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Abstract

In analogy to the ow of uids, it is expected that the aggregate density
and the velocity of vehicles in a section of a freeway adequately describe the
tra�c ow dynamics. The conservation of mass equation together with the
aggregation of the vehicle following dynamics of controlled vehicles describes
the evolution of the tra�c density and the aggregate speed of a tra�c ow.
There are two kinds of stability associated with tra�c ow problems - string
stability (or car-following stability) and tra�c ow stability. We make a clear
distinction between tra�c ow stability and string stability, and such a dis-
tinction has not been recognized in the literature, thus far. String stability
is stability with respect to intervehicular spacing; intuitively, it ensures the
knowledge of the position and velocity of every vehicle in the tra�c, within
reasonable bounds of error, from the knowledge of the position and velocity of
a vehicle in the tra�c. String stability is analyzed without adding vehicles to
or removing vehicles from the tra�c. On the other hand, tra�c ow stability
deals with the evolution of tra�c velocity and density in response to the ad-
dition and/or removal of vehicles from the ow. Tra�c ow stability can be
guaranteed only if the velocity and density solutions of the coupled set of equa-
tions is stable, i.e., only if stability with respect to automatic vehicle following
and stability with respect to density evolution is guaranteed. Therefore, the
ow stability and critical capacity of any section of a highway is dependent not
only on the vehicle following control laws and the information used in their
synthesis, but also on the spacing policy employed by the control system. Such
a dependence has practical consequences in the choice of a spacing policy for
adaptive cruise control laws and on the stability of the tra�c ow consisting
of vehicles equipped with adaptive cruise control features on the existing and
future highways. This critical dependence is the subject of investigation in this
paper. This problem is analyzed in two steps: The �rst step is to understand
the e�ect of spacing policy employed by the Intelligent Cruise Control (ICC)
systems on tra�c ow stability. The second step is to understand how the
dynamics of ICC system a�ects tra�c ow stability. Using such an analysis,
it is shown that cruise control systems that employ a constant time headway
policy lead to unacceptable characteristics for the tra�c ows.

Key Words: Intelligent Cruise Control Systems, Tra�c Flow Stability, String
Stability, Advanced Vehicle Control Systems, Advanced Tra�c Management
Systems.

1submitted to the Transportation Research Journal, Vol. C
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1 Introduction

In this paper, we consider automated tra�c ows. In an automated tra�c
ow, every vehicle in the tra�c is equipped with an Intelligent Cruise Control
(ICC) system. In this paper, we will show that any ICC system employing
a constant time headway spacing policy leads to unacceptable charactersistics
for automated tra�c ows.

A pertinent question is what are acceptable characteristics for a tra�c ow
and what are not. A desirable characteristic of a tra�c ow is that any density
or velocity disturbances must attenuate as it propagates upstream 2. Other-
wise, these disturbances will be felt at every point upstream from the source of
the disturbance. For example, density disturbances that arise from a sudden
inux of vehicles after a football game or during the beginning or end of a
commute hour, will be felt at some instant of time at all points upstream.

The following logical question, then, arises regarding the propagation of
density and/or velocity disturbances downstream: Is such a propagation of
density disturbances acceptable? We contend that downstream propagation
of such disturbances is not undesirable, whether they decay or amplify. For
example, consider a uniform tra�c ow where all vehicles maintain the same
velocity irrespective of their intervehicular distance. If a vehicle merges into
such a tra�c with the prescribed velocity, the resulting density disturbance
propagates forward contributing to the throughput of the highway section. It
may, in fact, be desirable that disturbances propagate downstream ampli�ed, so
that addition of a vehicle upstream may increase the throughput downstream.
However, the conservation of mass principle would require that the vehicle
speeds increase to unacceptable and/or unattainable levels. Moreover, such a
scenario is unattainable since automatic vehicle following control laws typically
incorporate the information of downstream vehicle and downstream sections of
the highway and not the information of upstream vehicles/sections. Such a
desirable ampli�cation of downstream disturbances, even if attainable, may
not be Lyapunov stable. By Lyapunov stability, we mean that the density
disturbances or perturbations, that satisfy the boundary conditions, remain
bounded.

Stability in the sense of Lyapunov [23] does not su�ce for achieving an
acceptable characteristic for a tra�c ow. We require that any disturbance
must attenuate as it propagates upstream for an acceptable characteristic of
a tra�c ow. In this paper, we rigourously show that there are arbitrarily
small density disturbances that do not decay as they propagate upstream, if
all vehicles in the tra�c are equipped with Intelligent Cruise Control Systems
incorporating a constant time headway policy. We numerically verify the result
with simulations.

ICC systems, if well designed, can lead to tra�c ows with desirable char-
acteristics and can signi�cantly ease congestion. The design of an ICC system
involves the following steps:

2Consider two distinct points A and B on a section of a highway. If some vehicle crosses the
point A at time t1 and crosses the point B at time t2, then B is downstream from A (or equivalently,
A is upstream from B), if t2 > t1.
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1. Design of a spacing policy: A spacing policy is a rule that dictates
how the speed of an automatically controlled vehicle must be regulated
as a function of the following distance.

2. Design of a control system to regulate the vehicle velocity ac-
cording to the designed spacing policy: String stability is an issue
in the control system design. Intuitively, it implies that spacing errors in
regulating the following distance according to the speci�ed spacing policy
must decay upstream from one vehicle to another.

