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Abstract: As an innovation of driver assistance technology, this research aims to develop an “Autonomous Intelligent

Driving System” to prevent risk of accidents and enhance driving safety for elderly drivers in order to vitalize current

aged society. The proposed system focuses on two key technologies: Risk-predictive driving intelligence model and

Shared control between the driver and the assistance system. The first key technology is to embed an experienced driver

model for recovering degraded performances of recognition, decision-making and operation of drivers. In the driver as-

sistance system design, the experienced driver model contains knowledge-based “risk-prediction mechanism” to avoid

accidents in risky driving situations. For instance, when passing unsignalized intersections with poor visibility, it is

known that experienced drivers predict the appearance of sudden-crossing pedestrians or bicycles and then slow down

the vehicle when approaching such poor visibility area and also prepare to brake in order to avoid potential collisions

that might occur. The second key point is “Shared control.” This research does not aim to develop a fully-autonomous

driving vehicle for them, but aims to develop an advanced driver assistance system for preventing accidents in the case

that the intervention by braking or steering is needed, as well as reducing driving workload. Therefore, to realize good

cooperative characteristics between the driver and the system, the shared control concept is applied to optimize the

assistance level for braking and steering maneuver, minimizing the interference human driver driving maneuver. The

Driving Simulator and the test vehicle are used to verify the effectiveness of the proposed intelligent driving system.
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1. Introduction

Recent advances in passive safety and active safety technolo-

gies have greatly contributed to a remarkable decrease in traffic

fatalities, less than 4,500 fatalities in 2015, however, the num-

ber of road accidents remains high according to national statis-

tics data [1]. By 2030, it is estimated that the ratio of the peo-

ple older than 65 years will reach 1/3 and the ratio of the latter-

stage elderly people older than 75 years will reach 1/5 among

the populations of Japan [2]. Focusing on the elderly drivers,

it is also estimated that half of car drivers older than 60 years

will be holding their driving licenses. Based on these facts, ac-

cidents involving elderly drivers have been increasing every year

owing to their declined physical ability in terms of recognition,

decision-making and operation. For instance, the effective vis-

ibility range for elderly drivers is relatively narrower than that

for young drivers. Based on a driving test of a forward collision

warning system using a large driving simulator, it was found that

there are many elderly drivers who cannot recognize the colli-

sion warning sound produced by the driver assistance system [3].

These facts indicate that in critical situations, an autonomous

driving system is one of the promising solutions to prevent colli-

sions involving elderly drivers. Moreover, degraded driving per-

formance reduces the self-confidence of elderly drivers. Most

of elderly drivers still need automobiles as a means of mobility
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for active social participation as well as to improve their quality

of life [4]. To recover their degraded driving performance, this

research project aims at considerably improving road safety by

allowing autonomous driving control intervention in the last few

seconds before an accident involving elderly drivers.

Drive recorders have been used to record real world near-

miss incident data from more than 200 taxi vehicles in Tokyo,

Shizuoka, Kyushu, Hokkaido region since 2005. Currently,

110,000 event data are registered in the database system of Tokyo

University of Agriculture and Technology [5]. The data has been

used for human error analysis and cause and effect chain study

of accidents. Based on past studies, there are many cases that

current autonomous emergency braking functions cannot avoid

crashes such as pedestrians or bicycles dart out from blind spot

or occlusion. It is important to predict the hidden risk in driving

situation as the experienced driver behave and control the vehicle

velocity and direction to a certain value to prepare for unexpected

upcoming hazardous events. The applicant has used the concept

of “Risk Potential” to express the risk predictive driving behavior

of the experienced drivers in theoretical way. The risk potential

of the observed obstacles and the hidden obstacles in the driving

corridor of the vehicle are sum up to get the whole risk potential

on the road. The optimal trajectory is determined by selecting the

future trajectory which minimizes the risk potential on the road

while securing good ride comfort for the driver.

However, cooperative characteristics during driving between

the system and the driver is an important issue. Strong level of

control intervention results in good accident avoidance perfor-

mance but the driver acceptance might be low. Here, the concept
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of Haptic Shared control is also applied to realize good cooper-

ative characteristics between the system and the driver by opti-

mally controlling the force or torque on the accelerator pedal and

the steering wheel to induce the driver to drive safer and act like

the experienced driver.

The objective of the research is to develop an autonomous driv-

ing control which is designed based on the key concept of expe-

rienced driver behavior modeling with risk potential prediction

in order to prepare for unexpected upcoming hazardous events.

In the project study, to make the system be friendly to all types

of drivers including elderly drivers, high driver acceptance and

social acceptance are also ones of system requirements.

2. Project Outline of Intelligent Driving Sys-

tem

This project was adopted and started in 2011 as one of the

technology innovation projects to vitalize Japan’s aging society.

The project is sponsored by the Japan Science and Technology

Agency (JST). This project is being carried out based on a col-

laborative framework between universities and industry, includ-

ing Tokyo University of Agriculture and Technology (TUAT), the

University of Tokyo, Kanagawa Institute of Technology (KAIT),

the Japan Automobile Research Institute (JARI), Toyota Central

R&D Labs., Inc., and Toyota Motor Corporation [6].

A specific image of driving intelligence can be presented as fol-

lows. The first central aspect of driving intelligence is improving

the capability of the driver to perceive and recognize the external

environment using sensors (i.e., good vision). Another aspect is

basic driving planning skills, i.e., the generation of target routes

from visual information and the ability to avoid stopped vehicles.

