
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

145,000 180M

TOP 1%154

5,900

Chapter 1

Intelligent Embedded Software: New Perspectives and
Challenges

Fateh Boutekkouk, Ridha Mahalaine, Zina Mecibah,
Saliha Lakhdari, Ramissa Djouani and
Djalila Belkebir

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/intechopen.72417

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.

Fateh Boutekkouk, Ridha Mahalaine, Zina Mecibah,
Saliha Lakhdari, Ramissa Djouani and Djalila Belkebir

Additional information is available at the end of the chapter

Abstract

Intelligent embedded systems (IES) represent a novel and promising generation of embed-
ded systems (ES). IES have the capacity of reasoning about their external environments
and adapt their behavior accordingly. Such systems are situated in the intersection of
two different branches that are the embedded computing and the intelligent computing.
On the other hand, intelligent embedded software (IESo) is becoming a large part of the
engineering cost of intelligent embedded systems. IESo can include some artificial intel-
ligence (AI)-based systems such as expert systems, neural networks and other sophisti-
cated artificial intelligence (AI) models to guarantee some important characteristics such
as self-learning, self-optimizing and self-repairing. Despite the widespread of such sys-
tems, some design challenging issues are arising. Designing a resource-constrained soft-
ware and at the same time intelligent is not a trivial task especially in a real-time context.
To deal with this dilemma, embedded system researchers have profited from the progress
in semiconductor technology to develop specific hardware to support well AI models and
render the integration of AI with the embedded world a reality.

Keywords: embedded systems, embedded software, Codesign, intelligent embedded
systems, intelligent embedded software, artificial intelligence

1. Introduction

Embedded systems (ES) [1] are changing our daily life. They are commonly found in con-

sumer electronics, games, telecommunication, industrial, control, automotive, aeronautics

and military applications.

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.

ES development represents a hot topic in both academic research and industry. Contrary to

conventional information systems, ES design needs software and hardware to be designed in

a concurrently synergistic fashion, so the system functional/nonfunctional requirements are

met. This new style of design is called Codesign [2]. Codesign is a collaborative and creative

task requiring some specific skills in hardware, software and system engineering.

Semiconductor technology evolution (Moore law) pushes ES to be implemented as System

On Chip (SOC) where all system functional elements or components are integrated in only

one chip. Under time-to-market pressure, special customer requirements, rapid technologies

changing, increasing applications complexity and diversity of design styles, methodologies

and associated tools, ES designers must be assisted along the design process efficiently and
interactively in order to minimize the cost of development and increase the productivity;

many concepts have been borrowed from the software community, especially higher levels of

abstraction, knowledge and experience reuse, project planning, cost/risk estimation and so on.

In contrast to traditional embedded systems which are central, simple, closed and reactive,

nowadays embedded systems are becoming more complex, more autonomous, more open,

more networked and more intelligent. For instance, they can execute very complex intelligent

tasks to help invalid and aged persons in their daily activities with minor human intervention.

These new features have pushed researchers and ES specialists to tune some well-known intel-

ligence methods and paradigms. Consequently, a new class of ES called intelligent embedded

systems (IES) has emerged. IES are discussed in some detail later in Section 6.

This book chapter puts the light on what we call intelligent embedded software.

First, we summarize all the specificities and the basic concepts which are related to traditional
embedded system. Our focus is on embedded software models of computation and design

methodologies. After that, we motivate the passage from embedded systems to intelligent

embedded systems. Next, we define precisely what intelligent embedded software is and we
discuss the possible models and approaches that can be used to model intelligent embed-

ded software especially multiagent systems, expert systems, neural network, fuzzy logic,

ontologies, bioinspired heuristics and hybrid models. We pass rapidly on organic computing.

Finally, we present a possible intelligent embedded system design flow and present the main
challenges and some future perspectives.

2. What are embedded systems?

An embedded system is a system that contains application-specific hardware and software
suited to a particular task that is part of a larger system that is not necessarily computer (e.g.,

electronic, mechanical, electrical and so on). ES interact with the outside world via the sen-

sors/actuators and are subjected to strict spatial, temporal and energy constraints. Indeed, ES

are heterogeneous in nature. They typically combine software components (general-purpose

processors, digital signal processors, etc.) and hardware components (ASIC, FPGA). Unlike

a hardware implementation, a software implementation has the advantage of providing flex-

ibility (i.e., the possibility of reprogramming), but at the price of satisfying performance con-

straints. ES are called real time if it is able to meet its timing constraints.

Intelligent System4

3. What is embedded software?

The principal role of embedded software (ESo) is not the transformation of data as in conven-

tional software, but rather the interaction with the physical world. It executes on machines

that are not, first and foremost, computers. They are cars, airplanes, telephones, audio equip-

ment, robots, appliances, toys, security systems, pacemakers, heart monitors, weapons, televi-

sion sets, printers, scanners, climate control systems, manufacturing systems and so on [3].

Traditionally, embedded software consisted of simple device drivers with or without an oper-

ating system support. ESo functions are activated by external controls, either external actions

of the device itself or remote input. Embedded software varies in complexity as much the

devices it is used to control. But with an increasing demand for wired and wireless communi-

cation, embedded software has started to use middleware to hide the implementation details

of low-level communication.

