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Abstract 

This research studies the application of hybrid algorithms for predicting the 

prices of crude oil. Brent crude oil price data and hybrid intelligent algorithm 

(time delay neural network, probabilistic neural network, and fuzzy logic) were 

used to build intelligent decision support systems for predicting crude oil prices. 

The proposed model was able to predict future crude oil prices from August 

2013 to July 2014. Future prices can guide decision makers in economic 

planning and taking effective measures to tackle the negative impact of crude oil 

price volatility. Energy demand and supply projection can effectively be tackled 

with accurate forecasts of crude oil prices, which in turn can create stability in 

the oil market. The future crude oil prices predict by the intelligent decision 

support systems can be used by both government and international organizations 

related to crude oil such as organization of petroleum exporting countries 

(OPEC) for policy formulation in the next one year.   

Keywords: Decision support system, Time delay neural network, Probabilistic neural 

network, Fuzzy logic, Crude oil prices 

Introduction 

Regular short-term movements in crude oil prices are caused by normal market forces, 

including, but not restricted to, US refinery capacities, an OPEC crude oil production 

ceiling, and global demand and supply, whereas the volatility of the oil market is prompted 

by uncertain events consisting of, but not narrowed to, wars, revolutions, earthquakes, oil 

worker strikes, and hostage takings (Alizadeh and Mafinezhad, 2010). Different aspects of 

society and the world economy require crude oil for its survival. Both academics and 

industries across the globe perceive the prediction of crude oil prices as a source of 

concern. From the perspective of industries, crude oil price prediction is an integral part of 
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the process of making decisions in terms of valuation, exploration, development, and 

production. Short and long-term decision-making processes, national policies, and 

governments reserved, are affected by crude oil price prediction (Yang et al., 2002)  Crude 

oil price volatility contributes to declination in global economic growth and higher interest 

rates in advanced economies (Yun and Jae, 2010). An overwhelming majority of the 

literature concentrated on predicting crude oil prices with only regular factors affecting 

crude oil price movements (e.g., Ghaffari and Zare, 2009; Jammazi and Aloui, 2012).  

However, very few consider both regular factors and uncertain events. For example, Yu 

et al. (2005) used rules-based expert systems to forecast the price volatility of crude oil 

based on significant factors that affect crude oil erraticism. Conversely, rules-based expert 

systems cannot handle new cases automatically, and they lack the capability to identify 

nonlinear association, whereas neural networks (NNs) can automatically handle new 

patterns by updating its learning, and any nonlinear relationship can be modeled Niculescu 

(2003). Documentary evidence in a study by Bahrammirzaee (2010) shows that hybrid 

intelligent systems are superior to a single intelligent technique because they capitalize on 

their strengths and eliminate their limitations. 

 Fuzzy logic is good for knowledge representation, whereas an NN is bad. On the other 

hand, the ability of an NN in terms of adaptability is good, whereas it is bad in fuzzy logic 

(Dideková and Kajan, 2013). Also, fuzzy logic can model the uncertain behavior of the 

crude oil market (Gholamian, 2005).  

In this paper, we hybridized the two computational algorithms to eliminate their 

weaknesses and used their strengths in our proposal. Backpropagation is the most popular 

NN algorithm in forecasting, classification, and pattern recognition; however, the network 

can only map static patterns that are independent of time (Kim et al., 2005), which makes 

the network unsuitable for the time series data of our study. Thus, time delay NN (TDNN), 

which effectively circumvents the time limitation of back-propagation (Kim et al., 2005), is 

proposed for the study. Probabilistic NN (PNN) is also chosen for the purpose of this 

research because the network has the capability to interpret the network structure in the 

form of a probability density function, and its performance is better than other NN 

classifiers (Specht, 1995).        

 Other components of the paper are as follows: section 2 introduces the theories of 

computational algorithms proposed in our study, section 3 provides a detailed description of 

the algorithms applications, and section 4 presents the results and discussion before the 

concluding remarks in section 5. 

