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Abstract 

Controlling electromagnetic waves and information simultaneously by information metasurfaces is of central impor-
tance in modern society. Intelligent metasurfaces are smart platforms to manipulate the wave–information–matter 
interactions without manual intervention by synergizing engineered ultrathin structures with active devices and 
algorithms, which evolve from the passive composite materials for tailoring wave–matter interactions that cannot be 
achieved in nature. Here, we review the recent progress of intelligent metasurfaces in wave–information–matter con-
trols by providing the historical background and underlying physical mechanisms. Then we explore the application 
of intelligent metasurfaces in developing novel wireless communication architectures, with particular emphasis on 
metasurface-modulated backscatter wireless communications. We also explore the wave-based computing by using 
the intelligent metasurfaces, focusing on the emerging research direction in intelligent sensing. Finally, we comment 
on the challenges and highlight the potential routes for the further developments of the intelligent metasurfaces for 
controls, communications and computing.
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1  Introduction
Flexibly manipulating electromagnetic waves and infor-
mation is undisputedly of central importance to people’s 
daily lives in the modern society. Intelligent metasurfaces, 
as conceptually illustrated in Fig.  1a, emerge as smart 
platforms for controlling the wave–information–matter 
interactions without the manual intervention in response 
to the proper time and conditions. Intelligent metasur-
faces evolve from engineered composite materials [1–6], 
including metamaterials and metasurfaces [7–20], and 
particularly from information metamaterials and meta-
surfaces [19, 21–24]. Over the past decades, we have 
witnessed great progress of metamaterials and metas-
urfaces with different forms and characteristics, such as 
artificial dielectrics [2–4], left-handed materials [7–10], 

plasmonic metamaterials [6], zero-index metamateri-
als [11], spoof surface plasmonic polaritons (or designer 
SPPs) [12], Huygens’ metamaterials [16], digital metama-
terials [18], coding metamaterials [19], reprogrammable 
metamaterials [19], time-varying or temporal-modulat-
ing metasurfaces [20, 25], and so on [26–28], and their 
unprecedented success in tailoring wave–matter interac-
tions that cannot be achieved in nature, as summarized 
in Fig.  1b. The metamaterials and metasurfaces have 
remarkably refreshed human insights into many funda-
mental laws, for instance, the Snell’s law [7, 9], diffrac-
tion limit [7, 8, 29–37], and reciprocity [38–40], and have 
unlocked many novel functional devices and systems, like 
cloak [41–46], tunneling [47, 48], hologram [49, 50], and 
so on. Recently, the conventional structure-alone or pas-
sive metasurfaces have made strides towards intelligent 
metasurfaces [51–62] by integrating with algorithms and 
nonlinear materials [63–83] (or active devices [19, 25, 
84]). Similar to conventional metasurfaces, the intelligent 
metasurface is composed of a two-dimensional array 
of judiciously designed unit cells (called meta-atoms). 
However, the meta-atom of intelligent metasurface is 
integrated with tunable functional materials or active 
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devices, and designed to be in-situ reprogrammable 
under the control of proper algorithms.

In comparison to conventional metasurfaces, the intel-
ligent metasurface exhibits three crucial properties: 
digitalization, programmability and intelligence, provid-
ing us with a transformative opportunity to control the 
wave–information–matter interactions without human 
intervention. Here, the digitalization enables the intelli-
gent metasurface to encode/decode and store the digital 
information on the physical level; the programmability 
means that the intelligent metasurface is capable of real-
izing distinct functions with one physical entity, and the 
switching among which by changing the control code 
sequences; while the intelligence indicates that the intel-
ligent metasurface has onsite or cloud algorithms as its 
brain, and is capable of decision-making, self-program-
ming and performing a series of successive tasks without 
the human supervision. Therefore, reconfigurable and 
reprogrammable metasurfaces [18, 19] can be ascribe 
as the infancy stage of the intelligent metasurface, since 
they are strictly not intelligent according to the definition 
above. In a word, the intelligent metasurfaces could pro-
vide us with smart platforms for manipulating the wave–
information–matter interactions, which hold promising 
potentials in setting up a direct connection between the 
physical world and digital world, and serve as a natural 
role of merging the physical entity with its digital twin.

The intelligence is the core of the intelligent meta-
surfaces, and the algorithms (especially deep learn-
ing techniques) can take this role well. Parallel to the 
development of artificial material (AM), artificial intel-
ligence (AI), such as deep learning strategies [85–109], 
have gained great success by leaps and bounds in data 
mining and knowledge discovery (see Fig. 1b for some 
important breakthroughs over the past 70 years in this 
area). Pioneered by Pitts and McCulloch in the 1940s 
and coined by Hinton in 2006 [96], deep learning has 
proven extraordinarily useful in nearly every field of 
science and engineering, making impossible tasks with 
the traditional methods possible in these fields. Cer-
tainly, deep learning has considerably impacted the 
metamaterials and metasurfaces from metamaterial 
design to intelligent devices and systems. The segrega-
tion of AMs and AIs will undisputedly give birth to very 

broad and active research directions. Here, we specifi-
cally focus on novel wave-information-critical archi-
tectures for dealing with the data crisis, rather than the 
research that leverages AI as the design tools for AM 
[107–115]. Although deep learning has gained tremen-
dous success in science, engineering and military, the 
most hither-to-mystery yet fundamental problem is 
why the functions learned by artificial neural networks 
over a number of training data can generalize quite well 
for the unseen data. More specifically, artificial neural 
networks (ANNs) were usually treated as black boxes, 
lacking of theoretical understanding of when and why 
they work well or fail in terms of training and gener-
alization. Recently, this noble problem has begun to be 
explored by some researchers [116–121], and we faith-
fully expect that the mystery of deep learning can be 
unlocked in the near future, providing theoretical foun-
dations for the intelligent metasurfaces.

