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Intelligent Forecasting Using Dead Reckoning
With Dynamic Errors
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Abstract—A method for integrating, processing, and
analyzing sensing data from vehicle-mounted sensors for
intelligent forecasting and decision-making is introduced.
This dead reckoning with dynamic errors (DRWDEs) is
for a large-scale integration of distributed resources and
sensing data intervehicle collision avoidance system. This
sensor fusion algorithm is introduced to predict the future
trajectory of a vehicle. Current systems that predict a vehi-
cle’s future trajectory, necessary in a network of collision
avoidance systems, tend to have a lot of errors when the
vehicles are moving in a nonstraight path. Our system has
been designed with the objective of improving the estima-
tions during curves. To evaluate this system, our research
uses a Garmin 16HVS GPS sensor, an AutoEnginuity OBDII
ScanTool, and a Crossbow three-axis accelerometer. Using
Kalman filters (KFs), a dynamic noise covariance matrix
merged together with an interacting multiple models (IMMs)
system, our DRWDE produces the future position estima-
tion of where the vehicle will be 3 s later in time. The
ability to handle the change in noise, depending on unavail-
able sensor measurements, permits a flexibility to use any
type of sensor and still have the system run at the fastest
frequency available. Compared with a more common KF
implementation that runs at the rate of its slowest sensor
(1 Hz in our setup), our experimental results showed that
our DRWDE (running at 10 Hz) yielded more accurate pre-
dictions (25%–50% improvement) during abrupt changes in
the heading of the vehicle.

Index Terms—Collision avoidance, course correction,
dead reckoning, global positioning system, Kalman filters,
road vehicles, sensor fusion.

I. INTRODUCTION

S
ENSOR fusion and tracking techniques have potential

applications for the vehicle and the infrastructure as intro-

duced in [1], something we can appreciate from the indus-

trial sensing intelligence found in intelligent transport systems

(ITSs) area [2]. The overall function of ITS is to improve

decision-making, often in real time, improving the operation of
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the entire transport system. This can range from systems with

intelligent route planning implemented to avoid some specific

type of traffic from certain areas [3], to registering the posi-

tion of vehicle-borne sensors for infrastructure assessment [4],

to systems designed to prevent collisions between the users [5].

This research could fall under the latter category.

A collision avoidance system is only as good as its accuracy

in warning the driver—either human or automated. An accu-

rate system will minimize the number of false warnings, so the

driver takes them seriously. Designing the architecture of this

type of system involves using many sensors, for intelligent con-

trol and decision-making, and finding the right balance among

the number of sensors implemented, type, and their overall

contributions to the intelligent forecasting system.

There are mainly two types of designs for a collision avoid-

ance system. Self-sufficient systems are those that can obtain

enough information by themselves, such as those in [6]–[8].

Interactive systems are those that interact with the infrastruc-

ture or other vehicles to detect a dangerous scenario, such

as researched in [9]–[11], where their systems send spatial

information to nearby vehicles to judge the possibility of a

collision in the future. While self-sufficient systems are lim-

ited to line-of-sight detection, the interactive systems are not

limited by this but are more complex. Estimating the future

trajectory of a vehicle requires multiple sensors that need

to be merged together and put through a set of prediction

models.

Multisensor data fusion (MSDF) techniques are required to

combine and process data [12], [13]. This has been tradition-

ally performed by some form of Kalman [14] or Bayesian filters

[15]; however, in recent years, there has been a trend toward the

use of soft techniques such as fuzzy logic and artificial neural

networks [16], [17]. Furthermore, there can be two ways of set-

ting up an MSDF system: 1) centralized; or 2) decentralized. A

centralized approach suffices for most common scenarios where

the sensors are synchronous, but a decentralized approach is

convenient when the sensors should be treated independently

[18]–[22], as with asynchronous sensors.

In [23], the authors discuss the optimal asynchronous track

fusion algorithm (OATFA), which evolved from their earlier

research on an asynchronous/synchronous track fusion (ASTF)

[24]. They use the interacting multiple model (IMM) algo-

rithm, but replace the conventional Kalman filters (KFs) with

their OATFA. The OATFA treats each sensor separately, pass-

ing the output from each to a dedicated KF, departing from

the idea that the best way to fuse data is to deliver it all to a

central fusion engine. The paper’s IMM-OATFA results show

position estimation errors that are about half of conventional

IMM setups. However, as pointed out by the same authors in
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[25], all measurement data must be processed before the fusion

algorithm is executed. Similarly, the authors of [26] create asyn-

chronous holds, where, from a sequence of inputs sampled at a

slow sampling rate, it generates a continuous signal that may be

discretized at a high sampling rate. Despite the benefits of mak-

ing the asynchronous system into a synchronous one by using

these methods, restrictions are observed where, if for some rea-

son, a sensor is delayed in providing its data or is offline for a

few cycles, the whole system needs to wait.

In [27]–[29], the authors also look into problems of getting

measurements from multiple sensors, but they focus on mea-

surements being out-of-sequence and not on missing measure-

ments. Therefore, while this is a very important topic on some

scenarios, for the system that was used in this study, having all

the sensors being processed locally, it will be assumed that all

measurements are in the correct sequence, and there should not

be a reason for some of them getting out-of-sequence.