The distinction between string stability and tra�c ow stability can be
explained by drawing an analogy to the decentralized market systems. In a free
market, there are a large number of commodities exchanged by the economic
agents, namely, the consumers and producers. The price of a commodity is
dependent on its supply and demand, and the price of other commodities in
the market. The law of composite commodities, formulated on the basis of the
works of Lange, Hicks and Leontief [17, 40], simpli�es the study of the free
market. In plain words, it states that if, in a set of commodities, the price
of any commodity relative to a chosen reference commodity remains constant,
then, for all analytical and practical purposes, the dynamics of the price of the
member commodities in the set can be examined by studying the price of a
composite commodity, which is an appropriately weighted average of the prices
of the member commodities. It is possible that while the relative prices of
commodities remain constant, the absolute price of each commodity decreases
precipitously. However, this does not constitute an acceptable behavior of the

market.
In the vehicle following context, string stability ensures that the spacing be-

tween vehicles in the string remain nearly the same, obeys the spacing policy at
all times; therefore, knowledge of the position and velocity of a chosen reference
vehicle is su�cient to determine the position and velocity of any other vehicle
in the string with a reasonable degree of exactness. While string stability is
guaranteed, there is no guarantee that the speed of vehicles in the string do not
decrease to a level where the ow rate of vehicles entering the section is greater
than the ow rate of vehicles leaving the section, or increase inde�nitely. Akin
to the condition demanded by the law of composite commodities, string sta-
bility enables a macroscopic description of the tra�c speed dynamics from the
microscopic speed dynamics of the automated vehicles. Thus, though a string

may be stable, the characteristics of the ow may be totally undesirable.
The macroscopic behavior of tra�c is an aggregation of the behavior of

vehicles in every section of the freeway. An understanding of the macroscopic
behavior of tra�c is essential for an e�ective tra�c ow control strategy. Since
the behavior of every controlled vehicle is governed by the ICC system, tra�c
ow stability and critical tra�c ow parameters are strongly dependent on the
spacing policies employed by the ICC system. In the literature, several ICC
laws have been proposed without any regard to the tra�c ow stability and can
result in the aggravation of the tra�c ow problems, instead of easing them.
The focus of this paper is to illustrate how the spacing policies used in vehicle
following control laws alter the macroscopic behavior of automated tra�c, thus
a�ecting the tra�c ow stability. This paper, thus, provides a framework for
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analyzing tra�c ow stability and control problems.

2 Background

Freeway tra�c ow control requires mathematical models of tra�c ow. These
models must capture the essential character of the tra�c ow behavior so that
e�ective state estimation, �ltering and control algorithms can be developed.
Tra�c ow models of various granularities have been developed by the re-
searchers in the past to support simulation and control design.

Microscopic or vehicle following models consider a string of vehicles follow-
ing each other in a single lane. They explicitly consider the capabilities of a
vehicle and reaction time of its driver in a distance regulation task. The �rst
microscopic models known are due to Reuschel, [33] and Pipes, [32]. They
hypothesize that each driver maintains a separation distance proportional to
the speed of their vehicle plus a distance headway at standstill that includes the
length of the lead vehicle. Currently, microscopic models of a freeway contain
manual driver behavior and they are used primarily for simulation studies.

Microscopic models of automated vehicle following are abundant in the
literature and copious citations for the same can be found in the dissertation
of Swaroop, [42].

Abstraction or aggregation of microscopic models provide critical informa-
tion for macroscopic models of tra�c ow. Macroscopic description of a tra�c
ow implies the de�nition of the adequate ow variables expressing the aggre-
gate behavior of vehicles at any location and instant of time. In direct analogy
to uid ow, most macroscopic models of the tra�c ow assume that tra�c
volume, q is equal to the product of the aggregate tra�c density, � and the
aggregate tra�c velocity, v. A peculiar feature of tra�c ow is that the aggre-
gate tra�c velocity decreases with increasing tra�c density. Greenshields, [13]
hypothesized the following steady state relationship between tra�c density, �
and speed, v:

v = vf (1�
�

�max

)) q = vf�(1�
�

�max

):

Here, vf is the free speed of the tra�c and �max is the jam density. The above
equation is, in essence, a constitutive relation for the tra�c ow that is taking
place. It can be seen that the tra�c volume, q is a quadratic function of �
in the steady state and it can be shown that the tra�c volume, q increases
with increasing density upto a critical density, �peak and the corresponding
tra�c volume is qpeak . Such a characteristic ensures safety, wherein safe spac-
ing between vehicles (and correspondingly density) is dependent on vehicle's
speed. Extensive experimental data for freeway tra�c consisting of manually
controlled vehicles suggests instability in the tra�c ow when the operating
tra�c density exceeds a critical value.

Macroscopic models describe the evolution of aggregate density and aggre-
gate velocity of vehicles in every section of the freeway. Conservation of the
number of vehicles relates the rate of change of density of vehicles in a section
to the rate of vehicles entering and leaving it. Steady state tra�c ow equa-
tion plainly states that the number of vehicles entering any section equals the
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number of vehicles leaving it. Lighthill and Whitham, [20] and Richards, [34]
utilized the conservation of mass equation and a volume-density characteristic,
q = q(�) to derive some fundamental results, which have been widely used for
simulation, surveillance, and control. Their results are based on the theory of
kinematic waves. Lighthill and Whitham also investigated the propagation of
shock waves in freeway tra�c. In obtaining these results, the balance of linear
momentum has been neglected, however, they employ a constitutive relation
between the tra�c velocity and the tra�c density.

The next level of detail incorporated in the freeway tra�c ow models is
the dynamics of aggregate velocity of vehicles. Prominent among such models
that are currently widely used, is the model due to Payne, [30]. It considers
the inuence of incoming tra�c, and the tra�c density downstream on the
aggregate velocity dynamics. Speed-density characteristic is embedded into
the aggregate velocity dynamics equation. This model is used in almost all
recent freeway tra�c control algorithms, [12] [3], [49], [28], [22], [36], [1].