 

Theories of the computational algorithms 

 Time Delay Neural Network 

According to Kim et al., (2005), TDNN activation functions are managed by the storage 

of delays and error signals for every neuron and all time delays (TD). This activity makes 

TDNN architecture more complex than the back-propagation network. The TDNN learns 

time and relationship functions which correlate input vectors with the network-predicted 

values. TDNN is a category of feed-forward neural network in which its hidden and output 

neurons are simulated across time. Let the generic time instance delay of TDNN be t; 

outputs of preceding neurons at different time steps be t − 1, t − 2, … , t − n; and all be 

summed and connected with appropriate weights. The training of TDNN is through 
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temporary enlargement of TD over all the input data. Assuming an NN with levels L, 

consisting of Nl units at every level l, the delay input vector y for units i to l  at time t can 

be defined as l

T

liiii NiTtyltytyty ,...1,)](),...,(),([)(  . Each input yi in the preceding 

layer is computed and transferred as output to neuron j, yj, of l  can be defined as 

11 ,...,1,)](),...,1(),0([  l

T

jijijiji NjTwwww . Contribution (Cj) from neuron i  to neuron j 

is expressed as )()( tywtC i
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jiji  . Output of the neuron with a transfer function (f) is 

expressed as ))(()( tCfty jj  , and the prompt error (ei) can be defined as 

)()()( tytdte iii  , where di(t) is the target vector ith and di(t) is given to the NN. The 

prompt square error is defined as 
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output depends on TD inputs t, t − 1, … , t − T1, d(t) is adaptively synchronous with the 

input at each t.  

 

Probabilistic Neural Network 

The PNN was first pioneered by Specht (1990). PNN is also a category of feed-forward 

neural network which consists of three layers of neurons—namely, input, a hidden layer 

containing radial basis, and lastly, competitive. The first layer feed inputs data to the hidden 

layer neurons. Distances among inputs to the training vectors are computed by radial basis 

function. The computed results indicate the closeness of input to a training input. The last 

layer of the PNN summed the contributions produced by every class of input to produce the 

PNN probabilities output. At the last layer, the competitive transfer function classifies the 

inputs due to its optimum probability of classification accuracy (Mantzaris et al., 2011). In 

contrast to other types of NN, PNNs are only applicable in solving classification problems, 

and the majority of their training techniques are easy to use. Assuming PNN accepts a 

vector (x) as input, ),...,( 1 nxxx   is applied to neurons in input layer )1( nixi   and is 

then fed to hidden layer neurons. At the layer of hidden neurons, Mk Gaussians 
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network computes a decision expressed as 



c
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)()(  , where cost function = 
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l , class = l , and pattern = x.  
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)(minarg  . The PNN decision of class l  

that has minimum risk l  would then be chosen (Berthold and Diamond, 1998). 

 

Fuzzy Logic 

 Fuzzy set theory Zadeh (1965) is developed to handle vagueness and subjectivity of 

linguistic variables which are produced by decision makers in assessing qualitative factors. 

Linguistic variables can be expressed using different types of Membership Functions 

(MFs). Selection of MF is based on application and expressed linguistic variables. 

Triangular Membership Function (TMF) is suitable when there is various input MFs to be 

aggregated (Chen, 2013). Here are some of the major definitions of fuzzy sets 

(Zimmermann, 2001): 

 Definition 1. A fuzzy set  ̃ in a universe of discourse X is characterized by a MF   ̃(x) 

that is associated with every element x in X a real number in the interval [0, 1]. The 

function value   ̃(x) is termed the grade of membership of x in  ̃. 

 Definition 2. A Triangular Fuzzy Number (TFN)  ̃ defines through a trio (l, m, u) 

shown in Figure 1. The MF   ̃(x) is defined as follows: 

  ̃(x) = {
                        ⁄

                        ⁄

                                             

   (1)  

 
Figure 1: Triangular fuzzy number  ̃ 

  

 Let   ̃  and   ̃  be two TFNs defined through the trio (l1, m1, u1) and (l2, m2, u2) 

respectively, then the related operating rules are as follows:  

  ̃     ̃                                                                      

  (2) 

  ̃      ̃                                                                      

    (3) 

  ̃     ̃                                                                 (4) 

  ̃      ̃                                                                              (5) 
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   ̃                                              (6) 

 Definition 3. Linguistic variables are variables with linguistic term values. The concept 

of a linguistic variable is very useful in dealing with situations which are too complex or 

too ill-defined to be reasonably described in conventional quantitative expressions (Chan  et 

al., 2013; Chen, 2000; Zadeh, 1965). Fuzzy expert system is based on fuzzy MFs and fuzzy 

“if-then” rules. In fuzzy expert system the appropriate MF should be determined based on 

the aspects involved in the considered factors. The rules of expert system are based on 

expert opinions, and they should emulate the expert’ evaluations as much as possible. 

 

Methods 

Data 

 Brent crude oil price data sets were collected on a monthly basis for the design, 

validation, and testing in this research. The data sets were obtained from the US 

Department of Energy for the period January 1987 to December 2011. The data were 

partitioned into training, validation, and testing with ratios of 70%, 15%, and 15%, 

respectively, according to convention in (Beale et al., 2013). The experimental data of our 

study were not normalized because the use of the linear activation function in the output 

layer of an NN invalidates data normalization and thus renders the data preparation exercise 

meaningless (Peter et al., 2001). An NN automatically adjusts its weights adaptively; 

therefore, data normalization is not necessary (Zhang et al., 1998).  