Another method to fuse asynchronous sensors is discussed

in [30]. In this paper, the authors synchronize the output of

the sensors by estimating the data of the slower sensors for the

time stamps where no data were available from them. Even

though the method used to estimate the unavailable readings

is very rudimentary (based only on the previous reading), this

idea allows the system to run at the fastest frequency of its

sensors. This difference, compared to the previously referenced

papers, allows the system to make any corrections as soon as

data are available, making its estimations more accurate in

some scenarios.

The contribution of this paper is a dead reckoning (DR) sys-

tem that runs at the frequency of its fastest sensor to update

its prediction as soon as a change is detected. The difference

from other DR implementations, subject to cumulative errors,

is that our dead reckoning with dynamic error (DRWDE) con-

tinually updates the noise covariance matrices when any sensor

remains offline by innovating a dynamic Q matrix in the KFs.

This constant modification of the true weight of each measure-

ment helps to counteract the cumulative error of the DR when

the measurements are estimated and not real.

II. POSITION ESTIMATION TECHNIQUES

The KF [31] was first proposed in the 1960s and has been

shown to be a form of Bayesian filter [32]. From a series of

noisy measurements, the KF is capable of estimating the state

of the system in a two-step process: 1) correct; and 2) predict

[33]–[35].

The KF has a long history of accurately predicting future

states of a moving object and has been applied to many dif-

ferent fields [36]–[39], including transportation, which is why

it was chosen for this research. The elements of the state vec-

tor used (x) are: the position, velocity, and acceleration of the

vehicle; all available from the different sensors. Keep in mind

that the position (xv) and velocity (vv) components of the state

estimate have an x and y component to them (east–west and

north–south directions), and the acceleration (av) has an n and

t component to it (normal and tangential acceleration). So, the

state vector matrix will be X = (xx, xy, vx, vy, an, at).
The estimated error covariance (P) for the state estimate is

based on the relationships between each of the elements to the

Fig. 1. Flowchart for the three KF in an IMM framework.

others. The error covariance matrix is a dataset that specifies

the estimated accuracy in the observation errors between all

possible pairs of vertical levels.

Together with P, the Jacobian matrix of the measurement

model (H), the measurement noise covariance (R), and with the

measurement noise (σm), are used to calculate the Kalman gain

(K). Once the K is calculated, the system looks at the measured

data (Z) to identify the error of the predicted position obtained

from the dynamic models defined, and uses it to adjust P.

The IMM framework was used in this system [44], as shown

in Fig. 1. It can calculate the probability of success of each

model at every filter execution, providing combined solution

for the vehicle behavior [40]–[42]. These probabilities are cal-

culated according to a Markov model for the transition between

maneuver states, as detailed in [43]. To implement the Markov

model, it is assumed that at each execution time, there is a prob-

ability pij that the vehicle will make a transition from model

state i to state j.

III. DRWDE USING KFS

This system uses three different sensors: 1) a Garmin 16HVS

GPS receiver and Fugawi 3 GPS navigation software; 2) an

AutoEnginuity OBDII ScanTool (which obtains the veloc-

ity from the vehicle’s internal system); and 3) a Crossbow

three-axis accelerometer. This set of sensors offers data at

different rates (asynchronous) and also at the same rates (syn-

chronous); one measurement from two of the sensors overlap

(homogeneous) but most of them do not (heterogeneous). The

accelerometer measures normal and tangential acceleration

every tenth of a second, the ScanTool measures velocity every

1 s, and the GPS measures position, velocity, and heading every

1 s (timing precise).

A problem with some of the existing research, as mentioned

in Section I, is that sensors can unexpectedly go offline and not

provide data when expected. The system in this study will need

to handle this without slowing down the running frequency of

the overall system and then wait for the sensor to come back

online. This in turn means that the system can run at the fre-

quency of its fastest sensor. If the system can continue to run

and handle the missing data, it will allow for a quicker correc-

tion of the estimation if a change occurs in the spatial movement

of the vehicle.

A. System Architecture

In this setup, the GPS sensor provides the location (sx, sy),
the velocity (v), and the angle of direction (β) using north as

the zero. Then the ScanTool sensor provides the velocity (v),
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Fig. 2. Flowchart of our DRWDE system.

and the accelerometer provides normal acceleration (an) and

tangential acceleration (at). The jerk j (acceleration change)

in this study’s equations is included as the factor responsible

for the noise in the measurements; therefore, the jerk term is

represented as the prediction noise (σp). The different linear

dynamic models to be used in the KF used in this research are

defined as follows.

1) Constant location (CL)

s(k) = s(k − 1) + σps

v(k) = 0

a(k) = 0.

2) Constant velocity (CV)

s(k) = s(k − 1) + v(k − 1) ·∆k + σps

v(k) = v(k − 1) + σpv

a(k) = 0.

3) Constant acceleration (CA)

s(k) = s(k − 1) + v(k − 1) ·∆k

+
1

2
a(k − 1) · (∆k)

2
+ σps

v(k) = v(k − 1) + a(k − 1) ·∆k + σpv

a(k) = a(k − 1) + σpa
.

