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Abstract: In response to the issue of system oscillations in direct current (DC) microgrid systems
with constant power loads (CPL), this paper proposes a non-singular terminal sliding-mode control
(NTSMC) strategy based on the improved salp swarm algorithm (ISSA). Firstly, the state-feedback
exact linearization technique is employed to establish a linearized model of the converter system.
Then, the NTSMC based on a composite sliding-mode surface is designed to achieve rapid conver-
gence and effectively weaken the chattering issue in traditional sliding-mode control, ensuring a
constant power supply to the load. The parameters of the proposed NTSMC are optimized using
the ISSA, which introduces an intelligent NTSMC. Finally, a MATLAB/Simulink simulation model
is established. The simulation results show that the ISSA-based composite sliding-mode surface
NTSMC system designed for DC microgrid systems with CPL exhibits high robustness and guaran-
tees ideal steady-state characteristics and dynamic responses when input voltage fluctuations and
load disturbances occur.

Keywords: boost converter; constant power load; feedback linearization; sliding mode; optimization
algorithm

1. Introduction

Influenced by the growing demand for electric energy, distributed power sources,
including renewable energy generation, have been integrated into the grid [1]. Microgrids
(MGs), an essential component of smart grids, are small-scale power systems that promote
the effective integration of distributed generation [2]. In addition, MGs, as an effective
means to improve new energy absorption capacity and a valuable supplement to large
grids, are the future development trend of distributed clean energy supply systems [3]. In
the future, MGs will play an essential role in intelligent distribution and innovative grid
systems [4]. MGs can be divided into direct current micro-grids (DCMGs) and alternating
current micro-grids (ACMGs) according to the type of access bus between the load and
distributed energy in the MG [5]. In particular, unlike ACMGs, DCMGs do not have reactive
power compensation and harmonic power balance problems and do not require reactive
power compensation capacitors and other equipment [6]. In addition, the design of DCMGs
is simple, and their cost of construction is low [7]. Therefore, studying the green and reliable
power supply of DCMGs with practical significance and application value is vital.

DCMGs contain several DC–DC converters interconnected in a cascade to meet operat-
ing conditions. These converters serve as the central power processing units for renewable
energy sources and the grid, coordinating the power quality and voltage amplitude re-
quirements of the power sources and loads [8]. In the DC–DC converter cascade form, the
front converter is the feeder system, and the back converter is the load system [9]. Most
converters are controlled internally by closed-loop control to ensure their output of stable
voltage and current [10]. When a load converter is connected to a constant-size resistor,
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its output power is constant and can be considered the constant power load (CPL) of the
front-stage feeder system [11]. A CPL with negative impedance characteristics cascaded
with a DC–DC converter reduces the reliability of the system’s power supply and even
endangers the system’s stability [12]. In particular, in high-voltage DC distribution systems
and DCMG systems, CPLs account for more than 75% of the total load, posing a significant
challenge to the operation and control of distributed power supply systems [13].

DC–DC converter systems with CPL have high control difficulty because of fluctu-
ations in their circuit parameters and nonlinear characteristics. Therefore, designing a
reasonable stabilization control strategy to improve the nonlinear performance of DC–DC
converter systems with CPL and to imbue it with good steady-state and dynamic character-
istics is the key to improving the control performance of the DCMG. This control problem
has become a current research hotspot [14]. Aiming to deeply analyze and study the control
problem of DC–DC converters and find a better control method, more and more scholars
have shifted their research focus to the control of these systems, and rich research has been
carried out for DC–DC converters. DC–DC converters with CPL are a nonlinear system
based on traditional control methods. In order to obtain the small signal model necessary
for these systems, the system is linearized around the equilibrium point. Then, control
theory methods such as linear double closed-loop PID are used to design the controller [15].
However, closed-loop PID control does not guarantee optimal performance. The converter
under different controller parameters and the requirement for the current loop to have
sufficiently high bandwidth to suppress disturbances effectively increase the controller
design and implementation difficulty. Therefore, there are better control methods than
linear double closed-loop PID control for power electronic converters.

In order to cope with the adverse effects on system stability that occur when CPLs
are present, significant theoretical results have been obtained for the control of nonlinear
systems of DC converters with CPLs through continuous in-depth modeling analysis and
control studies. They can be divided into two main categories: passive damping techniques
(PDTs) and active damping techniques (ADTs). PDTs increase the damping of the system to
counteract the negative impedance characteristics of the CPL by adding passive components
such as resistors, capacitors, and inductors to the system [16,17]. However, this approach
increases the cost and complexity of the system. Furthermore, the compensated passive
components increase the power loss and make the system less efficient.

ADTs are mainly used to increase the system damping to counteract the negative
impedance characteristics of the CPL by adding compensation measures to the system
control loop. Commonly used ADTs include backstepping control (BC), feedback lineariza-
tion control (FLC), and sliding mode control (SMC). These techniques provide a more
flexible and effective solution for system damping than PDT methods. Active damping
techniques achieve the damping effect on series/parallel resistors in nonlinear circuits with
CPLs by adding a compensation factor to the control structure on the source or load side of
the feeder. In [18], the dynamic performance of the DCMG is improved by applying the
active damping technique to the bidirectional DC–DC converter in the DCMG. Compared
to passive damping techniques, active damping techniques do not lead to an additional
increase in the size and complexity of the circuit system.

