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Abstract: In this study, the optimal features of electrocardiogram (ECG) signals were investigated
for the implementation of a personal authentication system using a reinforcement learning (RL)
algorithm. ECG signals were recorded from 11 subjects for 6 days. Consecutive 5-day datasets
(from the 1st to the 5th day) were trained, and the 6th dataset was tested. To search for the optimal
features of ECG for the authentication problem, RL was utilized as an optimizer, and its internal
model was designed based on deep learning structures. In addition, the deep learning architecture in
RL was automatically constructed based on an optimization approach called Bayesian optimization
hyperband. The experimental results demonstrate that the feature selection process is essential to
improve the authentication performance with fewer features to implement an efficient system in
terms of computation power and energy consumption for a wearable device intended to be used as
an authentication system. Support vector machines in conjunction with the optimized RL algorithm
yielded accuracy outcomes using fewer features that were approximately 5%, 3.6%, and 2.6% higher
than those associated with information gain (IG), ReliefF, and pure reinforcement learning structures,
respectively. Additionally, the optimized RL yielded mostly lower equal error rate (EER) values than
the other feature selection algorithms, with fewer selected features.

Keywords: ECG; authentication; biometrics; reinforcement learning; feature selection; hyperparameter
optimization

1. Introduction

Security issues have been considered as a critical factor for the Internet of Things (IoT)
owing to privacy challenge concerns [1–4]. For instance, a smart health card generated
based on an IoT platform may enhance patient security and privacy information. However,
when it is hacked, security issues are raised, such as theft risk, loss, insider misuse, and
unintended behavior. Knowledge-based authentication methods rely on users’ memories,
whereas token-based authentication methods utilize an external device [2,5].

For example, knowledge-based authentication methods use a personal identification
number (PIN) and an identity (ID)/password, and token-based ones provide one-time
passwords (OTPs) and short message services (SMSs) to the users. However, both ap-
proaches could be vulnerable to a brute-force dictionary attack, that is they can be guessed,
duplicated, lost, or stolen. In particular, knowledge-based authentication methods could be
attacked by hackers who may guess the users’ family name, birthday, or anniversary, and
token-based methods could be critically risky when the external device is lost or stolen [6,7].

To solve these issues, researchers are investigating different personal authentication
approaches using biometric data. With a biometric authentication system, users do not
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have to remember complex passwords or hold tokens, but may access the system using
unique features of their own bodies that would be difficult to be cloned, lost, or stolen [6–13].
However, some types of biometrics, such as fingerprints, irises, and faces, are still vulnerable
to attack. Fingerprints could be imitated and duplicated with silicone [14,15]; the iris
features could be reproduced with contact lenses and printing [16]; the face could be easily
fabricated with a photograph [17]. In addition, these biometric features have a critical flaw
in that they cannot be remedied if they are damaged [6,13].

The electrocardiogram (ECG) is used as one of the biometrics. It is an electrical
signal generated by the sinoatrial node in the heart to stimulate the cardiac muscle to
contract and relax. It consists of various peaks referred to as P, Q, R, S, and T waves (see
Figure 1). Compared with other biometrics, the ECG signals cannot be easily reproduced
and have higher reliability, entropy, and randomness [18–22]. Additionally, ECG signals are
affected by various other factors, including age, gender, physical condition, structure, and
obesity [23–26]. To extract ECG signal features for the implementation of the authentication
system, data-driven convolutional neural network (CNN) models have either been de-
signed [27–29] or feature-engineering approaches have been applied based on predefined
fixed models [30–33].

Figure 1. ECG feature extraction. Features were extracted from the amplitudes, intervals, angles, and
slopes of the P, Q, R, S, and T peaks and the combinations of their peak points.

The extracted features from a single-lead ECG signal have been proven to provide
reliable authentication results [34–36]. It has also been reported that the long-term stability
of the features is guaranteed for several days or even years [34,37,38]. This study also
explored the long-term stability of the ECG features for a personal authentication system
using ECG signals that were recorded for six days. Additionally, this study identified the
ideal ECG features that were considered the most significant for the classification of a user
among others. It was found that the biometric authentication task that uses a high number
of significant features, also known as “costly features”, performed better than the one that
used all the features extracted from the biometric signals without taking into consideration
their significance in relation to the task [39–42].