Then, based on these basic driving planning skills, the final cen-

tral aspect is the intelligence to read the future and predict risks.

Types of risks extend from visible and explicit items such as bi-

cycles and pedestrians to potential risks such as invisible changes

in the environment in front of the vehicle at night or pedestri-

ans jumping out unseen from behind a parked car. Technology

to predict these risks has two key points. The first is a model

that defines the possibility of a collision several seconds ahead

and physically expresses the degree of current risk. There are

several methods of achieving this including, the potential field

method. This is an important model for generating the optimum

driving route with few risks and for controlling the speed of the

vehicle. The second point is learning based on empirical driv-

ing information. Currently, the determination of risk from the

visible environment requires an ontological approach based on

large amounts of information. Fusing a physical model and in-

formation model in this way to form a prediction model is a new

challenge for the automotive industry. The near-miss data accu-

mulated by Tokyo University of Agriculture and Technology is

an extremely valuable resource for this information. This data

includes risk events such as those in which drivers avoided an ac-

cident through emergency braking. Risk prediction may be pos-

sible by learning from this data, and incorporating this type of in-

telligent behavior (such as drivers slowing down after predicting

a potential risk) into a machine is a critical part of the technical

challenge to enhance safety and to enable automated driving.

Fig. 1 Conceptual diagram of intelligent driving system.

Fig. 2 Pedestrian moving velocity from blind spot from near-miss incident

DB analysis.

Fig. 3 Motion planning result using risk potential optimization framework

(simulation/experiment).

In the conceptual diagram shown in Fig. 1, the normal driving

control performs continuously to track a desired path and keep the

vehicle at safe speed. By predicting the risk potential based on

priori-knowledge as well as experience, the risk-potential based

control level is added in order to modify the safe path and safe

speed in the time horizon of about 4-5 seconds before the acci-

dent risk becomes imminent. The autonomous driving control is

designed based on the key concept of experienced driver behav-

ior modeling by assuming the artificial risk potential fields on the

driving corridor. The principle of the autonomous vehicle control

here is to plan a trajectory within the defined risk potential field,

describing the hazardous level of each obstacle or object on the

roadway based on knowledge-based risk potential of experienced

drivers. In the case that unexpected hazardous event occurs, the

emergency avoidance control performs at the Time-to-Collision

at about 1 second before the crash occurs as the conventional Au-

tonomous Emergency Braking (AEB) systems work.
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3. Risk Predictive Driving Technology

3.1 Motion Planning and Control System

Conventional motion planning algorithms in static environ-

ment using potential field theory commonly calculate the desired

longitudinal and lateral motions, i.e. the vehicle speed and the

yaw rate, within the same potential field functions [7]. In the sce-

nario focused in this paper, the static obstacle avoidance maneu-

ver and the vehicle speed control maneuver are calculated sep-

arately. The steering maneuver is conducted to minimize the

hazard potential by changing the vehicle trajectory not to col-

lide with the static obstacle. The braking maneuver is conducted

to slow down the vehicle in order to reach the safe speed not to

collide with pedestrians who might appear from behind the ob-

stacle. Based on this design concept, Fig. 4 shows the block dia-

gram of the autonomous driving intelligence system for obstacle

avoidance. The lateral motion and the longitudinal motion con-

trol problems are formulated independently.

In the lateral motion control, the hazard potential functions

with respect to the road boundaries and the obstacle are defined

at first. The candidates of the desired yaw rates are defined and

consequently the vehicle predicted position with respect to each

yaw rate candidate value is calculated by assuming that the vehi-

cle moves at a constant yaw rate within a finite time horizon. In

addition, the performance index based on the hazard potentials of

road environment is calculated with respect to a number of candi-

date yaw rates. The desired yaw rate is sequentially selected from

the candidate yaw rate values which minimizes the performance

index.

In longitudinal control, the risk potential function with respect

to the occluded pedestrian is defined using a spring model. The

predicted vehicle position within a finite time horizon is calcu-

lated in accordance with the candidate longitudinal deceleration

values and the performance index considering the risk potential

of the occluded pedestrian is calculated with respect to a num-

ber of candidate deceleration values. The desired deceleration is

sequentially selected from the candidate values which minimizes

the performance index.

3.2 Hazard-Potential Based Lateral Control

This subsection describes the lateral motion control of the pro-

posed system. The hazard potential used in the lateral motion

control system is described by an exponential function. Under

the condition that a static obstacle exists in front of the ego ve-

hicle on a straight road, the vehicle path is determined by two

factors, i.e. road boundaries and a static obstacle. Actual drivers

determined the optimal path reducing the risk of collision with the

static obstacle and lane departure. Therefore, artificial potential

fields are formulated with respect to the two factors.

The repulsive potential field of road boundaries is defined as

follows:

Ur(X,Y) = wr

[
1 − exp

{
−

(Y − Yrc)2

2σr
2

}]
(1)

where, wr, σr are the weight and the variance of the repulsive

potential field of road boundaries respectively, and Yrc is the

Fig. 4 Block diagram of motion planner and controller of the autonomous

driving intelligence system.

Fig. 5 Repulsive potential field of the road boundaries.

Y-coordinate of the road center.

