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Abstract

This paper addresses the problem of e�cient and e�ective data collection and analytics for applications such as civil 
infrastructure monitoring and emergency management. Such problem requires the development of techniques by 
which data acquisition devices, such as IoT devices, can: (a) perform local analysis of collected data; and (b) based on 
the results of such analysis, autonomously decide further data acquisition. The ability to perform local analysis is criti-
cal in order to reduce the transmission costs and latency as the results of an analysis are usually smaller in size than the 
original data. As an example, in case of strict real-time requirements, the analysis results can be transmitted in real-time, 
whereas the actual collected data can be uploaded later on. The ability to autonomously decide about further data 
acquisition enhances scalability and reduces the need of real-time human involvement in data acquisition processes, 
especially in contexts with critical real-time requirements. The paper focuses on deep neural networks and discusses 
techniques for supporting transfer learning and pruning, so to reduce the times for training the networks and the size 
of the networks for deployment at IoT devices. We also discuss approaches based on machine learning reinforcement 
techniques enhancing the autonomy of IoT devices.

Keywords Autonomous IoT devices · Deep Neural Networks · Analytics at the Edge

1 Introduction

In future smart cities, many decision processes in critical infrastructure and emergency management will be based on 
machine learning (ML) techniques. One particular application is the processing of large datasets of visual images and 
other types of data for defect assessment where the data is collected by a swarm of IoT devices (devices, for short), some 
of which can be mobile, e.g., small unmanned aerial vehicles (UAVs) and robots. In this context, examples of defective 
regions are corrosion and cracks in buildings and facilities [1], and potholes on roads. A critical requirement for the success 
of such assessment processes is the reliable detection, quanti�cation and localization of defective regions. Furthermore, 
in such applications, a real-time assessment is often critical so that the swarm can decide regarding the optimum strat-
egy and corresponding actions for e�ective data collection in unknown environments, e.g., robots used for earthquake 
reconnaissance and rescue where they enter buildings whose plan is unknown to the robots. On the other hand, for such 
assessments to be reliable it is critical that data be of good quality since poor data may negatively a�ect the accuracy of 
classi�cation and predictions, and consequently may introduce additional costs and time overhead.
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In general, acquiring data and making sure that the data is of high quality, especially for real-time decisions, is expen-
sive due to di�culties in reaching the regions where the objects of interest are located and the need for human-intensive 
assessment. However, today we have many technologies that can be leveraged to build e�ective and inexpensive solu-
tions, including: deep neural networks for image analysis; image processing techniques; devices able to acquire images 
and other types of data; 5G networks and edge computing processing [2]; crowd-sourcing [3]. Mobile devices such as 
drones are becoming quite powerful in terms of the sensing capabilities they o�er—as an example the nano Black Hornet 
3 drone is equipped with a microcamera core and a visible sensor to allow for enhanced image �delity [4].

The use of devices for data acquisition, of course, is not new and almost all application domains we may think of use 
these devices, including civil infrastructures, smart cities, smart agriculture, emergency management, and environmen-
tal protection. However, the common practice is to use the devices just as a data collection means. Data is acquired by 
devices and then transmitted to some centralized large server, such as a cloud server, for processing and analysis. Such 
an approach may not always be optimal in many situations. Intermittent communications and communication disrup-
tions, as in the case of battle�eld and emergency management scenarios [5], may make it di�cult to transmit data to a 
centralized server. In addition, in many such scenarios, it is critical to quickly analyze the data and, based on the analysis 
results, determine whether additional data needs to be collected or speci�c actions executed. For example, consider the 
case of the collapse of the Morandi Bridge in Genoa [6]. In such a scenario, being able to quickly detect anomalies in a 
bridge and notify incoming vehicles would save human life and a few seconds may make the di�erence. Approaches by 
which data has to be sent to a cloud server would not be viable.