However, authentication with these ECGs has some limitations. Violent activities such
as exercise may change the ECG features [43]; drugs such as caffeine may change the ECG
features [19]; emotional changes may cause difficulties in ECG-based authentication [44];
the heart rate may change every day [45]. In this paper, experimental data were created to
design robust models for problems caused by ECG that vary daily among these challenges.
Unlike conventional data, the data used in this paper comprise different cardiac data over a
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continuous six-day period of one subject. The model optimized through the data will have
the strength of having relatively robust results for daily varying ECG signals.

Among the algorithms used to search the costly features, we mainly applied the rein-
forcement learning (RL) algorithm [46] to ECG-based personal authentication. Recently, RL
has achieved considerable performance improvements with the help of deep learning models,
yielding state-of-the-art results in various areas, such as healthcare, autonomous driving, and
resource management [47–52]. In addition, many studies have been conducted for feature
selection using RL owing to its promising performance for the optimization [53–55]. The
deep neural networks in RL, commonly referred to as deep Q-learning [56], were manually
constructed in previous studies [48,51,57]. However, the performance of deep neural networks
will vary depending on their architectures; additionally, they were developed mostly based
on the developer’s experience and intuitions and may have suboptimal architectures. Thus,
the networks in RL are automatically optimized using the Bayesian optimization hyperband
(BOHB) method [58]. In this study, BOHB optimized the layers of the neural networks, the
number of nodes in each layer, the learning rate, and the optimizer in the RL algorithm. As a
benchmark test, the costly conventional feature selection algorithms, namely ReliefF [59,60]
and information gain (IG) [61], were compared. The former is a Manhattan-distance-based
feature selection algorithm that selects the significant features by calculating the sum of the
distances among the instances of the features. The latter is an entropy-based feature selection
algorithm computing the entropy of each feature and determines the significant features based
on the calculated entropy.

This study is structured as follows. Section 2 elaborates on the RL deep Q-network
(DQN) and BOHB algorithms for optimal feature selection. Section 3 describes the ex-
perimental methods, preprocessing, and feature extraction. The conducted experiments
to demonstrate the effectiveness of the optimization of DQN as a model-independent
classifier via BOHB are described in Section 3.3. Some experiments using different mod-
els are described in Section 3.4 for comparison with the optimized RL model and other
costly feature selection algorithms. In Section 4, the authentication results (using RL and
BOHB) are provided based on the benchmark tests with the conventional methods for
both experiments.

2. Materials and Methods
2.1. Costly Features in IoT Environment

In an IoT environment, limited resources such as memory, computation, and power
have always been issues [62–67]. In particular, the classification problem for a personal
authentication system pertaining to wearable devices is also limited by these issues; this
is referred to as classification with costly features (CwCF). Previously, the RL algorithm
was designed to solve the CwCF issue to minimize the expected classification errors with
incurred costs [46].

2.2. Deep Q-Network

RL is a machine learning approach in which an agent finds the optimal action and
policy based on rewards from the environment. RL consists of Markov decision processes
(MDPs) [68]. The elements of an MDP have a state s, action a, reward r, and depreciation
rate of γ. Specifically, s denotes the current state, and a is the action taken in s. In turn, r is
the reward obtained from the environment when the agent takes an action, and γ is the
reliability in future rewards whose values range between 0 and 1.

Q-learning tries to identify the optimal policy of the MDP by updating the Q-function [69].
At the beginning of each episode, an agent moves from the current state s to the direction
defined by the current action, a. The agent receives a reward r from the environment, yields
a Q-value for the next action a′, and obtains the maximum Q-value from the next state s′.
Subsequently, the Q-value is updated by multiplying the maximum Q-value and learning
rate α according to Equation (1).
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Qupdate(st, at)⇐ (1− α)Q(st, at) + α(rt+1 + γmaxa′Q(s′, a′)) (1)

The rewards are obtained at t + 1 based on the current state and environment.
The DQN applies deep neural networks to Q-learning to approximate the Q-value

in more complicated environments than that of conventional Q-learning [56,70]. The loss
function of the model calculates the mean-squared error (MSE) L(θ) based on Equation (2):

L(θ) = (rt+1 + γmaxa′Q(s′, a′; θ−)−Q(st, at; θ))2 (2)

where θ− are the parameters of the target network, which are fixed. The target network
is updated in every predefined number of epochs. In addition, the DQN utilizes the
experience replay method, wherein samples, including the set (st, at, rt+1, st+1, at+1), are
stored in memory and a specific number of samples are randomly chosen to train the
networks. This could solve the issue of dependence on consecutive samples or avoid
unnecessary feedback loops.

