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Abstract

In this study, we designed and developed an intelligent exercise guidance system based on smart clothing. The system com-

prised smart clothing for electrocardiogram (ECG) signal acquisition and heart rate (HR) monitoring, an exercise control 

application program, and a cloud server. Music beats were used to guide the exercise routine. The use of an empirical mode 

decomposition (EMD)-based ECG signal denoising algorithm and a quadratic polynomial regression model (QPRM) of HR 

and running cadence (running steps per minute guided by music beats) were proposed for the system. Five types of experi-

ments were conducted: Experiments I and II, R-peak detection; Experiment III, preset QPRMs; Experiment IV, degree of 

completion of exercises; and Experiment V, comparison of preset and trained QPRMs. The average accuracy and sensitivity 

of the EMD-based R-peak detection method were respectively 99.8% and 94.87% for ECG data from the MIT-BIH Arrhyth-

mia Database and 96.46% and 98.75% for ECG data collected from university students during the walking exercise. The 

coefficient of determination and the mean absolute percentage error (MAPE) of the QPRMs were respectively 97.21% and 

3.12% for increasing HR and 98.09% and 2.06% for decreasing HR. The average degrees of completion for warmup, train-

ing, and cooldown exercise stages were 97.05%, 91.91%, and 98.32%, respectively. The MAPEs of the preset and trained 

QPRMs were respectively 6.37% and 3.84% for increasing HR and 5.25% and 3.57% for decreasing HR. The experimental 

results demonstrated the effectiveness of the proposed system in exercise guidance.

Keywords Smart clothing · Electrocardiogram (ECG) · Music beat · Exercise guidance · Empirical mode decomposition

1 Introduction

Cardiovascular disease (CVD) is the leading cause of death 

among patients with noncommunicable diseases [1]. The 

risk factors for CVD include a lack of physical exercise, 

poor nutrition, family history of genetic diseases, smoking, 

hypertension, and diabetes [2]. Among these risk factors, 

lack of physical exercise, which can increase the risk of 

premature death by 9% [3], is the easiest to overcome. By 

contrast, sufficient physical exercise can reduce the overall 

risk of heart disease and stroke [4, 5]. The risk of coronary 

heart disease, hypertension, sudden cardiac death, and other 

cardiovascular events can be assessed by measuring the rest-

ing heart rate (HR) [6, 7] and postexercise HR recovery [8]. 

Regular exercise can lower the resting HR [9] and improve 

postexercise HR recovery [10].

Exercise guidance is a crucial component of an effec-

tive exercise routine. Current exercise guidance systems 

use distance and time as the control standards but do not 

facilitate HR management. Without effective guidance dur-

ing exercise, appropriately controlling exercise intensity can 

be difficult for an individual without training experience. 

Wearable-device-based exercise guidance systems have 

thus been proposed in recent years to resolve this prob-

lem [11–19]. Astaras et al. [11] and Kokonozi et al. [12] 

presented prototypes of a wearable dry electrode device 

designed for exercise guidance and real-time monitoring of 

patients with CVD. Balsalobre-Fernandez et al. [13] intro-

duced a wearable band for measuring movement velocity 
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during a back squat exercise. Pruthi et al. [14] described 

an autonomous wearable device to count repetitive exercise 

movements in real time. Zhao et al. [15] developed wearable 

trackers for use during exercise and fitness activities. Yong 

et al. [16] designed a wearable device and Internet-of-things-

based fitness system for exercise guidance. Bajpai et al. [17] 

developed a wearable-device-based fitness tracking system. 

Guo et al. [18] created FitCoach, a virtual fitness coach that 

uses wearable mobile devices to assess dynamic postures 

during exercises. Imani et al. [19] introduced a wearable 

hybrid-sensing system worn on the skin that offers real-time 

monitoring of health and fitness status by using biochemical 

and electrophysiological signals simultaneously.

In addition to wearable devices that guide exercise rou-

tines, music beats have a significant effect on exercise per-

formance. Music beats can provide psychological motiva-

tion and reduce the feeling of exhaustion, and thus, promote 

a longer workout [20, 21]. Moreover, when the rhythm of 

music was similar to that of the exercise, the music can 

enhance exercise performance [22, 23]. A study correlat-

ing the HR with the tempo of music demonstrated that HR 

increases and decreases according to the tempo of music 

during a progressive exercise routine guided by music beats 

[24]. Despite their positive effects on exercises, music beats 

have not been incorporated into current wearable-device-

based exercise guidance systems.

