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Abstract—Millimeter wave communications, equipped with
large-scale antenna arrays, are able to provide Gbps data by
exploring abundant spectrum resources. However, the use of a
large number of antennas along with narrow beams causes a
large overhead in obtaining channel state information (CSI) via
beam training, especially for fast-changing channels. To reduce
beam training overhead, in this paper we develop an interactive
learning design paradigm (ILDP) that makes full use of domain
knowledge of wireless communications (WCs) and adaptive
learning ability of machine learning (ML). Specifically, the ILDP
is fulfilled via deep reinforcement learning (DRL), which yields
DRL-ILDP, and consists of communication model (CM) module
and adaptive learning (AL) module, which work in an interactive
manner. Then, we exploit the DRL-ILDP to design efficient
beam training algorithms for both multi-user and user-centric
cooperative communications. The proposed DRL-ILDP based
algorithms enjoy three folds of advantages. Firstly, ILDP takes
full advantages of the existing WC models and methods. Secondly,
ILDP integrates powerful ML elements, which facilitates ex-
tracting interested statistical and probabilistic information from
environments. Thirdly, via the interaction between the CM and
AL modules, the algorithms are able to collect samples and
extract information in real-time and sufficiently adapt to the
ever-changing environments. Simulation results demonstrate the
effectiveness and superiority of the designed algorithms.

Index Terms—Intelligent beam training, interactive learning
design paradigm, environment sensing, beam image, deep rein-
forcement learning, millimeter wave communication.

I. INTRODUCTION

To meet the demands of explosive growth system capacity

and data rates, millimeter wave (mmwave) communications

arise as an appealing solution and attract considerable attention

for large available bandwidth [1]–[4]. However, it is far from

easy to reap the benefits of mmwave communications because

of the channel features of mmwave propagation. Typically, the

path-loss of mmwave is much larger than that of microwave.
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To overcome this obstacle, a large-scale antenna array has to

be used to provide a large array gain. Fortunately, the small

wave-length of mmwave makes it possible to pack a large

number of antennas into a compact space. Nevertheless, the

large-scale antennas pose great difficulties in obtaining channel

state information (CSI), especially in mobile applications or

dynamic environments.

In WCs, obtaining CSI is crucial in realizing high data

rates. In view of the sparsity or double-sparsity (i.e., beam-

space sparsity and delay-domain sparsity [5]) and the large

dimension of mmwave channels, an effective method to obtain

CSI is beam training, based on which equivalent channel

matrices can be estimated [6]–[8]. In beam training, candidate

beams at the transmitter and/or receiver are directly trained

via exhaustive or hierarchical search by selecting the ones

that optimize some performance metric, e.g., signal-to-noise

ratio (SNR) [6]–[10]. However, these beam search schemes

are mainly suitable for single-user single-stream transmission,

and the training overhead is still very high in systems with

large-scale antenna arrays. Efficient multi-user beam training

with low overhead is required in mmwave communications

[1], but efficient solutions are still unavailable.

To improve beam training efficiency, one common method

is to exploit channel prior knowledge via dynamical chan-

nel modelling [11]–[18]. Typically, most of these algorithms

explicitly exploit the correlations between angles of arrival

and/or departure (AoAs/AoDs) via Markov process or partially

observable Markov process modeling. For example, by ex-

ploiting temporal variation of angles of departure, the authors

in [11] proposed a codebook-based beam tracking strategy.

Under the assumption that the mobile user moves along a

straight line, an optimization algorithm based on partially

observable Markov decision process is proposed in [17] for

mmwave vehicular networks. Note that the existing dynamic

channel models, e.g., those used in [11]–[18], are generally

simplified approximations of real mmwave channels, where

many stringent assumptions and simplifications are made [19],

thus limiting their applicab-ilities.

Instead of explicitly exploiting prior knowledge (e.g., chan-

nel correlations via channel modeling), one promising way

to reduce the training overhead is to endow the beam training

algorithms with certain intelligence, enabling them to automat-

ically extract and exploit useful information from the training

history of the environment, so as to reduce the beam search

space for future training. Fortunately, such an idea is facilitated

by the fast development of ML and leads to ML based beam

training algorithms [19]–[26]. Roughly speaking, the existing



2

ML based beam training methods fall into two categories, i.e.,

supervised learning (SL) and non-supervised learning (NSL)

methods.

As a non-interactive learning paradigm, the SL methodol-

ogy includes most of the existing ML based beam training

algorithms [19]–[24]. To achieve satisfying performance, the

SL algorithms require a large number of training samples

in advance. For example, the algorithm in [20] relies on a

multi-path fingerprints database. However, collecting training

samples is often costly, especially in WCs, and they have to

be renewed if the environment changes. Hence, ML based

algorithms that interactively collect training samples from the

environment and adapt to the environment are more appealing.

The existing NSL methods are mainly based on multi-armed

bandit (MAB) [25], [26], a lightweight reinforcement learning

method. However, due to the simplicity of the MAB, its ability

to extract and exploit contextual information is very limited.

Particularly, MAB is difficult to discover useful patterns, make

complex decisions, and utilize existing domain knowledge.

Hence, more efficient intelligent algorithms (in particular, a

general design paradigm) which can better explore and ex-

ploit environment information and merge accumulated domain

knowledge are desired [27].

To enjoy the benefit of powerful ML techniques and make

full use of the existing WC domain knowledge simultaneously,

in this paper we propose an ILDP. We fulfill the ILDP via

DRL, leading to DRL-ILDP, based on which efficient beam

training algorithm are developed. The DRL-ILDP based beam

training designs sufficiently enjoy the advantages from the

existing WC models and methods as well as the powerful

ML techniques. Moreover, the interactive feature facilitates

extracting useful information in real-time, thus making the

designed algorithm adapt to ever-changing environments. The

main contributions of this paper are summarized as follows:

• To incorporate both WC domain knowledge and ML

techniques, an ILDP is customized for WCs. The ILDP

consists of communication model module and adaptive

learning module, which work in an interactive manner.

• We implement the ILDP via DRL, leading to DRL-ILDP.

By elaborately designing the MDP state space and action

space, the problem of beam training is formulated as an

MDP .

• To sense the spatial distribution of effective channel paths

in the beam domain, we construct beam images (BIs)

based on the equivalent channel coefficients obtained via

beam sweeping, and further use them to construct the

MDP states.

• Based on the DRL-ILDP, an efficient beam training

algorithm is proposed for the multi-user communication

(MUC) by integrating deep Q-network (DQN) into the

beam training procedure.

• We further extend the DRL-ILDP beam training algorith-

m to the user-centric cooperative communication (UCCC)

by exploiting a dual relationship between UCCC and

MUC.

• Comprehensive simulation results are provided to demon-

strate the effectiveness and superiority of the proposed

algorithms. It is shown that the proposed algorithms can

capture dynamic spatial patterns and adjust beam training

strategy intelligently, without knowing priori information

about dynamic channel modeling.

The remainder of this paper is organized as follows. Section

II describes the system model and beam training problem of

mmwave multi-user communication. The principle of ILDP

is introduced in Section III. In Section IV, an intelligent

beam training algorithm is proposed for the mmwave multi-

user communication. Section V further extends the multi-user

design to the user-centric cooperative case. Simulation results

and conclusions are given in Section VI and Section VII,

respectively. A brief introduction to MDP and two efficient

algorithms for the (communication) model problems are pro-

vided in the appendices.