2.3. Costly Feature Selection Using RL

The costly feature selection is described as follows. The variable (x, y) ∈ D denotes
one of the samples from the data distribution D, where the vector x contains n input
features, fi ∈ F = f1, . . . , fn, and y is its class label. In one episode, the environment
randomly selects one data sample from D, and the agent sequentially selects the features
and classes with the highest Q-value [46]. The environment is represented by a partially
observable MDP (POMDP) [71], which, unlike an MDP, provides the agent with limited
information about the environment. State s = (x, y, F̄) ∈ S is denoted by a sample (x, y),
the state space S, and the agent-selected features F̄. In action a ∈ A(A = Ac

⋃
A f ), A f is an

action taken to conduct the classification, and A f is an action taken to select a feature in a
feature set. The episode ends when the agent selects a classification action, Ac, and receives
a reward of 0 if it is correctly classified and -1 if it is incorrect. When the agent selects
an action A f , to select a feature, it receives a reward of −λc( fi), where c( fi) is the cost
for fi. The reward function r : S×A→ R is in accordance with S and A and is represented
mathematically as follows.

r((x, y, F̄), a) =


−λc( fi) if a ∈ A f , a = fi

0 if a ∈ Ac and a = y
−1 if a ∈ Ac and a 6= y

(3)

The value of λ provides a trade-off between the precision and average cost for this RL
model. As λ increases, the cost is reduced and the focused episode becomes shorter. The
transition function is defined as t : S×A→ S

⋃
T.

t((x, y, F̄), a) =

{
T if a ∈ Ac

(x, y, F̄
⋃

a) if a ∈ A f
(4)

where T is the terminal state. When the agent selects a feature as an action, it adds the
currently selected feature to F̄. If the agent selects an action to derive the classification
result, it ends the episode.

In this paper, we designed a feature selection model using the DQN algorithm one
of the promising RL models. If only the feature is placed in the action of the DQN model,
the model acts as an optimizer [72], but by giving both feature and subject number, the
model could possibly perform both feature selector and classifier functions as a pure RL
model [46]. The procedure of this algorithm is shown in Algorithm 1.
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Algorithm 1 Procedure of DQN Optimizer and Classifier.

1 : Initialize replay memory
2 : Initialize action value function Q with random weights
3 : for ε = 1, M do
4 : for t = 1, T do
5 : With probability epsilon, select a random action
6 : if random action is feature:
7 : Execute action in emulator, and observe reward
8 : Set state and preprocess policy
9 : Store transition in replay memory

10 : Perform a gradient descent step
11 : if random action is subject number:
12 : Execute action in the emulator, and observe reward
13 : Set state and preprocess policy
14 : Store transition in replay memory
15 : end for
16 : end for

2.4. Hyperparameter Optimization

The performance of machine learning algorithms relies on internal hyperparametric
settings. A machine learning algorithm could be represented as a function g : X → R
and its hyperparameters x ∈ X . The hyperparameter optimization (HPO) task aims to
identify the optimal hyperparameters x∗ ∈ argminx∈X g(x). However, most machine
learning algorithms cannot observe g(x) owing to its randomness and uncertainty and,
thus, assume that it is observable only based on noisy observations y(x) = g(x) + ε, with
ε ∼ N(0, σ2

noise) [58,73,74].

2.5. Bayesian Optimization

In each iteration i, Bayesian optimization (BO) builds a probability function p(g|D)
to model the objective function g using the Gaussian process, which is based on the
already known (observation) dataset D = {(x0, y0), ..., (xi−1, yi−1}) [58,73,75]. BO applies
the acquisition function a : X → R based on the current model p(g|D), and the model
considers a tradeoff between the processes of exploration and exploitation; iterations are
conducted based on the following three steps:

(1) Select an observation at which the acquisition function is maximum
xselect = argmaxx∈X a(x);

(2) Evaluate the objective function yselect = g(xselect) + ε;
(3) Augment the dataset with the selected observation, D = D∪ (xselect, yselect).
During the process, the model tries to identify the best observation

xbest = argminx∈Dg(x).

