

1

Intelligent Decision Support in Scheduling and Optimization

Dr Rong Qu

Automated Scheduling, Optimization And Planning Group School of Computer Science The University of Nottingham

rxq@cs.nott.ac.uk
http://www.cs.nott.ac.uk/~rxq

ASAP Group, The University of Nottingham

Research Interests

- Intelligent Decision Support methodologies for real world Scheduling and Optimization
 - Nurse rostering, Educational timetabling
 - Multicast communication network routing
 - Portfolio optimization, Capital budgeting
 - 3D bin packing
- GCM at 3T
 - Case based reasoning
 - Data mining?

- Schedule a number of shifts to nurses in rosters, satisfying a set of constraints / requirements
 - Hard constraint
 - enough number of shifts (of different types) coverage on each day during the scheduling period
 - Side constraints
 - working/resting hours limit, complete weekends, skill levels, personal preferences, etc

- Automated nurse rostering
 - Can ensure legal requirements are not broken
 - Lower costs e.g. hire less agency nurses to fill gaps in rosters
 - Distribute rosters via email and web
 - Generate management reports and statistics, connect to payroll systems, less paperwork, etc

optimisation

automated scheduling

& planning

Nurse Rostering Problems

				1				2								3								4							
December	04	05	06	07	08	09	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31			
	М	Т	W	Т	F	S	S	М	Т	W	Т	F	S	S	М	Т	W	Т	F	S	S	М	Т	W	Т	F	S	S			
1A	D	E	E	E	L			E	E	E	E		D	D	D	N	N	N				L	L	L	L				51		
A	DH	DH	DH	DH	DH			DH	DH	DH		DH	DH	DH	DH		DH	DH				DH	DH	DH	DH	DH			20		
В	N	N	N	N				D	D	L	L	L				L	L	L				E	E	E	D	D			0		
С	D	D	D	D	D				N	N	N		L	L	L				L	L	L		E	E	E	L			25		
D				L	N	N	N	N			DH	D				E	E	E	DH	E	E		N	N			E	E	13		
E					D	DH	DH	D					E	E		DH	E	E	E	DH	DH		D	D	E	E	DH	DH	21		
F	L	L	L			L	L	L	L			N	N	N	N			D	D			D				D	D	D	10		
G				E	E	Е	E			D	D	D			E	E			D	D	D	D			N	N	N	N	10		
н	E	E	E			D	D		E	E	E	E			D	D	D		N	N	N	N					L	L	26		

Total Penalty 176

Unassigned Shifts 0

Minimum Cover																												
E	1	2	2	2	1	1	1	1	2	2	2	1	1	1	1	2	2	2	1	1	1	1	2	2	2	1	1	1
D	2	1	1	1	2	1	1	2	1	1	1	2	1	1	2	1	1	1	2	1	1	2	1	1	1	2	1	1
<mark>DH</mark>	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
L	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
N	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

Nurse Rostering web site at http://www.asap.cs.nott.ac.uk/projects/nmhpr/data

optimisation

automated scheduling

& planning

				1							2							3												
December	04	05	06	07	08	09	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31		
	М	Т	W	Т	F	S	S	М	Т	W	Т	F	s	S	М	Т	W	Т	F	S	S	М	Т	W	Т	F	S	S		
1A	D	E	E	E	L			E	E	E	E		D	D	D	N	N	N				L	L	L	L				51	
А	DH	DH	DH	DH	DH			DH	DH	DH	*	DH	DH	DH	DH	ѫ	DH	DH				DH	DH	DH	DH	DH			20	
В	N	N	N	N				D	D	4	L	L				L	L	L				E	E	E	D	D			0	
С	D	D	D	D	D				N	N	N	◄		L	L				L	L	L		E	E	E	L			25	
D				L	N	N	N	N			DH	D				E	E	E	DH	E	E		N	M			E	E	13	
E					D	PH	DH	D		/		<	E	Е	¥	DH	E	E	E	DH	DH		9	D	E	E	DH	DH	21	
F	L	L	L			L/	X	K	1			N	N	N	N			D	Ð			7				D	D	D	10	
G				E	E	E/	Ł		>	P	D	D			E	E			D	D		D			N	N	N	N	10	
н	E	E	E			Ð	D		E	E	Ē	E		/	D	D	D		N	N	N	N					L	L	26	
		Тс	o f	ew	res	stir	g		Тс	00 1	few	/ CC	- ns	ecu	tive Too few conse								ive			Total Penalty				
			tii	me	(10))	0			1:	ate	shi	fts	(5)	night shifts								Unassigned Sh							
Minimum Cover			ιII		(10	<i>'</i>)				10		5111	105	(\mathbf{J})				1112	2110	511	1105									
E	1	2	2	2	1	1	1	1	2	2	2	1	1	1	1	2	2	2	1	1	1	1	2	2	2	1	1	1		
D	2	1	1	1	2	1	1	2	1	1	1	2	1	1	2	1	1	1	2	1	1	2	1	1	1	2	1	1		
<mark>DH</mark>	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1		
L	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1		
N	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1		
				N	urse	e Ro	oste	ring	We	eb s	ite	at h	ttp	://w	/ww	.asa	ap.c	s.n	ott.a	ac.u	ık/p	roje	ects	/nm	hp	r/da	nta			