In the flow of this setup (Fig. 2), when a sensor goes offline

and the data needed for the models are not present, e.g., veloc-

ity, the missing data are derived from the data obtained by the

remaining online sensors, making this estimation more accu-

rate than only using the offline previous reading of the sensor

to estimate what would be its current value. This is insuffi-

cient, however, as the longer a sensor remains offline, the more

noise is accumulated in the estimation of its value, which in turn

affects the overall prediction of the future spatial location of the

vehicle. To handle this properly, we have to modify dynamically

the noise covariance matrices.

B. Q Matrix in the KF

The process noise covariance (Q) of the KF is defined based

on the estimated prediction noise (σp). A simple approach is

made to estimate Q using an extensive dataset of common sce-

narios. For this system, because this research wanted to be

able to handle sensors going offline at any given time and for

any given period of time, an innovative method was devised

that makes the Q matrix dynamic, allowing the noise to vary

depending on the number of iterations the different variables

go through without getting an actual measurement from the

corresponding sensor.

1) Mathematical Framework for Improvement: A dis-

crete and dynamic linear system and measurement equation

can be generally expressed as shown below, where k is the

current instance and k + 1 is the future instant for which the

data are being estimated. For the linear discrete system, x is the

state, F is the state transition function, and B is the control

input function. For the measurement equation, Z is the sen-

sor reading, H is the sensor function, and n is the sensor noise

covariance

xk+1 = Fk · xk +Bk · uk + wk

Zk+1 = Hk+1 · xk+1 + nk+1.

Given the intermediate data for the instant tk between the

instances when all sensors are online (ti and ti+1), it is possible

to make a prediction for the instant tk+1 based on the data at

instant tk, which will most probably result in a better prediction

than if using the instant ti. There are two possible approaches

to handle the missing data when sensors are offline.

The first option is to fill in the missing measurements

with those of x̂k+1, which is the prediction to the inter-

mediate instant. The risk for the minimal quadratic error

[45] is (x̂− E(x))
t
·M (x̂− E(x)) + trace [MP], where M

is the defined positive matrix of the quadratic error, and

P = E
〈

(x̂− E(x)) · (x̂− E(x))
t
〉

, with the corresponding

reduction in the actual measurements when sensors are

online.

The second option is to calculate, with the current data

obtained from the online sensors, the noise errors for the given

small time interval, and obtain a better approximation of the

missing measurements, with the goal of obtaining a better Q

covariance matrix.

In the first option, the error will generally be greater, hence

the interval is greater x̂ and E(x). In the second option, there

may not always be a relationship that will yield a good estima-

tion, but experimental runs can help evaluate this approach to

determine if the estimation is indeed better.

As proven in Appendix I, a smaller trace of the Q matrix

would suppose a general improvement in the covariance matrix

of the process, and therefore the resulting estimation. However,

if a sufficiently general condition is required, then there is a

need to study the matrix E
[

mk+1m
t
k+1

]

for each specific case,

where mk represents the status of a specific sensor at a given

instant.

To approximate the unknown magnitudes, if x =
(x0x1 . . . xn)

t
verifies that xl+1 = ẋl ∀l = 0, 1, . . . , n− 1,

and xn is the function we have for known measurements in the

intermediate instances, it is possible to approximate any xp for

p = 0, 1, . . . , n− 1 through a Taylor polynomial as shown in

Appendix II.
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With the new data obtained from the online sensors, the

process can be repeated for the next intermediate instances

tk+1, tk+2, . . ., which, in general, the error will continue to

increase as the time gap increases. The exact value of the errors

will be unknown in general, so this research will have to be

bounded through statistical estimations; even though, in reality,

the actual implementation, and not the theoretical validation of

the formulas, will determine if there is an improvement in the

estimations. For this, it must be taken into account that, due to

the cumulative error accumulated with each iteration, an exces-

sive number of iterations will be counterproductive, and will

make the estimations worse.

In the case that the function of the more frequent known

measurements xq is not x0 or xn, it will suffice to consider

on one hand (x0 . . . xq), and on the other hand (y0 . . . ym) =
(x0 . . . xm), and proceed with each group accordingly. If there

were more functions with known measurement data, in general,

the remaining would be estimated using the closest one, or one

of the closest ones.

2) Dynamic Process Noise Covariance (Q): In the case

when all the sensors are available, the formulas for the CA

models will depend on the location, velocity, and acceleration

measurements in a given instant, and also will depend on the

prediction noise σp. In this case, σp is based on the jerk (j),

which will have a variable and unknown value. Based on the

Lagrange form of the remainder of Taylor’s formula, there is a

value for j which will yield the exact measurements. Therefore,

to set an upper bound of the expected value (E), it suffices to

identify an upper bound for j, and calculate the corresponding

integrals to obtain each E. However, because in a real-time exe-

cution of the system all the values of j are not known ahead of

time, this research made it a moving range, so the system can

dynamically tune itself.

In summary, to determine Q = E[σpσ
T
p ], this research

starts by defining jk (acceleration change) as the least

upper bound (supremum) of the dataset collected so far, i.e.,

max{|jtk |, |jnk
|, |jtk−1

|, |jnk−1
| . . . |jtk0

|, |jnk0
|}.

