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111. Abstract 

Vehicles in an IVHS system rely heavily on information obtained from sensors. So far, most 
control systems make the implicit assumption that sensor information is always correct. However, 
in reality, sensor information is always corrupted to some degree by noise which varies with 
operating conditions, environmental conditions, and other factors. In addition, sensors can fail due 
to a variety of reasons. To overcome these shortcomings, sensor validation is needed to assess the 
integrity of the sensor information and adjust or correct as appropriate. In the presence of 
redundant information, sensor data must be fused, accommodating the findings from the validation 
process. 

In this report, we address the above issues which is an extension of the previous work completed 
by us in MOU 132 (Agogino et al, 1995) and MOU 157 (Agogino et al., 1997) in the area of 
sensor validation and fusion. The data driven supervisory control activities are concerned with fault 
detection, fault isolation, and control reconfiguration of the many sensors, actuators and controllers 
that are used in the control process. In order to carry out corrective actions (control maneuvers) that 
maintain the overall integrity of the IVHS system, the sources of uncertainty will be considered 
before arriving at the final diagnosis of the vehicle state. 

To achieve this, we performed failure mode effect analysis, coupled with intelligent diagnosis 
techniques (such as influence diagramsrnayesian networks and fuzzy logic) at the coordination 
layer. Furthermore, an intelligent decision adviser was designed which forecasts potential hazards 
and provides recommendations on potential maneuvers and other actions to the coordination level 
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controller in an optimal manner. This supervisory controller uses validated fused data, serves as a 
link between the vehicle sensors and the coordination layer and ensures the proper operation of the 
system in diverse and adverse operating conditions. This is an essential part of the ITS program 
required to provide a safe and reliable system. We also continued to update our sensor 
characterization models through a preliminary evaluation of GPS sensor testing. 

IV. Summary 

Presently, control systems in IVHS assume that data obtained from sensors are correct. However, 
sensor data are uncertain because of the presence of noise and sensor failure. This may result in 
control actions which are unsafe for passengers of the IVHS. We see the solution to the diagnosis 
as a five-module approach. The modules as explained in detail in (Alag, Goebel, and Agogino, 
1995a) are: 1) Sensor validation, 2) Sensor fusion, 3) Fault Detection, 4) Hazard Analysis, and 5) 
Safety Decision Maker. The first two modules and, to a certain degree, the third module, were 
addressed in previous funding projects (MOU 132 and MOU 157). 

This report is mainly concerned with the remaining modules - Fault Detection, Hazard Analysis, 
and Safety Decision Maker - which takes the validated and fused sensor data as input and gives 
probabilities of hazards as output. It also analyses these hazards to recommend appropriate actions. 
It is crucial to not only detect failures in the system, but also determine its cause and to classify (for 
e.g. total or incipient) its effect on the system. Our past work has clearly shown that various 
sensors react in different ways under the influence of different operating conditions such as fog or 
rain. To systematically capture the effects and reasons for failures and to match the signature of 
faulty sensor readings with specific failures we carried out detailed failure mode effect analysis for 
the longitudinal sensors. This analysis allowed us to match faulty sensor readings with a specific 
failure. 

Failures can to a degree be predicted and actions to situations sensitive to certain sensor readings 
can be taken in advance not as a reaction to an already hazardous situation but as a preventive 
measure. In previous work, we have been developing a detailed methodology for sensor validation 
and fusion. We further augmented that work by investigating (or developing) other techniques 
such as fuzzy data validation and fuzzy fusion for settings which include potentially emergency 
situations or the lead car control problem where no proper model of the system is given. Serving as 
a backup system which relies less on mathematical modeling, it may be advantageous also for 
emergency situations of the follower situation during maneuvers. 

Another contribution in this report is the development of a monitoring system which uses sensor 
observation data about discrete events to dynamically construct a probabilistic model of the 
vehicle's world. This model is a Bayesian network which can reason under uncertainty about both 
the causes and consequences of the events being monitored. Belief networks can also be used to 
complement the analytical methods for fault detection that are being developed by other PATH 
researchers. The combination of both strategies allows the evaluation of all available information 
and knowledge of the system for fault detection such as degree of aging, the operational 
environment (e.g., the vehicle state whether lead vehicle or follower vehicle etc.). We will use 
influence diagrams (Bayes' networks with the addition of decisionkontrol and costhalue nodes) 
for decision making to avoid or avert potentially dangerous states. These decisions are to be 
optimized with respect to safety, low jerk, and smooth riding criteria. 

We used off-line optimization techniques because they are too slow to run in real time within the 
AVCS framework. Later, a real-time version can be developed by "compiling" out the control 
strategies. The state of the IVHS system on the platoon level can be modeled as an optimization 
problem, with possible states of each of the vehicles defining the feasible stochastic search space. 
The states of individual vehicles in a platoon are the design variables in the optimization process. 
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The objective function in this case was multi-attribute consisting of a list of possible hazards and 
the probability of each occurring obtained from the Intelligent Decision Module. Finally, 
continuing with our ongoing work in PATH we continued to test, characterize, and compare 
sensors operating under diverse and adverse conditions including new ranging sensors entering the 
scene, e.g. GPS sensors. 
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1. Introduction 

The Intelligent Vehicle Highway System (IVHS) envisions significant increases in safety and 
highway capacity through the integration of control, communication and computing technologies 
(Varaiya, 1991 ; Varaiya and Shladover, 1991). An early analysis indicates that with a completely 
automated vehicle control system, freeway lane capacity could double or even triple under 
improved safety conditions. In the IVHS paradigm, closely spaced automated vehicles will travel at 
high velocities in their respective lanes. In order to perform its basic functions (such as longitudinal 
control, lateral control, platooning, maneuvering techniques, e.g., lane change, automated lane 
exit), the IVHS requires a large number of sensors for control at the coordination layer, the engine 
layer, for sensing, and for communication between the vehicles and the IVHS main controller. 

For all subsystems to work well and reliably the IVHS system requires high sensor data fidelity. 
However, most generally, sensor readings are uncertain because internal and external sources add 
noise to the readings or cause a malfunction of the sensor altogether. Relationships between the 
sensor readings and the system being monitored are non-deterministic. No sensor will deliver 
accurate information at all times. Consequently, the safety of the IVHS system is affected. It is 
therefore desirable to find a way to avert the negative effect of the shortcomings of the sensors. An 
inconsistent sensor reading could be a result of a system failure, process failure, or sensor failure, 
and it is important to distinguish between these failure types. It is also important to account for 
sources of uncertainty and propagate them to the final diagnosis of the system state. 

A framework for real-time monitoring and diagnosis of the automated vehicle in IVHS was 
developed in MOU 132 (Agogino et al., 1995). This framework consists of five modules within 
the automated vehicle control system (AVCS) hierarchy. They can be found on two layers, the 
regulation layer and the coordination layer. This intermediate supervisory controller combines the 
advantages of having access to the data of the regulation layer as well as the information from the 
coordination layer. It operates in every vehicle and serves the purpose of real-time monitoring and 
diagnosis of the components in the vehicle and between the vehicle and its environment (other 
objects in its neighborhood). It predicts incipient failures and recommends suitable corrective 
actions. This research builds on the framework and the preliminary validation and fusion methods 
developed in MOU 157. Therefore, we will briefly review the supervisory control methodology in 
the IVHS context and introduce the two new approaches taken by us for MOU 157 to build the 
supervisory controller. 

Since safety is of prime importance in an IVHS system, it is imperative to first validate and fuse the 
uncertain readings obtained from the numerous sensors. Therefore, the first task to be carried out 
by the supervisory controller is to validate the sensor readings and get an estimate for the various 



parameters to be used in the monitoring and fault diagnosis part. Our experience in past work (Kim 
et al., 1992) has shown that real-time fault diagnosis for complex systems benefits from a 
hierarchical information processing structure with the selection of faults on one layer, focusing in 
more detail on these candidate faults at a higher layer, and finally looking for facts to confirm the 
ultimate diagnosis and make repairh-ecovery recommendations at yet a higher layer. The 
approaches taken include the integration of heuristics and model-based reasoning, procedures for 
fusing qualitative and quantitative data for developing assessments for estimation of probabilities or 
fuzzy memberships, and explicit reasoning about the time constraints inherent in real-time 
processing of large amounts of data. 

We therefore proposed a multi-layer architecture for real-time monitoring and diagnosis of the 
automated vehicle, which consists of modules for sensor validation, sensor fusion, fault diagnosis, 
hazard analysis, and a safety decision advisor. Before the different modules of the system are 
introduced, a brief discussion will illustrate how the supervisory controller proposed here is 
integrated into the AVCS. Figure 1-1 shows the outline of the complex hierarchical structure of the 
AVCS system control architecture which - in addition to the shown link, coordination, regulation, 
and physical layer - consists of the network layer at the top. 

Layer 3 I Link I 
tl t '  

L 

Other Platoons 

Layer 2 

Layer 1 

Other Vehicles 
Forecast of in the Platoon 

Recommendations on 
Potential Maneuvers 

, Potential Hazards 

I I 1 lOrde r  Maneuvers 

I I Regulation 

a Low Level Supervisory 

Sensory Implement 
Input Control JAWS 

Layer 0 Physical 

Fig. 1-1: Position of Intelligent Sensor Validation, Sensor Fusion, Fault Diagnosis, Hazard 
Analysis, and Intelligent Decision Advisor 

in the AVCS Control Hierarchy 

The supervisory decision advisor considers the uncertainties in sensor readings and forms a link 
between the coordination layer controller and the regulation layer controller and rectifies aberrant 
sensor readings by taking into account the information of several partly redundant sources. 

2 



Sensor validation and sensor fusion take place at the regulation layer (shaded box on the regulation 
layer in Fig. 1-1) .  Input are data from the sensors of the physical layer. The fault diagnosis of the 
various subsystems is also located at the regulation layer. Some of the reasons for uncertainty in 
sensory information are measuring device error, environmental noise, and flaws or limitations in 
the data acquisition and processing systems. Extracting information from raw data is often difficult 
because of noise, missing data or occlusions. Phenomena may show up at disparate locations and 
can have a variety of time scales, from low frequency signals to high frequency vibrations. 
Therefore, the regulation layer seems to be the appropriate place for sensor validation and sensor 
fusion as it permits access to various sensor values at the same time. On the coordination layer, 
output from the sensor validation and fusion module as well as from the fault diagnosis module are 
used to perform hazard analysis and intelligent decision making because this central location within 
the control architecture allows for integration of all relevant information. 

The modules are displayed in an isolated format in Fig. 1-2. The input and output for each module 
are shown on the right hand side. On the lowest layer is the sensor validation module, responsible 
for detecting sensor failures and sensor faults. After the validation, in the case of multiple sensors, 
or a group of sensors measuring a set of related quantities, sensor fusion takes place. 
Redundancies of the sensors as well as correlation of processes measured by different sensors are 
utilized to find fused or corrected sensor values. 

In MOU 132 we investigated the suitability of the Probabilistic Data Association Filter (PDAF). 
Based on the results of the sensor validation and fusion modules, a fault diagnosis module looks at 
potential failures of the various subsystems and calculates their respective probability or fuzzy 
likelihood. Here, subsystem influence diagrams are used to capture the influences of various 
failures on subsystem parameters. This information (either Bayesian or fuzzy) will then be used in 
a hazard analysis module to compute the likelihood of various hazards. 

Finally, an intelligent decision advisor is proposed which provides recommendations on potential 
maneuvers and other actions to the coordination layer controller. This decision advisor needs to 
arrive at the optimal decision in real-time. Since reaction time has to be small, optimization 
techniques which are generally very slow are trained off-line to obtain optimal responses for 
various scenarios. These can be implemented by means of look-up tables and pattern recognition 
systems and then used on-line in real-time. In this way a link between the vehicle sensors and the 
coordination layer is achieved. This will improve the operation of the system in diverse and 
adverse conditions. 

This report introduces the new methodology that we developed for MOU 23 1 to be used for fault 
detection, diagnosis, and decision making. To begin, a fuzzy approach for diagnosis is introduced 
in Chapter 2 followed by a probabilistic approach in Chapter 3. Chapter 4 shows the fault tree 
analysis and hazard analysis and in Chapter 5, the decision making tool is introduced. Preliminary 
analysis on new sensors is described in Chapter 6 and a SmartPATH simulation of previous 
completed work on sensor validation and fusion is discussed in Chapter 7. 
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Fig. 1-2: Framework of 5 modules for sensor validation, fusion, fault diagnosis, hazard 
analysis, and the safety decision maker 
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2. Sensor Validation and Fusion Using A Fuzzy Approach 

Section 2.1.1 introduces a new algorithm for fuzzy diagnosis. Mechanical diagnoses can be 
problematic in that there are usually several symptoms which correspond to several failures. 
Whereas there are a wide variety of techniques for “forward” reasoning from cause to effect 
(failure to symptom) using deterministic, probabilistic, or fuzzy means, “backward” reasoning 
from symptom to failure is in contrast poorly understood. 

Bayes’ rule can be used in a probabilistic diagnostic framework to infer failure from the 
observation of a symptom. We develop such a system in Section 3. However, obtaining the 
probabilities necessary may be a very difficult task. They must be obtained through measuring the 
events over a long period of time or through estimation from an expert. Furthermore, general 
probabilistic inference is an NP-hard problem, sometimes requiring compromising assumptions of 
conditional independence to be computationally tractable. In this Section we develop an alternate 
method based on the use of fuzzy logic. No knowledge about the frequency of symptoms is 
necessary. Rather, expert knowledge is taken from fuzzy cause-effect relationships modeled via 
causal diagrams. “Backward” reasoning becomes possible with the introduction of an appropriate 
fuzzy measure. 

In Section 2.1.2, examples from platooning in IVHS are used to show how the system manifests 
sensor failure when the vehicles are subject to a set of maneuvers. Real time diagnosis is 
instrumental in ensuring a safe ride. Information from this diagnosis will be used to carry out 
actions designed to avert negative effects of sensor and actuator failure and in the case of the IVHS 
example to safeguard the vehicles and their passengers in the presence of an emergency. 

2.1 Fuzzy Diagnosis 

This section introduces a new method for diagnosis of sensor and actuator malfunctions using 
fuzzy techniques. The key to fuzzy diagnosis is the inversion of the cause-effect relation to 
conclude from the presence of symptoms to a particular failure. To achieve this, a fuzzy measure is 
introduced which will assign a degree of similarity with each possible failure. Both sudden and 
gradual malfunctions can be diagnosed in a real time fashion. 

We build on the notion of abduction using a fuzzy scheme. Inference in abduction is a method of 
selecting one specific solution from a large number of hypothetical solutions consistent with the 
data. In binary logic both rule and symptom are evaluated with respect to their truth. A rule is 
added to the possible hypothesis set only when both rule and symptom are evaluated to be true. In 
multi-valued logic - such as in fuzzy or probabilistic systems -both rules and results are always 
true to some extent and therefore all rules can be hypothesized to some degree. It is therefore 
necessary to come up with a way to find a method which identifies the most likely hypothesis. 

Such a scheme will be introduced here. This scheme makes use of fuzzy causal diagrams. To 
begin, failure-symptom relationships are expressed in fuzzy causal diagrams as displayed in Fig. 
2.1-1 where the fn represent the failures and the sm stand for the symptoms. To avoid 
overcrowding of the graph, links with strength zero were omitted. This means that a fault fn causes 
a number of symptoms sm to occur to some extent. That is, some symptoms have stronger 
mappings to faults than others. Other faults may cause the same symptoms but with a different 
degree of strength. 

The fuzzy connection between fault and symptom can be encoded in a fault-symptom matrix. Each 
fault causes a number of symptoms to some degree. With the assumption that several faults will 
cause the maximum value of both individual symptoms and that there are no mutually excluding 
failures, modeling of multiple concurrent faults can be achieved as seen in Table 2.1 - 1. Here, all 
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possible failure combinations are enumerated from no failure at all to the case where all failures 
occur simultaneously. 

f 1  f 2  f 3  f 4  

s 2  s 3  = 4  s 5  ' 6  

Fig. 2.1-1: Fuzzy causal diagram 

Table 2.1-1: Fault-symptom matrix 

Symptoms rarely appear as crisp occurrences. Rather, all symptoms will at any time be measured 
to some degree. Therefore, symptoms are encoded via fuzzy logic and are then used as input to the 
proposed diagnostic system. The goal is to decide which of all possible hypotheses is the most 
likely one. Therefore, we require a ranking scheme which will discard the less likely hypotheses 
and rank the most plausible one on top. If two fault combinations are equally likely, the set of 
failures with minimal cardinality will be chosen in accordance with parsimonious covering theory. 

A fuzzy measure of closeness is proposed which is motivated by the notion of subsethood (Kosko, 
1992) and its Lukasiewicz equivalent (Dalton, 1994). We distinguish two cases: faults can occur 
in either a crisp manner (power outage, electrical short, etc.) or in a soft manner (gradual failure, 
increasing bias, dependency of performance on temperature, etc.). These two situations are 
accounted for with two related closeness measures. 
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2.1.1 Crisp Failures 

If faults are known to be crisp, then the distance of the measured symptom to the symptom set for 

the closest fault will be determined. Evidence S+(F,) is aggregated by summing up the Euclidean 
distance of the observation to the symptom set of a particular fault combination in the symptom- 
failure space as shown for a two-dimensional case with two symptoms and four faults in Fig. 

2.1.1-1. The missing fourth fault is the @-fault which is assumed to be at the origin. S(F,) 

expresses the symptom set for a fault combination FI. By definition, S(F,) is either 0 or 1 in the 
crisp case. 

S I  

Fig. 2.1.1-1: Aggregation of Evidence in the symptom-failure space 
for crisp faults and fuzzy symptoms 

Ranking takes place after the distances to all fault combinations have been obtained. The highest 
numeric value of the closeness measure is taken as the most likely one. The closeness measure gc 
for the crisp case is of the form 

y,(S(F,),S+) = 1 - min(1,l- S(F,) + S+(F,),l+ S(F,) - S+(F,)) 

where 

S(F,) is the particular symptom set for fault combination FI 

n is the number of observations. 

This measure allows the occurrence of observations which are larger than the maximum symptoms 
defined for any fault. This provides some flexibility in modeling the faults and acknowledges that 
there may be modeling errors. Some observations may be larger than symptoms originally 
predicted but they should still be assigned to a fault. This situation is depicted in Fig. 2.1.1-2. 
Here two faults are modeled where fault 1 causes both symptoms that fault 2 causes but to a 
smaller degree. Although the measurements are larger than the two symptoms for fault 1 , the 
closeness measure will still assign fault 1 a higher numerical value than fault 2 because the 
measurement is closer to fault 1 than to fault 2. 
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st 

Fig. 2.1.1-2: Measurement larger than symptoms modeled 

Measure y,(S(F,),S') shares an important property for the assignment of truth with abduction as 

displayed for crisp cases in Table 2.1.1 - 1. Note the difference to implication which is only false 
where the antecedent is true and the consequence is false. The closeness measure is also not true 
when the antecedent is false and the consequent is true, an important property in abductive 
reasoning. 

1 
1 1 1 1 
0 0 0 

Table 2.1.1-1: Truth table for implication and closeness measure 

An important concept introduced through allowing symptoms to occur to some degree is the notion 
of a distribution for the failure. This distribution should have y, = 1 at the modeled fault and be 

smaller further away. It should also be y, = 0 when no symptom is observed. From the truth table 
we have already seen that this is the case for the crisp failures at the values one and zero. The true 
power however comes to light when looking at the symptoms in the fault-symptom space. To 
begin, a one-dimensional case is shown in Fig. 2.1.1-3. The fault is modeled at s=0.7. As can be 
seen, the diagnosis is y, = 0 where no symptom is observed and it rises to y, = 1 at the modeled 
fault, after which it decreases again. 

wmpm 

Fig. 2.1.1-3: Distribution for crisp failure for 1-dimensional symptoms 
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Fig. 2.1.1-4 shows a similar situation for 2-dimensional symptoms. The failure was modeled at 

s = [::;I. At the origin, Le., where no symptom is observed at all, the diagnosis is y, = 0. 

Further away, the diagnosis for the failure increases and has its peak of y, = 1 at the modeled 
failure. Fig. 2.1.1.1-4 shows how the diagnosis for the failure is distributed around the modeled 
failure with observed symptoms 1 and 2. Also shown are the contours under the mesh which are 
radial, centered at the modeled failure. 

symptom 1 0 1 symptom 2 

Fig. 2.1.1-4: Distribution for crisp failure for 2-dimensional symptoms 

The measure obtained through y,(S(F,),S+) is a “dissemblance” measure and meets requirements 

of symmetry and anti-reflexivity, but not of co-transitivity (Kaufmann, 1971) as outlined below. 

Anti-Reflexivity : 

y,(x,x) = 1 - min(l,l,l) = 0 
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The above results (cases 5 and 8) show that the measure is not co-transitive. 

2.1.2 Gradual Failures 

For gradual failures, a means is provided which takes into account the distance of the observation 
to the closest symptom set for a fault as well as to what degree the fault may occur. This 
necessitates the measurement of two quantities: one is the closest distance from the observation to 
the fault line. The fault line denotes the line on which all gradual instances of one particular fault 
are assumed to lie. It starts at the origin and is monotonically increasing. The other quantity 
involves the measurement of the intersection of the closest distance to the observation on the failure 

line ( Si)  to the point where no fault occurs. This situation is depicted in Fig. 2.1.2- 1. 

measurement [s i, s 

I 

s1 

Fig. 2.1.2-1: Aggregation of evidence in the symptom-failure space 
for fuzzy faults and symptoms 

The resulting measure is of the form 

y,(S(F,),S') = 1 - min(1,l- S,(F,) + S+(FI),l + S,(F,) - S+(F,)) 

where 

S(F,) is the symptom set for failure F, 

S+ are the observed symptoms 

s( F,) ' s; (F, ): 

S(F,) c S;(F,): ' 
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1 

S'(F,) is the degree to which the failure occurred expressed by the length 
of the failure line to the intersection with the closest distance to the 
measurement, normed by the overall length of the failure. 

S'(F,) = 12(Si(FI),S+) 

S+(F,) is the distance to the failure line. 

The distance is calculated using some vector algebra. Known quantities include the measurement, 

here denoted as point S' , and the symptom vector in the vector space, denoted temporarily as 

a'+ t i(FI). The task is to find the shortest distance from S' to the line a" + t e ;(F,). For this 
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purpose, first the intersection S, of the shortest line with a' + t - i(F,) will be found. 6 (F,) can be 
expressed as 

I 
sR(FI) = a + to . s(F,). 

I L 
Equation (2.1.2-1) 

Because i, (F,) - i' and ;(F,) are perpendicular, the scalar product 

(~,(F,)-ST')~~(F,)=~(~,(F,)-ST')~-~~(F1)~~~os90"=0 

3 ( s,(F,) - ST'). $F,) = 0 

3 iR(FI).  i(F,) - .? ;(F,) = 0 

3 iR(F,). ;(F,) = .? k(F,). 

r 

Multiplying Equation (2.1.2-1) with ;(F,) 

&(F,). ;(F,) = a .  s(F,) + to + :(F,)'. 
r r  

Furthermore. from Eauation (2. 

but if 
r L  
a = O  

1.2-2) and (2.1.2-3) 

with Equations (2.1.2-4) and (2.1.2-5) 

Equation (2.1.2-6) and (2.1.2-1) result in S, 

Equation (2.1.2-2) 

Equation (2.1.2-3) 

Equation (2.1.2-4) 

Equation (2.1.2-5) 

Equation (2.1.2-6) 

Equation (2.1.2-7) 

This measure introduced is similar to the dissemblance measure as well. It satisfies the 
requirements of symmetry and anti-reflexivity but not of co-transitivity. We refer to this measure as 
a measure of closeness. 
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The truth assignment for the soft failures is a little more complex than for the crisp case. This 

results mainly from the fact that the term S,(F,) in the closeness measure is the ratio of the soft 
failure to the crisp failure. If both symptom and fault are approaching zero, the truth still depends 
on the locations of observation and failure relative to each other. Therefore, the assignment of truth 
to this case will be somewhere between zero and one. It is thus desirable to model failures with 
distinctive symptoms to avoid ambiguous results. All other cases behave much like the truth 
assignments for abductive reasoning. The results are summarized in Table 2.1.2-1 which also 
shows the implication operator which is used with a threshold value. 

Table 2.1.2-1: Truth table for implication and closeness measure 

The distribution around the modeled failure exists for the soft failure as well. In contrast to the 
crisp case, however, the model extends to the entire range for a failure between zero and one. For 
ease of computation, this model can be assumed to be a straight line, although it could be of any 
other shape as well. In the latter case, the computation for distance would have to be adjusted 
accordingly. Fig. 2.1.2-2 shows the closeness measure for the soft failure for 1-dimensional 
symptoms and straight failure line. As before, the fault was assumed to be at s=0.7. The 
diagnosis for the failure is zero where no symptom is observed and increases to one at the modeled 
fault, after which it decreases again. 

w w o m  

Fig. 2.1.2-2: Distribution for soft failure for 1-dimensional symptoms 

Fig. 2.1.2-3 shows a similar situation for soft failures, however for 2-dimensional symptoms. 

