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In most practical situations involving reliability optimization, there are several mutually conflicting goals such as maximizing the
system reliability and minimizing the cost, weight and volume. This paper develops an effective multiobjective optimization method, the
Intelligent Interactive Multiobjective Optimization Method (IIMOM). In IIMOM, the general concept of the model parameter vector
is proposed. From a practical point of view, a designer’s preference structure model is built using Artificial Neural Networks (ANNs)
with the model parameter vector as the input and the preference information articulated by the designer over representative samples
from the Pareto frontier as the desired output. Then with the ANN model of the designer’s preference structure as the objective, an
optimization problem is solved to search for improved solutions and guide the interactive optimization process intelligently. IIMOM
is applied to the reliability optimization problem of a multi-stage mixed system with five different value functions simulating the
designer in the solution evaluation process. The results illustrate that IIMOM is effective in capturing different kinds of preference
structures of the designer, and it provides a complete and effective solution for medium- and small-scale multiobjective optimization
problems.

1. Introduction

In most practical situations involving reliability optimiza-
tion, there are several mutually conflicting goals such as
maximizing the system reliability and minimizing the cost,
weight and volume. Sakawa (1978) considered a multiobjec-
tive formulation to maximize the reliability and minimize
the cost for reliability allocation by using a surrogate worth
trade-off method. Inagaki et al. (1978) solved a different
problem to maximize the reliability and minimize the cost
and weight by using an interactive optimization method.
The multiobjective reliability apportionment problem for
a two-component series system has been analyzed by Park
(1987) using fuzzy logic theory. Dhingra (1992) and Rao
and Dhingra (1992) researched the reliability and redun-
dancy apportionment problem for a four-stage and a five-
stage overspeed protection system, using crisp and fuzzy
multiobjective optimization approaches respectively. Ravi
et al. (2000) modeled and analyzed the problem of optimiz-
ing the reliability of complex systems as a fuzzy multiob-
jective optimization problem.

It is very difficult for a designer to specify accurately
his/her preference on the goals a priori in multiobjective
reliability optimization problems. The most effective meth-
ods have been interactive procedures (Gardiner and Steuer,

1994), which typically include alternate solution generation
and solution evaluation phases. There are three key issues
in the interactive multiobjective optimization method (Sun
et al., 1996): (i) how to elicit preference information from
the designer over a set of candidate solutions; (ii) how to
represent the designer’s preference structure in a system-
atic manner; and (iii) how to use the designer’s preference
structure to guide the search for improved solutions.

Current interactive multiobjective optimization methods
include STEM, the Geoffrion-Dyer-Feinberg procedure,
the visual interactive approach, the Tchebycheff method,
the Zionts-Wallenius method, the reference point method
(Gardiner and Steuer, 1994) and the interactive FFANN
procedure (Sun et al., 1996, 2000). Most of the methods
above do not made full use of the designer’s preference in-
formation on the generated solutions, and therefore cannot
build the model of the designer’s preference structure sys-
tematically. In Sun et al. (1996), an Artificial Neural Net-
work (ANN) model of the designer’s preference structure
is built with the objective function value vector acting as
the input and the corresponding preference value acting
as the desired output. An optimization problem is solved
with the ANN model with the objective of searching for
improved solutions. Nevertheless, the improved solutions
found in this way cannot be shown to be Pareto solutions,
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984 Huang et al.

and neither can the final solution. In Sun et al. (2000), an
ANN model of the designer’s preference structure is built
in the same way. This is then used to evaluate the Pareto
solutions generated with Augment weighted Tchebycheff
programs (AWTPs) in order to pick the 50% of the solu-
tions with the highest preference values and present them
to the designer for evaluation. The use of the ANN model
reduces the burden on the designer of evaluating the gen-
erated solutions, but it could not help search for improved
solutions, which is vital in interactive multiobjective opti-
mization procedures.

This paper develops an effective multiobjective optimiza-
tion method, the Intelligent Interactive Multiobjective Op-
timization Method (IIMOM), which is characterized by the
way in which the designer’s preference structure model is
built and used to guide the search for improved solutions.
In IIMOM, the general concept of the model parameter
vector, which refers to the parameter vector determined by
the designer in the multiobjective optimization model (such
as the weight vector in the weighted-sum method), is pro-
posed. From a practical point of view, the designer’s prefer-
ence structure model is built using an ANN with the model
parameter vector acting as the input and the preference in-
formation articulated by a designer over representative sam-
ples from the Pareto frontier as the desired output. Then
with the ANN model of the designer’s preference structure
as the objective, an optimization problem is solved to search
for improved solutions. Two key advantages of IIMOM are:
(i) the ANN model of the designer’s preference structure can
guide the designer towards exploring the most interesting
parts of the Pareto frontier efficiently and accurately; and
(ii) the improved solutions generated at each iteration are
Pareto solutions, which is in stark contrast to the method
presented in Sun et al. (1996).

