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Abstract 

An overview of failure-tolerant control is presented, begin- 
ning with robust control, progressing through parallel and analyt- 
ical redundancy, and ending with rule-based systems and artifi- 
cial neural networks. By design or implementation, failure-toler- 
ant conml systems a "intelligent" systems. All failure-tolerant 
systems require some degree of robustness to protect against 
catastrophic failure; failure tolerance often can be improved by 
adaptivity in decision-making and control, as well as by rcdun- 
dancy in measurement and actuation. Reliability, maintainability, 
and survivability can be enhanced by failure tolerance, although 
each objective poses different goals for control system design. 
Artificial intelligence concepts are helpful for integrating and 
codifying failure-tolerant conml systems, not as alternatives but 
as adjuncts to conventional design methods. 

Introduction 

Many devices depend on automatic control for satisfactory 
operation, and while assuring stability and performance with all 
components functioning properly remains the primary design 
goal, there is increasing need for controlled systems to continue 
operating acceptably following failures in either the system to be 
controlled (the plant) or in the conuol system itself.' A distinc- 
tion should be made between system failures, which occur when 
components break or misbehave, and system faults, which in- 
clude improper design as well. Our attention is directed at the 
former, as improper design is a separate issue. 

Failure-tolerant control systems can be characterized as ro- 
bust, rcconfigurable, or some combination of the two. A well- 
designed feedback controller trpically reduces the plant's output 
sensitivity to measurement errors and disturbance inputs; if the 
plant is lightly damped or unstable, it provides closed-loop sta- 
bility as well. It is designed assuming some nominal physical 
structure for the plant, expressed by a mathematical model and a 
set of pararnetm. A controlled system that retains satisfactory 
performance in the presence of variations from this model with- 
out changes in the control system's structure or parameters is said 
to be robust. The degree of failure that can be accommodated by 
a fixed control smcture is more rcsmctcd than that of a variable 
control snuctwe. If the structure orparameters can be altered 
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following system failure, the conno1 system is reco@gwable. 

In the latter case, the control system detects, identifies, and 
isolates failures, and it modifies control laws to maintain accept- 
able performance. A system that is failure-toilerant through re- 
configuration is both adaptive and dundant. It is adaprive in its 
ability to adjust to off-nominal behavior, as occurs from loss or 
degradation of sensors, acmators, and power supplies, damage to 
signal and power nansmission channels, or unexpected alteradon 
of the plant's characteristics. It is redundont in its ability to over- 
come lost capabilities with remaining resources. Redundancy can 
be provided by similar parallel channels for :measurement and 
control, or it may result from flexible logic that synthesizes 
missing measurements or control forces using operable sensors 
and actuators, effectively invoking dissimilar parallel channels. 
A reconfigurable control system must be robust enough to pre- 
clude controlled system failure while adaptation is talung place. 

While there is much debate as to what: constitutes true 
"machine intelligence," it can be argued that adaptlvity and re- 
dundancy an atmbutes of 'ltelligence and, in the same lighr rhar 
feedback control makes use of information in am inrelligent fash- 
ion. The issue is not that adaptive, feedback c~ntrollers pass the 
seminal Turing test [ I ]  or possess "consciousness" 121. It is char 
they exhibit the "ability involved in calculating, reasoning, per- 
ceiving relationships and analogies, learning quickly, storing and 
remeving information, ... classifying. generalizing, and adjusang 
to new situations," [3] at least in a symbolic or quantitadve sense. 
To the extent that symbols and instructions rcflmr knowledge and 
decisions, a failure-tolerznt. feedback control system can be 
called intelligent, and that context is adopted hen. 

Controlled Systems 

Attention is focused on the control of continuous-time clv- 
narnic systems (or plants) whose motions can be represented by 
integrals of nonlinear ordinary differential equations, 

where x(r) is the n-dimensional state, u(t) is tihc m-dimensional 
control, w(t) is an s-dimensional disturbance, and p is an I-vector 
of pararnetm. The state is observed through the rneasuremenr r- 
vector, 

where n(t) is an r-dimensional measurement-exmmr vector. Along 
a nominal trajectory specified by &At), ~g(t) .  VF~(I), and n,(r) for 
r m (to, t f ) ,  perturbations of the state and observation vectors are 
governed approximately by linear, dme-varying quaeons, 



IF, 6, L, N,, :HM, and Hw are conformable Jacobian matrices 
expressing senisitivities to the perturbation variables. At discrete 
instanu of time, &, k+1. and so on, the state and measurement 
p e r t h a o n s  can be approximated by 

where the sub:script "k" indicates evaluation at 4. Here, 0, T, 

and A have the same dimensions as F, 6, and L and are derived 
from the system's state transition properties (e.g.. [4]). These 
models pmvidr: a foundation for the remaining discussion. 

