s
occupied by the kth ant).

,e visibility size and pheromone concentration around
the ant determine its next event. ,erefore, the transfer
probability of ant k from event i to j at time t is calculated as
follows:

pkij(t) �

τij
α
(t)ηij

β
(t)

∑k∈allowedkτikα(t)βikβ (t), j ∈ allowedk,

0, otherwise,


(5)

where allowedk � 0, 1, 2, . . . , n{ } indicates that the event is
amongst those that are next selected by ant k; α and η reflect
the relative importance of the accumulated and heuristic
information, respectively, in the process of the ant’s path
selection; and ηij denotes the visibility. Furthermore,

ηij �
1

dij
. (6)

4.2. Determining the Critical Path Based on the Improved Ant
Colony Algorithm. As shown in Figure 3, the steps to solve
the critical path problem using the improved ant colony
algorithm 1 are as follows:

5. Results

,e case of a coal power plant engineering, procurement,
and construction (EPC) project was considered. Our pro-
posed algorithm was applied to this case, and its perfor-
mance was evaluated and discussed.,e scheduling network
for this project includes engineering, procurement, and
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Figure 3: Improved ant colony algorithm flow chart.
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(1) Initialization process: let t: � 0; /∗t is the time counter ∗ /
NC: � 0;/∗NC is the loop counter ∗ /
τij(0): � C; /∗ let the initial value of pheromone intensity for each path (i, j) be C∗ /
Δτij � 0; /∗ let the initial value of incremental pheromone intensity be 0∗ /
ηij; /∗ ηij � 1/dij in critical path∗/
tabuk � ϕ; /∗ the tabuk table is empty in the initial phase ∗ /
,e m ants were randomly placed on n events

(2) Let s: � 1 /∗ s is the tabuk table index, placing the initial event of each ant in the current tabuk table ∗ /
For i: � 1 to n do;
For k: � 1 to m do;
tabuk(s) � i; /∗ placing the initial event of the kth ant in the current tabuk table ∗ /

(3) Repeating the following steps until the tabuk table is full. /∗ ,is step is going to be repeated (n − 1) times∗ /
Let s: � s + 1;
For i: � 1 to n do;
For k: � 1 to m do;
,e next event is selected with probability pij

k (t), whose probability is specifically given by equation (5);
At time t, the kth ant transfer to event j at event i � tabuk(s − 1);
Add the event j to tabuk(s).

(4) Whether the tabuk table is full?
(5) For k: � 1 to m do

,e kth ant transfer from tabuk(n) to tabuk(1), and the ant returns to the starting event after one cycle;
Calculate the distance travelled by the kth ant;
Update the longest travel path found

(6) For each path (i, j);
For k: � 1 to m do;
Δτkij is calculated according to equation (3).

(7) For each path (i, j)
,e pheromone intensity τij(t + (−dij/v)) is calculated according to equation (2);
Let t: � t + (−dij/v);
NC : � NC + 1;
Let Δτij � 0 for each path (i, j).

(8) If NC<NCmax

Clear all tabuk table;
Return to step (2);

(9) Else
Output the longest path, the critical path.

ALGORITHM 1: ,e intelligent critical path computation algorithm steps utilising ant colony optimisation.

Table 1: Activities involved in a project scheduling network for a coal plant.

Activity Activity name Duration (months)

(a, b) Piling plan and detail drawing 1
(b, c) Piling construction (including pile testing) 1
(b, e) Foundation plan (and beam) layout drawing 1
(c, d) Construction of reinforced concrete foundation 1
(e, f) Steel structure detail drawing 2
(f, g) Procurement of steel structure 2
(g, j) Erection of steel structure 1
(a, h) Procuring specifications of the static equipment 1
(h, i) Procurement of static equipment 5
(j, k) Installation of static equipment 2
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Figure 4: Double-code network diagram of the scheduling network for a coal plant.
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Table 2: ,e coordinates of events involved in a project scheduling network for a coal plant.

Events Coordinates

a (0, −1)
b (−1, −1)
c (−1.7071, −1.7071)
d (−2.7071, −1.7071)
h (−0, −2)
i (−5, −2)
e (−2, −1)
f (−4, −1)
g (−6, −1)
j (−7, −1)
k (−9, −1)
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Figure 5: ,e location map of events involved in a project scheduling network for a coal plant.
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6 Complexity



construction activities with a contract period of nine
months. As given in Table 1 and Figure 4, a double-code
network diagram was used to describe the scheduling
network.