IIMOM is applied to the reliability optimization problem
of a multi-stage mixed system. Five different value functions
are used to simulate the designer in the solution evaluation
process. The results illustrate that IIMOM is effective in
capturing different kinds of preference structures of the de-
signer, and it is an effective tool for the designer to find the
most satisfying solution.

2. Multiobjective optimization problem

2.1. Problem formulation

A general multiobjective optimization problem consists in
finding the design variables that optimize m different ob-
jectives over the feasible design space. A mathematical for-
mulation of the multiobjective optimization problem is:

min f(x) = {f1(x), f2(x), . . . , fm(x)},
(1)

subject to x ∈ X,

where x is an n-dimensional vector of design variables, X
is the feasible design space, fi(x) is the objective function

of the ith design objective and f(x) is the design objective
vector.

2.2. Pareto solution

A design variable vector xP is said to be a Pareto solution if
there exists no feasible design variable vector x that would
decrease some objective functions without causing a simul-
taneous increase in at least one other objective function.
Mathematically, a solution xP is said to be a Pareto solu-
tion if for any x ∈ X satisfying fj(x) < fj(x

P), fk(x) > fk(xP),
for at least one other objective k �= j.

The set of all Pareto solutions of a multiobjective opti-
mization problem is known as the Pareto frontier (or Pareto
set), which is denoted by N. It is evident that the final so-
lution of a multiobjective optimization problem should be
selected from the Pareto frontier.

2.3. Weighted-sum method

The weighted-sum method is one of the most widely used
solution methods for multiobjective optimization prob-
lems. It converts a multiobjective optimization problem into
a single-objective optimization problem using a weighted
sum of all the objective functions as the single objective. The
mathematical model of the weighted-sum method takes the
form of:

min f =

m
∑

i=1

wifi(x),

(2)
subject to x ∈ X,

where wi is the weight of objective i, and

m
∑

i=1

wi = 1, wi ≥ 0, i = 1, 2, . . . , m.

2.4. AWTPs

The AWTP is another widely used solution method for
multiobjective optimization problems. The mathematical
model of an AWTP takes the form:

min α +ρ

m
∑

i=1

(1 − zi),

subject to α ≥ λi(1 − zi), ∀i,
(3)

zi =
fi(x) − f nadir

i

f ideal
i − f nadir

i

, ∀i,

x ∈ X

where ρ is a small positive scalar; f ideal is the utopian point,
that is, f ideal

i is the optimization result with the ith de-
sign objective as the objective function and as x ∈ X con-
straints;λi is the weight of the design objective i, and satisfies
∑m

i=1, λi = 1, and λi ≥ 0, i = 1, 2, . . . , m; f nadir
i is the worst

value of the ith objective function (the worst value is the
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Intelligent interactive multiobjective optimization method 985

maximum value since we desire to minimize this objective
function) among all the points in the Pareto frontier. For
multiobjective linear programming problems, f nadir

i can be
evaluated with the method provided by Korhonen et al.
(1997). For nonlinear programming problems, f nadir

i can be
estimated by the optimization result with the minus of the
ith design objective as the objective function and x ∈ X as
constraints, or it can be estimated by simply being assigned
a value based on experience.

Some interactive multiobjective optimization methods,
such as the Tchebycheff method, WIERZ and SATIS, are
based on AWTPs (Gardiner and Steuer, 1994). By chang-
ing the weight vector λ in AWTPs, each point of N can be
reached (Chen et al., 1997). Therefore, an AWTP is effec-
tive tool to construct interactive multiobjective optimiza-
tion methods.

3. Designer’s preference structure model

3.1. Model parameter vector

The general concept of the model parameter vector is pro-
posed in this section. The model parameter vector refers
to the parameter vector determined by the designer in the
multiobjective optimization model, such as the weight vec-
tor [w1, w2, . . . , wm] in the weighted-sum method and the
weight vector [λ1, λ2, . . . , λm] in AWTP-based methods.

For a specific multiobjective optimization problem, the
design variables, objective functions and constraints will
have already been determined through analysis and model-
ing. The designer can therefore only manipulate the model
parameter vector. That is, in a specific multiobjective op-
timization problem, once the model parameter vector is
determined, the final solution of the problem will also be
determined.

3.2. General multiobjective optimization procedure

The general multiobjective optimization procedure is
shown in Fig. 1.