Control logic for the nonlinear plant (q. 1 and 2) typically 
takes the fonn of a &mmic cornpernolor, 

This linear, tirne-varying structure exemplifies estimation and 
control functions for discussion purposes, but more complex 
smcturss -- pxicularly nonlinear ones - may be employed. It is 
er,uivdent to a feedback control law (eq. 7) operating on the in- 

reAal s u e  esrimate & contained in the (n  + k)-dimensional 5k 

(eq. 8). a is ai k-vector of compensation components, such as 
integds of stale elements. The control and estimation gains, Ck 
and Kk, are sel~rted to provide satisfactory n 

may vary in hnx. \I"L and -& normally represent nominal values 

of % md Tk plus integrating (i-e., accumulating) or filtering op- 

erations 'iitcd with D. The desired state and corresponding 
conml for the nonlinear plant, xo and u enter as in q. 10 

k Ok' 

and 11. 

Figure 1 rrpresents an idealized controlled system, with dis- 
turbnce and noise inputs not shown. While the figure identities 
the elernenss of nominal control system design. it provides little 
insight a b u t  c~onnol system components, all of which may fail. 
Tangible cornponcnts are needed for measurement and actuation 
(Fig. 2),  the co~ntrol logic described by eq. 7 to 11 is executed in 
a computer, these components are enabled by a power supply, 
and Phe p w a t  supply also is subject to failure. An ancillary issue 
is that sensors and actuators -- themselves physical systems -- 
have scale facetxs, biases, and dynamic characteristics to be con- 
s i d e d  du+ing failure detection and identification. The simplest 
means of doing this is to in e these characteristics in the 
plant Iloodel (cq. 1 and 2) stirnation and control logic 
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Figure 1. Idealization of a controlled system 
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Figure 2. Components of a controlled system. 

Objectives and Issues for Failure-Tolerant 
Control 

Failure tolerance may be called upon to improve system reli- 
ability, maintainability, and survivability. The requirements for 
failure tolerance are different in these three cases. Reliabiliry 
deals with the ability to complete a task saasfaaorily and with the 
period of time over which that ability is retained. A control sys- 
tem that allows normal completion of tasks after component fail- 
ure improves reliability. Mainrainabiliry concerns the need for 
repair and the ease with which repairs can be made, with no 
premium placed on performance. Failun tolerance could increase 
time between maintenance actions and allow the use of sim~ler 
repair procedures. SurvivabiIiry relates to the l ike l ihd of don- 
ducting an operation safely (without danger to human operators 
or the controlled svstem). whether or not the task is com~leted. 
Degraded perfo&ce fillowing failure might be perrnihed, as 
long as the system can be brought to an acceptable state of rest. 

Improving the reliability of individual components clearly 
helps in all rhsw categories; however, it does not follow that what 
aids one objective aids another. For example, replacing a single 
smng of control system components by three parallel smngs of 
identical components (plus selection or averaging logic) may im- 
prove reliability, but it also increases the likelihood of component 
failures, degrading maintainability. Conversely, redundancy 
within line-replaceable units (LRUs) could improve maintainabil- 
ity if it allows LRUs to be changed less often. Adding a separate 
string of less-capable components may improve survivability 
withour improving reliability while decreasing maintainability. 

The principal categories of failure are plant alterations, actua- 
tor and sensor failures, computer failure, and power sup- 



ply/uansrnission failure. Actuators, sensors, and other analog 
components are subject to many failure types, some of which 
may be subtle but nonetheless damaging: parameter variation, 
abrupt or random bias shift, abrupt or random scale factor shift, 
change in saturation limits, drift, open circuit. hardover (or 
stuck), and noise. Digital computer hardware failures have en- 
tirely different characteristics, but it can be argued that they are 
never subtle, as internal clock rates are high and the loss of co- 
herent output is obvious [S]. Computer software does not fail 
per se, but it is susceptible to programming faults that may sur- 
face unexpectedly and that may be hard to detect. Multiple fail- 
ures can occur, particularly as a consequence of physical damage, 
and they may be intermittent; hence, reconfiguration logic must 
do more than just accommodate isolated failures. While not 
smctly system failures, operator blunders and power transients 
may produce system states that rquirr: prompt response. 

Many factors must be considered in designing failure-tolerant 
controls, including: allowable performance degradation in the 
failed state, criticality and l ike l ihd of the failure, urgency of re- 
sponse to failure, tradeoffs between correcmess and speed of re- 
sponse, normal range of system uncenainty, disturbance envi- 
ronment, component reliability vs. redundancy, maintenance 
goals (mean-time-between failures, mean-dme-to-failure, mean- 
time-to-repair, maintenance-hours/opcration-hours, etc.), size 
and cost of LRUs, system architecture, limits of manual inter- 
vention, and life-cycle costs. Assessing each of these factors re- 
quires detailed knowledge of the plant and its control objectives. 