Now, embedded software is becoming a large part of the engineering cost of embedded sys-

tems. That makes embedded software a likely place to look for engineering efficiencies and
time-to-market improvements. Efficiency and time-to-market improvements come from good
methodologies, good tools and talented programmers.

4. Embedded system architectures: state of the art and practice

The rapid evolution in the semiconductor technology led to the emerging of a new paradigm

called System On Chip or SOC. The SOC can typically include a collection of heterogeneous

processing elements such as embedded processors (RISC) for general purpose usage, micro-

controllers for control-oriented processing, DSP for digital signal processing, ASIC to imple-

ment specific optimized processing, FPGA to implement reconfigurable computing, on-chip
memories, analog part, RF part for wireless communication, an on-chip communication infra-

structure such as buses, crossbars, buses hierarchies or a micronetwork, diagnostic elements,

power management components, specific I/O interface modules and so on. The SOC can be
seen as a compromise between hardware and software solutions. Table 1 summarizes the

main hardware components found in a typical SOC. Table 2 recaptures our possible classifi-

cation of SOC architectures. In traditional SOC (TSOC), the SOC architecture is centered on

one master Instruction Set Architecture (ISA) processor and the other components are slaves

playing the role of hardware accelerators. When SOC comprises many processors, we obtain

multiprocessor SOC (MPSOC); this architecture is inspired from the multiprocessor architec-

ture in general computers. When most application functionalities are implemented as soft-

ware, the bulk of processors are ISA, and the architecture is called Software SOC (SSOC). In

this case, real-time operating system (RTOS) is a first class. In the extreme case, when most of
the application functionalities are implemented in hardware, the bulk of processors are ASICs

and the result is what we call Hardware SOC (HSOC).

With the rapid advance in reconfigurable circuits, SOC tends to integrate more FPGA; this
tendency helps to create what we call RSOC or reconfigurable SOC. This class of SOCs targets
rapid prototyping.

Intelligent Embedded Software: New Perspectives and Challenges
http://dx.doi.org/10.5772/intechopen.72417

5

The shared bus architecture represents a bottleneck in performance and scalability; for these
reasons, researchers in the field had resorted to the Internet technology and tailor the ISO
stack to create what we call Network On Chip (NOC) that integrates a micronetwork gen-

erally with three layers (physical, linking and network) to manage the big communication

traffic between processors. With this network, scalability is also improved. One of the major
problems in NOC is high power dissipation due to wired communication. The WNOC or

wireless NOC presents a promised solution where some communication is done wirelessly

by adding some antennas and RF modules. PNOC is a particular case of NOC where photonic

SOC class Main characteristics

TSOC: traditional SOC One central processor (master) with many hardware accelerators (slaves)

MPSOC: multiprocessor SOC Multiprocessors architecture

SSOC: software-oriented SOC SOC where software implementation is the prominent part; the architecture is mainly

composed of ISA processors

HSOC: hardware-oriented

SOC

SOC where hardware implementation is the prominent part; the architecture is mainly

composed of ASICs

RSOC: reconfigurable SOC FPGA-based

NOC: network on chip A microcommunication network

PPSOC: plug and play SOC SOC with IP reuse

PNOC: photonic NOC Photonic technology

WNOC: wireless NOC A combination between wired and wireless communications

QSOC: quantum SOC SOC that contains all the components needed for a quantum information processor

CSOC: chaotic SOC Chaotic computing-based

Table 2. SOC architectures.

Component Main application Main characteristics

Embedded RISC processor (ex. ARM) General computing Low performance, high flexibility, low cost

Microcontroller Control-dominated

computing

High performance, good flexibility, high
cost

DSP: digital signal processor Data-dominated computing High performance, good flexibility, high
cost

ASIC: application-specific integrated
circuit

Specific computing Very high performance, low flexibility,
very high cost

ASIP: application-specific instruction set
processor

Specific application domain High performance, good flexibility, high
cost

FPGA Reconfigurable computing Good performance, high flexibility, high
cost

Table 1. Typical SOC components.

Intelligent System6

technology is used [4]. QSOC [5] and CSOC [6] represent some new tendencies and refer to a

SOC implementing quantum computing and chaotic computing, respectively.

5. Embedded system’s Codesign methodologies: state of the art and

practice

It has been emphasized that the best way to meet system-level objectives is exploiting the

trade-offs between hardware and software in a system through their concurrent design. That
is what we call Codesign. In the traditional ES design approach, the software/hardware teams

work independently and generally the “hardware first” approach is adopted; when the hard-

ware engineers synthesize their design, the software engineers begin to develop their software,

implement and tune it to fit the hardware architecture. We can say that this style of design was
imposed (the only solution) due to the lack of a unified modeling substrate supporting both
hardware and software modeling at higher level of abstraction and co-simulation.

But with the advancement in system level languages, EDA and CAD tools, simulation and

emulation, both hardware and software teams are able to work in a collaborative fashion and

communicate from the early stages of design and consequently to reduce the cost and optimize

the quality of the final product. Table 3 summarizes our taxonomy of the most important ES

Codesign approaches. CCodesign refers to the conventional (traditional) Codesign approach.