First, the problem is analyzed and the design variables,
objective functions and the constraints are determined.
Then the model parameter vector is set by the designer.
Optimization is conducted and the solution is obtained. If
the designer is satisfied with the obtained solution, the opti-
mization procedure is terminated. Otherwise, the designer
will modify the model parameter vector and conduct the
next iteration of optimization.

There is one problem in the general multiobjective op-
timization procedure. The designer can control the model
parameter vector, but he cannot control the generated ob-
jective function vector of the optimization solution with
respect to the model parameter vector. The objective func-
tion vector of the optimization solution determines the de-
signer’s preference on the solution. Therefore, the general

Fig. 1. The general multiobjective optimization procedure.

multiobjective optimization procedure typically requires
many iterations on the choice of the model parameter vec-
tor and often provides no clear guidance as to how to con-
verge to the right model parameter vector. For instance,
consider the case where the weighted-sum method is used in
the multiobjective optimization procedure. If the designer
is not satisfied with the obtained solution and desires to
improve objective i, the weight wi should be increased rela-
tively. However, how much wi should be relatively increased
is unknown. The convergence of the optimization proce-
dure cannot be guaranteed. Therefore, an interactive mul-
tiobjective optimization method is needed which is able to
intelligently guide the designer to explore the most relevant
part of the Pareto frontier efficiently and accurately and to
converge to a satisfactory solution.

Another important point implied in Fig. 1 is the vital role
that the model parameter vector plays in the general mul-
tiobjective optimization procedure. The model parameter
vector is the only item the designer can manipulate. The de-
signer modifies the model parameter vector to express his
preference on the generated solution and to generate new
solutions.

3.3. Designer’s preference structure model

The designer’s preference structure represents the designer’s
preferences on the design objectives and their trade-off. Af-
ter a solution is generated, the designer could express his
preference information (e.g., assigned preference value) on
the solution based on its objective functions’ values. The
process of how the preference information is elicited is de-
picted in Fig. 2.
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986 Huang et al.

Fig. 2. The preference information elicitation process.

A direct approach to model the designer’s preference
structure is to build a model mapping the objective function
value vector to the preference information, that is, to simu-
late the function block of “Evaluation By The Designer” in
Fig. 2. ANNs have been used to build the designer’s pref-
erence structure model in this way by Lu et al. (1955), Sun
et al. (1996, 2000) and Stam et al. (1996). The method is easy
to understand, but a designer’s preference structure model
built in this way is difficult to use to help guide the de-
signer effectively in the subsequent optimization iterations,
because the input of the model (the generated solution)
cannot be controlled directly. For example, in the method
proposed by Sun et al. (1996), an optimization problem is
solved using an ANN model of the designer’s preference
structure as the objective to search for improved solutions.
Nevertheless, the improved solutions found in this way can-
not be shown to be Pareto solutions, and neither can the
final solution.

For the preference information elicitation process in
Fig. 2, it can be seen that the model parameter vector is
the input and the preference information is the output.
And the designer can modify the model parameter vector
in order to achieve the solution that best satisfies his pref-
erence. Therefore, from a practical point of view, it is pro-
posed in this paper that the designer’s preference structure
model should be built using an ANN that maps the model
parameter vector to the preference information, that is, it
simulates the function blocks in the broken line frame in
Fig. 2.

ANNs have shown their ability to represent complex non-
linear mapping using a set of available data, so this tech-
nique is used to model the designer’s preference structure,
that is, to represent the mapping from the model parameter
vector to the preference information. The ANN model of
the designer’s preference structure is trained with the Pareto
solutions generated during the interactive optimization pro-
cedure and their corresponding preference information acts
as the training set.

The model parameter vector is the vital factor in inter-
active optimization and also is the vital factor in building
the designer’s preference structure model, but it has always
been overlooked in previous research. The ANN model of
the designer’s preference structure in this paper is easy to
use because the input of the model (the model parameter
vector) can be directly controlled. Also there is no evidence
that an ANN model built in this way is more complex than
the ANN model mapping the objective function value vec-
tor to the preference information, because both of them
use a set of generated data to approximate nonlinear rela-
tionships using ANNs. The ANN model of the designer’s
preference structure plays a vital role in the IIMOM proce-
dure presented in the following section.

3.4. Preference information elicitation

The preference information that acts as the output of the
ANN model of the designer’s preference structure, can be
elicited in two ways (Sun et al., 1996). The designer deter-
mines a Pareto solution’s preference information by either
directly assigning a preference “value” or by making pair-
wise comparisons among the generated Pareto solutions.
The elicited preference information can be represented by
a numerical value, the so-called preference value.