Figure 5 shows the shape of the repulsive potential field of

the road boundaries. This potential field has the maximum value

at the position of the road boundaries to express risk of lane

departure.

Next, the repulsive potential field of the obstacle is defined with

respect to the vehicle position as follows:

Uo(X,Y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

wo exp

{
−

(X − Xor)
2

σ2
oX

−
(Y − Yo)2

σ2
oY

}
(X ≤ Xor)

wo exp

{
−

(Y − Yo)2

σ2
oY

}
(Xor < X < Xof )

wo exp

{
−

(X − Xof )
2

σ2
oX

−
(Y − Yo)2

σ2
oY

}
(X ≥ Xof )

(2)

where, wo indicates the weight of the repulsive potential field of

the obstacle, σoX , σoY are the variances of X direction and Y

direction respectively, Xof , Xor indicates the X-coordinate at the

front end and the rear end of the obstacle respectively. As can be

noticed from Eq. (2), the repulsive potential field of the obstacle

is defined as an exponential function of X and Y .

Figure 6 shows the shape of the repulsive potential field of the

static obstacle. This potential field has the maximum value at

the position of the obstacle to express risk of collision with the

obstacle.

Next, the overall risk potential field is defined as follows:

Urisk(X,Y) = Ur(X,Y) + Uo(X,Y) (3)

As can be noticed from Eq. (3), the overall risk potential field is

the summation of the repulsive potential field of the road bound-

aries Ur and the repulsive potential field of the obstacle Uo.

wr, wo, σr, σoX and σoY included in Eqs. (1) and (2) are the
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Fig. 6 Repulsive potential field of the static obstacle.

Fig. 7 Driving scene and map contour of hazard potential.

parameters to vary the shape and height of the risk potential field.

These parameters are determined based on the driving data of ac-

tual experienced drivers.

In the driving situation shown in Fig. 7 (a), the combined po-

tential hazard contour map is expressed as Fig. 7 (b).

The parameters of the risk potential functions such as the

weighting coefficients and the variances of the exponential func-

tions wr, wo, σr, σoX , σoY are determined from the collected driv-

ing data by experienced drivers. By assuming that the experi-

enced drivers select the trajectory which passes through minimum

collision risk points of the hazard potential map, the summation

of gradient values along the trajectory must be minimum. By

applying this idea, the parameter optimization problem can be

formulated by using non-linear least-square method. Levenberg-

Marquardt algorithm is used in this paper. First, the repulsive po-

tential function parameters wr, σr are given as initial values and

then the repulsive potential parameters with respect to the parked

vehicle wo, σoX , σoY are optimized by fitting the actual driving

data. The following expression indicated in Eq. (4) is used to

solve these parameters,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

wo

σoX

σoY

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
opt

= arg min
wo ,σoX ,σoY

Ndata∑

i=1

(
∂

∂Y
Urisk(Xe(i),Ye(i))

)2
(4)

subject to

⎡⎢⎢⎢⎢⎣
wr

σr

⎤⎥⎥⎥⎥⎦ = constant

where, Xe, Ye indicate the vehicle trajectory by the experienced

drivers and Ndata indicates the number of trajectories used for

parameter identification process.

Next, the repulsive potential function parameters related to the

road boundary are determined. By using the parameters wo, σoX ,

σoY determined from Eq. (4) above, the parameters wr, σr can be

calculated by using the following expression.

⎡⎢⎢⎢⎢⎣
wr

σr

⎤⎥⎥⎥⎥⎦
opt

= arg min
wr ,σr

Ndata∑

i=1

(
∂

∂Y
Urisk(Xe(i), Ye(i))

)2
(5)

subject to

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

wo

σoX

σoY

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

wo

σoX

σoY

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
opt

Next, the calculation of the desired yaw rate is determined

by using the above-mentioned potential field functions. Conven-

tional path planning by the potential field method is conducted by

calculating the gradient of the potential field at arbitrary vehicle

position [7], [8], [9], [10], [11], [12], [13], [14], [15]. However,

the problem that the stability of the vehicle motion can be ensured

in comparatively higher speed compared to mobile robot speed

region and the problem that the vehicle cannot move out from at

the local minimum point of the potential field may occur. Trajec-

tory generator can be designed by using model predictive control

framework [15], [16], but it includes high complexity in the cal-

culation process and it is difficult to implement for real-time vehi-

cle control. To avoid these problems, the proposed lateral motion

control system determines the vehicle yaw rate sequentially by

selecting the yaw rate which results in minimum hazard potential

with the application of optimal control theory.

As the calculation process, the minimum yaw rate γp,min and

maximum yaw rate γp,max for the search range of the desired yaw

rate and the resolution ∆γp of the search are given. Next, the pre-

dictive yaw rate, which is the candidate of the desired yaw rate

γp(i) are defined as follows:

γp(iy) = γp,min + ∆γp · iy (iy = 0, 1, 2, · · · ,My) (6)

where, My indicates the number of yaw rate candidates. When

the ego vehicle moves at a constant yaw rate with negligible side

slip angle, the predicted vehicle positions (Xp y, Yp y) at a time

horizon tp y with the command yaw rate γp can be calculated as

follows:

⎡⎢⎢⎢⎢⎣
Xp y(iy, jy)

Yp y(iy, jy)

⎤⎥⎥⎥⎥⎦=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Xe(t)+

t0+tp y( jy)∫

t0

V(t) cos(ψ(t)+γpit)dt

Ye(t)+

t0+tp y( jy)∫

t0

V(t) sin(ψ(t)+γpit)dt

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(7)

where, ψ indicates the yaw angle. Next, the performance index

for determination of the desired yaw rate is defined as follows:
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Fig. 8 Schematic diagram of the predictive position and the risk potential.