► HARMONYTM

- Automated workforce management software
- Developed by ORTEC, The Netherlands, an international consultancy company on planning, scheduling, optimisation and decision support
- ► This work improved the algorithm in HARMONYTM

Timetabling Problems

- Assigning a set of events (exams, courses, meetings) into limited timeslots satisfying a set of constraints
 - Students cannot sit two events at the same time
 - Students would like to have enough revision time between events
 - Lectures prefer to have large events scheduled earlier
 - •

Important activities in all universities

Timetabling Problems

- Advanced search algorithms
 - Intelligent AI algorithms provide good solutions quickly
 - Genetic algorithms, Tabu search, etc
- Knowledge based systems
 - Intelligent decision support based on past experience
 - Case based reasoning, knowledge discovery

Timetabling Problems

PATAT 2010

8th International Conference on the Practice and Theory of Automated Timetabling Queen's University Belfast, Northern Ireland, 10th - 13th August 2010

Multicast Routing

- Multicast routing in telecommunications
 - a communication service that simultaneously transfers information from a source to a group of destinations in communication networks
 - distance learning, E-commerce and video/audio conferencing, etc, multimedia telecommunications

0

Multicast Routing

QoS Multicast routing

- Quality of Service (QoS) parameters (constraints and objectives)
- bounded end-to-end delay, messages must be transmitted from the source to destinations within a certain amount of time
- minimizing the cost of transfer via the multicast tree

Financial Optimizations

- Portfolio optimization
 - Decision making on financial investment
 - To maximize the expected return and minimize the risk by carefully choosing different assets
 - Additional constraints
 - Cardinality
 - Transaction costs
 - Multiple objectives

Financial Optimizations

- Capital budgeting
 - Corporate long term investments of different initial costs and different NPV
 - To maximize the expected NPV
 - Constraints / objectives
 - Annual budget
 - Interdependent investments
 - Multiple objectives
 - Uncertainties

3T Analytical Tool in GCM

The Problem

- The existing large amount of data in GCM
- Provide shipments, routes and costs
- Plan freight to assess savings potential

Issues

- To set up the raw shipment data: 4-5 days
- No exact match of the current operations to the existing ones
- Spreadsheet simulations: 2-3 days
- •

Analytical Tool in GCM at 3T

Data mining

- Knowledge acquisition of rules, patterns, etc
- Transform data into useful information
- Challenging tasks for complex and ill-structured applications

Case Based Reasoning

- Knowledge based systems
- Learn to provide solutions to the new problem by adapting old solutions for similar problems
- Using past knowledge/experience to solve similar problems

Case Based Reasoning

- Excellent tool of problem solving based on experience / knowledge
 - Law legal court cases, help desk, configuration, etc.
 - Assumption: similar problems, similar solutions

Case Based Reasoning

In a CBR system

- Cases: the problem description and solutions
- Case base: a collection of previously solved representative problems
- Similarity measure: calculates how similar two cases are
- Retrieval: finds from the case base the most similar case
- Adaptation: utilises the retrieved solution for the new problem

Case Based Reasoning

- Model/extract/record the knowledge of problem solving without necessarily extracting specific rules / exact patterns
- Unlike in expert systems, no need to have exact matches in the database!
- More than one alternative solutions (or at least the closest solution) to support decision making
- System evolves to learn new experiences (cases) through its life cycle
- Interactive with users

References

- R. Qu*, E. K. Burke, B. McCollum, L.T.G. Merlot, and S.Y. Lee. A Survey of Search Methodologies and Automated System Development for Examination Timetabling. Journal of Scheduling, 12(1): 55–89, 2009. The top 0.1% cited paper in Computer Science by ISI Essential Science Indicators (Oct 2009)
- E.K. Burke, T.E. Curtois, G. Post, R. Qu and B. Veltman, A Hybrid Heuristic Ordering and Variable Neighbourhood Search for the Nurse Rostering Problem, European Journal of Operational Research, 188(2), 330–341, 2008. The top 1% cited paper in Computer Science by ISI Essential Science Indicators (Oct 2009)
- E. Burke, S. Petrovic, R. Qu*, Case Based Heuristic Selection for Timetabling Problems. Journal of Scheduling, 9: 115–132, 2006. The top 1% cited paper in Computer Science by ISI Essential Science Indicators (Oct 2009)
- R. Qu*, Y. Xu, J. Castro, D. Landa-Silva. Particle Swarm Optimization for the Steiner Tree in Graph and Delay-Constrained Multicast Routing Problems. under revision at Swarm Intelligence, 2010