Kanellakopoulos and Kokotovic first proposed BC to achieve the systematic design of
systems with uncertain parameters [19]. The basic idea is to convert a complex nonlinear
system into subsystems below the order of the system by decomposition, to design inter-
mediate virtual quantities and Lyapunov functions for the resulting subsystems and back
off to the whole system, and finally, to integrate all virtual control quantities to achieve the
design of the whole control law [20]. In [21], a composite nonlinear controller combining
BC and double integral SMC was proposed and used for a CPL-fed DC–DC enhancement
converter. The proposed controller improved the DC bus voltage stability under large
perturbations in DC distribution systems. In [22], a third-order Kalman filter estimation
method for CPL was proposed. The estimated value was fed back to the connected adaptive
BC controller to obtain the switching duty cycle and achieve accurate tracking of the output
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voltage reference to stabilize the system. In [23], a BC method was used to complete the
controller design for CPL loads driven by boost converters in DCMG to achieve bus voltage
stabilization in DCMG.

FLC is an essential branch of differential geometric methods. Its core idea is to counter-
act nonlinear features in a system by introducing nonlinear coordinate transformations and
state feedback [24]. Unlike approximate linearization methods, FLC is not limited by the
vicinity of the operating point. FLC is an exact method for converting nonlinear systems
into linear energy systems that can be controlled linearly and for using traditional linear
control theory to design controllers to achieve the desired performance index [25]. FLC
does not ignore higher-order terms and can ensure that closed-loop systems have ample
signal stability. However, parameter perturbations in the system often lead to its slow
transient response, so it needs to be combined with other control algorithms to improve a
system’s dynamic performance [26]. The objective holographic FLC can stabilize a system
by bypassing the non-minimum phase system, for which the method places the pole-zero
of the system at the corresponding desired position through feedback to achieve the sat-
isfactory dynamic and static performance of the control system with CPL [27]. In [28], a
method based on an LFC combined with a disturbance observer was proposed. The LFC
compensates for model uncertainties and unknown loads to ensure asymptotic regulation
under a composite controller. Experiments show that this controller can achieve good
transient and steady-state performance in the CPL system. Similarly, to stabilize the DCMG
system and determine the stabilization strategy of the nonlinear system by designing the
linearized system’s feedback coefficients, the DC–DC converter’s DCMG stabilization
strategy’s feasibility and effectiveness was verified by simulation results in MATLAB [29].

SMC is a nonlinear, robust control technique. SMC is robust to perturbations of
the control object itself [30]. Usually, the system’s dynamic moves along the designed
sliding-mode state trajectory according to the current system deviation and the dynamic
changes of its state derivatives to maintain stability on the sliding-mode surface [31]. SMC
has been widely used in controlling DC–DC and AC–DC power converters, especially in
controlling the instability of power electronic systems caused by CPL fluctuations due
to its fast response and simple implementation [32,33]. However, SMC requires constant
logic transitions as a discontinuous control method. This situation inevitably leads to
jitter phenomena that affect the system’s stability, thus limiting the system’s tuning time
and convergence speed. Therefore, how to eliminate the jitter phenomenon has become
a research hotspot for scholars in related fields [34]. In [35], for DC–DC converters with
CPL, an SMC control strategy based on pulse-width modulation (PWM) was adopted
to suppress the instability caused by CPL in DCMG systems in order to improve the
overall MG control performance. The literature [36,37] demonstrates that, to suppress
the effect of the system’s aggregate disturbance, a composite control scheme combining
SMC and disturbance observer has been designed for the Buck converter, which has good
anti-disturbance and transient performance when the CPL fluctuates.

A review of the DC–DC converter research reveals the following problems. In some
papers, the voltage fluctuation range is extensive, so in some cases, there is no good
damping effect. Most papers achieve proper damping but neglect the CPL’s nonlinearity,
so the controller can easily track variations and suppress oscillations. In addition, the SMC
described above was applied to the Boost DC–DC converter control problem. However, the
SMC is not intelligent, and the designer must manually select the parameters of the SMC;
furthermore, optimization methods were not used to optimize the tunable parameters.
The authors of the present study know of no studies on using the Boost DC–DC converter
controller with CPL based on the composite sliding-mode surface non-singular terminal
sliding-mode control strategy technique (NTSMC) and the ISSA to solve the stabilization
problem for islanded DCMGs.

This paper is organized as follows. In Section 2, the principle of exact feedback
linearization is presented, as well as the required mathematical conditions. Section 3
presents the dynamical equations of the Boost DC–DC converter and the CPL. Then, in
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Section 4, an NTSMC is designed for the Boost DC–DC converter control. Section 5 presents
the ISSA and its application to the NTSMC parameter optimization problem. A simulation
study is performed in Section 6 to show the advantages of the new method. Finally,
Section 7 concludes the paper.

2. Preliminaries

State-feedback linearization addresses nonlinear system characteristics by applying
techniques such as coordinate transformations and nonlinear state feedback. This approach
transforms the original nonlinear system into a linear, controllable system. It can be applied
over a broad range rather than just near the system’s working point. The result is an
effective solution that offers significant benefits for system control [38,39].