Robust Control 

Controlled system robusrness is the ability to maintain satis- 
factory stability and performance in the presence of parameter 
variations, which could be due to component failures in either the 
plant or the control system. All practical conmlled systems must 
possess some degree of robusmess against operational parameter 
variations. Maintaining stability with component failures is a 
particular challenge when the plant is open-loop-unstable, as 
control-system failure may mean that the system becomes par- 
tially "open-loop." Alternatively. a plant alteration (e.g., the 
breaking of a stabilizing spring or the loss of an aimaft's stabiliz- 
ing surface) may force an ordinarily stable system to become un- 
stable. In either case, reconfiguration may offer the only re- 
course for stable control. It also is possible for an open-loop- 
stable plant to be destabilized by a feedback conmller with failed 
control loops [6].  This lack of robusmess is most likely to occur 
in high-gain controllas, w h a t  open- and closed-loop dynamics 
are substantially differenr; robusmess recovery typically rquircs 
lowering the control gains in systematic fashion [4,6,7]. The in- 
hercnt stability margins of cutain algebraic control laws (e.g.. the 
linear-quadratic 0 regulator [4,8-101) may become vanish- 
ingly small when dynamic cornpensation (e-g., the estimator in a 
linear-quadratic-Gaussian (LQG) regulator) is added [I I]. 
Restoring the robusmess to that of the LQ regulator typically re- 
quires increasing estimator gains using the Imp-transfer-rccovery 
method [4,12]. 

Subjective judgments have to be made in assessing the need 
for robusmess and in establishing corresponding control system 
design criteria as there is an inevitable uadwff between robust- 
ness and nominal system pedormana (131. The designer must 

opaating ranges and dismburions of parameter 
variations. as well as the specifications for system operability 
with failed components, else the final design may afford too little 
robustness for possible parameter variations or too much robust- 
ness for satisfactory nominal performance. Robustness tradi- 
tionally has been assessed deterministically [14]; it is an inherent 

part of the classical design of single-inputlsingle-ourput systems, 
and there are multi-inputlmulti-ourpur equivalents ioased on singu- 
lar-value analysis of various frequency-domain matrices [e.g., 
4,10,12,15]. The most critical difficulty in applying these tech- 
niques is relating singular-value bounds on return-difference and 
inverse-mum-difference mamces to real parameter variations in 
the controlled system. 

There is increasing interest in statistical alternatives &at rnake 
full use of knowledge about potential system variations and that 
work directly with nal parameter variations. The probobili~y of 
instability was introduced in [16] and is funhe:r desrribed in 
[17,18]. This method determines the scochasric robusrmss of a 
linear, time-invariant system by the probability clismbudons of 
closed-loop eigenvalues, given the statistics of the variable pa- 
rameters in the controlled system's dynamic model. The proba- 
bility that any of these eigenvalues have positive real parts is the 
scalar measure of robustness, a figure of merit to1 be nzinimizd 
by control system design. Extensions to the anailysis of perfor- 
mance robustness and of nonlinear, time-varying systems a e  di- 
rect. This approach provides logical connection~s to reliability 
analysis of control systems, discussed below. 

It is easy to pose unreachable or irrelevant goals for control 
robustness. Roblems that must be addressed in robust control 
system design include: retaining controllability and obscwability 
following component failure, achieving satisfact.ory off-design 
performance (including steady-state and nacking response as well 
as stability), minimizing compromises to on-design pedomance, 
and relating robustness criteria to real component failures. 

Parallel Redundancy 

In principle, tolerance to control system failmes can be im- 
proved if two or more smngs of sensors, actuators, and compur- 
ers, each separately capable of satisfactory control, are imple- 
mented in parallel (Fig. 3). A voring scheme is used for ndun- 
dancy management. comparing control signals to detect and over- 
come failures. With two identical channels, a compmtor can 
determine whether or not control signals are identical; hence, it 
can detect a failure but cannot identify which string has failed. 
Using three identical channels, the control signal with the middle 
value can be selected (or voted). assuring that a single failed 
channel never controls the plant A Zchannel system is consid- 
ered fail-safe because the presence of a failure can be detemind, 
but it is left to additional in-line (or "built-in test"] logic to select 
the unfailed channel for conml. The 3-channel system is fail-op- 
erarional, as the task can be completed following a single failure. 
Systems with four identical control channels are called "fail- 
op/faiI-op" because they can tolerate two failures and still yield 
nominal performance. In any voting system, it nrnains for addi- 
tional logic to declare unselecd channels failed. Given the vec- 
torial nature of control, this declaration may be equivwal, as 
middle values of conml-vector elements can be drawn from dif- 
ferent strings. 

Of course, the voting logic itself has some prolxbility of fail- 
ure, and a single-point failure of a voting component could be 
catastrophic. Consequently, it may be preferable to let each 
channel remain independent through the applicaition of control 
force, lemng force averaging mediate failures. If tmntrol outputs 
arc averaged. d l  variations among the parallel cihanneis tend to 
cancel. and the net output is smooth; however. a nlnaway failure 
can bias the net signal away from its desired value. Voting and 
isolation of failed channels then can be canied our as an auxiliary 
process whose own failure would not disable the e n t k  system. 
Once a failed channel has been disengaged, the total available 



control force is reduced, changiag the performance characteristics 
of the connoljied system. 

Figure 3. A triply redundant controlled system. 