Another important consideration is that for many applications it is critical to ensure that data be of good quality [7]. 
For instance, in the case of image data, it is important that the image of an object of interest (e.g., a crack on a wall) is not 
occluded. Completeness (e.g., making sure that no relevant data is missing) is equally critical. For example, if a failure is 
detected on one side of a structure, it is critical to determine whether the failure extends to the other sides of the struc-
ture. Current assessments regarding the quality and completeness of acquired data requires not only to send the data 
to remote servers, but often also to involve human analysts to evaluate the data and provide further data acquisition 
instructions to the remote devices. This approach is not e�ective and requires extensive real-time human involvement. 
Furthermore, this approach would not be scalable as the numbers of data acquisition devices increase. Additionally, as 
new phenomena of interest arise in the application domain of interest, it is critical to reduce the time required to deploy 
the needed data analytic solutions. For example, machine learning approaches that require training labeled data sets 
that are expensive and/or time-consuming to collect and label may not be e�ective for many scenarios. We thus need 
approaches by which:

• Devices can directly perform analyses on the collected data as, when there are real-time requirements, transmitting 
the analysis results requires signi�cantly less communication bandwidth and, in addition, may allow the devices to 
quickly send high-priority safety information to humans, vehicles, and other parties.

• Devices can autonomously decide which data to collect based on data they have already collected and locally ana-
lyzed.

• The time required for generating analysis models deployed at the edge is minimized as much as possible.

In this paper, we discuss approaches addressing the above three requirements and outline a research roadmap. We focus 
on data analysis techniques based on deep convolutional neural networks (CNNs) and investigate the use of transfer 
learning (TL), so to minimize the time/cost for training the networks, and CNN pruning, so to reduce the size and infer-
ence costs of the networks, for deployment at devices. We discuss also approaches supporting autonomous and adaptive 
data collection based on the use of reinforcement learning (RL).

2  Analytics at devices

In this section, we focus on the problem of e�ciently training CNNs and deploying them at devices. We �rst summarize 
initial results from one of our projects. We then brie�y discuss related work and outline open research directions.
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2.1  Initial results

Figure 1 show the high-level steps of our approach for device-based failure detection [8]. Since typically multiple 
types of damage exist in infrastructures (e.g., cracks, corrosion, spalling, exposed rebars, etc. on a concrete surface), 
it is often very difficult and/or expensive to acquire and label sufficient data for network training. To address this 
limitation, we have adopted TL where a pre-trained deep CNN is used to detect a new type of damage. TL is a very 
popular choice for vision-based infrastructure assessment, since it requires less training data compared to when a 
CNN is trained from scratch. To this end, we have used very large networks that have shown success in the ImageNet 
Challenge. The drawback is that the number of damage classes for civil infrastructure assessment is far less than the 
number of classes in ImageNet (i.e., 1000 classes). This means that while the feasibility of TL has been acknowledged 
for health monitoring of civil infrastructures, this solution is not efficient (i.e., the networks are unnecessarily too 
deep for the problem of interest) and, consequently, TL is not suitable for detection at devices. To address this issue, 
we have used network pruning to enhance the resource efficiency for on-device analysis while still maintaining good 
detection accuracy. This approach allows one to deploy deep CNNs that are quite accurate, require low storage and 
computing resources, and can make decisions very quickly at devices.

In terms of architecture for analytics at the devices, our approach consists of two components, namely the TL com-
ponent, and the pruning component. These components are independent from each other and it is thus possible to 
use different approaches for each of these. Concerning the first component, its interface is a standard interface for 
training a CNN in that our TL approach consists of taking an already trained CNN and re-train it using our domain-
specific training dataset. Concerning the second component, in our implementation we use the method by Mol-
chanov et al. [9]. This method takes as input a CNN and, starting from a full set of the CNN parameters, it iteratively 
removes the least important parameters. The method alternates between pruning and fine-tuning and stops after 
reaching the target trade-off between accuracy and the pruning goal, which is our case is memory size.

We have tested this approach for the detection of crack [1] and corrosion [10] surface defects. The methodology 
starts with a pre-trained network (e.g., VGG16 [11]), and recursively reduces the network size by using the Taylor-
expansion based pruning technique [9]. Since the pre-trained network is originally designed for the ImageNet 1000 
image categories, it is very large in size and may contain redundant convolution kernels that do not contribute to 
the new detection problems of interest. The pruning technique evaluates the importance of the convolution kernels 
and removes the kernels with the least contribution. After removing the kernels, the pruned network is fine-tuned 
again to enhance its performance for damage detection. Based on the detection performance, the user can determine 
whether or not to further prune the network following the same procedure.

