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Abstract

An overview of failure-tolerant control is presented, begin-
ning with robust control, progressing through parallel and analyt-
ical redundancy, and ending with rule-based systems and artifi-
cial neural networks. By design or implementation, failure-toler-
ant control systems are "inteiligent” systems. All failure-tolerant
systems require some degree of robustness to protect against
catastrophic failure; failure tolerance often can be improved by
adaptivity in decision-making and control, as well as by redun-
dancy in measurement and actuation. Reliability, maintainability,
and survivability can be enhanced by failure tolerance, although
each objective poses different goals for control system design.
Artificial intelligence concepts are helpful for integrating and
codifying failure-tolerant control systems, not as alternatives but
as adjuncts to conventional design methods.

Introduction

Many devices depend on automatic control for satisfactory
operation, and while assuring stability and performance with all
components functioning properly remains the primary design
goal, there is increasing need for controlled systems to continue
operating acceptably following failures in either the system to be
controlled (the plant) or in the control system itself.! A distinc-
tion should be made between system failures, which occur when
components break or misbehave, and system faulrs, which in-
clude improper design as well. Our attention is directed at the
former, as improper design is a separate issue.

Failure-tolerant control systems can be characterized as ro-
bust, reconfigurable, or some combination of the two. A well-
designed feedback controller typically reduces the plant's output
sensitivity to measurement errors and disturbance inputs; if the
plant is lightly damped or unstable, it provides closed-loop sta-
bility as well. It is designed assuming some nominal physical
structure for the plant, expressed by a mathematical model and a
set of parameters. A controlled system that retains satisfactory

performance in the presence of variations from this model with- -

out changes in the control system's siructure or parameters is said
to be robust. The degree of failure that can be accommodated by
a fixed control structure is more restricted than that of a variable
control saucture. If the structure or parameters can be altered
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1 For the purposes of this paper, the plant is defined as a dynamic sysiem
containing components that impart distinctive physical properties like mass,
inertia, elasticity, forces, and moments. The plant's motion (position and
velocity) must be controlled for satisfactory operation. The conrrol system is
an assemblage of additional components - motion sensors, force and moment
actuators, and computers — that provide this service. A controlled system is
a plant plus its control system.

Presented at the 5th IEEE International Symposium on Intelligent Conirol,
Philadelphia, PA, Sept 1990.

PRECED

following system failure, the contol system is reconfigurable.

In the latter case, the control system detects, identifies, and
isolates fajlures, and it modifies control laws to maintain accept-
able performance. A system that is failure-tolerant through re-
configuration is both adaptive and redundant. It is adaprve in its
ability 1o adjust to off-nominal behavior, as occurs from loss or
degradation of sensors, actuators, and power supplies, darnage to
signal and power transmission channels, or unexpected alteration
of the plant's characteristics. It is redundant in its ability to over-
come lost capabilities with remaining resources. Redundancy can
be provided by similar parallel channels for measurement and
control, or it may result from flexible logic that synthesizes
missing measurements or control forces using operable sensors
and actuators, effectively invoking dissimilar parallel channels.
A reconfigurable control system must be robust enough to pre-
clude controlled system failure while adaptation is taking place.

While there is much debate as to what constitutes true
"machine intelligence,” it can be argued that adaptivity and re-
dundancy are atributes of * 1telligence and, in the same light, that
feedback conwrol makes use of information in an intelligent fash-
ion. The issue is not that adaptive, feedback controllers pass the
seminal Turing test {1] or possess "consciousness” [2]. Itis that
they exhibit the "ability involved in calculating, reasoning, per-
ceiving relationships and analogies, leaming quickly, storing and
retrieving information, ... classifying, generalizing, and adjusting
to new situations,” [3] at least in a symbolic or quantitative sense.
To the extent that symbols and instructions reflect knowledge and
decisions, a failure-tolerant, feedback control system can be
called intelligent, and that context is adopted here.

Controlled Systems

Auention is focused on the conwol of continuous-time dy-
namic systems (or plants) whose motions can be represented by
integrals of nonlinear ordinary differential equations,

x(1) = fIx(r),u(s),w(),p] (1

where x(¢) is the n-dimensional state, u(s) is the m-dimensional
control, w(¢) is an s-dimensional disturbance, and p is an [-vector
of parameters. The state is observed through the measurement r-
vector,

() = h[X(t),u(t)‘.w(t).n(t),p] 2

where n(7) is an r-dimensional measurement-error vector. Along
a nominal trajectory specified by Xo(f), uo(t), wo(z), and ng(s) for
tin (tg, 1f), perturbations of the state and observation vectors are
governed approximately by linear, time-varying equations,
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Ax(D) = F(Aax() + G()Au() + L(HAw() €

Az() = Hy(DAx(1) + Hy(DAu() + He(H)Aw () +n(r) (4

F.G, L, Hy, Hy, and Hy are conformable Jacobian matrices
expressing sensitvities to the perturbation variables. At discrete
instants of time, &, fx+1. and so on, the state and measurement
pernturbations can be approximated by

Axiel = DrAxg + NkAuy + Axdwy &)

AZyel = kaAxk + HukAuk + Hkawk + 0 6

where the subscript "k" indicates evaluation at r;. Here, ®, T,

and A have the same dimensions as F, G, and L and are derived
from the system's state ransition properties (e.g., [4]). These
models provide a foundation for the remaining discussion.