For perfect output v o ~ g  of M identical parallel channels each 
with N serial components, the failure probability Pf of the overall 
control system is, 

Sensor, computer, and actuator failure rates1 are &, ;L, and k ,  
(assumed to be small and uncorrelated), (rf - rg )  is the mission du- 
radon, and R i.s the single-smng reliability [19,20]. lf the com- 
ponents can be cross-strapped perfectly (i.e., if a failed compo- 
nent from one smng can be connected to an unfailed smng), the 
overall probakility of failure is reduced to 

Unfomnately,, failures cannot be detected perfectly, and cross- 
strapping isell' is subject to failure. The probability of detecting, 
isolating, and ~scovering from a failure -- called coverage -- is a 
more meaningful measure than Pr. For a 3-channel control sys- 
tem with oublfput voting alone, the coverage C 1211, or net reliabil- 
ity, is 

when Prl is the probability of recovering from the fine failure 

and Pr2 is the probability of recovering from a second failure. 

These imhbilities an not necessarily the same, as different pro- 
cesses m y  be used for failure detection: voting for the first fail- 
ure, in-line detection for the second. Unless the recovery prob- 
abilities are very nearly one, the rnaximurn benefits of redun- 
dancy d l  not be 

h b l e m s  e :ncountd  in implementing parallel redundancy 
include: selection logic, nuisance mps, generic failures, reliabil- 
itv of voting/~;elecaon units. control force contention. cross- 
sbpping, &eased cost and maintenance, number of operating 
channels acquired for dispatch, and connectors. Failuredetection 

logic must be sensitive to failures yet insensitive to small opera- 
tional errors, including those due to non-colocation of senson or 
actuators. Nuisance trips (false indications of failure) must be 
minimized to assure that useful resources are kept on-line and 
missions are not aborted prematurely. Redundancy does not 
preclude identical damage to parallel systems, especially when 
they are located in close proximity. Cross-strapping implies 
complex. "intelligent" interconnections; however, if it is not im- 
plemented, a single component failure brings down an entire 
control smng. Voting can be done in all operating control com- 
puters, but arbiaation is required when these computers disagree. 
For the ideal parallel system, the probability PC that some compo- 
nent will fail is, 

so the likelihood of component failure is increased by redun- 
dancy. It is necessary to establish rules for dispatching the con- 
trolled system: if one control smng is not operational but the 
others are, should the process be initiated? For a manufacturing 
system, the answer might be "yes," while for a transport aircraft, 
it might be "no." A non-trivial aspect of redundant control is the 
need for more elecmcal connectors, the components most likely 
to cause trouble! 

One insidious pmblem associated with parallel redundancy is 
the lack of conm!lability of internal state components [22]. 
Consider the dual-redundant controlled sysrem of Fig. 4, where 
the individual control outputs are averaged by MI = M2, and F1 
= F2. G 1  = G2. and N1 = N2. The dynamic equarions can be 
expressed as 

The controllability mauix C of this system is 

Complete controllability requires that @ be of maximal rank; 
however, that is not possible because the bottom two rows are 
repeated. In other words, the compensator state elements are not 
controllable. If the corresponding modes are stable. then small 
variations between the two controllers tend to decay; however, if 
the modes are unstable or neutrally stable (as in the case of inte- 
gral compensation). uncontrollable drift can occur, leading to di- 
vergent control outputs, nuisance mps, and possible isolation of 
othenvise operable channels. 

Figure 4. Model of a dual-redundant controller. 



If there are sufficient cues to warn a human operator of sys- 
tem failure and plausible failure effects are slow enough to allow 
manual intervention, many of the benefits of parallel redundancy 
can be obtained by operating with a single control string, keeping 
an idle backup control smng at the ready. The backup system 
can be similar or dissimilar to the primary system: however, if i t  
is less capable, ability to perform the task will be degraded. 

Parallel redundancy can protect against control-system com- 
ponent failures, but it docs not address failures of plant compo- 
nents. Analytical redundancy provides a capability to improve 
tolerance to failures of both types. It docs this with fewer addi- 
tional components, flexible cross-smpping, and increased com- 
putation; as a consequence, there is greater reliance on the conml 
computer, producing even greater need for computer reliability. 

Analytical Redundancy 

The principal functions of analytical redundancy are failure 
detection (through built-in-test alarms or off-nominal operation), 
failure identification (recognition of which components are 
failed), and control-system reconfiguration (adaptation to sensed 
or estimated failures). Detection and identification may be com- 
bined in built-in test functions. Although in-line monitors pro- 
vide direct and rapid response to specific failures, it is impossible 
to provide full coverage of a l l  failures by specialized insmenta- 
tion (which itself is subject to failure). A practical failure detec- 
tion, identification and reconfiguration (FDIR) solution can be 
found in the control computer's ability to compare expected re- 
sponse to actual response, inferring component failures from the 
differences and changing either the structure or thc parameters of 
the control system as a consequence. 

Failure detecdon is exemplified by the generalized likelihood 
ratio test (Fig. 5) (231, which uses a Kalman-filter-like recursive 
equation to sense discrepancies in system response. The test 
compares the probability of the estimator's actual measurement 
residual [z - h(.)] with its expected value, detecting a jump that 
can be related to failure. It is very sensitive to off-nominal per- 
formance and is easy to implement; however, the test does not 
produce a tight indication of the failed element, and modeling er- 
rors can hamper detection [24]. 