In this article, we review a collection of recent pro-
gress on the intelligent metasurfaces, including wave–
information–matter interaction control, novel wireless 
communications, and wave-based computing. We begin 
by providing the historical background of the intel-
ligent metasurfaces, underlying the physical mecha-
nisms, and giving several representative applications of 
the wave–information–matter control. Then we explore 
the utilization of intelligent metasurfaces in novel wire-
less communication architectures, with particular 
emphasis on the metasurface-modulated backscatter 
communication. Here, the ambient metasurface-mod-
ulated backscatter communication utilizes wireless sig-
nals already available in our daily lives and works in a 
direct modulation manner, which has no requirement 
on the allocation of new frequency spectrum and asso-
ciated microwave devices, enabling us to develop our 
‘green’ information society. We also explore the appli-
cations of intelligent metasurfaces in wave-based com-
puting, focusing on the emerging research direction in 
the intelligent sensing strategies. Finally, we comment 
on the challenges and perspectives of this emerging 
interdisciplinary research area, with its potential to cre-
ate new science and engineering paradigms for design-
ing a smart society.

Fig. 1  Conceptual illustration and history backgrounds of intelligent metasurface. a Intelligent metasurface, AI-empowered artificial materials, 
is a smart platform enabling various functions (for instance, data mining, communication, energy harvest, control, sensing, etc.) by processing 
its illuminated waves on the physical level. b About 70-years evolutions of Artificial Intelligence (AI) and Artificial Material (AM), in while some 
milestones of new principles, mechanisms and physical phenomena are correspondingly marked as well. Here, the column-like histograms report 
the trends of published papers in AI and AM, respectively. These data sources about such statistical analysis come from the web-of-science, in 
which the keywords in advanced searching are set as ‘machine learning or deep learning’ for AI and ‘left-handed materials or metamaterials or 
metasurfaces’ for AM, respectively

(See figure on next page.)



Page 3 of 24Li et al. eLight             (2022) 2:7 	

Fig. 1  (See legend on previous page.)
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2 � Control of wave–information–matter 
interactions

The metamaterials have been evolved from engineered 
structures to intelligent wave agents, which have made 
huge strides in controlling the wave–information–mat-
ter interactions that could not be achieved with the 
natural materials. Historically, there are two milestone 
events during the evolution of intelligent metasurfaces: 
active metamaterials [64–81] and programmable coding 
metamaterials [19, 21–24, 82, 84, 122–125]. In contrast 
to the passive (i.e., structure-only) metamaterials, the 
active metamaterials are the hybrid structures embed-
ded tunable functional materials (like Ge2Sb2Te5) and 
active elements (like PIN diodes), allowing us to control 
the wave–information–matter interactions in a dynamic 
way at the cost of power consumption. We have seen 
that the active metamaterials could be optimized to be 
nearly passive in terms of energy consumption since only 
a power supply is needed in support of controlling the 
embedded active devices or functional nonlinear materi-
als. The conventional active metamaterials (e.g., tunable 
and reconfigurable metamaterials) come with two impor-
tant limitations: the limited reconfigurability and the 
physics-alone wave–matter control. In order to resolve 
the limitations, Cui et al. proposed a novel kind of active 
metamaterials, i.e., reprogrammable coding metamate-
rials [19], in which each building meta-atom has a finite 
number of quantized physical states and can be utilized 
for encoding digital information on the physical level, 
bridging the digital world and physical world. In this way, 
the reprogrammable coding metasurface can be regarded 
as a general-purpose device of manipulating wave–infor-
mation–matter interactions, in the sense that it can real-
ize a large number of distinct functionalities and switch 
them in real time. Nonetheless, the reprogrammable cod-
ing metasurface has a limitation that it needs to work in 
a trial-and-error mode in order to meet the customized 
requirements, hindering its real-time utilizations. The 
intelligent metasurface extends remarkably the repro-
grammable coding metasurface by integrating the algo-
rithm (especially deep learning solution) as its ‘brain’, and 
thus has the intelligence in terms of self-programming 
and decision-making to be adaptive to the change of sur-
rounding environment without the human supervision. 
Thus, we expect that the intelligent metasurface holds 
promising potential in merging the physical entity with 
its digital twin as a whole.

2.1 � Basic concepts and principles
The intelligent metasurface can be regarded as an computing 
device based on the weak wave–matter interactions [126–
134], which processes the input of temporal–spatial 

illumination (amplitude, phase, polarization, ….) and outputs 
the desired wave. Regarding the topic of metamaterials-
based wave computing, we would like to refer readers of 
interest to [126] for a comprehensive review. Here, we pro-
vide a non-rigorous but helpful theoretical insight into the 
physical mechanism of the wave–information–matter inter-
actions by the intelligent metasurface. Assuming that, for a 
time-varying metasurface, the meta-atom at location r and 
time t has the scattering coefficient Ŵ(r, t) . Given the s-line-
arly polarized plane-wave illumination with the wavevector 
(
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 and angular frequency ωi , the p-polar-

ized wave scattered by the metasurface can be represented as 
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 and ωo denotes the scat-