In our experiments we started from VGG16, and used 29, 468 crack, 29, 780 non-crack, 33, 039 corrosion, and 
34, 148 non-corrosion image patches to train and test the network. In this case, pruning stops if the detection accu-
racy after fine-tuning drops more than 3% . When up to 84% filters are pruned, the mean detection accuracy after 
fine-tuning for crack and corrosion is approximately 99% with a standard deviation below 0.5% . This demonstrates the 

Fig. 1  Framework for device-
based inspection system
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robustness of the proposed approach as the variations in the performance are quite small when the pruned network 
still has the capacity to deal with the detection task. When 97% of the filters are removed (i.e., only 128 filters left), 
the mean accuracy of crack detection drops to 84.7% with a standard deviation of 19.86% , and the mean accuracy 
of corrosion detection drops to 96.0% with a standard deviation of 0.95% . This indicates that the pruning should be 
terminated due to the increasing variation and decreasing accuracy in detection performance.

We also compared the inference time (i.e., the total time required to classify one 720 × 540 image) of VGG16 and 
ResNet18 [12] when deployed at devices (i.e., NVIDIA Jetson TX2 GPU) for damage detection. By removing 84% and 79% 
of the convolution kernels from VGG16 and ResNet18, respectively, the inference time for crack detection decreases 
from 279.7 (s) to 31.6 (s) for VGG16 and 36.8 (s) to 8.9 (sec) for ResNet18. For the corrosion dataset, the inference time 
decreases from 275.7 to 30.6 (s) and from 34.1 to 9.0 (s) for VGG16 and ResNet18, respectively. In terms of memory 
reduction, the memory demands of VGG16 drop from 525 to 125 (MB), and the demands of ResNet18 drop from 44 to 
2 (MB). By utilizing network pruning, VGG16 achieves a 89% reduction in inference time and 80% reduction in memory, 
while ResNet18 achieves a 76% reduction in inference time and 95% reduction in memory demands, without decreasing 
damage detection performance.

Our results indicate that network pruning is an important step towards incorporate deep learning architectures into 
devices. However, there are still several open questions that need further research. For instance, the selection of the 
appropriate pruning algorithm to reduce the network size. Also estimating the sensitivity of the pruning algorithm with 
respect to various network con�gurations is critical. The sensitivity should be considered in di�erent aspects, e.g., infer-
ence performance and pruning e�ciency.

2.2  Related work

TL techniques have already been widely investigated [13], whereas pruning techniques have been receiving wide atten-
tion more recently. Notable related work includes:

• Transfer Learning: Zhu et al.  [14] addressed heterogeneous TL and used information from text data to improve model’s 
performance in image classi�cation. Aytar et al.  [15] and Tommasi  [16] addressed the de�cit of training samples for 
some categories by adapting classi�ers trained for other categories. Oquab et al. [17] showed that layers trained on 
ImageNet [18] can be reused to extract the mid-level features of images in the PASCAL VOC dataset. Shin et al. [19] 
addressed two speci�c computer-aided detection problems in medical images by �ne-tuning CNNs pre-trained using 
a huge training set, such as CIFAR-10 [20], which has one million images from ten di�erent classes. They further 
explored di�erent popular CNN architectures and their performances on datasets of di�erent sizes, concluding that 
the trade-o� between learning more accurate models and using more training data should be carefully considered. 
Collobert et al.  [21] explored TL for natural language processing. Hwangbo et al.  [22] showed how to enhance RL 
by applying TL. More recently Singla et al. [23] developed a TL approach based on generative adversarial networks 
(GANs) for data di�erent from images.

• Model Pruning: Network pruning has been investigated in the context of CNNs. The early work of LeCun et al. [24] 
proved that network pruning is a valid strategy to reduce the network complexity and over-�tting by using a diagonal 
Hessian-based approximation. In this kind of approximation, neurons were removed based on the result of calculations 
obtained from Hessian matrix. Recently, Han et al. [25] proposed an e�ective compression approach for CNNs. They 
have tested their approaches on both VGG16 and AlexNet [26] and on di�erent hardware platforms. The experiments 
showed that their approach was able to substantially reduce the size of the networks without losing accuracy. He et al.
[27] proposed a kernel pruning algorithm for CNNs. Their experimental results show that for VGG16 their approach 
was able to obtain a time speed up of 5X with only 03% error increase.