If the state vector defined in Section II-A and the Kalman

models defined in Section III-A are used, and if jn is to the

right of jt, and for the CA model (3), x(k) = F (k) · x(k − 1) +
σp has

x(k) =

⎡

⎣

1 ∆k 1
2 (∆k)

2

0 1 ∆k
0 0 1

⎤

⎦ · x(k − 1) +

⎡

⎣

1
6j(∆k)

3

1
2j(∆k)

2

j(∆k)

⎤

⎦ . (4)

Furthermore, in this system, it will also take into account the

error in the estimations for location, velocity, and acceleration

when the sensor providing the corresponding value is offline,

and consider for how long it has been offline.

Now, given Mk′(x) as the total measurement error of a vari-

able x such that in the step when all sensors are online m = 0,

and in the following m step(s), only the accelerometer sensor

is online. Because sensors can go offline independently of each

other, a different m is needed to identify each sensor: m1 for

the GPS sensor, m2 for the ScanTool sensor, and m3 for the

accelerometer.

Therefore, this research can now define Q for the CA model

as follows:

QCA =

⎡

⎣

M(s)
2
M(sv) M(sa)

M(vs) M(v)
2
M(va)

M(as) M(av) M(a)
2

⎤

⎦ . (5)

Therefore, each of the process error elements in the Q

matrix can be derived. For the position elements (x/y),

it is obtained that E
[

M2 (s)
]

≤ (∆k)6

36

m1−1
∑

i=0

jk−i
2, with

the details shown in Appendix III. Then, using a simi-

lar approach, it was found that for the velocity elements

(x/y) E
[

M2 (v)
]

≤ (∆k)4

4

m2−1
∑

i=0

jk−i, and, finally, for the

acceleration elements (n/t), it was derived E
[

M2 (a)
]

≤

(∆k)2
m3−1
∑

i=0

j2k−i. Moreover, for the nonzero elements out-

side of the diagonal, it was calculated that E [M (s · v)] =

E [M (v · s)] ≤ (∆k)5

12

m1|2−1
∑

i=0

j2k−i.

For a given tangential or normal acceleration, the locations

and velocities in the axis directions can be any; therefore, the

location and velocity variables are independent from the value

of the tangential or normal accelerations. Similarly, the tangen-

tial and normal accelerations are independent of each other.

Therefore, the expected value of those errors is zero, and the

final Q matrix that will dynamically increase the corresponding

measurement error in relation to how long some sensors (mi)

have been offline (∆k) is defined as follows:

QCA

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

(∆k)6

36

m1−1
∑

i=0

j2k−i
(∆k)5

12

m1|2−1
∑

i=0

j2k−i 0

(∆k)5

12

m1|2−1
∑

i=0

j2k−i
(∆k)4

4

m2−1
∑

i=0

jk−i 0

0 0 (∆k)
2
m3−1
∑

i=0

j2k−i

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

(6)

Using a similar approach as shown above, this research can

derive the dynamic Q matrix for the CV model as follows:

QCV =

⎡

⎢

⎢

⎢

⎣

(∆k)4

4

m1−1
∑

i=0

a2k−i
(∆k)3

2

m1|2−1
∑

i=0

a2k−i

(∆k)3

2

m1|2−1
∑

i=0

a2k−i (∆k)
2
m2−1
∑

i=0

a2k−i

⎤

⎥

⎥

⎥

⎦

. (7)

Also, for the CL model

QCL =

[

(∆k)
2
m1−1
∑

i=0

v2k−i

]

. (8)

These Q matrices will be used in the KF prediction step

to estimate the error covariance for each of the models. Also,

as shown in the Q matrices above, the moment a sensor

comes back online (mi = 0), the corresponding element in the

dynamic Q matrix can be reset to its minimum value.
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IV. EVALUATION CRITERIA

To verify the improvements of using the DRWDE, we will

implement and compare the results of the following setups:

1) synchronous sensors using a common KF+ IMM imple-

mentation (GPS at 1 Hz, ScanTool at 1 Hz, and

accelerometer at 1 Hz);

2) asynchronous sensors using our dynamic DRWDE imple-

mentation (GPS at 1 Hz, ScanTool at 1 Hz, and

accelerometer at 10 Hz).

The first setup is to get the IMM working at 1 Hz, which will

only run when all sensors are online, therefore not really using

the dynamic part of the Q matrix.

The DRWDE setup is to increase the frequency of the system

to 10 Hz to try to take advantage of all the readings from the

accelerometer and try to correct the predictions sooner, instead

of having to wait for all sensors to come back online, as in this

first setup. This second setup uses the dynamic Q matrix tech-

nique described in Section III-B to account for the error in the

estimation of the data when some sensors are offline.

Using the above two setups helps to track improvements

to the overall trajectory prediction when the frequency of the

system increases along with the proper handling of the accumu-

lated error in the predictions. If this DRWDE is flexible enough

to handle all the different synchronous and asynchronous,

homogeneous and heterogeneous data from the sensors in use,

improvements should be seen on the predicted future locations,

and the system should be able to detect and correct a spatial

change in the vehicle much sooner than when the system is

forced to run at the speed of its slowest sensor.