In this study, a smart-clothing-based intelligent exercise 

guidance system using music beat guidance was designed 

and developed. Smart clothing was used for electrocardio-

gram (ECG) signal collection and HR monitoring. Personal-

ized running cadence (running steps per minute guided by 

music beats) was predicted using a quadratic polynomial 

regression model (QPRM) of HR and running cadence. HR 

was controlled to achieve the target HR range (HRR) rec-

ommended by the exercise prescription. The experimental 

results demonstrated the effectiveness of the proposed sys-

tem for exercise guidance.

2  Methods

2.1  System Design

The proposed intelligent exercise guidance system is illus-

trated in Fig. 1. The system comprised three modules: front-

end ECG signal-sensing device, middle-end exercise control 

application program, and backend cloud server.

The ECG signal-sensing device was a wearable device for 

exercise; the device comprised smart clothing and a gateway. 

The smart clothing was made of cloth and embedded with 

an ECG-sensing component, consisting of ECG sensors and 

conductive fibers. A tension adjustment system comprising 

elastic bands and Velcro strips was designed for adjust-

ing the contact tension between the ECG signal-sensing 

component and the skin. At the center of the gateway was 

an STM32F401 microprocessor unit (MPU) with a 12-bit 

analog-to-digital converter (ADC). Raw ECG signals were 

collected by AD8232 ECG analog front-end chips through 

conductive fibers on the smart clothing and digitalized 

through the ADC of the MPU at a 250 Hz sampling fre-

quency. The digital ECG signals were filtered successively 

by a 60 Hz notch filter, high-pass filter with a 0.05 Hz cutoff 

frequency, and low-pass filter with a 60 Hz cutoff frequency. 

The filtered signals were subsequently amplified by 200 

times. The amplified digital ECG signals were transferred 

to the MPU through an array-mesh-structured conductive-

fiber data bus and optical fiber circuits. The ECG signals 

were then denoised for movement artifact reduction and the 

HR was computed; the details of this process are described 

in Sect. 2.3.

Fig. 1  Schematic of the architecture of the proposed intelligent exercise guidance system
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The exercise control application program acquired HR 

data from the ECG signal-sensing device and processed the 

data to evaluate the physical and cardiopulmonary function 

of the subject. During the exercise routine, the application 

program executed the exercise prescription sent from the 

cloud server; provided music beats to guide the exercise; 

and recorded HR, running cadence, calories burned, degree 

of completion, and other data. The data were then uploaded 

to the cloud server at the end of the exercise routine to assist 

the subject with long-term tracking and recording of exercise 

performance.

On receiving a subject’s data, the cloud server analyzed 

the data to determine the subject’s physical ability level. On 

the basis of the basic data of the subject and the Physical 

Activity Readiness Questionnaire (PAR-Q) completed by the 

subject, the cloud server generated a personalized exercise 

regimen for the subject. According to the service pattern 

proposed in this study, a health-promoting exercise informa-

tion system was constructed. Along with the smart clothing 

for monitoring HR and treadmill for performing the exer-

cise, the intelligent exercise guidance system was applied to 

guide the subjects of various ages in performing the health-

promoting exercises. The system helped the subject to reach 

the target HRR while measuring HR to monitor the subject’s 

cardiorespiratory status. Figure 2 depicts a subject perform-

ing exercises under the guidance of the proposed intelligent 

exercise guidance system while wearing the smart clothing.

2.2  System Work�ow

Figure 3 presents a flow of the intelligent exercise guid-

ance system. After starting the exercise control application 

program, the subject first completed the PAR-Q to evaluate 

whether exercise would be risky; if not, the subject com-

pleted the registration and signed into the system. If the 

subject had an exercise prescription, the exercise would be 

started immediately. If not, the subject entered informa-

tion concerning their exercise target and frequency, which 

was used to preliminarily evaluate and categorize their 

physical ability as bad (1 low-intensity exercise session 

for < 1 month), normal (1–3 medium-intensity exercise ses-

sions/week for 1–6 months), and nice (1–6 high-intensity 

exercise sessions/week for the past 6 months).