Notations: Bold uppercase A and bold lowercase a denote

matrices and column vectors, respectively. Non-bold letters A
and a denote scalars. Caligraphic letters A represent sets. ‖x‖
and x(i) represent the L2-norm and the i-th element of the

vector x, respectively. Superscripts (·)T and (·)H denote trans-

pose and Hermitian operators, respectively. IA and card(A)
denote the indicator function and cardinality ofA, respectively.

CN (m,R) denotes a complex Gaussian random variable with

mean m and variance R.

II. SYSTEM MODEL

Consider a mmwave multi-user communication system,

which consists of one base station (BS) and U mobile users

(MUs). 1 The BS is equipped with N transmit antennas, which

are controlled by T RF chains. For simplicity, it is assumed

that T = U and each MU has a single antenna. A hybrid

analog and digital precoding design is considered, where the

BS analog precoding matrix A ∈ C
N×T is realized by a

phase shifter network, i.e., each element of A takes the form

A(m,n) = ejxm,n (xm,n ∈ [0, 2π]).
In practice, the analog precoder is often implemented via

a predefined codebook [28]–[30], i.e., each column of A is

selected from a codebook with finite phases (e.g., 3 to 4 bits

quantization). The codebook of size M can be represented by

a matrix F ∈ C
N×M with each column denoting a codeword.

Let the i-th column of F, i.e., F(:, i), be denoted by fi. The

analog codebook can be represented by F = {f1, f2, · · · , fM}.
Let vu ∈ C

T×1 and su ∼ CN (0, 1) be the digital precoding

vector and the data stream of user u ∈ U = {1, 2, · · · , U},
respectively. Then, the received signal at MU u ∈ U can be

expressed as

yu = h̄
H
uAvusu +

∑

v 6=u

h̄
H
uAvvsv + wu, (1)

where wu ∼ CN (0, σ2) is the received noise random variable,

and h̄u is the channel vector between MU u and the BS.

The conventional hybrid precoding designs [29], [31], [32]

generally rely on CSI, i.e., {h̄u}, which, however, is difficult

to obtain in mmwave systems with large antenna arrays. To

overcome this difficulty, exploiting equivalent CSI obtained

via beam sweeping was proposed in [28], instead of directly

1Later on, we will extend our design to user-centric cooperative communi-
cation, where multiple BSs cooperatively serve one MU.
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estimating the physical channel vectors {h̄u}. Specifically, the

BS sends training signals from each direction (i.e., codeword)

defined in the analog codebook F . For each codeword in F ,

MUs measure the strength of the received signals and estimate

equivalent channel coefficients {h̄H
uf1, · · · , h̄H

ufM}. Under the

beam sweeping framework, the BS focuses on the equivalent

channel vector between the BS and each MU u of length M ,

i.e., hu = F
H
h̄u.

The aforementioned beam sweeping can partially circum-

vent the difficulty of acquiring CSI in mmwave systems.

However, sweeping the entire beam space in each time-slot is

still time-consuming, and is even infeasible in some cases, e.g.,

when the number of antennas is large and/or the transmitter

and receiver are both equipped with large antenna arrays.

Typically, in mmwave systems, a BS is equipped with 256 or

more antennas, which makes the overhead of beam training

or sweeping a heavy burden. The problem of beam training

is even harder, when it comes to dynamic environments with

fast-varying channels. Next, we will address this problem by

developing a novel design paradigm.

III. INTERACTIVE LEARNING DESIGN PARADIGM

ML can automatically discover meaningful patterns from

data, which is very appealing to WCs. Typically, a communica-

tion system is considered as a black box and trained in an end-

to-end manner. Such methodology is however data-hungry and

brings heavy burdens to WCs, where the environments are dy-

namic and the data are costly. To alleviate this issue, a model-

driven design paradigm that exploits physical mechanisms and

domain knowledge was proposed in [33], [34]. However, the

underlying neural networks (NNs) are trained offline and the

weights keep fixed after training, which makes the designed

algorithms mainly suitable for static environments [34].

In view that WCs are the process that constantly interacts

with ever-changing environments and to make full use of

the domain knowledge and established models of WCs over

the past several decades, we consider an ILDP for WCs.

ILDP includes two modules, i.e., the communication model

(CM) module and the adaptive learning (AL) module. The

CM module can take full advantage of existing models and

methods in WCs (e.g., sophisticated optimization techniques),

and meanwhile the AL module utilizing the powerful ML

techniques is in charge of extracting interested information

from the environments which is difficult to obtain by conven-

tional methods. The two modules work in an INTERACTIVE

manner.

The proposed ILDP is implemented via DRL, which is

a ML methodology that learns interactively from the envi-

ronments. Moreover, DRL can extract and exploit interested

information from historical experiences and gradually improve

the performance [35]. These features make DRL particularly

suitable for WCs. The mathematical foundation of DRL is

Markov decision process (MDP). For completeness, a brief

introduction of MDP and the deep Q-network (i.e., DQN, a

powerful DRL algorithm) is provided in Appendix A. The

key to exploit the proposed DRL-ILDP principle in WCs is

to formulate the problem at hand as an MDP via carefully

defining the states, the actions and the rewards. In particular,

the domain knowledge, prior information and other system

features can be embedded or encoded into the states, while

the optimization variables and objectives are transformed into

the actions and rewards, respectively.
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Fig. 1. A sketch of DRL-ILDP based beam training design principle.

In this paper, we exploit the DRL-ILDP to design the

beam training in the afore-introduced mmwave communication

system, whose sketch is shown in Fig. 1. The main task in

each time-slot is to obtain the analog and digital precoding

matrix/vectors. The individual roles of the CM and AL mod-

ules are as follows:

• The CM module consists of two components, i.e., digital

precoder optimization and beam sweeping, whose roles

are to determine the analog and digital precoders. The

analog precoder (i.e., matrix A) is determined via local

beam sweeping, and the digital precoder is obtained via

optimization techniques.

• The AL module is in charge of determining the beam

sweeping subspace, which is influenced by the ever-

changing physical environment caused by various factors

(e.g., the mobility of UE). The AL method is used to

extract interested statistical and probabilistic information

from environments.

To better fulfill each individual goal, mutual interactions be-

tween CM and AL are of great importance. In each time-slot,

CM feeds necessary experiences to AL, which are stored in

the memory. The experiences include: (1) beam spatial pattern

of the environment that reflects the change of the physical en-

vironment 2; and (2) feedback (e.g., effective achievable rate)

that measures the quality of the decisions made by AL. The

AL module extracts statistical information from the collected

experiences and makes efficient decisions. More exactly, AL

provides CM with a beam sweeping subspace, which reflects

the change of the exterior physical environment. In particular,

the size of the beam subspace measures the variance of the

change of the environment. As more experiences are collected,

the decisions made are more intelligent and yield a better

performance.