Figure 1 depicts the main activities in the CCodesign. Starting from a unified system func-

tional specification, the flow then proceeds toward Hw/Sw partitioning where decisions on
parts that should be implemented as hardware and parts that should be implemented as soft-

ware are made. Many optimization algorithms and metrics can be applied at this stage. Three

Codesign methodology Main characteristics

CCodesign: Conventional Codesign Traditional codesign

IP-based Codesign CCodesign + IP reuse

Platform-based Codesign CCodesign + platform reuse

Design pattern-based Codesign CCodesign + design pattern reuse

Codesign for reuse Codesign to produce reusable components

MDCodesign: model-driven Codesign Codesign + model transformation technology

AsCodesign: aspect-oriented Codesign Codesign based on aspect engineering

Web-based Codesign Codesign in the context of Internet

Cloud-based Codesign Codesign in the context of cloud computing

IDE-based Codesign Codesign using an integrated development environment

FCodesign: Formal Codesign Codesign-based formal specifications and verifications (for critical systems)

PCodesign: Prototypic Codesign Rapid Codesign-based emulation/simulation

Table 3. SOC main Codesign methodologies.

Intelligent Embedded Software: New Perspectives and Challenges
http://dx.doi.org/10.5772/intechopen.72417

7

flows in parallel are outputted from Hw/Sw partitioning: the embedded software synthesis
or compilation, the hardware synthesis, and the Hw/Sw interface synthesis. The outputs of

these three flows will be then integrated for evaluation and co-simulation. As it is seen in the
figure, the flow is iterative to seek for better partitions that satisfy the objectives of the design.

The system specification is the first key for the successfulness of the Codesign approach; the
more the specification is expressive, complete and precise, the more the implementation will
be efficient. Many requirements are identified for a good specification. Most authors prefer
to use a unified unbiased model for both hardware and software. In the traditional method,
such model did not exist. Embedded software is traditionally programmed in C or assembly

language; such low-level languages are not portable and cannot anywhere meet system-level

specification requirements. On the other hand, hardware parts were commonly specified
using VHDL; but with the remarkable progress in modeling theory and programming lan-

guage semantics, designers are now benefited from what we call model of computation or
MOC. The latter defines formal syntax and semantic of computation and communication.

Table 4 summarizes a set of well-known untimed MOCs. Depending on the application

domain, we find a collection of MOCs with different semantics. A multi-MOC denotes a MOC
composing of multiple MOCs. The combination of heterogeneous MOCs is a hot research

topic. Ptolemy is a good example of an environment allowing the combination of multiple

MOCs hierarchically. We note the existence of a second class of MOCs called timed MOCs.

The latter models and manipulates the time explicitly. As examples of timed MOCs, we find
timed automata, timed Petri nets and so on.

Most existing specification/programming languages are based on one or more MOCs. We note that
nowadays Codesign flows adopt SystemC [7] as the standard language for system-level specifica-

tion. SystemC is an extension of the C++ language for both software and hardware programming.

It supports many levels of abstraction such as transactional and RTL levels. In its earlier versions,

SystemC used a discrete event simulator but with new versions it supports well other MOCs.

Figure 1. Conventional Codesign flow.

Intelligent System8

EDA and CAD tools are also important in Codesign flow automation. Depending on the
objective of the designer, we can find a plenty of tools for modeling, simulation, emulation,
formal analysis, automatic code generation, optimization and verification, performances esti-
mation, synthesis, and so on [8, 9]. The good choice of such tools may have a great impact on

the quality of the final product.

The embedded software synthesis is part of the Codesign flow (Figure 2) [10].

Besides system-level description language (SLDL), which is able to capture both hard and

software components, three major elements are needed in order to support the software

aspect of the design flow:

1. Processor models that capture the processor at different levels of abstraction.

2. RTOS support for the processor.

3. A software generation tool that synthesizes user code targeted for the selected RTOS.

An RTOS provides at least the core real-time scheduling functionality, inter-task communica-

tion, timing and synchronization primitives. It is implemented and described as a real-time

kernel or real-time executive. The scheduler in RTOS is designed to provide a predictable

execution pattern. This is particularly of interest to embedded systems as embedded systems
often have real-time requirements.

5.1. IP-based Codesign

Tends to shorten the time-to-market and minimize the cost of SOC design, the IP-based

Codesign [11] emphasizes on reuse of predesigned and pre-verified components called

Model of computation Application

DF: data flow Data-oriented processing

SDF: synchronous DF Data-oriented processing when the input/output size is known

KPN: Kahn process network Deterministic data-oriented processing with infinite buffer

DE: discrete event Discrete time processing

CT: continuous time Continuous time processing (analog parts)

FSM: finite-state machine Control-oriented sequential processing

DFSM: data path fsm Control-/data-oriented processing

Statecharts Control-oriented processing supporting concurrency and hierarchy

RS: reactive synchronous Reactive systems with zero delay computing assumptions

Petri nets Reactive systems (formal specification/verification)

Multi-MOC Heterogeneous systems

Table 4. The most used models of computation.

Intelligent Embedded Software: New Perspectives and Challenges
http://dx.doi.org/10.5772/intechopen.72417

9

intellectual properties (IPs). IPs may have many formats and specified at many levels of
abstractions. In general, IPs are classified into three main classes called: soft IPs, firm IPs
and hard IPs. IP reuse comes at the price of integration effort especially for incompatible IPs.