2.1. Differential Geometry Concepts

Differential geometry methods are widely used for analyzing the structure and design-
ing controllers for nonlinear control systems. As a result, they have become an important
research direction in nonlinear control. State feedback linearization requires extensive
knowledge of differential geometry and differential topology. Therefore, this section pro-
vides an introduction to the relevant theoretical knowledge.

Diffeomorphism plays a crucial role in nonlinear systems, extending the concepts of
linear transformations in linear systems. It enables the conversion of certain nonlinear
systems into linear ones through appropriate mappings. A differential homogeneous
mapping is defined as a smooth, homogeneous mapping f : X → Y , where f and its
inverse mapping f−1 are smooth. When a differential homogeneous mapping exists
between sets X and Y , they are considered Diffeomorphic. This concept establishes a
one-to-one correspondence while preserving the structural properties and smoothness of
the sets. By harnessing Diffeomorphism, nonlinear systems can be transformed into linear
systems, facilitating analysis and leveraging established linear systems theory. This opens
up new possibilities for understanding and manipulating nonlinear dynamics in diverse
scientific and engineering fields.

Definition 1. Expanding upon the concept of Diffeomorphism, we can establish related definitions.
Consider a smooth function h : X → R defined on an n-dimensional differential manifold X, along
with a smooth vector field f : X → TpX. The Lie derivative L f h : X → R captures the derivative
of h along the vector field f . Mathematically, it is expressed as

L f h(p) = f (h)(p) =
n

∑
i=1

fi(p)
∂h
∂xi

(p), ∀p ∈ X. (1)

A vector field is defined as such that for all p ∈ X, f (p) ∈ TpX, where a smooth vector field
refers to a vector field that has partial derivatives of any order concerning its independent variable.
The definition of solving higher-order Lie derivatives is as follows:

Lk
f h(x) =

∂
(

Lk−1
f h

)
∂x

f (x) (2)

The zero-th order Lie derivative is defined as L0
f h(x) = h(x).

Definition 2. For two smooth vector fields f and g defined on the subset U of Rn, the new vector
field Lie product [ f , g] is

[ f , g] = ∇g • f −∇ f • g (3)

where ∇g and ∇ f represent the Jacobian matrices of vector fields g and f , respectively, and the Lie
product [ f , g] is commonly written as ad f g. From its definition, it can be seen that

ad f g = [ f , g](x) =
∂g

∂xT f − ∂ f
∂xT g (4)
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where
∂g

∂xT and
∂ f
∂xT are

∂g
∂xT =



∂g1

∂x1

∂g1

∂x2
· · · ∂g1

∂xn
∂g2

∂x1

∂g2

∂x2
· · · ∂g2

∂xn
· · · · · · · · · · · ·
∂gn

∂x1

∂gn

∂x2
· · · ∂gn

∂xn


,

∂ f
∂xT =



∂ f1

∂x1

∂ f1

∂x2
· · · ∂ f1

∂xn
∂ f2

∂x1

∂ f2

∂x2
· · · ∂ f2

∂xn
· · · · · · · · · · · ·
∂ fn

∂x1

∂ fn

∂x2
· · · ∂ fn

∂xn


(5)

In addition, the vector field g can also perform multiple Lie product operations on other vector
fields f , yielding

adi
f g =

[
f , adi−1

f g
]
, i = 1, 2, · · · (6)

where the zero-th order Lie derivative is defined as ad0
f g(x) = g(x).

2.2. State-Feedback Linearization

A single-input–single-output (SISO) affine nonlinear dynamic system can be de-
scribed as {

ẋ = f (x) + g(x)u
y = h(x)

(7)

The relationship between the input u and the output y of the SISO affine nonlinear
dynamic system can be established by taking the derivative of the output and using the Lie
derivative, as follows:

ẏ =
∂h(x)

∂x
ẋ =

∂h(x)
∂x

( f (x) + g(x)u) = L f h(x) + Lgh(x)u (8)

If there is Lgh(x) = 0 near x0, then taking the derivative of Equation (8) results in

ÿ =
∂L f h(x)

∂x
ẋ =

∂L f h(x)
∂x

( f (x) + g(x)u) = L2
f h(x) + LgL f h(x)u (9)

Similarly, if in the vicinity of x0, it holds that LgL f h(x) = 0, we can take successive
derivatives of the system output function y(t) until

y(r) = Lr
f h(x) + LgLr−1

f h(x)u (10)

According to Equation (9), if x = x0 and LgLr−1
f h(x0) 6= 0, then due to the fact that

f (x) and g(x) are smooth vector fields and h(x) is a smooth function, there exists x0 ∈ U
such that for any x within the domain U, we have

∣∣∣LgLr−1
f h(x)

∣∣∣ > a0, where a0 ∈ R+ is a
positive constant.

A new input is defined as v ∈ R, and a nonlinear input transformation is introduced
by Equation (11).

u =
−Lr

f h(x) + v

LgLr−1
f h(x)

(11)

Let us define a new input signal v(t) ∈ R and introduce a nonlinear input transforma-
tion so that the original output signal y and the new input signal v establish the following
rth order linear differential equation:

y(r)(t) = v(t) (12)

At the same time, the feedback linearization order determines the input transforma-
tion’s final form and the system’s order, which is essential in the feedback linearization
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process. For affine nonlinear systems, if the following conditions are satisfied in the neigh-
borhood of x0, D0: ∀x ∈ D0, LgLi−1

f h(x) = 0, (0 ≤ i < r− 1) and LgLr−1
f h(x0) 6= 0 at x0,

then the system has a relative degree of r at the point x0. The relative degree characterizes
the dynamic response relationship between the input and output of the system.