Figure 5. Failure detection: gen likelihood ratio test 

Failure idennficuion may require a more specific test. such as 
multiple-model hypothesis testing (Fig. 6) (25,261. Each failure 
hypothesis (including that of no failure) is modeled in a Kalman 
filter, and the most likely hypothesis ( 0" probability esti- 
mates 141) indicates the fa i lm state. This is a computationally 
intensive technique, as not only the fai l4 device must be hypoth- 

esized but the type, magnirude, and (if taken to the exaeme) even 
the time of the failure must be modeled as well. 
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Figure 6. Failure identification: multiple-model h,pthesis test. 

Consider a mmcd form of the generic conml snucmre: 

Ss and Sc are scale-factor matrices on the measurements and 
control, and bs and bc are bias vectors. Within this Mework ,  
we can identify the elements of the control system that need to be 
modified following various failures, as in Table 1. If the plant is 

altered, it may be necessary to change the internal model (TJ, Q), 
as well as the estimation and control gains (K, C:I, and so on for 
the r e m a i n i ~  failure types. Precise failure identificarjon is an 
important antecedent of control reconfiguration. Both "hard" 
(fast) and "soft" (slow) failures must be expected, and logic must 
accommodate command inputs (set-point mnsients), disrur- 
bances, and measurement noise [27]. 

Table 1 
Failure Types and Related Control-Law Parmeters 

Plant Alteration '-I!, 8, K, C 
Actuator Failure u, 8, C 
Sensor Failure 2.h. K 
Bias Shift bs or bc 
Scale Factor Shift Ss or Sc 
Saturation Lit Change K or C 
Drift bs or bc 

ODen Circuit u. 8. C. andfor z. kt. K . . .  . . ,  
~Hrdoverl~mk Open Circuit, plus bs anam bc 
Noise K 

Reconfigurcuion attempts to retain nominal stability and per- 
formance characteristics. At a ~ n i m u m ,  this q u i r e s  that on- 
design conmuabiiify and observability (e.g.. [4]) be pnxrved. 
Then is a tradeoff between speed of nconfiguration, computer 
storage requirements, and flexibility of reaction. Conrpoller 

tcrs for all conceivable failed states can be 
generated off-line and stored for eventual use; however, &is ap- 



proach could require an enormous memory. Conversely, on-line 
design require:; minimal storage and (in principle) can adjust to 
unanticipated failures, but design algorithms must be executed 
and their rcsulrs accepted soon enough to provide sufficient fail- 
ure tolerance. With failed sensors, reconstruction of missing 
measmemenu may increase state-estimate errors; with failed ef- 
fecters, the rcnnaining actuators may have to operate with larger 
displacements and rates [283. If the plant is open-loop-unstable, 
higher control activity combined with existing control-saturation 
limits m y  nduce the state space within which closed-loop stabil- 
ity can bc assured [29,30]. 

Artificial Intelligence 

Control thc~ry  and artificial intelligence both smve to harness 
mathernarics and logic for practical problem solving, but control 
eheory finds ia origins in dynamics and electronics, while anifi- 
cial intelligence springs from biology, psychology, and computer 
science. Failure-tolerant control systems can benefit from 
blending these perspectives. Two approaches have been fol- 
lowed in the field of anificial intelligence. Arrificial neural ner- 
works are motivated by input-output and learning properties of 
living neuml networks, although in application the network be- 
comes an abscracdon that may bear Iitrle resemblance to its bio- 
logical nmesake. &en systems mimic the intelligent functions 
of an expen or group of expens. Initially, arrificial neural net- 
works appeared impractical because computers of the day were 
roo slow and massive, and methods for training neural networks 
(e.g., perceprons and adalines) were thought to be unworkable 
131,321. In kie intervening years. the expen system approach 
proved to be quite achievable; hence. it received major emphasis 
in both rheore'ucal development and applications. New insights 
about leaning and improved electronics have restored interest in 
neural nerworlts. 

Expen sys,rems are computer programs that use heuristic rela- 
tionships and facts as human experts do. The tasks and require- 
ments of such systems (Table 2 [33]) are imponant for reconfig- 
m b l e  conml systems. but there is a need to go beyond the usual 
limitations of itatic expert systems. 1nterFetatibn. diagnosis, 
monito~ng,  prediction, planning. and design must be cyclical, 
dynamic processes that can reconfigure the control system in 
"real rime" (i.e., with negligible delay). 