2.3  Research directions

In many applications, such as civil infrastructure monitoring and emergency management, the amount of training data 
is limited and thus TL is essential to still obtain good models even with limited data. Pruning is then critical to reduce 
the size of the models obtained from transfer learning. However, combining these two techniques requires analyzing 
the optimal ordering of TL and pruning steps, and assessing the impact that di�erent strategies would have on the per-
formance of di�erent CNNs. Equally important is to assess and optimize the computing resources required for inference 
at di�erent edge devices. In what follows we discuss some relevant research directions.



Vol.:(0123456789)

Discover Internet of Things             (2021) 1:3  | https://doi.org/10.1007/s43926-021-00009-4 Research

1 3

2.3.1  Optimal ordering for the execution of pruning and TL steps

It is important to determine whether it is better to �rst execute TL and then pruning—the strategy adopted in our 
preliminary work—or vice-versa. Both these strategies could be bene�cial. By applying TL �rst, one can make sure that 
models adapt well to the target dataset, and then pruning can remove redundant neurons or layers. In this approach, the 
probability of removing the right neurons or layers from the model is higher. However, if the size of the target training 
dataset is small, it is better to �rst reduce the size of the model by applying pruning. More neurons or layers in a model 
means more parameters, and thus the time for training and �ne-tuning will increase as well as the inference times. In 
addition, training a large model with a small amount of data may cause model over-�tting. Consequently, if the target 
dataset is small, it is better to �rst remove redundant neurons or layers, and then train the network with the small dataset.

2.3.2  Optimal pruning strategy

There are three pruning strategies that can be adopted:

• Neuron removal This is a common pruning strategy. There are various criteria for removing neurons:

• Threshold-based pruning This strategy analyzes the weight of neurons and removes those having a weight less 
than a threshold. Results by Han et al. [28] show that this strategy reduces the number of neurons by a factor of 
9 × without incurring accuracy loss.

• Taylor-based pruning. This strategy, used in our preliminary work, uses Taylor expansion [9] to determine the 
importance of neurons and thus allows one to remove the least important ones.

•  Layer removal Previous results by He et al. [29] have shown that most of the neurons in the middle layers of ResNet50 
have zero weight. Such neurons not only do not perform any feature extraction, they may also result in information 
loss. Thus, it is possible to skip those redundant layers by the introduction of shortcut connections [30] that skip one 
or more layers.

•  Kernel removal Previous results by He et al. [27] have shown that kernel removal is another possible approach to 
prune CNNs, as images have RGB three di�erent colors that correspond to three kernels in the CNN architecture. Thus, 
in some applications not every kernel is needed. For example, if one needs detect red roses, the red kernel would 
play a more important role than other kernels. Therefore one can keep the red kernel and remove some redundant 
kernels. Most of the times, a CNN has more than RGB three kernels, so there are several redundant kernels that could 
be removed.

Experimental comparisons to determine which pruning strategy works better depending on speci�c datasets and net-
works are critical. In addition, an interesting approach to explore would be to combine the three di�erent pruning 
strategies: neuron, kernel, and layer removal. For instance, in ResNet50 after removing removed some layers, redundant/
useless kernels and neurons could still be left in the network. Removing those kernels and neurons may further reduce 
the network size and inference time.

2.3.3  Multi-step transfer learning and pruning

There can be scenarios where one might need multi-step TL and pruning (MSTLP). MSTLP refers to obtaining a target 
network, specialized for certain classi�cation decisions, by performing multiple TL and pruning steps. In such an approach 
one would start from an initial general network. Then, an intermediate trained network is derived from the initial one by 
applying TL and pruning. From the intermediate network one can derive another intermediate network and continue this 
procedure. For example, one can use TL and network pruning on a network initially trained using a generic dataset, such 
as ImageNet, in order to obtain an optimized network model for civil infrastructure health monitoring applications that 
can detect various defects such as cracks, corrosion, etc. One can then use this intermediate model to train specialized 
binary classi�cation models that just detect speci�c categories such as corrosion/no-corrosion, crack/no-crack, etc. This 
multi-step approach has several advantages over a single-step TL approach that learns directly from a generic dataset: (a) 
TL and network pruning can be much faster if they start from an intermediate specialized network than if they start from 
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a larger generic network trained for large number of categories not relevant to the application of interest. (b) The use of 
intermediate networks enhances �exibility in cases in which one needs to identify more than one class as well as use a 
specialized network when one just needs to detect one category of objects/defects. For instance, one might just be inter-
ested in only identifying cracks for civil infrastructure inspection purposes. (c) Detection accuracy is enhanced as MSTLP 
may help prevent over�tting. (d) The network size obtained from MSTLP would be smaller than the ones obtained from 
training specialized classi�ers directly from the generic dataset. Investigating MSTLP is an interesting research direction.