2.6. Hyperband

Hyperband is a resource allocation problem-solving method executed in a purely
exploration adaptive manner and constitutes a configuration evaluation approach based on
the formulation of the hyperparameter optimization [58,76]. This method uses a principled
early stopping strategy to allocate resources; the strategy aims to quickly identify superior
hyperparameters by examining larger-scale hyperparameter configurations instead of using
a strategy based on the uniform training of all configurations.

2.7. BOHB Hyperparameter Optimization

BOHB [58] is an HPO method that combines BO and the hyperband (HB). The BO
process in BOHB uses a tree Parzen estimator (TPE) [77], which models a density function
using a kernel density estimator. Algorithm 2 displays the procedure of the BOHB algo-
rithm. Both feature selection using the BO algorithm and hyperparameter optimization
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using the HB algorithm are conducted simultaneously. Although the algorithm follows the
budget selection approach of the HB, it guides the search by replacing a random sampling
using a BO component. BOHB often searches for a good solution at a much faster rate
than BO and converges to the best solution at a much faster rate than hyperband. In this
study, the hyperparametric optimization method was applied to determine the number
of hidden layers, learning rate, and optimizer for the DQN. The entire procedure of this
algorithm is shown in Figure 2. State s consists of tuples (x̄, m), where x̄ is the masked
vector of the original η, and is defined by the mask vector m; the latter is composed of (0, 1)
and is responsible for the index of the selected feature.

Figure 2. Costly feature selection and classification model based on the reinforcement learning
algorithm. Qclass denotes the optional action with which the feature selection and classification are
performed. Without Qclass, only the feature selection task is conducted.

Algorithm 2 Procedure of BOHB algorithm.

1 : Input the number of maximum budget R, setting η
2 : Initialization the number of setting Smax = ceil(logη R)
3 : for s = Smax to 0 do
4 : set current Configuration A
5 : for i = 0 to s do
6 : Select hyperparameter Configuration Ai
7 : Get loss L using Configuration Ai
8 : A = min(L(A), L(Ai))
9 : for t = 1 to T do

10 : Calculate a probability function p(g|D) using Gaussian process
11 : Select observation where xselect = argmaxx ∈x a(x)
12 : Evaluate the objective function yselect = g(xselect) + ε
13 : Add dataset D = D ∪ ( xselect, yselect )
14 : Update best observation xbest = argminx ∈ Dg(x)
15 : end for
16 : end for
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x̄i =

{
xi if fi ∈ F̄
0 otherwise

(5)

m̄i =

{
1 if fi ∈ F̄
0 otherwise

(6)

The agent selects Qclass or Q f eature corresponding to the current state. The previously
selected features cannot be chosen again owing to the mask vector m.

3. Experiments
3.1. ECG Measurement Experiments

An experiment was conducted to generate a dataset to train and evaluate the proposed
model. To record the ECG signals from the subjects, a commercially available real-time
recording system was used (MP36, Biopac Systems, Goleta, CA, USA) at a sampling rate of
1000 Hz. Eleven subjects were invited and their ECG signals were recorded for 10 min for six
days at random times from 10:00 a.m. to 4:00 p.m. The subjects were seated in a comfortable
chair in an enclosed space and kept in a relaxed state. During the experiment, ECG signals
were recorded from the left wrist with reference to the right wrist and with a ground electrode
on the ankle, a configuration known as the driven-right leg [30,78]. A bandpass software filter
with a finite impulse response (FIR) filter between 1 Hz and 35 Hz was used to minimize the
ambient noise components [79–81]. Figure 3 illustrates the noise reduction using the bandpass
filter process. The subjects had an average weight of 73.20 kg (±9.2 kg), an average height
of 174.6 cm (±6.8 cm), an average BMI of 23.93 (±1.93), and a average age of 27.4 (±5.1).
A group of 11 male subjects participated in the experiments.

Figure 3. Noise−canceled electrocardiogram (ECG) signal using an FIR filter. Note that the noisy com-
ponents in the raw ECG signal (in blue color) are attenuated to derive the actual signal (in red color).

3.2. Feature Extraction

The features of the ECG signals were extracted using the information of the P, Q, R, S,
and T peaks. For the automatic peak extraction, the Pan and Tompkins [82] algorithm was
applied to the ECG signals. They were defined based on the amplitudes, intervals, slopes,
and angles of the peaks; in total, 31 features were derived in combinations with all peak
points [30–33]. Figure 1 displays a typical ECG pattern with the five peaks; the extracted
features are listed in Table 1. The features of the amplitude were extracted by the ratios
among the peaks.
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Table 1. Features extracted from an electrocardiogram (ECG) signal.