The fault was modeled at s = [::;]. As can be seen, the diagnosis is zero for the case where no 

symptoms are observed and increases to one at the modeled failure, after which it decreases again. 
From the mesh displayed and the contours under the mesh, it can be seen that the closeness 
measure for soft failures radiates in a more rectangular fashion. In contrast to the crisp failures, the 

I 2  

15 



soft failure has a different degree of failure at each point in the space. The degree to which the 
failure is diagnosed is displayed in Fig. 2.1.2-4. Because the shortest distance to the line between 
the origin and the crisp failure is used as the model, the degree is the same in the perpendicular 
direction of the model. 

0.8 

8 0.6 

0.4 

0.2 

0 
1 

E 
- 

0 

symptom 2 

Fig. 2.1.2-3: Distribution for soft failure for 2-dimensional symptoms for gs 

Fig. 2.1.2-4: 
symptom 1 0 1 symptom 2 

Degree to which failure is diagnosed for 2-dimensional symptoms 

16 



0.6 

8 - 0.4 
._ 
U 

0.2 

0 
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1 

symptom 2 0 0  symptom 1 

Fig. 2.1.2-5: Distance from observation to failure line for 2-dimensional symptoms for g~ 

The closeness measure gs is a product of the degree to which the failure is diagnosed and the 
distance of the observation to the failure line. Fig. 2.1.2-4 shows the degree to which the failure is 
diagnosed with gs and Fig. 2.1.2-5 shows the distance of the observation to the failure line. For 
some applications it may be undesirable to have the distribution of the diagnosis as displayed in 
Fig. 2.1.2-3. Rather, a distribution around the line which decreases with increasing distance from 
that line seems more practical. The problem lies in the parameter which is the normed distance to 
the overall distance. A more desirable distribution can be found in the diagnosis of the hard failure 
which was displayed in Fig. 2.1.2-5. Replacing the normed distance from the intersection of the 
shortest distance with the failure line to the origin with the distance to the crisp failure renders the 
following relation 

y: ( S(F, ), s+) = 1 - min( 1,1- sd (F, ) + S+ (F, )) 
where 

S,(F,) = c(si (F,) - si')' is the distance to symptom set for failure F, 

S' are the observed symptoms 
jn i= l  

S+(F,) = l'(Si(FI),S') 

S+(F,) is the distance to the failure line for failure combination FI. 
1 

= [ $ ( S i i  i=l  (F,) - s q  

Fig. 2.1.2-6 shows which components are used for the aggregation of evidence for y: . The two 

quantities of interest are S, and S' . 
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measurement [s t s 2 

-I--- 

s1 

Fig. 2.1.2-6: Aggregation of evidence in the symptom-failure space 

for fuzzy faults and symptoms using Y, 

Fig. 2.1.2-7 shows the diagnosis with this modified closeness measure. It now has a much 
smoother distribution and decreases with increasing distance from the modeled failure line. The 
contours are radially decreasing with distance from the modeled failure. 

a 

Fig. 2.1.2-7: 
symptom 2 0 0  symptom 1 

Distribution for soft failure for 2-dimensional symptoms 
measure 

with closeness 

Note that y: is not a dissemblance measure because it does not meet symmetry requirements. 

y:(Sd(FI),S+) behaves favorably with the desired abductive truth assignments because it avoids 

the ratio problems which the measure ys(S(FI),S') exhibited. Measure y:(S,(F,),S') correctly 

assigns the degree of truth of y: = 1 where the antecedent and consequent coincide and it assigns 

yl = 0 otherwise. Table 2.1.2-2 summarizes these results. 

S(FI) y:(Sd(FI),S+) S(FI) " s' 
0 1 1 0 - 
0 

1 1 1 1 
0 0 0 1 
0 1 1 

Table 2.1.2-2: Truth table for implication and closeness measure 
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2.1.3 Example 

Some simple cases will be used to further illustrate how the algorithm works. The assumptions are 
that the failure line is straight and that the @-fault is at the origin. 

Because symptoms are allowed to occur to some degree (as opposed to crisply only), the chosen 
approach needs to calculate the fuzzy closeness measure for all fault combinations and rank them 
afterwards. Assuming crisp cases as displayed in Fig. 2.1.1- 1 and 

where 

S(F,[l]) denotes the @-fault case. 

The measurement is assumed to be 

The distance to the crisp faults is then calculated as 

S+(f,) = 0.22 

S+(f,) = 0.50 

S+(f,,,) = 0.32 

S+(f,) = 0.92. 

The closeness measure is calculated as 

yc(S(f,),S+) = 0.78 

y, (s( f,),S+) = 0.5 

yc(S(f,,,),S+) = 0.68 

y,(S(f,),S+) = 0.08. 

Accordingly, fault f l  would be chosen because it has the highest closeness which in this case is 
entirely determined by the distance of the observation to the symptom for the failure. 

Assuming soft failures similar to the scenario displayed in Fig. 2.1.2-1 , use the same symptom set 
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and the measurement 

The shortest distances from S+ are calculated as 

S+(fl) = 0.22 

S+(flA2) = 0.12 

S+(f2) = 0.47 

S+(fo) = 0.92 

with 

Sn(f,) = 1 

Sn(f2) = 0.83 

Sn(flA2) = 0.76 

Sn(fo) = 1. 

The closeness measures are calculated as 

y,(S(F,),S+) = 0.78 

y,(S(F,),S’) = 0.36 

YS(S(FlA2),S+) = 0.63 

y, (S(Fo), S’) = 0.08. 

In this case failure f l  would have been chosen as well because it has the highest closeness 
measure. It no longer represents just a measure of the distance from the observation to the 
symptom. Rather, the failure itself has some weight and is therefore considered. Failure f l  is 
diagnosed to occur to degree “1” here. The closeness measure to the @-“fault”, i.e., the case when 
no fault occurs undergoes special treatment. By default, the strength of the fault is set to “1” while 
the strength of the symptom is computed as for all other faults. In other words, the @-fault is 
considered as a hard case and the equivalence measure is determined alone by the distance of the 
observation to the symptom (which is 0 as well). 

Next, the limit cases are investigated. When the observation approaches @, i.e., limS+, the 

distance from the observation to the origin is very small and the closeness measure tends to 1 for 
the @-fault case while all the other cases approach 0. This means that the case “no faults” will be 
diagnosed correctly. When the observation is equal to a fault, then this fault will be diagnosed with 
the highest possible measure of 1. If the observation is exactly between two faults, say 

s+o 
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S' = [ :: :] , with exactly opposing symptoms S(f [ 11) = [ 00::] then the 

closeness measure for both faults is naturally the same. However, the closeness measure for the 

combined fault S(FIA,[1]) = [:::I is larger which indicates the strong possibility of a combined 

fault which also makes sense. 

In the case of the observation exactly half way between a fault and the origin, then the closeness 
measure for that fault is 0.5 because the distance from the observation to the failure line is zero and 
only the ratio of the location of the observation to the length of the symptom determines the 
closeness measure. Recall that 0.5 is interpreted as "do not know" on the scale from 0 to 1. The 0- 
fault is diagnosed slightly more likely in that case because only the length of the observation is of 
relevance. A circle around the origin with radius 0.5 determines where the @-fault has value 0.5. 
For a fault with crisp symptoms and observations half way between the origin and the symptom set 
or that fault, the fault and the @-fault are equally likely. For all other faults and observations in 
between, the system will favor the @-fault somewhat. This may be undesired for some 
applications. These results for gs are summarized in Table 2.1.3-1. 

Table 2.1.3-1: Summary of results for diagnosis using gs 
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The same tests were carried out for y: . The results can be seen in Table 2.1.3-2. 

ro1 0.106 0.05 1 0.209 

101 

[:::I 
[:::I 

0 0.168 

Oe212 0.2 12 0.576 

-11- 0 0 0 

Table 2.1.3-2: Summary of results for diagnosis using 'Yi 

The following graphs (Figs. 2.1.3-1, 2.1.3-2, and 2.1.3-3) show the maximum fault profile for 
three faults (excluding the @-fault) in a two-dimensional symptom space. Although faults are 
usually modeled with more distinctive symptoms, the graphs give a good idea of how the - -  - -  - - 

0.9 

0.2 0.7 0.9 
diagnosis operates. The faults were modeled at s, = ['*'], s2 = ["'l, and s3 = [ 1. Fig. 

2.1.3-1 shows the maximum fault profile for crisp gc. The maximum failure surface is smooth and 
faults are seen to be centered around their modeled place in space. The valleys between the maxima 
show where the fault would be diagnosed equally likely for either of two faults. Fig. 2.1.3-2 
shows the maximum failure profile for soft gs. The contours are closer indicating steeper gradients 

on the surface. Finally, Fig. 2.1.3-3, the plot for y:, has the steepest gradients, which allows 
better classification but makes the diagnosis also more susceptible to modeling errors. 

L - 1  L - 1  L A  
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symptom 1 0 '1 symptom 2 

Fig. 2.1.3-1: Modeling of three faults with two symptoms using crisp gc 

symptom 1 0 1 symptom 2 

Fig. 2.1.3-2: Modeling of three faults with two symptoms using gs 

1 

0.8 

.$0.6 

$0.4 
a 
0.2 

0 

1 

0 

0 

symptom t O 1 symptom 2 

Fig. 2.1.3-3: Modeling of three faults with two symptoms using r: 
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2.1.4 Summary and Conclusions 

The approach proposed in this chapter offers a solution which allows for the diagnosis of crisp and 

partial failures using closeness measures y, , y,, and yi . The calculation of the closeness measure 
uses distance measures from the observed symptom set to the symptom set for a failure 
combination and - in the case of soft failures - distance measures to the failure line. Two closeness 
measures are provided for soft failures which allows to determine to which degree a failure occurs. 
The first calculates the distance to the failure line as a measure for the degree of the symptom and 
the distance from origin to intersection with shortest distance, normed by the overall length of the 

failure line, as a measure for the strength of the failure. The second closeness measure, y:, also 
takes the distance from observed symptom to failure line as the measure for the strength of the 
symptom but uses the distance from observed symptom to symptom set as the measure for the 
strength of the rule. 

The degree to which the failure occurs is given by the distance from the origin to the intersection 
point with the shortest distance line. Advantages of this approach are that solutions are always 
given, overcoming shortcomings of previous fuzzy approaches. Diagnosis is achieved by 
monitoring symptoms and evaluating to which degree they occur. Insufficiencies of threshold 
driven diagnosis are eliminated because the approach avoids assumptions of failure independence 
and of relative frequency of disorder occurrence. Links in the causal network are represented as 
causal strengths for failure-symptom relations similar to the Bayesian approach. 

This approach is, in a computational sense, not very expensive. Additional expert knowledge about 
the behavior of multiple fault-symptom relations can be incorporated into the system model which 
may result in the placement of combined faults at locations other than the maxima of their 
symptoms. This would occur when the failures (partially) cancel their symptoms or when the 
straight line model for the failure behavior is known to be incorrect. 

2.2 Fuzzy Diagnosis in IVHS 

This section shows how fuzzy diagnosis is used in the context of sensor and actuator malfunctions 
in automated vehicles of the Intelligent Vehicle Highway System (IVHS). Sensor validation and 
sensor fusion provide means to remedy some of the detrimental effects of uncertain readings as 
shown in Goebel (1996). Noise and aberrant readings can be filtered out to some degree, using 
information from partially redundant sensors, sensor characteristics, and expected readings 
(Goebel and Agogino, 1996). In either case it is important to know how the sensors and actuators 
behave to allow monitoring of their performance and perform diagnosis to permit remedial action in 
case of malfunction. This is an important task in safety preservation of the IVHS system. 

Since platoons travel largely independently, failures of components within individual vehicles must 
be dealt with by considering the effects of remedial maneuvers on the other members in the 
platoon. Ideally, a failure can be accommodated within the vehicle itself without disturbing the 
operation of the platoon. In either case, diagnosis lies at the heart of establishing a safe system. 
Only when a problem can be observed and identified it can be dealt with. It is equally important to 
trace the source of a failure to avoid the creation of other faults or reoccurrence of the same fault. 

Diagnosis of sensors and actuators may also enable prediction of failure when failure modes are 
known. In this case, an emergency maneuver may be avoided because more time allows for 
preparation to switch to the degraded mode of operation (Lygeros et al., 1995) in which indirect 
systems are used for control, if possible. Moreover, it is critical to determine the degree to which a 
failure has occurred. If, for example, an actuator exhibits a malfunction such as a bias, it is 
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important to know the magnitude of the malfunction. This will allow for better compensation to 
the problem. 

The theoretical groundwork for diagnosis was laid in Section 2.1. The first step in applying the 
method described in Section 2.1 to IVHS, faults and symptoms are assigned real meaning, e.g., 
for faults fn and symptoms sm: 

quantization failure 
out of range failure 
obstruction of sensor 

Y 

1 

HI s 1 reading in quantization range 
s7 difference between estimate and measurement large 

change of measurements large 
previous measurement is an outlier 
measurement same order of magnitude as previous one 
measurements have large variance 
measurement shows large negative change 

- 

Table 2.2-1: Assignment of faults and symptoms 

The causal network resulting from connecting the faults with the symptoms is displayed in Fig. 
2.2- 1. 

f l  f2 a f4 

Fig. 2.2-1: Causal network for longitudinal sensors of the IVHS 

In linguistic form, the rules are as follows: 

Quantization Failure: 
IF quantization failure 
THEN estimate is in quantization range 
AND difference between estimate and measurement is large 

Out-of-Range Failure: 
IF out-of-range failure 
THEN change of measurement is positive very large 
OR 
IF out-of-range failure 
THEN previous measurement is an outlier 
AND current measurement has the same order of magnitude 

Sensor obstructed: 
IF sensor is obstructed 
THEN change of measurements is negative large 
OR 
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IF sensor if obstructed 
THEN previous measurement is obstructed 
AND current measurement has the same order of magnitude. 

Fuzzification of the symptoms is performed according to Fig. 2.1.2-2 (which shows fuzzification 
only for the symptoms of the quantification failure). 

A 
1 --  

w 
0.3 difference measurement-estimate 

F 
Fig. 2.2-2: Fuzzification of symptoms 

Tuning of the membership functions is performed through evaluation of test data. These were 
obtained from platooning experiments where the follower car performed split and join maneuvers 
as well as straight following. Inputs to the system were the two longitudinal sensors radar and 
sonar sensor with sampling rate of 20 ms. Each sensor exhibited characteristic behavior in specific 
situations. Sensor models were built to allow simulation of the observed behavior as shown in 
Goebel(l996). To capture sensor failure, experiments under sub-optimal conditions were carried 
out as well (Bellm, 1995). These conditions include rain, fog, vibration, and various obstructions 
of the sensors. Failure modes were then developed via failure mode and effect analysis (FMEA) 
using results from these experiments which allowed modeling of various cause-effect relations 
between sensor failure and observable characteristics (Villanueva, 1996). m] 

0 0  
0 0 0 1  

Table 2.2-2: Modeling of one fault 
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Table 2.2-3: Modeling of several concurrent faults 

Table 2.2-2 shows results for each single fault and Table 2.2-3 shows how several faults are 
modeled by using the maximum strength of each symptom. 

The fuzzy closeness measure was assigned using the Lukasiewicz operator as outlined in Section 
2. I .  Symptoms were generated deliberately and in a random fashion. Some of the results for the 
faults and symptoms described above are summarized in Table 2.2-4. 

SYmPt )ms Faults gc 

Table 2.2-4: Symptom observations, fault diagnosis and equivalence measure 

When all symptoms are zero, no faults are diagnosed with a closeness measure of 1. If all 
symptoms are measured a little bit (0. l), still no fault is diagnosed, albeit with a smaller closeness 
measure. If all symptoms are measured at full strength (l), the fault combination “all faults” is 
diagnosed. Random combination of faults are able to diagnose failures in between the extrema. 
Under normal operation, the fault combination (0 0 0 0) is the most common. The fault 
combination (1 1 1 1) is not equal to “1” because it depends on the distance measured from the 
observations to the symptom set for that failure. This scheme allows us to use fault monitors with 
which a progression of failures for critical components can be visualized. Fig. 2.2-3 shows a 

27 



linear increase in the sensor readings with several modeled failures, in addition to the fault 
monitors which correctly diagnose two faults. 

1 .oo 

0.50 

0.00 

0 

Fig. 2.2-3: Failure monitors for sensor failure 

Conclusions 

Fuzzy diagnosis through the use of gc, gs, or y: is a fast and accurate way to trace failures and 
their source, (if modeled) from observed symptoms. For on-line diagnosis in automated highway 
systems, its fast computation makes it possible for failures to be quickly detected and followed by 
timely reaction. Thus, the safety of the overall system is potentially improved. The results of the 
simulations show the method is mathematically sound and gives results which make intuitive 
sense. If symptoms are observed with very little strength, no fault should be diagnosed. And if all 
symptoms are observed at full strength, all faults should be diagnosed. The particular diagnosis 
will depend on the modeling criteria. Under normal operation, the fault monitors will not show 
anything, which is desirable. Trends of failure may show up slowly and can be detected, allowing 
prediction of failure in the future. 

In contrast to the Bayesian approach, this approach avoids assumptions of failure independence 
and of relative frequency of disorder occurrence. Similarity between the two methods occurs in that 
links in the causal network represent causal strengths for failure-symptom relations. The potentially 
large number of possible covers for all possible combinations of symptoms is reduced by a ranking 
scheme which favors the solution with the smallest complexity. 

Additional expert knowledge about the behavior of multiple fault-symptom relations may exist. 
This demands a symptom combination differing from the default model, so that it must be used to 
ensure proper working of the system. This may occur when two faults (partially) cancel their 
symptoms. 
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3. Sensor Validation and Fusion Using Bayesian Techniques 

This chapter shows how diagnosis is performed using vector dynamic belief networks. After the 
theory is introduced in Section 3.1, applications are described in Section 3.3. 

3.1 Methodology for Vector Dynamic Belief Network 

This section shows the development of vector Gaussian continuous networks. These are an 
extension of continuous Gaussian networks (Pearl, 1988; Shachter 1987), which are directed 
acyclic graphs that encode probabilistic relationships between variables. Vector Gaussian 
continuous networks consist of composite nodes representing multivariables, that take continuous 
values. These vector or composite nodes can represent correlations between parents, as opposed to 
conventional univariate nodes. Rules for inference in these networks based on both message 
propagation and topology transformation are derived. The domain of application of these networks 
includes monitoring and estimation problems, where old algorithms such as Kalman filtering along 
with new algorithms can be represented and derived using these networks and rules for inference. 

Introduction 

Practical systems consist of variables that acquire continuous values in an operating range, e g ,  
the temperature of a particular component being monitored or the pressure in a chamber. Therefore, 
to represent these variables by means of a network structure, the nodes which represent these 
variables should be able to take continuous values. Pearl (1988) has developed a comprehensive 
scheme for inference in continuous Gaussian networks. This scheme, however is based on the 
assumption that the parents of each variable are uncorrelated. This assumption breaks down when 
the underlying network contains loops, when two or more nodes possess both common 
descendants and common ancestors. We present a formalism in which vector or composite nodes 
are used to represent dynamic systems, where parents nodes may be correlated. 

These local vector nodes which are multivariate Gaussian variables correspond to clustering:, a 
method used to handle multiply connected networks. The links between these nodes are 
characterized by cross-correlation matrices. In this section, we will develop rules for inference in 
these compound networks. This approach combines the desirable features of message propagation 
including local computation, autonomy, and low storage requirements, with those of matrix 
techniques in the presence of multiply connected networks, or precise updating. For this, we first 
define and develop the vector Gaussian belief network. 

We will mainly be concerned with developing rules for inference in these networks. For this task 
we will use both the method of message propagation (Pearl, 1988) and the method of arc reversal 
and topology transformation (Olmsted, 1984, Shachter, 1986, Rege and Agogino, 1988). These 
methods lead to the development of algorithms that can be implemented in a decentralized (parallel 
using multiple processors) or a centralized (single processor) architecture. 

Like previous work (Pearl, 1988, Shachter and Kenley, 1989, Geiger and Heckerman, 1994) in 
continuous-valued variables we require that the variables have Gaussian density functions. The 
most compelling reason for accepting a white Gaussian assumption is that it makes the 
mathematics tractable. Recently, methods have been developed for implementing continuous 
Bayesian networks using sums of weighted Gaussians (Driver and Morrell, 1995a, Driver and 
Morrell, 1995b), which can approximate any distribution. 
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Belief Networks and Influence Diagrams 

A belief network is a directed acyclic graph representing random variables. A belief network with 
decision nodes is known as an influence diagram, which is a network representation of 
probabilistic inference and decision analysis models. Each node in the network represents a 
variable which could be either a random variable, constant, decisions or objectives. The links 
represent causal influences among the random variables and the information available at the time of 
the decisions. Each variable may be discrete in which case it assumes an arbitrary number of 
mutually exclusive and exhaustive values, or it may be continuous. An absence of an arrow 
between two nodes represents conditional independence between the variables. 

Each node has a conditional probability table that quantifies the effects that the parents have on the 
node. The parents of a node are all those nodes that have arrows pointing to it. Each node without 
a parent requires a prior probability for each state. Deterministic relationships between variables is 
a special case that is handled by setting each conditional probability to either 0 or 1. The joint 
probability distribution of the variables represented in the belief network can be calculated from the 
information in the network. Let, X I , . . ,  X ,  be the random variables represented by the belief 
network. Then the probability of a conjunction of a particular value of each variable is given by 

i=l 

At this point it is helpful to review the Bayesian interpretation of probability. One prevalent notion 
of probability is that it is a measure of the frequency with which an event occurs. An event is a 
state of some part of our world in some time interval in the past, present, or future. This 
interpretation of probability as a frequency in a series of repeated experiments is traditionally 
referred to as the objective or frequentist interpretation. A different notion of probability is the 
degree of belief held by a person that the event will occur. This interpretation of probability is 
called subjective or Bayesian interpretation. Frequentist interpretation is a special case of the 
Bayesian interpretation. Thus in the Bayesian interpretation a probability or belief always depends 
on the state of knowledge of the person who provides the probability (Heckerman, 1995). 

Each entry in the joint distribution is represented by the product of the appropriate elements of the 
conditional probability tables (CPTs) in the belief network. Each node in the belief network is 
conditionally independent of its parents' predecessors given its parents --- given 
Parents(X,) G {xi-! , . , , x , } ,  then the specification of the joint is equivalent to 

A belief network can handle a large number of pieces of evidence without the exponential growth 
in the conditional probability values due to its sparse structure. In a locally structured or a sparse 
system, each subcomponent interacts directly with only a bounded number of other components, 
regardless of the total number of components. 

Belief networks can be singly or multiply connected. An acyclic graph is singly connected if there 
is at most one chain (or undirected path) between each pair of variables. Networks with undirected 
cycles are multiply connected. In a probabilistic inference system evidence comes in one or more 
nodes, and one needs to compute the posterior probability distribution for other query nodes. 
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There are a number of inference algorithms for a simply connected network. There are three basic 
classes of algorithms for evaluating multiply connected networks, each with its own area of 
applicability. Clustering methods, conditioning methods and stochastic simulation. For more 
details on belief Networks interested readers are directed to Pearl (1988, 1995) and Russell and 
Norvig (1995) . 

Over the past decade, Bayesian networks have become a tool of great versatility and power, and 
have become the most common representation scheme for probabilistic knowledge (Shachter, 
1990; Shafer and Pearl, 1990). This representation has been useful for modeling many real world 
problems including diagnosis of medical patients (Heckerman et al., 1992), forecasting (Gu et al., 
1994), automated vision (Levitt et al., 1990), semiconductor manufacturing control (Nadi et al., 
1991), supervisory control of robotic manipulator (Ramamurthi and Agogino, 1993), monitoring 
and diagnosis of manufacturing processes (Agogino et al., 1988), information retrieval (Turtle and 
Croft, 1991), etc. 

3.2 Continuous (Gaussian) Belief Networks 

Consider a domain x', of n continuous variables x1 ,, , , x,. The joint probability density function for 

x' is a multivariate nonsingular normal distribution 

where N(.)  denotes the normal pdf with argument x, and 

X = E [ x ]  

P = E [ ( x  - X)'(x - E)] 

are respectively, the mean and covariance matrix of the vector X. The inverse of the covariance 

matrix P-' is also known as the precision or the information matrix. Note that to avoid indicating 
the dimension of the vector X the determinant in the above equation has been written with the 
factor 2n inside it. An important property of Gaussian random variables is that they stay Gaussian 
under linear transformation. 

The joint distribution of the random variables can also be written as a product of conditional 
distributions each being an independent normal distribution, namely 

i=l 

where mi is the unconditional mean of xi, a,? is the conditional variance of xi given values for 

x, , .. , xi-1, and bo is a linear coefficient reflecting the strength of the relationship between xi and xi 

(e.g., DeGroot (1970). Hence, one can interpret a multivariate normal distribution as a belief 
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network, where there is an arc from xi to xi whenever bij # 0, j e i (Geiger and Heckerman, 

1994). This special form of belief network is commonly known as the Gaussian belief network, 
the name having been adopted from Shachter and Kenley (1989) who first described Gaussian 
influence diagrams. 