tering angular frequency. Here, Ŵ̃ represents the Fourier rep-
resentation of Ŵ from the (r, t)-space to ( κ ,ω)-space. In 
addition, Ŵ̃(κo − κ i,ωo − ωi) represents the spatial–tempo-
ral behavior of the metasurface-modulated electromagnetic 
(EM) wave and forms the principal foundation of the wave–
information–matter interactions with the intelligent metas-
urface, which can be understood as an extension of the 
generalized Snell’s law [14, 15]. In light of the basic property 
of Fourier transform, we know that the conjugate symmetry 
of Ŵ̃ will be broken when Ŵ is not real-valued, which would 
give rise to the violation of the Lorentz reciprocity. More 
specifically, when Ŵ(r, t) is not real, we can observe the non-
reciprocal behavior of the propagation-only waves in the fre-
quency domain and momentum domain, and simultaneously 
in both, i.e., Ŵ̃(κo − κ i,ωo − ωi) �= Ŵ̃(κ i − κo,ωo − ωi) , 
Ŵ̃(κo − κ i,ωo − ωi) �= Ŵ̃(κo − κ i,ωi − ωo) and 
Ŵ̃(κo − κ i,ωo − ωi) �= Ŵ̃(κ i − κo,ωi − ωo) , which is con-
sistent with the results in [36] (see Fig. 2e). Furthermore, it 
can be deduced that the metasurface has the maximum spa-
tial bandwidth of nωo/c it can achieve, when its constituting 
meta-atoms are arranged on the 1/n-wavelength scale, where 
c is the speed velocity of light in free space. If the spatial 
bandwidth of metasurface is κ , then the transverse compo-
nent of the scattering wavevector is κo = κ + κ i . This 
expression shows an important conclusion that the scatter-
ing wave is surface-wave propagating along the metasurface 
if |κo| = |κ + κ i| > ωo/c , since 

√

k2o − |κo|
2 is a pure imag-

inary number. Therefore, when meta-atoms of metasurface 
are well designed and arranged on the 1/n-wavelength scale, 
i.e., n ≥ 4 , the incident plane waves can be efficiently con-
verted into the surface-waves propagating along the metas-
urface, regardless of the incidence direction.

The intelligent metasurface is composed of controlla-
ble meta-atoms, and each meta-atom has a number of 
quantized physical states. Among options of designing 
the intelligent metasurface, the one-bit coding strat-
egy has been widely explored and demonstrated to be 
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favored in terms of design process, fabrication com-
plexity, cost, and energy consumption. We mean by 
the one-bit coding metasurface that each meta-atom 
has binary physical status [19]. For instance, the binary 
phased-coding meta-atom has two distinct phase 
responses with a difference of 180° when it is illumi-
nated with a normal-incident plane wave. So that one 
state of the binary meta-atom can be treated as with a 
phase response 0° and the other 180°. It is noted that 
the binary code is not necessarily restricted to reflec-
tion phase responses, but also can represent the phase 
or amplitude of the EM transmission, two distinct EM 
boundaries, etc. Similar to the results in the commu-
nity of microwave antennas, the phase quantization of 
meta-atom will give rise to quantization noise [135–
138], i.e., quantization energy leakage of main lobes 
into side lobes. In order to overcome this drawback, 
the reprogrammable coding metasurfaces with two-bit 
quantization and beyond have also been investigated 
[139, 182]. By now, most of the phase-only reprogram-
mable coding metasurfaces are of the reflection type, 
which not only require the high-gain feeding source, 
but also suffer from the feeding blockage effect. In the 
community of microwave antennas [140, 141], various 
reconfigurable transmit-arrays have been developed to 
mitigate the difficulties involved in the reconfigurable 
reflect-arrays by exploring multilayered frequency-
selection surfaces, microstrip line coupled patches, 
aperture-coupled stacked patches, and so on. In prin-
ciple, such strategies can be applicable to the design of 
the transmission-type reprogrammable metasurfaces. 
A few transmission-type reprogrammable metasurfaces 
have been proposed recently; however, working band-
width and finished cost have to be trade-off carefully to 
avoid the drawback of low efficiency. Besides, for the 
design of transmission-type programmable metasur-
faces, the effect on the EM performance from the bias 
lines needs to be carefully considered.

2.2 � Beam manipulations
The intelligent metasurface is usually regarded as a repro-
grammable device, which is capable of converting the 
illumination beam to that with the desired wavefront or/
and waveform by reprogramming its control digital cod-
ing. We here consider the first porotype of one-bit reflec-
tion-type reprogrammable coding metasurface invented 
by Cui et al. [19] as an illustrative example, as shown in 
Fig. 2a. The reprogrammable coding metasurface consists 
of 30 × 30 one-bit phased-coding meta-atoms, and each 
meta-atom is embedded with a PIN diode (SMP-1320) 
to realize the switching of the ‘0’ and ‘1’ states, leading 
to a 180° phase difference of the EM reflections between 
them. Specifically, the ‘0’ means that the PIN diode is 
at ‘OFF’ since the applied DC voltage is smaller than 
its threshold value, while the ‘1’ for ‘ON’. The minimum 
recovery time of PIN diode can be designed to be as small 
as 10  ns, enabling a maximum radiation pattern chang-
ing speed with hundreds of MHz. To simplify the system 
complexity of control circuits, 30 × 30 meta-atoms were 
divided into six groups, each having 5 × 30 digital meta-
atoms and being independently controlled by the FPGA. 
When the reprogrammable metasurface is illuminated by 
a plane wave, it is capable of producing distinct radiation 
patterns by changing its digital coding properly through 
the FPGA. Figure 2a plots two distinct radiation patterns 
from different coding sequences of the reprogrammable 
metasurface, which shows the in-situ wave programma-
bility of the programmable metasurface. Here, for the 
“010101” coding sequence, the normally incident beam 
will be deflected to two symmetrical radiation direc-
tions, while as the coding sequence changes to “001011”, 
the radiation pattern has multiple radiation beams. We 
can see from above discussions that, similar to the field 
digital programmability of FPGA in lower frequencies, 
the reprogrammable metasurface has the in-situ physical 
programmability of tailoring the wavefield over the entire 
frequencies and beyond. Although this system is a one-
dimensional (1D) proof-of-principle demonstration, it 