Jy(iy) =

Ny∑

jy=1

[
UY (Xp y(iy, jy),Yp y(iy, jy)) + qγ2

pi

]
(8)

where q indicates the weighting coefficient of yaw rate input. Fig-

ure 8 shows the schematic diagram of the predictive position and

the risk potential. The feature of the performance index Jy is that

it contains the intermediate variable as the potential field function

not vehicle state variables. The performance index consists of the

summation of the hazard potential field at the vehicle predicted

position and the square of the command yaw rate within a finite

time horizon. The performance index Jy is calculated according

to each command yaw rate candidate and the desired yaw rate γ∗

is determined as the value that results in the minimum value of

the performance index Jy. This calculation process is conducted

at each sampling time.

Next, the calculation of the desired steering wheel angle is de-

scribed. If the side slip angle at the gravity center and the change

rate of the vehicle velocity are negligible, the desired steering

wheel angle δsw
∗ can be expressed using the equivalent linear

two-wheel vehicle model as follows:

δ∗sw(t) = n(1 + KV(t)2)
l

V(t)
γ∗(t) (9)

where, K indicates the stability factor, n is the steering gear ra-

tio. Since the frequency of the steering maneuver is low in this

driving scenario, the dynamic characteristics of the yaw rate with

respect to the steering wheel angle input is neglected.

3.3 Risk-Potential Based Longitudinal Control

This subsection describes the longitudinal motion control of

the proposed system. The risk potential function used in the lon-

gitudinal motion control system is described as a spring model.

Under the condition that a poor visibility cornor caused by oc-

clusions such as a parking vehicle exists, actual drivers reduce

the collision risk with respect to a darting-out pedestrian by early

braking based on hazard anticipation knowledge. Although road

infrastructure such as V2X communication can be effectively

used to know the existence of pedestrians and then prevent col-

lisions, this study aims to apply experienced driver hazard antic-

ipatory characteristics to the design of intelligent driving system

without requiring communication systems. To further decrease

the number of pedestrian fatalities, the risk assessment algorithm

which considers the collision risk including such occluded ob-

jects is essential. Based on this fact, an artificial potential field

Fig. 9 Repulsive risk potential field of the occluded pedestrian.

regarding the occluded pedestrian is also introduced in the motion

planning computation algorithm. The repulsive potential field of

the occluded pedestrian Uped is defined as follows:

Uped =
1

2
kped[lmax − l(t)]2 if X∗ < l(t) < lmax (10)

where, kped indicates the spring constant of the repulsive poten-

tial of the occluded pedestrian, l indicates the relative distance

between the pedestrian moving axis and the ego vehicle. In addi-

tion, lmax and X∗ indicate the maximum and minimum distances

with respect to the occluded pedestrian which causes risk poten-

tial, respectively. lmax refers to the braking start distance and X∗

refers to the braking finish distance.

Next, Eq. (11) is obtained based on the law of energy conser-

vation between the potential energy and the kinetic energy of the

vehicle. In other words, the kinetic energy must be reduced as the

potential energy increases in the artificial riks potential field.

1

2
mV(t)2 +

1

2
kped[lmax − l(t)]2 =

1

2
mV2

min +
1

2
kped(lmax − X∗)2

(11)

where, m indicates the vehicle mass and Vmin indicates the desired

minimum velocity which is determined based on the driving data

of experienced drivers.

Based on Eq. (11), the spring constant is determined as follows:

kped =
m(V2

min
− V(t)2)

[lmax − l(t)]2 − [lmax − X∗]2
(12)

The spring constant varies sequentially based on the velocity

and the relative distance. Figure 9 shows the shape of the re-

pulsive risk potential field of the occluded pedestrian. To calcu-

late the value of the spring constant, the terminal vehicle velocity

Vmin must be given. The terminal vehicle velocity Vmin can be

theoretically determined from the stopping distance equation and

the geometrical relationship of the vehicle and the pedestrian as

follows:

[Stopping distance]

X∗ = Vminτ +
V2

min

2amax

(13)
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1

2amax

V2
min + τVmin − X∗ = 0

Vmin =

−τ +

√
τ2 +

2X∗

amax

1

amax

= amax

⎛⎜⎜⎜⎜⎜⎜⎝−τ +
√
τ2 +

2X∗

amax

⎞⎟⎟⎟⎟⎟⎟⎠ (14)

where, amax denotes the maximum deceleration applied for stop-

ping, τ the braking reaction time with respect to the pedestrian

recognition and X∗ the position where the velocity is lowest. The

position where the velocity is lowest is dependent on the distance

to the parked vehicle Ypass by solving the following equations.

Ỹped −
d

2

Vped

=
X∗

Vmin

(15)

Ỹped =
X̃ped − Xfin

Xof − Xfin

Ypass (16)

Equation (16) is obtained by using the similarity of triangles

in the pictorial diagram of Fig. 7. By substituting Eq. (16) into

Eq. (15), the X∗ can be expressed as a function of the distance to

the parked vehicle Ypass. In Eq. (15), Vped is defined as the aver-

age walking speed of pedestrian in crash-relevant events, using

the pedestrian motion analysis in the Eq. (12).