5.2. Platform-based Codesign

Instead of reusing individual IPs, this style of Codesign uses an entire platform specific for a
certain application domain. The effort of design is limited to tuning the platform for the given
application (bottom-up methodology) or to tuning the application for the given platform (top-
down methodology). Certainly, this approach reduces considerably the effort of design, but
at the price of nonoptimized designs furthermore, finding the existing platform that matches
designer requirements is not trivial [12].

5.3. Design pattern-based Codesign

In software engineering, a pattern is a general repeatable solution to a commonly occurring
problem. A pattern is an abstract template that needs to be refined and adapted before it can
be integrated into the code. Patterns focus on descriptions that communicate the reasons for
design decisions. In the field of SOC Codesign, the definition of generic patterns is more diffi-

cult. For instance, design patterns to generate wrappers for IPs integration have been already
proposed and others to promote reuse beyond code reuse [13].

Figure 2. Embedded software synthesis flow.

Intelligent System10

5.4. IDE-based Codesign

Putting a collection of tools that may be obtained from different providers and organizations in
one environment to facilitate the SOC Codesign is the philosophy of the IDE-based Codesign.

The main challenge in this style of Codesign is the interoperability between tools [14].

5.5. Codesign for reuse

Codesign for reuse tends to design reusable IPs. These reusable components can be soft, firm
or hard, described in a standard format and well documented and catalogued for easy inte-

gration [15].

5.6. Aspect-oriented Codesign

The aspect-oriented engineering tends to increase reuse by separating in early stages between

functional and nonfunctional aspects and to propose some mechanisms to integrate them

lately to generate the full code. This new technology was rapidly borrowed by SOC designers

[16]. This strategy will bring many advantages regarding the portability and reuse but at the

price of time overhead.

5.7. Model-driven Codesign

This approach is relatively very recent and becomes very popular. It tends to apply the model-

driven engineering technologies in SOC Codesign. The impetus behind this is to increase

productivity by the use of a unified graphical notation (source models) to model different
views of the system (functional, structural, behavioral, etc.) and the automatic transforma-

tion of such graphical notations to one or many other notations (target models). The source,

the target meta-models and the transformation rules are expressed explicitly and can be used

either to transform one model to another model or to refine the initial model. In this context,
many UML profiles for SOC Codesign were proposed [17].

5.8. Web-based Codesign

By web-based Codesign, we refer to SOC Codesign in an Internet-based context. In this style

of Codesign, designers develop their SOC online and, consequently, they can exploit available

environments, tools and download what they need to accomplish their tasks. For instance,

they can use sophisticated Internet research tools for IP selection, simulation and verification
tools. They can also contact SOC experts and share the experience online [18].

5.9. Cloud Codesign

As a new form of Internet-based computing, cloud computing is an emerging computing

style that tends to enable ubiquitous, on-demand access to a shared pool of configurable com-

puting resources (e.g., computer networks, servers, storage, applications and services) which

can be rapidly provisioned and released with minimal management effort. Cloud Codesign
refers to CCodesign but in the context of cloud [19].

Intelligent Embedded Software: New Perspectives and Challenges
http://dx.doi.org/10.5772/intechopen.72417

11

5.10. FCodesign: formal Codesign

Formal Codesign tends to develop SOCs implementing critical applications with hard con-

straints. This style of Codesign uses formal specification languages and formal verification
techniques such as model checking and theorem proving to ensure the correctness of the

system. The methodology itself starts from an initial formal specification and then proceeds
by refinement till the code generation. Examples of such languages are B, Esterel, Lotos, Petri
nets, abstract automata and so on. Generally, SOC designers are not very familiar with formal

specifications requiring a deep mathematical background; for this reason, instead of dealing
directly with such specifications, many tools have been developed to generate formal specifi-

cation from graphical notations (UML) [20].

5.11. PCodesign: prototypic Codesign

The first objective of prototypic Codesign is to provide a rapid prototype of SOC to the cus-

tomer. The prototype is generally implemented in FPGA. By exploiting existing tools of emu-

lation/simulation, the customer requirements can be earlier validated without engaging into

details. This style is very suitable when the customer requirements cannot be captured entirely

in the requirements analysis phase or because the requirements change rapidly over time; in

this case, SOC designers can incrementally validate the functionality using reconfigurable SOC.

6. What are intelligent embedded systems?

Intelligent embedded systems represent a novel and promising generation of embedded sys-

tems. The word “intelligent” or “smart” may imply many things: for instance, it can imply the
ability to make decisions, the capability of learning from external stimuli, adapting to changes

or the possibility of executing computationally intelligent algorithms.

In this context, we will define an IES as a conventional ES with the capacity of reasoning about
their external environments and adapt their behavior accordingly. IES have some main char-

acteristics such as self-learning, self-optimizing and self-repairing (Figure 3).

A good example where IES can be found is robotics. Robotics are basically intelligent machines

whose functionality is controlled by embedded systems. Robotics contain embedded systems

at their heart to perform the functions required for them, for example, pick and place sys-

tems in manufacturing industry, welding robots used in automobile assembly, and so on.