Table 2 
Functions of an Expert System 

n Correct, consistent, complete analysis of dara 
Diamosis Fault finding 
M o n i d ~  Rccorrninon of alarm conditions 
~ n d i c e i o n  ~ ~ n i n g  about time, forecasting the f u m  
Plannine! Defmin~ actions to achieve eoals .+ 

Design Creating objects that ~atisf~kquirements 

The expels system offers a useful formalism for failure-toler- 
ant conmi kcause ir can consider diverse data sources and sub- 
problem &saactions. The expm system can combine qualitative 

ing, heuristics and staastics [34]. Failure 
i n ~ c a t o s  may be condnuous variables generated by measure- 
mnPs or esti:maton. or they may be discrete variables from in- 
line mnirors or disnete-event models. Indicators are the outputs 
ofpro&rioxrs, mutineewith unique input-output characreristics 

that produce goal conhtions from initial conditions. Hence, the 
expert system can be implemented as a producrion qsrern or a 
rule-based system consisdng of a dara base, a rule base, and a 
rule interpreter (or inference engine) [35]. A production system 
generates actions predicated on the data base, which contains 
measurements as well as stored dam or operator inputs. 

A rule-based failure-tolerant control system contains FDIR 
logic in expen-system format (Fig. 7). The expert system is an 
adjunct to the nominal control structure, which remains the most 
efficient means of effecting precise control. From the control 
perspective, the expen system performs its decision-making tasks 
in a concenmc o u e r  loop; from the expen-system perspective, 
control activity is a side Qecr that suppons decision making. 

Figure 7. Expen-system approach to analyrical redundancy. 

An expen system performs deduction using knowledge and 
beliefs expressed as parameters and rules (Fig. 8). Paramerers 
have values that either are external to the expen system or are set 
by rules. An "IF-THEN" rule evaluates a premise by testing val- 
ues of o n e  or more parameters related by logical "ANDs" or 
"ORs," as appropriate, and it specifies an acrion that set values of 
one or more parameters. The rule base conrains all the rules of 
the expen system, and the inference engine performs its function 
by searching the rule base. Given a set of premises (evidence of 
the c m n t  state), the logical outcome of these premises is found 
by a data-driven search (forward chaining) through the rules. 
Given a desired or unknown parameter value, the premises 
needed to suppon the fmed or free value are identified by a goal- 
directed search (backward chaining) through the rules. Querying 
(or firing) a rule when searching in either direction may invoke 
pracedures that produce parameter values as side effects. 

COHTROL CYCLE kg; 1 

Figure 8. Graphical representation of expert system knowledge. 
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Both search duectlons are used m a rule-based connol system 
[36]. Backward chanmg dnves the enure process by demandng 
that a parameter such as CONTROL CYCLE COMPLETED have 
a value of rrue. The inference englne works back through the 
rules to ~denafy other parameters that allow thls and, where nec- 
essary, mggers side effects l~ke  esnmauon and control to set 
these parameters to the needed values. Backward chamng also IS 

invoked to learn the value of ABNORMAL BEHAVIOR DE- 
TECTED, be it true or false. Conversely, forward chruning in&- 
cates what acnons can be taken as a consequence of the current 

NSOR MEASUREMENTS REASONABLE 1s true, 
DETECTED is false, then frulure idenuficaaon and 
on side effects can be skipped on the current cycle. 

Rules and parameters can be represented as objecrs or frames 
that have identities and attributes. For example, a rule can be ex- 
pressed as the ordered list (NAME, STATUS, PREMISE, AC- 
TION, ACTION PARAMETERS, PREMISE PARAMETERS, 
TRAlVSLATION), while a parameter may take the form (NAME, 
USING RULES, UPDATING RULES, ALLOWABLE VAL- 
UES, TRANSLATION). Most of these atmbutes are self-ex- 
planatory. STATUS indicates the state of the rule, such as "not 
been tested," "being tested," "tested, and premise is rrue," 
"tested, and premise is false," or "tested, and premise is un- 
known." ALLOWABLE VALUES provides a mechanism for 
detecting false logic. TRANSLATION provides a narural-lan- 
p a g e  explanation for display to the operator. Specific rules and 
parameters are represented by lists in which names and atmbutes 
are replaced by their values. The atmbute lists contain not only 
values and logic but additional infonnation for the inference 
engine. This information can be used to compile paramerer-rule- 
ussociarion lisu that speed execution 1371. 

Frames provide useful parameter structures for related pro- 
ductions, such as analyzing the origin of one or more failures in a 
complex, connected system (381. The dependency graph of Fig. 
9 showing relationships between actuators and their power sup- 
plies can be represented by the random-order list ((OBJECT 
Name) (ATTRIBUTE] Valuel) (ATTRIBUTE2 Valuet) ( ... )), a 
more flexible fonn than the previous structure. In this applica- 
tion, the (AjFTRIBUTE Value) lists are (A-KIND-OF Device), 
(ANTERIOR <-OR> Device<s>), (POSTERIOR<-OR> De- 
vice<~>). (CRITICAWU Number), and (UNITS Number). 
Frames possess an inheritance property; thus the object 
((OBJECT Pivoting Actuator) (A-KIND-OF Actuaror) 
(ANTERIOR Hydro-Resentoir) (POSTERIOR-OR (Swashplate 
Pitching-Link))) lays claim to the propemes of ((OBJECT A c t u -  
tor) (A-KIND-OF Hydraulic Device) (UNITS ( I  2))). A two- 
step process estimates the failure state. In local failure analysis, 
forward chaining assesses the impact of known malfunctioning 
units, and backward chaining finds possible causes of the 
anomalies. Ln global failure analysis, local failure models are 
combined, an inclusion property prunes redundant models, and a 
heuristic evaluatio on criticality, nliabiliry, extensiveness, 
implications, level tracking, and severity produces a list of 
m s t  Wcely failure 