Next, the calculation of the desired deceleration is described.

The maximum deceleration ax,max and the resolution ∆ax for the

search of the desired deceleration are given and the a number of

decelerations which are the candidates of the desired deceleration

ax(ix) are defined as follows:

ax(ix) = ∆ax · ix (ix = 0, 1, 2, · · · ,Mx) (17)

where, Mx indicates the number of acceleration candidates.

When the ego vehicle moves only the longitudinal direction, the

predicted vehicle position Xp x(ix, jx) at a time horizon tp x( jx)

with respect to the deceleration ax(ix) are calculated as follows:

Xp x(ix, jx)

= Xe(t) + V(t) · tp x( jx) +
1

2
ax(ix) · tp x( jx)2 (18)

Next, the performance index Jx for the determination of the

desired deceleration is defined as follows:

Jx(Mx) =

Nx∑

jx=1

(
Uped(Xp x(ix, jx)) + ra2

x

)
(19)

where, r indicates the weight of the command longitudinal de-

celeration input. This performance index Jx is expressed as the

summation of the risk potential at the predictive position and the

square of the predictive deceleration. The performance index Jx is

calculated at the several predictive decelerations and the desired

deceleration ax
∗ is determined as the value which minimizes the

performance index Jx. This calculation process is sequentially

conducted at each sampling time as same as the lateral motion

control.

The braking torque command of the vehicle Tm
∗ in order to

Fig. 10 Driving scenario specifications.

Table 1 Parameters of the lateral vehicle control.

Table 2 Parameters of the longitudinal vehicle control.

achieve the desired longitudinal deceleration ax
∗ is determined

by using the inverse dynamics of the vehicle longitudinal motion

combined with the one-wheel rotational motion model. The lon-

gitudinal slip ratio is assumed to be zero.

T ∗m =
1

2

(
J + mrw

2

rw
a∗x + FRrw · sgn(V)

)
(20)

where, J denotes the moment of inertia of the tire-wheel, rw the

effective radius of the tire, and FR the driving resistance.

3.4 Validation of the Proposed Motion Planning and Con-

trol

3.4.1 Driving Scenario

The simulation was conducted to verify the effectiveness of the

proposed motion planning and control system. The simulation

scenario is shown in Fig. 10. The simulation was conducted on

the straight road in which the parking vehicle existed. The front

end and the rear end of the parking vehicle were set as far as

53.6 m and 48.1 m from the start point respectively. Addition-

ally, the parking vehicle was located at a lateral distance of 0.9 m

from the road center. The ego vehicle was running at a speed

of 40 km/h at first. As a vehicle model in the simulation, the

4-wheel vehicle model was used. The simulation result was com-

pared with the driving data of the selected experienced drivers.

Additionally, the control parameters of the longitudinal motion

and the lateral motion control are shown in Table 1 and Table 2.
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Fig. 11 Driving data of experienced drivers.

Fig. 12 Motion planning computation results.

3.4.2 Driving Data of Experienced Drivers

The driving data of experienced drivers were collected. Four

drivers who are test drivers of automotive manufacturers and driv-

ing instructors who get well-trained in safety driving were se-

lected as the experienced drivers. They drove under the same

condition as the scenario, indicated in Fig. 10, seven times and

the data of the vehicle velocity and the trajectory were acquired.

The average trajectory and the average speed of each driver as

well as the average of all driver data are shown in Fig. 11. In

this paper, the effectiveness of the proposed system was verified

by comparing the simulation result with the average values of all

driver data.

3.4.3 Simulation Results and Discussions

The desired vehicle motion calculated by the motion planning

algorithm is shown in Fig. 12 and the velocities and the vehicle

trajectories of the simulation and experienced drivers are shown

in Fig. 13. Figure 14 shows the braking distances with and with-

out the risk prediction. The braking distance in Fig. 14 is calcu-

lated assuming that the maximum jerk and the response time are

12 m/s3 and 0.1 s considering the recognition time of the pedes-

trian detection sensor. The drawn lines indicate the required brak-

ing distance with respect to the velocity, at the time instant that

the pedestrian darts out from the space behind the parked vehi-

cle, in order to avoid collision when the maximum deceleration

for stopping is given (0.2 G, 0.4 G, 0.6 G and 0.8 G). The dis-

tance of the pedestrian appearance is set at 8.0 m, 10.0 m, 12.0 m

and 14.0 m. The marks plotted in the graph indicate the vehicle

Fig. 13 Comparison of actual experienced driver data (red line) and sim-

ulation (blue line) with the proposed motion planning and control

system (Standard deviation of the experiment data by experienced

driver is also shown with red bars).

Fig. 14 Required deceleration for pedestrian collision avoidance by

braking.

velocity at each condition in the case that the risk prediction is

conducted (circles) and not conducted (squares). The vehicle ve-

locity becomes lower when the risk prediction is considered in

the vehicle motion planning. The position of each mark also in-

dicates the magnitude of the required maximum deceleration in

order to avoid collision. The mark below the line of 0.8 G means

that the required deceleration is higher than 0.8 G which exceeds

the braking capability of the vehicle on dry road friction condi-

tion. In other words, the collision is unavoidable. In this paper,

the simulation finish point was defined as X = 60 m as the pro-

posed system focused on the parking-vehicle overtaking and the

collision avoidance with occluded objects.

