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Abstract

There is an increasing need to remotely monitor people in daily life using radio-frequency probe signals. However,

conventional systems can hardly be deployed in real-world settings since they typically require objects to either

deliberately cooperate or carry a wireless active device or identification tag. To accomplish complicated successive

tasks using a single device in real time, we propose the simultaneous use of a smart metasurface imager and

recognizer, empowered by a network of artificial neural networks (ANNs) for adaptively controlling data flow. Here,

three ANNs are employed in an integrated hierarchy, transforming measured microwave data into images of the

whole human body, classifying specifically designated spots (hand and chest) within the whole image, and

recognizing human hand signs instantly at a Wi-Fi frequency of 2.4 GHz. Instantaneous in situ full-scene imaging and

adaptive recognition of hand signs and vital signs of multiple non-cooperative people were experimentally

demonstrated. We also show that the proposed intelligent metasurface system works well even when it is passively

excited by stray Wi-Fi signals that ubiquitously exist in our daily lives. The reported strategy could open up a new

avenue for future smart cities, smart homes, human-device interaction interfaces, health monitoring, and safety

screening free of visual privacy issues.

Introduction

The Internet of Things (IoT) and cyber physical systems

(CPSs) have opened up possibilities for smart cities and

smart homes and are changing the way people live. In this

era, there is a strong need to remotely probe where people

are, what they are doing, what they want to express by

their body language, what their physiological states are,

etc., in a way that does not infringe on visual privacy.

Recently, developed radio-frequency (RF) sensing tech-

nologies have enabled us to realize locating1,2 and track-

ing3,4, notable-action recognition5,6, human-pose

estimation7,8, breath monitoring9,10, and others11–13.

These approaches are desirable since they do not require

people to carry any active devices or identification tags.

However, these systems are typically designed for one

specific task and can hardly perform successive tasks

adaptively, such as instantly searching for people of

interest from a full scene and then adaptively recognizing

subtle body features. Furthermore, they are inadequate for

monitoring the local body gesture language (e.g., hand

signs) and vital signs (e.g., respiration and heartbeat) of

human beings in the real world because they require

people to be deliberately cooperative. Furthermore, they

necessitate weak signals that cannot be reliably dis-

tinguished from undesirable disturbances. More impor-

tantly, these technologies suffer from complicated system

designs and extremely expensive hardware due to the use

of a large number of transmitters and/or receivers to

extract subtle body information. Thus, it is imperative to

develop an inexpensive but intelligent device that can

instantly obtain a high-resolution image of a full human

body, instantly focus on an arbitrary local body part of

interest, and adaptively recognize body signs and vital

signs in a smart and real-time way. To realize these

demands, we propose the concept of an ANN-driven

intelligent metasurface for the adaptive manipulation of
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electromagnetic (EM) waves, smart data acquisition, and

real-time data processing.

The programmable metasurface, as an emerging active

member of the metamaterial family14–23, is an ultrathin

planar array of electronically controlled digital meta-

atoms24–36. Owing to the unique capability for dynamical

and arbitrary manipulations of EM wavefronts, it has

elicited many exciting physical phenomena and versatile

functional devices, including programmable holography28,

computational imagers29–32, wireless communication

systems33–35, and others26,36. Here, we design a large-

aperture programmable metasurface for three purposes in

one: (1) to perform in situ high-resolution imaging of

multiple people in a full-view scene; (2) to rapidly focus

EM fields (including ambient Wi-Fi signals) to selected

local spots and avoid undesired interferences from the

body trunk and ambient environment; and (3) to monitor

the local body signs and vital signs of multiple non-

cooperative people in the real world by instantly scanning

the local body parts of interest.