The Gaussian-influence diagram representation of a multivariate normal distribution is better suited 
to model elicitation and understanding than is the standard representation (Shachter and Kenley, 
1989). For a user to access a Gaussian belief network the following need to be specified: (1) the 
unconditional mean of each variable xi (  mi) ,  (2) the relative importance of each parent xi in 

determining the values of its child xi ( bo), and (3) a conditional variance for xi given that its 

parents are fixed ( 0;) (Geiger and Heckerman, 1994). 

Pearl (1988) has developed an encoding scheme for representing continuous variables in a belief 

network. The developed encoding scheme is based on the following assumptions:' (1) all 
interaction between variables are linear; (2) the sources of uncertainty are normally distributed and 

are uncorrelated; and (3) the belief network is singly connected
2
. 

Pearl (1988) considers a hierarchical system of continuous random variables like the one shown in 
Fig. 3.2- 1. Each variable X has a set of parent variables Ul , U,, . . , U, and a set of children variables 

Yl , Y2, .  . Y,. The relation between X and its parents is given by the linear equation 

X = blUl + b2U2 + * * +b,,U,, + W, 

where b, , b2 ,.. , b, are constant coefficients representing the relative contribution made by each of 

the U variables to the determination of the dependent variable X and wx is a noise term 
summarizing other factors affecting X.  Variable wx is assumed to be normally distributed with a 
zero mean, and uncorrelated with any other noise variable. 

Fig. 3.2-1: A fragment of a singly-connected network showing the relationships between a 
continuous variable X, its parent variables 

1 

2 
The first two assumptions are the same as those made by Shachter and Kenley, 1989. 
A network in which no more than one path exists between two nodes. 
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Given the network topology, the link coefficients (b's), the variances ( ow,) of the noise terms, and 

the means and variance of the root variables (nodes with no parents), Pearl (1988) has developed a 
distributed scheme for updating the means and variances of every variable in the network to 
account for evidential data e, a set of variables whose values have been determined precisely. The 
update can also be done in a manner similar to that in Shachter and Kenley (1989). However, 
Pearl places an additional restriction that the computation be conducted in a distributed fashion, as 
though each variable were managed by a separate and remote processor communicating only with 
processors that are adjacent to it in the network, i.e., the update is performed in a decentralized 
(parallel) manner. 

The equation relating the variable of interest to its parents replaces the conditional probability tables 
that are required in the case the variables are discrete. In addition, due to the assumption that the 
variables are normally distributed the complete distribution can be specified with the help of just 
two parameters, the mean and the variance. 

We extend these continuous Gaussian networks to its vector form. Fig. 3.2-2 shows a generic 
form of a vector Gaussian network. Here, all the variables represented by the nodes ( Ui,X,  5 ) are 

vectors, for e.g., X E [xl,-,xn] where xi are Gaussian random variables. The arc between the 

variables represent the following relationship 

T 

where Uiand Y; are nu, and nq dimension vector, Fi is a n,xnUi matrix, Hi is a n,: xn, matrix v is 

a n, vector, Q = E[w,wi], the covariance matrix for the noise term represents the correlation 

between the parent variable. It can be easily shown that in the case of multiple parent nodes 

[ U,,  U2]' with corresponding state matrices F ~ ,  F, respectively, one can obtain an equivalent matrix 

which express the augmented state vector[X,,X,]'. This procedure is known as clustering of the 
nodes. One may however want to keep the nodes separate due to which we will work with a 
network that has multiple parents. We will in general cluster the variables into nodes in which no 
evidence comes in at any of the nodes, nodes with different covariance matrices, etc. Here, each 
node can be considered as made up of another Gaussian belief network where the inter-relationship 
between the variables is given by the matrix F. 
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Fig. 3.2-2: Generic form of a vector Gaussian belief network 

Vector Rules for Normal Distributions 

Rule 1 

Rule 2 

N ( x ; P , Z )  = N ( Z , P , x )  

Rule 4 

where the constant a is given by 

a = N(T& + P2,Tz) 

N ( n ; P , , ~ ' ) . N ( x ; P , , x , ) = a . N  P~~+P~~]-',[P~'+P~']'[P~'~' +P;'T2]) 

Rule 5 

n N ( x ; P j y T i )  I = a .  N [ x; [ Z P - '  ; I ]¶ [~P; ' I ' [~P ; 'T ; ] )  

here again a is a constant, The exact form of this constant is not important as it cancels out during 
the probability update process. The form of this constant for the scalar case is given in Driver and 
Morrell(1995b). 

Rule 6 
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Rule 9 

Inference using Message Propagation: Decentralized Approach 

Consider a typical fragment of a singly connected network (Fig. 3.2-2), consisting of an arbitrary 

node X, the set of all X ' s  parents, U ={Ul,U2,-,Un}, and the set of all X ' s  children, Y = 

{ Y,, Y2,-, Y,}. Let e be the total evidence obtained, e; be the evidence connected to X through its 

children (Y), and e; be the evidence connected to X through its parents (U). Readers are referred 
to Pearl (1988) where the rules for propagation are derived for the scalar case. To derive the 
inference rules for vector Gaussian networks, we will follow a procedure very similar to Pearl's 
for the scalar case. 

Belief Update 

To compute the belief of X, i.e., BEL(x), we divide the evidence e into two components, e:and e;, 

representing data in the sub networks above X and below X, respectively. 

We consider the general belief network structure shown in Fig. 3.2-2. Here, the links correspond 
to 

x = p ; . u ; + v  
i 

yi = H;x + wi 

We calculate the belief for node X, as follows 
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i=I 

= N [ x ;  P,,E,] 
n 

The variance P, can be interpreted as sum of the uncertainty in each of the ui ( B,P,, B,T ) and the 

uncertainty in the relationship between x and ui (e). 
Similarly, we now compute A ( x ) .  Let <f, denote the set of child nodes of X ,  let 

R = { j  E @(e; f 0}, and let m be the number of elements in R . Next, we relabel the child nodes 

so that nodes Y, through Y ,  correspond to the nodes with e; # 0. If m = 0 then A(x)al. - If m = 

1 then A ( x ) U y m  - ( x ) .  For m 2 2 , we compute A ( x )  as follows: 

i=l 

= a . N  [ x ;  [ c H j R j  -, Hi ] y [ ~ H ~ R ~ ~ H j ] [ $ ” . ” ~ j ] )  

= a N ( x ; P , , x , )  

where again a is some constant the exact form of which is not important. As we will soon see it 
cancels out during the belief update process. 

Note: 

P i 1  = Hj’Ri’Hj and Pi’F, = Hi T Ri -1- yi 
i i 

To update x we do not require Hi Ri Hi to exist. Pi1  , the inverse of the covariance matrix is 

called the information matrix. We also define a transformed state vector z, =P;’x, and 

. . z ,  - , ,. It is important to note that P i 1  is really the covariance of the information state . - - p-’x 

vector z, Pi’x,  . Hence, N (  x ;  P, , FA) = a, N (  z ;  P;’ ,Z) , where again a, is some constant. 

[ j  T - l  I’ 
A 

A 

If e; = 0 then A ( x ) =  1. Combining these two results, we obtain: 
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X 

X 

As can be seen all constants associated with A ( x )  and n(x) cancel out. Hence, the exact form of 
these constants is not important. Therefore, in the remaining part of this section, we will neglect 

the constants. Also, for A(.) it is easier to work with the information state vector z and the 

information matrix P;' . 

During implementation, we begin with the leaf nodes. Here, A messages are sent to the parent 
nodes and this propagation stops at the root nodes. Then, starting from the root nodes, the node 
calculates its belief and sends n messages to each of its children. The propagation stops on 
reaching a leaf node, i.e., a node with no child. This propagation scheme is guaranteed to stop as 
the networks are acyclic, are singly-connected, and have a finite number of nodes. 
To prescribe how the influence of new information will spread through the network, we need to 

specify how a typical node, say X, will compute its outgoing messages A,(ui), i = l , . . ,n  , and 

nyj (x), j = 1 ,.., r n ,  from the incoming messages Ay, (x), j = l , . . ,m and nx(ui), i = 1 ,.., n. 

Top Down Propagation: Message to Children 

Consider the message nyj (x), which node X sends to its jth child Y j  (i=1 ,2,..,m), we note that it 

is conditioned on all data except a subset e; of variables that connect to X via Yj. Therefore, 
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So, zyj ( x )  can be computed by the method of the last section with the assumption that A, ( x )  = 1. 

Hence, 

I 
= P , -  P ,  P , + C H  Rk H P ,  [ k # j  -1 -' ] 

X:, = [ Pi1  + H'Ri'H] [ Pi'X, + 
k#j k + j  HTRil j jk]  

Bottom Up Propagation: Message to Parents 

Consider the message A x ( u i ) ,  which node X sends to its ith parent Vi. We divide the evidence e 

into its disjoint components e:, i=l,..,n and e;, j=l,..,m, and condition A,(u,) on all parents of 

X. For notational convenience we temporarily denote Ui by U and bi by b, and let the other 

parents be indexed by k, ranging from I to some n: 

Consider the first distribution in the integrand: 

Next, consider the second distribution in the integral: 



where: 

Using the properties for vector normal distributions: 

Integrate with respect to x: 

B ,P~(u) B~ P , + Q + ~ B P + B ~  T ~ - ~ B ~ E ~  , " ' [ (  k 'r[ k I]) 

39 



Therefore, for the ith parent, Ui we have: 

where 
r 1-1 

Predictive Estimation: No Evidence in Children Nodes 

If A(.) = 1 i.e., there is no evidence from the children we have 

which implies that evidence gathered at a node does not affect any of its spouses until their 
common child node obtains evidence. This reflects the d-separation condition and matches our 
intuition regarding multiple causes. 

Alternate Forms for Message to Parents 

We can simplify the belief update process for the parent nodes ui. 

Combining the above two equations to update the belief in ui : 
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r 1-1 

P, + Q + BkPu, BUT 
k ]'('A - ' k E k )  

Therefore, 

N (  ui ; P?, q e w )  

B ~ P ~ ~ , F , . + P , + B ;  P,+Q+CB,P,,,B,T z A - C ~ k ~ k  I [ k  l'( k 1) 
r 1-1 

when the above formula is used we require P, = I HTRylHj 1 to exist. 

L i  A 
We can remove this requirement by noting 

j = l  

H = [ HT,-, HIIT R = bZockdiag{ Rl ,.e, Rm} 

:. R = HP,HT Pi1  = HTIHP,HT]-IH 

where m is the number of children nodes of x through which there is evidence. But 

For a proof of the above identity note the following: 

P, + Q + BkPu, B,' 
k 

Further, 
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Using this, 

j=1 

H ~ R - ' H Z ~  = H ~ R - ' L  

H ~ + R  HB,P,,, 1 1  

is an alternate form for updating the beliefs. The above alternative form is particularly useful in 
deriving the decentralized form of the Kalman filter. 

Boundary Conditions 

The boundary conditions for vector Gaussian continuous networks are established as follows 

1. If X is a root node (a node with no parents) that has not been instantiated, then we set n(x) 
equal to the prior density function f(x). 
2.  If X is a leaf node (a node with no children) that has not been instantiated, then we set 

A (x) = 1. This implies that Bel( x) = n( x). 

3. If X is an evidence node, say X = X ,  then we set A(.) = &(x - X) = N(x;O,F) regardless of the 

incoming il -messages. This implies that BeZ(x) = N(x;O,T) as expected. Furthermore, for each 

j, nyj (x) = N(x;O,T) is the message that node X sends to its children (in this case each child gets 

the same message). 
4. To interpret the updated process note that if there was evidence at x then the new value would 
have been: 

So, the new update can be interpreted that there is new evidence at x (i.e., x is FA), however there 

is uncertainty associated with this new evidence given by Pa. 

5. An alternate form of the message sent by X's children is 

6. The covariance matrices are normally positive definite and symmetric. Due to which all the 
required inverses exist. 

Example: Inference in Vector Continuous Probabilistic Networks 

To illustrate the inference process we consider a simple example motivated from a chemical 
process. The example has been suitably modified to illustrate the various inference processes. 
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Three reactants (the concentration of two of which are correlated) combine to form two products. 
The concentration needs to be estimated. There are two sensor nodes, Y, and Y,, that measure a 
combination of these reactants. The process is represented by the following vector Gaussian 
network. 

Fig. 3.2-3: The vector belief network used in the example. 

x3 = Blx, + B2x2 + w3 

x4 = Hlx3 + w4 

x5 = H2x3 + w5 
where 

B,=[i  ;] ..=[:I Hl =[I 11 H’=[l 1 0  1] 

For the root nodes the a priori beliefs in the two nodes and is given by xl = [ :]; x2 = [l] , 

with variances PI = [; :]; P2 = [l] , respectively. These numbers have been chosen to illustrate 

some of the issues in carrying out inference in these networks. 
The noise distribution is given by 

2 1  
E[w3wT] = Q = [ 1] 

E[ w4wqT] = I?, = [ 11 

E[w5w5 T ] = 4 = [: 3 
E[wpV;] = 0 i # j 

Decentralized Method for Predictive Estimate Without Evidence 

1. For x3 
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Centralized Method for Predictive Estimate Without Evidence 

Here, the rule for node propagation and absorption is used to update x3, x4 and xs . The results are 

the same as for the decentralized case. For example the variance for x3 is 

E [ ( x ~  - Z 3 ) ( ~ 3  -Z3)T] = E[(BlXl + B222 + ~3)(B121+ B2X2 + ~ 3 )  T ] 
= BIPIB: + B2P2B,T + Q 

Decentralized Method for Diagnostic Estimate with Evidence 

In this case the evidence is 

r51 

1. For x3 

Note that there is no evidence at the child node x,,  due to which we have m= 1 
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3. For X ,  

4. For N(x,;0.8315,0.9239) 

b. Evidence at Leaf Node x4 = 10 

Note that in this case [ H:RIHl = [: :]' doesn't exist. 

For updating x3 we use Pi1  

2.3455 -1.6364 6.5455 
Bel( xg ) = N [ x3 ; [-1.6364 1.9091 ],[3.3636]) 

BeZ(x5) = N xs; 
[ [ 3.3455 0.709 11, [ 6.545511 

0.709 1 1.98 18 9.909 1 

2.1818 -0.8182],[ 1.90911) 

-0.8182 2.1818 0.9091 

BeZ(x,) = N(x,;0.8364,1.2727) 
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Centralized Method for Diagnostic Estimate with Evidence 

For x3 

Node x4 is removed from the graph since it is a barren node. 

Node x,, are propagated into x3. This corresponds to 

N ( x , ,  P3,F3) = N(x3;B,P,B: + B,P2B: + Q,B& + B,X,) 

Lastly, the arc from x3 to xs is reversed this corresponds to updating the belief for x3 

Therefore, 

Update Mean: Z y  = T3 + P3H:[ H2P,H; + &I-'[ [ :] - H2Z3) 

Variance: P ~ W  = p3 - P,H: [ H, p3 H: + R, H~ p3 

Fig. 3.2-4: The topology transformation to update x 

For x4 
The new belief in x3 is propagated to update x4 

N(x4;P,"",3,"") = N ( X 4 ; H , P y H ;  + & , H z x y )  

For X ,  

Barren node is removed. 

Node x3 is absorbed. This corresponds to 

x5 = ~ 2 x 3  + W S  = H ~ ( B ~ x ,  + 4 x 2  + V V ~ )  + ~5 
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The arc from to x5 is reversed and node x5 is propagated 

E [ ( x l - I - , ) ( x , - ~ ~ ) ~ ] = E [ ( ~ ~ - x , ) ( H , ( ~ l ( x , - ~ l ) + B ~ ( x , - ~ 2 ) + ~ 3 ) + ~ ~ ) r ] = P l B ~ ~ ~  

E [ ( x , - I ' , ) ( x , - x , ) r ] = E [ ( H , ( ~ l ( x l - ~ , ) + B , ( ~ 2 - x , ) + w , ) + w , ) ( H , ( ~ , ( x l - l i , ~ + B , ~ ~ 2 - ~ 2 ~ + w , ) + w , ) T ]  

= H,[B,P,Br + B,P,B: + Q]H: + R, 

Hence, the mean and the variance is updated by 

Mean: Z r  = ZI + PlB~H~[H2[BlPlB~ + B2P2B: + Q]H:  + 41' - H,(BIZl + B2E2) 

Variance: Py = Pl - PlZ3~H:[H2[BlPlB: + B2P2Bl + Q ] H l +  &]'H,B,P, 

[[:I 1 

Y wx -@ 

Fig. 3.2-5: The topology transformation to update 

The process to update is similar to that for updating 

Decentralized Method for Predictive and Diagnostic Estimation 

x2 = 0, x4 = 10 and x5 = [:I 
1. Update for x3 

4 5 )  = N( x3;[ 7 J.[ 1]) 
26 7 1 

= (x3;[ -1 1.5 -'I9[ 2.5 1) 
0.6738 -0.5556 4.9964 

BeZ(x3) = N x3;  ( [ -0.5556 0.8889 ]'[ 2.444411 
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pi1 = 0.7333 0.6667) [ 2.66671 

[0.6667 1.3333 A - 3.3333 
p-lx - 

1.2903 -0.4839 2.2043 

-0.4839 0.8065 I.[ 1.21511) 

2. Update for 
Here we have 

xl;Pl  -PIB~HTIH(Q+BIPl~~)HT+R]lHBIPl, 

~ l + P I B ~ H ~ [ H ( Q + B I P l ~ ~ ) H ' + R ] l ( ~ - H ( ~ l ~ l  + B 2 . 0 ) )  
Bel(xl)  = N 

1.2903 -0.4839 2.2043 

-0.4839 0.8065 ]9[ 1.21511) 

Centralized Method for Predictive and Diagnostic Estimation 

1. Update for x3 

First the nodes x,  and x2 are propagated, this corresponds to obtaining the prior probability 

distribution for x3. The belief for x3 is 

N(x3 ,P3 ,Z3)  = N(x3;BlPlBr +Q,BITl +B2 S O )  

Next the arc from x3 to x,is reversed. 

-1.6087 2.3261 -1.60871; 1.8696 =[ 3.0870 ] 
6.739 1 

p y  = 

Similarly, the arc from x3 to x5 is reversed. 

0.6738 -0.5556 

-0.5556 0.8889 
N(X3,P3,X3) = N 

Fig. 3.2-6 shows the topology transformation for this case. 
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Fig. 3.2-6: The topology transformation for x 

For updating the belief in x1 we 
1. Propagate the evidence node x2, i.e., substitute the evidence value for x2 .  

2. Absorb node x3, Le., 

y1 = HlBIxl + HlB2X2 + W: Ri = R4 + H,QH,' 

y2 = H,B,X, + H ~ B ~ X ~  + W; g = R, + H,QH,' 

3. Combine 

4. Reverse the arc 
The various topology transformation of the belief network is shown in Fig. 3.2-7, where the 
shaded node implies that the node is an evidence node. 

Fig. 3.2-7: The topology transformation for y 

Summary 

In this section, we have extended Gaussian networks to its vector form, where a node represents a 
multivariate Gaussian distribution. These networks can represent the uncertainty inherent in the 
estimation process for dynamical systems. We have developed rules for inference in these 
networks using both the method of message propagation and topology transformation. The two 
different methods for inference lead to development of algorithms which can be implemented with 
either multi-processors (in a parallel or a decentralized manner) or with a single processor 
(centralized manner). Next, we will apply these inference rules to develop algorithms for 
monitoring and diagnosis of complex systems. Using the network structure and the rules for 
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inference developed here, important algorithms such as a Kalman filter, probabilistic data 
association filter, interacting multiple model algorithm can be represented and derived. 

3.3 Methodology for Intelligent Sensor Measurement Validation, Fusion, and Sensor Fault 
Detection for Generic Processes 

Fig. 3.3-1: The VDBN for the change detection process. This is equivalent to a Kalman 
filter with multiple estimates 

In this section, we also illustrate how probabilistic reasoning can be used for change detection and 
for forecasting potential incipient failures. We describe methods for constructing, refining, 
estimating the conditional probabilities between variables (both analytically and learning from 
data), and performing inference with this representation of temporal probabilistic knowledge. As 
explained above, dynamic probabilistic networks (DPN) are a species of belief network designed 
to model stochastic temporal processes. DPN representation extends static belief-network models 
to more general dynamic forecasting models. We apply the method developed above for on-line 
learning of the temporal probabilities to adapt the temporal CPT entries which helps the system to 
adapt itself to changes in its environment. By monitoring the residue using DPNs we are able to 
predict the degradation of the monitored system (by forecasting) and its eventual failure. The 
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proposed methodology has a number of advantages over conventional statistical methods for 
change detection such as thresholds and the SPRTKUMSUM tests and over fuzzy thresholds. 

Problem Statement 

In automated vehicles, aircraft, and other complex systems, a large number of sensors are used for 
monitoring and control. Monitoring helps the operator in performing supervisory control tasks. A 
monitoring system receives information about the system through measuring devices, i.e., 
sensors, and makes it available to the operator. The monitoring system usually includes automated 
diagnosis as a further aid to the operator. The diagnosis system uses sensor readings to assess the 
state of the system, detect abnormal states, and identify the root cause of the abnormal state in 
order to advise the operator about corrective actions to prevent significant damage to the system. 

The safety, reliability, and performance of complex systems with many sensors are largely 
dependent on the accuracy and reliability of the sensors. Sensor readings play a key role in 
assessments of the system state. Where the sensors are less reliable than the systems being 
monitored, the indication of an abnormal state may be the result of a sensor failure rather than a 
system failure. Failure to identify the source of the indication of an “abnormal state’’ and take 
appropriate corrective action could result in expensive and unnecessary system shutdowns or, 
worse still, accidents that endanger both system and system personnel. Thus, it is very important 
for a monitoring and diagnostic system that is critical to operator decision-making to distinguish 
between the case where a sensor failure and not a system fault is responsible for the indication of 
an abnormal state. For that reason, it is essential that there be a methodology that can validate the 
sensor data, associate a degree of validity with each sensor measurement, isolate faulty sensors, 
estimate actual values despite faulty measurements, and detect incipient sensor failures. 

A number of factors make the process of sensor data validation and sensor failure detection 
difficult. First and most importantly, sensor failures can be masked by normal system maneuvers 
or deviations (e.g., in a power plant, changes in the operating conditions due to a load change). 
Subtle sensor failures such as drift are particularly difficult to detect. Second, the imperfect nature 
of the sensors adds noise to the sensor readings. 

Sensors fail or become faulty for many reasons. An abrupt failure can be caused by a power 
failure, loose or corroded contacts, or flaws or limitations in the data acquisition and processing 
system. An incipient sensor failure such as a drift in the sensor (e.g., caused by deterioration in the 
sensing element) is more difficult to detect. Although the problem of incipient failures has received 
little attention, it is extremely important for sensors that provide critical information to monitoring 
and diagnostics systems. These failures need to be detected and where possible predicted before 
they have catastrophic consequences. 

This section describes a comprehensive methodology for intelligent sensor data validation, fusion, 
and sensor failure detection. By combining information from many sources, it is possible to 
decrease the uncertainty and ambiguity inherent in processing the information from a single sensor 
source. A large number of sensors measuring many variables can collectively achieve a high level 
of accuracy and reliability. Our methodology exploits the information that can be obtained by 
looking at information from a sensor individually, information from the sensor as part of a group 
of sensors, and the immediate history of the process that is being monitored. 

Our methodology consists of four steps: (1) Redundancy Creation generates multiple values for 
the variable that is being estimated; (2) State Prediction uses temporal information about the 
variable estimate for a specified time window to predict the value of the variable being measured at 
the next sampling point; (3) Sensor Data Validation and Fusion determine whether the information 
for the sensor can be believed, associating a degree of belief in this measurement, and combining 
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the various redundant estimates and the predicted value to generate a fused value; and (4) Fault 
detection is carried out by generating residue signals and monitoring them for changes. These 
changes are symptoms of sensor failures. 

Each of these steps can be carried out by using a variety of tools, some of which are shown in Fig. 
3.3-1. The choice of tool is not critical but would depend on the user's background and preference. 
Although the efficacy of our methodology is illustrated here by applying it to data from a gas 
turbine power plant, this approach is applicable to most complex processes. 

Overview 
The four steps comprising our methodology are shown in Fig. 3.3-2. First, we create redundancy 
in the sensor readings. Next we use a time-series state prediction model to predict the expected 
value for each variable. The sensor readings and the redundant estimates are compared to the 
values predicted by the state prediction model. We then fuse the validated readings into a fused 
estimate and detect sensor failures by generating residue signals (i.e., differences between the 
sensor readings and the fused estimates) and monitoring them for changes in their statistical 
properties. 

A sensor reading validation cycle (steps carried out between two sampling points) consists of 
predicting the value of the variable being estimated, measuring, creating redundant estimates, 
validating, fusing multiple estimates, and updating the value of the variable being estimated. 
Abrupt sensor failures are detected through the validation gate (a region based on the expected 
distribution); incipient sensor failures are detected by monitoring the sensor residues. The basis of 
this methodology is the systematic use of direct measurements provided by the sensors, the 
redundant measurements, and the estimated predicted value from the prediction process. The 
simultaneous checking of values of each variable with the cross-checking of estimates obtained 
from values from sensors measuring dissimilar process variables (through redundancy creation as 
detailed in the following section) and with an adaptive prediction process combined through a 
Kalman filter (i.e., combining distributions) enables the method to detect multiple sensor failures 
and detect and estimate bias and calibration errors. Changes in the statistical properties of the 
sensor residue are used to detect faults in the sensor. Since each sensor has its own residue signal, 
simultaneous multiple sensor failures can be detected. 