2.3. Conditions for State-Feedback Exact Linearization

The condition of exact feedback linearization is the complete linearization of nonlinear
systems, which must strictly meet exact linearization conditions [40,41]. The relationship
between the relative order of the system and the dimensionality of the system–state space
n mainly includes two cases, r < n or r = n. The necessary and sufficient condition
for the SISO affine nonlinear system to realize exact feedback linearization is that there
exists a neighborhood D0 ⊂ D such that the relative order r of the system is equal to the
dimensionality of the system n, which requires that the following condition restrictions
be met:

(1) For all x ∈ D0, the matrix B =
[

g(x)ad f g(x) · · · adn−1
f g(x)

]
has rank n.

(2) The distribution ζ = span(gad f g · · · adn−2
f g) is involutive in the neighborhood D0;

that is, for any τ1, τ2 ∈ D, their Lie bracket is [τ1, τ2] ∈ D.

3. Modeling of a DC Microgrid with CPL
3.1. Boost Modelling

A typical DCMG system structure is shown in the islanding mode in Figure 1. It
comprises distributed energy sources (PV power and fuel cells), energy storage devices,
and loads (including resistive and CPL loads). Typically, a distributed energy source needs
to be connected to a DCMG through a converter, and the load must also be controlled
through the converter. Taking the most common distributed energy source connected to
the DC bus through the Boost converter as an example, the topology of a simplified DCMG
cascade system with CPL is shown in Figure 2.

Figure 1. Structure of typical DC microgrid system.
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Figure 2. Boost DC converter topology with CPL and resistive load.

In Figure 2, the power switch S is controlled by PWM, VD is the diode, L is the
inductor, iL is the inductor current, E is the input voltage, C is the filter capacitor, uC is the
DC bus voltage, and R is the resistive load resistance.

The switch resistance, diode on-resistance, inductor resistance, and capacitor equiva-
lent series resistance are assumed to be zero. The input control variable u ∈ (0, 1) is the
duty cycle function, which regulates the on and off states of the converter switch. The
switching period is Ts. According to the two operating states (on and off) of the switching
tube S, the system is divided into the following two operating modes.

When 0 < u < uTs, the switch S turns on and VD turns off, the system is in the first
mode of operation as shown in Figure 3.

Figure 3. Operating Mode 1.

According to the relationship of each circuit parameter in Figure 3, the Kirchhoff law
of voltage and current yields 

L
diL
dt

= E− uC

C
duC
dt

= iL −
uC
R
− P

uC

(13)
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When uTs < u < Ts, VD turns on, and S turns off, the system is in the second mode
of operation, as shown in Figure 4.

Figure 4. Operating Mode 2.

Similarly, the relationship between the circuit parameters in Figure 4 can be deduced
from Kirchhoff’s voltage and current laws:

L
diL
dt

= E

C
duC
dt

= −uC
R
− P

uC

(14)

According to Figure 3 and the system shown in Figure 4, the operating state of the
DC–DC converter changes between modes as the switching state of the switching tubes
changes. By applying Kirchhoff’s voltage and current laws, we can obtain

L
diL
dt

= E− (1− u)uC

C
duC
dt

= (1− u)iL −
uC
R
− P

uC

(15)

3.2. CPL Modeling

A typical CPL voltammetric curve is shown in Figure 5, where the current drawn by
the CPL is inversely proportional to its voltage. When the voltage across the CPL becomes
more prominent, the current value decreases accordingly; conversely, when the voltage
across the CPL decreases, the current becomes larger accordingly [42]. Therefore, the load
characteristics of CPL can be described as

iCPL =
PCPL

vCPL
vCPL > ε (16)

where PCPL is the rated power of CPL; iCPL is the current absorbed by CPL; vCPL is the
voltage across the CPL; and ε is an arbitrarily small positive value.

The small-signal model of CPL is derived by approximating the operating point of the
V-I curve of CPL with a tangent line. This approximation involves performing a first-order
Taylor expansion of Equation (16) around its current operating point. The small-signal
approximation for the current icpl is then given by:

icpl ≈
P

vcpl
− P

v2
cpl

(
v∗cpl − vcpl

)
= 2

P
vcpl
− P

v2
cpl

v∗cpl (17)
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Figure 5. Voltage–current characteristics of CPL.

4. Controller Design
4.1. Feedback Linearization

The Boost model described by Equation (15) is nonlinear, and in this paper, the state
variables x1 = iL and x2 = uC are chosen. Then, Equation (15) can be rewritten as:

ẋ1 =
1
L
[E− (1− u)x2]

ẋ2 =
1
C

[
(1− u)x1 −

x2

R
− P

x2

] (18)

To make the output voltage track the set reference voltage, we define the output
function as

y = h(x) = x2 − uCref (19)

where uCref is the output voltage’s reference value.
The affine nonlinear standard type describing the system can be obtained as{

Ẋ = f (X) + g(X)u
y = h(X) = x2 − uCref

(20)

where f (X) =

[
E
L −

x2

L
x1

C
− x2

RC
− P

Cx2

]T
, g(X) =

[ x2

L
− x1

C

]T
.

Then, the Lie derivative of the original output function h(x) = x2 − uCre f for the
nonlinear system yields

Lgh(x) =
∂h(x)

∂x
g(x) = − x1

C
(21)

According to the conditions that must be satisfied for the exact feedback linearization
described in Section 2.3, it is clear that the output function y = h(x) defined by Equation (19)
cannot be linearized exactly by the coordinate transformation. Therefore, it is necessary
to reconstruct the output function so that the relative order of the system is equal to the
system’s dimension. In order to determine the new output function y = ω(x), the following
partial differential equation needs to be solved:

LgL0
f ω(x) = Lgω(x) =

∂ω(x)
∂x

g(x) = 0 (22)
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Expanding Equation (22) yields

∂ω(x)
∂x1

x2

L
− ∂ω(x)

∂x1

x1

C
= 0 (23)

Solving Equation (23) yields

ω(x) =
1
C

x2
1 +

1
L

x2
2 (24)

Combining the system output functions described by Equation (24), the nonlinear
system model of the DC–DC converter with CPL can be rewritten as: ẋ = f (x) + g(x)u

y = ω(x) =
1
C

x2
1 +

1
L

x2
2

(25)

To achieve the exact feedback linearization, the following Lie derivatives are calculated
from the new output function:

L f ω(x) =
∂ω(x)

∂x
f (x) =

[
2x1

C
2x2

L

]
f (x) =

2
RLC

(
ERx1 − x2

2 − RP
)

LgL f ω(x) =
∂L f ω(x)

∂x
g(x) =

[
2E
LC

− 4x2

RLC

]
g(x) =

2E
L2C

x1 +
4x1x2

RLC2

L2
f ω(x) =

∂L f ω(x)
∂x

f (x) =
[

2E
LC
− 4x2

RLC

]
f (x)

=
2E(E− x2)

L2C
+

4x2

RLC2

(
x2

R
− P

x2
− x1

)
(26)

Therefore, according to the calculation result of Equation (26), the following coordinate
transformation can be defined:

z =

[
z1
z2

]
=

[
ω(x)

L f ω(x)

]
(27)

The derivatives of z1 and z2 in the coordinate transformation are obtained as[
ż1
ż2

]
=

[
z2

L2
f ω(x) + LgL f ω(x)u

]
(28)

A new control variable v is defined, whose mathematical expression is

v = L2
f ω(x) + LgL f ω(x)u (29)

Then, the nonlinear system described by Equation (20) can be changed into the follow-
ing linear second-order system of the Brunovsky standard type:[

ż1
ż2

]
=

[
0 1
0 0

][
z1
z2

]
+

[
0
1

]
v (30)

4.2. Design of NTSMC

The conventional non-singular terminal sliding mode controller (NTSMC) exhibits
slow convergence during the sliding mode. To address this issue and enhance system
performance, this paper proposes a novel NTSMC controller based on a composite sliding
mode surface. The controller is designed to improve the convergence speed and reduce
tuning time of the system. It focuses on achieving satisfactory dynamic tuning capability
and robust performance for the system’s reference voltage uCre f and reference inductor
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current iLre f . By incorporating the composite sliding mode surface, the controller aims
to provide efficient tuning and robust control, offering improved performance and faster
convergence for various applications.

According to the state space equation described by the system described by Equation (30),
the error variable for its control is defined as{

e1 = z1 − z1ref
e2 = z2 − z2ref

(31)

where z1ref and z2ref are the values of the state variables z1 and z2 at steady state, respectively.
At the time the system reaches the steady state, there is x1 = iLref and x2 = uCref.

According to Kirchhoff’s current law, the steady-state reference value of the inductor
current can be expressed as

x1ref = iLref =
Pload

E
=

P +
u2

Cref
R

E
=

u2
Cref
RE

+
P
E

(32)

Therefore, according to Equations (30) and (32), we can further obtain the values of
state variables z1ref and z2ref at steady state as

z1ref =
1
C

i2Lref +
1
L

u2
Cref

z2ref =
2

RLC
[
ERiLref − u2

Cref − RP
] (33)

From Equation (33), the equation of state of the error variable is given by{
ė1 = e2
ė2 = z2 = v

(34)

In order to improve the dynamic performance of the system, a composite phased
sliding-mode switching surface is selected, as shown below:

S =


S1 = e1 +

1
α

sgn(e2)|e2|β, |e1| < 1

S2 = e2 + α

1
β sgn(e1)|e1|η , |e1| ≥ 1

(35)

where α > 0, β, and η > 1 are parameters to be determined.
The derivative of Equation (35) is obtained as

Ṡ =


Ṡ1 = ė1 +

β

α
|e2|β−1 ė2 = e2 +

β

α
|e2|β−1v, |e1| < 1

Ṡ2 = ė2 + ηα

1
β |e1|η−1 ė1 = v + ηα

1
β |e1|η−1e2, |e1| ≥ 1

(36)

Ensuring that the system described by Equation (30) converges quickly to the de-
fined sliding-mode switching surface, the following phased exponential convergence law
is adopted:

Ṡ =

Ṡ1 =
β

α
|e2|β−1[−λS1 − ε sgn(S1)], |e1| < 1

Ṡ2 = −λS2 − ε sgn(S2), |e1| ≥ 1
(37)

Thus, the NTSMC law v based on the composite sliding surface can be expressed as

v =

 v1 = − α

β
sgn(e2)|e2|2−β − λS1 − ε sgn(S1), |e1| < 1

v2 = −ηα
1
β |e1|n−1e2 − λS2 − ε sgn(S2), |e1| > 1

(38)
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4.3. NTSMC Controller Stability Analysis

In this paper, in order to verify the stability of the proposed sliding-mode controller,
the following Lyapunov function is defined:

V1 =
1
2

S2
1

V2 =
1
2

S2
2

(39)

Derivation for V1 and V2 yields

V̇1 = S1Ṡ1 =
β

α
|x2|v−1[−λS1 − ε sgn(S1)]S1 =

β

α
|x2|v−1

[
−λS2

1 − ε|S1|
]

V̇2 = S2Ṡ2 = S2[−λS2 − ε sgn(S2)] = −λS2
2 − ε|S2|

(40)

Since α, β, λ, ε are all values greater than zero, V̇1 ≤ 0, and V̇2 ≤ 0, satisfy the Lyapunov
stability condition.

In summary, the corresponding control law of the original nonlinear system can be
obtained from the stated exact linearized state-feedback relationship equation, and the
control law v can be obtained from the NTSMC controller as

u(x) =


u1(x) =

−L2
f ω(x) + v1

LgL f ω(x)
, |e1| < 1

u2(x) =
−L2

f ω(x) + v2

LgL f ω(x)
, |e1| > 1

(41)

The control law described by Equation (41) can be used to generate PWM pulses by
comparing them with the delta carrier signal of the desired switching frequency. These
PWM pulses can be used to control the on and off state of the Boost DC–DC converter
switching tubes, thus achieving the goal of stable control of the Boost DC–DC converter
with CPL.

5. Improved SSA and Its Application to the NTSMC
5.1. Salp Swarm Algorithm

The salp swarm algorithm (SSA) is an algorithm that effectively simulates the swim-
ming and foraging process of the salp swarm in the ocean. Salp individuals move much like
jellyfish, but because they are challenging to keep and study in experimental settings, the
SSA has become an essential tool for researchers to explore their movement and behavior.
One of the most exciting aspects is the group-feeding behavior of the tarantula. In the
deep sea, salp individuals often form chains of salp swarms for their locomotor behavior,
as shown in Figure 6. Although the main bioinformatic reasons for this behavior are not
clear, several researchers have studied this and found that this behavior can better exploit
rapid coordination changes to achieve better movement trajectories to optimize foraging
behavior. In conclusion, the SSA can not only simulate the movement and behavior of the
salp swarm but also provide a valuable reference for the study and understanding of the
group foraging behavior of the salp swarm [43,44].

In order to model the movement trajectories of the salp swarm population during
foraging, we first divided the salp swarm population into two categories: leaders and
followers. The leader is located at the top of the chain of the salp swarm, while the other
salps are considered followers. As the name suggests, the leaders of the salp swarm are
responsible for guiding the group’s movement, while the followers follow. Similar to
other population intelligence optimization techniques, we defined the positions of the salp
swarm in an n-dimensional search space as a model, where n is determined based on a
given problem. Thus, the positions of all salps were stored in a two-dimensional matrix.
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In the search space, we used F as the food source (the fitness function to be solved) as the
target for the salp swarm to search for food [45].

Figure 6. Shape and structure of salp chain in deep ocean.

The mathematical model of the foraging movement trajectory of the salp swarm chain
is as follows: 

x1
j =

{
F j + c1 ×

((
ubj − lbj

)
× c2 + lbj

)
, c3 ≥ 0

F j − c1 ×
((

ubj − lbj
)
× c2 + lbj

)
, c3 < 0

xi
j =

1
2

(
xi

j − xi−1
j

)
, i ≥ 2

(42)

where X1
j denotes the position of the first bottle sea squirt in j dimensions, i ≥ 2, X i

j denotes
the position of the ith Nara sea squirt follower in j dimensions, F j denotes the position of
the food source in j dimensions, ubj is the maximum vector in the search space, lbj is the
minimum vector in the search space, and c1, c2, and c3 are random numbers.

Equation (42) shows that the leader only updates its position to the food source. One
of the parameters c1 is the most important parameter in this algorithm and is defined
as follows:

c1 = 2e−(
4L
l )

2

(43)

where l is the current iteration of the algorithm and L is the total number of iterations of the
algorithm. c2 and c3 are random numbers in the range [0, 1]. In fact, c2 and c3 determine
whether the next position of the salp swarm in the jth dimension should be positive or
negative infinity, as well as the step length of the salp swarm.

5.2. SSA Improvement Based on Levy Flight

Levy flight is a method of depicting the Levy distribution in random steps. Numerous
studies have shown that many animals and insects behave in a way that is classically
characteristic of Levy flight. Levy flight is a method of random step size, as shown in
Figure 7, a simulated image of the Levy flight trajectory, which always occurs with small
step sizes but occasionally occurs with large jumps [46].

The equation for Levy’s flight is as follows:

Levy ∼ µ = t−λ, 1 < λ ≤ 3 (44)

The step s of Levy’s flight is given by

s =
µ

|v|
1
β

(45)
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where the parameters β = 1.5, µ = N
(

0, σ2
µ

)
and v = N

(
0, σ2

v
)

all denote gamma functions.

Figure 7. Levy’s flight path.

The variance σµ of the parameters can be described by the following equation:

σµ =


Γ(1 + β)×

(
sin π × β

2

)

Γ
[
(1 + β)

2

]
× β× 2

(β− 1)
2



1
β

, σv = 1 (46)

Since Levy’s flight has the property of increasing the population diversity and ex-
panding the search range, adding it to Equation (42) can better complete the update of the
leader’s position and make it easier to jump out of the local optimum problem. Therefore,
the improved mathematical model of the SSA algorithm can be expressed by combining
Equations (44) and (42) as follows:

x1
j =

{
F j + c1 ×

((
ubj − lbj

)
+ lbj

)
× Levy , c3 ≥ 0

F j − c1 ×
((

ubj − lbj
)
+ lbj

)
× Levy , c3 < 0

(47)

The parameter c1 in Equation (47) is obtained from Equation (43), which enables the
optimization algorithm to tighten the optimal value of the fitness function with the increase
in the number of iterations. The combination of the parameter c1 and the Levy flight
strengthens the global search capability of the SSA and ensures the optimal value in time.
This method not only improves the search intensity of SSA but also increases the diversity
of the algorithm. The optimization algorithm ensures that the algorithm can find the
optimal value of the algorithm and avoid falling into the local optimum, and the algorithm
has better global search capabilities due to its enhanced diversity. The optimization effect
of NTSMC can thus be better obtained.

5.3. NTSMC Parameter Optimization Based on Improved SSA

The NTSMC proposed for the voltage stabilization control of the CPL includes several
parameters. The values of these parameters significantly influence the performance of
the NTSMC. Therefore, the appropriate adjustment of these parameters is required. The
number of NTSMC parameters is 5, including the sliding-mode surface parameters α, β,
and η (3 parameters) and the convergence law parameters λ and ε (2 parameters). This
paper uses an improved SSA (ISSA) to optimize and adjust these parameters. The objective
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function to be optimized by ISSA is Equation (48). This optimization objective aims to
minimize the output voltage’s absolute variation along the time period, as follows:

Obj =
∫ T

0
(uC − uCre f )

2dt (48)

In this paper, we used ISSA to search for and solve the optimal values of the sliding-
mode surface and convergence law parameters of NTSMC, which transforms the problem of
optimizing the parameters into the problem of finding the optimal solution to the objective
function. Therefore, in this paper, we used Equation (48) as the fitness function of the
ISSA. F j in Equation (47) was used as the food source of the salp leader, and we found the
minimum value of Equation (48) more quickly by the predation of the salp swarm on the
food, which is the optimal parameter of the NTSMC. The overall optimization flow chart is
shown in Figure 8. Therefore, after the optimization of ISSA, it is necessary to obtain the
intelligent non-singular terminal sliding-mode control strategy (INTSMC).

Figure 8. Parameters optimization algorithm flow chart.

6. Numerical Study

In order to verify the effectiveness of the proposed control strategy, a simulation circuit
was built in the MATLAB/Simulink platform according to the above discussion. The Boost
DC–DC converter system with a CPL based on SMC and the Boost DC–DC converter
system with a CPL based on the proposed INTSMC was constructed to further demonstrate
the superiority of the controller designed in this paper. The system’s dynamic performance
was compared under three conditions: start-up response, input voltage ingestion, and load
disturbance, respectively.

The SMC used for comparison has a sliding surface, which can be defined as

S = x1x2 − x1re f x2re f (49)

where x1ref = iLref = u2
cref /RE + P/E; x2re f = uCre f . Moreover, this SMC’s sliding-mode

convergence law was chosen to be Ṡ = −λS− εsgn(S). Therefore, the control law of this
SMC can be expressed mathematically as

u =1− (Px1/Cx2)− (Ex2/L)− λS
(x2

1/C)
− (x2

2/L)+

ε
sgn(S)
x2

1/C
− (x2

2/L)
(50)

The control parameters of the SMC were then taken from the literature [47].
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In this paper, the rated capacity of the converter was 1 kVA, the sampling period was
28 µs, and the electrical parameters in the CPL system are shown in the following Table 1.

Table 1. System’s electrical parameters.

Parameter Value

Reference output voltage uCre f 380 V
Input inductance L 1 mH

Output capacitance C 1000 µF
Power supply nominal voltage E 50 V

CPL power P 1000 W

The optimization operating environment was based on the Windows 10 operating
system, and MATLAB was used to program the optimization. During optimization, the
maximum number of iterations M of the SSA algorithm was ten, and the population size N
was 30. Ultimately, the optimal values of these parameters are also given in Table 2.

Table 2. INTSMC optimal control parameters.

Parameter α β η λ ε

Value 7.06× 104 5.88× 104 8.24× 104 3.51× 104 7.03× 104

6.1. Case I: System Start-Up Response

The objective of this study was to evaluate the performance of the Boost DC–DC
converter system with CPL under different controllers. We investigated the output voltage
and system duty ratio of two systems, as depicted in Figures 9 and 10. In addition, we
analyzed the voltage start-up response and duty ratio responses of the two systems.

Our comparative analysis of the voltage start-up response in Figures 9 and 10 reveals
that the proposed controller, INTSMC, achieves faster start-up, with the system reaching
steady state in about 0.1 seconds and constantly closely tracking its reference value. On the
other hand, the system under SMC control takes about 0.4 seconds to enter a steady state.
Moreover, the waveform stability of the INTSMC-controlled system is higher, with a lower
ripple content after reaching steady state.

Figure 9. Voltage start-response waveform under SMC.

The duty ratio responses of the systems under different controllers are shown in
Figures 11 and 12. Both systems exhibit varying degrees of jitter, and the magnitude of jitter
in both systems is small, which underscores the advantage of the sliding-mode controller
in suppressing jitter.
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Figure 10. Voltage start-response waveform under INTSMC.

Figure 11. System duty ration under SMC.

Figure 12. System duty ration under INTSMC.

Overall, our results demonstrate the superiority of the Boost DC–DC converter system
with CPL under INTSMC control in terms of faster start-up, higher waveform stability,
and lower ripple content. These findings have important implications for the design and
optimization of DC–DC converter systems, especially in applications that require stable
and fast performance.
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6.2. Case II: System Performance during Input Voltage Ingestion

To investigate the robustness of the system during input voltage perturbation, we
increased the source-side input voltage from 50 V to 50.25 V in 0.5 s and then recovered it
in 0.6 s, as shown in Figure 13. Figures 14 and 15 depict the output voltage responses of
the systems under INTSMC and SMC, respectively, when the source-side input voltage is
perturbed. In addition, Figures 16 and 17 show the inductor current responses of the two
systems under the applied voltage perturbation.

Figure 13. Input voltage change curve.

Figure 14. Voltage response waveform under SMC.

Figure 15. Voltage response waveform under INTSMC.
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Figure 16. Current response waveform under SMC.

Figure 17. Current response waveform under INTSMC.

Our results reveal that both the system under INTSMC and the system under SMC
deviate from the reference voltage value at the moment of a sudden change in output
voltage when the source-side input voltage is perturbed, as observed in Figures 14 and 15.
However, the system under INTSMC converges to the steady state faster, with a smaller
voltage fluctuation amplitude and ripple and a smoother transition. Furthermore, our
analysis demonstrates that the overshoot amplitude of the system under INTSMC is small
at the time of the jump in input voltage, allowing it to quickly track the new reference value
to ensure the CPL’s power supply. Therefore, the system under INTSMC exhibits greater
resistance to disturbances in the input voltage.

Overall, our findings demonstrate the robustness of the Boost DC–DC converter
system with CPL under INTSMC control during input voltage perturbation. These results
have significant implications for the design and optimization of DC–DC converter systems,
particularly in applications where robust performance is critical.

6.3. Case III: Resistance to Load Disturbance

CPL load fluctuation is a significant factor affecting the stability of DC converter
systems. In this study, we performed a case simulation to verify the strong robustness
of the improved SSA-based INTSMC strategy. As illustrated in Figure 18, we suddenly
reduced the CPL power from 1000 W to 800 W at 0.5 s and restored it to 1000 W at 0.7 s to
simulate the fluctuation of the CPL’s load.
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Figure 18. CPL power change curve.

The output voltage and inductor current response waveforms of the two systems
under perturbation of the CPL’s load are presented in Figures 19 and 20, respectively.
Our comparative analysis in Figures 19 and 20 demonstrates that the output voltage of
both systems deviates from the reference voltage value when the CPL changes abruptly.
However, the system under INTSMC maintains an unchanged output voltage and always
maintains tracking accuracy before the perturbation, indicating better control performance
than the system under SMC. Moreover, the comparison of the inductor current response
in Figures 21 and 22 further confirms the superior control performance of the proposed
INTSMC when the constant power load is disturbed.

Overall, our results indicate that the proposed controller exhibits better dynamic
response and robustness to CPL perturbations. These findings have significant implications
for the design and optimization of DC converter systems, particularly in applications where
stable and robust performance is crucial.

Figure 19. Voltage response waveform under SMC.

Figure 20. Voltage response waveform under INTSMC.
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Figure 21. Current response waveform under SMC.

Figure 22. Current response waveform under INTSMC.

7. Conclusions

Due to the environmental and economic benefits of DCMGs, they provide a strong im-
petus for the efficient, low-carbon, and sustainable development of power grids. However,
the CPL of DCMGs can bring about MG stability problems, which should be suppressed
using appropriate controllers. This paper proposes an improved SSA-based non-singular
terminal sliding-mode control technique (NTSMC) for targeting the stability problem of
Boost DC–DC converter systems with CPL. The improved SSA algorithm is applied to
adjust the parameters of the proposed NTSMC optimally. This paper proposes an intelli-
gent NTSMC for the CPL stability problem of DCMG, which was not available before. The
simulation results show that the intelligent NTSMC (INTSMC) controller is faster than the
conventional SMC controller and can resist disturbances in source-side input voltage and
perturbations in the CPL’s load to ensure good dynamic regulation and the steady-state
tracking capability of the output voltage and inductor current, thus ensuring the stable and
reliable operation of the system. At the same time, the designed controller combines the
advantages of state-feedback accurate linearization and sliding-mode variable structure
control, which has a substantial engineering practical value.
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