The evaluation criteria will be based on comparing the actual

prediction errors for both the DRWDE and the IMM 1 Hz

systems against the true location data obtained from the GPS

receiver. Both systems will be run through the same trajectory,

and the results looked at in several different ways. First, this

research will look at the average prediction error for whole tra-

jectory, but then also separate the trajectory into straight lines,

smooth curves, and sharp curves, to better evaluate both sys-

tems in the different scenarios. This research will also select one

specific smooth curve and one specific sharp curve, and it will

look at those results in greater detail, using error histograms

and calculating root-mean-square (RMS) and mean absolute

percentage error (MAPE) values using the actual and predicted

position S of both systems

RMS =

√

√

√

√

√

k′
∑

k

(Sk−Sk−3)
2

(k′ − k)
, MAPE =

1

n

n
∑

t

∣

∣

∣

∣

At−Ft

At

∣

∣

∣

∣

· 100.

V. EXPERIMENTAL PERFORMANCE OF THE DRWDE

SYSTEM

A. Dataset Characteristics

The dataset consists of measurements from the three sensors

while driving a vehicle for over 1 h. The trajectory followed is

shown in Fig. 3, where the vehicle followed the route marked

in red.

Fig. 3. Map of overall trajectory in Mansfield City, CT (Google Maps).

For this experiment, the GPS sensor takes measurements

of the current geographical coordinates in degrees, heading in

degrees, and velocity in miles per hour every 1 s. These mea-

surements were converted to meters, radians, and meters per

second, respectively.

The ScanTool reads the measurements of the velocity deter-

mined by sensors coupled to the wheels of the vehicle in miles

per hour every 1 s. This measurement is more accurate than the

one obtained from the GPS, so it is used instead of the one from

the GPS (except when it is not available).

The last sensor used in this experiment is an accelerometer,

which takes measurements of the normal and tangential acceler-

ations in volts every 0.1 s. Using a calibration formula provided

by the manufacturer of the sensor, the conversion is units to

meters per second squared.

The trajectory selected for this research is shown in Fig. 3.

The selected route was selected to include straight and non-

straight paths, and also road types driven at different speeds,

such as highways, local routes, small streets, and even going

through town with several traffic lights and stop signs. This

dataset includes most possible scenarios a vehicle could be

traveling through.

To be able to create a useful dataset of the data recorded from

the trajectory shown in Fig. 3, this research had to create scripts

to map the values from the log file of each sensor to each other,

using the timestamp as the common reference between them. In

the end, a dataset was created with all the desired measurements

in columns, with all available readings in a row for each times-

tamp. Because only the accelerometer works at 10 Hz, many

of the rows only contain acceleration measurements, and this

is where the system comes into action and takes advantage of

these extra measurements. Table I shows the average and stan-

dard deviations of the data used, to take a general look at the

characteristics of the dataset worked with.

For this experiment, the focus was on predicting a trajectory

when the vehicle is going through curves, which are the more

problematic areas. To be able to evaluate this better, the dataset

of the whole trajectory was classified into straight lines, smooth

curves, and sharp curves. To determine whether a set of consec-

utive points in the trajectory was a curve or a straight line, the

change in the heading after a period of 2 s was observed; if it
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TABLE I
REPRESENTATIVE DATASETS

Values represent median ± standard deviation of all data points used.

Fig. 4. Map of selected turn for testing (Google Maps).

was more than 2◦, then it was defined as a curve. Moreover, to

determine if the curve was a sharp one, the change had to be

greater than 10◦; otherwise, it was defined as a smooth curve.

Moreover, the system to estimate a future position of a vehi-

cle will be set up to determine where the vehicle will be 3 s later,

which is based on the average human reaction time of 1.5 s to

stop a vehicle [46]. In reality, this value would also need to

take into account the vehicle’s weight and speed to properly

determine minimum stopping time necessary.

Looking at Table I, it can be seen that the dataset used for this

experiment agrees with how a vehicle would be driven under

normal conditions. For example, the standard deviations are

not very different from each other for the distance and velocity

measured by the sensors, which is expected, as the values do not

change much from one point to the next for an average vehicle

driving on normal roads. The average for distance and veloc-

ity is smaller for the smooth curves than for the sharp curves,

which means that the vehicle’s speed is more constant through

the smooth curves than the sharp curves. The change in move-

ment for sharp curves agrees with how a vehicle would behave

in such a scenario, as it will usually have to slow down consid-

erably while turning and then accelerate again as the driver gets

a handle on the curve.

Since the main problem with trajectory estimation is during

curves based on research reviewed in Section I, this research

selected a specific curved scenario from Fig. 3 and use that

dataset to evaluate the DRWDE system and its performance.

The section of the trajectory shown in Fig. 4 was selected

because it has a sharp curve and then a smooth constant curve,

which should be a good scenario to test if the system can correct

its prediction when the vehicle enters the curve, and maintain

it through the whole curve. Sharper curves allow our dynamic

system to be tested properly as the curve ends up being very

short and does not allow a slower system to estimate a trajec-

tory during the actual turn if it lasts only a few seconds. The

“selected smooth curve” refers to the longer curve in Fig. 4

TABLE II
AVERAGE PREDICTION ERROR

Values represent median prediction error in meters ± standard deviation of all

data points used for both 3- and 5-s-ahead predictions.

(∼30 s of data), and the “selected sharp curve” represents the

small curve (bottom left) shown in Fig. 4 as well (∼ 10 s of

data).