ss lists, so it is not surprising that LISP 
(LISt Processing) is the computer language of choice for prelimi- 
nary development However, LISP is not a fast, efficient lan- 
guage and is ill-suited to real-time applications. Moreover, a 
mle-based an-1 system uses numerical algorithms that arc most 
effectively coded in languages like Pascal. C. or FORTRAN. 
Consequently, knowledge-base nanslan'on from LISP to a Droce- 
dural language is a usefil (if not necessary) adjunct of ru1e:based 
control system design. This not only speeds program execution. 
lt integrates conml and decision-making processes, revealing 
new possibilities for incorporaang diagnostic procedures in fail- 
ure det&m and aentification 1391. 

Rule-based control systems must make decisions under 
uncertainty, and they can do so either by invok.ing c e ~ r a i n r y -  
equivalent logic, which is analogous IO a well-known concept of 
stochastic optimal control, or by uncerrainty management in the 

g process. In the LQG regulator, uricerPaino'es due 

SYSTEM 1 SWITCH 

Figure 9. Dependency graph of a hydraulic cor~nol systcm. 

to disturbances and measurement error arc processed in the esti- 
mator, and the feedback control law operates on the stae estimate 
as if it were the actual state [4]. The optimal control gains for the 
stochastic and deterministic cases are identical. Because che rule- 
based control system described above makes its bzst esdmtes of 
the failure state in the control logic, the expen system controlling 
FDIR can treat thdse results deterministically, realizing linle or no 
improvement from further uncenainty processing,. If inner-loop 
estimation is decidedly sub-optimal, uncertainty management can 
help, using probability thwry, Dempster-Shafcr theory, possibil- 
ity theory, certainty factors, or the theory of endorsements [401. 
Bayesian belief networks [41], which propagate event pmbabili- 
ties up and down a causal nee, have panicular appeal for failure- 
tolerant control and an being applied in a related program to as- 
sist aircraft crews in avoiding hazards [42j. 

Teaching the expen system the rules and pararneters rhar gen- 
d z c  the decisionmaking p m s s  From specific imowledge (the 
process of inducrion) is another concern. Here, we have fol- 
lowed two approaches at Princeton. The fmt is called rule re- 
cruirntenr 1431, and it involves the manipulation of "dommt 
rules" (or rule templates). Each template possesses a fixed 
premise-action structure and refers to parameters through 
"pointers." Rules m constructed and incorpora~ted in the rule 
base on 
lists. ed 
syste al- 
ues then can be defined as "fuzzy functions" 14-41 conlained in 
rule premises. The second approach I451 has two pans: malysis 
of variance identifies the factors that make sratistically sigmficanr 
conmbutions to the dkision mcmc, and the "ID3" algorifim [461 
extracts d e s  b m  the training set by inductive inference. The 
rules take the form of decision nees that predict the pedomance 
of alternative strategies. 

Expert systems arc incorporated in the FDIR prwess to ac- 
e functions leaving rcflexkve functions to 
aal laws [43]. "eclarative acrbn q u i r e s  

a deep understanding of cause and possible effect. Refregive ac- 
tion is autornatic. quickly relating sdmulus to response. Both are 
needed in intelligent failure-tolerant control. 



Anificial neural networks consist of nodes that simulate the 
neurons and uteighting factors that simulate the synapses of a 
living nervous system. They are good candidates for performing 
a variety of reflexive functions in failure-tolerant conwl systems 
because they sire potentially very fast (in parallel hardware im- 
plementation), they are intrinsically nonlinear, they can address 
problem of high dimension, and they can learn from experience. 
From the biological analogy, the neurons are modeled as switch- 
ing functions that take just two discrete values; however, 
"switching" is softened to "saturation" in common usage, not 
only to facilitare learning of the synaptic weights but to adnut the 
modeling of continuous functions. 

The neural networks receiving most current anention are 
m e m q l e s s  ex:pressions that approximate functions of the form 

where r and y are input and output vectors and f(*) is the (pos- 
sibly unknown) relationship between them. Neural networks can 
be c o n s i d e d  generalized splinefunctions that identify efficient 
input-output mappings from observations [47,48]. Rather than 
approximating; eq. 20 by a series, an N-layer neural network 
(Fig. 10) represents the function by recursive operations, 

where y = x(F0 and x = ~(0). W(k-1) is a matrix of weighting 
factors determined by the learning process, and s@)[*] is an acn- 
vation-funcnon vector whose elements are scalar, nonlinear 

functions oi(Tji) appearing at each network node: 

One of the inputs to each layer may be a unity threshold element 
that biases the activation-funcrion output. 