Compared to the existing data-driven or model-driven de-

sign paradigms, ILDP is interactive and collaboratively driven

2Beam spatial pattern includes beam directions and signal strength on each
beam direction, spatial distribution, rate of change of the environment, and
so on, which can be obtained by beam subspace sweeping and beam image
construction.
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by model and data. In DRL-ILDP, the underlying NN is

trained online with the training data obtained from the real-

time environment, which guarantees that the ILDP based algo-

rithms can sufficiently adapt to the environment. The resulting

transmission strategy is the consequence of the interaction of

the CM and AL modules, thus bearing the advantages from

both CM and AL. It should be pointed out that although

the advantages of DRL are apparent, a possible drawback of

DRL is that the convergence rate may be slow. In this paper,

we speed up the convergence by explicitly extracting features

via the BI technique. In addition to DRL, another important

approach that can incorporate domain knowledge (e.g., WC

models) in WC designs is (deep) transfer learning [36], [37].

Typically, (deep) transfer learning is suitable for low-mobility

scenarios (e.g., pedestrian cellular networks), without worrying

about the convergence issue in this case.

IV. INTELLIGENT BEAM TRAINING DESIGN FOR

MULTI-USER COMMUNICATIONS

In this section, we investigate an intelligent beam training

design for the multi-user communications under the guide of

DRL-ILDP. For this purpose, we first formulate the problem

of beam training an MDP.

A. MDP Modeling

In this subsection, we formulate the beam training problem

as an MDP. Before proceeding to details, we introduce the

basic principle first. Note that since mmwave channels are

sparse in the beam domain, most elements of the equivalent

channel vectors {hu} are near zero (i.e., {hu} are also sparse)

and it is sufficient to estimate the large non-zero elements of

{hu}. Hence, if we can estimate these large non-zero elements

by intelligently training the corresponding beams, which are

often a small subset of the analog codebook F , the overhead of

beam training can be effectively reduced. Next, we formulate

the problem of beam training as an MDP, i.e., define all the

elements in the tuple E = {S,A,P,R, T}. 3

1) Action Space: Due to the discrete nature of the training

codebook C, it is intuitive to define each beam in C as an action

[25], [26]. However, because the change of the environment is

often stochastic, it is difficult to accurately predict the beam

in the next time-slot. To improve the robustness of designed

algorithms, instead of defining each action as a single beam,

each action is defined as a (beam) subset of C in this paper,

as shown in Fig. 2. For convenience, the indices of the beams

in the subset are assumed to be continuous. Then, the subset

can be described by a pair of integers.

Definition 1. (1) For a single UE, an action is defined by a

pair of integers (a, b), where a and b denote the start beam

index and the size of the subset, respectively. The beam subset

3Note that there is no need to explicitly define the transition probabilities
P in DRL, which is an advantage of DRL algorithms. As for the decision
epoch, due to beam sweeping, a time-slot (or coherence block) is divided into
three phases, i.e., beam sweeping, hybrid precoding and data transmission. A
decision epoch corresponds to the beginning of a time-slot.
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Fig. 2. Each action is defined as a subset of the codebook. Note that different
subsets may overlap.

corresponding to (a, b) is {fa, fa+1, · · · , fa+b−1}.
(2) Let the action space for MU u be denoted by

Au = {(au1 , bu1 ), (au2 , bu2 ), · · · , (auL, buL)}, (2)

where L is the size of the action space. The action space for

all U MUs is the product of {Au}, i.e., A =
∏U

u=1Au.

Remark 4.1 For a chosen action (a, b), the second compo-

nent b characterizes the variance of the rate of the change of

the environment. Intuitively, if the environment changes more

irregularly, more beams (i.e., a larger b) should be swept in

order to avoid misalignment.

A drawback of the previous method (according to Definition

1) to construct an action space is that it is unable to sense the

rate of the change of the environment (e.g., due to movements

of the MUs). Moreover, the action space may be very large,

especially when the codebook F is large. To tackle the issue,

we adopt beam index difference (BID) technique. In particular,

the first component a in an action (a, b) now denotes the

difference (or offset) of the indices of the (two) optimal beams

in two adjacent time-slots, rather than an absolute beam index.

Remark 4.2 The BID technique is critical to the designed

algorithms, typically, enabling sensing the rate of the change

of the environment and shrinking the action space (and thus

reducing the complexity). As an example, we explain how

the BID technique shrinks the action space, since the offset

(or difference) characterizes the rate of the change of the

environment, which is unlikely to be large, and the two

components of each action jointly define a training beam

subset, the action space constructed via BID is much smaller

than the original action space.

Now, given an action (aui , b
u
i ) of MU u in time-slot t, the

beams used by the BS to sweep the beam space in time-slot

t are

Ft,u(a
u
i , b

u
i ) = {fut+au

i
, fut+au

i
+1, · · · , fut+au

i
+bu

i
−1}, (3)

where fut
denotes the optimal beam of MU u in the previous

time-slot t − 1. The beams used to sweep the beam space at

the beam sweeping phase of time-slot t are

Ft =

U
⋃

u=1

Ft,u. (4)

Due to the sparsity of mmwave channels, Ft is a subset of F ,

whose size is much smaller than that of F .
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2) State Space: Let the equivalent channel vector of MU u
in time-slot t be denoted by ht,u. Then, the modulus of all

components of ht,u forms a real vector, denoted by It,u, i.e.,

It,u(i) = |ht,u(i)|. (5)

Note that in Eq.(5) and throughout this paper, for a vector,

e.g., x, its i-th element is denoted by x(i). As shown in Fig.

3-(a), by stacking It,1, It,2, · · · , It,U into a matrix It, i.e.,

It = [It,1, It,2, · · · , It,U ] ∈ R
M×U , (6)

we can obtain an “image” It, i.e., beam image. Note that It
characterizes the distribution and strengths of effective channel

paths in the spatial/beam domain in time-slot t.

1t c- +I

{ {





{

1t-I t
I

MU1 MU2 MU1 MU2 MU1 MU2

t
S

'

1t c- +I
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t
I
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MU1+ 
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(a)
t
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{

Fig. 3. An illustration of how to define a state. The blue dots denote non-zero
channel coefficients. (a) The modulus of equivalent channel vectors forms a
sparse image. (b) A state is defined by several successive beam images. (c) A
compressed channel image can be obtained by stacking all equivalent channel
vectors of different MUs in the same time-slot.

It is intuitive to define It as the MDP state St corresponding

to time-slot t, which is, however, inappropriate since each

single BI is static. As shown in Fig. 3-(b), to capture the

change of the environment, we define St by stacking several

successive BIs, i.e.,

St = [It−c+1, It−c+2, · · · , It], (7)

where c is the number of successive images. Experiments show

that a good performance can be achieved even for c = 2. For

convenience, the technique that defines the MDP states via the

BIs is referred to as beam image construction (BIC).

BIs have important and interesting properties and play a

key role in beam training. Firstly, BIs construct an effective

mapping from the spatial domain onto a two-dimensional

grid (i.e., images), which provides an efficient and intu-

itive channel/beam representation. The representation builds

a connection between WC and image processing (IP), which

facilitates the use of advanced IP techniques (e.g., deep

convolution NNs). Secondly, the representation captures the

spatial/beam pattern of channel environment and its change,

and improves the stability and robustness of the beam training

algorithms, e.g., when the path gains vary quickly. Finally,

the representation is efficient. In fact, thanks to the sparsity of

mmwave channels, It is sparse and most elements of It are

near zero. The sparsity of {It} further implies compressibility,

which helps to save computing and storage resources. As

shown in Fig. 3-(c), a compressed BI I
′
t can be obtained by

summing It with respect to the row, i.e.,

I
′
t = It,1 + It,2 + · · ·+ It,U . (8)

Now, the size of St is M × c, rather than M × Uc.