(See figure on next page.)
Fig. 2  Examples of wave–information–matter manipulations with intelligent metasurface. a The first programmable coding metasurface controlled 
with FPGA. The meta-atom embedded with a PIN diode and its binary EM responses are plotted. Additionally, selected experimental results of 
dynamic beam manipulation are shown [19]. b Smart self-reprogrammable metasurface integrated with a gyroscope sensor for orientation tracking 
and selected experimental results [52]. c Non-linear harmonic manipulation with time–space-coding metasurface and selected experimental 
results [185]. d Smart Doppler cloaking with time–space-coding metausrface [59]. e Surface-wave-assisted nonreciprocity with spatio-temporally 
modulated metasurface, where the constituting meta-atom with geometrical parameters is detailed [40]. f Smart invisibility cloaking with 
metasurface. Experimental setup and selected results at different illumination frequencies are shown [55]. g Mathematical differential operations 
with time–space-coding metasurface and selected experimental results [133]. h Smart wireless power transfers with the 1-bit and 2-bit intelligent 
metasurfaces. Experimental configuration is inserted. The efficiencies of WPT with different setups are compared (bottom) [60]. i Dynamic 
holograms with 1-bit programmable coding metasurface. Selected experimental holographic images and corresponding coding patterns of 
metasurface are provided at left-bottom and right-bottom corners, respectively [84]. Figures (a)–(i) adapted with permission under a CC BY 4.0 
license
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Fig. 2  (See legend on previous page.)
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could be extended to the 2D case and beyond with inde-
pendently controllable meta-atoms. Then, the intelligent 
metasurface could be optimized to be a general-purpose 
wave-based analog computer (more details provided in 
Sect.  4), which is capable of performing really compli-
cated mathematical operations under the illuminated 
waves on physical level, from fundamental algebraic 
operations to modern deep learning processing (see 
Fig. 2g). Note that such wave computer can be nearly uni-
versal for wave-information processing, in the sense that 
these distinct operations can be accomplished with one 
physical entity without using any hardware modifications 
by reprogramming the control digital coding sequences.

In the pioneering work by Cui et al., the task of beam 
manipulation is prior to be known, implying that the con-
trol digital sequences are calculated offline under human 
supervisions, and configured into the FPGA beforehand. 
Now, a natural question comes up: can the programma-
ble metasurface in-situ change the control sequences to 
adapt to the change of ambient environment without 
human intervention? Here, we provide two encouraging 
examples. The first is the so-called smart Doppler cloak 
(see Fig. 2d) proposed by Zhang et al. [59], which consists 
of a time-modulated intelligent metasurface embedded 
with a velocity detector, an arbitrary waveform generator 
(AWG) and an unmanned feedback system. The velocity 
sensor detects the velocity of a moving target and then 
sends the message to a microcontroller unit (MCU). 
After receiving the velocity information, the MCU will 
instruct the AWG through a host computer to gener-
ate the signal modulated with the detected Doppler fre-
quency for driving the time–space-coding metasurface. 
Zhang et  al. demonstrated that their intelligent metas-
urface system is capable of achieving the Doppler cloak-
ing effect with the relative frequency band of 40% for 
arbitrarily-polarized incoming EM waves, and that such 
cloak is able to respond self-adaptively to the changing 
velocity of the moving objects and then cancel different 
Doppler shifts in real-time, without any human interven-
tion. Another example is the smart self-programmable 
metasurface by Ma et al., which consists of a gyroscope 
sensor and an online unmanned feedback algorithm, as 
shown in Fig. 2b. Ma et al. [52] demonstrated that their 
intelligent metasurface with the changing orientation 
remains to maintain its beam direction without human 
supervision. The proposed scheme of intelligent meta-
surface can be extendable by equipping other kinds of 
relevant sensors to adapt to the change of surrounding 
environment, including humidity, temperature, and illu-
minating light.

Before closing this subsection, we would like to remark 
that the aforementioned beam-steering strategies 
could be extended for other frequencies by developing 

corresponding active metasurfaces [57, 58, 75–81]. For 
instance, Wu et  al. reported an all-dielectric electric-
optic active meaturface based on the quantum-confined 
Stark effect at near-infrared wavelengths [58]. Holsteen 
et  al. proposed the electrically reconfigurable metasur-
faces with the switching frequency of through the micro-
electromechanical movement of silicon antenna arrays 
created in standard silicon-on-insulator technology [57]. 
Zhang et  al. proposed the electrically reconfigurable 
metasurface using a low-loss optical phase change mate-
rial, i.e. Ge2Sb2Se4T [79]. In a word, we expect that the 
intelligent metasurface will play a critical role in design-
ing the future unmanned devices that are consistent with 
the ambient environment.

2.3 � Wireless power transfer
Wireless power transfer (WPT) and energy harvesting 
are of great importance in ever-growing energy-hungry 
practical scenarios in the society of IoT [142–147]. Pio-
neered by Tesla’s invention in 1904, the WPT has been 
remarkably advanced in the realm of non-radiative trans-
fer, showing promising potential in the cardiac pacemak-
ers, electric vehicles and consumer electronics, and so 
on. For instance, the Assawaworrarit et  al. proposed a 
robust WPT scheme using a nonlinear parity-time-sym-
metric circuit, which is robust over a distance variation 
of approximately one meter [147]. The WPT solutions 
rely on the magnetic coupling in the near-field, imply-
ing that the high-efficiency power transfer cannot be 
achieved for the non-cooperative devices moving in the 
long distance, like the aerial vehicles [148]. As mentioned 
previously, the intelligent metasurface is capable of track-
ing the moving devices with the dynamical beam form-
ing, and the resultant system supports the robust WPT 
for the moving devices in the realm of radiative transfer, 
offering a promising route for solving the above-men-
tioned problems.