,e following will use MATLAB to program the per-
formance test of the case and algorithm:

,e coordinates of events a, b, c, d, h, i, e, f, g, j, and k are
given in Table 2:

,e location map on the plane Cartesian coordinate
system drawn according to the 11 event coordinates in
Table 2 is shown in Figure 5.

,e improved ant colony algorithm was used to count all
solutions and calculate the number of optimal solutions.,e
consequent relationship obtained between the number of
iterations and optimal solutions is shown in Figure 5.

As shown in Figure 6, a peak number of optimal so-
lutions appeared at approximately the 9th iteration; however,
instabilities and continued fluctuations were observed even
afterward, indicating that the algorithm has a certain ran-
domness. Convergence is apparent at the 29th iteration; after
the 34th iteration, a singular optimal solution, the longest or
critical path, is obtained, indicating that the convergence
rate can be controlled and that the critical path can be
obtained by setting appropriate parameters in the solution
method.

As shown in Figure 7 and Table 3, the critical path of the
optimal solution, denoted by a red line in Figure 6, is as
follows: (a, b) piling plan and detail drawing⟶ (c, e)
foundation plan (and beam) layout drawing⟶ (e, f ) steel
structure detail drawing ⟶ (f, g) procurement of steel
structure⟶ (g, j) erection of steel structure⟶ (j, k)
installation of static equipment.

,e improved ant colony algorithm was used to calculate
the critical path of this case, thus demonstrating its feasibility
for critical path calculation in other cases as well. After
testing its performance, it is concluded that the algorithm
can be improved by setting appropriate parameters.

6. Discussion

,is study contributes to the literature by exploratively
examining the intelligent critical path computation algo-
rithm of the project scheduling network. P6 (Oracle Pri-
mavera) and MS Project software can apply this method for
scheduling calculation for complex project scheduling.

,ere has been limited research into the comparison of the
effectiveness of other intelligent algorithms and improved
ant colony algorithm in computing critical path. ,ere has
been limited research into the visibility and pheromone
settings which can accelerate algorithm convergence. How
to set visibility and pheromone well is a research direction of
the ant colony algorithm for the project scheduling network.

7. Conclusions

In this article, an intelligent critical path computation al-
gorithm was proposed to improve search accuracy, accel-
erate convergence, and achieve the optimal solution. A coal
power plant engineering, procurement, and construction
(EPC) project was selected to test the improved ant colony
algorithm. ,e obtained results showed that the intelligent
critical path computation algorithm is significantly better
than the traditional algorithms.

,e critical path method is a theoretical method used to
optimise project scheduling management and scheduling
preparation. A convenient and effective computation of the
critical path is thus conducive to better project management;
therefore, innovation in this field is necessary. ,is study
used a double-code network diagram and the ant colony
algorithm to estimate the shortest possible distance for the
TSP. ,e algorithm was improved to determine the critical
path by setting path distance and time as negative values and
by keeping the transfer probability unchanged; the intelli-
gent critical path algorithm based on the improved ant
colony algorithm was thus established. ,rough case veri-
fication and algorithm performance tests, it was proven that
the improved ant colony algorithm can solve the critical path
problem.

,e main findings can be summed up as follows:

(i) A mathematical model of the critical path com-
putation method based on the improved ant colony
algorithm was established

(ii) ,e intelligent computation algorithm was suc-
cessfully applied to the estimation of the critical
path, which makes the critical path computation
intelligent

(iii) In a project case, the improved ant colony algorithm
was successfully applied to determine its critical
path and its length

Table 3: Activities involved in the critical path of a coal plant scheduling network.

Activity Activity name Critical path (month)

(a, b) Piling plan and detail drawing 1
(b, c) Piling construction (including pile testing)
(c, e) Foundation plan (and beam) layout drawing 1
(c, d) Construction of reinforced concrete foundation
(e, f) Steel structure detail drawing 2
(f, g) Procurement of steel structure 2
(g, j) Erection of steel structure 1
(a, h) Procuring specifications of the static equipment
(h, i) Procurement of static equipment
(j, k) Installation of static equipment 2
Total 9
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