Features

Amplitude

R–P Amplitude R–S Amplitude R–T Amplitude
P–S Amplitude P–T Amplitude S–T Amplitude
R–Q Amplitude Q–T Amplitude Q–S Amplitude
P–Q Amplitude

Interval

R–P Interval R–Q Interval R–S Interval
R–T Interval P–Q Interval P–S Interval
P–T Interval Q–S Interval Q–T Interval
S–T Interval R–R Interval R–T Interval

Slope P–R Slope R–S Slope S–T Slope
Q–R Slope P–Q Slope Q–S Slope

Angle Q Angle R Angle S Angle

3.3. Evaluation of BOHB-Optimized DQN Authentication Algorithm

Experiments were conducted to investigate whether the BOHB optimization of the
DQN could improve the authentication performance. These experiments evaluated the
independent performance of the DQN model with BOHB used as an RL classifier. BOHB
was applied to optimize the DQN for the RL-based, costly feature selection algorithm.
In this experiment, the hyperparameters in the DQN (to be optimized) included the number
of layers, nodes in each layer, learning rate, optimizer, and stochastic gradient descent
(SGD) momentum, as summarized in Table 2. The minimum budget of BOHB was set to
one and the maximum budget to nine. Table 3 shows the number of beat data generated by
each subject for training and evaluating the proposed model. During the training process,
the synthetic minority oversampling technique (SMOTE) [83], which is an oversampling
method for the data augmentation, was applied to improve performance during the training
process [45]. It is the method of generating a new sample using the distance between
selected samples within the same group by applying the K-nearest neighbor (KNN) [84]
algorithm. The dataset recorded from the 1st to 5th days was trained, and the 6th day of
recordings were tested. Additionally, five-fold cross-validation was used to evaluate the
generalization of the trained DQN model.

Table 2. Search space of the DQN hyperparameters to be optimized using the BOHB algorithm.

Hyperparameter
Range Min Max Default

Number of layers 1 4 2

Numbers of nodes in each layer 16 64 32

Learning rate 0.001 0.1 0.01

Optimizer Adam, SGD, RMSprop

SGD momentum 0 0.99 0.9
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Table 3. The number of beat data for each subject from Day 1 to Day 6.

Subject No. Day 1 Day 2 Day 3 Day 4 Day 5 Day 6

1 3055 3037 3067 3071 3132 2931

2 2839 3313 3294 3231 3181 3075

3 2923 3150 2949 3606 2962 2805

4 3130 2925 3339 3075 2832 3099

5 3021 3423 3129 2982 3034 3399

6 3622 3399 3131 2931 3178 3147

7 3093 2955 3172 3062 3264 3414

8 3303 3321 3284 2751 2931 3255

9 2667 2771 3034 2806 2994 3063

10 3007 3377 2898 3131 2985 3327

11 3429 3693 3281 3522 3367 3491

Total 34,089 35,364 34,578 34,168 33,860 35,006

3.4. Evaluation of Costly Feature Selection Algorithms

This experiment was designed to evaluate the costly feature selection performance of
the RL model. In this experiment, the proposed RL-based, costly feature selection algorithm
was compared with the conventional feature selection methods, including ReliefF [59,60]
and IG [61]. Therefore, the RL algorithm model (DQN) was only utilized for the selection
of costly features; the selected features were then fed into the conventional classifiers
for evaluation. Furthermore, an effective classifier for the authentication problem was
also evaluated using support vector machines (SVMs) [85] and random forest (RF) [86].
The SVM and RF were chosen based on their promising performances in various machine
learning problems, such as featured-based classification [87,88], image classification [89,90],
and anomaly detection [91,92]. To evaluate the SVM and RF machine learning algorithms,
personal authentication for input on the 6th day was conducted based on the sequentially
cumulative trained model from 1 to 5 days of 11 subjects’ data. It was utilized as a
training and verification dataset from the 1st to 5th days of subject data, and the model’s
performance was tested with data from 6th day of ECG signals.