Very recently, a meso-scale tra�c ow model was developed by Broucke and
Varaiya, [2] for Automated Highway Systems (AHS).

3 Tra�c Flow Model and Stability

In order to model and investigate the macroscopic ow behavior of tra�c con-
sisting of vehicles equipped with Intelligent Cruise Control (ICC) systems, the
following two step analysis is required:

1. The �rst step is to understand the e�ect of the spacing policy employed
in automatic vehicle following on the macroscopic tra�c ow dynamics,

2. The second step is to understand how the dynamics of the vehicle control
system, that regulates intervehicular spacing according to the spacing
policy, a�ects the tra�c ow dynamics and its stability.

At this stage, it is important to discuss the relevant notions of stability that
have been introduced in the study of solutions to integro-di�erential, partial
di�erential and ordinary di�erential equations. For instance, in the case of
partial di�erential equations, we can de�ne a variety of criteria for stability. A
solution is said to be \asymptotically stable", if all arbitrary perturbations of
the solutions, that yet satisfy the same boundary conditions, decay asymptot-
ically in time. If the perturbations do not decay asymptotically in time, but
remain bounded, then the solution is said to be stable. Also, if the perturba-
tions to the basic solution remain bounded, provided the base solution satis�es
some criteria (could be a measure of size, intensity etc., eg. Reynolds number),
the solution is said to be conditionally stable. Energy methods and Lyapunov
approaches can provide su�cient conditions for stability and they can also be
used to determine instability [8, 9, 41].

Linearization is an important tool to examine the solutions of nonlinear
di�erential equations [4, 21, 16, 25, 24]. Linearized stability analysis provides
necessary conditions for local stability, i.e., if the ow is to be stable, it is
necessary that the disturbances not be larger than a speci�ed value. Similarly,
it also provides su�cient conditions for local instability. It does not really

5



guarantee the unboundedness of solutions; while small disturbances may grow,
as soon as they become su�ciently large, the linearized stability analysis is
invalid, and the ow may be stable in the full nonlinear context.

The above notions of stability, while relevant, do not su�ce for the in-
vestigation of the behavior of tra�c ows. Here, we shall be concerned with
two di�erent criteria for stability that are central to the study of tra�c ow
problems: string stability and tra�c ow stability.

We shall motivate the notion of string stability. Consider a string of in�nite
number of vehicles, each of which is equipped with an ICC system. If knowledge
of the location and velocity of a vehicle in a string ensures knowledge, within
reasonable bounds, of the relative placements and velocities of the other vehicles
in the string, for all times, the string is said to be stable. We call this string
stability. If the location and velocities of all members of the string can be
determined by knowing the location and velocity of a member, in the limit as
t ! 1, we say that the string is asymptotically stable. For this reason, the
string stability is typically analyzed without the any addition or removal of a
vehicle in the string.

If the string of vehicles is perturbed, say by the introduction of a �nite
number of vehicles, and if in time, at points upstream, the string returns to
the state (velocity and relative placement) before the introduction of vehicles,
the tra�c ow is said to be stable, i.e., we have tra�c ow stability. In this
sense, it is similar to what is meant by asymptotic stability of the solution to
a di�erential equation.

The employed spacing policy must be speci�ed prior to de�ning string sta-
bility. Let the employed spacing policy dictate that the desired speed, vdes;j ,
at a following distance, �j , is �h(�j). The subscript j indicates the number of
vehicles in the string preceding the vehicle under consideration. For example,
the velocity of the �rst following vehicle in the string is v1 and so on. The func-
tion �h is one-to-one and onto at following distances of practical signi�cance. In
fact, it is a non-decreasing, continuous function of its argument. Let g denote
the inverse of the function, �h.

Let each vehicle in the string be automatically controlled with its speed
adjusted according to this spacing policy by the ICC system. Let �i; _�i denote
the following distance and rate of change of the following distance respectively
of an automatically controlled vehicle. The error in spacing, �j , is de�ned in
this paper as: �j = �j � g(vj). The following de�nitions of string stability and
asymptotic string stability will be used in this paper:

De�nition 3.1 (String stability): A string of automated vehicles is stable

if given � > 0, there exists a � > 0 such that

sup
j

maxfj�j(0)j; j _�j(0)jg < � ) sup
j

sup
t�0

maxfj�j(t)j; j _�j(t)jg < �:

De�nition 3.2 (Asymptotic string stability): A string of automated ve-

hicles is asymptotically stable if it is stable and if

lim
t!1

sup
j

maxfj�j(t)j; j _�j(t)jg = 0:
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Tra�c ow is modeled as a continuum. While such an approximation is
debatable, especially since the number of vehicles per unit length of the highway
is not signi�cantly large, we draw inspiration from rari�ed gas dynamics to
make such an approximation [19].

Let x denote the position of a vehicle at time t, i.e., x = x(X; t), where
X is the state of the vehicle at some initial time, t0. Here, we choose t0 = 0.
Since the trajectories are uniquely associated with vehicles, a vehicle under
consideration can be implicitly determined from the given trajectory. Let the
velocity of the vehicle be given by v(x(t); t) or simply, v(x; t). Here, we have
suppressed the dependence of the position of a vehicle on the initial state, X .
The acceleration of the vehicle is, therefore, given by:

dv

dt
=
@v

@t
+ v

@v

@x
:

The time derivative on the left hand side of the equation is the Lagrangian
time derivative and is obtained by keeping the vehicle �xed. The partial time
derivative on the right hand side denotes the Eulerian time derivative and is
obtained by keeping x �xed. If the ow is steady, then @v

@t
= 0.