4. The IIMOM procedure

The IIMOM developed in this paper is based on the
AWTPs formulated in Equation (3). The weight vec-
tor [λ1, λ2, . . . , λm] is the model parameter vector in the
AWTPs. The IIMOM procedure is shown in Fig. 3 and is
specified step-by-step below, followed by comments about
its different steps.

Step 1. l
(h)
i and u

(h)
i denote respectively the lower and upper

boundaries of weight λi at iteration h. [l
(h)
i , u

(h)
i ] ⊆

[0, 1], ∀i, ∀h. Let [l
(1)
i , u

(1)
i ] = [0, 1], ∀i, and a more

specific [l
(1)
i , u

(1)
i ] ⊂ [0, 1], ∀i will be helpful for ef-

ficient convergence of the IIMOM procedure. Λ(h)

denotes the weight vector space at iteration h:

Λ
(h) =

{

λ

∣

∣

∣

∣

∣

m
∑

i=1

λi = 1, λi ∈
[

l
(h)
i , u

(h)
i

]

∀i

}

Specify the weight vector space reduction factor r,
the number of Pareto solutions K to be evaluated
at each iteration, and the structure of the ANN
model of the designer’s preference structure. Cal-
culate f ideal, and determine f nadir

i .
Step 2. In the weight vector space, K weight vectors are

randomly generated. If h > 1, the first weight
vector is replaced by the best weight vector
λ

(Opt,h−1) obtained at the previous iteration. The
best weight vector λ(Opt,h−1) is obtained by solv-
ing an optimization problem with the ANN model

D
o
w

n
lo

ad
ed

 b
y
 [

U
n
iv

er
si

ty
 o

f 
A

lb
er

ta
] 

at
 1

1
:4

7
 1

2
 O

ct
o
b
er

 2
0
1
2
 



Intelligent interactive multiobjective optimization method 987

Fig. 3. The flowchart of the IIMOM procedure.

of the designer’s preference structure as the objec-
tive. It refers to the weight vector with respect to
the highest preference value in the ANN model at
iteration h.

Step 3. Solve one AWTP problem for each of the K weight
vectors to obtain K Pareto solutions.

Step 4. If the designer is satisfied with one of the Pareto
solutions, that Pareto solution is output and the
interactive optimization procedure is terminated.
Otherwise, go to Step 5.

Step 5. The Pareto solutions obtained at the current itera-
tion are presented to the designer, and their prefer-
ence values are evaluated.

Step 6. With the Pareto solutions obtained in the last sev-
eral iterations as the training set, the weight vec-
tor as the input, and the corresponding preference
value as the desired output, a feed-forward neural
network is trained to obtain the ANN model of the
designer’s preference structure.

Step 7. With the ANN model of the designer’s preference
structure as the objective function, the optimization
problem shown in Equation (4) is solved to obtain
the best weight vector λ(Opt,h) with respect to the
highest preference value:

max ANN(λ),
(4)

subject to λ ∈ Λ
(h),

where ANN(λ) represents the preference value cal-
culated using the ANN model of the designer’s

preference structure when the input weight vector
is λ.

Step 8. Let P(Best,h) denote the Pareto solution with respect
to the highest preference value among all the Pareto
solutions that have been generated until the cur-
rent iteration, and P(Opt,h) denote the Pareto solu-
tion obtained in Step 7. λ(Best,h) and λ(Opt,h) are the
weight vectors with respect to P(Best,h) and P(Opt,h)

respectively. Let:

λ
(Center,h) =

λ
(Best,h) + λ

(Opt,h)

2
. (5)

Modify l
(h+1)
i and u

(h+1)
i for each design objective i

to determine the new weight vector space Λ
(h+1):

If
∣

∣λ
(Opt,h)
i − λ

(Best,h)
i

∣

∣ > rh

then
[

l
(h+1)
i , u

(h+1)
i

]

=
[

min
(

λ
(Opt),h
i , λ

(Best,h)
i

)

,

max
(

λ
(Opt),h
i , λ

(Best,h)
i

)]

,

if
∣

∣λ
(Opt,h)
i − λ

(Best,h)
i

∣

∣ ≤ rh and
(

λ
(Center,h)
i −

rh

2

)

≤ 0

then

[

l
(h+1)
i , u

(h+1)
i

]

=

[

0, λ
(Center,h)
i +

rh

2

]

if
∣

∣λ
(Opt,h)
i − λ

(Best,h)
i

∣

∣ ≤ rh and
(

λ
(Center,h
i +

rh

2

)

≥ 1

then

[

l
(h+1)
i , u

(h+1)
i

]

=

[

λ
(Center,h)
i −

rh

2
, 1

]

otherwise

[

l
(h+1)
i , u

(h+1)
i

]

=

[

λ
(Center,h)
i −

rh

2
, λ

(Center,h)
i +

rh

2

]

.