4. Results
4.1. Results of BOHB Optimized DQN Authentication Algorithm

Figure 4 shows the testing accuracy of the ECG-based authentication task using the
optimized and non-optimized DQN models. The feature selection and authentication
were performed simultaneously through the DQN models, and each training dataset was
incrementally increased with the following day’s dataset. The results are the averaged
authentication results across all subjects. Overall, the average accuracy of the non-optimized
RL method was 95.3%, while that of the optimized method was 97.4%. In particular, note
the significant improvement of the F1-score using the optimized DQN (95.2%), which was
10.9% higher than that of the non-optimized DQN (84.2%).
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Figure 4. Testing results of RL based on the costly feature selection algorithm calculated using the
accuracy (upper) and F1-score (lower) and plotted as a function of tested days.

4.2. Results of Costly Feature Selection Algorithms

Figures 5 and 6 depict the classification results including the performance indices,
accuracy, and F1-scores, using the SVM and RF, respectively, where the indices were the
averages of 10 simulation repetitions for the test dataset. In the figures, four different costly
feature selection algorithms are compared: DQN with BOHB optimization (optimized
RL), DQN without any optimization process (RL), and the ReliefF and IG feature selection
algorithms. For the optimized DQN classifier, the model with the highest validation
accuracy was chosen, and the feature selection was conducted. The x-axis of the subplots
in Figures 5 and 6 displays the average numbers of the selected features for the model’s
final decision, while the y-axis displays the accuracy and F1-score performance indices.
In Figure 5, the use of the SVM classifier of the optimized DQN algorithm outperformed
the other feature selection algorithms with accuracies of 96.5%, 97.2%, 98.1%, 98.3%, and
98.5%, and F1-scores of 75%, 75.9%, 74.8%, 84.6%, and 91.1%. The numbers of the selected
costly features were approximately equal to 3.9, 3.7, 2.9, 4.5, and 5.2.
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Figure 5. Support vector machine (SVM) results using the costly features. The accuracy and F1-score
values across all subjects are illustrated with their variances in shades (corresponding to the training
days). Each training dataset includes the electrocardiogram (ECG) signals recorded on the (a,b) 1st day,
(c,d) 1st–2nd days, (e,f) 1st–3rd days, (g,h) 1st–4th days, and (i,j) 1st–5th days.

Figure 6. Random forest (RF) results using costly features. The accuracy and F1-score values across all
subjects are illustrated with their variances in shades corresponding to the training days. Each training
dataset includes the ECG signals recorded on the (a,b) 1st days, (c,d) 1st–2nd days, (e,f) 1st–3rd days,
(g,h) 1st–4th days, and (i,j) 1st–5th days.

In Figure 6, the accuracy and F1-score are shown to be higher using the 1st–3rd day
training dataset based on the use of the RF as the classifier and the optimized RF as the
feature selection algorithm, despite the fact that the accuracy and F1-score of ReliefF (using
the 1st–5th days training dataset) were higher than those of the optimized DQN model and
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that they required more features, that is 4.3, 5.2, and 6.2 in the case of the optimized DQN
and 6.5, 8.2, and 7.8 in the case of ReliefF.

As shown in Figures 5 and 6 the “Optimized Reinforcement Learning” method pro-
posed in this paper reported higher accuracy and F1-score when using the same number
of features compared to other methods. These were the result of the model’s selection of
the most-optimized features from possible combinations of ECG features, demonstrating
that the model’s optimization through reinforcement learning was effective to improve the
authentication task.

The equal error rate (EER) was determined by the false acceptance rate (FAR and
false rejection rate (FRR) when they are equal [93]. The FAR and FRR are calculated using
Equation (7), where FP, TN, FN, and TP denote false positive, true negative, false negative,
and true positive outcomes, respectively.

FAR =
FP

FP + TN
, FRR =

FN
FN + TP

(7)

Figure 7 illustrates the EER results of all combinations among the costly feature
selection algorithms and classifiers. The x-axis of the subplot in Figure 7 displays the
average number of selected features for the model’s final decision, while the y-axis displays
the EER value. The best performance with the fewest number of features and lowest
EER could be obtained using the optimized DQN with SVM using the training dataset
recorded from the 1st to the 3rd day, that is using approximately three features and an EER
of 4.7%. Although the lowest EER was obtained with ReliefF and RF using all five-day
training datasets, more features (1.5-times) were used than those of the second-best method
(see Figure 7e).

Figure 7. Equal error rate (EER) results using the costly features with SVM or RF. The EER values
across all subjects are illustrated with their variances in shades (corresponding to the training
days). Each training dataset includes the ECG signals recorded on the (a) 1st day, (b) 1st–2nd days,
(c) 1st–3rd days, (d) 1st–4th days, and (e) 1st–5th days.

5. Discussion

In this study, a personal authentication task was conducted based on ECG signals
recorded for 6 days. The ReliefF and information gain algorithms are representative conven-
tional feature selection methods, which are simpler than the optimized and pure RL methods.
Although the accuracy incrementally improved as shown in Figures 5 and 6, they are not
reliable in terms of the F1-score and equal error rate performances. The optimized model
based on the method proposed in this study yielded high performance compared with the
other conventional feature selection approaches. This demonstrates that the ECG signal could
be feasible in implementing the biometric authentication system in our daily lives.

The optimized RL using BOHB produced the most-efficient and best performance in
selecting costly features compared with other conventional methods, as proven by the accuracy,
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F1-score, and EER outcomes of the authentication tasks. This also proved the effectiveness
of the model optimization process, commonly referred to as the automatic machine learning
(Auto ML) process [94], based on the feature selection tasks using the RL algorithms. The
results in Figures 5 and 6 show that the proposed costly feature selection method could yield
different performances depending on the classifier of the machine learning algorithm. The
proposed approach was clearly improved by the SVM model compared with the RF model.
This implies the optimal combination of the costly feature selection method and the classifier
for the ECG-based authentication task. The RL model performed best with the two machine
learning classifiers, thus implying that the costly feature selection method proposed in this
study could be optimal in yielding the improvement of the authentication performance. This
could be supported by the various optimization studies based on the RL algorithms, which
typically perform better than other approaches [8,48,95].

It is noted that the suggested feature selection method outperformed the others (see
Figures 5 and 6). In particular, from the perspective of the F1-score, the non-optimized
RL model yielded similar results to the other traditional feature selection methods, while
the optimized BOHB-based model yielded improved results. This trend may indicate that
the optimized DQN model could select significant features even with a small number of
datasets. In addition, the proposed model selected a relatively small number of features
compared with those selected by the other methods. During the learning process of the RL
algorithm, the received rewards decreased as the number of learning episodes increased;
this resulted in an automatic termination of the feature selection process at the appropriate
level of training, while the traditional models require stopping the selection of features
manually based on the experience of the model designer. This automatic stopping property
of the RL algorithm could provide an efficient approach to saving learning and resources.

Figure 8 displays the number of subjects who selected the features through the op-
timized RL by increasing the training dataset. Note that some specific features, such as
the “QS slope”, include more subjects than the others as the training data increase. The
model selected the QS slope, F1-score, and EER using the training dataset recorded from
the 1st to 5th days and produced the best results with the highest accuracy. Additionally,
the selection of the QR slope, RT amplitude, and PT amplitude gradually increased as more
training datasets were included.

Figure 8. Feature selection results based on optimized RL.

We recorded ECG data from the subjects for six days. Among them, the data from the
6th day were used as the test dataset and were evaluated based on various feature selection
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and classification algorithms. Among the various optimal feature selection algorithms, the
BOHB-optimized DQN algorithm produced the most-improved results compared with the
SVM model. When there were adequate data for the training, the accuracy converged to
values greater than 90%. The results produced by the optimal number of features could
suggest the implementation of the ECG-based personal authentication model with a tight-
sized structure in edge devices, such as smartwatches and mobile devices. To demonstrate
this implementation, the machine-learning-based algorithm (SVM, RF) algorithm proposed
in this paper was run on the Raspberry Pi4 board, confirming that it can be processed in
less than 10 seconds per about 1000 heartbeats. The reason this can be implemented is that
we optimized the costly features and classified them using relatively light-sized classifiers,
rather than optimizing complex neural networks. Thus, this study demonstrated that this
personal authentication model could be utilized in various embedded equipment types or
low-power environments.

6. Conclusions

In this study, an RL-based personal authentication model and its optimization were
proposed. These yielded significant performance enhancements compared with the con-
ventional methods. Furthermore, they can be applied to various embedded systems with
machine learning classifiers with relatively low resource consumption, such as the SVM
and RF algorithms. In a follow-up study, the proposed model will be investigated further
to identify the physiological meanings of the ECG features, such as the QS slope and RR
interval, when used for personal authentication purposes.
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