Sensor Measurement Validation and Fusion 

If the sample points are spaced at regular intervals, the following prediction model can be used 

A simple, first order adaptive Wiener model, (i.e., a model driven by random noise) is a special 
case of the model where each of the variables, i=l , . . ,n,  is of the type: 
x , ( k + l ) = 4 . . x i ( k ) + w i ( k )  i=I,. . ,n 

where xi(k+l)  is the variable being estimated at sampling time k+l ,  wi(k) is the zero-mean random 
noise driving the process and ai is the adaptive parameter. 

A number of methods can be employed for parameter estimation, such as estimation based on 
likelihood, Bayesian estimate, least squares estimate, and the minimum mean-square error 
estimation (Brown et al., 1992). These four methods are equivalent under the assumptions 
employed by the Kalman filter. The Kalman filter is a form of optimal estimation (in the statistical 
sense) characterized by recursive (i.e., incremental) evaluation, an internal model of the dynamics 
of the system being estimated, and a dynamic weighting of incoming evidence with ongoing 
expectation that produces estimates of the state of the observed system. The a priori information 
to the filter is the system dynamics, the noise property of the system and the measurements that can 
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be estimated from the historic data. For a review of the Kalman filtering process readers are 
referred to Alag (1996). We illustrate one cycle of our validation and fusion cycle. 

h e :  REDUNDANCY CREATION 
Direct Physkal Redundancy 

Multiple S en sor s 
Analytical Redundancy 

First Principles 
FunctionalEmpirical Redundancy 

Learning fromData 
Nonlinear Regression 
Neural Netwoks 

Multi- layer P erceptron 
Radial Basis Function 

Two: TIMESERIES STATE PREDICTION 
Adaptive Prediction 

Polynomial Extrapolation 
Neural Scheme 
Neural-Fuzzy Scheme 

S tatsSpace Approach 

Validation 

Fusion 
Compare to Expected Distribution 

Combination of Gaussian Distributions 

$our: FAULT DETECTION 
Residue Generation and Change Detection 

Thresholds 
Statistical Likelihood Tests 
Probabilistic Reasoning 

Fig. 3.3-2: Flow chart representation of the four steps of the methodology along with the 
implementation tools 

In our methodology each measurement parameters x is described by 
x ( k +  1) = x(k)  + u(k)+ w(k)  

Y(k)  = + v ( k )  

where w(k) is the input noise and v(k) is the measurement noise. The initial state is not known, but 
the following probabilistic information about x(O), w(k) and v(k) are known. Variables x(k), w(k), 
and v(k) are independent, random, and Gaussian distributed with 

E[x(O)]=x, ,  EEx(0)-  x o ~ x ~ o ~ - x o ~ l = x o  

E[w(k)]= 0, E[w(k)w'(j)]= Q(k)4j  

E[v(k)]= 0, E[v(k)v'(j)]= R(k)fikj 

E[(x(O)- xO)WT(k)]=O, E[(x(O)- xo)V'(k)]= 0 

E[w (k)vT (IC)]= 0 for all k and j 
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where E[-]  corresponds to taking the expectation. Q(k) is taken such that 0.5. Ax- I @ I Axrna 

where Ax- is the maximum possible change in the variable during the time period. 

Initialization 

We begin by assuming the measurement variable is normally distributed i.e., 

N(x(O);P(OIO) = x,, ;(ob)= xo) 

Prediction 

We begin at time k, where all the sensor readings at time k have been taken into account. Our 

estimate for the measurement variable is given by N(n(k) ;P(k lk ) ,~(k lk ) ) .  Using the state transition 

model we make a prediction for the state of the variable at the next sampling period
3
. This is given 

by the following distribution for our estimate 

N ( x ( k + l ~ P ( k + l ~ ) , ~ ( k + l ~ ) ) = N ( x ( k + l ) ; P ( k ~ ) + Q , x ^ ( ~ ) + ~ ( k ) ~ ( k ) )  

Fig. 3.3-3 shows the VDBN during the prediction stage. 

Fig. 3.3-3: The VDBN at the prediction stage 

Fig. 3.3-4 shows the process of prediction. Note that the uncertainty increases due to the 
uncertainty in the system model. This uncertainty is also a function of the time interval between 
samples. 

If a state space model exists, it can be used to make the prediction. 
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Vuriuble(t + A) = F[Vuriable(t,,),-, Vuriable(t), A] + Uncertainty 

3 Sigma 

Fig. 3.3-4: The increase in uncertainty during the prediction process 

Validation 

This is the part of the estimation process where a decision has to be made as to whether the 
readings from a sensor should be considered for the estimation process. Fig. 3.3-5 shows the 
corresponding VDBN during the validation process. For this purpose we first calculate the 
expected distribution for the ith sensor readings. This is given by 

Fig. 3.3-5: The decision-theoretic problem: whether to accept 
the reading for the fusion process 

To validate the sensor readings we use the principle of validation gate (Bar-Shalom and Fortmann, 
1988; Kim, 1992; Alag and Agogino, 1995). As shown in Fig. 3.3-6 we define a region where 
there is a high probability that the readings will lie. 
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Probability with which reading is expected 

\ 

Reject 3 Rejected 

Fig. 3.3-6: Region where the reading is expected as defined by the validation process 

A 

L e t , v j = ( y , ( k + l ) - j j ( k + l ) )  

Based on this expected distribution a region can be defined in the measurement space where there 
is a high probability that the measurement will be found (e.g., a 3 sigma bound corresponds to a 
confidence of 99.8%) 

The region vk+,(y) is called the validation region or the validation gate. It is the ellipse (or 
ellipsoid for multi-dimension state vector) of probability concentration, the region of minimum 
volume that contains a given probability of mass under the Gaussian assumption. Measurements 
that lie within the gate are considered valid; those outside are too far from the expected, and are 
therefore discarded. 

Fusion 

Readers are referred to Alag (1996) for more details on sensor fusion. As stated there in the 
presence of Gaussian noise the Kalman filter is the optimal filter. There are two main ways by 
which the validated readings can be fused using a Kalman filter: either sequentially or 
simultaneously. For linear systems both versions are the same and optimal. 

Secpential Update 

Fig. 3.3-7 shows the topology transformation during the sequential update process. 
Let, rn be the number of valid measurements, 
Begin with 

Mean: E[+ + ~ b , ( k  + I))]= i ( k  + 4k)+ w,(k + l>(y, (k + 1)- (k + 1b>> 

W1(k+1)=P(k+164:)S;’(k+1) 

Variance: P(k + lIyl(k + 1))= (1 - W,(k + 1)). P(k + d k )  

Perform the following loop for each sensor. For the ith sensor we have 
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Finally, 

N(x(k  + 1); P(k + 1 k + l),;(k + 1k + 1)) 

= N(x(k+l);P(k + l b i , ( k + l ) , . . , y m ( k + l ) ) ~ ( k +  4Yl(k +l),.;Ym(k+l))) 

(A 
x( k+l) 

0 x( k+l) 

Fig. 3.3-7.: The topology transformation during the sequential fusion process 

Simultaneous update using all the evidence at once 

N(x(k + 1); P(k + 1p + I),+ + 1p + 1)) 

j=1 j =1 

This completes one cycle of the validation and fusion of the sensor readings. 

Fig. 3.3-8 and Fig. 3.3-9 are examples of predicted distribution which is combined with the 
incoming evidence in the form of sensor readings for the single and multiple sensor case, 
respectively. As can be seen the smaller the variance the higher the belief in the reading. 
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Fig. 3.3-8: Example of the combination of a predicted distribution with the sensor reading. 
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Fig. 3.3-9: Example of combination of predicted reading 
with multiple sensor distribution 

Sensor Confidence 

One way to quantify sensor confidence is to calculate the similarity of the sensor reading to the 
fused distribution for the variable. Normally, sensor confidence measures are given in terms of a 
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metric (distance) between two probability density functions. The numeric value of sensor 
confidence represents the closeness between two distributions. We use a scale from 0 to 1, where 
0 implies completely independent distributions, while 1 implies identical distributions. A number 
of distance measures have been suggested, most of which are based on the likelihood ratio. 
Jefferys' Divergence Measure (Jefferys, 1946) and Bhattacharyya's Coefficient (Bhattacharyya, 
1943) are based on the likelihood ratio between two cqnditional density functions. The Kolmorgov 
Variational Distance, the Matusita Distance, the Kolmogorov-Smirnov Distance, and the Tie 
Statistic have also been proposed. We use the Bhattacharyya coefficient because of its 
computational efficiency and empirical accuracy. As a distance measure, it has the desirable 
property that it decreases or increases with the probability of error as defined by the Kolmogorov 
Distance (Kailath, 1967). Using the metric developed in Kim and Agogino (1991), we calculate 
sensor confidence by the following formula : 

3.4 Sensor Failure Detection 

For each variable, the fused estimate for the variable is used to generate residues, i.e., the 
differences between the fused estimate and the sensor readings. The statistical properties of these 
residues are then used to detect failed sensors. Since each sensor has its own residue, it is possible 
to detect multiple simultaneous sensor failures. Ideally the residues for the sensors should have a 
zero mean and a variance equal to the variance when the sensor is functioning normally. Their 
deviation from zero is a combined effect of noise and faults. The process of fault isolation, 
identifies the type of faults that have occurred. The process consists of matching the symptoms to 
the causes, i.e., matching features from the sensor residues to the faults. 

Sensor failures take a number of forms. Most failures manifest themselves as changes in the mean 
and variance of the sensor residues. A change in the mean of the residue is a symptom of a bias in 
the sensor signal, while an increase in the variance of the residue is a symptom of degradation of 
the sensor. The mean and variance of the residue can be calculated recursively. Each effect can 
occur independent of the other. Some of the failures in which we are interested include spike 
failure, stuck sensor, biased sensor, noisy sensor, and drifting sensor (incipient failure). 

Thresholds 

In general, fault detection and isolation (FDI) methods suffer from a fundamental practical 
limitation in that the system model on which the process is based is never known exactly. The 
consequence is that the generated residuals will be non-zero even in the absence of faults. As a 
result thresholds must be used to detect faults. The disadvantage of this approach is that thresholds 
not only reduce the sensitivity of the system to faults but may also depend on the magnitude and 
nature of the system disturbances. Normally, fixed thresholds are used. If a decision signal 
exceeds the threshold, the occurrence of a fault is assumed. If the decision function remains below 
the threshold, the monitored process is considered fault free. Choosing too low a threshold 
increases the rate of false alarms, while choosing too high a threshold increases the time to fault 
detection (Frank, 1990). 

In order to increase the robustness of the decision making process, investigators have tried a 
number of schemes. These include the use of adaptive thresholds (Clark, 1989), i.e., in some way 
each threshold becomes a function of measurable quantities, and the use of fuzzy logic for decision 
making (Frank, 1993, Patton, 1994). In the adaptive threshold approach the residual thresholds 
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are varied according to the control activities of the process. Frank (1994) adapted the threshold to 
changes of operational conditions by fuzzy variables and fuzzy rules. 

Statistical Tests 

Statistical tests determine which of two models is active by updating the ratio between the 
probabilities of each model being correct at each sampling instant. The sequential probability ratio 
test (SPRT) is based on this principle, as proposed by Wald (1947). Apart from its simplicity and 
its optimality property among all sequential tests with given error probabilities, it minimizes the 
average number of data samples required to reach a decision, if the samples are distributed 
identically and independently. Since SPRT is a test to determine which of the two models is 
generating all the observed data, rather than whether there is a change in the regime generating the 
data, it has to be modified to the cumulative sum (CUMSUM) algorithm (Basseville and 
Nikiforov, 1993; Kerestecioglu, 1993). 

In the SPRT test at each sampling instant, the log likelihood ratio L, of two hypotheses Ho and 

H , ,  described by two distinct sets of parameters 8, and e,, is calculated for as long as 

a < L, c p .  At the first instant k when the inequality is violated the test is stopped and a decision 

is made for Ho if L, I a or for H ,  if L, 2 p .  For the case where the observations form a 
sequence of independently and identically distributed random variables, the log likelihood ratio can 
be written as 

Lk = Lk-l + z, Lo = 0 

The thresholds a and p are related to the probability of Type I error E ,  ( i.e., the probability of 

deciding in favor of H ,  when H ,  is true) and Type I1 error€, (the probability of rejecting H ,  

when HI is true). Variables E ,  and E ,  are also called the false alarm probability and missed alarm 
probability. a and p are related to the error probabilities by 

a2 ln- p I ln- E2 1- E, 

1- E, E ,  

These relations are valid even if the observations are not independently distributed, as long as 
SPRT terminates with a probability of one. If the SPRT test is being carried out to detect changes 

in the mean and assuming that the random variable y is normally distributed with variance 02, we 
obtain 

The SPRT, which is most suitable for testing two hypotheses against each other, can be adapted to 
detecting changes that occur at an unknown time. This adaptation leads to the CUMSUM test. 
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Here, the log likelihood ratio is set back to the negative threshold a when it falls below it. In this 
case the test statistic is computed recursively as 

Change Detection and Incipient Fault Prediction Using Probabilistic Networks 

Many fault detection and isolation schemes (FDI) involve the generation of residual signals to 
monitor the performance of the actuators and the sensors. Ideally these residue signals should 
have a zero mean and a variance equal to when the sensor is functioning normally. The deviation 
of the residues from the ideal is a combined effect of noise and faults. Ideally, faults within the 
monitored system will affect its residue signal. It is therefore our aim to detect changes in the 
residue signals through which faults can be detected. 

In general, FDI methods suffer from a fundamental practical limitation in that the system model on 
which the process is based is never known exactly. Consequently, the generated residuals will be 
non zero even in the absence of faults. Due to this limitation one is forced to use thresholds to 
distinguish a fault. However, thresholds not only reduce the sensitivity of the system to faults, but 
also vary with the input signal of the original system and also depend on the magnitude and nature 
of the system disturbances. Usually, fixed thresholds are used. If a decision signal exceeds the 
thresholds, the occurrence of a fault is assumed. If on the other hand the decision function remains 
below the threshold, the monitored process is considered fault free. Choosing the threshold too 
low increases the rate of false alarms, while choosing it too large increases the time to fault 
detection (Frank, 1990). 

In order to increase the robustness of the decision making process investigators have tried a 
number of schemes. These include the use of adaptive thresholds (Clark, 1989), i.e., each 
threshold becomes a function in some way of measurable quantities, and the use of fuzzy logic for 
decision making (Frank, 1993; Patton, 1994). In the adaptive threshold approach the residual 
thresholds are varied according to the control activities of the process. An intuitive approach to 
adapt the threshold to the input was proposed by Clark (1989). The analytical solution to this 
problem was delivered by Emani-Naeini (1988), and in generalized form by Ding and Frank 
(199 1). Frank (1994) adapts the threshold to changes in operational conditions by fuzzy variables 
and fuzzy rules. Similar approaches were proposed independently by Sauter et al. (1993) and 
Schneider and Frank (1993). 

We use probability theory (beliefnetworks) to represent the uncertainty in the residual processing 
process. The proposed methodology has a number of advantages over other techniques. This 
methodology explicitly models time within the process due to which it is capable of forecasting 
incipient faults. It combines the advantages of using fuzzy thresholds: modeling the effect of 
maneuvers in the decision making process and of the SPRT/CUMSUM method: using previous 
history to make a decision. It has been argued that probability theory provides the most complete 
and consistent framework for dealing with uncertain knowledge (Pearl, 1988; Neapolitan, 1990). 
The main advantage of belief networks is that once probability values are chosen, their combination 
in the belief network is rigorous and no additional uncertainties are introduced by inadequate 
structuring of rules, certainty factor calculi, or ad hoc handling of missing evidence (Rojas- 
Guzman and Kramer, 1993). 

In this section, 
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We propose the use of probabilistic reasoning for the management of uncertainty that is 
inherent in the residue processing process. We illustrate how belief networks can be 

constructed and refined considering both exogenous and endogenous changes
4
. 

We illustrate how conditional probabilities can be estimated analytically and refined by 
learning from data. We present a new method for learning these CPT entries, which makes 
use of the special structure of the network. Hence, by using probabilistic networks we can 
combine expert knowledge (analytical probabilities and structure) with knowledge obtained 
from learning from data. 
We propose the use of dynamic probabilistic networks to model this stochastic temporal 
process. By monitoring the residues using DPNs we are able to predict (by using 
probabilistic projection) the degradation and eventual failure of the system being monitored. 

Belief Network Representation and Conditional Probabilities for Each Sensor 

The two main properties whose changes we are interested in monitoring are the changes in the 
mean and variance of the residual signal. A change in the mean of the signal is a symptom of a bias 
in the sensor signal, while an increase in the variance of the sensor signal is a symptom for the 
degradation of the sensor. Each effect can occur independent of the other. In order to construct a 
belief network with a correct structure, we need to choose parents for each node such that each 
node is conditionally independent of its predecessors given its parents. Normally, if one tries to 
build a diagnostic model with links from symptoms to causes, one has to specify additional 
dependencies between otherwise independent causes. However, by using a causal model we 
require far fewer CPT entries which are easy to estimate (Russell and Norvig, 1995). 

Using this we build the belief network shown in Fig. 3.4-1. We begin with nodes ‘Mean State’ 
and ‘Variance State’ (numbered 1 and 2, respectively), which correspond to the actual mean and 
variance of the residual signal. These are to be estimated by processing the residual signal. ‘Mean 
Evidence’ and ‘Variance Evidence’ (nodes 3 and 4, respectively), represent the uncertain 
information about the mean and variance that is extracted from the residual signal. There are no 
links between node 1 and node 2 because each can change independent of the other. There, is 
another node ‘Sensor State’ (node 5) which summarizes the beliefs in nodes 1 and 2. During 
implementation evidence coming in at nodes 3 and 4, is used to update the beliefs at the remaining 
nodes. Normally, changes in the signal occur over a long period and to reduce the effect of noise a 
sliding data-window is used (size m). In addition, a distribution over the states is obtained by 
considering n windows together. For the examples shown later, we have taken m=12 and n=5. In 
this example each node has 3 states. 

Mean State (X, ) and Mean Evidence ( X ,  ) Variance State( X 3 )  and Variance Evidence (X,) 

Negligible (-0.1,O.l) Negligible(< 0.2) 

Small(-.4 - -.l;.l - .4) Small(< 0.4 & > 0.2) 

Large(>.4) Large(> 0.4) 

The sensor is defined to be in the “normal” state when both bias and variance state are in the 
negligible (also called “normal”) state; it is said to be in the “Faulty Marginal” state when either one 
or both of the “Bias” and “Variance State” are in the “Small” state, else it is said to be in the “Faulty 
High” state. 

4 
Exogenous changes are those caused by forces external to the system as opposed to endogenous 

changes which are generated by forces internal to the system (Hanks et al., 1995). 
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Negligible 

Fig. 3.4-1: The belief network used for fault detection for each of the sensors. The events for 
each of the states, and numbering of the nodes is also shown. 

Next, we need to estimate the conditional probabilities of the various states. From historical data 
one can estimate the mean p(idea1ly zero) and the variance oz of the sensor residue when the 
sensor is in the normal state. From statistical theory (Kennedy and Neville, 1986), it is known that 
if n is the size of the window over which observations with mean p and variance oz is sampled, 
then the variance for the mean 0: is given by 

and &e statistic 

z = -  E-p 

o/& 

where X the sample mean, approaches a normal distribution with mean 0 and variance 1 as n 
becomes indefinitely large. Using the above formula one can calculate the corresponding 
conditional probability of the variable X, given X, =negligiblefor various values of the “Variance 
State”. CPT tables obtained by this process are shown in Alag (1996). 

Similarly, if repeated samples of size n are drawn from a normally distributed population with 
variance d ,  the estimated variance s2,  will vary from sample to sample. Its sampling distribution 
in standardized form ( n - 1 ) ~ ~  oz is described by the statistic x 2 .  The statistic xz is always positive. 
Again, the conditional probabilities of the state x, given the states of X, can be calculated by using 
this distribution. The corresponding conditional probabilities for the states are given later. 

The conditional probabilities for the “sensor state” node given the “bias” and “variance state” are 
obtained by using the definition of the states. It is one whenever, the conditions satisfying the 
states are fulfilled otherwise it is zero. 

Inference Process 

During implementation the evidence about each of the sensors comes into the mean evidence” and 
“variance evidence” states. We need to get the beliefs for the various states for the “mean state’ and 
“variance state”. We use the rules for probabilistic inference using the method of topology 
transformation. We first remove the barren node “Sensor State”. We will first update the new 
beliefs for node 1 followed by node 2. 

Belief Update for Node 1 

We make use of the rule for arc reversal to reverse the arc from x, to x,. An arc from state node x 

to state node y can be reversed, provided x does not have more than one path to y (so as not to 
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cause a cycle). On reversal of the arc from x to y, node y inherits all the direct predecessors of 
node x and vice versa (Olmstead, 1984). This corresponds to 

where ax* is the sample space of x, , and the probabilities at the previous inference process is taken 
for Pr( x,). The belief at node 4 is propagated to node 2 and node 4 is deleted. This corresponds 
to 

Pr(x2le4) = xPr(x2Ix4 = Y)Pr(x4 = Y I L )  
Y EQ4 

Next, node 2 is absorbed into node 3, and node 2 is deleted which corresponds to 

pr(&Ix1,&)= ~ P ~ ( X ~ ~ X I Y X ~  =y)Pr(x2 = Y 1 5 4 )  

YERx2 

The arc from node 1 to 3 is reversed, which corresponds to 

Lastly, the new evidence at 2 is propagated to get the new beliefs in node 1 

pr(x~l&,64)  = cPr(x1Ix3 = Y~~4)pr(x3 = Y(C4)  

Y €fix3 

Belief Update for Node 2 

We first propagate the beliefs at node 1 (where the beliefs in node 1 before it is updated is used) 
and then delete. This corresponds to 

Next, we reverse the arc from node 2 to node 4 

and the arc from 2 to 3 is reversed, which corresponds to 
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Here, we have the property of d-separation: x, d-separates x, and x,. 
Definition : Direction-dependent separation (d-separation) ( pg. 444, Russell and Norvig, 1995): A 
set of nodes E d-separates two sets of nodes X and Y if every undirected path from a node in X to 
a node in Y is blocked given E. A path is blocked given a set of nodes E if there is a node Z on the 
path for which one of three conditions holds: 
i. Z is in E and Z has one-arrow on the path leading in and one arrow out. 
ii. 2 is in E and Z has both path arrows leading out. 
iii. Neither Z nor any descendant of Z is in E, and both path arrows lead in to Z. 

Next, the evidence at nodes 3 and 4 is propagated 

Refining the Belief Network 

Structure 

We can keep making our belief network structure more and more complex depending upon the 
degree of accuracy and reliability required. We can identify critical variables and add them to our 
structure. For example, the residual signal should ideally be pure noise. Hence, testing the signal 
for whiteness can provide us with additional information. Therefore, in this case we would add 
two more nodes ‘Whiteness State’ and ‘Whiteness Evidence’ to the structure. Other exogenous 
factors, such as the age and type of the sensor, time since last calibrated, common mode failures 
among sensors, detection of maneuvers in the plant can also be added. Fig. 3.4-2 shows a more 
complex belief network. To keep matters simple we will use the belief network in Fig. 3.4-1 for 
the remaining part of this section. 

Fig. 3.4-2: A more comprehensive belief network 

Conditional Probabilities 

The topic of learning in belief networks has received attention only recently. The results that have 
been developed are new and still evolving, but they have been shown to be remarkably effective in 
some domains. In the learning process for belief networks we first encode existing knowledge of 
an expert or experts in the probabilistic network. Next, a database is used to update this knowledge 
in the form of refining the CPT entries and identifying new distinctions and relationships. Learning 
in belief networks is similar to that in neural networks, however belief networks have two main 
advantages. Firstly, it is easy to encode expert knowledge in the form of probabilistic knowledge 
and use this knowledge to increase the efficiency and accuracy of the learning process. Secondly, 
the nodes and arcs in a belief network can be easily interpreted as they correspond to recognizable 
distinctions and causal relationships (Heckerman, 1995; Russell and Norvig, 1995). There are 
several varieties in which the problem of learning in belief networks comes. The variables in the 
network can be observable or hidden. Further, the structure of the network can be known or 
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unknown. We will be mainly concerned with the case where the structure of the network is 
known. 

Referring to Fig. 3.4-1, we may be interested in refining the CPT entries for the nodes 1 to 4 (node 
5 just summarizes the beliefs at node 1 and 2, and can be removed from the learning process). We 
can convert this to the simplest case of learning, in which all the nodes are Observable, i.e., we 
create a data-set which contains the beliefs in all the nodes. Then since each node is observable, 
each data case can be pigeonholed into the CPT entries corresponding to the values of the parent 
variables at each node. The posterior values for the conditional probabilities can then be calculated 
based on Dirichlet priors (Spiegelhalter et al., 1993; Heckerman, 1995). 