Recently, Han et al. proposed a WPT system with the 
intelligent metasurface for the dynamic charging applica-
tions [60], as shown in Fig. 2h, where the portable elec-
tronic devices, including cellphones and laptops, must be 
charged. Such smart WPT system consists of two major 
parts: the physical layer and the application layer. On 
the physical layer, a reflection-type two-bit intelligent 
metasurface along with an input wireless energy source 
is deployed as the power station, which is responsible for 
focusing the wireless power towards multiple intended 
devices individually. Here, the intelligent metasurface has 
been equipped with several active sensors (e.g., camera, 
magnetic coil, receiving antenna, etc.) for localizing elec-
tronic devices and receiving their charging requests. On 
the application layer, the smart WPT will make a series 
of successive decisions (including the device localization, 
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coding pattern calculation and assignment, and others), 
and perform the wireless power charging or power trans-
fer, when it detects the charging request. In contrast to 
current WPT solutions requiring the charged device to 
be fixed, the smart WPT system by Han et  al. explores 
the unique capability of the intelligent metasurface in 
manipulating dynamically the focusing beams towards 
the intended devices, and thus supports the wireless pow-
ers transfer to the moving devices in the radiative region. 
Thereby, the annoying charging cables or charging pads 
can be avoided. Han et al. demonstrated experimentally 
that their WPT system could obtain the improvement 
of energy harvest by about 16.3 dB compared to the case 
using the measured fixed near-field-focusing (NFF) form 
[60].

Several potential advantages of the proposed smart 
WPT system with intelligent metasurface are remarked 
here. Firstly, the smart WPT system can be guaranteed 
to human exposure under the level of EM safety. For 
instance, the smart WPT system can be designed to be 
able to instantly shut off the power delivering when 
detecting a person moving close or falling into the charg-
ing region, and resume as the human leaves. Secondly, 
the smart WPT system can be optimized as simultaneous 
wireless information and power transfer system, when it 
is integrated with wireless sensor networks, communica-
tion modules and advanced algorithms. Thirdly, the WPT 
can be further extended to meet various needs such as 
automatic charging, monitoring, and microwave hyper-
thermia. In a word, the proposed WPT strategy could 
open a new avenue for the WPT with the high efficiency, 
safety, and intelligence.

2.4 � Dynamic holograms
Here, we discuss another interesting application of intel-
ligent metasurfaces, i.e., dynamic holograms. For this 
purpose, the intelligent metasurface is designed to con-
vert the illumination into that with the desired profile 
of wavefront. Metasurfaces have been widely used for 
designing holograms in the past decade [49, 50, 149–
152], and the metasurface holograms were proposed in 
various frequency regimes to achieve holographic images 
with high efficiency, good image quality and full colors. 
However, most of them are usually limited to the “static” 
scenario in the sense that only one or a few specific 
images can be generated once the metasurface is fabri-
cated. Li et al. proposed the first reprogrammable meta-
surface hologram [84], which addressed several critical 
issues associated with static metasurface holograms, fea-
turing the simplicity, being rewritable, high image qual-
ity and high efficiency. Figure  2i shows the sketch map 
of the programmable holographic images based on a 
one-bit programmable metasurface with 20 × 20 macro 

meta-atoms, where each constituting meta-atom is a 
hybrid structure integrated with a PIN diode. By incor-
porating a PIN diode into the meta-atom, the EM state 
of the meta-atom can be tailored by controlling the ‘ON’ 
and ‘OFF’ states of the PIN diode with different biased 
voltages. Thus, the desirable phase responses across the 
metasurface hologram can be achieved in an inexpen-
sive and dynamic way. As such, a single metasurface 
hologram can accomplish various functions dynami-
cally. Figure 2i reports a set of experimental holographic 
images, namely, a sentence of “LOVE PKU! SEU! NUS!”, 
and accordingly the coding patterns of the metasurface 
hologram have also been reported with a total hologram 
reconfiguration time of around 33  ns. Here, we would 
like to provide three-aspect remarks on the proposed 
reprogrammable metasurface hologram. Firstly, the 
reprogrammable metasurface hologram can be extended 
to exhibit multiple digital bits for both phase and ampli-
tude modulations, which leads to more versatile devices 
with adaptive and rewritable functionalities. Secondly, an 
immediate interesting application of such a hologram is 
to design the AI-empowered sensing systems, where the 
measurement modes desired by machine learning tech-
niques can be generated by intelligent metasurface on the 
physical level, as detailed in Sect.  4. Thirdly, the repro-
grammable metasurface hologram could be extended 
for other frequencies and beyond by exploring dynamic 
modulation masks. Several switchable diodes commer-
cially available may facilitate the frequency scaling, e.g., 
the MEMS [57, 72], the silicon the magnesium (Mg) [149] 
and the thermal VO2 diode [63] in the visible frequencies. 
For instance, Li et  al. invented the Mg-based dynamic 
metasurface platform, and utilized it for the purpose of 
dynamic holography and optical information encryption 
[149].

The control coding sequences of the metasurface are 
usually designed by performing iterative approaches, 
including the Gerchberg–Saxton (GS) algorithm [153] 
and stochastic optimization algorithms [154], which 
limits the deployment of the intelligent metasurfaces in 
many practices with strong demands on high efficiency 
and capability. Here, we would like to point out a general 
framework for metasurface hologram in context of deep 
generative networks. Mathematically, the desired radia-
tion pattern y of an illumination x experienced through 
intelligent metasurface can be represented as y = f�(x) , 
where � = {0, 1}N encapsulates N meta-atoms of intel-
ligent metasurface, where one-bit coding is assumed. 
Typically, the function f  behaviors in a nonlinear way, 
which can be trained in context of deep generative net-
works, e.g., generative adversarial networks (GAN) 
strategy. Invoked by this observation, we proposed an 
efficient non-iterative solution to the design of intelligent 
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metasurface holograms [56], i.e., VAE-cGAN. Being 
remarkably different from conventional cGAN requiring 
a large amount of labeled training data, our VAE-cGAN 
is trained under the supervision of wave–matter-inter-
action physical mechanism rather than the labeled data, 
and thus can avoid the difficulty of conventional cGAN. 
Specifically, the physical mechanism between the elec-
tric-field distribution and intelligent metasurface is 
introduced to model the VAE decoding module of VAE-
cGAN. After the VAE-cGAN is trained well, we call for 
the generator part to generate desired intelligent metas-
urface holograms. The non-iterative property of the gen-
erator enables the high-quality holographic imaging with 
high efficiency, which has been validated numerically and 
experimentally. It can be expected that the smart holo-
grams can be developed by deploying our VAE-cGAN on 
neural network chips, finding more valuable applications 
in wireless communications, microscopy, and so on.