The DRWDE setup for this experiment, as explained in

Section III, runs at the frequency of its fastest sensor (10 Hz),

and uses the dynamic matrices accounting for the accumulated

noise of the missing measurements. Moreover, as mentioned

in Section IV, data will be running through a common IMM

implementation (synchronous sensors) to be able to compare

results to the DRWDE setup.

Since the common IMM can only run at the frequency of its

slowest sensor, this research defined ∆k to be 1 s (1 Hz), and,

because all sensors are available during each iteration of the

system, this setup does not utilize the dynamic portion of the Q

matrix defined in section B.

Moreover, to properly compare this run to the 10 Hz run, it

cannot be assumed that the vehicle would move in a straight line

between each second, so ten intermediate points between each

second based on the dynamics of the vehicle were defined. This

allows us to more accurately compare both runs visually.

B. Evaluation of the Prediction Error

Following the evaluation criteria defined in Section IV, the

data recorded from the trajectory shown in Fig. 3 were executed

through both systems. The results for the overall trajectory,

all smooth and sharp curves, and the selected smooth and

sharp curves were recorded in Table II. Keep in mind that the

DRWDE is running at 10 Hz, where only the accelerometer can

provide a measurement at every system iteration, while the GPS

and ScanTool provide only one reading every ten iterations,

leaving it to our dynamic Q implementation to account for the

accumulated error in predicting these missing measurements.

Table II shows the average prediction errors for both the

DRWDE run and the IMM 1 Hz run for broader scenarios as

well as for our selected curves. If the results of 3-s-ahead pre-

diction for the whole trajectory were observed, only a negligible

improvement was seen, as expected, since the number of sharp

curves in the whole trajectory is very small. Similarly, there is

almost no improvement if all smooth curves in the trajectory

were observed when compared to the IMM 1 Hz. However,

since the DRWDE was created to react quickly to changes, it

was observed that when taken into account all sharp curves,
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Fig. 5. Comparison between actual path (GPS) and predicted paths by
both systems (DRWDE 10 Hz and IMM 1 Hz) for the selected curves.
Sharp curve between (1) and (2) and smooth curve between (2) and (3).
Direction of movement shown by arrow.

improvements to the 3-s-ahead estimation were seen that are

considerably greater for the DRWDE system (3.2 versus 4.5 m).

If now the focus is on the selected smooth and sharp curves

for the 3-s-ahead prediction, the result of the IMM run at 1 Hz

is shown in Fig. 5. The red-dotted line shows the predicted loca-

tion every second (red dots) and the intermediate points derived

in between each second (dotted line) to simply show visually

what may be happening in between each second.

Moreover, Table II shows results for 5-s-ahead predictions.

As expected, the earlier in time a position is predicted, the more

errors there will be as well as the less reliable to prediction is, as

shown by the larger standard deviation values for the estimation

errors.

Now, for the DRWDE run, ∆k was defined to be 0.1 s,

which is the period of its fastest sensor (10 Hz). Since only the

accelerometer runs at 10 Hz, there will be many system itera-

tions where the other sensors will be offline, and this is where

the dynamic Q variance introduced in Section III-B comes into

play. The result of the DRWDE run at 10 Hz is also shown in

Fig. 5, as the blue solid line.

Fig. 5 displays the actual trajectory of the vehicle represented

by the GPS line, and then the predicted locations 3 s earlier

in time by both the IMM 1 Hz run and the DRWDE 10 Hz

run (prediction performance is shown later in Fig. 7). It can be

observed that both the 1 Hz and the 10 Hz runs behave some-

what similarly during the smooth curve; this is also represented

quantitatively in Table II.

The average error in the predicted locations during the

selected smooth curve is only slightly better for the DRWDE

(3.0 versus 3.2 m). The benefits are clearly seen in the selected

sharp curve, where the average error is much lower for the

DRWDE (2.3 versus 4.1 m). Looking at Fig. 5, it can be seen

that, as the vehicle enters the sharp curve (bottom left), the

slower system (red dotted line) is estimating its location to be

in more of a straight line, as the vehicle is traveling in a straight

line before taking the exit ramp (see Fig. 4). It can even be seen

that there are three red dots (each dot represents 1 s) before

the system realizes that the vehicle is turning and can adjust its

3-s-ahead prediction accordingly. Looking at the blue line rep-

resenting the DRWDE run, it can be seen that its line is a lot

closer to where the vehicle actually moves through 3 s later in

time. The DRWDE 10 Hz system is able to react and correct its

Fig. 6. Frequency of each system’s 3-s-ahead prediction error. Top
(a) uses data from the whole trajectory; middle (b) only represents data
from all smooth curves; and bottom (c) represents data from all sharp
curves.

future prediction much quicker, using its dynamic covariance

matrices to take into account how long a measurement has not

been corrected by an actual sensor. As shown in Table II, in

the selected sharp curve, a difference of over 1.5 m in accuracy

between the two systems can be seen, which is a significant

improvement.

C. RMS and MAPE Error Distribution

A simple visualization of the error distribution for the “whole

trajectory,” “all smooth curves,” and “all sharp curves” predic-

tion errors is shown in Fig. 6. The charts have the individual

prediction errors categorized into groups, where group “0–1”

in the x-axis contains all the prediction errors that fall between

0 and 1 m, and the y-axis shows how frequently the errors fall

in each of the groups.