As can be noticed from Fig. 11 and Fig. 12, the ego vehicle

was able to avoid the parking vehicle with the stable behavior.

Moreover, the simulation results about both the vehicle velocity

and trajectory closely match the driving data of the experienced

drivers. Therefore, the proposed autonomous driving system with
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combination of risk potential field and optimal control theories

are feasible to express the actual anticipatory driving characteris-

tics of the experienced drivers. In addition, as can be noticed from

Fig. 14, the ego vehicle equipped with an autonomous emergency

braking (AEB) without pedestrian risk potential prediction can-

not avoid the collision even with 0.8 G if a pedestrian dart out

at the distance between the ego vehicle and the front end of the

obstacle of 12 m. On the other hand, the ego vehicle with the

risk-potential based motion planning and control can avoid the

collision with 0.4 G in the same situation. Moreover, the ego ve-

hicle with the control can avoid the collision with 0.8 G even if

a pedestrian darts out at the distance between the ego vehicle and

the front end of the obstacle of 8 m. In this fact, the proposed risk-

potential based control system can effectively enhance pedestrian

crossing collision avoidance performance.

4. Shared Control

People have used machines as soon as the trustworthiness of

the machine has been established. At the same time, as men-

tioned above, people may change from being willing drivers to

unwilling drivers due to fatigue or the driving conditions. Elderly

people often feel unease about driving due to self-awareness of

physical deterioration. One of the potential roles of an intelligent

machine may be to reassure and enable the elderly to drive safely.

The right to drive cannot be taken away simply on the grounds of

age. Freedom of mobility is one of the inherent merits of a car

and driving is in itself a miraculous act. One universal aspect of

people using machines is the inspiration that this use generates,

and the instinct that connects this inspiration to human vitality

and motivation. The use of information through smart phones

has become widespread in the modern age. If information con-

tains the value of “knowing,” then objects must also contain the

opposite values of “seeing, touching, and feeling.” However, this

is not a discussion about which is better. The key point for both

information and objects is how to communicate the context con-

sidered by a machine to the person using it. Ignoring the issue

of the human-machine interface (HMI), it is necessary to identify

whether the results meet or exceed the expectations of the per-

son using the machine, since this is the root of trust between the

two. A machine must predict the result, communicate the context

of this action to the user and ensure understanding. From this

standpoint, smart phones are ahead of automated driving tech-

nologies. This is still a weak point for vehicle driving. A ma-

chine that can communicate and express a route or a situational

awareness judged to be the optimal option as rationally as pos-

sible through the steering wheel, accelerator pedal, or brakes, is

finally approaching the capabilities of a horse. In this case, it is

not acceptable to add new interfaces that increase the burden of

driving. Can a machine perfectly identify the context of driving

and communicate this to the driver? That is what is required of

driving intelligence with shared control.

This chapter investigates a new shared control system which

combines haptic steering guidance torque and Direct Yaw-

Moment Control (DYC). The proposed system can potentially

solve the interference problem, as DYC is used to control the lat-

eral dynamics as an independent control input [17], [18], [19],

Fig. 15 Human-machine shared control system.

[20], [21], [22], [23], [24], [25], [26], [27], [28], [29].

4.1 Shared Steering Control System Design

Figure 15 shows the proposed system. The steering assistance

system aims to induce the driving behavior of elderly drivers to

be close to that of a reference driver model (Eq. (21)).

θ∗sw =
hs

1 + τnss
{Ys − (Yc + TpsVψ)} (21)

where, θsw
∗ denotes the reference steering wheel angle, hs denotes

the reference driver gain, τns denotes the reference time constant,

Ys denotes the reference lateral displacement at the preview point,

Yc denotes the lateral displacement of center of gravity, Tps de-

notes the reference preview time, V denotes the vehicle speed,

Ψ denotes the yaw angle. The haptic steering guidance torque

control law is expressed as Eq. (22).

Ta = Ka(θ∗sw − θsw) (22)

where, Ta denotes the steering guidance torque, Ka denotes the

steering guidance gain, θsw denotes the steering wheel angle.

When steering wheel angle θsw does not correspond to the ref-

erence steering wheel angle θsw
∗, the steering guidance torque Ta

is provided to drivers as a haptic torque from steering wheel, to

indicate the steering direction that he/she should apply to drive

along the desired path.

The control law of DYC is expressed as Eq. (23).

MZ = Kmz ×
θsw

n
(23)

where, Mz denotes the DYC input, Kmz denotes the DYC gain,

n denotes the gear ratio. There are two aims in the design of

DYC. The first effect is to reduce self-aligning torque. When

self-aligning torque is decreased, driver torque and steering guid-

ance torque are decreased consequently. The second effect is to

improve the vehicle responsiveness with respect to the steering

angle. According to these effects, the proposed system can re-

duce the degree of the interference between the driver torque and

the steering guidance torque Ta.

4.1.1 Driver Model

This section describes the driver model defined. Equation (24)

expresses the driver model with steering torque input (Yuhara, N.

et al. 1997) [30].