Elmenreich [21] identified some potential reasons for employing an intelligent solution for
embedded systems among them, such as dependability, efficiency, autonomy, easy modeling,
maintenance costs and insufficient alternatives. Beyond these reasons, we can say that the first
impetus behind IES is to render the human life easier, more comfortable and more secure. For

instance, IES are now present in what we call smart homes, smart cities, Internet of things

(IoT) and so on. IES can execute intelligent real-time tasks to manage power and water, help

aged and invalid persons in their daily activities, and control smart cars and drones and many

other smart devices. The presence of IES in our life becomes a necessity.

Intelligent System12

7. What is intelligent embedded software?

An IESo is first an ESo that has the capacity to gather and analyze data and communicate
with other systems. Other criteria include the capacity to learn from experience, security, con-

nectivity, the ability to adapt according to current data and the capacity for remote monitor-

ing and management. As intelligent conventional software, IESo can also include sophisticated

AI-based software systems, such as expert systems and other types of software. IESo exists all

around us in terminals, digital televisions, traffic lights, automobiles, and airplane controls,

Figure 3. Intelligent embedded system features.

Figure 4. Adaptable embedded software flow.

Intelligent Embedded Software: New Perspectives and Challenges
http://dx.doi.org/10.5772/intechopen.72417

13

among a great number of other possibilities. Figure 4 depicts a possible flow for an adaptable
IESo having the capability of learning from a dynamic changing environment. The IES have to

resort to some concepts in order to interpret and comprehend the semantic of new features [22].

8. The application of AI in the field of ES Codesign

Artificial intelligence (AI) is becoming more and more attractive to model and simulate con-

trol intelligent system behavior [23]. An example is the use of knowledge-based technology

for control systems that cannot be completely modeled mathematically. Recently, the use of

artificial intelligence (AI) techniques in real-time control applications has emerged. In terms of
embedded systems, this gives rise to the possibility of developing systems that can learn from

their environment and that can change their own control programs to adapt to new situations,

and these features are required to operate autonomous devices. In this section, we try to high-

light some of AI methods that have been applied in the field of electronic and ES design at the
same time and we will show the possibility of applying such methods in the context of IESo.

8.1. Expert systems, neural networks and fuzzy logic

The application of IA in the field of electronic design is not new. It returned to 1980s where
EDA tools profited from expert system technology to assist electronic designers to make rout-
ing/placement and hardware synthesis [24].

With the ever-increasing in the semiconductor technology integration, using expert systems

in IES design becomes questionable since they demand much time for reasoning, the knowl-

edge base will be unmanaged, furthermore, rules of type if-else cannot model complex deduc-

tion process. Some works are proposed to implement expert systems in hardware, and other

works are proposed to parallelize the inference process to gain time.

Expert systems have been maturated, and many environments and languages are now avail-

able to assist designers to develop their own domain-specific expert systems. Traditional
expert systems are less interactive and have not the capabilities of learning; to overcome these

drawbacks, researchers tend to integrate Neural Networks (NN) with expert systems, so they

can learn and modify inference rules/knowledge base dynamically. Similarly, to deal with

uncertain/incomplete information, fuzzy logic and some mathematical theories like rough

sets have had been integrated with expert systems and NN.

In the context of IESo, fuzzy expert systems and neural networks can be applied especially in

fault detection and diagnosis [25]. Cotton [26] proposed a solution for implementing neural

networks on microcontrollers for many embedded applications. A new class of SOC called

neural or nerve SOC implementing neural computing has been emerged [27].

8.2. Multiagent systems

Multiagent systems (MAS) have been successfully applied to model and manage complex

distributed systems since they offer high capabilities for complex interactions, autonomy and
reactive/cognitive behavior modeling. In the context of IES design, some authors proposed

Intelligent System14

to model intelligent agents for IP research and web-based SOC design. An IP can be soft and

consequently used to execute an IESo module. Other works have applied MAS to model com-

plex IESo, and the result is what we call embedded agents. The latter can be later synthesized
as software embedded agent or hardware embedded agent [28–30].

8.3. Ontologies

Recently, the use of ontologies in software engineering has gained popularity because they facili-

tate the semantic interoperability and machine reasoning. Ontology is a formal representation

of domain-specific knowledge. In the context of ES Codesign, some researchers, used ontologies
for IP research in web semantics, for instance authors in [31], defined a VHDL ontology. The
work in [32] defined ontology for IP reuse-based SOC design. The IP can be of course soft. Other
works have been tried to use ontologies in the context of the Internet of things (IoT) to guarantee

interoperability [33]. For example, in Figure 4, we can use ontologies to model the set of concepts.

8.4. Nature/bioinspired approaches

Nature/bioinspired optimization meta-heuristics has gained more attention by ES designers
especially in Hw/Sw partitioning and hardware synthesis. The latter is qualified as NP-hard
problems. Among bioinspired meta-heuristics, we find genetic algorithms and their variants,
simulated annealing, taboo search, ant colony, PSO and so on. In contrast to exact methods,

meta-heuristics is more general and aims to compromise between solution quality and search

time. In the context of IESo, optimization meta-heuristics can be applied to solve the RTOS

energy aware scheduling problem or jointly with neural networks.