However, estimating the beliefs for nodes 1 and 2 involves, using the subjective probabilities of an 
expert. It is better to just obtain the evidence for nodes 3 and 4, and treat nodes 1 and 2 as 
unobservable nodes. This case of known structure and hidden variables (in this case nodes 1 and 2 
are hidden) is similar to the neural network learning case. Buntine (1994) has suggested the use of 
generalized network differentiation for learning probabilistic networks with hidden nodes. Neal 
(1991) derives an expression for the likelihood gradient in sigmoid networks using stochastic 
simulation, and uses it to show that the Boltzmann machine is a special case of a probabilistic 
network. Lauritzen (1991) considers the application of the Expectation Maximization (EM) 
algorithm to solve this case. 

More recently, Russell et al. (1995) present an algorithm which they view as a special case of EM, 
where the maximize phase is carried out by a gradient-following method. They assume that each 
possible setting of the weights is equally likely a priori, and they use the maximum likelihood 
criteria for choosing the weights. In their method to learn the conditional probability table (CPT) 
entries a local gradient is set up for each CPT entry. To obtain the gradient, an inference algorithm 
is run separately for each data case. The gradient for changing the weights is the ratio of the 
probability of obtaining the case representing the CPT entry and the present weight. 

To maintain the condition that the CPT entries corresponding to a particular case (an assignment of 
values of the parents) must sum to 1, the gradient is renormalized to remain on the constraint 
surface. However, they do not consider the case where a network may contain a root node (node 

with no parents) which is unobservable5. This can be overcome by estimating the a priori values 
(subjective probabilities). In case one wants to circumvent the process of estimating the a priori 
probabilities one has to do a lot more work. Alag (1996) contains an alternative method that can 
estimate the a priori probabilities using the structure of the network. We must however emphasis 
that this method is useful only for only very small networks. 

Comparison with Other Methods 

The proposed methodology differs from other methods used for change detection such as 
thresholds, adaptive thresholds using fuzzy logic, and statistical methods such as 
SPRTKUMSUM in that it explicitly models time as one of the variables. Due to which it is capable 
of forecasting and hence predicting incipient faults before they reach catastrophic limits. Like 
thresholds and SPRTKUMSUM we use probability theory to represent uncertainty and for 
decision making. It uses the advantage of the SPRTKUMSUM test over thresholds of using the 
history of the residues in making a decision of a change. Unlike the SPRTKUMSUM test it can 
also detect changes in the variance. 

51n their method, a priori probabilities are required to do probabilistic inference. However, there 
is no way to change these a priori probabilities during their learning process for an observable 
node. 
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For detecting multiple levels of changes a number of SPRTKUMSUM tests need to be carried out 
in parallel. Here, the result of the method is a probability that various change states are true. One 
can obtain the expected change magnitude by taking the expected value over the states using this 
probability. It incorporates the advantages of fuzzy-adaptive thresholds in that information about 
process maneuvers can easily be incorporated in the decision making process by adding nodes to 
the belief network. In addition no added uncertainty is added during the inference process using the 
inference rules for a belief network. 

Summary 

In this chapter, we have developed a comprehensive methodology for intelligent sensor 
measurement validation, fusion, and sensor fault detection. The methodology is effective in 
detecting sensor faults since it combines information from a number of sources by looking at 
information from a sensor individually, information from the sensor as part of a group of sensors, 
and the immediate history of the variable that is being monitored. A major advantage of this 
methodology is its ability to detect multiple simultaneous failures. This work addresses the very 
important problem of distinguishing between a sensor failure and a system failure for complex 
systems. The proposed four step methodology of redundancy creation, state prediction, validation 
and fusion, and fault detection can detect subtle sensor failures such as drift in mean and 
degradation of the sensor over time. 

We have also illustrated how probabilistic reasoning can be used to handle the uncertainty inherent 
in the residue processing process. We have illustrated how to refine and build an appropriate belief 
network structure and how the conditional probabilities can be estimated both analytically and from 
learning from data (for which we have presented a new method which is applicable to only a 
special class of belief networks). We have illustrated how DBNs can be used for forecasting. We 
have derived a recursive formula for the on-line adaptation of the state evolution model. The 
combined sensor fault detection methodology is very effective in both detecting and forecasting 
potential sensor faults. 
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4. Hazard Analysis 
4.1 Introduction 

The longitudinal motion controller in the AHS controls maneuvers such as platoon joining and 
splitting. Sonar and radar sensors are components of the longitudinal motion controller which 
provide information about the vehicle separation distance between cars or approaching objects. 
There are certain external conditions which alter the sensor’s performance. Research has been 
conducted to explore environmental condition (e.g., rain, fog, snow) effects on the sensors. The 
current focus is on analyzing the sensor systems and determining all possible failure modes using 
Fault Tree Analysis. Knowledge of all possible failure modes and their characteristics can assist in 
anticipating future failures. Thus, hazardous situations on the highway can be averted. The safety 
of the Intelligent Vehicle Highway System as a whole will be improved. 

The goals of reliability and safety analysis are to reduce the probabilities of failure and the attending 
human (death, injury, disability), economic (shutdown of highway, loss of vehicles and other 
equipment), and environmental losses (pollution due to spills from vehicle tanks, burning 
vehicles). A basic failure event can be an incorrect reading from a sensor. Typical policies to 
minimize hazards include 1) sensor redundancies; 2) inspection and maintenance; 3) protective 
systems such as bumpers, fences between the lanes; and 4) alarm displays. 

Comparison of Techniques 

Hazards Analysis 

r Fault tree analysis 

I Event tree analysis 

operability study 

analysis 

Characteristics 

Defines the system hazards and 
identifies elements for FMEA and 
fault tree analysis. Overlaps with 
FMEA and criticality analysis 
Examines all failure modes of 
every component. Hardware 
oriented 

Identifies and ranks components 
for system upgrades 

Advantages 

none required first step 

Disadvantages 

Easily understood. Well 

Often, combinations of approach; non-mathematical, 

Examines non-dangerous 
accepted, standardized failures. Time consuming. 

failures and human factors not 
considered 

Standardized technique. Easy 

factors, common cause mathematical 
not take into account human to apply and understand. non- 
Follows FMEA. Often does 

failures, system interactions 
Starts with initiating event and 

resemblance to system flow relationships. Fault oriented: which cause it. 
understand, bear no good for finding failure finds the combination of failures 
Large fault trees are difficult tc Accepted technique. very 

we look for ways system can sheet, ad are not 
fail mathematically unique. 

Complex logic involved. 
Starts with initiating events and 

of fault trees documented. Sequential paths backward, using fault tree. 
quickly. Similar disadvantages encompassing. Well forward, using consequence tree; 
Can become too large very Extremely flexible. All Starts at critical event and works 

major plant variables. 
well described. plants. cause and effect of changes in 
Technique not standardized or Suitable for large chemical Extended FMEA which includes 
detailed analysis consequences of failure. sequences. 
sequences. Not suitable for sequences and alternative examines alternative event 
Fails in case of parallel Can identify (gross) effect 

clearly shown. 

Table 4.1-1: Techniques for hazard analysis 
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Fault Trees and Decision Tables 

Starting from an undesired event, more basic events are found until the basic event is found. Gate 
symbols connect the event symbols. The former connect events according to their causal relation. 
There are several types of gate symbols: AND gates and OR gates are deterministic while 
INHIBIT gates express a probabilistic causal relation. Event symbols are described by: 1) the 
circular basic event, for which the component itself is responsible and the component must be 
repaired or replace (such as “Valve failure due to wearout,’); 2) diamond shaped undeveloped 
events for which a detailed analysis has not been carried out yet; 3) rectangular shaped intermediate 
events; 4) oval conditional events; 5) house shaped events which either do or do not occur. 

A cut set is a collection of basic events which - if it occurs - guarantees the top event to occur. A 
path set is a collection of basic events which - if it does not occur - guarantees the top event not to 
occur. Since there are many cut sets it is desirable to look at general failure modes first. These 
minimal cut sets are such that if any basic event is removed, the remnants are no longer a cut set. A 
cut set including other sets is not a minimal cut set. 

Reliability 

The reliability R(t) is expressed as the probability of survival to (inclusive) age t and is the number 
surviving at t divided by the total sample. From this, a failure distribution (or survival distribution 
= 1-F(t)) can be created which is generally a monotonically increasing function. The curve created 
through F(t+dt)-F(t) is the failure density f(t). From this the probability for failure between ages t 1 
and t2 can be obtained by integrating the curve between t l  and t2. The failure rate r(t) is the 
probability of failure per unit time at age t for the individual in the population r(t)=f(t)/( 1-F(t)) 
which results in the “bathtub” curve. That is, there are a fairly high number of early failures (bum 
in) followed by a “prime of life” period with lower failure rate (failures occur randomly) which in 
turn is Followed by a final wearout or bum-out phase with high failure rate. 

Incorporating these probability calculations into failure diagrams by attaching probabilities to the 
transitions between states, one arrives at Markov type influence diagrams as shown in Fig. 4.1-1. 

hdt=P( 1 IO) 

P(OIO)= 1 -hdt 

pdt=P(OIl) 

Fig. 4.1-1: Markov transition diagram 

1 -@t=P( 1 11) 

where 1 is the conditional failure intensity, or the probability that the component fails per unit time 
at time t, given that it is in the normal state at time zero and is normal at time t. Generally l(t) f r(t) 
because the latter assumes the continuation of the normal state to time t, i.e., no failure in the 
interval [O,t]; they are the same when the component is non-repairable. Variable m is the 
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conditional repair intensity, or the probability that the component is repaired per unit time at time t, 
given that it jumped into the normal state at time zero and fails at time t. 

h2 

Fig. 4.1-2: Markov transition diagram for the valve 

ImDortance 

Importance is essentially a type of sensitivity analysis which describes the contribution of a 
component or cut set to a particular top event. There are different importance measures such as 
Birnbaum’s Structural Importance (classical sensitivity) and Criticality Importance. The latter 
considers the fact that it is more difficult to improve the more reliable components than the less 
reliable components. Criticality Importance is different from the Criticality in the Failure Mode 
Effect and Criticality Analysis which will be discussed later. 

4.2 Hazard Characterization 

It is necessary that the Intelligent Vehicle Highway System be at least as safe as the current 
highway system. Ordinary traffic casualties are 90% associated with some kind of human error 
(Hitchcock, A., 1992), but in IVHS humans will no longer be in control of their own vehicles. In 
the IVHS environment where there is such a dependency on sensor performance, a sensor 
component failure can lead to catastrophic situations. It has been hypothesized that in the IVHS the 
number of accidents will decrease and the number of vehicles involved with accidents will 
decrease, but the mean number of vehicles involved in an individual accident will increase. 
Similarly, the number of fatal accidents will decrease and the number of fatalities will decrease, but 
the mean number of fatalities per fatal accident will increase (Hitchcock, A., 1992). 
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Hitchcock has completed extensive research in the area of hazard characterization and has defined a 
hazard as a precursor to a condition in which one further failure could lead to a catastrophe. A 
catastrophe is a high speed collision between platoons where multiple deaths and injuries are likely. 
In Hitchcock's exhaustive set of hazards that can lead up to catastrophes, he presented the 
following situations. 

A collision is likely to occur: 

a) when all platoons involved are under control, automated or manual; in this case vehicles 
were too close before a final control failure. 

Hazard 1: A platoon is separated from one ahead of it, or from a stationary object 
in its path, by less than platoon spacing. 

Hazard 2: A vehicle, not under system control is at an unmeasured or unknown 
distance in front of a platoon. 

b) when one platoon is not under control; this will happen if automatic control is switched off 
before the driver is ready, or not switched on when the driver lets go. 

Hazard 3: A vehicle is released to manual control before the driver has given a 
positive indication that he/she accepts it. 

Hazard 4: a vehicle is released to manual control at less than manual spacing from 
the vehicle ahead of it; or at such a relative speed that manual spacing will be 
realized in less than 2 seconds, or while the brakes are being applied. 

c) when the final failure is a failure to brake or to communicate that brakes should be applied. 

Hazard 5: a vehicle under automatic control is in such a condition that if 
instructed form the infrastructure to brake, it will not do so. 

Sensor Function 

The sonar and radar sensors are components of the longitudinal distance controller which controls 
the distance between vehicles in the platoon. The sensors, mounted on the vehicle's grill, measure 
the distance from a vehicle or an approaching object. Both sensors use the same underlying 
physical principal to measure the separation distance. They emit a signal which is reflected by a 
target (target refers to either object or vehicle) within the sensor range; the reflected signal, or echo, 
is then received by the sensor. The time for the signal to travel to the target and return as an echo is 
recorded. Then the known velocity of the pulse propagation is used to convert the output to 
distance by a data acquisition system. 

Sensor Behavior 

Radar and sonar sensors are susceptible to the external conditions under which they operate; 
conditions such as rain, fog, and humidity have a certain effect on sensor output. The research 
done by Bellm includes a series of experiments conducted on the longitudinal controllers in sub- 
optimal environments. Bellm quantitatively characterized the effects of the environment on sensor 
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output (Table 4.2-1). This information facilitates sensor failure prediction because the symptoms 
of the failure are known. 

Radar Sensor Output Sonar Sensor Output 

Power Line 
constant 4.25m Data Line 

constant -0.85m constant 2.20m 

variance increased by facor of 4 variance increased by factor of 4 Rain 

variance increased by factor of 4 Fog not significantly affected 

constant Om mean: 1.5m<x<2.5rn D i r t  

constant 2.20m 

mean increased by 10% 

‘Plastic variance increased by 20% constant Om 

IVi brat ion variance increased by 20% not significantly affected 
- 

Table 4.2-1: Characterization of sonar and radar behavior 

4.3 Failure Analysis 

There are several qualitative and quantitative methods established for exploring failure modes and 
the reasons for which they occur. Fault Tree Analysis provides both the benefits of a qualitative 
and quantitative analysis through a graphical tool that focuses on a failed state and provides a 
method for determining the causes of the failed state. After completion of the fault tree, Boolean 
Algebra can be used to determine the minimum number of component fault combinations that will 
lead to sensor failure. 

The Fault Tree Analysis Method (Vesely, W.E et al, 198 1) focuses on failure because a failed state 
is generally easier to characterize than is a successful state. The basic elements of the Fault Tree 
method depict the logical interrelationships of basic events that lead to the undesired event (failed 
state) of the fault tree. There are entities known as “gates” which serve to permit or inhibit the 
passage of fault logic up the tree. Gates show the relationships of events needed for the occurrence 
of a “higher” event (outputs to the gate). Gate symbols denote the relationship between the input 
events and the output event. 

The component fault categories are classified as primary, secondary, and command. A primary 
fault is any fault of a component that occurs in an environment for which the component is 
qualified (e.g. defect). A secondary fault is a fault of a component that occurs in an environment 
for which it has not been qualified. A command fault is a fault where there is proper operation of a 
component but at the wrong time or in the wrong place. Fault Tree Symbols and their descriptions 
are illustrated in Figure 4.3- 1. 

The Fault Tree is complete when all possible occurring events have been exhausted and all the 
branches terminate with either a basic event or an undeveloped event. Boolean algebra can then be 
used to quantitatively determine the smallest combination of component failures which lead to 
system failure. 
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Primary Events: 

0 Basic Event: A basic initiating fault requiring no further development. 

0 Undeveloped Event: An event which is not further developed because it is 
of insufficient consequences or because information is unavailable. 

Intermediate Event Symbols: 

Intermediate Event: A fault event that occurs because of one or more 
antecedent causes acting through logic gates. 

Transfer idout: indicates that the tree is either developed further on another 
page or is the continuation of a tree from a previous page. 

Gate Symbols: 

a OR: Output fault occurs if at least one of the input faults occurs. 

0 A N D :  Output fault occurs if all of the input faults occur. 

Fig. 4.3-1: Basic fault tree symbols (Vesely, W.E, et al, 1981) 
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Failure analysis was performed on the longitudinal motion controller to predict faults that could 
later lead to catastrophic failure. Fault Tree Analyses were conducted on sonar and radar sensors. 
The faults predicted dealt with component failure and operation in sub optimal conditions that could 
possibly lead to system failure. The results from the fault tree analyses can be used to anticipate 
further failure and most importantly, hazards. The component faults derived from the trees can be 
considered symptoms for types of failures that lead to specific hazards. 

4.4 Fault Tree Analysis of the Radar Sensor 

For the radar sensor the failed state is described as “Radar Sensor output is not close to the true 
distance.” The next step was to determine how to further expand on this failure. Three separate 
events, connected by the logic gate “OR” re-express the failure: primary fault (defect), secondary 
fault, and command fault. 

The primary fault is defined as a defect internal to the sensor, most likely occurring with the 
electrical components. The resulting outcome of any electrical component failure is a sensor output 
equal to the maximum or minimum of that sensor. 

The command fault has been defined for this purpose as either a power failure or a data line failure 
of the longitudinal motion controller. For a data line failure the observable characteristic of the 
output is approximately constant at 4.25 m and for a power failure the output is around 2.2 m. 

The secondary fault can be re-expressed by two events connected by the logic “OR’ gate. “Radar 
Sensor Failure due to environmental clutter” and “Radar Sensor Failure due to range limitations” 
further describe the intermediate event. “Radar Sensor Failure due to range limitations” is shown 
as an undeveloped event, where causes of failure cannot be determined due to lack of information 
of sensor characteristics or observations. The intermediate event of “Radar Sensor Failure due to 
environmental clutter” can be described by two intermediate events and an undeveloped event. The 
RSF due to corrosive effects is an attempt to describe the sensor performance near the ocean or any 
environment where corrosive agents are in the air and can possibly affect the integrity of the 
electrical components and lead to degradation. This event cannot be described further and is 
therefore considered an undeveloped event. 

The weather and rugged road conditions describe the intermediate event of environmental clutter. 
They are connected by the logic “OR’ gate. In terms of weather conditions, rain, snow and 
humidity have shown to have adverse affects on sensor performance. Rain can be affect the sensor 
output in two ways, internally the moisture can cause a power failure and externally the sensor 
signal can be attenuated by the water drops. Both of these intermediate events can be characterized 
by basic observations. The moisture can be predicted by a constant output of 2.2m and the 
attenuation can be predicted by an increase of variance by a factor of four. Snow is the cause of 
similar results. The moisture from the snow can again internally affect the electrical components 
and the same prediction can be made (output of 2.2 m). The snow can also reflect the sensor 
signal in which case the basic observation is that the output mean between 1.5 m and 2.5 m. The 
humidity in the highway environment may cause internal damage to the sensor in the same manner 
that the moisture from the rain and snow cause damage. 

The road conditions describing radar sensor failure are road clutter, rugged road conditions, and 
road course. The three events are connected by the logical “OR’ gate. The course failure refers to 
an event on the highway that results in a loss of communication between cars in a platoon, such as 
a round bend or a pothole in the road where the sensor signal emitted is not aimed at the car ahead 
of it. The rugged road conditions can result in a vehicle vibration in which case, the observed 
characteristic in the sensor output would be an increase in variance by 20%. The road clutter can 
be further described as “Radar Sensor Failure due to debris covering the sensor” and “Radar 
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Sensor Failure due to debris from the road environment.” The two intermediate events are linked 
by the logical “OR” gate. The debris covering the sensor has an observable effect on the sensor 
output; the sensor mean is between 1.5 m and 2.5 m. The debris from the road can have any 
effect on the sensor output and cannot be clearly described and for this reason it has been left as an 
undeveloped event. 

4.5 Fault Tree Analysis of the Sonar Sensor 

The sonar sensor fault tree analysis is quite similar. The undesired top event is “Sonar Sensor 
Failure: the output is not close to the true distance.” The three intermediate events, primary 
(defect), secondary, and command fault further describe the top fault and are logically connected 
by the “OR” gate. 

The primary fault is defined as a defect internal to the sensor, most likely occurring with the 
electrical components. The resulting outcome of any electrical component failure is a sensor output 
equal to the maximum or minimum of that sensor. 

The secondary fault is associated with a proper operation of a component but in environments for 
which it was not designed for. The two intermediate events are connected by the logical “OR’ 
gate. Sonar Sensor Failures due to the environment or due to range limitations describe two 
circumstances for which the sensor was not designed. The observable characteristic of range 
limitation for the sonar sensor is a default value of 15m when out of range. Similar to the radar 
sensor, the environmental fault can be further described by weather conditions, road conditions, 
and corrosive effects. These events are connected by the logical “OR” gate. Corrosive effects 
again refers to the affects of the electrical components of the sensor in an atmospheric environment 
where corrosive agents are present. However, further information about the effect on the output of 
the sensor and thus, this remains an undeveloped event. The weather and road conditions can be 
defined more completely. 

The weather conditions affecting the sonar sensor are rain, snow, humidity, and fog. The 
moisture in the rain can possibly short out the electrical component in which case the sensor output 
would show outliers at +2m. Water drops from the rain can also serve to attenuate the signal and 
the variance in the output would increase by a factor of four and the mean would increase by 10%. 
Snow has a similar effect. The moisture can affect the sensor internally in which case the output 
would show outliers at 2m. The snow covering the sensor would result in a constant output of 
Om. Humidity and fog have the same affect that the moisture has, it may damage the sensor 
internally and result in an output with outliers at 2 m. 

The road conditions which affect the sonar sensor performance are road clutter and course 
condition. The road clutter can be either debris covering the sensor or debris from the highway 
environment. The debris covering the sensor would result in a constant output of Om while the 
characteristics for the sensor signal hitting random debris from the highway environment cannot be 
determined. The course can cause Sonar Sensor Failure in that a loss of communication would 
render the output as not the true distance. However, an observable characteristic is not noticed and 
hence it remains an undeveloped event. 

4.6 Linking Faults with Hazards 

The completed fault tree provides important information about sensor failure. The faults leading up 
to the failure have been identified and their correlation to hazards can now be examined. There is 
not an established method to complete this, however, the fault tree analysis provided a methodical 
way of thinking that can be similarly applied to each fault. 
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An example of the flow chart method is shown in Figure 4.6- 1. The first event in the flow chart is 
the fault: “Radar Sensor Signal Attenuated by Rain Drops”, the following event is a result from this 
fault, “Radar Sensor Performance Inhibited”, the observable symptom from this fault is, “Radar 
Sensor Output Increases”. As a result of these events the Longitudinal Controller will receive 
information that is not close to the true measurements which leads to three possible situations, 
vehicle accelerating too quickly, decelerating too quickly, or not responding quick enough. As a 
result, the vehicle may be either too close, too far, or at an unknown distance from the vehicle 
ahead of it. These scenarios point to three possible hazards: 1,2 and 4. 

Signal 
Attenuated by 

Radar Sensor Radar Sensor Longitudinal 
Controller 

Inhibited increases receives bad 
data 

-+ Performance -+ Output - 
I 

Accelerates 
Too Quickly 

Vehicle too 
close or at 
unknown 

Vehicle does 
not respond 
quick enough 

Vehicle 
Decelerates 
Too Quickly 

1 
Vehicle too Vehicle too 
close or at 

distance distance 

Hazard 1 
Hazard 2 
Hazard 4 

Fig. 4.6-1: Radar sensor hazard flow chart 

The same procedure was employed for all the component faults and Tables 4.6- 1 and 4.6-2 
illustrate the results. 