3) Reward Function: Having performed the action At in

time-slot t, i.e., swept the beam space with Ft, we can obtain

the equivalent channel vectors {ht,u}. With {ht,u} available,

we further optimize the analog and digital precoding vectors.

Due to the sparsity and directionality of mmwave channels,

the codeword that corresponds to the strongest element of hu

best matches the channel path. Therefore, it is reasonable to

select the codeword whose array gain is largest. Without loss

of generality, let |hu(ku)| ≥ |hu(j)|, (∀ j 6= ku). Then, the

analog precoding vector chosen for MU u is set to fku
.

With {hu} available, we can now consider different design

goals, e.g., sum-rate maximization or max-min optimization

design. In this paper, we take the goal of maximizing system

sum-rate as an example. Note that the analog precoder has

been determined via beam sweeping. The remaining task is to

optimize the digital precoder. By introducing a binary selection

matrix B ∈ R
M×U such that

B(i, j) =

{

1 i = ku and j = u

0 otherwise,

the design goal can be formulated as

max
{vu}

∑

u∈U

log

(

1 +

∣

∣h
H
uBvu

∣

∣

2

∑

v 6=u

∣

∣hH
uBvv

∣

∣

2
+ σ2

)

s.t.
∑

u∈U

‖FBvu‖2F ≤ Pm,

(9)

where Pm denotes the maximal transmit power of the BS.

An efficient algorithm is provided in Appendix B to solve

optimization problem (9).

Let the optimal objective function value of problem (9) be

f opt
t . The immediate reward in time-slot t is defined as the

effective achievable sum-rate, which takes the overhead of

beam training into consideration. Specifically, the immediate

reward in time-slot t is defined by

Rt =
(

1− (|Ft|tS + tP)/tC

)

f opt
t , (10)

where |Ft| denotes the cardinality/size of Ft, tS denotes the

duration of transmitting one beam chosen from Ft, tP denotes

the duration of precoding and learning (of DRL algorithms),

and tC denotes the duration of one time-slot. Generally speak-

ing, there are two principles for designing the rewards: (1)

the rewards should reflect the quality of the chosen actions in

terms of the chosen performance metric; and (2) the rewards

shall incorporate original design objective and induce the agent

to make optimal decisions. Note that
(

1−(|Ft|tS+tP)/tC

)

and

f opt both measure the quality of the chosen action, and f opt

also reflects the design objective of maximizing the achievable

sum-rate.
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B. Multi-user Intelligent Beam Training Algorithm

Since the problem of beam training has been formulated as

an MDP, efficient beam training algorithms can be obtained

by integrating different RL algorithms into the beam training

procedure. Because the states are continuous while the actions

are discrete, DQN can be used to solve the MDP. For ease

of understanding, we choose the basic version of the DQN

algorithm. 4 Note that based on other RL algorithms, one can

also derive the corresponding beam training algorithms.

For clarity, the DQN based intelligent (environment sensing)

beam training algorithm is summarized in Algorithm 1. DQN

is initialized in step 1. At the beginning of each episode 5, U
initial reference beams of all MUs have to be found out first,

based on which a subset Ft ⊆ F can be constructed according

to (4) and used to sweep the beam space locally. 6 Analog

and digital precoding vectors are obtained by performing steps

(a)-(1) - (a)-(3). With the analog and digital precoding vectors

available, downlink data transmission is performed in step (b).

The parameters of DQN are updated in step (c). Note that since

the ε-greedy strategy is adopted to explore the environment,

it may fail to find out the optimal analog precoding vectors,

i.e., misalignment. If misalignment occurs, this episode is

ended and the initial reference beams should be updated,

typically, via exhaustive or hierarchical search. Similarly, if

it is found (e.g., via monitoring the achievable rate) that the

current environment becomes worse (e.g., switching from LOS

to NLOS), periodical beam sweeping with a larger beam

subspace (if required, even the entire beam space) should

be conducted subsequently, so as to get away from the bad

environment as soon as possible.

The convergence of Algorithm 1 has been demonstrated

through a large number of simulation experiments, although a

rigorous proof is still unavailable. Recently, it has been shown

that DQN (but with a slight simplification) also theoretically

converges under appropriate assumptions [40], which partly

solved the problem. Algorithm 1 can be directly applied

to multi-path mmwave channels, where the beam with the

strongest path gain is trained and tracked with a high proba-

bility. Algorithm 1 can also be extended to wideband mmwave

channels by employing standard multi-carrier techniques such

as OFDM and regarding each subcarrier as an independent

environment and invoking the algorithm independently. For

special channels, e.g., the subchannels are highly-correlated

or satisfy group sparsity, the implementation complexity can

be further reduced.

In practice, there are two typical schemes to embed Algo-

rithm 1 into a practical system. The first one is online learning

4Note that various algorithms (e.g., Dueling DQN [38] and Rainbow [39])
have been proposed to overcome part of the defects of the basic DQN to
improve its performance. However, we still choose the most basic DQN due
to its simplicity, which can also achieve a good performance.

5In RL, agent-environment interaction often breaks into subsequences (i.e.,
episodes). Each episode ends in a special state called terminal state. As for
beam training or tracking, if misalignment occurs, this episode is thought to
be ended and the reference beams should be updated. Each episode usually
consists of multiple time-slots. As the algorithm learns more knowledge from
the environment and can make more intelligent decisions, less misalignments
occur and thus each episode will consist of more time-slots.

6The reason for this is that the actions are designed based on beam index
difference and only beam index offsets are available.

Algorithm 1: Environment Sensing Beam Training for

Multi-user Communication System

1 initialize DQN: (1) replay memory D; (2) Q-function

with random weights θ; (3) target Q-function with

weights θ′ = θ

2 for each episode do

(1) sweep entire beam space to obtain U initial

reference beams

(2) let t = 1 and in time-slot t do

(a) obtain analog and digital precoding vectors

(1) choose action at according to ε-greedy

strategy

(2) execute action at and observe next state

st+1

(3) compute reward rt and obtain precoding

vectors

(b) transmit data in the remaining of time-slot t

(c) update parameters θ′ and θ of DQN

(1) store transition (st, at, rt, st+1) in D

(2) sample random mini-batch of transitions

from D

(3) perform gradient descent step with

respect to θ

(4) reset network parameters θ′ = θ every

fixed steps

(d) let t← t+ 1

until current episode ends.

and offline prediction, which is mainly suitable for stationary

environments. In this scheme, the system operation consists of

two phases, i.e., online learning phase and offline prediction

phase. In the first phase, the algorithm senses the environment

and learns required knowledge from the environment. Then,

the algorithm switches to the second phase (i.e., the prediction

phase) and makes predictions based on the learned knowledge.

If the environment is non-stationary, the algorithm has to keep

sensing the environment and continue optimizing its behavior

(i.e., update the underlying NN) in each time-slot. This is

the second scheme, referred to as continuous online learning

scheme. Compared with the first scheme, the application scope

of the second scheme is more extensive.