8.5. Constraint satisfaction

In AI, constraint satisfaction is the process of finding a solution to a set of constraints that
impose conditions that the variables must satisfy. Many activities are considered as constraint

satisfaction problems, especially the hardware/software partitioning including allocation,

assignation and scheduling problems [34].

8.6. Logic programming

The effort of designing hardware capable of supporting the declarative programming model
for logic derivations can now lead to intelligent embedded designs which are considerably

more efficient compared to the traditional procedural ones. For instance, Panagopoulos et al.
[35] proposed an extension of the RISC architecture microprocessor for knowledge represen-

tation, based on attribute grammar evaluation, in an effort of achieving design efficiency for
intelligent embedded systems.

8.7. Hybrid models

Hybrid AI models refer to the combination of the above-mentioned models. For instance, we

can combine between MAS and expert systems/NN/fuzzy logic and genetic algorithms to

model the cognitive part of agents.

Intelligent Embedded Software: New Perspectives and Challenges
http://dx.doi.org/10.5772/intechopen.72417

15

8.8. Organic computing

Organic computer (OC) is a new emerging computing paradigm inspired from the biological

organic model. It is based on the insight that we will soon be surrounded by large collections

of autonomous systems, which are equipped with sensors and actuators, aware of their envi-

ronment, communicate freely, and organize themselves in order to perform the actions and

services that seem to be required. An organic computing system is a technical system which

adapts dynamically to exogenous and endogenous change. It is characterized by the prop-

erties of self-organization, self-configuration, self-optimization, self-healing, self-protection,
self-explaining and context awareness. Figure 5 depicts the IBM’s MAPE cycle for autonomic

computing which is the basis for OC. Here, M is for Monitor, A for Analyze, P for Plan, E

for Execute, and K for Knowledge (the autonomic element). Figure 6 shows the OC system

generic architecture which is based on the observer/controller architecture. Here, SuOC des-

ignates system under observation and control. It is composed of a set of interacting elements/

agents, and it does not depend on the existence of observer/controller [36, 37].

Recently, a new class of self-adaptive SOCs emerges as a new paradigm inspired from the

organic computing and especially the self-x properties. This class of SOC is called organic

Figure 5. IBM’s MAPE cycle for autonomic computing.

Figure 6. The generic OC system architecture.

Intelligent System16

SOC (OSOC), more suitable for smart applications having the capabilities of self-adaptation,

self-control and evolvability. This new architecture is comprised of many layers and inte-

grates more components to assure the self-x properties [38].

9. IA-based Codesign flow for intelligent embedded systems

As embedded systems become intelligent, the situation gets much more complicated regard-

ing the application of traditional ES Codesign methodologies. In Table 5, we show some main

differences between embedded computing and intelligent computing. The main challenge
resides in how can we integrate these two styles or philosophies of computing?

In response to this aim, we propose what we call AI-based Codesign flow for Intelligent Embedded
Systems (Figure 7). The idea is to enrich the conventional ES Codesign flow by another activ-

ity called AI models partitioning just before the HW/SW partitioning. During this activity, IES

designer partitions his application functionalities or modules between a set of possible AI mod-

els such as neural network, expert system, genetic algorithm, fuzzy logic, intelligent agents,

organic computing, etc., and other algorithmic modules. In other words, the objective of this

step is to identify the system intelligent components and their associated AI models. At this

stage, the designer can resort to some tools for modeling, simulation and formal verification.
Combining AI heterogeneous models with different semantics in one framework is not an easy
task and requires some validation to ensure the system correctness at higher level of abstrac-

tion. The Eclipse environment may offer an efficient solution for integration and interoper-

ability between different AI tools and platforms. MATLAB, in turn, seems very appropriate
to program and simulate some of the well-known AI paradigms such as NN, fuzzy logic and

genetic algorithms. The objective of applying formal verification (i.e., model checking and/or
theorem proving) at this stage is to ensure the correctness and termination properties especially

in critical IES. But in order to be capable of doing formal verification, we have to define formal
specification for AI models in specific formal specification languages. Depending on the used
AI model, many formal languages can be employed. For example, Petri nets have been used

Embedded computing Intelligent computing

Software and hardware are both first class Software is first class

Resources constrained Unlimited resources

Simple tasks Very complex tasks

Small computing power Significant computing power

Reactive Cognitive

Low-level models and programming languages

(Assembly, C)

High-level programming models beyond procedural

paradigm

Static and completely specified environment Dynamic and imprecise environments

Human intervention is weak Human intervention is prominent

Table 5. Embedded computing vs. intelligent computing.

Intelligent Embedded Software: New Perspectives and Challenges
http://dx.doi.org/10.5772/intechopen.72417

17

to formalize SMA [39]. Some authors have developed a new class of formal languages called

Learning Regular Languages to formalize NN [40]. Some AI methods can be seen as formal

models, especially the logic paradigm. A refinement step may also be needed to add the neces-

sary details. The result of this step is what we call the intelligent architecture. After that comes the

HW/SW partitioning to identify hardware/software components. For instance, we can imple-

ment a component modeled by a neural network as an ASIC, a FPGA or as a C code.