Table 4.6-1: Linking radar sensor faults with hazards 
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Table 4.6-2: Linking sonar sensor faults with hazards 

4.7 Conclusions 

Through Fault Tree Analysis the component faults that lead up to system failure can be qualitatively 
predicted. The symptoms of these failures were distinguished by previously completed research 
The fault characteristics provide useful insight as to what happens with the controller if a failure 
occurs. This information can be used to predict which hazards are imminent. The results gathered 
from the Fault Tree Analyses show that the hazard definitions are far too broad to provide useful 
information in failure analysis. Future work should include redefining the set of existing hazards 
to allow for use in failure analysis. Similarly, the trees could not be analyzed quantitatively using 
Boolean algebra because of the large number of undeveloped events and the lack of data 
corresponding to those events. Although the Fault Trees developed for the radar and sonar sensors 
are very limited and exclusive in nature, they serve as a springboard to other applications. 
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Radar Sensor Failure: 
ouput is not close to the 
true distance 

1 I 

pimary fault->defect 
Radar Sensor Failure: 

secondary fault 
Radar Sensor Failure: 

command fault 
Radar Sensor Failure: 

I 

Radar Sensor Failure 
due to radar clutter 

Radar Sensor Failure Radar Sensor Failure 
due to weather due to road conditions 
conditions 

Radar Sensor Failure: 
power line down 

Radar Sensor Failure: 
data line down 

or less 
constant at 

Fig. 4.6-2: Fault tree of radar sensor: Main tree 
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Radar Sensor Failure: 
Error with Information 
Fusion' 

I 

Radar Sensor Failure: 
Error with Signal 

Radar Sensor Failure: 
Error with Receiver 

Radar Sensor Failure: 
Error with Duplexer 
and Filter 

Error with Transmitter 

* an electrical component failure may lead to sensor 
output equal to the minimum or maximum 

Fig. 4.6-3: Fault tree of radar sensor: Primary fault branch 
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sensor performance sensor performance 

I I 
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the water drops 

I 

Radar Sensor Failure: Radar Sensor Failure: 
water shorts out 
electrical components electrical components 

water shorts out /I 
I I I 
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Radar Sensor Failure: 
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sensor 
output is 
constant 
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I 
Radar Sensor 
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moisture affects the 
sensor performance 
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Radar Sensor Failure: 

electrical components 
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output: 
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output is 
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2.20m 

Fig. 4.6-4: Fault tree of radar sensor: Weather condition branch 
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Radar Sensor Failure 
due to rugged road 
conditions Radar Sensor 

Failure 
due to course 

Radar Sensor Failure 
due to road clutter I 

due to vehicle 
Radar Sensor Failure 

vibration 

I 

variance 
increased by 

Radar Sensor 
Failure 
due to debris 
covering sensor 

Radar Sensor Failure 
due to debris from 

sensor 
output: mean 
1.5mcxc2.5m 

Failure: signal 
reflected by 
nontarget 

Fig. 4.6-5: Fault tree of radar sensor: Road condition branch 

81 



Sonar Sensor 
Failure: 
output is not close to 

Sonar Sensor 
Failure: 
pimary fault-->defect 

Sonar Sensor Sonar Sensor 
Failure: Failure: 

command fault 

A 

I 
Sonar Sensor Failure 
due to environment 
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r - l  
Sonar Sensor 
Failure 
due to range 
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output is default 
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Failure 
due to weather 
conditions 

Sonar Sensor Failure 
due to road 
conditions 

Fig. 4.6-6: Fault tree of sonar sensor: Main branch 
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Sonar Sensor 
Failure: 
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Error with Threshold 
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Sonar Sensor 
Failure: 
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Failure: 
Error with 
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Failure: 
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Fig. 4.6-7: Fault tree of sonar sensor: Primary fault branch 
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Sonar Sensor Failure: 
power line down 

Sonar Sensor Failure: 
data line down 

sonar sensor 

output is 
constant at 
about 

Fig. 4.6-8: Fault tree of sonar sensor: Command fault branch 
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Fig. 4.6-9: Fault tree on sonar sensor: Weather condition branch 
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Fig. 4.6-10: Fault tree of sonar sensor: Road condition branch 

86 



5. Intelligent Decision Advisor 

This chapter outlines an approach to optimal safety decision making under adverse conditions in 
Advanced Vehicle Control Systems (AVCS), with specific application to the California Partners for 
Advanced Transit and Highways (PATH) program. The outputs from safety decision making are 
intended as guidelines for public policy makers to ensure minimal injury and vehicle damage while 
substantially improving highway capacity. The Intelligent Decision Advisor (IDA) is introduced 
and its components are described. 

5.1 Overview 

Automobiles in the AVCS envisioned by the PATH program rely on sophisticated communication 
and multi-sensory capabilities in order to carry out the main goals of increasing highway capacity 
while improving passenger safety. Dangerous conditions can arise when sensors and/or 
environmental variables (vehicle or roadway) are less than ideal (Agogino, et al., 1995; Hitchcock, 
1992). Therefore, Advanced Vehicle Control Systems must be able to determine when such 
conditions are likely to be present and then decide which action (e.g. full stop, lane change 
(Godbole, et al., 1995; Lygeros, et al., 1995) will cause the minimal expected passenger injury 
and, as a secondary goal, minimal expected vehicle damage. At the same time, highway capacity 
maximization is desirable. This research divides this optimization process into the modules shown 
in Figure 5.1 - 1 : Hazard Diagnosis, Trajectory Prediction, Impact Evaluation, and InjuryDamage 
Minimization. 

Fig. 5.1-1: IDA overview 

5.2 Initial Conditions and Sensor Readings 

Suppose that two vehicles, j = 1,2, are traveling down an AVCS capable highway. The highway 
is assumed to be straight with the flow of traffic moving along the Y axis and lateral movements 

measured along the X axis. Vehicle heading angles (EDC, 1989) are described by w. See Figure 
5.2-1 for a pictorial representation of these coordinates. The vehicles are exposed to a variety of 
situations which may or may not result in an accident. Neither, one, or both vehicles may then 
incur injury and damage, depending on the course of action chosen by each vehicle. 
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0 Y 

Fig. 5.2-1: Vehicle coordinate system 

The m components of the initial condition vector i j  include the initial velocity and planar 

coordinates (X, Y, and w) for vehicle j = 1, ..., J (J=2). Velocity is expressed in both 
longitudinal and lateral terms. 

i j  = xj,1, xj,2, ..., xj,m. 

Vector 2 consists of all i j ,  j=l  ,..., J 

Each vehicle is equipped with a variety of sensors which track vehicle operating conditions (e.g. 
velocity, acceleration, braking). This research will limit its consideration to radar, sonar, vision, 
and GPS sensors which estimate the longitudinal distance from the vehicle under consideration to 
the next obstacle or vehicle. Assume the total number of sensors is n. Sensor output vector f j  

includes values for all n sensors on vehicle j. 

Vector f consists of all f j  , j=l,...,J. 

5.3 Hazard Diagnosis 

Since we have restricted ourselves to longitudinal sensory input, the hazards that we will consider 
are similarly constrained. Hazards under consideration include: stationary obstacle or 
nonautomated vehicle blocking roadway (Hl), rain (H2), and roadway debris (gravel, dirt, trash, 
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etc.)(H3). Each hazard can occur in varying amounts; e.g., an obstacle can vary in its separating 
distance from the vehicle, and rain can range from drizzle to torrents. The presence of these 
hazards affects the vehicle’s safety in two ways: obstruction of a sensor can greatly lessen the 
sensor’s accuracy and a hazard can diminish the controllability of the vehicle through reduced 
braking and steering capabilities. 

Assume that each hazard can be represented by a random variable I%. The probability density 
function fj describes the likelihood that vehicle j encounters the three hazards, given that 2 and 

9 describe the current initial conditions and sensory information. Let 1 be the vector of density 
functions for all J vehicles. 

fi( hl, h2, h312, 9 )  

At least initially, we will assume that hazards are independent. In other words, 

fi(hlyh2,h3I2,9) = ~ ( h l l 2 , ~ ) ~ ( h 2 i 2 , ~ ) ~ ( h 3 l 2 , ~ )  

A methodology for diagnosing these hazard likelihoods within the PATH project is described in a 
later section and also by Chao and Agogino (1997). Results from Bellm (1995) about the effects 
of various hazard sources (e.g., snow, rain, fog, dirt) are incorporated into vehicle sensor 
readings. This enables the determination of each hazard’s signature. Comparison of the sensor 
readings with the established hazard signatures allows for the calculation of the likelihood of any 
defined hazardous condition. 

Bellm (1995) achieved experimental results for the effects of hazard sources while testing with 
radar and sonar devices. In these experiments, he observed the changes in radar and sonar 
longitudinal measurements between two cars when the following environmental hazards were 
independently present: rain, plastic, dirt, fog, and mechanical vibrations. This research refers 
mainly to the results from the first three hazards and leaves the remaining two hazards for further 
investigation. 

Furthermore, because the experimental periods used by Bellm exceeded a desirable real-time 
measurement time period for hazard diagnosis, we have broken the experimental data into 6 data 
samples per experiment. Very similar statistical results were achieved for all 6 samples. 

Figure 5.3-1 shows the data for one sample period using a radar to measure longitudinal distance 
between the two test vehicles. Measurements for each of the following 4 cases are illustrated: 
static (no hazard), rain, plastic, and dirt. 
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Radar Sensor Data vs. Time, 4 m 
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Fig. 5.3-1: Radar output over time 

Figure 5.3-2 shows the data for one sample period using a sonar to measure longitudinal distance 
between the two test vehicles. Measurements for each of the following 4 cases are illustrated: 
static (no hazard), rain, plastic, and dirt. 

Problems in mean values evident in Tables 5.3-1 (radar statistics) and 5.3-2 (sonar statistics) show 
significant differences from the "actual" value of 4 meters, especially for the dirt hazard 
experiments. These discrepancies are due to experimental calibration error. We will therefore 
derive statistical conclusions from the variance, which is unaffected by miscalibrations. 

Observation of Figures 5.3-1 and 5.3-2 lead us to a couple of immediate conclusions. First, the 
data appears to be a stochastic process, since data points undergo irregular motion cycles which 
never repeat exactly. Second, the mean and variance for each hazard type seem to not vary in 
significant amounts from sample to sample (therefore over different periods of time). So the 
statistical properties do not change with time. 

Concluding that the data are stochastic and stationary, we can now employ autocorrelation and 
Fourier (frequency domain) analysis to further investigate patterns due to different hazards. 
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Sonar Sensor Data vs. Time, 4 m 
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Fig. 5.3-2: Sonar output over time 
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Environmental 
Conditions 
Sample 1 
Mean 
Variance 
Sample 2 
Mean 
Variance 
Sample 3 
Mean 
Variance 
Sample 4 
Mean 
Variance 
Sample 5 
Mean 
Variance 
Sample 6 
Mean 
Variance 

Static 

3.1004e+00 
4.2437e-02 

3.1 260e+00 
2.8 1 94e-02 

3.1446e+00 
2.6799e-02 

3.2062e+00 
2.3547e-03 

3.2004e+00 
4.45 13e-03 

3.0609e+00 
5.7691e-02 

Rain 

4.0907e+00 
5 .O 102e-03 

4.0903e+00 
4.4437e-03 

4.0894e+00 
5.4452e-03 

4.0969e+00 
4.3644e-03 

4.0872e+00 
5.1070e-03 

4.0939e+00 
5.3539e-03 

Dirt 

1.7049e+00 
7.3444e-03 

1.66 16e+00 
8.26 18e-03 

1.6647e+00 
1.1020e-02 

1.6766e+00 
9.5148e-03 

1.6572e+00 
8.3543e-03 

1.6889e+00 
8.7959e-03 

Table 5.3-1: Radar statistics - Six sample sets 

Environmental 
Conditions 

Sample 1 
Mean 
Variance 
Sample 2 
Mean 
Variance 
Sample 3 
Mean 
Variance 
Sample 4 
Mean 
Variance 
Sample 5 
Mean 
Variance 
Sample 6 
Mean 
Variance 

Static 

2.9856e+00 
7.2663e-03 

2.99 16e+00 
1.0528e-02 

2.9805e+00 
1.0936e-02 

2.9853e+00 
1.2324e-02 

2.9883e+00 
1.1 143e-02 

2.9733e+00 
1.1078e-02 

Rain 

3.1004e+00 
4.2437e-02 

3.1260e+00 
2.8 194e-02 

3.1446e+00 
2.6799e-02 

4.4 16 1 e+OO 
8.7689e-03 

4.5772e+00 
2.9185e-02 

4.2935e+00 
8.4917e-03 

Dirt 

-8.4500e-01 
6.0535e-29 

-8.4500e-01 
6.0535e-29 

-8.4500e-01 
6.0535e-29 

-8.4500e-01 
6.0535e-29 

-8.4500e-01 
6.0535e-29 

-8.4500e-01 
6.0535e-29 

Plastic 

4.0862e+00 
5.5197e-03 

4.0903e+00 
6.1500e-03 

4.08 1 le+00 
5.4475e-03 

4.0683e+00 
5.5293e-03 

4.08 14e+00 
5.7412e-03 

4.0763e+00 
6.3276e-03 

Plastic 

3.6287e+00 
6.495 1 e-0 1 

3.7442e+00 
6.0815e-01 

3.8421e+00 
5.3970e-01 

3.6534e+00 
6.1468e-01 

3.6832e+00 
6.6390e-01 

3.7954e+00 
7.5545e-01 

Table 5.3-2: Sonar statistics - Six sample sets 
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Figure 5.3-3 shows the Fourier transforms of one sample period for each of the 4 hazards 
measured by sonar. Note the comparatively very small magnitude range for the static and dirt 
cases, medium magnitude range when the rain hazard is present, and large magnitude range for the 
plastic case. These observations are consistent through similar analysis of the other 5 available 
data sets. 

Sonar Magnitude vs. Frequency u 

60 

50 

40 

20 

10 

n 
"0 5 10 15 

Frequency (Hz) 
20 25 

Fig. 5.3-3: Sonar magnitude 

Next we consider power spectral density, the Fourier transform of autocorrelation, which 
describes the data set's power distribution over its frequency range. Figure 5.3-4 shows the 
power spectral densities of one sample period for each of the 4 hazards measured by sonar. Note 
the large peak (>1.25) for just the plastic case. Contrast this to comparatively smaller peaks for the 
other three cases (<=0.2). These observations are consistent through similar analysis of the other 
5 available data sets. 
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Sonar Power Spectral Density 
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Fig. 5.3-4: Sonar power spectral density 

Figure 5.3-5 illustrates the power spectral densities of one sample period for each of the 4 hazards 
measured by radar. Note the small peak (<=.01) for just the static case. Contrast this to medium- 
sized peaks (>.01, <.02) for the dirt and plastic cases. Rain and dirt hazards on the other hand 
exhibit large peaks (>.02). These observations are consistent through similar analysis of the other 
5 available data sets. 
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Radar Power Spectral Density 
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Fig. 5.3-5: Radar power spectral density 

The next method of analysis will be cross spectral density, or the Fourier transform of the cross- 
correlation. Strongly frequency dependent but nearly time independent, cross spectral density 
analysis shows an interesting identifying characteristics for the rain hazard. A significant peak in 
the 1.2-3.5 Hz region is noticeably absent in the static, dirt, and plastic cases. This observation 
was also observed with the other five data samples. 
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Fig. 5.3-6: Sonadradar cross spectral density 

Table 5.3-3 summarizes the above observations about statistical and spectral characteristics when 
analyzing data sets exhibiting different independent hazards. With this information, we are now 
able to assess hazard signatures by using the nearest neighbor rule. To do so, we would let each 
characteristic be represented along a separate dimension in an n-dimensional space. For example, 
we would require six dimensions to adequately describe the six defining characteristics in Table 
5.3-3. 

Next, we would map out a region in the n-dimensional space which corresponds to a particular 
hazard. Because hazards are identified by ranges of characteristics rather than particular values, the 
corresponding area linked to a specific hazard in the n-dimensional space will be a region rather 
than a point. From any point representing an experimental measurement, then, we can calculate 
the Euclidean distance to all six possible hazard regions. Each distance quantifies the respective 
likelihood of any independent hazard. The minimum of the six distances can then be concluded to 
correspond to the most likely case. Similarly, the region furthest from the measured point would 
indicate the least likely scenario. 

Since these observations were drawn from a limited data set (i.e., small number of independent 
hazards), we will postpone the nearest neighbor calculations for further research, when more 
complete and better executed experiments can be undertaken in order to establish the hazard 
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regions. At that time, additional conclusions can be drawn about a more exhaustive collection of 
potential dependent hazards. 

Environ- 
mental 
Condi- 
tions 

Static 

Rain 

Dirt 

Plastic 

Radar 
Variance 

Small 

Large 

Small 

Small 

Sonar 
FFT 
Magn. 

Small 

Medium 

Small 

Large 

Radar 
PSD 
Peak 

Small 

Medium, 
Large 

Large 

Medium 

Sonar 
PSD Peak 

Small 

Small 

Small 

Large 

Radar 
Sonar 
CSD Max 
in 
1.2-3.5 HZ 

No 

Yes 

No 

No 

Sonar 
Failure 

No 

No 

Yes 

No 

Table 5.3-3: Differentiating environmental effects on sensors 

5.4 Trajectory Prediction 

Depending on input variables, a strategy will be chosen to prevent vehicle collision with other 
vehicles or with roadway obstacles. This strategy will be selected based on hazard likelihood, 

initial conditions, and sensor readings. Hence, represent the strategy function with $(2,9,;) .  

Strategy $ is a vector of control variables including steering and acceleratioddeceleration for each 
vehicle over a series of time steps. 

Therefore, for inputs of initial conditions i, hazard likelihoods 1, and vehicle strategy $, we 
predict the vehicles’ trajectories due to reduced vehicle handling capabilities under adverse 
conditions with the Trajectory Prediction module. The module uses the Engineering Dynamics 
Corporation Vehicle Analysis Package (EDC, 1989) to yield Collision Deformation Classifications 
(CDC) and relative velocities at impact (Delta-V) for each vehicle over a series of T time steps. 

These p values are combined into a crash vector ;j(i,?,$) for each vehicle. Vector 

2j(2,?,$) = zj, 1, zj, 2, ..., Zj, p(2 ,? ,$ ) ,  where the crash vector describes impact variables: output 
Delta-V and Collision Deformation Classifications, area of deformation, specific longitudinal or 
lateral area, specific vertical area, type of damage distribution, and maximum extent of penetration 
(EDC, 1989). Vector 2 consists of all ij, j= l ,  ..., J . 

Our research used the Reconstruction of Accident Speeds on the Highway portion (EDCRASH) of 
the EDC Vehicle Analysis Package. Inputs into the package include vehicle size, type, tires, 
position, initial velocity, etc. In addition, we can also specify road conditions like rain, fog, snow, 
and ice through steering, acceleration, and deceleration capabilities. This software has two major 
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limitations: only 2 vehicles can be simulated and no non-vehicles (like barriers) can be modeled. 
The second limitation can be circumvented by simulating a barrier by giving appropriate 
dimensions and weight to vehicle #2 and running collisions between vehicle #1 and the 'barrier'. 

5.5 Impact Evaluation 

Given the predicted trajectories in the last section and their respective angles and velocities of 
impact, we now determine the severity of impact in the Impact Evaluation module as rated by 
previous crash data for different impact configurations. Data from the National Transportation 
Highway Traffic Administration (BTS, 1996) are coupled with 2 to determine values for the 

resulting injury and damage. Variable I,(?, ?,$) represents the bodily injury amassed by the driver 

(assume no other passengers) in vehicle j. Variable Dj(?,?, 5) represents the property damage 

sustained by vehicle j. Vector i consists of all i j  , j= 1 ,..., J , and vector D consists of all Dj , 
j=l,...,J . 

5.6 Expected InjuryDamage Minimization 

Finally, let parameters a and p describe the relative proportions of total bodily injury, total 
vehicle damage, and average vehicle speed, respectively, in the weighted sum 

1 

J 
x[a*Ij(?,?,$) + P*Dj(?,?,$) - (1- a-p)-Sj,4] 
i 

where a E [O,l] and p E [0, I]. Initial condition component Sj,4 refers to the final longitudinal 
velocity of vehicle j . 

The determination of actual values for a and p will be left for transportation policy makers. The 

goal of this research will be to choose the strategy $* with the minimum expected total 
damage/casualty but maximum average speed. In other words, we will minimize the weighted sum 
of injury, damage and negative average speed subject to the system's physical constraints and 
initial conditions. Note that average speed is subtracted in the objective function, indicating its 

maximization. Strategy vector $* details optimal steering and acceleration values over T time 
steps. So the objective for the Intelligent Decision Advisor is to 

Minimize 

C[a*Ij(?,?,$) + p*Dj(?,?,$) - (1 - a -p)-Sj,4] 
1 

J 

Subject To 

Constraints defining j ; ,  9,  ?, 2, $, D ,  and i 

and we solve exhaustively using stochastic optimization. 

5.7 Conclusions 

This chapter has described the framework which we developed to enable the automated vehicle to 
choose an optimal maneuver or strategy in hazardous conditions. First, we discussed hazard 
diagnosis and results from extended analysis of earlier tests performed under hazardous 
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conditions. This analysis yielded a table of characteristics differentiating the four hazardous 
conditions (rain, fog, debris, no hazard) under consideration. Next we discussed our 
implementation of EDCRASH in determining vehicle trajectories after impact. Environmental 
inputs to EDCRASH were briefly described and outputs detailing impact on the vehicles were 
listed. The effects of impact were then assessed according to statistics from the National 
Transportation Highway Traffic Administration, resulting in objective figures for bodily and 
property damages. Finally, we described the overall optimization problem as a minimization of 
damages subject to a variety of constraints. 

This research assumed a limited case in which we restricted our longitudinal distance assessment to 
two sensors and in which we considered only three independent hazards. Because of the 
restrictions, we were able to solve exhaustively, using stochastic optimization. More difficult 
cases will also yield interesting results in future research when we extend our techniques to 
scenarios with multiple sensors and dependent hazards. 
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6. Preliminary Investigation of Three New Sensors 

6.1 Overview 

Reliability is one of the most important aspects in IVHS. High fidelity of sensor data is required. 
However, a single sensor cannot always work reliably under different situations. It is therefore 
desirable to have various kinds of sensors to obtain redundant readings for each quantity we 
measure. In some cases when some of the sensors fail, we can still obtain correct information from 
other sensors. In order to know to what degree the readings of each sensor could be trusted under 
different motions and environmental conditions, it becomes very important to study the behaviors 
of each sensor. This includes noise characteristics, noise models, work range, factors that might 
affect the performance of the sensor under particular conditions, etc. Here we introduce several 
new sensors which are potentially very powerful positioning systems: the Global Positioning 
System (GPS) sensor, the vision sensor, and the laser radar sensor. To date we have collected 
only static data because of the limited experimental opportunities and data resources and therefore 
have not yet developed exact noise models of the sensors. From the limited data, however, we can 
still obtain some interesting characteristics which provide directions for further research. 

6.2 GPS sensor 

6.2.1 Introduction to the GPS Sensor 

GPS was developed by the U.S. Department of Defense and is based on a constellation of 24 
satellites orbiting the earth at a very high altitude. The basic principle behind GPS is the use of 
satellites as reference points for triangulating cars’ position on earth. Position is calculated from 
distance measurements to satellites. While three measurements are required to determine exact 
position, another measurement is required to eliminate clock offset. The distance to a satellite is 
determined by measuring how long a radio signal takes to reach us from that satellite. We need a 
receiver on our car to receive the radio signal. If a GPS satellite were directly overhead it would 
only take about 6/100ths of a second for the radio message to get to us. So the GPS sensor should 
work well even when the car measured is driven at very high speeds. 

The major error sources in GPS measurements are: satellite clock error, ephemeris error, receiver 
errors, and atmospheridionospheric delay. In addition, the accuracy of GPS can purposefully be 
degraded by the Department of Defense using an operational mode called “Selective Availability” or 
“S/A”. S/A is designed to deny hostile forces the tactical advantage of GPS positioning. When, 
and if, it is implemented it will be the main component of GPS error. 

Differential GPS (DGPS) measurements can be much more accurate than standard GPS 
measurements. The main idea of DGPS is as follows. If we put a GPS receiver on the ground in 
a known location, we can use it to determine exactly which errors the satellite data contains. Acting 
as a static reference point, the receiver transmits an error correction message to any other GPS 
receivers in the local area, and they can then use that error message to correct their position 
measurements. The correction can therefore eliminate virtually all error in their measurements. One 
additional advantage of using the GPS receiver is that its performance would not be affected by 
weather. 

While no measuring device is perfect, DGPS is no exception. There is still noise in its 
measurements though in much smaller quantity than in the standard GPS system. Furthermore, 
the update of GPS readings is quite slow (usually on the order of several Hertz), which is a major 
shortcoming of the GPS sensor. The reader is directed to (Jeff Hurn, 1989) for more information 
on the working principle of GPS. 
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6.2.2 Analysis of GPS Data 

Here we will focus on the analysis of two sets of static data. The first set of data was collected at 
the Palo Alto, CA airport using two cars (SRI, Palo Alto, 1997). A GPS receiver was mounted on 
each of the two cars. The two cars were initially stationary for about 5 minutes (sample numbers 
1-1050) during which time the static measurements were recorded. The cars were then driven 
around for a period of time (sample numbers 1050-1750) and stopped to retake measurements 
(sample numbers 1750-2250). 

Figure 6.2.2.1 shows the original data. 
Original GPS test data 

Fig. 6.2.2-1 The first set of original GPS data 

We can see that there is a slope at the very beginning of the data (sample numbers 0-300). From 
the principles of GPS sensors we know this occured because of initial carrier ambiguity resolution, 
so we attribute a less accurate position during this period based on pseudoranges from the 
receivers. More data are needed to determine the expected length of duration and also the accuracy 
of the data during this period. From this set of data, it can be seen that the error could total several 
meters; we therefore recommend regarding the initial readings as sensor malfunction and ignoring 
the GPS readings at this stage. 