Let the following distance of a vehicle be denoted by �(x(t); t) or simply,
�(x; t). Let the length of every vehicle in the tra�c be denoted by Lc. Then,
we de�ne density, �(x; t), as:

�(x; t) =
1

�(x; t) + Lc

:

If string stability is guaranteed and if the errors in spacing and velocity are
su�ciently small, then density is a well-behaved quantity.

Also,

d�

dt
=
@�

@t
+ v

@�

@x
:

We adopt the following de�nition of tra�c ow stability in our investigation:

De�nition 3.3 (Tra�c Flow Stability): Let v0(x; t); �0(x; t) denote the

nominal state of tra�c. Let vp(x; t); �p(x; t) be the velocity and density per-

turbations to the tra�c, consistent with the boundary conditions and are such

that vp(x; 0) � 0; �p(x; 0) � 0; 8x � xu. The tra�c ow is stable, if

1. given � > 0, there exists a � > 0 such that

sup
x�xu

fjvp(x; 0)j; j�p(x; 0)jg< � ) sup
t�0

sup
x�xu

fjvp(x; t)j; j�p(x; t)jg < �;

and

2. limt!1 supx�xufjvp(x; t)j; j�p(x; t)jg = 0:
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3.1 E�ect of the Spacing Policy employed by ICC
system on Tra�c Flow Stability: (PDE approach)

In order to analyze the e�ect of the spacing policy on the tra�c ow dynamics,
consider the limiting performance of the spacing policy with an ideal ICC on
each vehicle, which regulates the following distance (spacing) instantaneously
with respect to the speed of the vehicle. This consideration implies that the
intervehicular spacing, or equivalently, the inverse of density, �, is given by:

1

�
= g(v)) v = h(�) := g�1(

1

�
): (1)

This condition is similar to the approximation used by Lighthill and Whitham
[20] in their theory and it represents the fundamental characteristic of the
tra�c consisting of automatically and ideally controlled vehicles. A spacing
policy speci�cation is, therefore, a speci�cation of the Fundamental Tra�c
Characteristic of the automated tra�c ow.

Analogous to the ow of a uid, tra�c volume at any point is de�ned as
q = �v. The evolution of tra�c density is determined by the conservation of
mass equation:

@�

@t
+
@q

@x
= 0: (2)

As a result of the ideal cruise control system assumption, the conservation of
mass equation becomes:

@�

@t
+
@(�h(�))

@x
= 0: (3)

Let �0 be a base solution for the density. In order to study the stability of the
base solution, consider small density perturbations, ��p to the base solution.
Neglecting second-order terms in � and de�ning the characteristic wave velocity,
c at a density �0 as:

c := h(�0) + �0
@h

@�
(�0); (4)

we get
@�p
@t

+ c
@�p
@x

= 0: (5)

Clearly, the sign of c is dependent on the density of base ow, �0. The behavior
of the solution to the above linear partial di�erential equation that describes
the evolution of a density disturbance depends on the sign of c. The solution
is a traveling wave, i.e., �p = F (x � ct). If c > 0, the solution is a forward
traveling wave and if c < 0, the solution is a backward traveling wave. With
an ideal cruise control system dynamics, when c < 0, arbitrarily small density
disturbances are propagated upstream without any attenuation. While ideal
cruise control system dynamics guarantees that there are no spacing errors at
any time, yet density disturbance propagate upstream and unattenuated when
c < 0. This is de�nitely an undesirable feature of automated vehicle tra�c on
a highway. In a constant time headway policy, the desired following distance is
linearly proportional to the vehicle velocity, v. The constant of proportionality
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is hw and it is assumed that all vehicles have a length of L0. In other words,
at equilibrium,

1

�
= L0 + hwv; (6)

c = �
L0
hw
: (7)

With a constant time headway policy, c is always negative for positive values
of hw . Since c is independent of �0, the governing di�erential equation is a
linear partial di�erential equation and the result holds at all operating tra�c
densities.

With the inclusion of lags in the cruise control system dynamics, one can
show the linearized instability of tra�c equilibrium if c < 0.

3.2 Modeling the e�ect of cruise control system dy-
namics on tra�c ow behavior:

Ideal cruise control systems are a far cry from reality. Therefore, one must con-
sider the dynamics of the control system that regulates intervehicular spacing.
Variable spacing schemes to be employed in cruise control algorithms have been
designed without any regard to tra�c ow stability. In some instances, string
stability is mistakenly assumed to guarantee tra�c ow stability [7]. String
stability analyses for automated vehicle following algorithms do not consider
the conservation of mass equation (density evolution equation). Therefore,
guaranteeing string stability does not necessarily ensure tra�c ow stability.
Readers interested in the details of string stability analyses are referred to some
of the recent papers such as Sheikholeslam and Desoer [38], Swaroop, Hedrick,
Chien and Ioannou [44] and to the doctoral dissertation of Swaroop [42]. Traf-
�c ow stability is guaranteed only if the coupled di�erential equations that
describe aggegate density and speed evolution exhibit stable behavior.

The following tra�c ow model, which considers the reaction time, � , of
the vehicle and the driver, was hypothesized in [30, 27, 18]:

@�

@t
+
@(�v)

@x
= 0; (8)

@v

@t
+ v

@v

@x
=

1

�
[h(�)� v]� �(�)

@�

@x
: (9)

The �rst equation expresses the conservation of the number of vehicles in the
tra�c ow. The second equation represents the tra�c speed dynamics and is
an analog of the balance of linear momentum for a uid ow which has a speci�c
constitutive relation for its stress. The underlying assumptions in deriving this
constitutive equation have not been explicitly stated in these references. For
example, if the vehicle following behavior of the vehicles constituting the tra�c
were unstable, can the above set of equations still represent resulting behavior
of tra�c ow?

