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Abstract. The intelligent data acquisition in biological sequences is a hard and 
challenge problem since most biological sequences contain unknowledgeable, 
diverse and huge data. However, the intelligent data acquisition reduces a 
demand on the use of high computation methods because the data are more 
compact and more precise. We propose a novel approach for discovering 
sequence signatures, which are sufficiently distinctive information in 
identifying the sequences. The signatures are derived from the best combination 
of the n-grams and the statistical scoring models. From our experiments in 
applying them to identify the Influenza virus, we found that the identifiers 
constructed by too short n-gram signatures and inappropriate scoring models 
get low efficiency since the inappropriate combinations of n-gram signatures 
and scoring models bring about unbalanced class and pattern score distribution. 
However, the other identifiers provide accuracy over 80% and up to 100%, 
when they apply an appropriate combination. In addition to accomplishing in 
the signature recognition, our proposed approach also requires low computation 
time for the biological sequence identification. 

1   Introduction 

The rapid growth of genomic and sequencing technologies during the past few 
decades has facilitated the incredibly large size of diverse genome data, such as DNA 
and protein sequences. However, most biological sequences contain very little known 
meaning. Therefore, techniques for knowledge acquisition from sequences become 
more important for transforming the sequences into useful, concise and compact 
information. These techniques generally consume long computation time; their 
accuracy usually depends on data size; and there is no best known solution. Many 
sequence processing projects still have some common stages for experiments, which 
are recognition of the most significant characteristics (Intelligent Data -- Signatures). 

Signatures are short informative data that can identify types of the sequences. 
Recently, several biological research areas demand the informative signatures as one 
of important keys of success in the research areas since the signatures help reduce the 
computation time and also the data are more compact and more precise [4]. Many 
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computational techniques are used in biological research areas such as Sequence 
Alignment, Inductive Learning and Consensus Discovery. 

The well-known tool using the Sequence Alignment, such as BLAST [5], aligns 
uncharacterized sequences with the existing sequences in database and then assigns 
the uncharacterized sequences to the same class with one of the sequences in database 
that gets the best alignment score. This technique has to perform directly on all 
sequences in database, whose sizes are usually huge; therefore its processing time is 
much higher than other techniques. The Inductive Learning [9] and the Consensus 
Discovery [8] perform their tasks in a pre-process to derive rules that are used to 
perform the tasks during processing time. Although the use of the rules attains low 
processing time, the procedure for deriving rules still has too long computation time. 

Our approach is to discover DNA signatures in the pre-process as the inductive 
learning and the consensus discovery. However, the proposed approach has much less 
pre-processing time. We apply an n-gram method and statistical scoring models for 
the signature discovery and evaluate the signatures over the influenza virus. Our 
system and methods are described in Section 2. Section 3 has a discussion on our 
experiments. Finally, we summarize the proposed approach in Section 4. 

2   System and Methods 

The signature recognition is a significant task in the Computational Biology research 
since the biological sequences are zero-knowledge based data. We do not know any 
“knowledge” of the biological data. Therefore, the recognition of the knowledge or 
informative signatures becomes more important. Our signature discovery framework 
of biological data is depicted in Fig. 1 as the four following steps. 

Step I: Pattern Generation is to transform training data into n-gram patterns. 

Step II: Candidate Signature Selection is to find the most significant n-gram patterns 
predicted as candidate signatures. 

Step III: Identifier Construction is to create identifiers using the candidate signatures. 

Step IV: Performance Evaluation is to estimate the goodness of the candidate 
signatures by comparing each identifier, generated by the different candidate 
signatures. If the accuracy of any identifiers is high, the candidate signatures used for 
constructing the identifiers are predicted as “Signatures” of the DNA sequences. 