Figure 6.2.2.2 shows the first static part of the data (sample numbers 400-1050) and its validation 
using the Kalman Filter (Alag, 1996). Figure 6.2.2.3 illustrates the second static part of the data 
(sample numbers 1750-2250) and its validation using the same Kalman Filter. Note their 
difference in scale compared to Figure 6.2.2.1. From them we can observe some noise 
characteristics. First, the magnitude of the noise is quite small (less than 4cm), which means that 
the GPS readings are already quite accurate. Both data parts exhibit increases in noise magnitude, 
possibly due to the change in the numbers of available satellites. It can be seen from next set of 
data that the noise is affected by the numbers of the satellites available. But that is not the only 
possible reason here; it could also be caused by the GPS receiver itself, either from the receiver's 
electronics or antenna. 
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validation of first part of static data using KF 
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Fig. 6.2.2-2 First static part of first set of data and its validation 

validation of second pati of static data using KF 
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Fig. 6.2.2-3 Second static part of first set of data and its validation 

In order to learn more about noise characteristics, we can now compare it with white Gaussian 
noise. By doing this, we can derive some statistical knowledge of the noise and then determine 
which type of validation and fusion algorithm we should employ to reduce the noise and obtain the 
most reliable evaluation of the sensor reading. Though we have not determined the sources of GPS 
data noise, this does not affect the practice of our analysis method. Here we use the first static part 
(sample numbers 450-1050) of the data to compare with the same length of white Gaussian noise, 
generated in Matlab. First we compare their histograms. The more random numbers we take, the 
closer the shape of the histogram to the probabilistic density function (pdf) of a Gaussian random 
variable. That is the nature of Gaussian random numbers. 
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Figure 6.2.2.4 shows the histogram of 10 samples of a Gaussian white process with variance 1 
and Figure 6.2.2.5 shows the histogram of 600 samples of Gaussian white process with variance 
1. Compare the histogram of the first static part (450-1050) of GPS data (Figure 6.2.2.6) with 
that of the same number (600) of samples of Gaussian white process with variance 1 (Figure 
6.2.2.5). We cannot determine, from the noise of the plots, whether the GPS noise is Gaussian, 
because one histogram could correspond to a different process but one process could have only 
one histogram. Further conclusions on the GPS noise need further experimentation and 
investigation. 
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4000 ' Histogram of 100000 random numbers of Gussian Distribution 
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Fig. 6.2.2-4 Histogram of 10 samples: Gaussian white process, variance=l 5 

At the same time we are interested in whether the noise is white or to what extent it can be 
approximated by white noise. Here we use an autocorrelation estimate to qualitatively evaluate the 
whiteness of the noise. Calculation of the autocorrelation estimate is described in (Oppenheim and 
Schafer, 1989). White-noise processes should have their autocorrelation very small everywhere 
except at m=O (the first sample point from which the samples used in autocorrelation estimate 
begins). From this we can only get a qualitative answer to the question whether the noise is white 
or not. (For quantitative answers to this question, one could refer to Jenkins and Watts, 1968.) 
We would not calculate it qualitatively at this stage since we do not have enough data sets and it is 
yet uncertain whether this set of data is typical for the GPS sensor. Figure 6.2.2.7 shows the 
autocorrelation estimate of 400 samples of Gaussian white process with variance 1 and Figure 
6.2.2.8 illustrates the autocorrelation estimate of the first static part of GPS data (samples 450- 
850). It can be seen from these two plots that the noise of this set of GPS data is quite different 
from white noise. 
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Fig. 6.2.2-5 Histogram of 600 samples: Gaussian white process with variance= 1 
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Fig. 6.2.2-6 Histogram of first static part of GPS data (sample450-1050) 
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Autocorrelation function calculated by 600 Gaussian Distributed random numbers wth variance 1 
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Fig. 6.2.2-7 Autocorrelation estimate of 400 samples of Gaussian white process 
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Fig. 6.2.2-8 Autocorrelation estimate of the first static part of GPS data 

The second set of data is recorded in (SRI, Northbound, 1997). It was collected by SRI 
International when the car was driven northbound on California Highway 85 around Sheller Road. 
The initial part of this freeway segment is clear of overpasses. The two antennae of the GPS 
receivers were on one car, with one on the front and the other on the rear. The first part of the data 
is quite good, however the second part is noisy. What we are concerned with in this set of data is 
that the noise increases when the number of available satellites is low. This might occur when the 
vehicle going travels under an overpass or passes large trucks that cover a portion of the sky. More 
experiments need to be performed in order to determine the cause. A video camera will be used in 
future experiments to get a record of the surroundings during the tests to see if overpasses and 
large trucks really affect the available number of satellites. 
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4.5 
Original GPS data 
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Fig. 6.2.2-9 Second set of original GPS data 

Figure 6.2.2.9 shows that the first part of the data is quite good. As we can clearly see the data is 
much noisier when only four satellites are available than when five are available. Also we can see 
that at some parts of the data, even if the number of satellites is the same, the magnitude of the 
noise varies by a significant amount. Other factors need to be considered in reviewing this 
phenomenon (e.g. the receiver itself). In addition, we are yet unsure of the the cause of the step 
which occurs at the last part of the data. We hope that upcoming experiments will help to 
determine those factors that affect the performance of GPS sensors. 

Preliminary Conclusions on the GPS Sensor 

From the above two sets of data, we can derive some initial conclusions about the characteristics of 
the GPS sensor. 1) When enough satellites are available, the readings of the sensor can be very 
accurate, i.e., the noise magnitude could be less than 0.4 meters. 2) The accuracy of the GPS 
reading is affected by the number of satellites used in resolution. 3) Since there is an initial period 
in which the GPS receiver software resolves carrier ambiguity, output from the GPS sensor is less 
accurate and we recommend discarding the respective GPS readings. 4) In addition to the 
number of satellites available, there are still some other reasons which would result in the increase 
of noise in GPS readings on which more investigation is needed. 5. Based on our current GPS 
data, the noise is not white. 

Above are some conclusions we can draw from the limited data. Although we were unable to 
derive a specific noise model from them, we were alerted to some features of the GPS sensor 
which will be very useful for in deciding areas of focus for future experiments. 

6.3 Vision Sensor 

6.3.1 Introduction to the Vision Sensor 

The vision system is composed of two cameras installed on the front of the car. It tracks the car 
ahead by matching feature points of the vehicle in the two image windows of the cameras. Our data 
(McLauchlan and Wang, San Diego, 1997) were collected by Philip McLauchlan from the vision 
group of the UC Berkeley Department of Electrical Engineering and Computer Science and 
Jiangxin Wang, from our group, in San Diego using cars from Honda in July 1997. In this 
experiment, we used a stereo vision system to provide real-time distance information between two 
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cars in conjunction with a laser radar sensor. In the next two sections we will focus on the vision 
data separately and then analyze the laser radar data and the fused data of these two sensors. 

6.3.2 Analysis of Vision Data 

Figure 6.3.2.1 shows the original vision and laser radar data recorded during the experiment in 
San Diego. The data is static since we stopped two cars at a distance for a few minutes and 
measured the distance and then drove one car forward or backward and stopped again to take the 
measurement. Repeating this process several times resulted in the data shown in Figure 6.3.2.1. 
Comparing vision data and laser radar data in this figure, it can be seen that there is a bias between 
the two set of data. Figure 6.3.2.2 illustrates the original and estimated vision data. 

Original vision and laser radar static test data 

Fig. 6.3.2-1 Original vision and laser radar data 

Validation of vision data using Kaiman Filter 
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Fig. 6.3.2-2 Vision data and its validation using KF 
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The estimated data is obtained by using a Kalman Filter (Alag, 1996) together with laser radar data 
which we will discuss in more detail in Section 6.4. We can see that the vision data is quite noisy. 
Furthermore, the longer the distance, the noisier is the data. From the data, we can roughly 
calculate the variances of the vision data at each distance we measured. According to the results of 
calculation, we can derive the relationship between distance and variance of the vision data shown 
in Figure 6.3.2.3. The true relationship might not be exactly the same as is shown, but we can 
roughly say that it is almost in direct proportion. 

Relation between noise and dlstance in vision data 

Fig. 6.3.2-3 Relationship between distance and variance of vision data 

Just as we did with the GPS data, here we will analyze the vision data by comparing the first part 
of the data (samples 1-600) with a Gaussian white process. Figure 6.3.2.4 is the histogram of the 
vision data. Comparing Figures 6.3.2.4 and 6.2.2.5, the histogram of 600 samples of Gaussian 
white process, we can see that they are quite similar. So we would not exclude that the vision 
noise is Gaussian. Therefore qualitatively we can say that the vision noise is white (Oppenheim 
and Schafer, 1989). 
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Fig. 6.3.2-4 Histogram of first 600 samples of vision data 
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Fig. 6.3.2-5 Autocorrelation estimate of the first 400 samples of vision data 

6.3.3 Preliminary Conclusions on the Vision Sensor 

From the above analysis, we can draw following conclusions on the vision sensor we used. 1) 
There is a drift in vision data compared with laser radar data which is more accurate. 2) The 
variance of vision readings is in proportion to the distance it measures. 3. The vision noise is white 
and might be Gaussian. So the PDAF (Alag, 1996) could be a good algorithm for sensor validation 
and fusion when the vision sensor is involved in the measurement. 
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6.4 Laser Radar Sensor 

6.4.1 Introduction to the Laser Radar Sensor 

The laser radar sensor which we used in our experiments is a fan beam scan laser radar. The 
detection area is 350 mrad horizontally and 50 m a d  vertically. The maximum range has been set at 
100 m so that a stationary object can be detected three seconds before the calculated time of impact 
when the vehicle’s speed is 100km/h. The system has a range resolution of 0.1 m to discriminate 
rear reflectors of vehicles from road-side reflectors. The range accuracy is f 1 .Om. 

6.4.2 Analysis of Laser Radar Data 

The original data of Figure 6.4.2.1 are obtained from the same experiment with the vision data. 
The data is much less noisy than vision data. The estimated data are derived by using the same 
Kalman Filter mentioned with the last sensor. Note the sensor failed at about sample time 3000- 
5000, which was caused by someone passing between the two cars at that sample time. 
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Fig. 6.4.2-1 Validation of laser radar data using KF 

Figure 6.4.2.2 is the first part (samples 1-600) of the original data in a different scale. From it we 
can analyze the noise. The noise appears to be composed of small steps with almost the same 
magnitude ( about 0.1 m). From the histogram of this part of the laser radar data (Figure 6.4.2.3), 
we can see that it is absolutely different from that of the Gaussian process. We can quickly 
conclude that the laser radar noise is not Gaussian. Therefore the Kalman Filter would not be very 
effective in filtering of this kind of noise. But we still use it here in order to use the fusion 
algorithm PDAF (Alag, 1996). 
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Noise of Laser Radar Sensor 
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Fig. 6.4.2-2 Noise of laser radar data 
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Fig. 6.4.2.4 Autocorrelation estimate of first 400 samples of laser radar data 
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Figure 6.4.2.4 shows the autocorrelation estimate of samples 1-400 of the laser radar data. The 
autocorrelations of all of the other sample times are small with respect to that of the first sample 
time, though they are relatively greater than the vision data after normalization. So we can say that 
the laser radar noise is roughly white but not Gaussian. 

6.4.3 Preliminary Conclusions for the Laser Radar Sensor 

From the above analysis, we get form the following conclusions about the laser radar sensor. 1) It 
is quite accurate, since the noise magnitude is much smaller than that of the vision sensor. 2) The 
noise is not Gaussian and it is roughly white. 

6.5 Fusion of Vision Data and Laser Radar Data Using PDAF 

Because the vision and radar readings came at different times and different frequencies, a method 
of synchronization was used before data validation and fusion took place. The frequency of the 
vision data is about 5 Hz and that of radar data is about 5.5 Hz. We set a standard time stamp of 5 
Hz, the most recent readings of both of the data before every time stamp are the synchronized 
readings which we will use. Note that this is valid only for the static case, the synchronization 
method might change under dynamic situations. 

The fused value of vision and laser radar data are shown in Figure 6.5.1. Here we use the PDAF 
algorithm, which, as the figure illustrates, appears to work very well. The sensor failure of the 
laser radar is removed from the fused value. This demonstrates once again the importance of 
redundant information. 

Fig. 6.5-1 Fused data compared with original data 

6.6 Summary 

From the above analysis, we know that each of the three sensors has some interesting 
characteristics. The vision data are quite noisy, but since the noise is white and might be Gaussian 
it could be easily ruled out by a Kalman filter. The laser radar data is relatively accurate, but the 
noise is not Gaussian so a Kalman filter would not work well; another filter should be designed for 
this specific sensor. Since the high accuracy and low cost of the GPS sensor make it an appealing 
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candidate for position sensing in IVHS, we will focus more efforts on the detailed modeling of its 
noise characteristics in our future research work. Our next step will be to continue GPS noise 
investigation (especially under dynamic situations) and integration of other sensors into the GPS 
scheme. In our upcoming GPS experiments, we will use at least one other type of sensor (e.g., 
radar). And we will evaluate the performance of the integrated scheme using different algorithms. 
We also plan to continue studying the vision and laser radar sensors if conditions permit. 
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7. Sensor Validation and Fusion Simulation using SmartPath 

In the Partners for Advanced Transit and Highways (PATH) Automated Highway System (AHS) 
model, platooning is proposed as a method to increase highway capacity and throughput. Effective 
platooning requires forward-looking vehicle sensors to accurately measure inter-vehicle spacing. 
As sensor noise and sensor failure is inevitable, sensor validation and fusion techniques have been 
developed as a means to filter out noise and accommodate for sensor failure. 

SmartPath is a computer simulator/animator that was developed to aid in AHS design in the areas 
of controller design, platooning schemes, maneuvers, network configuration, communication 
protocols, etc. It addresses the questions of feasibility, safety and performance of the AHS. 

Two types of sensor validation and fusion algorithms were integrated for the case of straight 
following with SmartPath, and their relative performances evaluated. Sensor validation and fusion 
using the Probabilistic Data Association Filter was shown to provide excellent filtration of the 
sensor noise modeled when initialized properly. This algorithm had tight constraints on initial 
conditions and sensor characteristics, as it was found to be very sensitive to initialization. Fuzzy 
sensor validation and fusion techniques managed to filter out a considerable amount of noise and 
perform quite effectively, yet not as well as the Probabilistic Data Association Filter. However, 
fuzzy techniques presuppose no prior knowledge of initial conditions and proved to be very robust 
over a wide range of conditions. 

This integration process allowed for visualization of the algorithm performance and has fostered 
further development and improvement processes. The resulting SmartPath animations were useful 
in understanding the physical manifestation of sensor noise and its effect on vehicle control. The 
integration process is documented and discussed, as well as issues dealing with the utility of 
SmartPath as an AHS design too. Also, "lessons learned" are discussed as a foundation for 
development of new, improved, modular simulation design tools. 

7.1 Introduction 

When most people think of commuting to and from work, certain images usually come to mind: 
rush hour, traffic congestion, accidents, exhaust, smog, stress, etc. The many millions of 
Americans that commute to and from work daily can probably relate to these images. The actual 
fact is that not only is rush hour traffic bad, it is getting worse. In 1995, the average speed of 
vehicles during peak hours was 35 mph and is expected to drop to 11 mph by the year 2005. This 
phenomenon is due to population increase as well as metropolitan area expansion. 

In efforts to improve the current situation, several solutions have been proposed and implemented 
to varying degrees. There has been an increased encouragement for individuals to carpool or use 
mass transit whenever possible. Highways have been widened or newly constructed as funding 
and real estate have permitted. Also, research has increased worldwide in the areas of improving 
highway traffic conditions through the use of technology. 

In particular, the PATH (Partners for Advanced Transit and Highways) project has proposed an 
Automated Highway System (AHS) that would increase the throughput of the highway by 
automating the decision-making process for route-selection and vehicle control - effectively 
removing control of the human driver from the system. This approach claims dramatic increases in 
highway capacity, safety and energy efficiency (Varaiya and Shladover, 1991). The key aspect of 
the PATH-AHS proposal is the use of platooning. Platoons are essentially groups of two to ten 
vehicles following one another at highway speeds of about 65 mph with intervehicle spacing of 
approximately one meter. Considering the precision and attention required to maintain such a 
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platoon, automated control is necessary because a human operator could not react in a timely 
fashion to emergencies or even routine maneuvers. 

This AHS would utilize intelligent vehicles as well as intelligent highways in order to achieve the 
proposed levels of safety and capacity. Intelligence is defined as the ability to collect information 
or stimuli from the environment, process the information through thought processes, and respond 
appropriately. To make a vehicle intelligent, it is necessary to give it the capacity to collect data 
from the environment, process the data, make a decision, and act on this decision. To collect data, 
vehicles need sensors. Information from these sensors is then be routed to an on-board computer 
for processing, at which point the embedded intelligence makes a decision and sends it to the 
vehicle controller. The vehicle controller processes this information and sends a command to the 
machine level actuators which perform a maneuver. 

This process can become very complicated when many vehicles with multiple sensors are driving 
on the AHS with various platoons and destinations. Vehicle interactions, communication 
processes and inevitable hazards can lead to situations that are completely unpredictable. Thus, it 
is necessary to first simulate this proposed system in order to explore the design space in depth and 
experiment with system architectures, vehicle controllers, etc. One such simulator, SmartPATH, 
has been developed to address this need. It utilizes all of the above concepts and outputs a state 
description of each vehicle as well as a 3D animation of the AHS. 

However, a simulator is only as good as the information that goes into it. Therefore it is highly 
important to make sure that the simulator is as realistic as possible. Developing accurate models 
and representations of the AHS components is essential to the overall value of the simulator. One 
key aspect of this theme is the fact that sensors are not perfect. They are subject to the influence of 
noise sources and, as such, their output is quite uncertain. Thus, a method for simulating sensor 
noise and effectively filtering it out is necessary in order to improve the realism of the simulator. 
The sensor validation and fusion techniques developed by this and previous research addresses this 
issue. 

In order to integrate our sensor validation and fusion techniques with the work by others on the 
PATH projects, we developed simulation modules for the SmartPATH simulator. This simulation 
allows for evaluation of the methods proposed in a modular manner, including the control 
architectures and sensor models available from other researchers. 

Ultimately, this simulation would provide: 

visualization of the performance of our sensor validation and fusion algorithms and foster 
further developmental processes. 

continuous improvement to SmartPATH as it currently exists, by making the sensor data 
more realistic through the application of noise models that replicate experimental data. 

an opportunity for experiential learning, through modular modification of SmartPATH. 
This process would be documented and potentially utilized by the PATH community for 
future simulation projects. 

7.2 Background 

7.2.1 Sensor Validation and Fusion 

In the Automated Highway System, sensors are essential in order to provide the vehicle with 
information about the system states and the vehicle's surroundings. Reliable information allows 
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the on-board computer to make decisions to ensure safe and accurate vehicle control. Forward 
looking sensors (radar and sonar) are used by each vehicle to measure relative intervehicle spacing 
and to detect the presence of obstructions in the road. Wheel speed sensors and accelerometers are 
used to accurately gauge vehicle speed, roll, pitch and yaw for maneuvers. In addition, GPS 
receivers can be used to determine absolute position and heading. 

Each of these sensors is subject to uncertainty, due to internal and external noise sources, as well 
as inevitable sensor failure and/or degradation. This uncertain nature is quite unfavorable for the 
AHS due to the requirement of high safety, as human lives are at stake. Thus, sensor data have to 
be validated before they are used for vehicle control purposes. Often this validation is expressed in 
terms of probabilities or confidence measures. However, validation techniques are not singularly 
sufficient in the event of sensor failure. In order to reduce the inevitable risk of sensor failure, 
redundant sensor schemes are often deployed, with backup sensors providing an increased level of 
system reliability. 

Using redundant sensors means that more than one sensor will constantly gather data. This may 
prove highly useful, in that each sensor may have a particular and unique set of optimal conditions. 
For example, a radar sensor may perform best when the distance to its target is within 35 meters, 
whereas a sonar sensor may only perform well when its distance is within 5 meters of the target. 
To combine the qualities and attributes of each sensor, it is necessary to "fuse" the data from each 
sensor into one signal that most accurately represents the actual state of the system. However, 
since two sensors almost never return the same measurement, it is very difficult to decide how this 
fusion should be performed. Validation can again be used in order to provide ranking of the 
incoming signal for fusion purposes. 

7.2.1.1 Fuzzy Sensor Validation and Fusion 

Fuzzy Sensor Validation and Fusion (Goebel, 1996) uses fuzzy logic techniques to validate and 
fuse multiple sensor readings. It consists of a fuzzy time series prediction model, fuzzy validation 
gates, and a weighted average fusion scheme. 

Essentially, this algorithm determines a level of confidence in each incoming sensor value based on 
a validation gate in which sensor readings are expected to lie. Validation curves are dynamically 
constructed based on sensor characteristic, current sensor measurements, past sensor 
measurements, and predicted values. Depending on where on the curve a sensor reading actually 
lies determines its confidence value. Readings that equal the predicted value have a confidence 
value of one. Readings that vary from the predicted value have lower confidence values with a 
minimum value of zero. Once a confidence value has been assigned to the reading, this confidence 
value is used for fusion purposes. If the system has high confidence in a reading, the reading is 
weighted highly in the fusion algorithm. If the system has low confidence in a reading, the reading 
is appropriately discounted in the fusion algorithm. The fusion is performed using a weighted 
average of these confidence values and sensor readings plus a term which includes the predicted 
value weighted by an adaptive parameter and a constant scaling factor. The fused value is then sent 
to the vehicle controller as sensor output. 

The strength of Fuzzy Validation and Fusion lies in its robustness. It performs acceptably under a 
wide range of conditions and in the presence of Gaussian as well as non-Gaussian noise. This is 
largely due to its ability to dynamically adjust its validation gate as well as its use of a separate 
validation gate for each sensor - based on the sensor characteristics. 
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7.2.1.2 Sensor Validation and Fusion using the Adaptive PDAF 

This methodology uses a combination of several techniques to perform sensor validation and 
fusion. First, a rule-based system is used to find the operating state of the vehicle. This system 
builds models that are used to construct validation gates with the Kalman filter scheme. These 
validation gates are used in concert with the Algorithmic Sensor Validation (ASV) for the validation 
process. Next, data fusion is performed using the Probabilistic Data Association Filter. It uses 
probabilities assigned to sensor readings for this process, assuming all readings within the 
validation gate are from the sensor target. If no readings lie within the validation gate, the reading 
from the last time step is assumed to be most likely (Alag, 1996). This process produces a fused 
estimate of the sensor reading to be passed to the vehicle controller. This technique is valuable 
because it utilizes a knowledge bases system that tries to estimate sensor bias, detect sensor faults 
and examine sensor performance. 

7.2.2 SmartPATH 

SmartPATH development was begun in the Spring of 1991 to address the questions of feasiblity, 
safety and performance in the PATH-AHS proposal. It is intended to be used as a design tool for 
researchers to test different system architectures, vehicle controllers, communication protocols, 
maneuver schemes, etc. It is constructed in a modular manner, such that modification is relatively 
straightforward. As SmartPATH is a graphical simulator, it provides a natural environment to 
view the simulation, along with a comprehensive, numerical state description of each vehicle. 

SmartPATH currently contains three modular components: the simulator, the highway designer, 
and the animator. These modules are loosely coupled, and therefore open up seemingly endless 
possibilities for experimentation. 

Within the simulator module, SmartPATH models the Shladover-Varaiya (1991) proposed AHS 
hierarchy. This hierarchy consists of four control layers: network, link, coordination, and 
regulation. The network and link layers are on the roadside, while the coordination and regulation 
layers are aboard the vehicle. The network layer is responsible for providing routing information 
from any point on the AHS to any exit. This routing should involve a minimum of vehicle 
conflicts, and route the vehicle to its destination using the shortest route and in the least amount of 
time. The link layer is responsible for the smooth flow of traffic within the individual sections of 
the AHS. It should balance the traffic among the lanes by providing micro-level routing 
commands to each vehicle. It uses information about the actual traffic flow in a given highway 
section, the destination of the vehicle and the route provided by the network layer. The 
coordination layer receives commands from the link layer about where the vehicle should go, i.e. 
left, right, straight, etc. It then determines which maneuver to make, and subsequently coordinates 
the maneuver with neighboring vehicles. The vehicle coordinates maneuvers by requesting 
permission from its neighbors. When it receives acknowledgment from all neighbors, it sends a 
command to the regulation layer to perform the maneuver. The regulation layer then implements 
and performs the maneuver. The network layer and link layer together make up the intelligent 
highway system. The coordination layer and the regulation layer together comprise the intelligent 
vehicle. 

The highway designer in SmartPATH allows the user to construct an endless array of highway 
structures, as simple as a straightaway, or as complex as a bowtie intersection. This flexibility 
allows for various feasibility and safety studies to be performed. 

After simulating and designing a scenario, the output can be animated in order to obtain visual 
feedback. The animator provides the user with a view of the highway and the vehicles in the 
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simulation. Using a "traffic helicopter", the user is able to follow the vehicles and view the entire 
scene from virtually any vantage point, angle and perspective. 

7.3 Methods 

This section is intended to serve two primary purposes: 

to document and detail the specific methods used to perform the integration of sensor 
validation and fusion techniques with SmartPath, and 

to discuss the evaluation of said validation and fusion techniques in order that SmartPath 
might be deemed a useful tool for such evaluative purposes. 

In reference to documenting the specific methods, the intent is to provide future researchers and 
SmartPath users with the step-by-step procedures that were undertaken in order to modify and run 
the simulator. These procedures might be useful in eliminating redundant efforts, as well as 
providing simulation developers with a "case-study" example of an end-user's product experience. 
This would potentially aid in improving future simulator designs. In reference to the evaluation of 
the validation and fusion techniques, it is important to determine how well SmartPath performs. 
Does it simulate data and information in a predictable, anticipated fashion? Is it accurate and 
reliable? Can we trust it to be a good representation of the real world? In evaluation of 
Smartpath's output compared to previously obtained results, we can make a judgment about 
Smartpath's utility as a design tool. 

7.3.1 Specific Methods 

This section is not intended to provide a comprehensive guide to SmartPath and its capabilities. It 
is merely intended to provide documentation for specific methods that were employed to achieve 
the integration of sensor validation and fusion algorithms with SmartPath. For a detailed guide to 
SmartPath, see Eskafi and Khorramabadi (1996). 