3  Adaptive data acquisition

We now focus on the other crucial aspect of a smart health inspection system based on intelligent autonomous devices. 
Consider the case of an inspection device, such as a robot sent to inspect a civil infrastructure (e.g., a bridge). In this case, 
the device would carry some sensors (e.g., cameras) and perform on-board analyses using the approaches discussed 
in the previous section. The device will �rst need to identify a target of interest (e.g., crucial structural components of 
a bridge), navigate itself to a position closer to the target, and then collect data to determine the presence of damage 
as well as whether to proceed with a more detailed inspection. During the inspection process, the device is constantly 
facing decision making problems whenever an input data sample is acquired. For instance, what should be the next 
movement of the device if no damage of interest is present in the input image? Is the device close enough to the target? 
Is there any damage detected on the target? Is there any other potential damage nearby the target that requires more 
data collection? Is the collected data of good quality enough for the device to make the next decision? In such a context 
where many decisions need to be taken, RL appears a suitable approach.

RL, inspired by human learning, is a technique to determine the optimal decision by interacting with the environment. 
Compared to the conventional Q-learning algorithm, which becomes extremely ine�cient for large scale state-space 
problems [31], the incorporation of deep neural networks (DNNs) into RL makes the learning process able to deal with 
high dimensional problems. In what follows we refer to DNN-based RL as DRL.

3.1  Related work

Recent advances in robotic navigation/control �elds have demonstrated the great potential of DRL for smart inspection 
systems and other similar applications. Tai et al. [32] demonstrated the capability of using DRL to train a robot to reach a 
pre-de�ned target location without collision in a map-less environment. Cheng and Zhang [33] used DRL to navigate a 
boat to a target, and avoid obstacles on the way. Mirowski et al. [34] used DRL for training agents to navigate in large and 
visually rich environments with various starting points and destinations. Zhu et al. [35] developed a robotic navigation 
system for indoor scenarios using DRL. The robot is trained in a simulated environment and is able to navigate to user-
de�ned indoor objects (e.g., a sofa or a desk) in the testing stage. Hwangbo et al. [22] used DRL to control a quadrotor 
to stabilize itself when subjected to extreme external forces. Moreover, DRL has been applied in various video games 
where a trained arti�cial intelligence (AI) system is able to outperform human players. Hasselt et al. [36] proposed the 
double Q-learning algorithm to address the issue of overestimation problem encountered by deep Q-network (DQN). 
The performance of double Q-learning was tested on multiple Atari games and it was shown to be e�ective. Wang 
et al. [37] proposed a dueling network architecture to decouple the estimation of value and advantage in DQN. The 
dueling network outperformed the double Q-learning algorithm [36] in the challenging Atari game. Schaul et al. [38] 
showed that by integrating experience replay into the double Q-learning algorithm proposed in [36], the performance 
of the AI system in playing Atari games can be further enhanced. In [39, 40], DRL was used to play �rst-person shooter 
(FPS) games (e.g., Doom video game). The agent was trained to explore the map, collect items, search and �ght against 
the enemies. Due to DRL’s success in these challenging decision making problems, we consider DRL as the best �t for 
smart inspection systems.