V. EXTENSION - INTELLIGENT BEAM TRAINING DESIGN

FOR USER-CENTRIC COOPERATIVE COMMUNICATIONS

By exploiting the dual relationship between the multi-user

communication and user-centric cooperative communication,

in this section we extend the multi-user communication design

to the user-centric cooperative communication case.

A. User-Centric Cooperative Communication

Consider a user-centric cooperative mmwave communica-

tion system in a mmwave ultra-dense network, where one MU

is cooperatively served by V BSs. Note that the BSs can also
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be replaced by other types of access points. For example, in

a fog radio access network, the BSs are replaced by enhanced

remote radio heads (eRRHs). Each BS is equipped with N
antennas and connected to a central processing unit (e.g., base-

band processing unit) via an error-free fronthaul link.

Let the channel vector between BS b and the MU be h̄b.

The signal received by the MU can be written as

y =
V
∑

b=1

√
pbh̄

H
bAbvbs+ w,

where pb, Ab, vb and w ∼ CN (0, σ2) denote the transmit

power (of BS b), the analog precoding matrix, the digital

precoding vector and the complex Gaussian random variable,

respectively. The transmitted signal for the MU is denoted by

s and satisfies E[ss∗] = 1. Each component of Ab has a unit

amplitude, i.e.,

|Ab(i, j)| = 1, (1 ≤ i ≤M, 1 ≤ j ≤ Nb),

where Nb is the number of RF chains that BS b allocates to

the MU. The SNR for the MU can be expressed as

γ =

∣

∣

∣

∣

V
∑

b=1

h̄
H
bAbvb

∣

∣

∣

∣

2

.

A codebook based analog beamforming is also considered for

the user-centric cooperative system, i.e., each column of Ab

is selected from an analog codebook F . Then, the design goal

is accordingly formulated as

max
{Ab,vb}

log(1 + γ) s.t. Ab(:, n) ∈ F , ‖Abvb‖2F ≤ Pb.

(11)

where Pb denotes the maximal transmit power of BS b.
Note that solving problem (11) requires CSI of all BSs,

which is difficult to obtain in practice. Next, we will address

this problem by formulating it as an MDP and then solving

it via DRL. Before proceeding to details, it is necessary to

point out the differences between the multi-user communica-

tions (MUC) and the user-centric cooperative communications

(UCCC). They include action space construction and reward

function design and solving, among which the most difficult

issue is action space construction. Since multiple BSs serve

a single MU and some BSs may use multiple beams simul-

taneously, the method to construct action space in MUC is

inapplicable to UCCC. To tackle this issue, we exploit a dual

relationship between MUC and UCCC.

B. MDP Modeling

To solve the beam training problem in UCCC, it is important

to exploit the dual relationship between MUC and UCCC.

Specifically, the MU in UCCC, which is the focus of a UCCC

system, plays a similar role of the BS in MUC. In other words,

the MU in UCCC is a virtual “BS”. Accordingly, the BSs in

UCCC play a similar role of the MUs in MUC, which are

virtual “MUs”. The essence of formulating the problem of

beam training as an MDP is to define the decision epochs,

states, actions and rewards of the MDP. A decision epoch of

UCCC is similar to that of MUC, which is omitted here. The

actions, states and rewards are defined as follows.

1) Action Space: The dual relationship between UCCC and

MUC implies that each BS in UCCC has an action space and

takes an action in each time-slot. However, a BS may allocate

and track multiple beams for the MU, as shown in Fig. 4.

The method to construct action space in MUC cannot be used

directly. Otherwise, the action space will be too large, and the

number of beams required to sweep the beam space in each

time-slot will also be very large. To address this issue, each

of these beams acts as a virtual MU and corresponds to an

action space.

BSBS
MU
Virtual BS

Virtual MU 3

Virtual MU 1

Virtual MU 2
Beam 2

Beam 1

Beam 3

Fig. 4. A BS may align and track multiple beams. In this case, each beam
acts as a virtual MU.

To fully utilize the hardware resources, it is assumed that

the number of beams that BS b allocates to the MU (i.e., the

number of virtual MUs belongs to BS b) is Nb, which may be

larger than 1. Then, the action space of BS b is defined as

Ab =
∏

k∈Nb

Ak,

where Nb = {1, 2, · · · , Nb} is the set of virtual MUs of BS

b, and Ak is the action space for virtual MU k. Similar to the

MUC case, the action space for virtual MU k is defined as

Ak = {(ak1 , bk1), (ak2 , bk2), · · · , (akL, bkL)},
where L is the size of the action space. The entire action space

for the UCCC system is the product of Ab, i.e.,

A =

V
∏

b=1

Ab.

For a given action a ∈ A in time-slot t, a beam subset Ft can

be constructed according to (3) and (4) to sweep the beam

space locally.

2) State Space: Similar to the MUC case, the equivalent

channel vector of virtual MU u in time-slot t is denoted by

ht,u. Then, the modulus of each component of ht,u also forms

a vector, denoted by It,u, i.e.,

It,u(i) = |ht,u(i)|.
Let U ′ =

∑V
b=1 Nb. Stacking It,1, It,2, · · · , It,U ′ of all virtual

MUs into a matrix yields a beam image, i.e.,

It = [It,1, It,2, · · · , It,U ′ ] ∈ R
M×U ′

.

The beam image It characterizes the distribution of effective

channel paths in the beam domain, which is often sparse due

to the sparsity of mmwave channels.

To capture the change of the environment, the state St is

similarly defined by several successive beam images, i.e.,

St = [It−c+1, It−c+2, · · · , It],
where c denotes the number of successive beam images.
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3) Reward Function: The immediate reward Rt in time-slot

t is defined as the effective achievable rate, i.e.,

Rt =
(

1− (|Ft|tS + tP)/tC

)

f opt
t , (12)

where the meaning of Ft, tS, tP and tC is similar to that in (9).

f opt
t in (12) is the optimal objective function value of problem

(11). Let hb = A
H
b h̄b with Ab determined via beam training.

Then, problem (11) can be rewritten as

max
{vb}

∣

∣

∣

∣

V
∑

b=1

h
H
b vb

∣

∣

∣

∣

2

s.t. ‖Abvb‖2F ≤ Pb. (13)

An iterative algorithm is designed to solve optimization prob-

lem (13). Please refer to Appendix C for more details.

C. User-Centric Intelligent Beam Training Algorithm

Since the problem of beam training has been formulated as

an MDP, efficient beam training algorithms can be obtained

immediately. For simplicity, we still choose the basic DQN

algorithm, which yields a DQN based intelligent beam training

algorithm. For clarity, it is summarized in Algorithm 2.

Algorithm 2: Environment Sensing Beam Training for

User-Centric Cooperative Communication System

1 initialize DQN algorithm (Similar to Algorithm 1)

2 for each episode do

(1) find out U ′ initial reference beams

(2) let t = 1 and in time-slot t do

(a) obtain analog and digital precoding vectors

(1) choose action at according to ε-greedy

strategy

(2) execute action at and observe next state

st+1

(3) compute reward rt and obtain precoding

vectors by solving problem (24)

(b) transmit data in the remaining of time-slot t

(c) update parameters θ′ and θ of DQN

(d) let t← t+ 1

until current episode ends.