(6)

Then go to Step 2 and conduct the next iteration of
IIMOM.

IIMOM has two key advantages:

1. the ANN model of the designer’s preference structure
can guide the designer to explore the part of the Pareto
frontier of interest to him efficiently and accurately.
IIMOM has an outstanding convergence performance.
During the IIMOM procedure, the ANN model of the
designer’s preference structure will become more and
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988 Huang et al.

more accurate around the part of the Pareto frontier
of interest to the designer.

2. The improved solutions generated at each iteration are
Pareto solutions, which is in stark contrast to the method
presented by Sun et al. (1996).

5. Reliability optimization problem

In this section, IIMOM is applied to the reliability optimiza-
tion problem of a multi-stage mixed system. Five different
value functions are used to simulate the designer in the so-
lution evaluation process in order to illustrate the effective-
ness of IIMOM in capturing different kinds of preference
structures of the designer and finding the most satisfying
solution.

5.1. Problem definition

The multiobjective reliability optimization problem is taken
from Sakawa (1982) and Ravi et al. (2000) who model the
problem as a fuzzy multiobjective optimization problem.
A multi-stage mixed system is considered, where the prob-
lem is to allocate the optimal reliabilities ri, i = 1, 2, 3, 4
of four components whose redundancies are specified. The
multiobjective optimization model of the problem takes the
following form (Ravi et al., 2000):

max RS, min CS, min WS,

subject to

VS =

4
∑

j=1

Vjnj ≤ 65, PS ≤ 12 000, (7)

where RS, CS, WS, VS are the reliability, cost, weight and
volume of the system.

PS = WS × VS,

RS =

4
∏

j=1

[1 − (1 − rj)
nj ],

(8)

CS =

4
∑

j=1

Cjnj,

WS =

4
∑

j=1

Wjnj,

Cj = αc
j

[

log10

(

βc
j

1 − rj

)]γ c
j

,

Wj = αw
j

[

log10

(

βw
j

1 − rj

)]γ w
j

,

Vj = αw
j

[

log10

(

βv
j

1 − rj

)]γ v
j

, (9)

αc
j = 8.0, αw

j = 6.0, αv
j = 2.0,

γ c
j = 2.0, γ w

j = 0.5, γ v
j = 0.5,

βc
1 = 2.0, βc

2 = 10.0, βc
3 = 3.0, βc

4 = 18.0,

βw
1 = 3.0, βw

2 = 2.0, βw
3 = 10.0, βw

4 = 8.0,
(10)

βv
1 = 2.0, βv

2 = 2.0, βv
3 = 6.0, βc

4 = 8.0,

n1 = 7, n2 = 8, n3 = 7, n4 = 8,

where all the values use the corresponding SI units.
IIMOM is applied to the formulated multiobjec-

tive reliability optimization problem. Let λ
(1)
i ∈ [0, 1], i =

1, 2, λ
(h)
3 = 1 − λ

(h)
1 − λ

(h)
2 . The ideal and nadir value of the

three objectives are determined as follows:

Rideal
S = 1, Rnadir

S = 0.9,

Cideal
S = 0, Cnadir

S = 550, (11)

W ideal
S = 0, W nadir

S = 350.

In the framework of the AWTPs formulated in Equation (3),
we have that:

z1 =
RS − Rnadir

S

Rideal
S − Rnadir

S

,

z2 =
CS − Cnadir

S

Cideal
S − Cnadir

S

, (12)

z3 =
WS − W nadir

S

W ideal
S − W nadir

S

.

5.2. Mapping the weight vector to the preference value

Through numerical experiments in this section, we try to
make sure that a specific weight vector will result in a cor-
responding specific preference value, that is, the preference
value is a function of the weight vector.

The value function is used to simulate the designer in the
solution evaluation process. Assume that the value function
takes the form of:

V = w1z1 + w2z2 + w3z3, (13)

where w1, w2, and w3 are equal to 0.5, 0.3 and 0.2
respectively.

Let λ = [0.40, 0.25, 0.35]. A genetic algorithm is used to
solve the AWTPs model formulated in Equation (3) five
times, and the obtained Pareto solutions are evaluated with
the value function. The results are listed in Table 1.