Td =
1

1 + τvs
[H{Yd − (Yc + TpVψ)}] +

1

1 + τhs
(KhTa) (24)

where, Td denotes the driver torque, τv denotes the driver visual

time constant, H denotes the driver compensatory gain based on
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Fig. 16 TUAT driving simulator.

the visual information, Yd denotes the driver target lateral dis-

placement, Tp denotes the driver preview time, τh denotes the

driver haptic time constant, Kh denotes the driver compensatory

gain based on the haptic information. The first term on the right

side in the Eq. (24) indicates the torque with respect to the vi-

sual feedback information, whereas the second term indicates the

torque with respect to the haptic steering information.

4.1.2 Steering and Vehicle

The steering model is used in the control model coupling with

the above driver model with steering torque input. The steering

equation of motion is expressed as Eq. (25).

θsw =
1

Jss2 +Css

(
Td + Tm −

TSAT

n

)
(25)

where, Js denotes the moment of inertia of the steering wheel,

Cs denotes the viscous damping coefficient of steering wheel side,

Tm denotes the motor torque of the steering, TSAT denotes the self-

aligning torque. The motor torque of the steering Tm is expressed

as Eq. (26).

Tm = Kps ×
TSAT

n
+ Ta (26)

where, Kps denotes the coefficient of electric power steering. In

this model, the complicated power steering mechanism and the

torsional stiffness of the steering model are not considered. More-

over, the self-aligning torque TSAT is transferred from the front

tires to the steering shaft directly through the steering gear.

The linear equivalent two-wheel vehicle model is used. The

parameters of the vehicle model are defined assuming a mid-size

vehicle.

4.2 Driving Simulator Experiment for Shared Control Sys-

tem Evaluation

4.2.1 TUAT Driving Simulator

Figure 16 shows TUAT driving simulator used in this experi-

ment. TUAT driving simulator consists of a host computer, a vi-

sual system, an audio system, a steering system and a hexapod

motion cueing controller. The driving simulator is equipped with

the same driver operational interfaces as a real vehicle. The host

computer calculates the vehicle behavior base on the input of

driver operational interfaces and consequently generates the driv-

ing screen image. The hexapod motion cueing system is operated

based on the calculated vehicle dynamics states.

4.2.2 Experimental Condition

The experiment was conducted by using TUAT driving simu-

lator to evaluate the proposed shared control system (The ethi-

cal approval were obtained). Eight elderly drivers whose average

Fig. 17 Driving course of single lane change.

Table 3 Simulation conditions.

Fig. 18 Experimental results of single lane change (Driver G).

age was 68 years old were employed to drive the simulator (4 fe-

males, 4 male. They usually drive their individual cars with daily

scene.) The driving course which is a single lane change is shown

in Fig. 17. A vehicle is running at a constant speed of 16.6 m/s.

The control conditions are shown in Table 3. There are “Without

control”, “Steering control”, and “Steering+DYC control.” The

subjects were instructed to change a lane by using the steering

guidance torque Ta. Meanwhile, since only steering guidance

torque Ta cannot accomplish a single lane change, the subjects

were instructed to conduct proactive maneuver of steering wheel.

During the experiments, the subjects were not informed about the

control conditions.

4.2.3 Experimental Results

The effectiveness of DYC is confirmed in six drivers (A, C, E,

F, G, and H) among eight drivers. Figure 18 shows the experi-

mental results by Driver G.

In the graph, 0 m of trajectory X refers to 0 s of time in the hor-

izontal axis. When “Steering control” is compared with the case

“Without control”, the trajectory Y (the first row) was improved
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Fig. 19 Square integral values of steering torque difference and deviation

from desired path (Driver G, Normalized W/O control).

Fig. 20 Square integral values of steering torque difference and deviation

from desired path (Driver D, Normalized W/O control).

as the overshoot is reduced in the region from 50 m to 70 m.

Focusing on the steering torque (the fourth and fifth row), it

is confirmed that the driver torque Td was obviously improved

to be smoother. This result indicates that the steering guidance

torque Ta is effective to driver G.

The effectiveness of DYC is verified by experiments. As

“Steering+DYC control” reduces the amount of driver torque Td

and steering guidance torque Ta, the reduction of the interfer-

ence between the human and steering assist can be achieved (the

sixth row). Figure 19 shows the experimental results by Driver G

in which the upper figure indicates the square integral values of

the difference between driver torque Td and steering guidance

torque Ta, the lower figure indicates the square integral values

of the trajectory of the vehicle Yc deviation with respect to the

target trajectory of the expert driver Yref . Where, the integral time

is from 0 s to 7 s. “Steering+DYC control” performs better path

tracking performance with lower steering guidance level. Since

similar control effectiveness of DYC is confirmed in the above

six drivers, it is verified that the proposed haptic shared steering

control system combined with DYC has positive shared control

characteristics among the elderly drivers.

Figure 20 shows the square integral values by driver D.

Comparing “Steering+DYC control” with “Steering control,” the

torque interference is slightly reduced showing the same tendency

in the case of driver G. On the other hand, the path tracking

performance becomes worse compared with the steering control.

Since the subjects were instructed to change a lane by using the

steering guidance torque Ta before starting the experiments, it

is considered that driver D also tried to change his maneuver

by using the steering guidance torque Ta. From this viewpoint,

driver D may not understand the assistance system intervention

and then apply the steering guidance torque Ta inadequately. For

these drivers, displaying the target path or improving the DYC

Fig. 21 Time series data of steering wheel angular velocity.

Fig. 22 Square integral values of steering wheel angular velocity.

law may be more effective. We will conduct more detailed study

in the future works.