3.2  An example inspection scenario and a DRL‑based framework

Consider an inspection device that starts with an initial state S
0
 and observes data D

0
 (e.g., an image). Based on D

0
 , the 

device selects an action A
0
 from the action set A and moves to a new state S

1
 . By interacting with the environment (or 

an environment simulator), an immediate reward R
1
 is assigned to the device, and the device will move to new states 

by repeating the steps of data acquisition, selecting actions, and receiving rewards. The objective of RL is to �nd the 
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optimal policy, i.e., the set of best actions based on observing the data, that maximizes the cumulative rewards. During 
training, the underlying driving mechanism is the Bellman equation [31] given by the equation below, that updates the 
Q-value of picking an action a at state S

i
:

Q(Si, a) ← (1 − �
k)Q(Si, a)+

�
k[R(Si, a, Si+1) − �

kt(Si, a, Si+1) + � maxb∈A(Si+1)
Q(Si+1, b)]

In the previous equation, R(S
i
, a, S

i+1) is the immediate reward after choosing action a at state S
i
 , t(S

i
, a, S

i+1) is the 
transition time from state S

i
 to S

i+1
 , maxb∈A(Si+1)

Q(Si+1, b) is the maximum Q-value among all the actions b ∈ A(S
i+1

) in the 
next state S

i+1
 , k is the iteration number, �k is the learning rate at iteration k, �k is the average reward at iteration k, and � 

is the discount factor for the expected future rewards. At the early stage of training, the device has a higher tendency to 
choose the exploratory actions in order to discover the good actions in the state-action space. As the training proceeds, 
the device will gradually choose the greedy actions, i.e., the actions that have the highest Q-value. Note that the proposed 
DRL approach approximates Q(Si, a) with DNNs in order to account for the in�nite number of state-action pairs in our 
problem. Figure 2 illustrates the fundamental concept of RL in the context of smart inspection systems.

In our inspection scenario, the device would �rst collect data at a farther distance to capture the overview of the build-
ing, and then would move to a closer position to inspect the damage on a �rst �oor column thoroughly. Such scenario 
is re�ected by our example DRL-based framework shown in Fig. 3. A CNN is employed to extract features from the input 
image, and the features are sent to both the navigation and the damage detection network. The navigation network 
deals with the identi�cation of the target of interest (e.g., �rst �oor columns shown in Fig. 41) and determines the move-
ment of the device. The detection network identi�es the presence of damage on the target and determine whether the 
data is of good quality (e.g., lack of blurriness and/or completeness), and whether to proceed with more data collection. 
Consider the image shown in Fig. 4. The actions for the device to take can be de�ned as:{a

1
∶ a column exists and move 

forward distance d
1
 ; a

2
∶ a column exists and move forward distance d

2
< d

1
 ; a

3
∶ a column does not exist and randomly 

picks the next movement direction and movement distance.} Since the device does see a column and should move 
much more to get closer to the column, the corresponding rewards can be assigned as:{R

1
= 1.0,R

2
= 0.5,R

3
= 0} in 

order for the device to learn to move more when seeing images similar to the one in Fig. 4. Note that the navigation and 
detection network will work jointly during the inspection, as the decision made by one network will a�ect the decision 
on the other. For instance, the navigation network will keep making decisions if the detection network cannot identify 

Fig. 2  The concept of RL

Fig. 3  The example DRL 
framework
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1 The images in Figs. 4 and  5 are snapshots of a video recorded by using a UAV by one of the authors of this paper. The UAV was operated to 
inspect a school building damaged during a strong earthquake which happened in southern Taiwan in February 2016.
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the presence of damage with Fig. 4. Once the device moves to a closer position to the column, e.g., Fig. 5, the actions for 
the detection network can be de�ned as: {a

1
∶ a crack is detected and should slightly move to collect more data; a

2
∶ a 

crack is detected and requires no further data collection; a
3
∶ no damage is detected} . Since the device only captures a 

portion of the damaged column and should collect more data, the corresponding rewards can be assigned as: {R
1
= 1.0 , 

R
2
= 0.5 , R

3
= 0} in order for the device to learn to collect more data when seeing images similar to the one in Fig. 5.

Our DRL-based inspection framework has then to support two important tasks: (1) routine inspection—the device 
would be trained to perform regular inspections, in which the device scans through the structure and identi�es all 
possibilities of damage presence; and (2) urgent inspection—the device would be trained for rapid assessment in the 
context of urgent inspection (i.e., inspections after a natural hazard) where the device will evaluate the severity of dam-
aged regions and it will perform more data collection around the damage of top priority (i.e, not a thorough inspection 
of whole structures).