It can be concluded from Table 1 that a specific weight
vector will result in corresponding specific objective func-
tion values and a corresponding preference value. There are
still small variations in the obtained preference values be-
cause the genetic algorithm may not obtain accurately the
same optimal solution in a limited generation number. The
ANN model of the designer’s preference structure is built
with the weight vector acting as the input and the preference
value as the desired output. The variations are too small to
impact on the function of the ANN model to intelligently
guide the multiobjective optimization procedure.
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Table 1. Results with respect to a specific weight vector

Design objectives

RS CS WS

Preference
value

1 0.9573 295.36 170.98 2.5274
2 0.9573 295.80 170.95 2.5273
3 0.9573 294.75 170.94 2.5276
4 0.9573 296.12 170.96 2.5273
5 0.9573 296.25 170.97 2.5272

5.3. Results and discussions

Value functions are specified in order to simulate the de-
signer in the generated solution evaluation process during
the IIMOM procedure. The following five value functions
(Sun et al., 2000) are used in order to illustrate the effec-
tiveness of IIMOM to capture different kinds of preference
structures. w = [0.5, 0.3, 0.2] and KV = 2 for all the value
functions.

1. Linear value function:

V =

3
∑

i=1

wizi. (14)

2. Quadratic value function:

V = KV −

√

√

√

√

3
∑

i=1

[wi(1 − zi)2]. (15)

3. L4-metric value function:

V = KV −

[ 3
∑

i=1

[wi(1 − zi)
4]

]
1
4

. (16)

4. Tchebycheff metric value function:

V = KV − max
1≤i≤3

{wi(1 − zi)}. (17)

5. Combined value function:

V = KV−

(

√

√

√

√

3
∑

i=1

[wi(1 − zi)2] + max
1≤i≤3

{wi(1 − zi)}

)

/

2.

(18)

The combined value function is obtained by combining the
quadratic value function and the Tchebycheff metric value
function.

A genetic algorithm is used to solve the AWTP prob-
lems, shown in Equation (3), in Step 3 of the IIMOM pro-
cedure. Compared with standard nonlinear programming
techniques, a genetic algorithm is computationally more
expensive, but it has a much better ability to find a global
optimum, whereas standard nonlinear programming tech-
niques are easily trapped in local optima. The preference

values based on the optimization results obtained by solv-
ing these AWTP problems will be used to train the ANN
to represent the designer’s preferences. In this problem, the
population size is chosen to be 100. Decimal encoding is
used and the chromosome length is set to be 20, that is,
each of the four design variables is represented by a five-
digit segment of the chromosome. We use the roulette-wheel
selection scheme, a one-point crossover operator with a
crossover rate of 0.25, and a uniform mutation operator
with a mutation rate of 0.1.

The model parameter vector space reduction factor r is
0.7. Ten Pareto solutions are evaluated at each iteration,
in order to make the trained ANN model accurate enough
while not requiring too many Pareto solution generating
procedures. The Pareto solutions generated in the last five
iterations are used to train the ANN model of the designer’s
preference structure, so that the data used to train the ANN
model will focus gradually on the region that the designer
is interested in, and make the ANN model more accurate
in this region. Except for the first four iterations, in total 50
training pairs are used to train the ANN at each iteration.
The numbers 10 and “5” are chosen based on computa-
tional experience, and there are no definite criteria on how
to choose these numbers.

In this problem, the ANN used to build the model of
the designer’s preference structure is a three-layered feed-
forward neural network, with two neurons in the input
layer, one neuron in the output layer, and most often three
neurons in the hidden layer. The reason for selecting three
hidden neurons is that an ANN with three hidden neu-
rons is believed to be a parsimonious model which can
model the nonlinear relationship without overfitting the
data when there are two input neurons, one output neu-
ron and, in most cases, 50 training pairs in the training set
(Rojas, 1996). Because there are 10 training pairs in the
first iteration and 20 training pairs in the second iteration,
we use two hidden neurons in these two iterations so that
there will not be too many free parameters in the ANN
model.

The case of the linear value function is considered first.
IIMOM is run for 10 iterations. The weight vector space,
average preference value of the generated Pareto solutions
at the current iteration, the weight vectors and preference
values of P(Best,h) and P(Opt,h) are listed in Table 2.

In Table 2, [l
(h)
1 , u

(h)
1 ] and [l

(h)
2 , u

(h)
2 ] are the range of the

weights λ1 and λ2 at iteration h, λ3 = 1 − λ1 − λ2. PBest is
the best Pareto solution generated until the current iter-
ation, Popt is the optimization result obtained by solving
the optimization problem with the ANN model of the de-
signer’s preference structure as the objective function at the
current iteration.