3 / hold 

Hguure PO. Backpropagation Feed-Fward Neural Network. 

nly used as the adkid neuron. It is a 

satmting furiction defined variously as a(q) = 1/(1 + e-rl) for 

output in (0.1) or o(q) = (1 -e-a)/(l + e - q )  = tanh q for output 
in (-1.1). Recent results indicate that any continuous mapping 
can be a p p r o x h t e d  arbinarily closely with sigmoidal networks 
conraining a shgle hidden layer (N = 2) [49,50]. It appears that 
certain symmetric funcuons. such as the radial basis funcrion 

2 
( a ( q )  = e-? ) or the derivative of the sigmoid have even better 

convergence properties. Backpropagation learning algorithms for 
the elements of W(k) typically involve a gradient search (e.g., 
[ 5  I]), although learning speed and accuracy are improved using 
the extended Kalman fdter [52]. The Cerebellar Model Anicula- 
don Controller (CMAC) is an alternative neural network formula- 
tion with somewhat different properties but similar promise for 
application in control systems [53]. 

Equation 20 can represent many functions of importance in 
dynamics and control. For example, defining I as [x(t), u(t), 
~ ( r ) ,  p], q. 1 takes that form; together with the implied integra- 
tion, neural networks can model plant dynamics. A discrete-time 
model of truck dynamics is demonstrated in [%I, and a means of 
using neural networks in system identification is described in 
[55]. With x = [ x ( t ) ,  u(r), w(t), n(r), p]. the measurement vec- 
tor (q. 2) also could be represented. There is little advantage to 
expressing a linear conuoi law like eq. 7 by a neural network; 
however, if the control gain matrix C is scheduled by operating 
point or time, that relationship could be modeled by a neural net- 
work. If a nonlinear control function such as U = u(x,xdeSired,f) 
is generated by optimization, nonlinear inversion, or model 
matching, it can be represented by a neural network [e.g., 
54.56.571. Consequently, neural networks can be incorporated 
in most of the control and FDIR techniques mentioned above. 

Neural networks can be applied to failure detection and iden- 
tification by mapping data patterns (or feanue vecwrs) associated 
with failures onto detector/identification vectors (e.g.. [58,59]). 
The network is trained to detect failure with the scalar output " 1" 
correswndine to all failure Datterns and "0" corres~ondine to no 
failure'. ~ u r i i ~  operation, a' failure is indicated wien theYoutput 
exceeds some threshold near "1." To identify specific failures, 
the output is a vector, with a training value of "I" in the i h  ele- 
ment corresponding to the ih failure mode. For M failure mcdes, 
either M neural networks with scalar outputs are employed or a 
single neural network with M-vector output is used, there are evi- 
dent tradeoffs related to efficiency, correlation, and so on. The 
data patterns associated with each failure may require fearure ex- 
traction, pre-processing that transforms the input time series into 
a feature vector. In [59], this was done by computing 24 Fourier 
coefficients of the input signal in a moving temporal window. 
When assessing FDI logic, feature extraction must be considered 
pan of the neural-network computation. 

Of course, not all of the suggested neural nets can learn on- 
line, as a training set must contain desired outputs as well as 
available inputs. In the cited examples, [54] and [56,58,59] use 
off-line learning, while [55] and [57] allow on-line learning. 
Reference 60 trains a neural network using an expen system that 
pnviously learned the desired control strategy. Once an initially 
trained system is on-line, the "off-line" training process could be 
executed in parallel with the on-line operation, allowing updates 
to be made. If the control process that generates on-line mining 
data performs saasfactory control, the need for the neural net- 
work must be questioned. The goal should be to provide satis- 
factory failure tolerance with minimum hardware and software. 

Neural networks intended to detect failures would learn little 
h m  monitoring normally operating plants. In any case, the neu- 
ral-network leaming rate is slow, probably too slow to expect 
neural networks of appreciable dimension to adapt to system fail- 
ures in real time. Hence, the immediate application of neural 
networks in failure-tolerant control systems is to approximating 
nonlinear functions used by the FDIR methods introduced earlier. 
On-line learning can fine-we this logic over a period of time. 



Conclusions 

Intelligent failure-tolerant control can improve the operating 
characteristics of systems. These improvements depend upon a 
g o d  knowledge of the plant, reliable control elements, and suf- 
ficient observability and controllability following failures. Inher- 
ent robusmess, the ability to accommodate failures without adag 
tadon, is a highly desirable amibute, but it may not be sufficient 
to conrain all system failuns. Because split-sccond decision and 
reconfiguration may be required, a high degree of pre-training 
should be assumed; even intelligent syseems cannot learn about 
new failure modes and respond to them properly at the same time 
(except by chance). Failure-tolerant systems must be able to dis- 
tinguish bemeen failures, disturbances. and modeling errorj, re- 
sponding to each in the proper way. Robability theory provides 
an underlying theme that unifies failure-tolerant design, from the 
probability of instability of robust systems, through the probabil- 
ity of failure of redundant systems, to the probability of correct 
FDIR response in analyacal redundancy. Artificial intelligence is 
a useful adjunct to parallel and analytical redundancy, as expen 
systems and adficial neural networks offer new alternatives for 
both declarative and reflexive response to system failures. 
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