10. Challenges and perspectives

In the rapidly changing life requirements and technology, embedded software continues to

dominate the values and costs of intelligent embedded systems industry. Despite the prolif-

eration of IES over the last years, the industry of electronics and embedded systems has afraid

from AI and the main question is: Can AI be a reality and apply it in IES industry efficiently
without side effect?

Figure 7. IA-based IES Codesign.

Intelligent System18

If we know that when referring to AI, we automatically refer to human intellectual activities
such as perception, learning, reasoning and memorization, self-optimization, self-adaptation
and so on. The industry judgment is maybe due to the fact that the intellectual activities con-
sume much time that can be a bottleneck for performance especially in a real-time context,
where activities or tasks have deadlines or another form of timing constraints, or maybe due
to the fact that AI does not reach a certain level of maturity especially at the pragmatic stage;
so it can be applied efficiently in real physical systems.

For instance, multiagent systems and despite their solid theoretic basis and maturity, they
are not well supported by industry. Experience from both academia and industry has proved
that MAS have been used successfully to design complex, self-adaptable and even real-time
systems. Currently, there are more than 80 MAS design methodologies. We think that most
existing MAS methodologies in their current state are not able to deal with IES specificities;
however, with some tuning and enhancement, MAS can be efficient to develop IES [41]. We
note that the application of fuzzy expert systems and NN to model and simulate fault detection
and diagnostics in IES is an attractive tendency. For instance, experience from both academy
and industry has proved that NN have been used successfully to design self-adaptable IES.

Organic computing seems to be an attractive solution for IES but needs much effort to prove
its efficiency in the industry.

In a real-time context, reasoning is known to be a bottleneck with regard to performances so
in order to solve this dilemma, we can for instance parallelize reasoning or to implement it
as hardware components. In all cases, we see that we must create a bridge between AI mod-
els and existing well-practiced ES Codesign methodologies and associated tools [42]. On the
other hand, the progress in hardware technologies will certainly contribute in efficient imple-
mentations of IES, notably those targeting multicores and reconfigurable architectures like
FPGA. Reconfigurable architectures match well dynamic and adaptable IES.

Author details

Fateh Boutekkouk1*, Ridha Mahalaine2, Zina Mecibah1, Saliha Lakhdari1, Ramissa Djouani1
and Djalila Belkebir1

*Address all correspondence to: fateh_boutekkouk@yahoo.fr

1 Research Laboratory on Computer Science’s Complex Systems (ReLaCS2), University of
Oum El Bouaghi, Algeria

2 École supérieure d’informatique (ESI), Algiers, Algeria

References

[1] Gajski DD, Vahid F, Narayan S, Gong J. Specification and Design of Embedded Systems.
Englewood Cliffs, NJ: Prentice Hall; 1994

Intelligent Embedded Software: New Perspectives and Challenges
http://dx.doi.org/10.5772/intechopen.72417

19

[2] Schaumont P. A Practical Introduction to Hardware/Software Codesign, 2nd ed. 2012.

ISBN: 978-1-4614-3736-9

[3] Lee EA. Embedded Software. In: Zelkowitz M, editor. Advances in Computers. Vol. 56.
London: Academic Press; 2002

[4] Bergman K, Carloni LP, Biberman A, Chan J, Hendry G. Photonic Network-on-Chip

Design. 2014. Ebook. ISBN: 978-1-4419-9335-9

[5] Schuck C, Guo X, Fan L, Ma X, Poot M, Tang HX. Quantum Technology On A Chip. 2017.

Available from: http://seas.yale.edu/news-events/news/quantum-technology-chip

[6] Ditto W, Murali K, Sinha S. Construction of a Chaotic Computer Chip. Applications of
Nonlinear Dynamics; Part of the Understanding Complex Systems Book Series (UCS).

2009. pp. 3-13

[7] SystemC: www.systemc.org

[8] Mentor graphics: www.mentor.com

[9] Synopsis: www.synopsys.com/designware

[10] Schirner G, Sachdeva G, Gerstlauer A, Domer R. Modeling, Simulation and Synthesis in

an Embedded Software Design Flow for an ARM Processor. Technical Report CECS-06-

06 May 25. 2006

[11] Wagner F, Cesário W, Carro L. Jerraya A. Strategies for the integration of hardware and

software IP components in embedded systems-on-chip. The VLSI Journal—Special

Issue: IP and Design Reuse. 2004;37(4):223-252

[12] Sgroi M, Sangiovanni-Vincentelli A, Bernardinis F, Pinello C, Carloni L. Platform-Based

Design for Embedded Systems. In: Zurawski R. editor. Embedded Systems Handbook.

Print ISBN: 978-0-8493-2824-4, eBook ISBN: 978-1-4200-3816-3.2005. Chapter 22

[13] Manai Y, Haggège J, Benrejeb M. New approach for hardware/software embedded sys-

tem conception based on the use of design patterns. Journal of Software Engineering and
Applications. 2010;3(6)

[14] Carbone J. Doing embedded design with an Eclipse-based IDE. Express Logic. 2008.