2.5 � Invisibility cloak
Intelligent metasurfaces are powerful in manipulating 
wave–information–matter interactions on the physical 
level, and thus they are capable of controlling the EM 
temporal–spatial response of an object by changing the 
surrounding environment. For example, they, with prop-
erly designed, can guide the waves propagating around 
away the object, rendering the object invisible to the 
EM detectors, which is known as the so-called invisibil-
ity cloak. The invisibility cloak has been a fantasy dream 
for humanity until the emergence of metamaterials and 
transformation optics [41–46, 155–160]. Ideally, an invis-
ibility cloak is able to self-adaptively adjust its internal 
structure to make hidden objects invisible. In the past 
decade, various metamaterials-based invisibility cloaks 
have been proposed, but we have seen progress on some 
of the most crucial challenges that have hindered their 
utility in the past. For instance, they all have a funda-
mental challenge in the difficulty of implementing bulky 
composite materials with anisotropy and inhomogene-
ity. More importantly, they all lack the intelligence in the 
sense that they all work in a static manner and cannot be 
adaptive to the change of object or ambient environment. 
Here, we argue that the intelligent metasurface is born to 
be a good candidate for addressing the above difficulties, 
due to its properties of ultrathin structure, programma-
bility and intelligence.

We take the intelligent invisibility cloak (see Fig.  2f ) 
developed by Qian et al. [55] as an example to illustrate 
the critical ingredients and operational principle. The 
intelligent metasurface in [55] consists of 24 × 28 elec-
tronically-controllable meta-atoms, and each control-
lable meta-atom integrated with a varactor diode has a 
controllable reflection spectrum according to its biased 

voltages. Regarding the design of intelligent invisibility 
cloak, a fundamental but challenging job is to interpret 
the dependence of cloak structure on the illumination 
wave and surrounding environment. To resolve this dif-
ficulty, Qian et  al. proposed a deep learning solution 
(i.e., a pre-trained ANN) to approximate the intricate 
relationship between the quantities of incident wave 
and reflection spectrum and the applied bias voltage for 
each meta-atom of the intelligent metasurface, by which 
all bias voltages of the meta-atoms can be automatically 
calculated and are instantly supplied to the invisibility 
cloak. In addition, two active detectors were introduced 
to monitor the change of illumination(s) and surround-
ing environment, respectively. For instance, when the 
changes of the incidents or the backgrounds can be 
detected in real-time and transformed, they are detected 
in real time and transformed instantly by the ANN into 
the cloak. Then, the intelligent metasurface cloak under 
control of the detectors and pretrained ANN can hide 
object(s) without any human intervention even when 
the incident wave and ambient environment are rapidly 
changing on a millisecond timescale. In a word, embed-
ded with active detectors and pretrained ANN, the intel-
ligent metasurface cloak exhibits effective and robust 
self-adaptability in response to a rapidly changing inci-
dent wave and background, without human intervention.

3 � Wireless communications
Wireless communication has become an essential tool 
of resolving the ever-expanding demands on wireless 
information transfer in the modern society [161–166]. 
A fundamental measure quantifying the performance 
(e.g., communication rate, security, and so on) of wire-
less communication systems is the information capacity 
[161, 166]. Given a wireless communication system with 
the frequency spectrum and spatial–temporal channels, 
the well-known Shannon’s information theory states that 
the ultimate bound on the information capacity it can 
achieve is determined by the signal-to-noise ratio (SNR) 
[161, 166]. Conventionally, the capacity is bounded by 
the number of the available channels, e.g., independ-
ent spectral and spatial degrees of freedom available. To 
meet the ever-expanding demand for more information 
transfer, notably given the advent of IoT, a wide range of 
solutions have been proposed, including elaborate coding 
schemes (e.g., OFDM), elaborate antenna designs (e.g. 
massive MIMO) [163–165], and even the engineering of 
the propagation medium’s disorder [167]. However, these 
approaches have many practical challenges in energy-
infrastructure-limited cases, where the bulky systems 
are hard to be deployed, and portable devices such as IoT 
sensors and handhelds are demanded. A natural ques-
tion arises up: given a deployed wireless communication 
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system, can we improve efficiently its information capac-
ity? The answer is really encouraging. From the above 
discussions in Sect. 2, we can envision two scenarios of 
metasurface-aided wireless communications: (i) the radio 
signal energies, which are emitted from the transmitter 
but dispersed in space, are recycled and directed towards 
the desired user, leading to the remarkably improved 
SNR and thus the communication performance; (ii) addi-
tional information are encoded into the intelligent meta-
surface on the physical level and transferred to the users. 
In this research route, many metasurface-aided wireless 
communication architectures [168–187] have been sug-
gested recently. In the communication community, the 
intelligent metasurface is usually referred to as the recon-
figurable intelligent surface (RIS) [168–178] and has 
gained ever-increasingly interest in the past years. Here, 
we categorize them into three major types: (A) non-mod-
ulated-metasurface backscatter communications, (B) 
modulated-metasurface backscatter communications, 
and (C) ambient modulated-metasurface backscatter 
communications, as shown in Fig. 3.