 

Application 

 The proposed framework for the study is shown in Figure 2 adapted from Shouyang et 

al. (2005), when applied to crude oil price prediction. The main stages involve the 

collection of Brent crude oil price time series data and qualitative data, fuzzy rule creation 

based on MFs, TDNN prediction, PNN classification, and ensemble prediction. The process 

began by extracting data and fed into the systems, the data are tested for confirmation to 

determine whether they are time series or qualitative or both. After scrutinizing the data and 

finding that these relevant and important qualitative factors are not in the data, the TDNN 

module used the time series historical data to execute and predict crude oil prices without 

considering the fuzzy rules and PNN module. In modeling TDNN architectural 

configurations, in addition to the factors required in designing an NN model, such as 

transfer function, learning algorithm, number of hidden layer neurons, etc., effectiveness of 

an NN model depends on the optimal selection of these parameters to be used in designing 

the NN architecture. TDNN requires the estimation of TDs for using in each neuron of the 

architecture as well as other parameters listed earlier. The common technique used for 

realizing the optimal value of TDs is preliminary experimentation with samples of the 

entire data. In this study, we use preliminary experimentation since the ideal framework for 

choosing these optimal parameters required in the design of NNs is lacking, although 

mutual information can also be used for determining TDs but is cumbersome and requires 

high computational complexity (Kim et al. 2005). After our trial-and-error experimentation, 

we obtain the following parameters: ten (10) hidden layer neurons, sigmoid activation 

function at the hidden layer, linear activation function at the output layer neuron, seven (7) 

input neurons and one (1) output neuron, Levenberg-Marquardt learning algorithm, time 
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realized is one (1) and two (2) numbers of TDs in each of the neurons in the TDNN model. 

The definition of the problem can be expressed as 

)1(),...,1(),(),...,1(()(  tytydtxtxfty , where d is the number of delays, t is time, 

and y(t) represents the future value of the crude oil time series  data. If the systems ascertain 

that significant factors that impact on crude oil prices exist in the data based on the rules 

defined in the systems, the systems convert these factors to fuzzy rules according to MFs.  

 
 

Figure 2: The propose intelligent decision support systems (IDSS) framework 

 

 The fuzzy rules in Table 1 were created for our proposed framework based on factors 

that significantly impact on crude oil price volatility, which includes demand/supply and 

unexpected events. Examples of such factors are total world demand, non-OPEC 

production capacity, revolutions in oil-producing countries, hostage crises, etc. A full list 

and details of these factors can be found in a study by (Yu et al., 2005). The considered 

factors include both qualitative and quantitative factors. Qualitative factors were measured 

based on experts’ judgments. The experts express their judgment using linguistic variables 

along with uncertainties. Therefore, we design fuzzy “if-then” rules in an expert system to 

overcome these uncertainties and use them in our model. We design 110 rules (see Table 1) 

to cover all possible situations related to oil price movements.  

 

Table 1 

Fuzzy rules 

No. 

Rule 

Qualitative Factors Oil price 

movement 1 2 3 4 5 6 7 8 9 10 

1 H
*
 H M H H L H H H H AH 

2 M H L L M L L L H M ML 

3 L L M M L L M M M M FL 

4 H H M M M M M M M M H 

5 M L H H H H M M M M FH 

                                                 
* AH (Absolutely High), VH (Very High), MH (Moderate High), FH (Fairly High), H(High), M(Moderate), 

L(Low), ), FL (Fairly Low), ), ML (Moderate Low), VL (Very Low),  AL (Absolutely Low).    برود به ا نتهای

 جدول 
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No. 

Rule 

Qualitative Factors Oil price 

movement 1 2 3 4 5 6 7 8 9 10 

6 L M H L H H H M H H MH 

7 H H H H M H M H H H VH 

8 M L L L L M L L L L VL 

9 M M M M M M M M M M M 

10 H H H H H H H H H H AH 

11 L L L L L L L L L L AL 

12 L H L H H L H L L H M 

13 L H H L H L M M M M M 

14 H H L L M H H H M H H 

15 H L M H H H H H M H H 

16 L M M L L L L L M L L 

17 L L L M H H M M M L L 

18 H H M M L L L L L M FL 

19 L L L H L L M M L L VL 

20 H H H H H L M L H H VH 

 

 The fuzzy rules serve as inputs to PNN for modeling and classification of the crude oil 

price movements. The PNN classifier used in this research consisted of ten (10) input nodes 

corresponding to the first ten (10) columns of the fuzzy rules. One hidden layer contains 

eleven (11) neurons, and radial basis transfer function is used. The output layer contains 

eleven (11) neurons corresponding to the possible movements of prices as indicated in table 

1, and a competitive transfer function was applied to classify the movements of crude oil 

prices based on the PNN probabilities output produced by each fuzzy rule. The parameters 

used in the classifier were realized through the preliminary experimentations. 