Available from: www.embedded.com/design/prototyping-and-development/

[15] Cavalloro P. System Level Design Model with Reuse of System IP. Kluwer Academic

Publishers; 2016

[16] Deharbe D, Medeiro S. Aspect-oriented design in systemC: Implementation and applica-

tions. In Proceedings of the 19th annual symposium on Integrated circuits and systems

design (SBCCI '06); 2006. p. 119-124

[17] Boutekkouk F, Benmohammed M, Bilavarn S, Auguin M. UML2.0 Profiles for embedded
systems and systems on a chip (SOCs). Journal of Object Technology. 2009;8(1):135-157

Intelligent System20

[18] Witczyński M, Hrynkiewicz E, Pawlak A. A web services based approach for system
on a chip design planning. In: Coordination of Collaborative Engineering—State of the

Art and Future Challenges 5th International Workshop on Challenges in Collaborative

Engineering (CCE’07). 2007

[19] Intel Labs. Single-chip Cloud Computer 2017. Available from: http://www.intel.com/go/
terascale

[20] LIAMA. Formes: FORmal Methods for Embedded Systems.Visiting Committee Report.
2012

[21] Elmenreich W. Intelligent methods for embedded systems. In Proceedings of the First

Workshop on Intelligent Solutions in Embedded Systems (WISES 2003); 2003

[22] Roveri M. Intelligence for embedded systems (introduction to the course) [Ph.D. and

master course], Politecnico di Milano, DEIB, Italy, 2017. Available from: roveri.faculty.

polimi.it/wp-content/uploads/Lecture_1.pdf

[23] Zilouchian A, Jamshidi M. Intelligent Control Systems Using Soft Computing Metho-

dologies. CRC Press. 2001. ISBN 0-8493-1875-0

[24] Schwarz A.F. Handbook of VLSI Chip Design and Expert Systems. Academic Press

Limited Harcourt Brace Jovanovich, Publishers ISBN: 0-12-632425-5. 1993

[25] Mostafa A, Elfattah M, Youssif A. An intelligent methodology for malware detection in
android smartphones based static analysis. International Journal of Communications.

2016;10

[26] Cotton NJ. A neural network implementation on embedded systems [thesis]. Auburn,
Alabama; 2010

[27] Johnson B, Lancaster K, Hogue I, Meng F, Kong Y, Enquist L, McAlpine M. 3D printed

nervous system on a chip. Lab on a Chip—Miniaturisation for Chemistry and Biology.

2016;16(8):1393-1400

[28] Boutekkouk F, Benmohammed M. An agent-based framework for SOCs design. In

Seminaire Nationale en Informatique, Biskra (SNIB’06). Algeria: Biskra; 2006

[29] Charles V. The design of a JADE-based autonomous workflow management system for
collaborative SoC design. Journal of Expert Systems with Applications. 2009;36:2659-2669

[30] Jamont JP, Occello M. DIAMOND: Une approche pour la conception de systems multi-

agents embarqués. France: Institut National Polytechnique de Grenoble-INPG; 2005

[31] Zdraveski V, Trajanov D. VHDL IP cores ontology. In: The 10th Conference for Infor-

matics and Information Technology CIIT 2013. 2013

[32] Boutekkouk F. Towards an ontology-driven intellectual properties reuse for systems on

chip design. In: Proceedings of the 2013 International Conference on Systems, Control,

Signal Processing and Informatics; 2013; Greece

Intelligent Embedded Software: New Perspectives and Challenges
http://dx.doi.org/10.5772/intechopen.72417

21

[33] Berrios V. Cross-Industry Semantic Interoperability, Part Three: The Role of a Top-level

Ontology. 2017. Available from: http://embedded-computing.com/articles/

[34] Mitra R, Basu A. Hardware-software partitioning: A case for constraint satisfaction. IEEE

Intelligent Systems. 2000;5(1):54-63

[35] Panagopoulos IP, Pavlatos CC, Papakonstantinou GK. An embedded system for artifi-

cial intelligence applications. International Journal of Computer, Electrical, Automation,

Control and Information Engineering. 2007;1(4)

[36] Schmeck H. Organic computing—A new vision for distributed embedded systems. In

Proceedings of the Eighth IEEE International Symposium on Object-Oriented Real-Time

Distributed Computing (ISORC’05), 2005. p. 201-203

[37] Hartmut Schmeck Organic Computing—A Generic Approach to Controlled Self-

organization in Adaptive Systems Institut AIFB, KIT Mars; 2009

[38] Herkersdorf A. Conquering MPSoC design and architecture complexity with bio-

inspired self-organization. In: MPSoC Forum Margeaux, France, July 10. 2014

[39] Marzougui B, Hassine K, Barkaoui K. Formalism for modeling a multi agent systems:

Agent petri nets. Journal of Software Engineering and Applications. 2010;3(12):1118-1124

[40] Madhusudan P. Learning Algorithms and Formal Verification. A Tutorial. University of
Illinois at Urbana-Champaign VMCAI Nice; 2007

[41] Mecibah Z, Boutekkouk F. Comparative study between Multi Agents Systems methodol-

ogies according to intelligent embedded systems requirements. In: The 4th International

Conference on Automation, Control Engineering and Computer Science (ACECS-2017);

28-30 March 2017; Tangier, Morocco

[42] Agarwal A, Shankar R, Pandya AS. Embedding intelligence into EDA tools. Series

Frontiers in Artificial Intelligence and Application, Integrated Intelligent Systems for
Engineering Design. 2006;149:389-408

Intelligent System22