3.3  Research directions

3.3.1  DRL-based autonomous smart inspection system under two scenarios, i.e., routine inspection and urgent inspection

Although DRL has been demonstrated to be e�ective in robotic navigation, there are challenges needed to be addressed 
in the context of health inspection. For instance, in the existing approaches the target/destination is prede�ned and 

Fig. 4  The device is inspecting 
a building after earthquake

Fig. 5  The device is inspect-
ing the damage on a �rst �oor 
column
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will be identical in the testing stage, e.g., the items and the enemies in the Doom game [39]. In our context, the target 
of interest and the damage may have patterns similar but not identical as the training data in the testing stage. The 
sensitivity of DRL towards the changes in the objects of interest needs a thorough investigation.

3.3.2  Evaluation of the performance of different network configurations, i.e., DQN, double Q-learning and dueling network, 

on navigation and damage detection

There are various network con�gurations proposed in previous work to enhance the performance of DRL in playing 
Atari games. However, there is no a particular con�guration that outperforms the others in all categories of games [36]. 
Therefore, research is needed to determine which con�gurations are best for inspection systems.

3.3.3  Evaluation of the benefit of an environment simulator

Unlike past work in which an environment simulator, such as a gaming engine or a prede�ned map, is available, our 
adaptive DRL data collection framework infers the information directly from the acquired training data. This is particularly 
useful for urgent inspection after natural hazards as the environment often changes drastically. An interesting research 
direction is to analyze whether an approximate simulator can bring additional bene�ts to the inspection system.

3.3.4  Transfer learning for reinforcement learning agents.

A critical challenge related to real-time requirements is that RL has high convergence times. To address this issue, an 
approach is to use TL techniques based on GANs [23].

The application of such a methodology to quickly bootstrap the DQN in the control RL system has two variations:

• Reward Knowledge Transfer Under this variation, a few explorations are performed by the RL agent. Then a GAN is 
used to generate augmented or synthetic data (enhanced exploration data) by minimizing domain loss between 
the TL source domain and target domain. The resulting dataset is then used to train the DNN of the RL agent at the 
target domain. A key environment speci�c parameter in this setting is the bias introduced while training the DNN 
of RL agent. For optimal convergence, the new exploration samples should be favoured over stale samples from the 
source domain. This approach requires two learning/training steps, one to train the GAN and another one to train the 
DNN of the RL agent at the target domain.

• Quality Value Knowledge Transfer This variation is similar to previous one except that here we transfer knowledge 
about the RL model directly by exchanging Q values instead of exploration samples. Here the target dataset is gen-
erated from the baseline RL agent model (Q values) trained by some new explorations. Here the GAN has two tasks: 
minimizing domain loss and optimizing the Q function. The key goal here is balancing domain loss and quality loss 
while training the GAN. Since, there is only one learning step here, we need to introduce a bias (target domain over 
source domain) in the GAN itself; this can be done when selecting batches to train the GAN.

It will be interesting to compare the two approaches and investigate additional speci�c aspects related to TL for RL 
agents used for inspection systems.

4  Concluding remarks

In this paper we have discussed the use of devices in a critical application domain, that is, the monitoring of civil infra-
structures for defect identi�cation and assessment. In the paper we have focused on the use of ML techniques to allow 
devices to carry out data analyses on-board and to enhance the autonomy of devices. Device autonomy is critical when 
dealing with emergency situation in which network communications can be become fragmented. The paper has dis-
cussed several research directions. However the area of ML for IoT systems is an important emerging application area 
with many other interesting research directions. One relevant research direction is the security of autonomous devices 
as well as the privacy of data they acquire and store. This is a challenging problem that also depends on the speci�c 
application scenarios and threats. Proposed defense techniques range from remote attestation to make sure that soft-
ware running on the devices is not compromised to techniques for dynamic white-box cryptography techniques to 
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temporarily protect encryption keys from being extracted from the memory of these devices, in the event of their physi-
cal capture [41]. An interesting idea would be to use other special-purpose devices for detecting such physical capture 
through video analysis. Finally another direction interesting research direction is related to the high correlation that 
may exist between data collected by devices in close proximity. Such correlation may, for example, be used by devices 
to cross-validate their collected data. Also, devices may need to coordinate in order to avoid sending redundant data, 
especially when the transmission bandwidth is limited. We notice however that the deployment of 5G cellular networks 
ad the envisioned 6G cellular network technology [42] may alleviate such problem and thus further enhance health 
monitoring of civil infrastructures.
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