3.1 � Non‑modulated‑metasurface backscatter 
communications (NMMBCs)

NMMBCs work similar to the conventional wireless 
communication systems, but with the use of intelligent 
metasurfaces for recycling the energy dissipated in space 
that was conventionally thought to be useless and further 
improving SNR. Similar to conventional wireless com-
munication systems, in NMMBC, an intended RF car-
rier carrying the information to be transferred is required 
for information transfer, where the signal modulation 
or demodulation is made by using nonlinear RF mixers. 
However, as opposed to the conventional wireless sys-
tem, in NMMBC, the intelligent metasurface is deployed 
to shape the ambient environment such that the effective 
number of information channels can be increased (see 
Fig. 3a, b). In NMMBC, the intelligent metasurface is uti-
lized to extend the aperture of the antenna in the conven-
tional wireless communication systems in a distributed 
manner. In other words, the intelligent metasurface can 
be regarded as an extension part of antenna arrays of the 
conventional wireless communication systems, which is 
connected with the intended RF source using air rather 
than transmission lines [177].

Besides, the intelligent metasurface has several ubiqui-
tous properties. First, the intelligent metasurface can be 
optimized to match any RF source and associated mod-
ules, since it improves the communication performance 
by tailoring the surrounding environment for all nearby 
devices instead of modifying the transmitting and receiv-
ing devices. Second, unlike the transmission lines in the 
conventional communication systems, the intelligent 

metasurface does not involve high-speed signals [177], 
and thus it can be easily incorporated into the ambient 
environment and remarkably improve SNR and thus the 
information capacity of the conventional systems. For 
instance, Tang et al. demonstrated theoretically that the 
intelligent metasurfaces were helpful in improving the 
energy efficiency of power allocation of the base sta-
tion [177]. Hougne et  al. demonstrated that the one-bit 
reconfigurable metasurface can be optimized to improve 
remarkably the equivalent number of channels of MIMO 
wireless communication systems [167]. More recently, in 
the community of wireless communication, the RIS has 
been numerically demonstrated to be helpful in enhanc-
ing the secure transfer [173, 174] (see Fig. 3c), reducing 
the mobile edge computing [175, 176] (see Fig. 3d), and 
so on. Overall, there are rapidly growing interests in this 
topic, and we would like to refer the readers of interest to 
Refs. [170–172] for more comprehensive reviews about 
recent progress.

3.2 � Modulated‑metasurface backscatter communications 
(MMBCs)

It has been demonstrated in NMMBCs that the intro-
duction of the intelligent metasurface is beneficial to 
improve the performance of conventional wireless 
communication systems. However, there are several 
critical challenges related to the need for active carrier 
signal generation: costly and heavy hardware (e.g. oscil-
lators, nonlinear mixers, and wideband power ampli-
fiers), power consumption, spectrum allotment issues, 
and security. Here, we mean by the security that, for 
NMMBCs, the information distributed in space is free of 
radiation directions, implying that it can be eavesdropped 
if the detector of eavesdropper is sensitive enough. These 
issues are particularly pressing for IoT connectivity since 
IoT devices are urgently demanded with lightweight, 
cheap and green. In sharp contrast to NMMBCs, in 
MMBCs, the sequence of digital information is directly 
encoded into the time–space-coding intelligent metas-
urface on the physical layer [168, 179–185, 188], so that 
such information-carrying intelligent metasurface will 
directly modulate the radio signal from RF resource, as 
illustrated in Fig.  3e–h. It is apparent that the MMBCs 
work similar to backscatter communications developed 
in the RFID area [188–191], but with the utilization of 
the inexpensive large-aperture intelligent metasurface. 
We would like to say that, from the perspective of clas-
sical MIMO wireless communications, the inexpensive 
intelligent metasurface has a large number of indepen-
dently controllable antenna elements, and thus supports 
massive spatial communication channels. Therefore, with 
the aid of the time–space coding intelligent metasurface, 
the information capacity can be drastically improved 
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Fig. 3  Three novel wireless communication architectures based on intelligent metasurfaces. a Conceptual illustration of 
non-modulated-metasurface backscatter wireless communication connecting the digital world and physical world, which is achieved by allocating 
RF source, nonlinear mixer, wideband power amplifier, and other necessary circuits. Here, the intelligent metasurface, usually called RIS in the 
community of communication, can be regarded as a passive relay or extension part of conventional antenna arrays. Several examples of NBWC 
are provided in c–e. b Potential applications of RIS in smart radio environment [171], c system model for IRS-assisted secure communication 
system [174], d illustration of the RIS-based computation off-loading in mobile edge computing system [176]. e Conceptual illustration of 
modulated-metasurface backscatter wireless communication by deploying an RF source and intelligent metasurface. Here, the digital information 
to be transferred is directly encoded into the metasurface on the physical level, and the signal modulation is achieved by the wave-metasurface 
interaction. Specifically, the intelligent metasurface plays two roles: mixer and antenna. Several examples of MMBWC are provided in f–h. f 
Schematic illustration of the operational mechanism of the direct modulation wireless communication system in [183], g experimental scenario of 
the dual-channel wireless communication system based on the space–time-coding digital metasurface [184]. h A photo of the metasurface-based 
MIMO wireless communication prototype [180]. i Conceptual illustration of ambient modulated-metasurface backscatter wireless communication 
by an intelligent metasurface. The intelligent metasurface plays three critical roles: mixer, antenna, energy harvest collector. j–l The demo system of 
AMMBC proposed Zhao et al. and some selected results [186]. Figures adapted with permission from: (b)–(d) IEEE, (f)–(g) under a CC BY 4.0 license, 
(h) IEEE, (j)–(l) under a CC BY 4.0 license