Reconstructing a full-scene image, identifying body

language, and monitoring human respiration from

acquired measurements in real time represent a typical

nonlinear EM inverse problem, which is a challenging task

due to the inherent time-consuming computations and

nonunique solutions. It is also not a trivial issue to model

and analyze the characteristics of complicated EM envir-

onments (e.g., the indoor environment considered in this

work) in a tractable way by using conventional approa-

ches. To overcome these difficulties, we propose a cluster

of ANNs, three convolutional neural networks (CNNs),

for real-time data processing, which can instantly produce

the desired results once they are well trained with a large

number of labeled training samples. Due to the ready

availability of vast amounts of data and ever-increasing

computational power, CNNs have recently been demon-

strated to be a powerful tool in various inverse pro-

blems27–47, including inverse scattering38–41,

metamaterial design42–44, magnetic resonance imaging45,

and X-ray computed tomography46. Our previous results

show that CNN-based strategies can remarkably outper-

form traditional techniques in terms of improved recon-

struction quality and reduced computational cost41. We

establish a synergetic network made of three CNNs,

which are end-to-end mappings from microwave data to

the desired images and recognition results, and imple-

mented these networks into our intelligent metasurface.

In this way, both the global scene and local human-body

information can be instantly retrieved.

In this article, we present a proof-of-concept intelligent

metasurface working at ~2.4 GHz (the commodity Wi-Fi

frequency) to experimentally demonstrate its capabilities

in obtaining full-scene images with high resolution and

recognizing human-body language and respiration with

high accuracy in a smart, real-time and inexpensive way.

We experimentally show that our ANN-driven intelli-

gent metasurface works well in the presence of passive

stray Wi-Fi signals, in which the programmable meta-

surface supports adaptive manipulations and smart

acquisitions of the stray Wi-Fi signals. This intelligent

metasurface introduces a new way to not only “see” what

people are doing but also “hear” what people talk with-

out deploying any acoustic sensors, even when multiple

people are behind obstacles. In this sense, our strategy

could offer a new intelligent interface between humans

and devices, which enables devices to remotely sense and

recognize more complicated human behaviors with

negligible cost.

Results

The concept of an ANN-driven intelligent metasurface

obtained by integrating a programmable metasurface with

deep learning techniques is illustrated in Fig. 1. As shown

in Fig. 1b, the designed reflection-type programmable

metasurface is composed of 32 × 24 digital meta-atoms

with a size of 54 × 54mm2, and each meta-atom is inte-

grated with a PIN diode (SMP1345-079LF) for electronic

control. More details on the designed meta-atoms and

programmable metasurface are provided in Supplemen-

tary Figs. 1, 2. With reference to Fig. 1b, our intelligent

metasurface has active and passive modules of operation.

In the active module, the metasurface system includes a

transmitter (Tx) to emit RF signals into the investigated

region through Antenna 1 and a receiver (Rx) to detect

the echoes bounced back from the subject through

Antenna 2. In the passive module, the system has two or

more coherent receivers to collect the stray Wi-Fi waves

bounced back from the target subject.

Figure 2 schematically illustrates three building blocks

of the data flow pipeline. In Fig. 2, the microwave data

collected by the intelligent metasurface are instantly

processed with an imaging CNN (the first CNN of the

intelligent metasurface, called IM-CNN-1 for short) to

reconstruct the image of the whole human body. More

details on IM-CNN-1 are given in the Methods section

and Supplementary Fig. 3. Then, a well-developed Faster

R-CNN47 is adopted to find the region of interest (ROI)

within the whole image, for instance, the chest for

respiration monitoring and the hand for sign-language

recognition. Afterward, a modified Gerchberg-Saxton (G-

S) algorithm is implemented to come up with the optimal

digital coding sequence for controlling the programmable

metasurface so that its radiation wave is focused onto the

desired spots, as presented in Supplementary Information.

After receiving the command from the host computer, the

programmable metasurface will adaptively focus the EM

waves onto the desired spots to read the hand signs or

physiological state. As such, not only can unwanted
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disturbances be excluded effectively, but the SNR of

echoes from the local body parts of interest can also be

remarkably enhanced by a factor of 20 dB, improving the

subsequent recognition of hand signs and vital signs (see

Supplementary Figs. 6, 7). We develop the other CNN

(IM-CNN-2) to process the microwave data to recognize

hand signs. In addition, human breath is identified by

time-frequency analysis of the microwave data. More

details on IM-CNN-2 and the respiration identification

algorithm are given in Supplementary Fig. 4. Several sets

of representative results are recorded in Supplementary

Videos 1, 2.

We first present in situ high-resolution microwave

imaging of the whole human body in active mode, which

is conducted in our lab environment. In this scenario, the

intelligent metasurface system has two horn antennas

connected to two ports of the Agilent vector network

analyzer (VNA). One antenna is used to transmit EM

signals into the investigated domain, and the other

receives the EM echoes bounced back from the specimen.

In high-resolution imaging, the programmable metasur-

face serves as a spatial microwave modulator controlled

by the field-programmable gate array (FPGA) to register

the information about the specimen in a compressive-

sensing manner (see Supplementary Information).

To process the microwave data instantly, the kernel of

the intelligent metasurface for whole-body imaging is IM-

CNN-1. To obtain a large number of labeled samples for

training IM-CNN-1, a commercial 4-megapixel digital

optical camera is embedded in the intelligent metasurface

system. The training samples captured by the camera are

used to train IM-CNN-1 after being preprocessed with

background removal, threshold saturation, and binary-

value processing (see Supplementary Fig. 3). The labeled

human-body images can be approximately regarded as

EM reflection images of the human body over the fre-

quency range from 2.4 to 2.5 GHz. We collect 8 × 104

pairs of labeled training samples in our lab environment,

and it takes ~8 h to train IM-CNN-1. The trained IM-

CNN-1 can then be used to instantly produce a high-

resolution image of the human body in <0.01 s.

We experimentally characterize the performance of the

intelligent metasurface in obtaining high-resolution ima-

ges of the whole human body and simultaneously mon-

itoring notable movements in an indoor environment.

Two volunteers (coauthors Shuang Ya and Hao Yang Li,

referred to as training persons) with different gestures are

used to train the intelligent metasurface, while three

persons (coauthors Shuang Ya, Hanting Zhao, and Men-

glin Wei, referred to as testing persons) are invited to test
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Fig. 1 Working principle of the intelligent metasurface. a An illustrative scenario for monitoring peoples in a typical indoor environment in a

smart, real-time and inexpensive way, where the intelligent metasurface decorated as a part of wall is used to adaptively manipulate ambient Wi-Fi

signals. b The schematic configuration of intelligent metasurface system by coming a large-aperture programmable metasurface for manipulating

and sampling the EM wavefields adaptively with artificial neural networks (ANNs) for controlling and processing the data flow instantly. The
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aperture programmable metasurface and the map of meta-atom. c Experimental and simulated results of magnitude-frequency and phase-frequency

responses of the designed meta-atom
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it. The trained intelligent metasurface is then used to

produce high-resolution images of the test persons, from

which their body gesture information can be readily

identified. A series of imaging results are presented in Fig.

3 and Supplementary Video 1. In particular, the “see-

through-the-wall” ability of the metasurface is validated

by clearly detecting notable movements of the test per-

sons behind a 5-cm-thick wooden wall. Selected results

are provided in the rightmost column of Fig. 3, where the

corresponding optical images and microwave raw data are

given as well. To examine the imaging quality quantita-

tively, Supplementary Fig. 5a compares the image quality

versus the number of random coding patterns of the

programmable metasurface in terms of the similarity

structure index metric (SSIM)34. We show that 53 coding

patterns, where 101 frequency points from 2.4 to 2.5 GHz

are utilized for each coding pattern, are enough to obtain

high-quality images. As reported in the Supplementary

Information, the switching time of coding patterns is

~10 μs, implying that the data acquisition time is <0.7 ms

in total even if 63 coding patterns are used. Consequently,

we safely conclude that the intelligent metasurface inte-

grated with IM-CNN-1 can instantly produce high-quality

images of multiple persons in the real world, even when

they are behind obstacles.

After obtaining a high-resolution image of the whole

body, the intelligent metasurface is then used to recognize

the hand signs and vital signs adaptively in real indoor

environments. This capacity benefits from the robust

feature of the intelligent metasurface in adaptively

focusing the EM energy onto the desired spots with very

high spatial resolution. This feature supports accurate

detection of EM echoes reflected from the human hand

for recognizing sign language or from the chest for

identifying respiration. Typically, the sign-language rate of

the human hand and respiration rate are on the order of

10~30 bps, which is drastically slower than the switching

speed of the coding patterns by a factor of 105. Thus, the

radiation beams of the intelligent metasurface are

manipulated to rapidly scan the local body parts of

interest in each observation time interval. As a result, we

realize monitoring of the hand signs and respiration of

multiple people simultaneously in a time-division multi-

plexing way (see Supplementary Fig. 4).

To achieve the complicated task, we propose a three-

step routine procedure. First, the Faster R-CNN47 is

applied to extract the hand or chest part from the full-

scene image obtained with IM-CNN-1 in a divide-and-

conquer manner. Second, the metasurface is manipulated

by adaptively changing its coding pattern to make its

radiation beam point to the hand or chest (see Fig. 4a–c).

Third, IM-CNN-2, an end-to-end mapping from the

microwave data to the label of hand-sign language, is

developed to recognize hand signs. Conventional time-

frequency analysis is performed for detecting respiration

(see Supplementary Fig. 4).

The training samples of IM-CNN-2 include ten hand

signs (see Fig. 4a, corresponding to ten different English

letters) and 8000 samples for each hand sign. Thus, we

have 80,000 samples in total. Figure 4d reports the clas-

sification matrix for the ten hand signs with an average

recognition accuracy of above 95% by using the intelligent
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metasurface integrated with IM-CNN-2, where the test

people are behind a 5-cm-thick wooden wall. We clearly

see that the hand-sign recognition performance is nearly

not affected by the number of test persons after the hand

parts are well identified by the Faster R-CNN.

Respiration is an important health metric for tracking

human physiological states (e.g., sleep, pulmonology, and

cardiology). Similar to the recognition of human hand

signs, we use the intelligent metasurface to monitor

human respiration with high accuracy. Figure 4e reports

the results of respiration monitoring of two test persons

behind the wood wall. We observe that normal breathing

and breath holding are clearly distinguished and that the

respiration rate can further be identified with an accuracy

of 95% and above, where the ground truth is obtained by a

commercial breathing monitoring device. It can be

expected that the identification performance is almost

independent of the number of test persons due to the use

of time-division multiplexing respiration detection.

Our intelligent metasurface works at ~2.4–2.5 GHz,

which is exactly the frequency of commodity Wi-Fi sig-

nals. Here, we investigate the performance of high-

resolution imaging of the full scene and recognition of

human hand signs and vital signs when the metasurface is

excited by commodity stray Wi-Fi signals. For simplicity,

we particularly consider using Wi-Fi beacon signals. In

this case, the intelligent metasurface works differently in

three major aspects. First, the stray non-cooperative Wi-Fi

signals are dynamically manipulated by the metasurface.

Second, two or more coherent receiving antennas are

used to acquire the Wi-Fi signals bounced back from the

subject specimen with the aid of an oscilloscope (Agilent

MSO9404A). Third, the microwave data acquired by the

receivers are coherently preprocessed before being sent to

IM-CNN-1 such that the statistical uncertainties on stray

Wi-Fi signals can be calibrated out. More details can be

found in Supplementary Video 2 and the Supplementary

Information.

Figure 5a presents a set of in situ passive imaging results

of a subject person behind the wooden wall in our indoor

lab environment, where random coding patterns are also

used in the programmable metasurface. We surprisingly

note that the imaging results obtained by the commodity

stray Wi-Fi signals are comparable to those obtained in

active mode. Based on the high-resolution images of the

full human body, we can realize the recognition of hand

signs and vital signs by adaptively performing the routine

three-step procedure in active mode. In particular, the

Faster R-CNN is operated on the full-scene image to

instantly find the location of the hand or chest; then,

suitable coding patterns of the intelligent metasurface can

be achieved and controlled so that the stray Wi-Fi signals

are spatially focused on the desired spots and enhanced;

and finally, IM-CNN-2 or the time-frequency analysis

F
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Fig. 3 In situ imaging results using the intelligent metasurface with active microwave. (Top row) The first row shows the optical images of

specimen, which include single person with different gestures, two persons with different gestures, and two persons behind a 5-cm-thick wooden

wall. (Middle) The second row illustrates the corresponding imaging results by the intelligent metasurface with IM-CNN-1. (Bottom) The bottom row

presents corresponding amplitudes of microwave data
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algorithm is used to realize the recognition of hand signs

and vital signs. As shown in Fig. 5b, c, the commodity Wi-

Fi signals can be well focused onto the desired location,

e.g., the left hand of the subject person, by using the

developed intelligent metasurface. As a result, the SNR of

the Wi-Fi signals can be significantly enhanced with a

factor of more than 20 dB, which is directly beneficial for

the subsequent recognition of hand signs and vital signs

(see Supplementary Figs. 7, 8). Figure 5d, e shows the

experimental results for hand-sign and respiration

recognition of two people, revealing improved accuracies

of 90% and 92%, respectively. To summarize, even with

illumination by stray Wi-Fi signals, the proposed intelli-

gent metasurface can obtain high-resolution images of a

full scene and achieve high-accuracy recognition of hand

signs and vital signs of multiple people in a smart and

real-time way in the real world.

Discussion

We devised the concept of an intelligent metasurface

imager-cum-recognizer, showing its robust performance

in remotely monitoring notable human movements,
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subtle body gesture language, and physiological states

from multiple non-cooperative people in real-world set-

tings. The developed ANN-driven intelligent metasurface

relies on two key components: (1) a large-aperture pro-

grammable metasurface for adaptive manipulation of EM

wavefields and smart data acquisition and (2) three ANNs

for smart processing of data flow in real time. We further

experimentally demonstrated that the intelligent meta-

surface works well even when it is passively excited by

commodity Wi-Fi signals. This strategy cannot only
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Fig. 5 Experimental results of in situ imaging, hand-sign recognition, and respiration identification using the intelligent metasurface in

the passive mode with commodity stray Wi-Fi signals. a In situ imaging results using the intelligent metasurface excited with commodity Wi-Fi

signals. The first row shows the optical images of the subject person with different gestures behind a 5-cm-thick wooden wall. The second row

reports corresponding imaging results by the intelligent metasurface with IM-CNN-1. b On the left is the result of the Wi-Fi signals focused at the

desirable spot of human hand, and on the right is corresponding coding pattern of programmable metasurface. Here, the spatial distribution of Wi-Fi

signals is obtained using so-called near-field scanning technique, as done in Fig. 3c. c The Wi-Fi signals with and without being focused through the

programmable metasurface have been compared, which are measured at the location of left hand shown in (b). The top row compares the

frequency spectrums of Wi-Fi signals, which are obtained by operating on the raw time-domain Wi-Fi signals with standard FFT technique. Note that

the signal-to-noise ratio of Wi-Fi signals at the local spot of human hand can be enhanced by a factor of more than 20 dB at around 2.4 GHz. d The

classification matrix of 10 hand signs in Fig. 3a obtained by using the IM-CNN-2. e Results of human respiration of two non-cooperative persons

behind a 5-cm-thickness wall in our lab environment. From this figure, one can clearly see that not only two states of normal breathing and holding

breathing can be readily distinguished, but also the respiration can be accurately identified
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monitor the notable or non-notable movements of non-

cooperative people in the real world but also help people

with profound disabilities remotely send commands to

devices using body languages. We expect that lip reading

and human-mood recognition could also be realized if

higher resolution and accuracy are achieved by involving

higher frequencies. In principle, the concept of the intel-

ligent metasurface can be extended over the entire EM

spectrum, which will open up a new avenue for future

smart homes, human-device interaction interfaces, health

monitoring, and safety screening.

Materials and methods

Design of programmable metasurface

The designed programmable metasurface consists of

32 × 24 meta-atoms operating at ~2.4 GHz, as shown in

Supplementary Fig. 1, and the details of the electronically

controllable meta-atoms with a size of 54mm× 54mm are

illustrated in Supplementary Fig. 2. In each meta-atom, a

PIN diode (SMP1345-079LF) is integrated to control its

EM reflection phase, and the responses of the meta-atom

in the ON and OFF states are presented in Fig. 1c. The

meta-atom is composed of two substrate layers: the top

layer is F4B with a relative permittivity of 2.55 and a loss

tangent of 0.0019, and the bottom layer is FR4 with a size

of 0.54 × 0.54 mm2. The top square patch, integrated with

a SMP1345-079LF PIN diode, has a size of 0.37 ×

0.37 mm2. In addition, a Murata LQW04AN10NH00

inductor with an inductance of 33 nH is used to achieve

good separation between the RF and DC signals. CST

Microwave Studio is used to design the meta-atom: (1) the

reflection response of the meta-atom is investigated under

different operation states of the PIN diode; (2) a Floquet

port is used to produce an x-polarized wave incidence on

the metasurface and monitor the reflected wave; and (3)

periodic boundary conditions are set on the four sides to

model an infinite array.

Configuration of the intelligent metasurface

The intelligent metasurface has two operational modes:

active and passive mode. In active mode, the intelligent

system is composed of a large-aperture programmable

metasurface, three CNNs, a transmitting antenna, a

receiving antenna, and an Agilent VNA. In passive mode,

it includes the programmable metasurface, three CNNs, a

pair of receiving antennas, and an oscilloscope, in which

one antenna serves as a reference receiver to calibrate out

the undesirable effects from system error. An optical

digital camera, which is used to collect the labeled sam-

ples to train the deep ANNs, is synchronized with the

whole intelligent metasurface.

The large-aperture programmable metasurface is

designed to dynamically and adaptively control ambient

EM wavefields by using an FPGA by manipulating its

coding sequences, which have a two-fold role. First, it

serves as a relay station of information or an electronically

controllable random mask, transferring the EM signals

carrying finer information about the specimen to the

receivers. Second and more importantly, to realize body-

language recognition and respiration monitoring, the

programmable metasurface with optimized coding pat-

terns can focus the EM wavefields on the desired spots

while suppressing the irrelevant interference and clutter.

IM-CNN-1, IM-CNN-2, and Faster R-CNN

The intelligent metasurface is configured with three

deep CNNs for smart and real-time data processing. IM-

CNN-1 is designed for converting EM raw data into an

image of the whole human body. The Faster R-CNN is a

popular classifier originally developed in the area of

computer vision47 and is used here to identify the hand

and chest from the reconstructed whole image. IM-CNN-

2 is a classifier used to infer human hand signs from the

microwave data.

IM-CNN-1 and IM-CNN-2 operate directly on the

microwave raw data, in which the training stage is per-

formed by the ADAM optimization method with a mini-

batch size of 32 and 101 epochs. The learning rates are set

to 10−4 and 10−5 for the first two layers and the last layer

and halved once the error plateaus. The complex-valued

weights and biases are initialized by random weights with

a zero-mean Gaussian distribution and a standard devia-

tion of 10−3. The training processes are performed on a

workstation with an Intel Xeon E5-1620v2 central pro-

cessing unit, NVIDIA GeForce GTX 1080Ti, and 128GB

access memory. The machine learning platform Tensor

Flow48 is used to design and train the networks in the

intelligent metasurface system.
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