A spatial discretization of the above equations has been used in [15, 5, 27].
Various researchers have used di�erent functions for the pressure gradient term,
@p
@x

= �(�) @�
@x
, but the underlying assumption is that � > 0 in [45, 27, 5].
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Our focus is to derive the constitutive equation that describes the dynamics
of tra�c speed from the vehicle following control laws. In the ensuing deriva-
tion, it is assumed that the acceleration of a vehicle can be controlled, i.e., it
can be assigned any value. Now,

vdes = �h(�) = h(�);

ev := v � �h(�) = v � h(�);

and thus

_ev = _v � _�h(�) = _v � h
0

(�) _�:

A choice of _v that ensures that the error in velocity, ev , goes to zero asymptot-
ically, with an exponential decaying rate, 1

�
, is given by:

_v = h
0

(�) _��
1

�
(v � h(�)):

Note that

_v =
@v

@t
+ v

@v

@x
;

_� =
@�

@t
+ v

@�

@x
:

From the conservation of mass equation, it follows that

_� = ��
@v

@x
:

As a result, the analog of the equation describing the speed dynamics of
the tra�c ow is:

@v

@t
+ (v + �h

0

(�))
@v

@x
=

1

�
[h(�)� v]: (10)

Notice that the pressure gradient term is missing in the equation for the
speed dynamics of automated tra�c. In deriving this equation, it is assumed
that the control actions of an automatically controlled vehicle is dependent
solely on the behavior of the vehicle immediately preceding it. Therefore, such
a term is missing in our derivation.

However, if one were to model the e�ectiveness of feeding back information
from the roadside devices into the cruise control law (e.g., Variable Message
Signs (VMS)), such a term will be present in the equation for the dynamics of
tra�c speed, as we shall see later in this section.

A general form of the balance of linear momentum in continuum mechanics
is given by:

divT+ �b = �
dv

dt
: (11)

In the above equation, T denotes the Cauchy stress tensor, and b denotes the
body force term. v denotes the velocity �eld. In the case of a one-dimensional
ow, the kinematical quantity, D reduces to @v

@x
, and T to a scalar, T .

If

T = �

Z x

x0

�2h
0

(�)
@v

@ 
d ;
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then equation (11) reduces to equation (10). Thus, we can think of T as the
stress generated in an automated tra�c. Di�erent vehicle following control laws
lead to di�erent representations for T , i.e., to di�erent constitutive relations for
the stress. In other words, we have di�erent governing equations depending on
the constitutive characterization of the tra�c. In the case of tra�c consisting
of manually controlled vehicles only,

T = �

Z �

�0

�(p)dp:

In both cases, the body force, b, is 1
�
[h(�)� v].

It is worth recognizing from the continuum perspective that equation (9)
corresponds to an Euler uid, [46, 37], i.e.,

T = �p(�)I;

while equation (10) corresponds to a non-local model, wherein

T = F(�;D) = T̂(x; t):

Here, the stress tensor, T, is a function of the density and the symmetric part
of the gradient of the velocity �eld, D, i.e.,

D =
1

2
[
@v

@x
+ (

@v

@x
)T ]:

In fact, T has the special form,

T̂ = �

Z x

x0

�2h
0

(�)
@v

@x
dx := �

Z x

x0

�(�)
@v

@x
dx:

If the stress, T , is of the form:

T = �p(�) + h(�)
@v

@x
;

where p(�) is a given pressure function, then

@T

@x
= �

@p

@x
+ h(�)

@2v

@x2
+ h

0

(�)
@�

@x

@v

@x
:

Let the body force term be equal to 1
�
[h(�)�v]� h

0

(�)
�

@�
@x

@v
@x
. Then, the balance

of linear momentum corresponding to this stress is

@v

@t
+ v

@v

@x
= �

1

�

@p

@x
+

1

�
h(�)

@2v

@x2
�

1

�
[v � h(�)]:

The above equation represents the balance of linear momentum for a Navier-
Stokes uid and is known as the Navier-Stokes equation. Of course, the body
force in this case is not the gravitational force as is usually encountered in uid
dynamics. A cruise control law that results in the Navier-Stokes equation for
the tra�c dynamics is given as follows:

ades =
1

�
[h(�)� v] +

1

�
h(�)

@2v

@x2
�

1

�

@p

@x
:
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Here, ades is the control input and is the commanded acceleration of the vehicle.
� is implemented as 1

�+Lc
, where Lc is the vehicle length and � is the range

measurement. _� is known once � and _� are known. Note that _� is the
range rate measurement and can be measured. The terms @�

@x
and @2v

@x2
are

obtained from the roadside sensors in the following manner: Consider two
roadside sensors such as loop detectors placed a distance, Lsection, apart, and
measuring the occupancy of vehicles. From these two measurements, one can
approximate the gradient of density and broadcast the information to every
vehicle between the two roadside sensors.

Similarly one can compute the term, @2v
@x2

in two di�erent ways. The �rst
method involves three roadside sensors, located some distance apart. Each
sensor measures the average velocity of the tra�c at the location of the sensor,
and @2v

@x2
can be obtained by processing the three velocity measurements using a

central di�erence scheme and communicating the processed information to ev-
ery vehicle between the extreme sensors. The second method involves utilizing
the fact that

@v

@x
= �

_�

�
=

_�

�
:

The second method involves two roadside sensors separated by a distance,
each measuring the relative velocity and distance between vehicles. Such a
measurement can be obtained using a device such as a camera located on the
roadside. Once the two measurements are obtained, one can compute the
average velocity gradient at each location, using the formula above. Given the
values of the velocity gradient at two locations, one can compute @2v

@x2
from the

above two values and can be communicated to every vehicle on the highway
between the two sensors.