The ANN models of the designer’s preference structure
at iterations 2, 5, 8 and 10 are depicted in Fig. 4(a–d).
During the IIMOM process the model parameter vector
space is reduced, focusing step-by-step on the part of the
Pareto frontier the designer is interested in. The new model
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990 Huang et al.

Fig. 4. The ANN model of the designer’s preference structure in the case of the linear value function: (a) at the second iteration; (b) at
the fifth iteration; (c) at the eighth iteration; and (d) at the 10th iteration.

parameter vector space Λ
(h+1) is determined by P(Best,h) and

P(Opt,h).
As can be seen from Table 2, the average preference

value increases in general during the IIMOM process which
means that the model parameter vector space is converg-
ing to the model parameter vector that best satisfies the
designer’s preference. The model parameter vector space
is reduced in most iterations, although there might be an
iteration in which the model parameter vector space is
not reduced. The model parameter vector space is sure
to converge in the end. IIMOM captures the hidden ten-
dency of the designer’s preference structure through the
discrete generated Pareto solutions, and uses all the infor-
mation the generated Pareto solutions can provide. P(Opt,h)

is obtained by solving an optimization problem with the
ANN model of the designer’s preference structure as the
objective. Although the preference value of P(Opt,h) may
not be superior to that of P(Best,h), P(Opt,h) does lead the

designer to the Pareto frontier part he is interested in.
On the other hand, the IAWTPs method presented by
Sun et al. (2000) only uses the best generated Pareto so-
lution to adjust the weights, and it overlooks some im-
portant information provided by other generated Pareto
solutions.

The linear value function is used to represent the designer
in evaluating the generated Pareto solutions in IIMOM in
this case. If the linear value function formulated in Equa-
tion (14) is used as the single objective for the reliability opti-
mization problem, the obtained solution must be the Pareto
solution that best satisfies the designer’s preference. For the
purpose of comparison, the Pareto solution obtained in this
way, termed the comparing result, is compared with the re-
sult obtained using IIMOM in Table 3. It can be seen that
the objectives values and the preference value of the result
obtained using IIMOM are very close to those of the com-
paring result. The numerical results illustrate that IIMOM
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Table 2. The IIMOM process in the case of a linear value function

Weight vector space
P(Best,h) P(Opt,h)

h [l
(h)
1 , u

(h)
1 ] [l

(h)
2 , u

(h)
2 ]

Average
preference

value
Weight vector

[λ1, λ2]
Preference

value
Weight vector

[λ1, λ2]
Preference

value

1 [0, 1] [0, 1] 2.3123 [0.7388, 0.1461] 2.6579 [0, 0] 2.3187
2 [0, 0.7694] [0, 0.4731] 2.4070 [0.7388, 0.1461] 2.6579 [0.7694, 0.1459] 2.6596
3 [0.4341, 1.0000] [0, 0.4660] 2.5796 [0.7694, 0.1459] 2.6596 [0.7659, 0.2341] 2.6367
4 [0.5116, 1.0000] [0, 0.4460] 2.6314 [0.8246, 0.0840] 2.6727 [0.8261, 0.1738] 2.6552
5 [0.6206, 1.0000] [0, 0.3337] 2.6360 [0.8246, 0.0840] 2.6727 [0.8883, 0.0694] 2.6750
6 [0.6926, 1.0000] [0, 0.2405] 2.6582 [0.8883, 0.0694] 2.6750 [0.8703, 0.0587] 2.6751
7 [0.7482, 1.0000] [0, 0.1951] 2.6647 [0.8800, 0.0576] 2.6755 [0.8790, 0.0402] 2.6745
8 [0.7747, 0.9844] [0, 0.1537] 2.6701 [0.8800, 0.0576] 2.6755 [0.8947, 0.0499] 2.6753
9 [0.8035, 0.9712] [0, 0.1376] 2.6713 [0.8800, 0.0576] 2.6755 [0.8885, 0.0555] 2.6754

10 [0.8171, 0.9514] [0, 0.1236] 2.6723 [0.8800, 0.0576] 2.6755 [0.8942, 0.0433] 2.6745

Table 3. The results in the case of the linear value function

r1 r2 r3 r4 RS CS WS

Preference
value

IIMOM 0.6394 0.5680 0.6400 0.5551 0.9957 362.9294 183.6814 2.6755
Comparing result 0.6442 0.5680 0.6375 0.5612 0.9959 364.3245 183.8811 2.6756

Table 4. The results in the case of the quadratic value function

r1 r2 r3 r4 RS CS WS

Preference
value

IIMOM 0.5726 0.4892 0.5682 0.4813 0.9848 323.4813 176.9803 1.5920
Comparing result 0.5736 0.4900 0.5650 0.4834 0.9849 323.7218 177.0066 1.5920