Next, the intelligent exercise guidance system selected 

an exercise prescription preset in the database, comprising 

exercise duration and a target HR (percentage of maximum 

HR), according to two personalized evaluation types. After 

preparing the prescription, the intelligent exercise guidance 

system generated target HRs for three stages (warmup, train-

ing, and cooldown):

where  HRmax was calculated as follows:

The three-stage exercise routine was 30 min long, divided 

into warmup, training, and cooldown stages, lasting for 5, 

15, and 10 min, respectively.

The Harvard step test was also performed to calculate the 

cardiorespiratory and physical fitness index [25]:

where the test duration was 3 min or until exhaustion, and 

heartbeats during the recovery periods were counted from 1 

to 1.5, 2 to 2.5, and 3 to 3.5 min after exhaustion or test com-

pletion. The results were evaluated according to the norms 

used for Taiwanese people (Table 1).

During the exercise session, the HR of the subject was 

monitored every 3 s to assess whether it reached the target 

range. If the target HRR was not reached after 1 min, the 

regression model would be used to adjust the speed of the 

music beats.

At the end of the exercise session, postexercise HR 

recovery was evaluated. At the same time that the exercise 

results were displayed, HR, running cadence, date, degree 

of completion, and other data were uploaded to the cloud 

server. According to the postexercise data, a new regres-

sion model was used to compute a running cadence and HR 

that was more suitable for the current physical state of the 

subject. During the next exercise session, the new regression 

model was fed back to the subject. The regression model was 

(1)HRwarmup = HRmax × 50%,

(2)HRtraining = HRmax × 70%, and

(3)HRcooldown = HRmax × 60%,

(4)HRmax = 220 − age.

(5)

Fitness Index =
Test duration (sec) × 100

Sum of heart beats in the recovery periods × 2
,

Fig. 2  A subject wearing the smart clothing and exercising under the 

guidance of the proposed intelligent exercise guidance system. The 

black object on the white smart clothing is the gateway
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regularly updated with the data from the subject’s exercise 

sessions.

2.3  ECG Signal Denoising and HR Calculation

ECG signals are affected by movement artifacts, which 

must therefore be effectively removed [26–28]. Empirical 

mode decomposition (EMD) [29] was used to filter noise 

in this study. EMD, which can reduce motion artifacts 

and baseline wander in ECG signals [26–28], was used 

to decompose the ECG signal x(t) into N intrinsic mode 

functions (IMFs) and the residual r(t):

The pseudocode of the EMD algorithm is as follows:

(6)x(t) =

N
∑

j=1

IMFj(t) + rN(t).

Fig. 3  Flow chart of the 

proposed intelligent exercise 

guidance system

Table 1  Norms of fitness index score for Taiwanese people

Poor Below the average Average Good Excellent

Men < 48 48–52 53–56 57–62 > 62

Women < 46 46–51 52–55 56–61 > 61
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In this study, the EMD algorithm was improved to accel-

erate the algorithm for wearable devices. First, the calcula-

tion of SD in step 3.6 was removed and the stopping criterion 

SD(i) < ɛ in step 3.7 was replaced with i > iter, where iter 

is the iteration threshold set according to various states of 

motion. Second, the stopping criterion in step 6 was replaced 

with the number of extrema in rj(t) ≤ 2 and j  ≤ order, where 

order is a preset iteration threshold for j. With the improved 

EMD algorithm, the denoised ECG signal y(t) was obtained 

by summing up the 1st, 2nd, …, Kth IMFs, where K ≤ N:

By using the denoised ECG signal y(t), a novel QRS mor-

phology analysis algorithm, called MWqrs (proposed in 

another work [30]), was employed to differentiate between 

QRS complexes and artifacts. Three feature points were 

calculated after the algorithm detected a possible QRS 

(7)y(t) =

K
∑

j=1

IMFj(t).

complex. MWqrs was used to calculate the curve length 

transformation LT(ω, i) of y(t) as

where i is the start index and the curve length transformation 

was calculated from i–ω to i; Δc the length differentiable 

over the time window ω, chosen to be approximately equal 

to the QRS duration (0.13 s); and Δt the sampling period. 

The curve length of y(t) was then calculated in correspond-

ence to the QRS complexes. HR was calculated as

where RR is the time interval between two adjacent R-peaks 

of the denoised ECG signal y(t).

(8)LT(�, i) =

i
∑

k=i−�

√

Δt2 + Δc
2

k
,

(9)HR =

60

RR
,
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2.4  QPRM of Running Cadence and HR

A QPRM of running cadence and HR was derived:

where Y is the HR (beats/min; BPM); X the running cadence 

(running steps per minute guided by music beats); and a, b, 

and c the quadratic polynomial regression coefficients. The 

target HRR constituting effective exercise was reached when 

the subject followed the guidance of music beats. The units 

of the running cadence (running steps/min) and the music 

beat (BPM) were consistent with respect to time. A music 

beat was the number of downbeats (strongest tones in mel-

ody) per minute, whereas running cadence was the number 

of forward foot shifts per minute. Therefore, the music beat 

could be used to interpret running cadence. Another study 

demonstrated that the standard deviation of the heartbeat 

interval during exercise was 65.13–95.34 ms [31]. Consid-

ering HR variability and a 2% hardware-level error rate, the 

three-stage effective HRRs were set at target HRs ± 10%:

When using the intelligent exercise guidance system, the 

goals were to yield a high degree of completion for the 

exercise routine, even with a preset regression model, and 

generate a better effect with a postexercise-trained regres-

sion model. The degree of completion was the percentage 

of actual exercise HRs within the effective HRRs. A higher 

degree of completion represented a longer time, during 

which HRs were in the effective HRRs and corresponded 

to more effective exercise. When the degree of completion 

decreased, the actual exercise HRs became too low or high 

compared with the effective HRRs, necessitating HR adjust-

ment (raising or lowering) to assist the subject in adjusting 

the exercise cadence so as to bring their HR back within 

the effective HRR. Thus, the exercise HR trend should be 

controlled, for which using an accurate regression model 

is essential. The preset regression models were grouped 

according to the physical ability to conform to the HR trends 

of various subjects. For the trained regression models, the 

predicted HRs of the running cadences of 60, 90, 120, and 

150 steps/min generated by the preset regression model as 

well as the running cadence and HRs were recorded every 

minute during exercise and were used to train a new regres-

sion model.The running cadence was presented to the sub-

ject as music beats for exercise guidance. The music speed 

was generally marked by characters or numbers at the begin-

ning of a music piece. The music speed was measured in 

beats per minute as well, representing the frequency with 

(10)Y =
(

a × X
2
)

+ (b × X) + c,

(11)HRRwarmup = HRwarmup × (100% ± 10%),

(12)HRRtraining = HRtraining × (100% ± 10%), and

(13)HRR
cooldown

= HR
cooldown

× (100% ± 10%)

which a specified note (e.g., a quarter note) occurred in 

1 min. For instance, music with a 4/4 beat played at 120 

BPM has 120 quarter notes were played every minute. The 

duration of each quarter note was calculated by dividing 

1 min by 120, which resulted in a 0.5-s duration. The dura-

tion of a bar was 0.5 s multiplied by 4 beats, which resulted 

in a 2-s duration. A larger BPM value represented faster 

speed. For the practical application of the proposed intel-

ligent exercise guidance system, the only factor a subject 

requires to know about music speed is that running must 

be performed according to the guidance of the music beats.

3  Experimental Results

3.1  Experiment I

Experiment I aimed to evaluate the performance of the pro-

posed EMD-based R-peak detection method by using full 

records from the MIT-BIH Arrhythmia Database [32, 33] 

(https ://physi onet.org/physi obank /datab ase/mitdb /). The 

accuracy and sensitivity of R-peak detection were evalu-

ated as

where TP, FP, TN, and FN represent the number of true 

positive (correct detection of an R-peak), false positive (false 

detection of the absence of an R-peak), true negative (correct 

detection of the absence of an R-peak), and false negative 

(false detection of an R-peak) results, respectively. Table 2 

presents the results of Experiment I. The average accuracy 

and sensitivity were 99.8% and 94.87%, respectively, dem-

onstrating a highly satisfactory performance of the proposed 

algorithm.

3.2  Experiment II

Experiment II aimed to evaluate the accuracy of R-peak 

detection for various running speeds with and without 

EMD-based ECG denoising. Twenty male volunteers were 

recruited at Chang Gung University and classified accord-

ing to their physical ability. The subjects wore smart cloth-

ing with wireless ECG signal transmission devices. Each 

subject ran on a treadmill for 1 min at running speeds of 

0, 1, 2, and 3 km/h, during which the ECG signals from 

their smart clothing devices were collected. The proposed 

EMD-based R-peak detection method was evaluated using 

these ECG signals. Table 3 presents the R-peak detection 

accuracy for various running speeds with and without ECG 

(14)Sensitivity =
TP

TP + FN
and

(15)Accuracy =
TP + TN

TP + FP + FN + TN
,

https://physionet.org/physiobank/database/mitdb/
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denoising through EMD. When EMD-based ECG denoising 

was employed, the accuracy of R-peak detection increased 

from 94.93 to 96.46%, whereas its sensitivity increased from 

98.03 to 98.75%. Figure 4 presents the typical ECG signals 

filtered through EMD.

3.3  Experiment III

Experiment III aimed to evaluate the preset QPRMs of HR 

and running cadence. At Chang Gung University, 15 male 

volunteers were recruited to be subjects and were classified 

according to their physical ability. The subjects wore smart 

Table 2  EMD-based R-peak 

detection results of the 

experiment on the MIT-BIH 

Arrhythmia Database

Case no. Total R-peaks Detected 

R-peaks

Average time 

difference (ms)

Standard 

deviation (ms) 

(%)

Accuracy (%) Sensitivity (%)

100 2273 2272 12.06 2.31 99.9998 99.96

101 1865 1866 12.86 1.54 99.998 99.68

102 2187 2085 7.32 8.44 99.98 94.70

103 2084 2085 11.87 1.68 99.9998 100.00

104 2229 2103 10.76 14.59 99.97 93.18

106 2027 1665 11.46 3.16 99.94 82.09

111 2124 1957 17.45 11.08 99.97 92.09

112 2539 2537 8.63 1.94 99.9985 99.76

113 1795 1794 10.27 1.49 99.9998 99.94

114 1879 1862 15.97 5.47 99.9968 98.99

115 1953 1951 8.36 1.39 99.9997 99.90

116 2412 2368 15.61 5.39 99.99 98.18

117 1535 1535 27.44 5.98 100.00 100.00

118 2278 2221 13.85 9.27 99.9888 97.15

119 1987 1984 16.58 5.25 99.9995 99.85

121 1863 1823 22.97 2.53 99.99 97.80

122 2476 2477 27.16 1.74 99.9995 99.96

123 1518 1515 11.07 1.45 99.9995 99.80

124 1619 1615 34.03 10.17 99.9988 99.63

201 1963 1664 13.69 2.31 99.95 84.77

Table 3  R-peak detection 

accuracy for various running 

speeds with and without EMD

0 km/h (%) 1 km/h (%) 2 km/h (%) 3 km/h (%) Average (%)

Accuracy without EMD 97.26 95.84 95.41 91.22 94.93

Sensitivity without EMD 99.22 98.70 98.22 95.98 98.03

Accuracy with EMD 97.63 97.86 96.77 93.59 96.46

Sensitivity with EMD 99.42 99.67 98.91 97.00 98.75

Fig. 4  Typical ECG signals filtered through EMD. The original ECG signals are depicted in blue and the EMD-filtered signals in orange
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clothing with wireless ECG signal transmission devices 

and ran on a treadmill under the guidance of specific music 

beats. Each subject ran for 27 min, which was divided into 

3-min increments of the following nine cadences: 0, 60, 90, 

120, 150, 120, 90, 60, and 0 steps/min. The HR data cor-

responding to the specific music beats were recorded by the 

application program. The data of HRs and running cadence 

were used to train the QPRM; three models of physical 

ability—“bad,” “normal,” and “nice”—were thus obtained. 

These models were then used as the preset models for vari-

ous physical ability groups. The performance of the pre-

set models was evaluated using mean absolute percentage 

error (MAPE) and the coefficient of determination (r2). The 

evaluation results are presented in Table 4 according to the 

physical ability of the subjects (bad, normal, or nice). The 

QPRM yielded a satisfactory MAPE and r2 for HR increas-

ing and decreasing, and thus demonstrated the effectiveness 

of the model for predicting the correlations between HRs 

and running cadences.

3.4  Experiment IV

Experiment IV aimed to evaluate the degree of comple-

tion of exercises by using the preset QPRMs from Experi-

ment III. Eleven participants, randomly selected from the 

15 participants of Experiment III, were included in this 

experiment. The subjects completed three stages (warmup, 

training, and cooldown) of exercise on the treadmill wear-

ing smart clothing equipped with ECG signal transmission 

devices. Warmup, training, and cooldown times were 5, 15, 

and 10 min, respectively. By using the preset QPRMs from 

Experiment III and Eqs. (11)–(13), the effective HRRs were 

computed. When the HR of the subject was not within the 

effective HRR (i.e., the HR was too fast or too slow), the 

proposed intelligent exercise guidance system would gener-

ate a message prompting the subject to make an adjustment 

to increase or decrease the HR. The percentage of the actual 

HRs within the effective HRRs was computed, yielding the 

degree of completion. A high degree of completion indicated 

superior exercise efficacy. Table 5 presents the degree of 

completion of the three stages of exercise. The degree of 

completion was 94.2%, 78.36%, and 79.82% for the warmup, 

training, and cooldown stages, respectively. After removing 

the 1 min of HR variation before each stage, the degree of 

completion was 97.05%, 91.91%, and 98.32%, respectively. 

After stabilization, the HRs were mostly within the effec-

tive HRRs.

3.5  Experiment V

Experiment V aimed to evaluate the accuracy of the preset 

and trained QPRMs. The same 11 participants from Exper-

iment IV were included in this experiment. The subjects 

completed three stages (warmup, training, and cooldown) of 

exercise on the treadmill wearing smart clothing equipped 

with wireless ECG signal transmission devices. They per-

formed the warmup, training, and cooldown stages for 5, 

15, and 10 min, respectively. For a subject using the intel-

ligent exercise guidance system for the first time, the system 

initially had no QPRM specifically trained for the subject. 

Thus, a preset model was selected from the three models 

generated from Experiment III, according to the physical 

ability of the subject (bad, normal, or nice). The data of HRs 

and running cadence during exercise, together with the pre-

set model, were used to train a new personalized model. The 

effective HRRs were computed using the trained models and 

Eqs. (11)–(13). When the HR of the subject was not within 

the effective HRR (i.e., the HR was too fast or too slow), the 

proposed intelligent exercise guidance system would gener-

ate a message prompting the subject to make an adjustment 

to increase or reduce the HR. The MAPE of the degree of 

completion was computed to evaluate the accuracy of the 

preset and trained models. Table 6 presents the evaluation 

results for increasing and decreasing HR. The MAPE of the 

preset model was small, but the MAPE of the trained model 

was even smaller. These results demonstrated the feasibility 

of using the preset and trained QPRMs.

Table 4  MAPE and r2 of the preset QPRMs for increasing and reduc-

ing HR

PA physical ability

Increasing heart rate Decreasing heart rate

PA Subject MAPE (%) r2 (%) MAPE (%) r2 (%)

Nice T1 3.52 97.77 2.93 98.15

T2 1.48 99.80 3.52 98.05

T3 6.12 94.98 2.08 98.70

T4 4.93 96.47 0.50 99.97

Normal T5 2.71 97.99 2.66 97.32

T6 5.05 95.86 3.34 97.86

T7 0.91 99.37 2.50 95.60

T8 1.62 99.30 2.00 98.46%

T9 2.21 96.66 0.74 99.60

T10 4.87 95.21 1.76 99.33

T11 2.04 95.43 1.23 96.85

T12 1.96 98.51 1.00 99.58

Bad T13 2.13 98.87 4.48 93.16

T14 4.01 96.03 0.48 99.96

T15 3.28 95.96 1.72 98.73

Average 3.12 97.21 2.06 98.09
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4  Discussion and Conclusions

In this study, a smart-clothing-based intelligent exercise 

guidance system employing music beat guidance was devel-

oped, an ECG signal denoising algorithm based on EMD 

was proposed, and a service pattern of music-beat-guided 

exercise was introduced.

Compared with currently available wearable-device-

based exercise guidance systems, the proposed smart-cloth-

ing-based intelligent exercise guidance system has some 

novel features [11–19]. The proposed intelligent exercise 

guidance system incorporated music beats, which no cur-

rent exercise guidance systems have done [11–19]. In addi-

tion, the proposed intelligent exercise guidance system used 

Table 5  Degree of completion of three stages (warmup, training, and cooldown) of the exercise with the preset QPRMs for increasing and 

decreasing HR

PA physical ability

Degree of completion of three stages Degree of completion of three stages after removing 

the 1 min of heart rate variation before each stage

PA Subject Warm-up (%) Training (%) Cool-down (%) Warm-up (%) Training (%) Cool-down (%)