3.3 Linearized stability analysis of the tra�c ow
taking ICC system dynamics into consideration

We will use the following equations for describing the tra�c ow:

@�

@t
+
@(�v)

@x
= 0;

@v

@t
+ (v + �h

0

(�))
@v

@x
=

1

�
[h(�)� v]:

Note that the balance of linear momentum equation is the same as equation
(10). A stationary solution admitted by the above set of equations is � =
�0; v0 = h(�0). Consider the following possible, perturbed solution:

� = �0 + ~�eik(x+ct)e�t;

v = h(�0) + ~veik(x+ct)e�t:

Substituting the above expressions into the above set of di�erential equa-
tions, and ignoring higher order terms:

(�+ ik(c+ h(�0)))~�+ ik�0~v = 0;

(�+
1

�
+ ik(c+ q

0

c(�0))~v �
1

�
h
0

(�0)~� = 0:
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In the above equation, q
0

c(�) = �h
0

(�) + h(�). For a nontrivial solution, the
following conditions must hold:

k2(c+ h(�0))(c+ q
0

c(�0)) = �(�+
1

�
);

�(c+ q
0

c(�0)) + (�+
1

�
)(c+ h(�0)) +

q
0

c(�0)� h(�0)

�
= 0:

As � ! 0, we recover the traveling wave solution, with the speed of the
traveling wave, c, equal to �q

0

c(�0).
Note that � = 0; c = �q

0

c(�0) and k is an real number, satis�es the above
equation. In other words, the perturbed solutions agree quite closely with the
traveling wave solutions as long as the perturbed solutions are su�ciently small.
Such an observation is in agreement with the simulation results and with the
results of Lighthill-Whitham [20].

With a constant time headway spacing policy, the slope, c = �L0
hw

and
is always negative. This implies that small density disturbances propagate
upstream without any attenuation.

3.4 E�ect of Spacing Policy employed by ICC on
tra�c ow stability (Spatially Discretized Approach):

For the sake of illustration, consider the ith section of a N -section single lane
highway as shown in the �gure 0.
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Figure 0: A schematic of a highway

Let the input tra�c volume into the section be qi�1, let the volume of tra�c
from the on-ramp into the section be ri. Let si be the tra�c volume exiting
this section via the o�-ramp and let qi be the tra�c volume from this section
into the adjoining downstream section of the highway. Let �i be the length
of the section, and let Ni(t) denote the number of vehicles in the section at
time t � 0. Furthermore, suppose vi is the aggregate velocity of all vehicles in
this section and �i is the aggregate density of vehicles in this section. Then,
�i =

Ni

�i
.
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On balancing the number of vehicles entering and leaving the section,

_Ni = qi�1 + ri � si � qi;

) _�i =
qi�1 + ri � si � qi

�i
:

We will assume the following discretization for tra�c volume:

qi = �i�ivi + (1� �i)�i+1vi+1:

The above discretization of the tra�c volume is widely used in the literature, for
example, see Karaslaan and Varaiya, [15], and Stotsky, Chien and Ioannou [5],
Papageorgiou [27]. The ow through a section of the highway, qi, is assumed
to be a convex combination of the theoretical tra�c volume, �ivi, of the section
and the theoretical tra�c volume, �i+1vi+1, of its downstream neighbor. Here,
�i is the factor associated with such a combination. Such a combination models
the realistic dependence of the tra�c ow dynamics of a section on the state
of tra�c downstream from it.

Equilibrium conditions are speci�ed by the conservation of mass equation
and the constitutive relationship between the tra�c speed and density, v =
h(�).

qi�1 + ri � si � qi = 0; i = 1; : : : ; N

or equivalently,

�i�1�i�1vi�1 + (1� �i�1 � �i)�ivi � (1� �i)�i+1vi+1 = si � ri; i = 2; : : : ; N � 1;

�1�1v1 + (1� �1)�2v2 = q0 + r1 � s1;

�N�1�N�1vN�1 + (1� �N�1)�NvN � �NvN = sN � rN ;

and �i = h(vi); i = 1; : : : ; N:

Let ��i = �i(q0; r1; : : : ; rN ; s1; : : : ; sN) be the equilibrium density and v�i be
the corresponding equilibrium tra�c speed.

De�ne ~�i = �i � ��i . Stability of the tra�c ow with the spacing policy
can be now be analyzed via linearization of the tra�c ow dynamics about the
steady state operating density. De�ne

c(�) :=
d(�v)

d�
= (�

@h

@�
+ h)(�):

Then, linearization of the density evolution equations results in :

_~�1 =
��1c(��1)~�1 � (1� �1)c(��2)~�2

�1
;

_~�i =
�i�1c(�

�
i�1)~�i�1 + (1� �i�1 � �i)c(�

�
i )~�i � (1� �i)c(�

�
i+1)~�i+1

�i
; i = 2; : : : ; N � 1;

_~�N =
�N�1c(��N�1)~�N�1 � �N�1c(�

�
N)~�N

�N
:

Compactly, the above set of equations can be written as:

_X = AlinX;
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where X = [~�1; : : : ; ~�N ]
T and Alin is given by

Alin = D1AD2;

D1 =

2
66666664

1
�1

0 : : : 0 0

0 1
�2

: : : 0 0
...

... : : :
...

...
0 0 : : : 1

�N�1
0

0 0 : : : 0 1
�N

3
77777775
;

A :=

2
666666664

�1 (1� �1) 0 0 0 : : : 0 0 0
��1 �(1� �1 � �2) (1� �2) 0 0 : : : 0 0 0
0 ��2 �(1� �2 � �3) (1� �3) 0 0 : : : 0 0
...

...
...

...
...

...
...

...
...