Page 12 of 24Li et al. eLight             (2022) 2:7 

compared to that of conventional backscatter commu-
nication systems. We remark that the MMBC can also 
be considered as the direct-modulation communication 
scheme [182, 183], where the intelligent metasurface, as a 
part of the transmitter, produces information-dependent 
radiation beams. In this sense, compared with the con-
ventional backscatter communication systems, MMBCs 
can ensure their communication secrecy very well. 
Recently, this idea has also been explored in the millim-
eter-wave wireless communication by using a custom-
designed spatio-temporal phased array [188], which is 
demonstrated to be resilient to distributed eavesdrop-
per attaches. Besides, since the intelligent metasurface is 
powerful in shaping arbitrary wavefronts and waveforms 
simultaneously, novel wireless communication schemes 
with more flexible information modulations can be 
developed, for instance, the controllable orbital angular 
moment (OAM) modulations [182].

We take the MMBC system developed by Zhang et al. as an 
example to demonstrate the operational mechanisms behind 
MMBC. The intelligent metasurface serves as not only a 
large-aperture antenna radiating the information-carrying 
radio signals towards space, but also an analog mixer replac-
ing the costly analog–digital converter and RF network 
required by the conventional heterodyne architectures. We 
would like to provide some insights into the MMBC system 
[25, 184]. To that end, we assume that the radio source emits 
a single-tone incident signal Ei(t) = cos (ωct) with the oper-
ational angular frequency of ωc , and the meta-atom has the 

time-dependent reflection coefficient Ŵ(t) . Then, the reflec-
tion signal of the meta-atom is Er(t) = Ei(t)Ŵ(t), and its fre-
quency-domain representation is Ẽr(ω) =

[

Ŵ̃(ω + ωc)+ Ŵ̃(ω − ωc)

]/

2. 
Recall that the base information Ŵ(t) has been directly 
encoded into the meta-atom on the physical level. It is clear 
that the signal up-conversion signal is achieved by the physi-
cal weak interaction between the meta-atom and carrier sig-
nal, which completely avoids using the RF components 
required in the conventional super-heterodyne wireless com-
munication systems, for instance, nonlinear mixing compo-
nents, wideband power amplifier, and the associated 
accessory circuits. In this way, MMBC has an overwhelming 
advantage over NMMBC in terms of complexity, cost, and 
energy consumption. Figure 3g illustrates the sketch process 
of MMBC designed by Zhang et al. [183], where two destina-
tion users are placed at two different locations, and on–off-
keying modulations and demodulations are considered. 
During the experimental test, two color pictures (the logo of 
the State Key Laboratory of Millimeter Waves and the logo of 
Southeast University) were firstly encoded and then trans-
lated into control signals to drive the intelligent metasurface. 
The carrier signal emitted from a feeding horn antenna was 
modulated and reflected by the intelligent metasurface, and 
then the radiation signals in free space are individually 
received by two horn antennas and demodulated into the dig-
ital signals via the receiver to recover the two pictures simul-
taneously. When user #1 moves to an undesired direction (for 
example, θ = 0°), the correct digital information can be 
retrieved from the received signal, regardless of the level of 

Fig. 3  continued
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transmitting power and the sensitivity of detectors. Hence, 
this phenomenon demonstrates that the proposed time-
modulated intelligent metasurface supports the high-quality 
wireless communications with the significantly simplified sys-
tem architecture, and that it can provide secure wireless com-
munications via directional modulations.

3.3 � Ambient modulated‑metasurface backscatter 
communications (AMMBCs)

We now turn to discuss the ambient modulated-meta-
surface backscatter communications (AMMBCs). As 
implied by the name, the AMMBCs work similar to the 
ambient backscatter communications [189–191], and 
thus they share a common advantage: neither dedicated 
RF sources nor new frequency spectrum is needed in the 
AMMBCs, because the carrier emitter is from ambient 
RF sources, such as TV towers, Bluetooth, cellular base 
stations, and Wi-Fi. Compared with the conventional 
ambient backscatter communications with one or a few 
controllable antennas, the AMMBC explores the intelli-
gent metasurface with massive controllable elements for 
the wave-information manipulations, and thus has three 
unique strengths: nearly no effect on background wire-
less communications, multi-user secure communica-
tions, and higher data rate. Conceptually, the intelligent 
metasurface in AMMBC is utilized to program the prop-
agation environment of a wave with unknown character-
istics (source location, angle of arrival, and shape of the 
incident wavefront), which sharply differs from the exist-
ing communication schemes. In particular, the intelligent 
metasurface in MBWC has three major purposes: (i) 
encoding the digital information to be transferred on the 
physical level; (ii) modulating directly the ambient stray 
signals with high SNR; and (iii) assigning users’ informa-
tion via the information-dependent beam-forming.

Zhao et  al. proposed the first AMMBC’s framework 
by manipulating the commodity 2.4 GHz Wi-Fi signals 
(called MBWC), and demonstrated secure wireless 
communications without any active radio components 
at the data rates in the order of hundreds of Kbps, as 
shown in Fig. 3i–l [186]. In their demo, an inexpensive 
intelligent metasurface with 768 independently con-
trollable meta-atoms is deployed. For ambient back-
scatter communications, the critical challenge is the 
difficulty of modulating and demodulating the base-
band signal since the ‘carrier’ is the unknown non-sta-
tionary stray wireless signal. To address this difficulty, 
Zhao et al. proposed an efficient approach by deploying 
two receiving antennas (referred to as master and slav-
ery antennas, respectively) and controlling the intelli-
gent metasurface such that the energy of wireless signal 
is manipulated to be focused towards the master 

antenna alone. As such, the intelligent metasurface is 
only visible to the master antenna, and is invisible to 
others including the slavery antenna. