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Intelligent Learning Algorithms for

Active Vibration Control

A. Madkour, M. A. Hossain, Member, IEEE,

K. P. Dahal, Member, IEEE, and H. Yu, Member, IEEE

Abstract—This correspondence presents an investigation into the
comparative performance of an active vibration control (AVC) system
using a number of intelligent learning algorithms. Recursive least square

(RLS), evolutionary genetic algorithms (GAs), general regression neural
network (GRNN), and adaptive neuro-fuzzy inference system (ANFIS)
algorithms are proposed to develop the mechanisms of an AVC system.
The controller is designed on the basis of optimal vibration suppression

using a plant model. A simulation platform of a flexible beam system
in transverse vibration using a finite difference method is considered to
demonstrate the capabilities of the AVC system using RLS, GAs, GRNN,
and ANFIS. The simulation model of the AVC system is implemented,

tested, and its performance is assessed for the system identification models
using the proposed algorithms. Finally, a comparative performance of the
algorithms in implementing the model of the AVC system is presented and

discussed through a set of experiments.

Index Terms—Adaptive systems, fuzzy neural network, intelligent con-
trol, recursive estimation, system identification, vibration control.

I. INTRODUCTION

This research investigates the design and development of intelligent

learning algorithms for an active vibration control (AVC) system. It

is reported earlier that the conventional online system identification

schemes are, in essence, local search techniques [1]–[5]. These tech-

niques often fail in the search for the global optimum if the search

space is not differentiable or linear in the parameters. There have

been many attempts to overcome this limitation using artificial in-

telligence [4]–[9]. This investigation employed recursive least squares

(RLS), evolutionary genetic algorithms (GAs), general regression neu-

ral networks (GRNNs), and an adaptive neuro-fuzzy inference system

(ANFIS) to identify the characteristics of the AVC algorithm for flexi-

ble beam control. A comparative performance of the algorithms is also

explored to demonstrate their capabilities and merits in implementing

an AVC system.

AVC is not a new concept. It is based on the principles that were ini-

tially proposed by Lueg in the early 1930s for noise cancellation [10].

Many attempts have been made since then at devising methods for tack-

ling the problems arising due to unwanted structural vibrations (dis-

turbances) consisting of passive and active control [2]–[5], [11]–[19].

Traditional methods of vibration suppression include passive control,

which consist of mounting passive material on the structure [15]. On

the other hand, AVC consists of artificially generating the cancelling

source(s) to destructively interfere with the unwanted source, and thus,

results in a reduction in the level of the vibration (disturbances) at

desired location(s). This is realized by detecting and processing the

vibration by a suitable electronic controller so that, when superim-

posed on the disturbances, cancellation occurs. Due to the broadband

nature of the disturbances, it is required that the control mechanism in
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an AVC system realizes suitable frequency-dependent characteristics

so that cancellation over a broad range of frequencies is achieved. In

practice, the spectral contents of the disturbances as well as the char-

acteristics of system components are, in general, subject to variation,

giving rise to the time-varying phenomena. This implies that the con-

trol mechanism is further required to be intelligent enough to track

these variations so that the desired level of performance is achieved

and maintained [2].

A model of a flexible beam system in transverse vibration is con-

sidered in this correspondence. Such a system has an infinite number

of modes, although in most cases the lower modes are the dominant

ones requiring attention. The unwanted vibrations in the structure are

assumed to be the result of a single-point disturbance of the broad-

band nature. First-order central finite difference (FD) methods are used

to study the behaviors of the beam and develop a suitable test and

verification platform. An AVC system is designed utilizing a single-

input single-output control structure to yield optimum cancelation of

broadband vibration at a set of observation points along the beam. The

controller design relations are formulated so as to allow online design

and implementation [15].

The flexible beam system, as discussed later, is considered as the

plant model. The traditional RLS filter, evolutionary GAs, GRNN,

and the ANFIS algorithms of the MATLAB tool boxes are used to

estimate the AVC system canceling signal based on the input and

corresponding output of the plant model. This is realized by minimizing

the prediction error of the actual plant output and the corresponding

model output. The AVC system is designed for optimum cancellation of

broadband vibration along the beam. It is then implemented and tested

using RLS, GAs, GRNN, and ANFIS algorithm. The performances

of the proposed algorithms in implementing the simulation model of

the AVC system are assessed in the suppression of vibration along the

beam. These are presented and discussed through a set of simulation

results.

II. FLEXIBLE BEAM SYSTEM

Flexible structure systems are known to exhibit an inherent property

of vibration when subjected to disturbance forces leading to compo-

nent and/or structural damage. Such systems include a wide range of

engineering applications, e.g., skyscrapers and bridges in civil engi-

neering applications; propellers, aircraft fuselage and wings, satellite

solar panels, and helicopter blades in aerospace structures; and turbo

generator shafts, engines, gas turbine rotors, and electric transformer

cores in electromechanical systems [14].

In this correspondence, we consider a simulation model for a can-

tilever beam of length L, fixed at one end and free at another, with

a force U (x, t) applied at a distance x from its fixed (clamped) end

at time t, resulting a deflection y (x, t) of the beam from its station-

ary (fixed) position at the point where the force has been applied.

A schematic diagram of this cantilever beam system is shown in

Fig. 1.

The motion of the beam in transverse vibration is, thus, governed by

the well-known fourth-order partial differential equation (PDE) [14],

[18]

µ2 ∂4y(x, t)

∂x4
+

∂2y(x, t)

∂t2
=

1

m
U(x, t) (1)

where µ is a beam constant given by µ2 = EI/ρA, with ρ, A, I and E
representing the mass density, cross-sectional area, moment of inertia

of the beam, and the Young modulus, respectively, and m is the mass

of the beam. The corresponding boundary conditions at the fixed and
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Fig. 1. Schematic diagram of the cantilever beam system.

free ends of the beam are given by

y(0, t) = 0
∂y(0, t)

∂x
= 0

∂2y(L, t)

∂x2
= 0

∂3y(L, t)

∂x3
= 0. (2)

It is to be noted that the model incorporates no damping. To construct

a suitable platform for test, a method of obtaining numerical solution

of the PDE in (1) is required. This can be achieved by using the FD

method. This involves a discretization of the beam into a finite number

of equal-length sections (segments), each of length ∆x, and considering

the beam motion (deflection) for the end of each section at equally

spaced time steps of duration ∆t. Thus, first-order central FD methods

are used to approximate the partial derivative terms in (1) and (2)

yielding [1]

Yj+1 = −Yj−1 − λ
2SYj + (∆t)2U(x, t)

1

m
(3)

where Yk (k = j − 1, j, j + 1) is an n × 1 matrix representing the

deflection of grid-points 1 to n of the beam at time step k, S is a matrix,

given in terms of characteristics of the beam and the discretization steps

∆t and ∆x, and λ
2 = (∆t)2(∆x)−4µ2. Equation (3) is the required

relation for the simulation algorithm, characterizing the behavior of

the cantilever beam system, which can be implemented on a digital

computer easily. It has been shown that a necessary and sufficient

condition for stability satisfying this convergence requirement is given

by 0 < λ
2 ≤ 0.25 [1].

III. AVC SYSTEM

A schematic diagram of an AVC structure is shown in Fig. 2. An

unwanted (primary disturbance) point source emits broadband distur-

bance into the structure. This is detected by a detector, processed by

a controller of suitable transfer characteristics, and fed to a canceling

(secondary) point actuator. The secondary (control) signal thus gener-

ated interferes with the disturbance to achieve a reduction in the level

of vibration at an observation point along the structure.

To allow the development of an AVC algorithm, consider the sys-

tem in Fig. 2 with the detected signal UM as input, and the observed

signal YO as output. For complete cancellation of the disturbance to

be achieved at the observation point, the signal YO = 0 must be forced

to become zero. This is equivalent to the minimum variance design

criterion in a stochastic environment. This requires the primary and

secondary signals at the observation point to be equal in amplitudes

and have a phase difference of 180◦ relative to one another. The work

by Tokhi and Leitch of synthesizing the controller on the basis of

this objective will yield the required controller transfer function as

[1], [15].

C = [1 − Q1/Q0]
−1

(4)

Fig. 2. Active vibration control structure.

where Q0 and Q1 represent the equivalent transfer functions of the

system (with input at the detector and output at the observer) when

the secondary source is off and on, respectively. Equation (4) is the

required controller design rule, which can easily be implemented on-

line. This will involve estimating Q0 and Q1, using a suitable system-

identification algorithm, designing the controller using (4), and im-

plementing the controller to generate the control signal. Equation (4)

reflects that the order of the controller is twice of the original plant

model which leads to estimate a large number of parameters. In this

investigation, the RLS, GAs, GRNN, and ANFIS algorithms are used

as online system identification algorithms to estimate the AVC system

canceling signal itself, based on the input and corresponding output

of the plant model. The designed AVC system can be tuned to keep

it stable in case of any uncertainty, noise, or disturbance, using the

self-tuning mechanism reported in [15]. These algorithms are briefly

described in the following sections to demonstrate the computational

merits and complexity.

IV. RLS ALGORITHM

This is a traditional adaptive filter algorithm. It estimates the current

parameter vector θ̂(k) based on the previous estimated vector θ̂(k − 1)
as [20]

θ̂(k) = f(θ̂(k − 1),D(k), k) (5)

where D(k) denotes the data available at time (k), and f (.,.,.) de-

notes an algebraic function, the form of which determines the specific

algorithm. In the case of dynamic system, data D(k) normally con-

sider the form of present and past observation of the system outputs

and inputs [21], [22]. For a multiparameter system, this form can be

represented as

Y (z) =
1 + b1(z

−1) + · · · + bm(z−m)

1 + a1(z−1) + · · · + am(z−m)
U(z) (6)

where Y, U, and m are the system input, output, and order, respectively.

or

y(k) = ψT (k) θ (7)

where

ψ(k) = [−y(k − 1), . . ., −y(k − m), u(k), . . . , u(k − m)]T (8)

and

θ = [a1, . . . , am , b1, . . . , bm+1]
T . (9)

The estimation of the parameters vector θ is performed in a way such

that the estimated θ̂r minimizes the sum of the square of errors (cost

function) J(r), where r denotes the number of sets of measurement

J(r) =

r
∑

k=1

(

y(k) − ψ(k)T θ̂(r)
)2

. (10)
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Equation (10) can be written in a recursive form as [17]

θ̂(k) = θ̂(k − 1) + P (k)Ψ(k)(y(k) −Ψ
T (k)θ̂(k − 1)) (11)

where

P (k) =

[

P (k − 1) −
P (k − 1)u(k)ψT (k)P (k − 1)

1 + ψT (k)P (k − 1)ψ(k)

]

. (12)

V. INTELLIGENT ALGORITHMS

The conventional online system identification schemes are, in

essence, local search techniques. These techniques often fail in the

search for the global optimum if the search space is not differentiable

or linear in the parameters. On the other hand, these techniques do

not iterate more than once on each datum received. In contrast, as

mentioned earlier, real-time estimation scheme requires an updated

parameter within the time span between successive samples [23]. An

alternative strategy using artificial intelligence algorithm could pro-

vide a better solution. To achieve this goal, four most commonly used

algorithms are explored to demonstrate their capabilities. These are

described as follows.

A. GA and Operators

Over the last decade, GAs have been extensively used as search and

optimization tools in various problem domains. The GA simultaneously

evaluates many points in the parameter space and converges toward the

global solution. The GA differs from other search techniques in the use

of concepts taken from natural genetics and evolution theory [24], [25].

According to Goldberg [26], GAs are different from the more normal

optimization and search procedures in the following four ways.
� GAs work with a coding of the parameter set, not the parameters

themselves.
� GAs search from a population of points, not a single point.
� GAs use payoff (objective function) information, not derivatives

or other auxiliary knowledge.
� GAs use probabilistic transition rules, not deterministic rules.

The basic GA evolution can be summarized as follows: create a pop-

ulation of individuals (solutions), evaluate their fitness, generate a new

population by applying genetic operators, and repeat this process for a

number of times [25]. The GA iteratively uses selection, crossover, and

mutation operators for the population evolution. The selection operator

selects solutions to be parents based on their fitness. A crossover opera-

tor is used on these parent strings to obtain the new solutions that inherit

the good and bad properties of their parent solutions. There are many

traditional crossover operators such as uniform, single-point, and mul-

tipoint crossovers. Mutation operator is then applied to produce new

characteristics, which are not present in the parent solutions. The newly

created solutions form the new population for the next generation.

Here, we report the applications of two GAs. The first one uses

a traditional crossover, which is referred to as a traditional crossover

GA (TCGA); and the second one uses a new crossover operator as

described in Section V-A1.

The GAs consider the same multiparameter system given by (7).

Binary strings are used to represents a solution (individual). The fitness

function for the system can be defined as [4]

f(e) =

r
∑

k=1

|y(k) − ŷ(k)| (13)

where y(k) is the measured output, ŷ(k) is the estimated model output,

and r is the number of sets of measurement considered. Equation (13)

TABLE I
EXAMPLE OF TWO PARENTS HAVING AN EIGHT-GENE CHROMOSOME

TABLE II
REPRODUCTION IN TABLE I USING RCGA

Fig. 3. Basic GRNN structure.

Fig. 4. Basic ANFIS structure.

may be written in vector form as

f(e) =

r
∑

k=1

∣

∣y(k) − θ̂0ψ̂(k)
∣

∣. (14)

The TCGA in our application uses multipoint crossover operator.

The TCGA works on randomly selected pairs of solutions from the

mating pool with a certain crossover rate. This operation exchanges the

genes between the two selected solutions. This operation is uncertain,

and may take time to converge to the global minimum [26]–[28]. This

is the main motivation to develop a new crossover to use with the

recessive trait crossovers genetic algorithm (RCGA).

Authorized licensed use limited to: University of Bradford. Downloaded on November 14, 2008 at 09:45 from IEEE Xplore.  Restrictions apply.
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Fig. 5. (a) Performance of the RLS algorithm. (b) Performance of the TCGA. (c) Performance of the RCGA algorithm. (d) Performance of the GRNN algorithm.
(e) Performance of the ANFIS algorithm.

1) RCGA: In the Nineteenth Century, Darwin originated his theory

of evolution [29]–[31]. Darwin suggested that in the universal struggle

for life, nature “selects” those individuals who are best suited (fittest)

for the struggle, and these individuals in turn reproduce more than those

who are less fit, thus changing the composition of the population.

There are three methods of population inheritance: dominant, re-

cessive, and sex linked [32]. The expression of sex-linked properties

depend on the person’s sex. For dominant properties, only one genetic

trait is needed for this property to be expressed. However, if a genetic

trait is recessive, a person needs to inherit two copies of the gene for

Authorized licensed use limited to: University of Bradford. Downloaded on November 14, 2008 at 09:45 from IEEE Xplore.  Restrictions apply.
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Fig. 6. (a) Performance of the RLS algorithm in auto-power spectral density. (b) Performance of the TCGA in auto-power spectral density. (c) Performance
of the RCGA algorithm in auto-power spectral density. (d) Performance of the GRNN algorithm in auto-power spectral density. (e) Performance of the ANFIS
algorithm in auto-power spectral density.

the trait to be expressed. Thus, both parents have to be carriers of a

recessive trait in order for a child to express that trait. If either of the

parents is a carrier, there is a 25% chance of each child showing the

recessive trait, and it becomes 100% if both have that recessive trait.

Using the concepts taken from the recessive property inheritance, a

crossover operator has been developed. Here, the GA with this oper-

ator is called RCGA. The RCGA produces children by selecting the

common genes between parents, and choosing the remaining genes

randomly. The main difference between the TCGA and RCGA is the

way of how the new population is inherited from the previous gener-

ations. To use the proposed population inheritance approach through

the recessive trait crossover we assume that the complementary of all

of the chromosome parts makes its survival fitness for a fixed length of

the chromosomes.

Now, let us assume that two parents have the eight genes chromo-

some as shown in Table I. It is worth noting that those parents have

Authorized licensed use limited to: University of Bradford. Downloaded on November 14, 2008 at 09:45 from IEEE Xplore.  Restrictions apply.
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common genes at (1, 3, 5, and 6). According to the Darwin theory,

those two parents’ struggle for the fittest depends on these common

genes; thus, we can keep these genes without any change when we

produce their children to fit in the same struggle, and try to make their

children of better fitness by the crossover of different genes using the

four possible binary combinations randomly. This is the only random

operation in our TCGA. The new solutions will be as shown in Table II.

Referring to recessive trail behavior, the selection of the parents for

mating is very important. We have used a selection operation, which

sorts the old population according to their fitness, and then, mate the

first parent with the second to generate four new children, as shown in

the above example, and so on.

The overall algorithm can be written as follows.

Step 1) Create a random population of N individuals.

Step 2) Evaluate their fitness.

Step 3) Sort the individuals in the population according to their

fitness.

Step 4) Choose the best N /2 individuals as mating pool to generate

new population.

Step 5) Generate four new individuals by reproducing the nearest

two parents from the mating pool, keeping the common

genes and randomly swapping the different genes. This cre-

ates a new population of N individuals.

Step 6) Apply mutation operation with a probability.

Step 7) Repeat Steps from 2 to 6 for the best fitness value.

B. GRNN

Use of neural network (NN) techniques to solve the problems in

guidance began in the late 1990s by Song and Tahk [33]. The basic

idea of NN midcourse guidance is to train NNs to learn the functional

form of the optimal guidance command in terms of the current states

and terminal conditions, and use them for real-time guidance [34].

The GRNN is the NN architecture that can solve any function ap-

proximation problems in the sense of estimating a probability distribu-

tion function [35]. It is a powerful memory-based network that could

estimate continuous variables, and converges to the underlying regres-

sion surface [36].

The main advantage of the GRNN approach is its simplicity. It is

noted that the adjustment of only one parameter is sufficient for deter-

mining the network. GRNN approximates any arbitrary function be-

tween input and output vectors, drawing the function estimate directly

from the training data. Furthermore, as the training set size becomes

large, the estimation error approaches zero, with only mild restrictions

on the function [37].

GRNN was firstly developed by Specht (1991), who claims that the

algorithm in GRNN is able to provide a smooth transition from one

observed value to another, even with sparse data in a multidimensional

measurement space [38].

GRNN is a feed-forward NN established on the theory of nonlinear

regression (Fig. 3). It is a three-layer network with one hidden layer

[35]. Each layer has entirely different roles: 1) the input layer, where the

inputs are applied; 2) the hidden layer, where a nonlinear transformation

is applied on the data from the input space to the hidden space (in most

applications, the hidden space is of high dimensionality); 3) the linear

output layer, where the outputs are produced.

C. ANFIS

The ANFIS techniques provide a method for the fuzzy modeling

procedure to learn information about a data set, in order to compute

the membership function parameters that best allow the associated

fuzzy inference system to track the given input-output data. This learn-

TABLE III
ERROR CONVERGENCE AND CORRESPONDING EXECUTION

TIME IN IMPLEMENTING THE ALGORITHMS

Fig. 7. Execution time of the algorithms relative to the real-time requirement.

ing method works in a similar form as that of the NNs. There is a

MATLAB function in the Fuzzy Logic Toolbox that accomplishes this

membership function parameter adjustment called ANFIS. This hybrid

adaptive neuro-fuzzy function ANFIS is used for system identification,

which is the major training routine for Sugeno-type fuzzy inference

systems (FIS). ANFIS has been reported to produce good results as a

function approximation tool [39]–[41].

Fig. 4 shows the basic structure of the ANFIS algorithm for a

first-order Sugeno-style fuzzy system. It is worth noting that Layer-

1 consists of membership functions described by the generalized bell

function

ξ(X) = (1 + ((x − c)/a)2b)−1 (15)

where a, b, and c are adaptable parameters. Layer-2 implemented the

fuzzy AND operator, while Layer-3 acts to scale the firing strengths.

The output of Layer-4 is comprised of a linear combination of the

inputs multiplied by the normalized firing strength w

Y = w(pX + r) (15)

where p and r are adaptable parameters. Layer-5 is a simple summation

of the outputs of Layer-4. The adjustment of modifiable parameters is

a two-step process. First, information is propagated forward in the

network until Layer-4, where the parameters are identified by a least-

squares estimator. Then the parameters in Layer-2 are modified using

gradient descent. The only user-specified information is the number of

membership functions in the universe of discourse for each input, and

the input-output is considered as training data.

VI. SIMULATION RESULTS

To demonstrate the algorithms and to study the behavior of the

system, we will use a simulation model of an aluminum-type can-

tilever beam in transverse vibration as a platform for the investigation.

This flexible beam and its AVC system has been used as a platform

Authorized licensed use limited to: University of Bradford. Downloaded on November 14, 2008 at 09:45 from IEEE Xplore.  Restrictions apply.



1028 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 37, NO. 5, SEPTEMBER 2007

Fig. 8. (a) Beam fluctuation at the end point before cancellation. (b) Beam fluctuation at the end point after cancellation in implementing AVC using RLS.
(c) Beam fluctuation at the end point after cancellation in implementing AVC using TCGA. (d) Beam fluctuation at the end point after cancellation in implementing
AVC using RCGA. (e) Beam fluctuation at the end point after cancellation in implementing AVC using GRNN. (f) Beam fluctuation at the end point after
cancellation in implementing AVC using ANFIS.

for many case studies using RLS and/or TCGAs [1]–[6], [15]–[19].

A comparative performance for using the RLS and TCGA has been

reported earlier [19].

Our aluminum beam has the specifications of length as L = 0.635 m,

mass m = 0.037 kg, beam constant µ = 1.351. The first five reso-

nance modes of this beam, as obtained through simulation exercise and

verified by theoretical analysis, are located at 1.875, 11.751, 32.902,

64.476, and 106.583 Hz, respectively, with the first two modes being

the dominant ones. The beam is divided into 20 small segments, and a

sample period was selected as ∆t = 0.3ms that satisfies the stability

Authorized licensed use limited to: University of Bradford. Downloaded on November 14, 2008 at 09:45 from IEEE Xplore.  Restrictions apply.
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Fig. 9. (a) Auto-power spectral density at the end point before cancellation. (b) Auto-power spectral density at the end point (solid line represents before
cancellation and dotted line represents after cancellation in implementing the AVC system using RLS). (c) Auto-power spectral density at the end point (solid line
represents before cancellation and dotted line represents after cancellation in implementing the AVC system using TCGA). (d) Auto-power spectral density at the
end point (solid line represents before cancellation and dotted line represents after cancellation in implementing the AVC system using RCGA). (e) Auto-power
spectral density at the end point (solid line represents before cancellation and dotted line represents after cancellation in implementing the AVC system using
GRNN). (f) Auto-power spectral density at the end point (solid line represents before cancellation and dotted line represents after cancellation in implementing
the AVC system using ANFIS).

requirements of the FD simulation algorithm (3) and is sufficient to

cover all the resonance modes of vibration of the beam. For the algo-

rithm to be stable, this gives a value of λ = 0.3629. To allow dominant

modes of vibration of the beam to be excited, a step disturbance force

(0.1 N) of finite duration (0.3 ms) was applied as a primary force at

grid point 16, and the control actuator signal is applied at grid point 20.

The detector (sensor) and observer are placed at grid points 12 and 20

as input and output samples of the plant, respectively.

The traditional RLS filter, TCGA, RCGA, GRNN, and the AN-

FIS algorithms were used to estimate the parameters of the AVC

system (4) based on the input and corresponding output of the plant

model.

Authorized licensed use limited to: University of Bradford. Downloaded on November 14, 2008 at 09:45 from IEEE Xplore.  Restrictions apply.
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Fig. 10. (a) Beam fluctuation along its length before cancellation. (b) Beam fluctuation along its length after cancellation in implementing the AVC system
using RLS. (c) Beam fluctuation along its length after cancellation in implementing AVC using TCGA. (d) Beam fluctuation along its length after cancellation in
implementing the AVC system using RCGA. (e) Beam fluctuation along its length after cancellation in implementing the AVC using GRNN. (f) Beam fluctuation
along its length after cancellation in implementing AVC using ANFIS.

A. System Identification Algorithms

A linear discrete second-order model was estimated using the RLS,

TCGA, RCGA, GRNN, and ANFIS algorithms

Y (z) =
1 + b1(z

−1 + b2(z
−2)

1 + a1(z−1 + a2(z−2)
U(z). (16)

Investigations were carried out using MATLAB Genetic Algorithm

Toolbox version 1.2 for TCGA, NN Toolbox version 4.0.4 for GRNN,

and MATLAB Fuzzy Logic Toolbox version 2.2 for ANFIS.

The system identification algorithms were carried out for about 5 s

(16 700 iterations) using the linear discrete second-order model (16)

with grid points 12 and 20 as input and output samples of the plant,

respectively, with a set of input-output data simulated using (3).

RLS, TCGA, and RCGA are used to estimate the parameters of the

model of (16). On the other hand, the GRNN and ANFIS are used

to estimate the equivalent model using plant input and corresponding

output.

It is observed that 100 generations, eight-bit representation, 10%

mutation rate, and ten population sizes are the most suitable parameters

of the TCGA and RCGA for best convergence. This also offers an

acceptable time period for online system identification [3].

Fig. 5 shows the time-domain performance of the RLS, TCGA,

RCGA, GRNN, and ANFIS algorithm, where the solid line represents

actual output, and dotted line represents the estimated output of the

model. It is observed that a significant level of convergence leads to

almost overlapping of the two signals in each case. It is also noted

that the ANFIS offers similar level of performance for convergence as

compared to the other algorithms. Corresponding auto-power spectral

density is shown in Fig. 6, which further demonstrated the level of

convergence of the actual and estimated models. As in Fig. 5, the solid

line in Fig. 6 represents actual output, and dotted line represents the

estimated output of the model.

Table III summarizes the average error convergence for the 16 700

samples (about 5 s). It is worth noting that the error has been calculated

based on the differences between the absolute value of the original

and the estimated signal. From Table III, it is observed that the

TCGA performs relatively better as compared to the RLS. ANFIS

performance is relatively better as compared to that of TCGA and

GRNN. The best performance for convergence among the algorithms

is offered by the RCGA.
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Fig. 11. Beam auto-power spectral density along its length before and after
cancellation in implementing AVC using the five algorithms.

Table III also demonstrates the computation time of the algorithms

for their corresponding convergence. It is noted that all the algorithms

achieved real-time performance (5 s). Among the algorithms, RLS

achieved the best real-time performance; in contrast, GRNN achieved

the worst real-time performance, although the overall time difference

is not very significant.

Fig. 7 shows the relative real-time performance of all the algo-

rithms. This is calculated based on the ratio of the execution time

of an algorithm to the real-time requirement (R/T req.). It is noted

that RLS execution time is only 6.02% of the real-time requirement;

in contrast, GRNN requires 9.65%. It is also observed that RCGA

requires about 8.5%, in contrast TCGA requires 9.5%. This reflects

that the new crossover approach RCGA is 1% faster than the tradi-

tional TCGA approach. From Table III and Fig. 7, it is concluded that

the RCGA offers better and faster convergence as compared to the

TCGA.

B. AVC System

As discussed earlier, the RLS, TCGA, and RCGA algorithms were

used to estimate the parameters of the AVC system (4) based on the

input and corresponding output of the plant model, while the ANFIS-

and GRNN-based AVC system models were developed based on the

input and the cancellation signal required for destructive interference

at the control point. It is worth noting that the output signal with

180◦ phase shift is considered as the cancellation signal. The location

of the input sensor and the output actuator has been selected for the

best performance based on the previous investigation, as discussed in

Section VI-A. The simulation model of the AVC system is then tested

and validated through a set of experiments.

Fig. 8 shows the time-domain response at the end point of the beam

before and after cancellation. Fig. 8(a) shows the vibration before

suppression. Corresponding vibration after cancellation using different

algorithms are shown in Fig. 8(b)–(f), respectively.

It is observed that the peak-to-peak amplitude at the end point be-

fore cancellation was +973.3 to 973.3 µm and reduced to +95.9

to −95.9 µm by RCGA, +192 to −192 µm by ANFIS, +194.7 to

−194.7 µm by GRNN, +412.8 µm to −412.8 µm by TCGA, and

+885.1 to −885.1 µm by RLS-based AVC system. It is noted in the

identification section that RCGA offers the best convergence among

all the algorithms. This, in turn, helps to identify the more accurate

controller parameters and results best performance among all the algo-

rithms in implementing the AVC system.

Fig. 9 further demonstrates the auto-power spectral density (in deci-

bels) at the end point of the beam. Fig. 9(a) shows the auto-power

spectral density before vibration suppression. Vibration cancellation in

implementing the AVC system are shown in Fig. 9(b)–(f), respectively.

The solid lines in these figures depict the auto-power spectral density

before cancellation, and the dotted lines depict the auto-power spectral

density after cancellation. It can be noted that a significant level of

reduction is achieved by RCGA for the first resonant frequency. A phe-

nomenon of reasonable spillover impact [42] has been observed with

all the algorithm as shown in Fig. 9. The spillover effect is high partic-

ularly at high frequencies due to noncollocated control scheme. This

effect is generally less in the dominating low resonant frequencies for

cancellation. However, the overall energy level after cancellation for all

resonant frequencies using AVC system has been reduced. ANFIS and

GRNN achieved similar level of performances along the range of fre-

quencies. However, spillover effect at higher frequencies is relatively

lower as compared to the RCGA. The RLS offers worst performance

among the algorithms. This further reflects the worst system identifi-

cation performance of the RLS algorithm.

Fig. 10 shows the 3-D time-domain performance along the length of

the beam. Fig. 10(a) shows vibration suppression before cancellation.

The corresponding vibration suppression in implementing the AVC

system are shown in Fig. 10(b)–(f), respectively. It is noted that a

significant level of vibration suppression is achieved by RCGA and

ANFIS algorithm along the beam length. A minor fluctuation is visible

in the middle of the beam. Again, RLS achieved the worst performance.

Fig. 11 further demonstrates the relative beam auto-power spectral

density performances along its length before and after cancellation in

implementing AVC using the five algorithms. It shows that the RCGA

offered the best performance among all the algorithms. It is observed

that the performances of the algorithms are not linear along the length of

the beam length. This may be due to the location of the disturbance force

and control actuator. It is worth noting that the resonance frequencies

at some nodes are more dominant than others [16]. Therefore, the

cancellation of the energy level may vary and could cause a nonlinear

shape of energy level along the beam length.

Fig. 12 demonstrates the overall range of fluctuations for the beam

in the time domain along the grid points in 2-D form. The dotted

line in the figure depicts the maximum and minimum amplitude of

the deflection along the grid points after cancellation, and the solid

line depicts the amplitude of deflection of each algorithm at a random

sampling period. It is further evidenced that overall performance of the

RCGA and ANFIS are better as compared to the other algorithms.

The simulation results and convergence analysis show that the

RCGA and ANFIS performed consistently better than the other algo-

rithms. We believe that the learning aspect of these two algorithms play

a significant role during the simulation process. Using a given input/

output data set, ANFIS constructs FIS whose membership function

parameters are tuned (adapted) using either a backpropogation algo-

rithm alone or in combination with least square type of method. The

proposed RCGA, using a new population inheritance approach through

the recessive trait crossover, offers the propagation of good building

blocks of genes to subsequent generations (iterations). These features

of the ANFIS and RCGA, we believe, offered a significant impact in

providing better results and convergence.
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Fig. 12. (a) Beam amplitude after cancellation. (b) Beam amplitude before cancellation using RLS. (c) Beam amplitude before cancellation using TCGA.
(d) Beam amplitude before cancellation using RCGA. (e) Beam amplitude before cancellation using GRNN. (f) Beam amplitude before cancellation using ANFIS.

VII. CONCLUDING REMARKS

This correspondence has presented an investigation into the devel-

opment of intelligent adaptive learning algorithms for an AVC system

using the evolutionary RLS, TCGA, RCGA, GRNN, and ANFIS. A

model of a flexible beam system in transverse vibration was considered

as the plant for testing and validation of the AVC system. MATLAB

Toolboxes were used for AVC system design based on RLS, TCGA,

RCGA, GRNN, and ANFIS. The simulation model of the AVC sys-

tem has been implemented and verified to demonstrate the merits and

capabilities of the learning algorithms through a set of experiments. A

comparative performance in implementing the AVC system using RLS,

TCGA, RCGA, GRNN, and ANFIS has been presented and discussed.

It is noted that the RCGA- and ANFIS-based learning algorithms

offer relatively better performance as compared to the other algorithms

for system identification. This leads to a significant level of vibra-

tion cancellation by RCGA- and ANFIS-based AVC systems at the

lower resonant mode. However, the GRNN-based AVC system shows

relatively better performance at higher resonant modes. In general,

RCGA- and ANFIS-based AVC systems offered better performance as

compared to the other algorithms.

Finally, it is worth noting that this investigation has given atten-

tion to cancel the vibration of the dominant low resonant frequencies.

However, it is observed that there is a spillover effect [42] at higher fre-

quencies for a number of AVC algorithms. This requires an attention to

improve the performance further, which can be considered as a dimen-

sion for future research. Subsequently, real-rig-based implementation

is also considered as one of the main future investigations.
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