Control logic for the nonlinear plant (eq. 1 and 2) typically
takes the form of a dynamic compensator,

Aug =- Cy &k {a
Exe1 = Pilk + OrAug + Kifzk - h(x,uk)] (8
B 2 (A% T N7 ©
ug = uok + Aug (10
Qkixok+aﬁk at

This linear, time-varying structure exemplifies estimation and
conwrol funcions for discussion purposes, but more complex
structures -- particularly nonlinear ones -- may be employed. It is
& uivalent 10 a feedback control law (eq. 7) operating on the in-

ternal state estimate AX contained in the (n + k)-dimensional &y

(eq. 8). yx is a k-vector of compensation components, such as
integrals of siate elements. The control and estimation gains, Cy
and Ky, are selected to provide satsfactory nominal response and

may vary in ime. ¥y and & normally represent nominal values
of @y and I'y plus integrating (i.e., accumulating) or filtering op-

eragions associated with k. The desired state and corresponding
control for the nonlinear plant, xokand uok, enter as in eq. 10

and 11.

Figure 1 represents an idealized controlled system, with dis-
turbance and noise inputs not shown. While the figure identifies
the elements of nominal control system design, it provides little
insight about control system components, all of which may fail.
Tangible components are needed for measurement and actuation
(Fig. 2), the control logic described by eq. 7 to 11 is executed in
a computer, these components are enabled by a power supply,
and the power supply also is subject to failure. An ancillary issue
is that sensors and actuators -- themselves physical systems --
have scale factors, biases, and dynamic characteristics to be con-
sidered during failure detection and identification. The simplest
means of doing this is to incorporate these characteristics in the
plant model (eq. 1 and 2), with estimadon and conwol logic
modified accordingly.
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Figure 1. Idealization of a controlled system.
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Figure 2. Components of a controlled systemn.

Objectives and Issues for Failure-Tolerant
Control

Failure tolerance may be called upon to improve system reli-
ability, maintainability, and survivability. The requirements for
failure tolerance are different in these three cases. Reliabiliry
deals with the ability to complete a task sadsfactorily and with the
period of time over which that ability is retained. A control sys-
tern that allows normal completion of tasks after component fail-
ure improves reliability. Maintainabiliry concerns the need for
repair and the ease with which repairs can be made, with no
premium placed on performance. Failure tolerance could increase
time between maintenance actions and allow the use of simpler
repair procedures. Swrvivability relates to the likelihood of con-
ducting an operation safely (without danger to human operators

- or the controlled system), whether or not the task is completed.

Degraded performance following failure might be permitted, as
long as the system can be brought to an acceptable state of rest.

Improving the reliability of individual components clearly
helps in all three categories; however, it does not follow that what
aids one objective aids another. For example, replacing a single
string of conwrol system components by three parallel strings of
identical components (plus selection or averaging logic) may im-
prove reliability, but it also increases the likelihood of component
failures, degrading maintainability. Conversely, redundancy
within line-replaceable units (LRUs) could improve maintainabil-
ity if it allows LRUs 10 be changed less often. Adding a separate
string of less-capable components may improve survivability
without improving reliability while decreasing maintainabiliry.

The principal categories of failure are plant alterations, actua-
tor and sensor failures, computer failure, and power sup-



ply/transmission failure. Actuators, sensors, and other analog
components are subject to many failure types, some of which
may be subtle but nonetheless damaging: parameter variation,
abrupt or random bias shift, abrupt or random scale factor shift,
change in saturation limits, drift, open circuit, hardover (or
stuck), and noise. Digital computer hardware failures have en-
tirely different characteristics, but it can be argued that they are
never subitle, as internal clock rates are high and the loss of co-
herent output is obvious {5]. Computer software does not fail
per se, but it is susceptible to programming fauits that may sur-
face unexpectedly and that may be hard to detect. Multiple fail-
ures can occur, particularly as a consequence of physical damage,
and they may be intermittent; hence, reconfiguration logic must
do more than just accommodate isolated failures. While not
strictly system failures, operator blunders and power transients
may produce system states that require prompt response.

Many factors must be considered in designing failure-tolerant
controls, including: allowable performance degradation in the
failed state, criticality and likelihood of the failure, urgency of re-
sponse to failure, tradeoffs between correcmess and speed of re-
sponse, normal range of system uncerainty, disturbance envi-
ronment, component reliability vs. redundancy, maintenance
goals (mean-time-between failures, mean-time-to-failure, mean-
time-to-repair, maintenance-hours/operation-hours, etc.), size
and cost of LRUs, system architecture, limits of manual inter-
vention, and life-cycle costs. Assessing each of these factors re-
quires detailed knowledge of the plant and its control objectives.