 In the situation where both qualitative factors that affect crude oil price volatility and 

time series data of crude oil prices are supplied to the systems, TDNN executes the crude 

oil time series to predict the prices, and the PNN classifier is also executed. Predicted 

results produced by both models are assembled to predict an ensemble of predicted crude 

oil prices. An adaptive linear neural network (ALNN) containing one layer and containing 

pure linear transfer function with the Widrow-Hoff learning algorithm (Hagan et al., 1996, 

as cited in (Yu et al., 2008) is used for reassembling the results produced by the TDNN 

model and PNN classifier to yield ensemble predicted prices. 

 

Results and discussion 

 The proposed framework description presented in Figure 2 can be used to predict crude 

oil prices by considering factors affecting crude oil price volatility as much as possible. 

Experiments are conducted based on the proposal, and results are presented in this section. 

 

Time Delay Neural Network Module 

 The prediction of crude oil prices in the training, validation, and testing phases is 

shown in Figure 3. It can be observed that the performance of the systems is good. The 

simulation performance of the TDNN model was evaluated on mean square error (MSE) 

and regression (R). The value of MSE is 0.165893. The fit of the TDNN output over 

response time is shown in Figure 3. The MSE of training and validation are 0.1815787 and 
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0.4030101, respectively. It suggests that the model performs relatively well. The training 

stopped as cross-validation was not improving and MSE started increasingly. 

 
Figure 3. Response time of the TDNN model over prediction error 

 

 The results of the linear relationship between the predicted and actual crude oil prices 

for the test data set are shown in Figure 4. The relationship shows a good fit, with an R 

value more than 0.9. It also indicated that there are some value points that exhibited a poor 

fit with the corresponding experimental data. For instance, there is a predicted value in the 

same Figure 4 that has a value of 74, and the corresponding experimental data has 85. 

 

 
Figure 4: Regression plot of test data set 
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Probabilistic Neural Network Classifier Module 

 The PNN classifier was constructed, and its classification accuracy was tested. The 

three-level architectural configurations of the classifier were found as stated in section 3. 

The optimal value of the radial basis function, which is the width of Gaussian, was found to 

be 0.3. The evaluation criterion for our classifier is the MSE. Table 2 displays the confusion 

matrix generated by the proposed PNN classifier at a threshold of 0.5. Results generated by 

the PNN classifier with satisfactory performance are reported in Table 2. The crude oil 

price movements were detected and classified as L, AL, M, VL, VH, MH, FH, H, FL, ML, 

and AH, with MSEs of 0.4, 0.33997307, 0.00068039, 0.19406102, 0.09298502, 1.5668E-

05   , 0.04627412, 0.01020823, 0.16888191, 0.010194, and 0.08116714, respectively. 

These results suggested that the best performance occurred in the M crude oil price 

movement with the minimum value of MSE signifying very good detection and 

classification of price movement patterns. 

 

Table 2 

Confusion matrix 

Output / 

Desired 
L AL M VL VH MH FH H FL ML AH 

L 0 0 0 0 0 0 0 0 0 0 0 

AL 1 0 0 1 0 0 0 0 1 0 0 

M 0 0 0 0 0 0 0 0 0 0 0 

VL 0 0 0 0 0 0 0 0 0 0 0 

VH 0 0 0 0 0 0 0 0 0 0 0 

MH 0 0 0 0 0 0 0 0 0 0 0 

FH 1 0 0 0 0 0 0 0 0 0 0 

H 0 0 0 0 0 0 0 0 0 0 0 

FL 0 0 0 0 0 0 0 0 0 0 0 

ML 0 0 0 0 0 0 0 0 0 0 0 

AH 0 0 0 0 1 0 0 0 0 0 0 

 

 Due to the probability of misclassification of a crude oil price movement, the decision 

makers need to be aware that the classifier only provides knowledge of the level of 

direction in which the oil market moves. This does not change the fact that any change in 

oil market patterns calls for immediate decisions to be made. Its use lies in supporting any 

decision made in regard to the movement of crude oil prices.  