 

 

Fig. 1. Signature discovery framework 
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2.1   Pattern Generation 

The Pattern Generation process is to find a data representation of DNA sequences. 
The data representation, called a pattern, is a substring of the DNA sequences. DNA 
sequences include four symbols {A, C, G, T}; therefore, the members of a pattern are 
also restricted to the four symbols. Let Y be a sequence y1y2…yM of length M over the 
four symbols of DNA. A substring t1t2…tn of length n is called an n-gram pattern 
[3]. The n-gram method generates the n-gram patterns representing the DNA 
sequences with different n-values. There are M-n+1 patterns in a sequence of length 
M for generating the n-gram patterns, but there are only 4n possible patterns for any n-
values. Notice that 1-gram patterns have 4 (41) possible patterns; while 24-gram 
patterns have 2.8×1014 (424) possible patterns. The numbers of possible patterns 
obviously vary from 4 to 2.8×1014 patterns. High n-values are not necessary since 
each pattern does not occur repeatedly and scoring models cannot discover signatures 
from these patterns. However, in our experiments, the patterns are solely generated 
from 1- to 24-grams since the higher n-values do not improve any performance. 

2.2   Candidate Signature Selection 

This process is to measure the significance of each n-gram pattern, called a score, 
using statistical models and then sort all n-gram patterns as their scores. Finally, the 
process selects the ten highest-score patterns as “Candidate Signatures”. Let Pattern P 
represent a set of m members of n-gram patterns p1, p2 … pm generated by training 
data. The score of each pattern pi, score(pi), is to measure the significance of each 
pattern using a statistical model. Let S be the candidate signatures, selected from the k 
highest-score patterns. The Pattern P and the candidate signatures S are defined by 

.)score(p)score(p|pppP ii1im1-m1 }{ ,...,3,2,,..., m=∧≤= −  (1) 

}.{ 1 kjssS j ≤≤∀= ∧= + jk-m jj p|  (2) 

For the statistical scoring models, we propose nine models to evaluate the 
goodness of biological data. Nine proposed models are Term Frequency (TF), 
Rocchio (TF-IDF), DIA association factor (Z), Cross Entropy (CE), Mutual 
Information (MI), Information Gain (IG), NGL coefficient (NGL), Chi-Square (X2) 
and Weighted Odds Ratio (WOR) [1,7]. We compare formulas of the models across 
four several criteria [6] that concentrate on pattern and class value as follows 

Criteria I: Common Patterns computes pattern scores using the number of times 
pattern P occurs, Freq(p) , or the probability pattern P occurs, )(pP . 

Criteria II: Pattern Absence computes pattern scores using the number of times or the 
probability that pattern P does not occur, P . 

Criteria III: Class Value computes pattern scores using the probability of the ith class 
value, )(C iP , or the conditional probability given that pattern P occurs, )|( pC iP . 

Criteria IV: Target Class Value is a measure which emphasizes on difference between 
the target or positive class value, pos , and the non-target or negative class value, neg. 

The criteria comparison of nine models is illustrated in Table 1. Where Freq(p)  is 
the number of times pattern P occurs; )( pDF  is the number of sequences pattern P  
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occurs at least once; D  is the total number of sequences; )(pP  is the probability 
pattern P occurs; P  means that pattern P does not occur; )(C iP  is the probability of 
the ith class value; )|( pC iP  is the conditional probability of the ith class value given 
that pattern P occurs; )|( C ipP  is the conditional probability of pattern occurrence 
given the ith class value; )|( pposP  is the conditional probability of the ‘positive’ class 
value given that pattern P occurs; )|( pnegP  is the conditional probability of the 
‘negative’ class value given that pattern P occurs; )|( pospP  is the conditional 
probability of pattern occurrence given the positive class value; and )|( negpP  is the 
conditional probability of pattern occurrence given the negative class value. 

Table 1. Comparing nine statistical scoring models across four several criteria 
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2.3   Identifier Construction 

This process uses the candidate signatures to formulate a similarity scoring function. 
When there is a query sequence, the function is used to estimate the significance of 
candidate signatures of each class of DNA types (SimScore). If the SimScore of any 
class is maximal, the query is identified as a member of the class. On the other hand, 
if SimScore of every class is zero; the query is not assigned to any classes. Let X be a 
query sequence with cardinality m. Let px1, px2…pxd be a set of d (m-n+1) n-gram 
patterns generated by the query sequence.  Let sy1, sy2…sye be a set of e candidate 
signatures in a class Y. Then, sim(px,sy) is a similarity score of a pattern px and a 
candidate signature sy, where sim(px,sy) is 1, if px is similar to sy, and sim(px,sy) is 
0, if not similar. The similarity score of a class Y, SimScore(X,Y), is a summation of 
similarity scores of every pattern px and every candidate signature sy as follows 

.),(),(
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∑

≤≤≤≤
=

ejdi
ji yx spsimSimScore YX  (3) 
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3   Experiments 

In our experiments, we compare the accuracies of identifiers by distinguishing the 
eight inner genes of Influenza in GenBank Database [2]. The accuracy is the ratio of 
the number of sequences correctly identified to the total number of test sequences. 
Each identifier is produced from the different sets of candidate signatures which each 
set is derived from one n-gram and one statistical model. Following the use of 
different criteria of models, we divide the experimental results into 3 ranges of n-
grams, 1- to 6-grams, 6- to 11-grams and 11- to 24-grams, for more precise analysis. 

The identifiers, constructed by 1- to 5-gram signatures in every scoring model, get 
poor results as shown in Fig. 2a; whereas the identifiers, constructed by 6- to 11-gram 
signatures in most models, achieve good results, except the models based on Pattern 
Absence, such as IG, NGL and X2, as illustrated in Fig. 2b. In Fig. 2c, the use of 
signatures which are longer than 11-gram provides 10% less accuracy than the 6- to 11-
gram, nevertheless the results are quite stable and good in several models, except the 
models based on Target Class Value, such as NGL, X2 and WOR.  

Following the results, the models based on frequencies of patterns solely, such as TF 
and TF-IDF, achieve good results; whereas the others depend on the length of n-gram 
signatures and the criteria used in the models. The models based on Pattern Absence, 
such as IG, NGL and X2, between 6- to 11-grams produce poor results; whereas, longer 
than 11-gram, the model based on Pattern Absence but not based on Target Class 
Value, such as IG, gets good results. As discussed above, our discovery model selects 
the ten highest-score patterns to be signatures. The score comparison of each pattern, 
generated by the 6- to 11-grams, considers from frequencies of both presence and 
absence of pattern which may bring about unbalanced class and pattern score 
distribution. For longer than 11-gram, the score comparison mainly considers from 
frequencies of the pattern presence only, since the frequencies of pattern absence are 
very high in every pattern, because of the large number of possible patterns (>411 
possible patterns) and the low probability of the same pattern occurrence. Hence, the 
performance of the models based on Pattern Absence in the long patterns is comparably 
equal with the models based on only Common Patterns owing to considering on the 
same only pattern presence. 
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Fig. 2. Comparing the Accuracies of identifiers constructed using nine statistical scoring 
models and diverse n-grams: (a) 1- to 6-grams; (b) 6- to 11-grams; and (c) 11- to 24-grams 
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Next, we found that, longer than 11-gram, the accuracies of identifiers drop, when 
they use the models based on Target Class Value, such as NGL, X2 and WOR, 
emphasizing on difference between the target and non-target classes. That the Target 
Class Value is not a good measure in the long n-gram patterns may be due to its 
unbalanced class and pattern score distribution. The use of long patterns generates the 
large number of possible patterns and the low probability of the same pattern 
occurrence; hence, the statistical analysis cannot handle with the too high pattern 
distribution which brings about the unbalanced score distribution. 

However, from all results, several identifiers provide accuracy over 80% and up to 
100% at 8- and 11-grams in several models. Hence, our proposed approach is highly 
possible to discover the actual “DNA Signatures” of the Influenza virus. 

4   Conclusion 

The signature discovery is an important task in the Computational Biology since the 
signature is more compact and more precise which helps reduce the high computation 
time. We propose a novel approach to discover “Signatures”, which are sufficiently 
distinctive information for the sequence identification. We apply an n-gram method 
and statistical models in discovering the signatures. The signatures are derived from 
the best combination of the n-grams and the statistical models, which are evaluated by 
the identification system over the Influenza virus. The experimental results showed 
that the accuracies of several identifiers provide over 80% and maximal up to 100%, 
when the identifiers are constructed by the appropriate n-grams and statistical models. 
Hence, the candidate signatures used for the identifier construction are highly possible 
to be “Signatures” of the DNA sequences. Our approach succeeds in the signature 
discovery and also requires low computation time for the biological tasks. 
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