0 0 0 : : : 0 0 ��N�2 �(1� �N�2 � �N�1) (1� �N�1)
0 0 0 : : : 0 0 0 ��N�1 �N�1

3
777777775
;

D2 =

2
6666664

�c(��1) 0 : : : 0 0
0 �c(��2) : : : 0 0
...

... : : :
...

...
0 0 : : : �c(��N�1) 0
0 0 : : : 0 �c(��N)

3
7777775
:

Stability of a constant time headway spacing policy: In this policy,
section density, �i and tra�c speed, vi are related by:

1

�i
= L0 + hwvi ) vi =

1

hw
[
1

�i
� L0]:

Here, L0 is the sum of intervehicular spacing at standstill and vehicle length,
and hw is the constant time headway. As a result, c(�) = �L0

hw
< 0.

If all the eigenvalues of Alin have negative real parts, then the equilibrium
is locally stable. If atleast one eigenvalue of Alin has a positive real part, the
equilibrium is unstable. In case of constant time headway policy, it is easy
to see that D2 > 0. Since D1 > 0 and D1; D2 area diagonal, it follows from
Sylvester's theorem of inertia and the properties of a similarity transformation
that the signature of the matrix Alin is the same as the signature of the matrix,
A.

With elementary matrix operations, it can be shown that the determinant
of the matrix, Alin, is (

L0
hw
)n�N�1

1
�j
�j

1
�N

> 0. Furthermore, consider the last row

of A. One of the Gershgorin's disks [11] is given by j���N�1j � j�N�1j, where
� is an eigenvalue of A. From the above facts, it is clear that Alin has an eigen-
value with a positive real part, since the determinant is non-zero. Although all
vehicles are assumed to have the same length, by a similar argument, it can
be shown that Alin has an eigenvalue with a positive real part, even when the
vehicles do not have the same length. In other words, constant time headway
policy always leads to an unstable tra�c ow behavior.

It should be remarked that this spacing policy leads to tra�c ow instability
because the slope of the equilibrium volume-density curve is always negative.
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Physically, this implies that the steady state tra�c throughput with this spac-
ing policy decreases with increasing tra�c density. Recall that the unstable
regime of the fundamental characteristic of tra�c (equilibrium volume-density
curve) consisting of manually controlled vehicles has a negative slope.

It should be noted that the spatial discretization is not producing any spu-
rious results here. The solution of the non-discretized conservation of mass
equation with the LW (ideal cruise control) approximation is a backward trav-
eling wave that does not amplify or attenuate in time. While such a solution

is stable in the sense of Lyapunov, it is not desirable. The solution of the spa-
tially discretized approximation indicates instability. The reason is clear from
the inherent lack of stability robustness for the constant time headway spacing
policy as was evinced in the earlier section.

While the assumption of an ideal vehicle cruise control system is not real-
istic, it serves to di�erentiate tra�c ow stability from string stability. String
stability is concerned with the issue of adequacy of information to regulate the
intervehicular spacing in a vehicle string according to a pre-speci�ed spacing
policy. String stability, therefore, implies the stability of aggregate tra�c speed
dynamics consistent with the employed spacing policy and is only a necessary

condition for tra�c ow stability. Due to the assumption of an ideal vehicle
cruise control system on all vehicles constituting the tra�c, string stability is
vacuously guaranteed since the spacing error of every vehicle in following a
vehicle ahead is always zero. Tra�c ow stability, however, is also dependent
on the spacing policy employed in the vehicle cruise control systems.

Since the limiting performance of constant time headway policy obtained
by ideal Intelligent Cruise Control sytems always leads to an unstable tra�c
ow behavior, all realistic Cruise Control Systems that employ a constant time
headway policy, lead to an unstable tra�c ow behavior, as was shown in the
earlier section.

4 Simulation of a tra�c ow:

For simulation purposes, we have considered a single section of length 1000m
of a single lane freeway. All the vehicles constituting the tra�c on this section
are automatically controlled and the control algorithm used is given in [44].
Speci�c values of time headway of 1sec and a control gain, � = 1 are used in this
simulation. We have assumed that the spacing between vehicles, including the
car length, at standstill is 10m. Entry ramp to the section is located at 350m
from the downstream end of the section. A vehicle merging into the automated
tra�c from the on-ramp is placed halfway between the vehicles closest to the
section with their average velocity. Any merging vehicle induces braking in its
following vehicles. Simulations indicate that 350m is su�ciently long for any
vehicle to pick up the speed while following a vehicle ahead. This simulation is
set up such that if a vehicle does not have a predecessor in the section, it will
maintain its velocity until it leaves the section. The mainline tra�c volume
is 2700vehicles=hour. In other words, three vehicles enter every four seconds.
As long as time modulo four is one, two or three, a vehicle is placed at the
upstream end of the section with a velocity equal to that of its immediate
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predecessor. In other words, the vehicle entering will have no velocity error
initially; however, it may have a spacing error. Corresponding to this mainline
tra�c volume, a time headway of 1sec and the standstill distance between the
center of mass of the vehicles, L0 = 10m, the uniform tra�c speed is 30m=s.
Therefore, initially all vehicles move at 30m=s.

We have considered two scenarios of merging vehicles. In the �rst scenario,
we simulate a tra�c burst, i.e a total of eight vehicles merge into the automated
tra�c in 160sec. In the second scenario, we simulate a continuous stream of
merging vehicles, with a tra�c volume of 180vehicles=hour. All vehicles merge
from the ramp only after t = 50sec.

The following statistics are calculated every 0:5sec: the mean velocity of all
vehicles in the section, the number of vehicles in the section, the cumulative
number of vehicles that have entered (either from the mainline or from the
on-ramp) and exited the section and the position of all vehicles in the section
at that time. Four plots corresponding to each of the scenario clearly paint the
picture of the behavior of automated tra�c ow.