4.3 Discussion

4.3.1 Steering Wheel Angular Velocity Evaluation

To evaluate the handling quality, steering wheel angular veloc-

ity is discussed. Figure 21 shows the time series data of steering

wheel angular velocity by driver G and driver D. When “Steering

control” is applied, the steering angular velocity of each driver

was reduced compared to “Without control.” Since this result in-

dicates that the maneuver of a driver is improved to be smoother,

the effectiveness of steering guidance torque Ta is confirmed.

This tendency is enhanced when “Steering+DYC control” is ap-

plied. This tendency comes from the effects that DYC improves

the vehicle responsiveness with respect to the steering angle, and

a driver can conduct path tracking in more relaxed manner. Fig-

ure 22 shows the square integral values of steering wheel angu-

lar velocity among all drivers. Where, the integral time is from

0 s to 7 s. It is confirmed that except driver H, the square in-

tegral values of all drivers was reduced when steering guidance

torque Ta was applied. It is also confirmed that the standard devi-

ation was smaller when DYC was applied. These results indicate

that drivers can conduct a single lane change with the proposed

system in smooth manner.

4.3.2 Driver Model Identification

To analysis the change of driving behavior, the parameters of

driver model are identified using the experimental results ob-

tained in the previous section. The identified lateral driver model

is Eq. (24). The identification chooses the parameters to minimize

the error E which is defined with Eq. (27) by using Eq. (24) and

the experimental results.

E =

∫ t2

t1

(T̂d − Td)2dt (27)

where, E denotes the error values regarding with square integral

values of the driver torque, T̂d denotes the estimated driver torque,

t1 denotes the start time of the integral region, t2 denotes the end

time of the integral region. In this study, t1 = 0 s and t2 = 7 s
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Fig. 23 Relationship between estimated driver torque and that of experi-

ment (Driver G).

Fig. 24 Identified parameters of all subjects.

is selected. Figure 23 shows the relationship between the esti-

mated driver torque T̂d and the experimental driver torque Td by

driver G in the case of “Steering+DYC control”. The estimated

driver torque T̂d is calculated by using the simulation model in

the previous section with the identified parameters of the driver

model. Since the estimated driver torque T̂d fits with the measure-

ment value, the estimated parameters are valid for discussions.

Figure 24 shows the identified parameters among all drivers.

It is particularly notable that the haptic time constant τh is very

small, on the other hand, the visual time constant τv is large. Fur-

thermore, it is found that steering guidance torque Ta can reduce

the visual time delay compared to “without control.” These re-

sults indicate that the steering guidance torque Ta can compensate

the time delay in visual feedback. This characteristic is potential

to be effective to elderly drivers in reducing the time delay in

steering operation during path tracking.

The effectiveness of DYC is confirmed in the visual gain H

and the haptic gain Kh. Comparing “Steering + DYC control”

with “Steering control,” drivers tend to reduce the visual gain H

and emphasize the haptic gain Kh. This tendency implies that the

drivers rely on the steering guidance torque Ta more strongly in

the case of “Steering+DYC.” Further analysis will be conducted

in future works to evaluate the relationship between DYC and the

change of the driver-vehicle closed loop control characteristics.

5. Conclusions

This paper has described two key technologies for an intel-

ligent driving system for safer automobiles. The first is Risk-

predictive driving intelligence model and the second key point is

‘Shared control.’

An intelligent driving system by embedding the risk poten-

tial prediction knowledge of experienced drivers can enhance the

driving safety like the obstacle avoidance performance. A typ-

ical dangerous scenario in urban environment that a pedestrian

suddenly darts out from a blind corner, i.e., behind a parked car,

with short time margin to collision is focused. First, the poten-

tial field functions of the static road environment and the virtual

pedestrian are defined for the lateral and the longitudinal motion

control respectively. The hazard potential field for the lateral mo-

tion control is determined considering the risk of collision with

an obstacle and the risk of lane departure. The risk potential for

the longitudinal motion control is determined to express the col-

lision risk with an occluded object such as a pedestrian. Next,

the optimal control problem is formulated by taking the poten-

tial field functions into the account. The command values for the

lateral and the longitudinal control are sequentially determined

by solving the formulated optimization problems. Finally, the

validity of the proposed control system is verified by compar-

ing the computer simulation results with the actual driving data

by experienced drivers. As the result, it has been shown that

the proposed autonomous driving system with the combination

of potential field theory and the optimal control theory are feasi-

ble to express the actual driving of the experienced drivers. From

the theoretical collision avoidance analysis, the proposed motion

planning and control with risk potential prediction shows superior

collision avoidance performance to the conventional automatic

emergency braking (AEB) system.

Next, a new shared control system which combines haptic

steering guidance torque together with Direct Yaw-Moment Con-

trol (DYC) has been investigated to obtain good path tracking

performance and human-machine cooperative characteristics. It

is verified that the proposed system performs better path tracking

performance with lower steering guidance level by the experi-

ment of the driving simulator. Furthermore, the parameters of

driver model are identified using the above experimental results,

and it is clarified that the steering guidance torque can compen-

sate the time delay in visual feedback of elderly drivers.

As a future plan, the effectiveness of the proposed motion plan-

ning and control will be verified by using a prototype experimen-

tal vehicle equipped with sensors and the vehicle control system.

Driver acceptance issues will be also studied.
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