Robust Control

Controlled system robustness is the ability to maintain satis-
factory stability and performance in the presence of parameter
variations, which could be due to component failures in either the
plant or the control system. All practical controlled systems must
possess some degree of robustness against operatonal parameter
variations. Maintaining stability with component failures is a
particular challenge when the plant is open-loop-unstable, as
control-system failure may mean that the system becomes par-
dally "open-loop.” Alternatively, a plant alteration (e.g., the
breaking of a stabilizing spring or the loss of an aircraft's stabiliz-
ing surface) may force an ordinarily stable system to become un-
stable. In either case, reconfiguration may offer the only re-
course for stable control. It also is possible for an open-loop-
stable plant to be destabilized by a feedback controller with failed
control loops [6]. This lack of robusmess is most likely to occur
in high-gain controllers, where open- and closed-loop dynamics
are substantially different; robusmess recovery typically requires
lowering the control gains in systematic fashion (4,6,7]. The in-
herent stability margins of certain algebraic control laws (e.g., the
linear-quadratic (LQ) regulator [4,8-10]) may become vanish-
ingly small when dynamic compensation (e.g., the estimator in a
linear-quadratic-Gaussian (LQG) regulator) is added [11].
Restoring the robustness to that of the LQ regulator typically re-
quires increasing estmator gains using the loop-transfer-recovery
method [4,12].

Subjective judgments have to be made in assessing the need
for robustness and in establishing corresponding control system
design criteria, as there is an inevitable radeoff between robust-
ness and nominal system performance {13]. The designer must
know the normal operating ranges and distributions of parameter
variations, as well as the specifications for system operability
with failed components, else the final design may afford too little
robustness for possible parameter variations or too much robust-
ness for satisfactory nominal performance. Robustness tradi-
tonally has been assessed deterministically [14}; it is an inherent

part of the classical design of single-input/single-output systems,
and there are muld-input/multi-output equivalents dased on singu-
lar-value analysis of various frequency-domain matrices {e.g.,
4,10,12,15]. The most critical difficulty in applying these tech-
niques is relating singular-value bounds on return-difference and
inverse-return-difference matrices to real parameter variations in
the controlled system.

There is increasing interest in statstcal alternatives that make
full use of knowledge about potential system variations and that
work directly with real parameter variations. The probability of
instability was introduced in [16] and is further described in
{17,18]. This method determines the stochastic robustness of a
linear, time-invariant system by the probability distributions of
closed-loop eigenvalues, given the statistics of the variable pa-
rameters in the controlled system’s dynamic model. The proba-
bility that any of these eigenvalues have positive real parts is the
scalar measure of robustness, a figure of merit to be minimized
by control system design. Extensions to the analysis of perfor-
mance robustness and of nonlinear, time-varying systems are di-
rect. This approach provides logical connections 1o reliability
analysis of control systems, discussed below.

It is easy to pose unreachable or irrelevant goals for control
robustness. Problems that must be addressed in robust control
system design include: retaining contollability and observability
following component failure, achieving satisfaciory off-design
performance (including steady-state and wacking response as well
as stability), minimizing compromises to on-design performance,
and relating robustness criteria to real component failures.

Parallel Redundancy

In principle, tolerance 1o conwrol system failures can be im-
proved if two or more strings of sensors, actuators, and comput-
ers, cach separately capable of satisfactory control, are imple-
mented in parallel (Fig. 3). A voting scheme is used for redun-
dancy management, comparing control signals to detect and over-
come failures. With two identical channels, a comparator can
determine whether or not control signals are identical; hence, it
can detect a failure but cannot identify which sting has failed.
Using three identical channels, the control signal with the middle
value can be selected (or voted), assuring that a single failed
channel never conmols the plant. A 2-channel system is consid-
ered fail-safe because the presence of a failure can be determined,
but it is left to additional in-line (or "built-in test") logic to select
the unfailed channel for control. The 3-channel system is fail-op-
erational, as the task can be completed following a single failure.
Systems with four identical control channels are called "fail-
op/fail-op" because they can tolerate two failures and still yield
nominal performance. In any voting system, it remains for addi-
tional logic to declare unselected channels failed. Given the vec-
torial nature of control, this declaration may be equivocal, as
middle values of control-vector elements can be drawn from dif-
ferent strings.