The �rst plot depicts the evolution of aggregate tra�c density. The dis-
crete nature of counting the number of vehicles in a section and the fact that
the section length can not identically be an integral multiple of intervehicular
distance, the resulting density plot contains a lot of spikes. Looking at �gure
2, the process of densi�cation can be understood. For example, consider the
time interval from 280 seconds to 440 seconds. In the time interval from 280
seconds to approximately 310 seconds, the frequency of a count of 34 vehicles
is higher than the frequency of a count of 33 vehicles or that of count of 35
vehicles in the section. Hence, you see pointed spikes in the upward and down-
ward direction from the count of 34 vehicles in the section in that time interval.
In the time interval from 310 seconds to 380 seconds, one could clearly see a
progressive increase in the frequency of the count of 35 vehicles. After time
t = 380 seconds, frequency of the count of 35 vehicles in the section is much
higher than the frequency of the count of 34 vehicles or 36 vehicles. Hence,
one can see upward and downward spikes from the count of 35 vehicles. In
this �gure, densi�cation slows after t = 200 seconds, by which time the burst
of vehicles have already merged into the tra�c. Notice that the density al-
ways increases, however, slowly. With a constant stream of merging vehicles,
densi�cation progresses at a faster pace as can be seen from �gure 5.

Figures 2 and 6 show the speed evolution with this spacing policy under
the two scenarios described above. The chattering nature of this plot is due to
the discrete nature of counting and averaging the velocity of all vehicles in the
section.

In the simulations, there are two counters - an inow counter and an outow
counter. Whenever a vehicle enters from the mainline or the on-ramp, the
inow counter is incremented by one. Similarly, whenever a vehicle leaves the
section from the downstream end, the outow counter is incremented by one.
Figures 3 and 7 show how the value of these two counters vary with time when
AICC with a constant spacing policy is used. Clearly, the di�erence between
the two counters is diverging, indicating an accumulation of vehicles in the
section.

Every dot in �gures 4 and 8 has two coordinates. The horizontal coordinate
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is time and the vertical coordinate is the position from the upstream end. A
dot represents the position of a vehicle (vertical coordinate) at a given time
(horizontal coordinate). A lower value of the vertical coordinate implies that
the vehicle is close to the upstream end of the section. The number of vehicles
in the section at any given time can be found by counting the number of dots
which have the given time as the horizontal coordinate. The intervehicular
spacing distribution can be similarly inferred. If there are more dots in a part
of the section at a given time, that part of the section is congested and appears
dense in the plot. One can clearly see the upstream propagation of density
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Density evolution of AICC traffic with a burst of vehicles

Figure 1: Aggregate density evolution of tra�c with AICC with a burst of on-ramp

merging vehicles

disturbances resulting from vehicles merging into the automated tra�c. In
both scenarios, the upstream end of the section is congested. In fact, vehicles
are stopped at the upstream end of the section.

5 The problem of specifying a spacing pol-

icy

Since a constant time headway spacing policy leads to tra�c ows with unde-
sirable stability characteristics, it is natural to ask how to synthesize a spacing
policy with desirable stability characteristics. For example, let the following be
the speci�cations of a desirable tra�c characteristic for autonomous vehicles:

1. A maximum capacity of Amax at a fraction, �, of the jam density, �max.
Here, �max is the density that corresponds to a situation where the front
and rear bumpers of any two adjoining vehicles touch each other.
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Figure 2: Aggregate tra�c speed with AICC with a burst of on-ramp merging vehicles

2. It is desired that the tra�c ow be stable over the entire possible density
regime, [0; �max]. By this, we mean that the density disturbances must
attenuate as they propagate upstream.

3. The capacity is always a positive number.

The impossibility of the second speci�cation with an autonomous vehicle fol-
lowing law is shown in [43] using Rolle's theorem. Tra�c ow stability can
only be guaranteed upto the peak density value if autonomous vehicles have
negligible actuation and sensing delays.

One can synthesize many di�erent characteristic curves that satisfy the �rst
and last speci�cations. One such characteristic curve is synthesized from the
formulae given in [6, 43]:

v� = vf (1� (
�

�max

)l)m

For example, with l = 1; m = �max��
�

��
, where �� is the speci�ed critical tra�c

density, and

vf =
Cmax(1 + lm)

1+lm
m

�max(lm)m

the speci�cations on critical density and maximum capacity are met.
The sensitivity of v� on �� is a speci�cation on the actuators, sensors and

the vehicle following control system. The feasibility of such a spacing policy is
then determined by the capabilities of the control system.

19



0 50 100 150 200 250 300 350 400 450 500
0

50

100

150

200

250

300

350

Time(sec)

C
um

ul
at

iv
e 

nu
m

be
r 

of
 v

eh
ic

le
s

Traffic volumes in and out of the section

Inflow −−

−−Outflow
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6 Summary and Conclusions

In this paper, we have addressed the issue of the e�ect of vehicle following
control laws on the behavior of tra�c ow. To aid the investigation, we have
motivated physically and then de�ned mathematically, what is meant by string
stability, what is meant by tra�c ow stability and what the di�erence between
the two is. We have explicitly stated the assumptions in deriving the consti-
tutive equation that describes the speed dynamics of the tra�c ow. Then,
we have shown that tra�c ow is unstable if every vehicle is equipped with an
automatic vehicle following system that employs a constant time headway pol-
icy. We have numerically veri�ed the upstream, unattenuated propagation of
disturbances, if every vehicle in the tra�c were equipped with an ICC system
employing a constant time headway policy. At the end of this paper, we have
provided a framework for designing cruise control laws that take their e�ect on
tra�c ow into consideration.
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