In step 1, the parameters of DQN (including the weights of

Q-function network and target Q-function network, and replay

memory) are initialized. At the beginning of each episode, U ′

initial reference beams have to be found out, based on which

a subset Ft ⊆ F constructed according to (4) is used to sweep

the beam space. Analog and digital precoding vectors are

obtained by performing steps (a)-(1) - (a)-(3). With the analog

and digital precoding vectors available, data transmission can

be performed next, i.e., in step (b). Finally, the parameters of

DQN are updated in step (c), which is similar to Algorithm 2

and omitted. Note that the update of NNs in DRL algorithms,

which may require intensive computation, can be fulfilled

in the phase of data transmission by the BS with powerful

computational resources.

VI. NUMERICAL RESULTS

In this section, we evaluate the performance of the proposed

intelligent beam training algorithms via numerical results. The

simulation setting is as follows. Uniform linear array (ULA)

and the analog DFT codebook are adopted. 7 The size of the

DFT codebook F is M = N . For each MU or virtual MU u,

the action space Au is given by

Au =
{

(a, b) | a = −1, 0, 1, 2; b = 2, 4, 6
}

.

The determination of the action space depends on the scenario

or environment where the algorithms will be applied. If the en-

vironment changes more irregularly, the actions space should

be enlarged. The structure of the NN adopted in the simulation

contains one convolution layer, one down-sampling layer and

one fully-connected layer. For small-to-medium sized antenna

arrays (e.g., typically N ≤ 64), neural networks with only two

fully-connected layers also work well.

A. Multi-user Intelligent Beam Training

The simulation environment is illustrated in Fig. 5. The

channel between the BS and each MU includes one LOS path

and three NLOS paths if the LOS path is not blocked. The

speed of each MU is stochastic, but obeys a probability law.

Accordingly, switching to another beam in the next time-slot

is also stochastic and obeys some probability law. For each

MU, if the LOS path is not blocked, the probability that the

optimal beam switches to the i-th beam of the next S beams

is denoted by pS,i (i = 0, 1, · · · , S), where pS,0 represents the

probability that the optimal beam in the next time-slot is still

the current beam. As an example, two probability distributions

are considered, where {pS,i} are given by

model 1: pS,i = e−ηi

(

S
∑

k=0

e−ηk

)−1

(14)

model 2: pS,i = e−η(S−i)

(

S
∑

k=0

e−ηk

)−1

. (15)

The parameter η > 0 in (14) and (15) defines the “decay”

rate. An instance of the two probability models is provided

in Fig. 6. The probability model in (14) indicates that the

MU moves relatively slow, while the probability model in

(15) indicates that the MU moves relatively fast. Note that

the algorithms proposed in this paper are not limited by the

considered simulation models.

First, we demonstrate the crucial role of the BIC technique

used to design the beam training algorithms. It is well known

that as an important feedback from the external environment

to the agent in the reinforcement learning, the rewards are

important to making decision. According to (10), the rewards

depend on both beam training overhead and achievable sum-

rate, while the later is further determined by multiple factors,

such as transmit power and channel fading, which may affect

the performance in terms of robustness and/or stability of the

7Note that the proposed beam training algorithms also apply to other types
of antenna arrays and codebooks, e.g., a uniform planar array along with a
codebook constructed by sampling the elevation-azimuth plane.
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Fig. 5. Simulation environment - U MUs move within an annulus and the
BS is located at the center of the annulus.
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Fig. 6. An illustration of the probability distributions in (14) and (15): S = 4

and η = 1.

designed algorithms. For example, when the transmit power is

changed, the reward will also be changed, which may induce

the agent to take a wrong action.
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Fig. 7. The AEASR performance of Algorithm 1 (averaged over 300
realizations). The dotted lines represent the optimal performance, i.e., the
optimal actions are taken each time.

Fig. 7 demonstrates the stability of Algorithm 1. Average

effective achievable sum-rate (AEASR) is, in fact, the average

immediate reward calculated according to (10). In particular, in

addition to the change of beam directions, the transmit power

is also changed randomly within {0dB, 3dB, 6dB, 9dB, 12dB,

15dB} every 200 time-slots. It is observed that a near optimal

performance in terms of effective achievable sum-rate can still

be achieved at/near the point where the transmit power has

just changed, which indicates that Algorithm 1 is robust to

the change of transmit power. The reason for this is two-fold.

Firstly, the agent takes the current state into account when

making decisions 8. Secondly, and more importantly, the states

are designed via BIC, which can extract and encode important

information about the environment (e.g., beam spatial pattern,

rate of change of the environment, and so on) and helps the

agent make wise decisions. Therefore, the designed algorithm

is robust to the change of transmit power and achieves a stable

performance.
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Fig. 8. The learning (or convergence) performance of Algorithm 1, which
is obtained by averaging over 300 simulation realizations. The dotted lines
represent the optimal performance.

Next, we demonstrate the learning (or convergence) perfor-

mance of Algorithm 1, as shown in Fig. 8. Similarly, during

the learning process, the transmit power is randomly changed

every 500 time-slots. It is observed that Algorithm 1 learns

fast and converges within about 550 time-slots. Interestingly,

it is observed that the learning performance of (probability)

model 1 is similar to that of model 2, although the MU in

model 2 moves faster than the MU in model 1. This attributes

to the use of the beam index difference technique. In fact, the

component a in the action (a, b) measures the rate of change

of the environment, which takes a larger value in model 2.

We next comprehensively evaluate the AEASR performance

of the designed environment sensing beam training (ESBT)

algorithm, i.e., Algorithm 1 in this paper. The simulation

results of the exhaustive search based beam training (ExSeBT)

algorithm, the hierarchical search based beam training (HSBT)

algorithm [8] and the stochastic bandit learning based beam

training (SBLBT) [41] algorithm are also provided for com-

parison.

The AEASR performance of different beam training algo-

rithms is shown in Fig. 9. It is seen that ESBT achieves the

best performance among the four algorithms, and approaches

the oracle aided beam training (OABT) algorithm 9. The

reason for this is that ESBT can sense the change of the

environment, and adjusts beam training strategy intelligently,

which reduces the training overhead and reserves more time

8Note that a policy is defined by a mapping from a state to a probability
distribution.

9The optimal beams are provided by oracle, causing no training overhead.
It is an optimal but ideal algorithm, which is often used as a benchmark.
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Fig. 9. The AEASR performance of different beam training algorithms -
S = 4 and model 1 in (14).

for data transmission. Although ESBT and ExSeBT can find

the optimal beams and thus achieve large array gains, the

training overhead is too large, which reduces the AEASR

performance. Similar to ESBT, SBLBT also sweeps the beam

space locally. However, the change of the beamforming gain

(e.g., due to the random locations of the MUs) affects the

rewards, which induces the algorithm to take sub-optimal

decisions. In contrast, the BIC technique used in ESBT greatly

mitigates and even avoids this adverse effect.
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Fig. 10. The AEASR performance of ESBT and ExSeBT for the two
probability models - S = 4.