Looking at the histograms in Fig. 6, it can be observed how

the DRWDE system tends to be more often in the first groups,

which represent less prediction error. The taller the bars on a

given group means that more often the error falls in that error

group; therefore, the taller the blue bars on the smaller groups,

the more accurate the system is.

In Fig. 6(a), it can only be seen that the DRWDE outperform

the IMM 1 Hz by a small amount when looking at the overall

trajectory, and a larger difference when looking at the results for

all smooth curves in Fig. 6(b). However, when all sharp curves

in Fig. 6(c) is observed, a more distinct difference in the pre-

diction accuracy between the DRWDE and the IMM 1 Hz can

be seen. To analyze the results for selected smooth and sharp

curves specifically, as shown in Fig. 5, Fig. 7 was created.

Fig. 7(a) represents the error between the estimated future

distance the vehicle will travel in the following 3 s and the

actual distance traveled as recorded by the GPS sensor for the

selected smooth and sharp curves. Time zero in the figure is set

a few seconds before the vehicle enters the sharp curve shown

in Fig. 4. Right at the beginning of the sharp curve, the error

in the estimation is quite large for both systems, and that is

due because the vehicle is moving in a somewhat straight path,

so the estimated future position assumes that the vehicle will

continue to move in the same direction. As soon as the vehicle

enters the sharp curve, the first system to detect this change in

direction is the DRWDE 10 Hz, as expected, as it can detect this
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Fig. 7. Position error for a 3-s-ahead prediction during out selected
curves as shown in Fig. 5. Top (a) displays actual versus predicted dis-
tance traveled per second and bottom (b) displays rms error in each
prediction.

TABLE III
MAPE

Values represent 3-s-ahead prediction errors.

change using the accelerometer, while the GPS is still offline.

Once the GPS sensor is back online, the 1 Hz system can also

detect this change and can correct its prediction. The upward

trend of the lines in Fig. 7 simply indicates that the vehicle is

slowly increasing its velocity and is covering more distance in

the same period of time (3 s). Only dots at each full second are

shown to be able to compare between the two systems.

For a different view of the kind of errors the DRWDE 10 Hz

system has, Fig. 7(b) was created, which shows the RMS error

between the estimated future location (3 s later) and the actual

location measured by the GPS. Table III shows the MAPE

prediction accuracy of this system for the different segment

types.

Looking at Fig. 6 and Table II, it can be concluded that

the DRWDE setup really stands out when abrupt changes

occur in the movement of the vehicle, and, only then, the

fast reaction time shows substantial improvements in the

prediction.

D. Computational Complexity

For completeness, it was also looked into how much of an

extra load it is to run the DRWDE system with the dynamic

noise matrices compared to the simpler approach of the 1 Hz

IMM system. Because the dataset had already been recorded,

only the processing time of the system itself was measured.

If taking into account the processing time of the sensors,

TABLE IV
COMPUTATIONAL COMPLEXITY

Measurements taken on system running through the whole trajectory.

especially the accelerometer, the CPU times would be even

larger.

Table IV shows different MATLAB commands used to mea-

sure CPU times for each of the systems. All two commands

(tic/toc and cputime) measure actual CPU time used by the

MATLAB code, but this research is showing both to get a better

idea on the accuracy of the measurements. The column tic/toc

represents actual start/stop time of execution, while cputime

displays the actual CPU time in that was spent executing the

code. The system was run on a machine with a dual core

2.0 GHz CPU.

As expected, Table IV shows that the DRWDE 10 Hz sys-

tem requires a lot more processing power than the simpler IMM

1 Hz system. This is as expected, since the DRWDE system has

to handle close to 10 times more data points, and, therefore,

yields much longer CPU times. On the same token, if looking

at the last column, it can be observed that the average load times

for every record processed is almost the same for both systems,

which shows that the extra computational requirements of the

DRWDE’s dynamic error processing and measurement noise

matrices are not significant at all.

VI. CONCLUSION

The key contribution of this research’s DRWDE system is

the introduction of dynamic noise covariance matrix merged

together by an IMM. The longer a sensor remains offline, the

less accurate the overall prediction is, so the dynamic Q pre-

sented in Section III-B tells the system how true is the value

being used.

This DRWDE setup only had three sensors, of which only

one of them was running at 10 Hz. The accelerometer is very

sensitive to changes in the road, including road bumps; so, rely-

ing on this sensor to estimate the values of the other sensors

when they were offline had its challenges. However, looking

at Section V, it can be concluded that by properly handling

the accumulating error for missing measurements, running the

system at a higher frequency can yield better predictions, espe-

cially when abrupt changes occur. The key here was to be

able to accurately account for the accumulating error when

sensors go offline and remain offline for an unknown amount

of time.