Nice T1 91.00 81.00 90.00 100.00 95.00 100.00

T2 97.00 84.00 75.00 100.00 100.00 100.00

T3 96.00 79.00 85.00 100.00 93.00 98.00

Normal T4 100.00 72.00 85.00 100.00 87.00 100.00

T5 100.00 70.00 96.00 100.00 86.00 97.50

T6 100.00 84.00 71.00 100.00 92.00 100.00

T7 97.00 78.00 63.00 95.00 93.00 95.00

T8 90.00 74.00 79.00 95.00 88.00 91.00

Bad T9 100.00 80.00 71.00 100.00 90.00 100.00

T10 95.00 75.00 85.00 100.00 90.00 100.00

T11 71.00 85.00 78.00 77.50 97.00 100.00

Average 94.27 78.36 79.82 97.05 91.91 98.32

Table 6  MAPE of the preset 

and trained QPRMs for 

increasing and decreasing HR

PA physical ability

Increasing heart rate Decreasing heart rate

PA Subject MAPE MAPE

Preset model (%) Trained model 

(%)

Preset model 

(%)

Trained 

model 

(%)

Nice T1 7.21 3.92 8.40 4.96

T2 4.92 2.72 2.92 2.36

Average 6.07 3.32 5.66 3.66

Normal T3 4.37 2.62 3.06 2.30

T4 10.21 4.81 8.21 3.88

T5 4.73 2.67 6.77 5.58

T6 8.00 3.15 3.48 1.77

T7 9.95 6.16 6.96 3.07

T8 3.63 2.63 2.37 1.58

Average 6.81 3.67 5.14 3.03

Bad T9 8.09 5.91 5.33 4.71

T10 5.73 4.42 4.12 4.18

T11 3.65 3.24 5.89 4.51

Average 5.82 4.52 5.11 4.47

Total average 6.37 3.84 5.25 3.57
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smart clothing for ECG signal collection and HR monitor-

ing, which current exercise guidance systems also have not 

done [11–19]. The authors believe that the proposed smart-

clothing-based intelligent exercise guidance system may pro-

vide more effective and personalized guidance for exercises.

The proposed intelligent exercise guidance system imple-

mented the following key features: HR calculation, three-

stage (warmup, training, and cooldown) exercise guidance, 

physical fitness index analysis, resting HR detection, and 

postexercise HR recovery detection. The system also pro-

vided a trend analysis of HR and running cadence. The key 

element of experimental design was to have subjects run 

on a treadmill guided by music beats. The performance of 

the system’s EMD-based R-peak detection was evaluated as 

well as the accuracy and degree of completion for the run-

ning cadence predicted using the QPRM. Physical ability 

groupings and general trend regression models were used to 

determine the regression models with high accuracy, which 

were then used for preset and trained models.

During the experiments that evaluated whether the three 

preset regression models accurately conformed to the exer-

cise HR trend, the regression model with the best perfor-

mance of r2 and MAPE was determined. According to this 

regression model, the regression models for raising and low-

ering HR were trained for the subject. In the experiments 

evaluating the degree of completion of the exercise, a sin-

gle HR regression model was not desired for the cooldown 

stage. When the HR exceeded the target HRR, the reactions 

of a single regression model were significantly slower than 

the reactions of multiple regression models that could simul-

taneously process the rise and fall of the HR. Thus, the dif-

ference in degree of completion was verified using models 

for increasing and reducing HR at the same time. Finally, 

in the experiments concerning the overall trend and physi-

cal ability grouping regression models, the physical ability 

grouping regression model (preset model) was selected as 

the running cadence prediction model for a subject using 

the system for exercise guidance for the first time. A new 

regression model that was more suited to the subject’s own 

exercise HR trend could be trained rapidly on the basis of 

the preset model.

In conclusion, this study consisted of the design and 

development of an intelligent exercise guidance system 

that incorporated smart clothing and a wireless ECG signal 

transmission device. The system could be used for effec-

tive exercise guidance to strengthen cardiac functions. A 

service pattern involving music-beat-guided exercise was 

proposed; music beats were employed to guide the user’s 

exercise rhythm to accurately control the HR trend and 

achieve the target HRR during the prescribed exercise regi-

men. Experiments were performed to validate the trend and 

accuracy of HR control using the QPRM of HR and running 

cadence. The smart clothing was wearable and convenient to 

use. More indepth analysis of QRS complexes, ST segments, 

and T waves of three-lead ECG signals can be conducted in 

the future to identify means of enabling the proposed intel-

ligent exercise guidance system to detect more risk indices.
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