7.3.1.1 SmartPath3.0 System Requirements and Setup 

SmartPath3.0 is available in two packages. One contains only the executables and sample data for 
users who want to modify the configuration of the AHS, and not the source code. The other 
package contains the source code and libraries for users who want to make changes to the 
architecture, controllers, communication protocols, etc. The simulator module of SmartPath3.0 
can be compiled and executed on SunSparc, Sunsolaris, and Silicon Graphics (SGI) workstations. 
The animator uses the Silicon Graphics GL library and can only be run on SGI platforms. The 
source code can be compiled on either Sun or SGI. To compile the animation module, SGI needs 
to have I R E  5.3, X Window System X1 lR5, Motif 1.2 toolkit, and Performer 2.0. 

SmartPath3.0 runs in a distributed fashion to allow the use of multiple processors for compilation. 
However, if using only one processor, SmartPath3.0 still opens another shell on the same machine 
to complete the compilation. In order to allow for this, it is necessary to add the machine's name to 
the .rhosts file in the userk home directory. 

7.3.1.2 Background Preparation 

As SmartPath3.O is written in C, it is necessary to possess a working knowledge of C in order to 
perform modifications. It was necessary to thoroughly understand the SmartPath3.0 directory 
structure, including each directory's purpose as well as the purpose of its included files. As 
SmartPath3.0 consists of 50,000 lines of code, this is not trivial. In addition, it was necessary to 
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understand each of the sensor fusion and validation techniques (Goebel, 1996; Alag, 1996) in 
order to successfully integrate them with SmartPath3.0. 

7.3.1.3 Module modification and Compilation 

The sensor validation and fusion algorithms were translated into C code and inserted as functions 
within the regulation layer of SmartPath3.0. Since this layer performs all of the control functions 
of the vehicle, it seemed to be the appropriate place to intercept the sensor data. In addition, it was 
necessary to impose the noise models, validate and fuse the data, then pass the output to the vehicle 
controller, also in the regulation layer. The. sensor validation and fusion models, as well as the 
noise models were added to /src/regulation/house-keep.c. 

As received, SmartPath3.0 did not initially contain a follower controller. It simply consisted of a 
follower law that retrieved the velocity and acceleration of the lead vehicle and set them to be its 
own. This type of follower law was not acceptable for the purposes of this project, so a new 
follower law was developed. Not only would this effort serve the purpose of providing a follower 
law, but it also served as a testing ground to determine how easy it would be to modify the vehicle 
control laws within SmartPath. A PID controller was developed by Jiangxin Wang, and added to 
/src/regulation/regfollow.c in order to demonstrate how to modify and test controller designs. This 
controller was tested and deemed quite satisfactory for vehicle following. 

Function prototypes were added to one of the regulation layer header files, 
/src/regulation/regulation.h. Additionally, global variables were added at the top of 
/src/simulation/main.c, the main program for the simulator. For specific modifications, see 
Appendix B . 

In order to compile the program, the make command was invoked in the top level of the directory, 
using "make -f Makefile.sun". 

7.3.1.4 Configuration Files 

The configuration files are stored in the /data directory. These files give the simulator information 
about the car type, highway structure, simulation parameters, intraplatoon distance, and animation 
parameters. These files were modified in order to set up an AHS with two vehicles, a leader and a 
follower, traveling at 25 m/s with an intervehicle distance of 4m. This setup was chosen in order to 
allow for a simple, focused view of the vehicle interaction. The configuration files were modified 
using a text editor and saved as "sample.config". 

The simulation was initiated by invoking the command "$SMARTPATH/bin/sun/sm-sim 
/data/sample", where "sample" is the prefix for the configuration file of interest, namely 
"sample.config". The program simulated the data and produced output as "sample.state" in the 
form of an ascii file that is a comprehensive state description of each vehicle at each time step. 

7.3.1.5 Data analysis 

Matlab scripts were developed that allowed for examination and comparison of the simulator 
output. These scripts essentially accessed the simulator output (sample.state) and created a 
temporary array. Specific information about the vehicle ID number and its related speed and 
position at each time step was stored in the temporary array. This array of data was plotted to 
display information about the intervehicle spacing between the two vehicles as well as their 
respective velocity traces. Additionally, the root mean square (rms) error as well as the sum square 
error (sse) were calculated within these scripts. 
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7.3.1.6 Animation 

The animation was performed on an SGI workstation with the system requirements previously 
mentioned. As the simulation was performed on a Sun workstation, it was necessary to transfer 
the "samp1e.state" and "sample.cars" files to an SGI via file transfer protocol (ftp). It was 
necessary to transfer all files that were supportive of the animation process. These files included 
/bin/sgi/sm-anim, /libraries/models, /libraries/messages, and /libraries/sgi. In order to start the 
animation, the command ./bin/sm-anim ./data/sample was used. The animator allows a great deal 
of flexibility and viewing manipulation. For a more comprehensive guide, the reader is referred to 
the SmartPath3.0 User's Manual. 

7.3.2 Evaluation of Sensor Validation and Fusion Techniques in SmartPath 

In order to evaluate the effectiveness of SmartPath as a simulation tool, it is useful to look at the 
objectives of SmartPath. It sets out to provide an AHS design environment in which controllers, 
decision-making algorithms, sensor models, etc. can be developed. In order for SmartPath to be 
effective at this, it needs to accurately represent real-life. By comparing the expected performance 
of both sensor validation and fusion techniques (gathered from previous experiments) with their 
performance in SmartPath, we can examine how well SmartPath replicates actuality. 

Experiments were conducted to evaluate the performance of vehicles in the AHS in response to 
1)perfect sensor information, 2) radar sensor noise, 3) fuzzy validation and fusion, and 4) 
validation and fusion with the PDAF. These experiments were conducted at an intervehicle 
spacing of 4 meters. Although both radar and sonar noise models were employed, the sonar 
model is not very noisy at intervehicle distances of less than 5 meters. Since the actual vehicles 
used in the PATH project currently rely exclusively on the radar sensor, it was decided to look 
more closely at radar noise. 

Each of these cases required a separate simulation and animation. The simulated data was plotted 
using the aforementioned Matlab scripts. In order to provide a quantitative basis for comparison, 
the root mean square (rms) error of each data set was determined. In animating the data, particular 
attention was given to the dynamic behavior of the follower vehicle. The effect of the radar noise 
on the ride quality of the vehicle was noted, as well as the ability of the validation and fusion 
algorithms to filter out this noise and subsequently improve ride quality. 

7.4 Results 

7.4.1 Quantitative Results 

Four cases were examined: 

I. Perfect Sensor case : assumes no sensor noise 
11. Radar Noise case : adds a radar noise model to the sensor 
111. FUSVAF case : uses Fuzzy Sensor Validation and Fusion 
IV. AdaDtive PDAF case : uses the Adaptive Probabilistic Data Association Filter for sensor 

validation and fusion. 

These simulations were run using an intervehicle spacing of 4 meters and a target velocity of 25 
m/s (65 mph). The data output was examined in two fashions. First, root mean square (rms) 
analysis was performed in order to quantify the error. The data was also plotted as velocity vs. 
time and intervehicle spacing vs. time; as these parameters are crucial to maintaining a platoon, they 
were closely examined. Secondly, the data was animated and the dynamic behavior of the follower 
vehicle was observed. 
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For the Perfect Sensor case, the intervehicle spacing had an rms error of O.Om (Fig. 7.4-1). This 
is to be expected, as there is no noise in the perfect sensor case. The simulator simply passes the 
exact information about the position of the lead vehicle to the follower vehicle's "sensor". It 
assumes no noise. 

Time(s) 

Fig. 7.4-1: Perfect sensor information at 4m, rms error = 0.0021m 

Also for the perfect sensor case, the follower vehicle velocity exhibited an rms error of 0.0 m / s  
(Fig. 7.4-2). Again, the simulator assumes there is no noise in the transmission of the data. 

In the Radar Noise case, the intervehicle spacing rms error increased to 0.1509 m (Fig. 7.4-3). 
This demonstrates how the follower vehicle's position is affected as it tries to respond to the noisy 
radar sensor signal. The vehicle's motion and subsequent position are, likewise, noisy. The radar 
noise model was developed from experimental data obtained from actual PATH vehicles at the 
Richmond Field Station. It assumes Gaussian noise. 
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Perfect Sensor Information at 4m, rms = 0.0 
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Fig. 7.4-2: Perfect sensor information at 4m, rms error =O.O107m/s 

Radar Noise model at 4m, rms = 0.1509 
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time (s) 

Fig. 7.4-3: Radar noise model added at 4m, rms error = 0.1509m 
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Also for the Radar Noise case, the rms error of the follower velocity increased to 0.2276 m / s  (Fig. 
7.4-4). As the vehicle tries to maintain an intervehicle spacing of 4m, it responds to the noisy 
signal as shown in the velocity trace. 

Radar Noise model at 4m, rrns = 0.2276 
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Fig. 7.4-4: Radar noise model added at 4m, rms error = 0.2276 m/s 

In the FUSVAF case, fuzzy sensor validation and fusion techniques decreased the rms error of the 
intervehicle spacing to 0.1358 m (Fig. 7.4-5). By filtering out the radar sensor noise, the follower 
vehicle manages to smooth out its motion. 

Similarly, when Fuzzy sensor validation and fusion was applied, the rms error of the follower 
velocity decreased to 0.0302 m / s  (Fig. 7.4-6). This, again, is due to the algorithm's ability to filter 
out the noise from the radar sensor. 

For the Adaptive PDAF case, the rms error of the intervehicle spacing decreased further to 0.0022 
m (Fig. 7.4-7). The Adaptive PDAF uses a learning algorithm to allow it to filter out the noise 
more effectively. 

Also, the Adaptive PDAF reduced the rms error of the follower velocity to 0.0094 m / s  (Fig. 7.4- 
8). 
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Fig. 7.4-5: Fuzzy sensor validation and fusion at 4m, rms error = 0.1358 m 

Fuzzy Sensor Validation and Fusion at 4m, rms = 0.0302 
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Fig. 7.4-6: Fuzzy sensor validation and fusion at 4m, rms error = 0.0302 m / s  
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Sensor Validation and Fusion using PDAF at 4m, rms = 0.0022 
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Fig. 7.4-7: Sensor Validation and Fusion using PDAF at 4m, 
rms error = 0.0022m 

Sensor Validation and Fusion using PDAF at 4m, rms = 0.0094 
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Fig. 7.4-8: Sensor validation and fusion using the PDAF at 4m, 
rms error = 0.0094 m / s  
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7.4.2 Qualitative Results 

In animating the Perfect Sensor case, the follower vehicle behaved as one might expect: its ride 
was smooth and controlled. As there was no noise present in the signal, no unusual vehicle 
response was noted. The spacing between the vehicles remained constant as it appeared in the 
Intervehicle distance plot (Fig. 7.4-1). In the Radar Noise case, the follower vehicle exhibited a 
pulsing, jerking motion, with unacceptable ride quality. The distance between the two vehicles 
varied to a noticeable degree. Considering the nature of the noise demonstrated in the 
accompanying plots (Figs. 7.4-3 and 7.4-4), this behavior was expected. In animating the 
FUSVAF case, the ride quality was improved considerably. There was still some slight pulsing 
motion, but not nearly as severe as the Radar Noise case. The ability of the FUSVAF algorithm to 
filter out the radar noise was visually evident. In animating the Adaptive PDAF case, the ride 
quality was vastly improved over the Radar Noise case. The vehicle motion was smooth and 
controlled and very much like the perfect sensor information case. As the rms error of the 
Intervehicle distance of the PDAF case was 0.0022m (Fig. 7.4-7), the vehicle exhibited virtually 
no visual indication of this error. 

7.5 Discussion 

The results of the simulation and animation procedures generally suggest that the two sensor 
validation and fusion techniques behave as expected. In the presence of radar and sonar noise 
models, they both are capable of filtering out the noise to varying degrees, as well as fusing 
multiple readings. 

According to the data, the probabilistic data association filter managed to filter out almost all of the 
sensor noise, nearing the level of perfect information. The PDAF uses a Kalman filter, which 
operates best in the presence of Gaussian noise. As the radar noise model utilizes Gaussian noise, 
the PDAF was operating under optimal conditions. However, the PDAF is extremely sensitive to 
initial conditions. It has to be initialized accurately, or else its performance decreases drastically. 

The Fuzzy algorithm didn't filter out the noise as well as the PDAF, but it did filter out a significant 
amount. The true value of the fuzzy filter lies in its robustness. It has no restrictions on noise type 
or initialization. It performs well over a wide range of conditions and is much less sensitive to 
small variations in initialization. 

SmartPath was quite useful in visualizing the simulated data. It made the numbers and plots 'come 
to life' in the form of 3D animation. The animator provided insight into the physical manifestation 
of noise in the automatic control of the vehicles. One could readily understand what these 
variations in sensor readings and subsequent vehicle responses meant in terms of physical space. 
After using the animator in tandem with the simulator, one can easily relate a physical image with 
rms error values and velocity traces. 

7.6 Conclusions and Future Research 

7.6.1 Conclusions 

From the results obtained, it seems that SmartPath is a valuable tool for simulation and animation 
of AHS concepts and scenarios. Although not very well documented nor user-friendly, SmartPath 
is quite modular and receptive to modification. It is quite realistic, as it simulates experimental data 
quite well, and offers a natural 3D environment for viewing the vehicle interactions. SmartPath 
helps bring data 'to life' by offering a connection between vehicle motions and controller 
commands. 
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Also, the results of the algorithm comparison suggest that both the PDAF and Fuzzy techniques are 
quite useful in filtering radar sensor noise. The PDAF algorithm is more precise, yet more 
sensitive to initialization parameters and noise type. The Fuzzy algorithm is less precise, but much 
more robust to a wide range of initialization parameters and noise models. However, both 
algorithms offer very useful methods for dealing with inherent sensor uncertainty in the AHS, as 
well as other applications. 

7.6.2 Future Research 

It would be quite useful to perform experiments using sensor validation and fusion techniques with 
different vehicle maneuvers. Joins, splits, lane changes, etc. would likely offer some interesting 
insight as to the impact of sensor noise on a wide range of vehicle maneuvers. In a join maneuver 
the sensors must be active over a wide range of distances, because a vehicle approaches a platoon 
from hundreds of meters away and must adjust its relative velocity to achieve a specified 
intraplatoon distance. Sensors have different noise characteristics at various distances from the 
target, and it would be useful to note the effect of this noise on the join maneuver. 

It would also be useful to take the positive attributes of both the fuzzy and PDAF techniques, and 
combine them to form a more robust, accurate validation and fusion algorithm. The fuzzy 
algorithm could be used to begin the validation process by getting the system 'on-track, and the 
PDAF algorithm might then refine the validation and fusion process with more precise, accurate 
predictions. An algorithm of this sort might be used as a complete "learning" algorithm that is 
applicable to any situation. It would potentially not have to be initialized, due to its ability to learn 
the behavior of the system and fine tune its predictions with each successive time step. 
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8. Summary, Conclusions and Recommendations 

Past research has shown that exploratory sensors for IVHS exhibit a range of sensor failure 
behaviors. Although the integrity of these sensors will improve with future research and 
refinement, our research makes it clear that some degree of uncertainty will be inevitable in the 
class of sensors being considered and in the uncertain environmental conditions possible. Control 
systems that rely on an assumption of "perfect sensors" may result in control actions which are 
unsafe for passengers of the IVHS. We have developed a five-module approach to intelligent 
diagnosis based on validated and fused sensor data. The modules are: 1) Sensor Validation, 2) 
Sensor Fusion, 3) Fault Detection, 4) Hazard Analysis, and 5) Safety Decision Maker. The first 
two modules and, to a certain degree, the third module, were addressed in previous funding 
projects (MOU 132; Agogino et al., 1995 and MOU 157; Agogino et al., 1997). 

8.1 Summary 

This report describes extensions to previous work and introduces the remaining modules, Fault 
Detection, Hazard Analysis, Safety Decision Maker, which take the validated and fused sensor data 
as input and gives probabilities and other multivariate measures of hazard likelihood as output. 
Failures can to a degree be predicted and actions to situations sensitive to certain sensor readings 
can be taken in advance not as a reaction to an already hazardous situation but as a preventive 
measure. We augmented previous work in sensor validation and failure by developing other 
techniques - such as fuzzy data validation, fuzzy fusion, and extensions of Bayesian networks. 
All of these techniques are designed to be used to complement the analytical methods for fault 
detection that are being developed by other PATH researchers. The combination of both fuzzy and 
probabilistic strategies allows the evaluation of all available information and knowledge of the 
system for fault detection such as degree of aging, the operational environment (e.g., the vehicle 
state whether lead vehicle or follower vehicle etc.). 

This report also analyzed potential sensor failures and related hazards to recommend appropriate 
actions. Failures were identified and related to their cause and their effects on the system and 
classified accordingly (e.g., total or incipient). Our past work has clearly shown that various 
sensors react in different ways under the influence of different operating conditions such as fog or 
rain. We carried out a failure mode effect analysis for the longitudinal sensor in order to 
systematically capture the effects and reasons for failures and to match the signature of faulty 
sensor readings with specific failures. 

The state of the IVHS system on the platoon level was modeled as an optimization problem, with 
possible states of each of the vehicles defined over the feasible stochastic search space. The states 
of individual vehicles in a platoon were the design variables in the optimization process. The 
objective function in this case was multi-attribute consisting of a list of possible hazards and the 
probability of each occurring obtained from the Intelligent Decision Module. With our ongoing 
work in PATH we will continue to test, characterize, and compare sensors operating under diverse 
and adverse conditions including new ranging sensors entering the scene, e.g. GPS sensors. 

8.2 Conclusions and Recommendations 

A summary of conclusion and recommendations follows. Some of these recommendations will be 
implemented in MOU-322 for the PATH project titled: "Aggregation of Direct and Indirect 
Positioning Sensors for Vehicle Guidance." 
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8.2.1 Fuzzy Sensor Validation, Fusion and Fault Detection 

The fuzzy diagnosis framework we developed has proven to be a fast and accurate way to trace 
failures and their source, (if modeled) from observed symptoms in simulation studies. For on-line 
diagnosis in automated highway systems, its fast computation makes it possible for failures to be 
quickly detected and followed by timely reaction. Trends of failure may also be detectable, 
allowing prediction of failure in the future. Future research should focus on effective means of 
utilizing the results of fuzzy validation and fusion with diagnosis and decision making strategies. 

8.2.2 Bayesian Sensor Validation, Fusion and Fault Detection 

We also developed a comprehensive Bayesian methodology for intelligent sensor measurement 
validation, fusion, and sensor fault detection. The methodology is effective in detecting sensor 
faults, combining information from a number of sources such as sensor characteristics and the 
immediate history of the variable that is being monitored. This work addresses the very important 
problem of distinguishing between a sensor failure and a system failure for complex systems. The 
proposed four step methodology of redundancy creation, state prediction, validation and fusion, 
and fault detection can detect subtle sensor failures such as drift in mean and degradation of the 
sensor over time. 

We have also illustrated how probabilistic reasoning can be used to handle the uncertainty inherent 
in the residue processing process. We have illustrated how to refine and build an appropriate belief 
network structure and how the conditional probabilities can be estimated both analytically and from 
learning from data (for which we have presented a new method which is applicable to only a 
special class of belief networks). We have illustrated how dynamic belief networks can be used for 
forecasting. We have derived a recursive formula for the on-line adaptation of the state evolution 
model. Based on studies utilizing both real and simulated data we have found the combined sensor 
fault detection methodology to be effective in both detecting and forecasting potential sensor faults. 

8.2.3 Comparison of Fuzzy and Bayesian Techniques 

In contrast to the Bayesian approach, the fuzzy approach avoids assumptions of failure 
independence and of relative frequency of disorder occurrence. Unlike the Bayesian approach, 
which has difficulties in detecting multiple simultaneous failures, the fuzzy approach is able to 
consider all interrelationships and prioritize major failures. The fuzzy approach tends to outperform 
the Bayesian approach on failure modes which are not well documented with a statistical history, 
particularly if the distributions largely deviations from a Gaussian model. Similarity between the 
two methods occurs in that links in the causal network represent causal strengths for failure- 
symptom relations. 

Once the IVHS sensors and control systems are better defined, additional expert knowledge about 
the behavior of multiple fault-symptom should be codified and incorporated into the logic. This 
would require a symptom combination that differs from the default model, which would not be 
able to detect two faults which might (partially) cancel their symptoms. 

The Bayesian approach, however, could outperform the fuzzy methods as more data are collected 
and as the system models are better defined and validated. Future research should focus on how 
these two approaches - each with advantages over the other in some circumstances - could be 
implemented in a complementary fashion to form a more robust, accurate validation, fusion and 
fault detection framework. The fuzzy algorithm could be used to begin the validation process by 
getting the system 'on-track, and the PDAF algorithm might then refine the validation and fusion 
process with more precise, accurate predictions. An algorithm of this sort might be used as a 
complete "learning" algorithm that is applicable to any situation. It would potentially not have to be 
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initialized, due to its ability to learn the behavior of the system and fine tune its predictions with 
each successive time step. 

8.2.4 Hazard Analysis 

A prototype Fault Tree Analysis of component faults was developed. The fault characteristics 
provide useful qualitative insight as to the impact on the controller when a component failure 
occurs. This information can be used to predict which hazards are imminent. The results gathered 
from the Fault Tree analyses show that the hazard definitions are far too broad to provide useful 
information in failure analysis and future work should include redefining the set of existing 
hazards. Similarly, the trees could not be analyzed quantitatively using Boolean algebra because of 
the large number of undeveloped events and the lack of data corresponding to those events. 
Although the Fault Trees developed for the radar and sonar sensors are very limited and exclusive 
in nature, they serve as a springboard to other applications. As more definition is given to the 
intelligent vehicle highways systems in the PATH project, further development of the fault trees is 
recommended. 

8.2.5 Decision Analytic Approaches to Supervisory Control 

We introduced a framework to enable the automated vehicle to choose an optimal maneuver or 
strategy in hazardous conditions. We discussed hazard diagnosis and results from extended 
analysis of earlier tests performed under hazardous conditions. This analysis yielded a table of 
characteristics differentiating the four hazardous conditions (rain, fog, debris, no hazard) under 
consideration. We also discussed our implementation of EDCRASH in determining vehicle 
trajectories after impact. Environmental inputs to EDCRASH were briefly described and outputs 
detailing impact on the vehicles were listed. The effects of impact were then assessed according to 
statistics from the National Transportation Highway Traffic Administration, resulting in objective 
figures for bodily and property damages. Finally, we described the overall optimization problem 
as a minimization of damages subject to a variety of constraints. We used off-line optimization 
techniques that are too slow to run in real time within the AVCS framework. We recommend that a 
real-time version can be developed by "compiling" out the optimal control strategies. 

This research assumed a limited case in which we restricted our longitudinal distance assessment to 
two sensors and in which we considered only three independent hazards. Because of the 
restrictions, we were able to solve exhaustively, using stochastic optimization. More difficult 
cases will also yield interesting results in future research when we extend our techniques to 
scenarios with multiple sensors and dependent hazards. 

In future work we recommend the use of influence diagrams (Bayes' networks with the addition of 
decisiodcontrol and cost/value nodes) for decision making to avoid or avert potentially dangerous 
states. These decisions are to be optimized with respect to safety, low jerk, and smooth riding 
criteria. Integration with results of our fuzzy techniques should also be investigated. 

8.2.6 GPS, Vision and Laser Radar Sensors 

From the above analysis, we know that each of the three sensors has some interesting 
characteristics. The vision data are quite noisy, but since the noise is white and might be Gaussian 
it could be easily ruled out by a Kalman filter. The laser radar data is relatively accurate, but the 
noise is not Gaussian so a Kalman filter would not work well; another filter should be designed for 
this specific sensor. Since the high accuracy and low cost of the GPS sensor make it an appealing 
candidate for position sensing in IVHS, we will focus more efforts on the detailed modeling of its 
noise characteristics in our future research work. Our next step will be to continue characterizing 
GPS noise (especially under dynamic situations) and integrating other sensors into the GPS 

130 



scheme. In our upcoming GPS experiments in MOU-322, we will use at least one other type of 
sensor (e.g., radar). And we will evaluate the performance of the integrated scheme using 
different algorithms. We also plan to continue studying the vision and laser radar sensors if 
conditions permit. 

8.2.7 Simulations 

There are many competing simulation program being developed for the PATH project. When these 
simulators are better integrated, it would be quite useful to redo our simulations and perform 
experiments using sensor validation and fusion techniques with different vehicle maneuvers. 
Joins, splits, lane changes, etc. would likely offer some interesting insight as to the impact of 
sensor noise on a wide range of vehicle maneuvers. In a join maneuver the sensors must be active 
over a wide range of distances, because a vehicle approaches a platoon from hundreds of meters 
away and must adjust its relative velocity to achieve a specified intraplatoon distance. Sensors 
have different noise characteristics at various distances from the target, and it would be useful to 
note the effect of this noise on the join maneuver. Finally, such simulations would help us develop 
the best hybrid architecture for combining fuzzy, probabilistic and decision-analytic approaches to 
sensor validation, fusion, fault detection and recovery. 
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