An improvement to this system could be to add more

sensors running at high frequencies, for redundancy and

to minimize the times sensors are offline. Moreover, this

system could be combined with our previous researches

[47], [48], where the predicted location is compared against

geographical information system (GIS) to reduce false

predictions.
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APPENDIX

I. MATHEMATICAL LIMITATION FOR IMPROVED

ESTIMATIONS

Because xi+1 = [I + Fk+1(ti+1 − tk+1)] + w′

k+1(ti+1 −
tk+1) = [I + Fk+1(ti+1 − tk+1)]xk+1 + w′

k+1(ti+1 − tk+1)−
[I + Fk+1(ti+1 − tk+1)]uk+1, the corresponding pro-

cess covariance matrix will be m = w′

k+1(ti+1 −
tk+1)− [I + Fk+1(ti+1 − tk+1)]uk+1. If ϕl is the

vector formed by the elements of row l from

Fk+1, |ϕl · uk+1| ≤ |ϕl| · |uk+1|, and if we oper-

ate at E
[

mt
k+1mk+1

]

≤ E
[

‖w′

i‖
2
]

(tis+1 − tk+1)
2 +

E
[

‖uk+1‖
2
]

[1 + (
∑

‖uk+1‖) (ti+1 − tk+1)]
2
, we can

define the trace of the covariance matrix of the process

as E
[

w′t
iw

′

i

]

(ti+1 − tk+1)
2 = E

[

‖w′

i‖
2
]

(ti+1 − tk+1)
2,

which will show an improvement when

E
[

‖w′

i‖
2
]

(ti+1 − tk+1)
2 + E

[

‖uk+1‖
2
]

×
[

1 +
(

∑

‖uk+1‖
)

(ti+1 − tk+1)
]2

< E
[

‖w′

i‖
2
]

(ti+1 − ti)
2

which can be rewritten as

E
[

‖uk+1‖
2
]

< trace(Qi) ·
1−

(

ti+1−tk+1

ti+1−ti

)2

[1 + (
∑

‖ϕl‖) (ti+1 − tk+1)]
2 .

II. TAYLOR POLYNOMIAL REPRESENTATION WITH ITS

RESPECTIVE ERROR

xp(t) = xp(ti) +
xp+1(ti)

1!
∆tk + · · ·+

xn(ti)

(n− p)!
(∆tk)

n−p

+

t
∫

ti

1

(n− p)!
ẋn(ti − y)

n−p
dy.

The measurements of the variables will have an error. Given

x̄l the obtained measurement of xl, the corresponding error

εl = x̄l − xl, in this first step, is due to w (ti)∆tk. Then, we

can accordingly modify the Taylor polynomial as follows:

xp(tj) = xp(ti) +
xp+1(ti)

1!
∆tk + · · ·+

xn(ti)

(n− p)!
(∆tk)

n−p

−

n
∑

m=p

εm(ti)

(m− p)!
+

t
∫

ti

1

(n− p)!
ẋn(ti − y)

n−p
dy.

With this procedure, the measurement x̄p(ti) of xp(ti) will

have an error of

εj =

n
∑

m=p

εm(ti)

(m− p)!
+

t
∫

ti

1

(n− p)!
ẋn(ti − y)

n−p
dy.

If the function of which we have known measurements in

tj ∈ (ti, ti+1) is x0, then

xp+1(c) = ẋp(c) =
x̄p(tk)− x̄p(ti)

∆tk

= x̄p+1(ti) +
x̄p+2(ti)

2!
(∆tk)

1 + . . .+
x̄n(ti)

(n− p)!
(∆tk)

n−p−1

−
1

∆tk

⎡

⎣εp(tk)−
n
∑

m=p

εm(ti)

(m− p)!
+

t
∫

ti

1

(n− p)!
ẋn(ti − y)

n−p
dy

⎤

⎦.

For a given c ∈ (ti, tk), we can approximate xp+1(tk) as

xp+1(tj) = x̄p+1(ti) +
x̄p+2(ti)

2!
(∆tk)

1 + · · ·

+
x̄n(ti)

(n− p)!
(∆tk)

n−p−1

with an error of

εp+1(tj) = xp+1(c)− xp+1(tk)

+
1

∆tk

⎡

⎣εp(tk)−

n
∑

m=p

εm(ti)

(m−p)!
+

t
∫

ti

1

(n−p)!
ẋn(ti−y)

n−p
dy

⎤

⎦

where the difference xp+1(c)− xp+1(tj), which depends on

the stability of xp+1(t), is expected to be lower as ∆tk is small.

III. PROOF OF THE EXPECTED VALUE CALCULATIONS

FOR EACH PREDICTION NOISE (σp) ELEMENT IN THE

PROCESS NOISE COVARIANCE (Q) MATRIX TO SHOW

HOW TO ARRIVE AT (6) STARTING FROM (5)

Derivation for E
[

M2(s)
]

E
[

M2
k (s)

]

= E

[

(

Mk−1(s) +
1

6
jk(∆k)

3

)2
]

= E

[
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1

6
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3
+

(

1

6
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3
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]

= E
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]
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1

6
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3

]
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[

1

36
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6

]
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[

1
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]

and
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p1

]
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[

(

1

6
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3

)2
]

=
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6

36
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E
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E
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6
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Therefore,

E
[

M2
k (s)

]

≤
1

36
jk(∆k)2 +

1

36
jk+1(∆k)2 + E

[

M2
k (s)

]

=
1

36
j2k(∆k)6 + · · ·+

1

36
j2k+1(∆k)6 + E[σ2

p1
]

≤
(∆k)

6

36

m−1
∑

i=0

j2k−i.
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