 

Ensemble Predicted Crude Oil Price 

 Three computational algorithms—namely, fuzzy logic, TDNN, and PNN were 

hybridized as mentioned earlier to create IDSS. TDNN and PNN predicted the oil prices as 

a separate constituent, and the predicted results are recombined by ALNN because the 

ensemble results are superior to an individual algorithms result (see Table 3). Figure 5 

shows the ensemble crude oil prices predicted by the IDSS with a very low MSE as 

reported in Table 3. It can be observed that the performance of the IDSS model is very 

good as both plots of predicted and actual prices are very much closer in terms of the 

patterns detected by the intelligent model.  
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Table 3 

Comparisons between the performances of the IDSS and constituent algorithms  

 

Model Performance (MSE) 

TDNN predictor 0.165893 

PNN classifier 0.000680 

IDSS 0.00002521 

 

 Results presented in Table 3 suggest that a hybrid of the intelligent systems (IDSS) 

performs better than each individual algorithm. Although each algorithm can complement 

each other as already described earlier. The superiority in the performance of the hybrid 

system might probably be caused by the elimination of shortcomings associated with each 

of the algorithm due to their hybridization.  

 
Figure 5: Ensemble prediction of crude oil prices by the proposed IDSS 

 

 Correlation between the two set of data presented in Figure 5 was investigated. The 

value of the Pearson’s correlation coefficient (r) at 0.01 significant level is r = 0.985 and 

was obtained from the relationship between Actual crude oil price and Predicted price, 

which shows that there is significant strong positive correlation relationship. This 

relationship indicates that increases or decreases of the actual crude oil price also apply to 

the predicted price. The modeling procedure in our research covers several procedures as 

already described in preceding sections. These procedures suggest that the proposed model 

will achieve its desired purpose. The performance exhibited by the model gives the first 

insight into the representation expected in real-life systems. The results generated by IDSS 

confirm the model has generated the desired results. Since the results produced by the 

proposed systems are correlated with that of actual data, the proper verification of the 

implementation assumption is achieved, and it constitutes a true representation of a real-life 

system. Therefore, the proposed IDSS is deployed to predict monthly crude oil prices for 

the next one year ahead. 
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Predicted Future Brent Crude Oil Prices up to July 2014 

 Figure 6 shows Brent crude oil prices predicted by our IDSS developed in this research. 

The prices are predicted for the next one (1) year into the future up to July 2014. A close 

observation of the plot indicated that the prices will continue to fluctuate, moving up and 

down as seen in the past (refer to Figure 5), signifying uncertain behavior, although this 

kind of behavior is expected in the crude oil market. The future prices indicate that our 

proposed model was able to generalize well and detect patterns through which the oil 

market might follow in the next one year to come. Several countries’ budgets, such as those 

of Saudi Arabia, Kuwait, Venezuela, Nigeria, Iran, Iraq, and Russia, heavily depend on 

expected revenue accrued from the sales of crude oil. Accurate prediction of the future 

prices is very critical to their national planning, policymaking, and development. Even non-

oil-producing countries require knowledge of future prices of crude oil for strategic and 

industrial usage, which might drive their economic development, which in turn might 

improve economic standards. Suggestions from the predicted prices show that our model 

has the potential to be deployed by these countries as a complementary tool for supporting 

their decision-making processes. Inter- governmental organizations such as organization of 

petroleum exporting countries and organization for economic cooperation and development 

can use our projected oil prices for making decisions on oil production, consumption, 

supply, refinery stocks, etc., or for modifying their existing policies for the next one year.  

 

 
Figure 6: Monthly predicted Brent crude oil prices from August 2013–July 2014 

 

 The negative impacts of crude oil price volatility can be tackled with accurate 

forecasting of crude oil prices, which in turn might reduce the suffering of price volatility 

inflicts on communities. 

  

Conclusions 

 The IDSS presented in this study are a hybrid of fuzzy logic, TDNN, and PNN. The 

systems might guide decision makers in economic planning and taking effective measures 

to tackle the negative effects of crude oil price volatility. The proposed systems can be used 

to set future prices of crude oil. Energy demand and supply projections can be effectively 

tackled with accurate forecasting of crude oil prices (Kaboudan, 2001), which can create 

stability in the oil market (Aladwani and Iledare, 2013).The IDSS propose in this paper was 
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able to predict monthly future crude oil prices starting from August 2013 to July 2014. The 

predicted future crude oil prices presented in this research can be used by both government 

and international organizations related to crude oil for policy formulation for the next one 

year.  
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