Of course, the voting logic itself has some probability of fail-
ure, and a single-point failure of a voting component could be
catastrophic. Consequently, it may be preferable to let each
channel remain independent through the application of control
force, letting force averaging mediate failures. If control outpuss
are averaged, small variations among the parallel channels tend 10
cancel, and the net output is smooth; however, a runaway failure
can bias the net signal away from its desired value. Voting and
isolation of failed channels then can be carried out as an auxiliary
process whose own failure would not disable the entire system.
Once a failed channel has been disengaged, the total available
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contwrol force is reduced, changing the performance characteristics
of the conrrolied system.
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Figure 3. A wiply redundant controlled system.
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For perfect output voting of M identical parallel channels each
with N serial components, the failure probability Pf of the overall
conwol system is,

M N
Pe=T1 [1 - 6"‘i‘] = [(Ag + Ac + Ag)(11 - 19)IM

=1 i=1
A
=(1-RM (12

Sensor, computer, and actuator failure rates! are A, A¢, and A,
(assurned to be small and uncorrelated), (17 - £p) is the mission du-
ration, and R is the single-string reliability {19,20]. I the com-
ponents can be cross-strapped perfectly (i.e., if a failed compo-
nent from one string can be connected to an unfailed string), the
overall probability of failure is reduced to

M N
Pr=1- 11 {1 -Ta- c"'i‘)}

Fl =l
= (AM + A M+ AM)(s¢ - 1M a3

Unfortunately, failures cannot be detected perfectly, and cross-
strapping itself is subject to failure. The probability of detecting,
isoladng, and recovering from a failure -- called coverage -- is a
more meaningful measure than Pr. For a 3-channel control sys-
tem with output voting alone, the coverage C [21], or net reliabil-
ity, is

C=R3+3R2(1-R)P,l+3(l-R)2RPr2 (14

where P.-1 is the probability of recovering from the first failure
and Pr2 is the probability of recovering from a second failure.

These probabilities are not necessarily the same, as different pro-
cesses may be used for failure detection: voting for the first fail-
ure, in-line detection for the second. Unless the recovery prob-
abilites are very nearly one, the maximum benefits of redun-
dancy will not be realized.

Problems encountered in implementing parallel redundancy
include: selection logic, nuisance trips, generic failures, reliabil-
ity of voting/selection units, control force contention, cross-
strapping, increased cost and maintenance, number of operating
channels required for dispatch, and connectors. Failure-detection

11n the present context, "sensor” implies the entire suite of sensors needed
for control, and "computer” and "actuator” are defined similarly.
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logic must be sensitive to failures yet insensitive to small opera-
tional errors, including those due to non-colocation of sensors or
actuators. Nuisance trips (false indications of failure) must be
minimized to assure that useful resources are kept on-line and
missions are not aborted prematurely. Redundancy does not
preclude identical damage to parallel systems, especially when
they are located in close proximity. Cross-strapping implies
complex, "intelligent” interconnections; however, if it is not im-
plemented, a single component failure brings down an entire
control string. Voting can be done in all operating control com-
puters, but arbitration is required when these computers disagree.
For the ideal parallel system, the probability P that some compo-
nent will fail is,

P = M(hs + Ac + Aa)(t5 - 10)] (15

so the likelihood of component failure is increased by redun-
dancy. Itis necessary to establish rules for dispatching the con-
trolled system: if one control string is not operational but the
others are, shouid the process be initated? For a manufacturing
system, the answer might be “yes,” while for a ransport aircraft,
it might be "no.” A non-wivial aspect of redundant control is the
need for more electrical connectors, the components most likely
o cause trouble!

One insidious pmblem associated with parallel redundancy is
the lack of contrellability of internal state components [22].
Consider the dual-redundant conwolled system of Fig. 4, where
the individual control outputs are averaged by M = M, and Fy
=F2, Gy = G7, and N = N3. The dynamic equartions can be
expressed as

XA Fa GaM; GaMi1rxa 0
[X1]=[G1N1 Fi 0 ]{x{l-{(}l]up (16
x2d LGINy 0 Fi1 Jixad LGy

The controllability matrix C of this system is

0 2GAMiGy 2(FAGAM + GAM 1 FGy ...
c=[G1 F1G) (2N1GaM] + F12)G, }
G FiG, (2N1GaM + F19)G,

17

Complete controllability requires that C be of maximal rank;
however, that is not possible because the bottom two rows are
repeated. In other words, the compensator state elements are not
controllable. If the corresponding modes are stable, then small
variations between the two contollers tend to decay; however, if
the modes are unstable or neutrally stable (as in the case of inte-
gral compensation), uncontrollable drift can occur, leading to di-
vergent control outputs, nuisance trips, and possible isolation of
otherwise operable channels.

Figure 4. Model of a dual-redundant controller.



If there are sufficient cues to warn a human operator of sys-
tern failure and plausible failure effects are slow enough to allow
manual intervention, many of the benefits of parallel redundancy
can be obtained by operating with a single control string, keeping
an idle backup control string at the ready. The backup system
can be similar or dissimilar to the primary system; however, if it
is less capable, ability to perform the task will be degraded.

Parallel redundancy can protect against control-system com-
ponent failures, but it does not address failures of plant compo-
nents. Analytical redundancy provides a capability to improve
tolerance to failures of both types. It does this with fewer addi-
tional components, flexible cross-strapping, and increased com-
putation; as a consequence, there is greater reliance on the control
computer, producing even greater need for computer reliability.

Analytical Redundancy

The principal functions of analytical redundancy are failure
detection (through built-in-test alarms or off-nominal operation),
failure identification (recognition of which components are
failed), and control-system reconfiguration (adaptation to sensed
or estimated failures). Detection and identification may be com-
bined in built-in test functions. Although in-line monitors pro-
vide direct and rapid response to specific failures, it is impossible
to provide full coverage of all failures by specialized instrumenta-
tion (which itself is subject to failure). A practical failure detec-
tion, identification and reconfiguration (FDIR) solution can be
found in the control computer's ability to compare expected re-
sponse 10 actual response, inferring component failures from the
differences and changing either the structure or the parameters of
the control system as a consequence.

Failure detection is exemplified by the generalized likelihood
ratio test (Fig. 5) [23], which uses a Kalman-filter-like recursive
equation to sense discrepancies in system response. The test
compares the probability of the estimator's actual measurement
residual [z - h(°)] with its expected value, detecting a jump that
can be related to failure. It is very sensitve to off-nominal per-
formance and is easy to implement; however, the test does not
produce a tight indicaton of the failed element, and modeling er-
rors can hamper detection [24].
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Figure 5. Failure detection: generalized likelihood ratio test.

Failure idenrificarion may require a more specific test, such as
multiple-model hypothesis testing (Fig. 6) [25,26]. Each failure
hypothesis (including that of no failure) is modeled in 2 Kalman
filter, and the most likely hypothesis (based on probability esti-
{natcsv[d]) indicates the failure state. This is a computationally
Intensive technique, as not only the failed device must be hypoth-

esized but the type, magnitude, and (if taken to the extreme) even
the time of the failure must be modeled as well.
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Figure 6. Failure identification: multiple-model hypothesis test.

Select

Besiw [T Best Failure Hypothsns

Consider a modified form of the generic control structure:
Aug = - ScCy[Ek] + b (18

Eke1 = Pikk + SrAuk + Ki[Sszk - h(Riuy) + b (19

Ss and S are scale-factor matrices on the measurements and
control, and bs and b are bias vectors. Within this framework,
we can identify the elements of the control system that need to be
modified following various failures, as in Table 1. If the plant is

altered, it may be necessary to change the intemal model (¥, ©),
as well as the esdmation and control gains (K, C), and so on for
the remaining failure types. Precise failure identification is an
important antecedent of conwrol reconfiguration. Both "hard”
(fast) and "soft" (slow) failures must be expected, and logic must
accommodate command inputs (set-point transients), distur-
bances, and measurement noise [27].

Table 1

Failure Types and Related Control-Law Parameters
Eailure Parameter
Plant Alteration ¥,8,K,C
Actuator Failure u,8,C
Sensor Failure z,h, K
Bias Shift byg or be
Scale Factor Shift Sgor S¢
Saturation Limit Change KorC
Drift bg or be
Open Circuit u,8,C, andforz, b, K
Hardover/Stuck Open Circuit, plus bg and/or b,
Noise K

Reconfiguration attempts o retzin nominal stability and per-
formance characteristics. At a minimum, this requires that on-
design controllability and observability (e.g., [4]) be preserved.
There is a tradeoff between speed of reconfiguration, computer
storage requirements, and flexibility of reaction. Controller
structures and parameters for all conceivable failed states can be
generated off-line and stored for eventual use; however, this ap-
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proach could require an enormous memory. Conversely, on-line
design requires minimal storage and (in principle) can adjust 1o
unanticipated failures, but design algorithms must be executed
and their results accepted soon enough to provide sufficient fail-
ure tolerance. With failed sensors, reconstruction of missing
measurements may increase state-estimate errors; with failed ef-
fecters, the remaining actuators may have to operate with larger
displacements and rates [28]. If the plant is open-loop-unstable,
higher control activity combined with existng control-saturation
limits may reduce the state space within which closed-loop stabil-
ity can be assured [29,30).

Artificial Intelligence

Conirol theory and artificial intelligence both suive to harness
mathemnatics and logic for practcal problem solving, but control
theory finds its origins in dynamics and electronics, while artifi-
cial intelligence springs from biology, psychology, and computer
science. Failure-tolerant control systems can benefit from
blending these perspectives. Two approaches have been fol-
lowed in the field of artificial intelligence. Artificial neural ner-
works are motivated by input-output and learmning properties of
living neural networks, although in application the network be-
comes an abstraction that may bear little resemblance to its bio-
logical namesake. Expert systems mimic the intelligent functions
of an expert or group of expers. Initially, aruficial neural net-
works appeared impractical because computers of the day were
100 slow and rnassive, and methods for raining neural networks
(e.g., perceprrons and adalines) were thought to be unworkable
[31,32]. In the intervening years, the expert system approach
proved to be quite achievable; hence, it received major emphasis
in both theorerical development and applications. New insights
about learning and improved electronics have restored interest in
neural networks.

Expext Systems

Expert sysiems are computer programs that use heuristc rela-
tionships and facts as hurnan experts do. The tasks and require-
ments of such systems (Table 2 [33]) are important for reconfig-
urable control systems, but there is a need to go beyond the usual
limitations of static expert systems. Interpretation, diagnosis,
monitoring, prediction, planning, and design must be cyclical,
dynamic processes that can reconfigure the control system in
"real dme" (i.c., with negligible delay).

Table 2
Functions of an Expert System

Task Reguirements

Interpretation  Correct, consistent, complete analysis of data

Diagnosis Faul: finding

Monitoring  Recognition of alarm conditions

Predicton Reasoning about time, forecasting the future
Planning Defining actions to achieve goals

Design Creating objects that satisfy requirements

The expert system offers a useful formalism for failure-toler-
ant control because it can consider diverse data sources and sub-
problem absoactons. The expert system can combine qualitadve
and quantitative reasoning, heuristics and statstcs [34]. Failure
indicators may be continuous variables generated by measure-
ments or estmators, or they may be discrete variables from in-
line monitors or discrete-event models. Indicators are the outputs
of producrions, routines*with unique input-output characteristics
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that produce goal conditions from initial conditions. Hence, the
expert system can be implemented as a production system or a
rule-based system consisting of a data base, a rule base, and a
rule interpreter (or inference engine) [35]. A production system
generates actions predicated on the data base, which contains
measurements as well as stored data or operator inputs.

A rule-based failure-tolerant control system contains FDIR
logic in expert-system format (Fig. 7). The expert system is an
adjunct to the nominal control structure, which remains the most
efficient means of effecting precise conwrol. From the conwol
perspective, the expert system performs its decision-making tasks
in a concentric owter loop; from the expert-system perspective,
control actvity is a side effecr that supports decision making.
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Figure 7. Expert-system approach to analytdcal redundancy.

An expert system performs deduction using knowledge and
beliefs expressed as parameters and rules (Fig. 8). Parameters
have values that either are external to the expert system or are set
by rules. An "IF-THEN" rule evaluates a premise by testing val-
ues of one or more parameters related by logical "ANDs" or
"ORs," as appropriate, and it specifies an acrion that set values of
one or more parameters. The rule base contains ail the rules of
the expert system, and the inference engine performs its function
by searching the rule base. Given a set of premises (evidence of
the current state), the logical outcome of these premises is found
by a data-driven search (forward chaining) through the rules.
Given a desired or unknown parameter value, the premises
needed to suppor the fixed or free value are identified by a goal-
directed search (backward chaining) through the rules. Querying
(or firing) a rule when searching in either direction may invoke
procedures that produce parameter values as side effects.
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Figure 8. Graphical representation of expert system knowledge.
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Both search directions are used in a rule-based conwrol system
[36]. Backward chaining drives the entire process by demanding
that a parameter such as CONTROL CYCLE COMPLETED have
a value of rrue. The inference engine works back through the
rules to idendfy other parameters that allow this and, where nec-
essary, triggers side effects like estimation and conwol to set
these parameters to the needed values. Backward chaining aiso is
invoked to leamn the value of ABNORMAL BEHAVIOR DE-
TECTED, be it true or false. Conversely, forward chaining indi-
cates what actions can be taken as a consequence of the current
state. If SENSOR MEASUREMENTS REASONABLE is true,
and ALARM DETECTED is false, then failure identification and
reconfiguration side effects can be skipped on the current cycle.

Rules and parameters can be represented as objects or frames
that have identties and auributes. For example, a rule can be ex-
pressed as the ordered list (NAME, STATUS, PREMISE, AC-
TION, ACTION PARAMETERS, PREMISE PARAMETERS,
TRANSLATION), while a parameter may take the form (NAME,
USING RULES, UPDATING RULES, ALLOWABLE VAL-
UES, TRANSLATION). Most of these attributes are self-ex-
planatory. STATUS indicates the state of the rule, such as "not
been tested,” "being tested,” "tested, and premise is rrue,"”
“tested, and premise is false,” or "iested, and premise is un-
known." ALLOWABLE VALUES provides a mechanism for
detecting false logic. TRANSLATION provides a narural-lan-
guage explanation for display to the operartor. Specific rules and
parameters are represented by lists in which names and atributes
are replaced by their values. The atmibute lists contain not only
values and logic but additional information for the inference
engine. This informartion can be used to compile parameter-rule-
association lists that speed executon [37].

Frames provide useful parameter structures for related pro-
ducdons, such as analyzing the origin of one or more failures in a
complex, connected system [38]. The dependency graph of Fig.
9 showing relationships between actuators and their power sup-
plies can be represented by the random-order list ((OBJECT
Name) (ATTRIBUTE] Valuey) (ATTRIBUTE; Valuey) (...)), a
more flexible form than the previous structure. In this applica-
tion, the (ATTRIBUTE Value) lists are (A-KIND-OF Device),
(ANTERIOR <-OR> Device<s>), (POSTERIOR<-OR> De-
vice<s>), (CRITICALITY Number), and (UNITS Number).
Frames possess an inheritance property; thus the object
((OBJECT Pivoting Actuator) (A-KIND-OF Actuator)
(ANTERIOR Hydro-Reservoir).(POSTERIOR-OR (Swashplare
Pitching-Link))) lays claim to the properties of ((OBJECT Actua-
tor) (A-KIND-OF Hydraulic Device) (UNITS (I 2))). A two-
step process estimates the failure state. In local failure analysis,
forward chaining assesses the impact of known malfunctioning
units, and backward chaining finds possible causes of the
anomalies. In global failure analysis, local failure models are
combined, an inclusion property prunes redundant models, and a
heuristic evaluation based on criticality, reliability, extensiveness,
implications, level of backtracking, and severity produces a list of
most likely failure models. .

Expert systems process lists, 5o it is not surprising that LISP
(LISt Processing) is the computer language of choice for prelimi-
nary development. However, LISP is not a fast, efficient lan-
guage and is ill-suited to real-time applications. Moreover, a
rule-based control system uses numerical algorithms that are most
effectively coded in languages like Pascal, C, or FORTRAN.
Consequently, knowledge-base transiation from LISP to a proce-
dural language is a useful (if not necessary) adjunct of rule-based
control system design. This not only speeds program execution,
1t integrates control and decision-making processes, revealing
new possibilities for incorporating diagnostic procedures in fail-
ure detection and identfication [39].

Rule-based control systems must make decisions under
uncertainty, and they can do so either by invoking certainry-
equivalent logic, which is analogous to a well-known concept of
stochastic optimal control, or by uncertainty management in the
decison-making process. In the LQG regulator, uncertainties due
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Figure 9. Dependency graph of a hydraulic congol system.

to disturbances and measurement error are processed in the esti-
mator, and the feedback conwol law operates on the state estimate
as if it were the actual state [4]. The optimal conwol gains for the
stochastic and deterministic cases are identical. Because the rule-
based control system described above makes its best estimates of
the failure state in the control logic, the expert system controlling
FDIR can treat thése results deterministically, realizing liule or no
improvement from further uncertainty processing. If inner-loop
estimation is decidedly sub-optimal, uncertainty management can
help, using probability theory, Dempster-Shafer theory, possibil-
ity theory, centainty factors, or the theory of endorsements {40].
Bayesian belief networks [41], which propagate event probabili-
ties up and down a causal tree, have particular appeal for failure-
tolerant control and are being applied in a related program to as-
sist aircraft crews in avoiding hazards [42].

Teaching the expert system the rules and pararneters that gen-
eralize the decision-making process from specific knowledge (the
process of induction) is another concern. Here, we have fol-
lowed two approaches at Princeton. The first is called rule re-
cruitment [43], and it involves the manipulation of "dormant
rules” (or rule templates). Each template possesses a fixed
premise-action structure and refers to parameters through
"pointers.” Rules are constructed and incorporated in the rule
base by defining links and modifying parameter-rule-association
lists. Learning is based on repeated simulations of the controlled
systern with alternative failure scenarios. Learned parameter val-
ues then can be defined as "fuzzy functons” [44] contained in
rule premises. The second approach [45] has two parts: analysis
of variance identifies the factors that make stadstcally significant
contributions to the decision metric, and the “"ID3" algorithm (46]
extracts rules from the training set by inductive inference. The
rules take the form of decision trees that predict the performance
of alternative strategies.

Expert systems are incorporated in the FDIR process to ac-
commodate declaratve functions, leaving reflexive functions to
the estimation and control laws [43]. Meclarative action requires
a deep understanding of cause and possible effect. Reflexive ac-
tion is automatic, quickly relating sumulus to response. Both are
needed in intelligent failure-tolerant control.
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Anificial Neural Networks

Artificial neural networks consist of nodes that simulate the
neurons and weighting factors that simulate the synapses of a
living nervous system. They are good candidates for performing
a variety of reflexive functions in failure-tolerant conmol sysiems
because they are potendally very fast (in parallel hardware im-
plementation), they are intrinsically nonlinear, they can address
problems of high dimension, and they can learn from experience.
From the biological analogy, the neurons are modeled as switch-
ing functions that take just two discrete values; however,
"switching" is softened to "saturation” in common usage, not
only to facilitate learning of the synaptic weights but to admit the
modeling of continuous functions.

The neural networks receiving most current attention are
memoryless expressions that approximate functions of the form

y=f(x) (20

where x and y are input and output vectors and f{+) is the (pos-
sibly unknown) relationship between them. Neural networks can
be considered generalized spline functions that identify efficient
input-output mappings from observations [47,48]. Rather than
approximating eq. 20 by a series, an N-layer neural network
(Fig. 10) represents the function by recursive operations,

x®) = sEWk-Dx&D] 2 s®M®] k=110 N Q1

where y = x(™ and x = x(®, W1 is a matrix of weighting
factors determined by the learning process, and s®)[+] is an acti-
vation-function vector whose elements are scalar, nonlinear

funcrons G;(T;) appearing at each network node:

s®M®] = o1 &) - Op(MpN]T (22

One of the inputs to each layer may be a unity threshold element
that biases the activation-function output

Figure 10. Backpropagation Feed-Forward Neural Network.

The sigmoid is commonly used as the artificial neuron. Itisa
saturating function defined variously as (1) = 1/(1 + ¢™M) for

output in (0,1) or (M) = (1 -e2M)/(1 + &2M) = tanh 7 for output
in {-1,1). Recent results indicate that any continuous mapping
can be approximated arbitrarily closely with sigmoidal networks
containing a single hidden layer (N = 2) {49,50]. It appears that
certain symmetric functions, such as the radial basis function

(o(n) = c"\z) or the derivative of the sigmoid have even better
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convergence properties. Backpropagation leaming algorithms for
the elements of W{k) typically involve a gradient search (e.g.,
[51)), aithough learning speed and accuracy are improved using
the extended Kalman filter {52]. The Cerebellar Model Arnicula-
tion Controiler (CMAC) is an alternative neural network formula-
tion with somewhat different properties but similar promise for
application in control systems [53].

Equation 20 can represent many functions of importance in
dynamics and contol. For example, defining x as {x(2), u(s),
w(1), pl, eq. 1 takes that form; together with the implied integra-
tion, neural networks can mode! plant dynamics. A discrete-time
model of uck dynamics is demonstrated in [54], and a means of
using neural networks in system identfication is described in
[55]. With x = [x(2), u(r), w(1), n(r), p), the measurement vec-
tor (eq. 2) also could be represented. There is little advantage 1o
expressing a linear conmol law like eq. 7 by a neural network;
however, if the control gain matrix C is scheduled by operating
point or time, that reladonship could be modeled by a neural net-
work. If a nonlinear control function such as U = u(X,Xdesired.?)
is generated by optimization, nonlinear inversion, or model
matching, it can be represented by a neural network [e.g.,
54,56,57). Consequently, neural networks can be incorporated
in most of the control and FDIR techniques mentioned above.

Neural networks can be applied to failure detection and iden-
tification by mapping data patterns (or fearure vectors) associated
with failures onto detector/identification vectors (e.g., [58,59]).
The nerwork is trained to detect failure with the scalar output 1"
corresponding to all failure patterns and "0" corresponding to no
failure. During operation, a failure is indicated when the output
exceeds some threshold near "1." To identify specific failures,
the output is a vector, with a training value of "1” in the ith ele-
ment corresponding to the ith failure mode. For M failure modes,
either M neural networks with scalar outputs are employed or a
single neural network with M-vector output is used; there are evi-
dent tradeoffs related to efficiency, correlation, and so on. The
data patterns associated with each failure may require fearure ex-
traction, pre-processing that transforms the input time series into
a feawre vector. In [59], this was done by computing 24 Fourier
coefficients of the input signal in a moving temporal window.
When assessing FDI logic, feature extraction must be considered
part of the neural-network computaton.

Of course, not all of the suggested neural nets can leamn on-
line, as a training set must contain desired outputs as well as
available inputs. In the cited examples, [54] and [56,58,59] use
off-line learning, while [55] and [57] allow on-line learning.
Reference 60 trains a neural network using an expert system that
previously learned the desired control strategy. Once an initially
trained system is on-line, the "off-line” training process could be
executed in parallel with the on-line operation, allowing updates
to be made. If the control process that generates on-line raining
data performs satisfactory control, the need for the neural net-
work must be questioned. The goal should be to provide sats-
factory failure tolerance with minimum hardware and software.

Neural networks intended to detect failures would leam little
from monitoring normally operadng plants. In any case, the neu-
ral-network learning rate is slow, probably too slow to expect
neural networks of appreciable dimension to adapt to system fail-
ures in real time. Hence, the immediate application of neural
networks in failure-tolerant control systems is to approximating
nonlinear functions used by the FDIR methods introduced earlier.
On-line learning can fine-tune this logic over a period of time.



Conclusions

Intelligent failure-tolerant control can improve the operating
characteristcs of systems. These improvements depend upon a
good knowledge of the plant, reliable control elements, and suf-
ficient observability and controllability following failures. Inher-
ent robustness, the ability to accommodate failures without adap-
tation, is a highly desirable attribute, but it may not be sufficient
to contain all system failures. Because split-second decision and
reconfiguration may be required, a high degree of pre-training
should be assumed; even intelligent systems cannot learn about
new failure modes and respond to them properly at the same time
(except by chance). Failure-tolerant systems must be able to dis-
tinguish between failures, disturbances, and modeling errors, re-
sponding to each in the proper way. Probability theory provides
an underlying theme that unifies failure-tolerant design, from the
probability of instability of robust systems, through the probabil-
ity of failure of redundant systems, to the probability of correct
FDIR response in analytical redundancy. Artificial intelligence is
a useful adjunct to parallel and analytical redundancy, as expert
systems and artificial neural networks offer new alternatives for
both declarative and reflexive response to system failures.
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