Fig. 10 demonstrates the AEASR performance of ESBT and

ExSeBT for the two probability models. It is not surprising

that ExSeBT achieves the same AEASR performance for the

two probability models, since its training overhead keeps fixed

when the size of the codebook is given. Nevertheless, it is

interesting to observe that the AEASR performance corre-

sponding to model 2 achieved by ESBT is almost the same

as that corresponding to model 1, although the environment

corresponding to model 2 varies faster than that corresponding

to model 1. The reason for this is that although the average

rate of change of the environment in model 2 is larger than

that in model 1, the variances of the rates of the changes of

the two models are the same. Hence, the training overheads

corresponding to the two models are the same, which leads to

almost the same AEASR performance. This is an important

and desirable feature of ESBT.

B. User-Centric Cooperative Intelligent Beam Training

The simulation environment is illustrated in Fig. 11. Similar-

ly, the channel between the MU and each BS includes one LOS

path and three NLOS paths, and switching to another beam

in the next time-slot is stochastic and obeys some probability

law. In view of the similar performance achieved for model 1

and model 2, we consider another probability model, i.e.,

model 3: pS,i =
1

S + 1
. (16)

It can be verified that the variance of the rate of the change

of the model in (16) is larger than that of the model in (14)

or (15).

BS 1

O

BS 2

1t 
2t 

t n

t



Fig. 11. Simulation environment - the MU moves within an annulus and
two BSs are located within the inner circle of the annulus.

In the previous subsection, we have demonstrated the learn-

ing performance of Algorithm 1. Note that due to the dual

relationship between Algorithm 1 and Algorithm 2, the two

algorithms share many characteristics, e.g., the learning per-

formance and beam tracking performance. For this reason, the

learning performance of Algorithm 2 and the beam tracking

performance of Algorithm 1 will not be provided due to space

limitation.
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Fig. 12. The beam tracking performance of Algorithm 2 in the training
process, which is obtained by averaging over 100 simulation realizations.

We first evaluate the beam tracking performance of Algo-

rithm 2. Since an episode is defined as a process from the ini-

tial alignment until failure, the number of time-slots contained
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in each episode during the learning process characterizes the

beam tracking performance. As shown in Fig. 12, one can

observe that more and more time-slots are contained in the

episode as the episode index increases, which indicates that a

better and better beam tracking performance is achieved. Note

that this coincides with our intuition. In fact, this is because

more and more knowledge is learned from the environment,

which helps to take actions more intelligently. It is also seen

that Algorithm 2 performs better in model 3 than in model 1.

The reason for this is that the experiences collected in model

3 are more well-balanced.
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Fig. 13. The probabilities that all beams are successfully aligned by different
beam training algorithms - S = 4 and probability model 1 in (14).

Fig. 13 shows the probabilities that all beams are successful-

ly aligned by Algorithm 2, ExSeBT and HSBT (by necessary

modifications). It can be observed that ExSeBT achieves the

highest probability of successful alignment. However, ExSeBT

sweeps the entire beam space, which is time-consuming and

may be inapplicable if the channel or the environment varies

fast. Although the probability of successful alignment of

ExSeBT is a bit higher than that of ESBT, the gap between

the two algorithms becomes negligible as SNR or the number

of antennas increases. It is also observed that HSBT achieves

the worst performance, because HSBT is mainly suitable for

the situation where different beams are sufficiently separated.
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Fig. 14. The AEAR performance achieved by ESBT for the two probability
models - S = 5.

Fig. 14 shows the average effective achievable rate (AEAR)

performance achieved by ESBT for probability models 1 and 3

with S = 5. It is observed that the AEAR performance corre-

sponding to model 3 is lower than that corresponding to model

1. The reason is as follows. The optimal action corresponding

to model 3 is (0, 6), which can both avoid misalignments

and achieve a good AEAR performance. However, this action

is not optimal for model 1. In fact, although misalignments

can be avoided by taking this action, the resultant training

overhead is also large, which, on the contrary, can decrease

the AEAR performance. In view of the fact that PS=5,5 is

very small, the action (0, 5) (maybe (0, 4)) may be a better

choice. More specifically, although the action may cause some

misalignments (but with a very small probability), the overall

training overhead has been reduced. The analysis sufficiently

indicates that ESBT can intelligently make decisions and take

actions.
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Fig. 15. The AEAR performance of different beam training algorithms -
S = 4 and probability model 1 in (14).

Fig. 15 demonstrates the AEAR performance of differen-

t beam training algorithms, including ExSeBT, HSBT (via

necessary modifications) and SBLBT (also with some mod-

ifications). Similar to the MU case, it is observed that ESBT

achieves the best performance among the four beam training

algorithms, and approaches the performance of the ideal

OABT algorithm. It is not a surprise since ESBT can adjust the

beam training strategy intelligently by firstly sensing the rate

of change of the environment. In contrast, SBLBT is affected

by the fluctuation of the array gain (e.g., due to the random

location of the MU or the transmit power), while the training

overhead of ExSeBT and HSBT is large, which finally reduces

their AEAR performance.

VII. CONCLUSION

In this paper, we proposed an efficient beam training design

from the perspective of environment sensing. To facilitate the

combination of communication domain knowledge and ML

techniques, we proposed a WC-suitable interactive learning

design paradigm. Then, we proposed an efficient beam training

design from the perspective of environment sensing. Specifi-

cally, we first formulated the problem of beam training as a

MDP. To capture the dynamic spatial patterns of environments,

the BIC technique was proposed to define MDP states. Then,
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an efficient beam training algorithm was further proposed for

multi-user communications by integrating DQN into the beam

training procedure. Next, we extended the design to the case

of user-centric cooperative communication. Finally, simulation

results were provided to demonstrate the effectiveness and su-

periority of our designs. Particularly, the designed algorithms

require no priori knowledge of dynamic channel modeling,

and thus can apply to a variety of complicated scenarios.

APPENDIX A

MARKOV DECISION PROCESS AND DEEP REINFORCEMENT

LEARNING

In this appendix, we briefly introduce Markov decision

process (MDP) and DRL, to simplify the description of DRL

based beam training designs.

A. Markov Decision Process

An MDP is defined by a tuple E = {T ,S,A,P,R}, which

consists of five elements, i.e., decision epochs, states, actions,

transition probabilities and rewards. Decisions are made at

points of time referred to as decision epochs and denoted

by T = {1, 2, 3, · · · , }. An element of T is denoted by t
and referred to as “time t”. S and A are sets called the state

space and action space, respectively. P = {p(s′|s, a) | s′, s ∈
S, a ∈ A} defines the one-step dynamics of the environment.

Specifically, p(s′ | s, a) denotes the transition probability that

the agent transitions from s to s′ when taking action a, i.e.,

p(s′ | s, a) = P(St+1 = s′ |St = s,At = a),

where St and At are the state and action at time t, respectively.

R = {r(s, a) | s ∈ S, a ∈ A} is a collection of rewards for all

possible state-action pairs. When the agent takes action a in

state s, it receives a reward r(s, a).
A policy is used to select actions by the agent. It is usually

a (randomized) mapping and denoted by πθ : S → M(A),
where M(A) is the set of probability measures on A and θ
denotes parameters. Particularly, πθ(at|st) is the conditional

probability at st associated with the policy. Using the policy

to interact with the environment gives a trajectory of states,

actions and rewards over S ×A× R, which is denoted by

H1:T = {s1, a1, r1, s2, a2, s2, · · · , sT , aT , rT },
where T is a positive integer and could be ∞.