Table 5. The results in the case of the L4-metric value function

r1 r2 r3 r4 RS CS WS

Preference
value

IIMOM 0.5403 0.4503 0.5219 0.4365 0.9717 304.8938 173.6443 1.5430
Comparing result 0.5350 0.4484 0.5250 0.4398 0.9719 305.0382 173.5886 1.5430

Table 6. The results in the case of the Tchebycheff metric value function

r1 r2 r3 r4 RS CS WS

Preference
value

IIMOM 0.5246 0.4355 0.5090 0.4342 0.9672 300.6453 172.6808 1.8360
Comparing result 0.5214 0.4402 0.5118 0.4298 0.9672 300.5795 172.6974 1.8360

Table 7. The results in the case of the combined value function

r1 r2 r3 r4 RS CS WS

Preference
value

IIMOM 0.5615 0.4787 0.5470 0.4698 0.9814 317.3904 175.8632 1.7087
Comparing result 0.5620 0.4760 0.5511 0.4670 0.9812 316.9782 175.8256 1.7087
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992 Huang et al.

is effective in capturing the designer’s preference structure
and obtaining the most satisfying Pareto solution if the
designer’s preference structure can be approximated as a
linear value function.

The IIMOM program we used is based on the MATLAB
platform. Here the IIMOM procedure which runs for 10 it-
erations takes about 10 minutes, that is, each iteration of
IIMOM takes about 1 minute. It takes about 5 seconds to
solve a single AWTP problem. And it takes about 4 sec-
onds to train the ANN model, and 5 seconds to solve the
optimization problem in Equation (4), at each iteration.
Generally, for this problem, the IIMOM procedure can be
completed in an acceptable time.

In the cases that use either the quadratic value function,
the L4-metric value function, the Tchebycheff metric value
function and the combined value function, the optimization
results are shown in Tables 4–7. These cases illustrate the
same trends as found in the case of the linear value func-
tion. The results obtained using IIMOM are very close to
those of the comparing results obtained by solving the reli-
ability optimization problems with the corresponding value
functions as the single objectives. The results illustrate that
IIMOM is effective in capturing different kinds of prefer-
ence structures of the designer, including linear, quadratic,
L4-metric, Tchebycheff metric and combined modes, and it
can obtain the Pareto solution that eventually best satisfies
the designer’s preference.

5.4. Discussion on the performances of IIMOM

1. Effectiveness in the multiobjective optimization process
(Shin and Ravindran, 1991). IIMOM is very effective in
capturing different kinds of preference structures of the
designer, and it can obtain the Pareto solution that best
satisfies the designer’s preference finally.

2. Ease in actual use. What the designer needs to do in
IIMOM is to evaluate the generated Pareto solutions.
Therefore, the designer’s cognitive burden is not too
heavy, and it is not too complex to use IIMOM in
actual problems. How to evaluate the generated solu-
tions and determine their preference values is a key
problem.

3. Convergence. The ANN model of the designer’s pref-
erence structure guides the designer to explore the
part of the Pareto frontier of interest. The numerical
experiments indicate that the IIMOM procedure has a
good convergence performance.

4. Change of the designer’s preference structure. The de-
signer’s knowledge of the handled problem increases
during the optimization process. After examining some
generated solutions, the designer’s preference structure
may change little by little. IIMOM uses the Pareto so-
lutions generated in the last several iterations to train
the ANN model of the designer’s preference structure.
The training strategy could resolve the problem of the
change of the designer’s preference structure.

6. Concluding remarks

This work develops an effective multiobjective optimization
method, IIMOM, and applies it to the reliability optimiza-
tion problem of a multi-stage mixed system. In IIMOM,
the general concept of the model parameter vector is pro-
posed. From a practical point of view, the designer’s prefer-
ence structure model is built using an ANN with the model
parameter vector acting as the input and the preference
information articulated by a designer over representative
samples from the Pareto set as the desired output. Then
with the ANN model of the designer’s preference structure
as the objective, an optimization problem is solved to search
for improved solutions.

Two key advantages of IIMOM are: (i) the ANN model of
the designer’s preference structure can guide the designer to
explore the part of the Pareto frontier of interest efficiently
and accurately; and (ii) the improved solutions generated
at each iteration are Pareto solutions.

In the reliability optimization problem, five value func-
tions are used to simulate the designer in the solution evalu-
ation process of IIMOM. The results illustrate that IIMOM
is very effective in capturing different kinds of preference
structures of the designer, and it can obtain the Pareto so-
lution that best satisfies the designer’s preference.
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