The return Dγ
t is defined as cumulative discounted reward

from time t onwards, i.e.,

Dγ
t =

∞
∑

k=0

γkr(st+k, at+k),

where γ ∈ (0, 1) is the discounted factor. The value of a state

s under a policy π, denoted by vπ(s), is defined as

vπ(s) = Eπ

[

Dγ
1

∣

∣S1 = s
]

, (17)

where Eπ denotes the expectation on the interaction sequence

under the policy π. Similarly, the value of taking action a in

state s under the policy π, denoted by qπ(s, a) and referred

to as Q-function or Q-value, is defined as

qπ(s, a) = Eπ

[

Dγ
1

∣

∣S1 = s,A1 = a
]

. (18)

The goal of reinforcement learning is to find a policy which

(approximately) maximizes the cumulative discounted reward

from a start state, i.e.,

max J(π) = E
[

Dγ
1

∣

∣π
]

.

B. Deep Reinforcement Learning

If the complete information of the MDP are available, dy-

namic programming can be used to solve the MDP. However,

obtaining complete MDP, especially the transition probabilities

P , is often difficult and even impossible. To circumvent this

difficulty, the Reinforcement Learning (RL) methodology has

emerged [35]. Q-learning is the most well-known and widely

used one among various RL algorithms. The key of Q-learning

is the following update formula

q(s, a)← (1− α)q(s, a) + α[r + γmax
a′

q(s′, a′)], (19)

where α is the learning rate, r is the immediate return, q(s, a)
is the Q-value for the current state s and action a pair, and

q(s′, a′) is the Q-value for the state action pair at the resultant

state s′ after action a was taken at state s.

Despite its popularity, Q-learning is a table-based algorithm

and mainly suitable for small-scale discrete problems due to

the limitation of memory and computational capacity. To solve

MDPs with large or continuous state space, deep Q-network

(DQN) was proposed in [42], where deep NNs (DNNs) are

used as function approximators for the Q-values. Specifically,

DQN uses a DNN with weights θ to parameterize the Q-value

q(s, a), which yields q(s, a; θ).
To train the DNN, DQN starts with some random initial-

ization of the Q-value q(s, a; θ0), where θ0 denotes the initial

weights. Then, an approximation q(s, a; θk) of the Q-value at

the k-th iteration is updated towards the target

ytar
k = r + γmax

a′∈A
q(s′, a′; θk). (20)

The weights θk are updated via stochastic gradient descent by

minimizing the square loss

LDQN =
(

q(s, a; θk)− ytar
k

)2
,

which amounts in updating the weights as follows

θk+1 = θk + α
(

ytar
k − q(s, a; θk)

)

▽θkq(s, a; θk). (21)

When updating the weights θ, the target ytar
k changes as well,

which makes the training instable. To address this issue, two

important features are added to DQN, i.e., set target network

to compute target Q-values and use experience replay. First,

the target Q-value in (20) is replaced by q(s′, a′; θ−k ), where

its weights θ−k are updated only every C ∈ Z
+ iterations with

the assignment: θ−k = θk. The second feature added to DQN is

experience replay. The key idea is that the agent can store its

experiences and use them in batches to train the DNN. Storing

the experiences allows the agent to randomly draw batches

and helps the network to learn with approximate independent

samples. Each of these experiences are stored in the form of

state, action, reward and next state, i.e., < s, a, r, s′ >. A

sketch of the DQN algorithm is provided in Fig. 16. More

details about DQN can be found in [42].
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Fig. 16. A sketch of the DQN algorithm.

APPENDIX B

ALGORITHM TO SOLVE PROBLEM (9)

Problem (9) can be solved via successive convex approxi-

mation (SCA) [43] or inner approximation (IA) [44], either

of which has been widely developed for wireless network

optimization [45]–[47]. The algorithm designed in this paper

follows the IA approach. To solve problem (9), we introduce

2U auxiliary variables {pu, qu} and equivalently write prob-

lem (9) into

max
{vu,pu,qu}

∑

u∈U

log(1 + pu)

s.t. σ2 +
∑

v 6=u

∣

∣h
H
uBvv

∣

∣

2 ≤ qu

∣

∣h
H
uBvu

∣

∣

2

qu
≥ pu,

∑

u∈U

‖FBvu‖2F ≤ Pm.

(22)

An iterative algorithm can be designed to solve the problem

in (22). Specifically, in the (n+1)-th iteration, we shall solve

the following convex optimization problem

max
{vu,pu,qu}

∑

u∈U

log(1 + pu)

s.t. σ2 +
∑

v 6=u

∣

∣h
H
uBvv

∣

∣

2 ≤ qu, (u ∈ U)

2Re
(

v
H
u,nB

H
huh

H
uBvu

)

q−1
u,n−

q−2
u,n

∣

∣h
H
uBvu,n

∣

∣

2
qu ≥ pu

∑

u∈U

‖FBvu‖2F ≤ Pm,

(23)

where Re(·) represents the real part of a complex, vu,n is the

n-th iteration of vu, and the notations are defined similarly

for other variables.

For clarity, the algorithm to solve problem (9) is

summarized in Algorithm 3. Note that each constraint
∣

∣h
H
uBvu

∣

∣

2
/qu ≥ pu in (22) has been replaced by its first order

approximation in (23), which satisfies the properties required

by IA for convergence. Hence, Theorem 1 in [44] asserts that

the limit point of the sequence generated by Algorithm 3 is a

stationary point.

Algorithm 3: Reward Function Solving (MU Case)

1: input: equivalent channel vectors of U MUs

2: initialize: digital precoding vectors {vu} randomly

3: repeat

(1) construct and solve problem (23)

(2) check whether convergence criterion is met

until convergence criterion is satisfied

4: output: digital precoding vectors {v∗
u}.

APPENDIX C

ALGORITHM TO SOLVE PROBLEM (13)

Note that the problem in (13) is non-convex and an iterative

algorithm can be designed to solve this problem. For the first

step, we equivalently write problem (13) as

min
{vb},q

− q

s.t.

∣

∣

∣

∣

V
∑

b=1

h
H
b vb

∣

∣

∣

∣

2

≥ q, ‖Abvb‖2F ≤ Pb.
(24)

For convenience, let H = diag(h1,h2, · · · ,hV ) and V
H =

[vH
1 ,v

H
2 , · · · ,vH

V ]. Then, problem (24) can be rewritten as

min
{vb},q

− q

s.t. V
H
HH

H
V ≥ q, ‖Abvb‖2F ≤ Pb.

(25)

To seek a stationary point of problem (25), we resort to the

successive convex approximation (SCA). Let Vn denote the

n-th iteration of V. In the (n + 1)-th iteration, we need to

solve the following problem

min
{vb},q

− q

s.t. 2Re(VH
nHH

H(V −Vn)) +V
H
nHH

H
Vn ≥ q

‖Abvb‖2F ≤ Pb.

(26)

Note that problem (26) is convex, which can be efficiently

solved. For clarity, the algorithm to solve problem (13) is

summarized in Algorithm 4.

Algorithm 4: Reward Function Solving (UCCC Case)

1: input: equivalent channel vectors of V BSs

2: initialize: digital precoding vectors {vb} randomly

3: repeat

(1) construct and solve problem (26)

(2) check whether convergence criterion is met

until convergence criterion is satisfied

4: output: digital precoding vectors {v∗
b}.
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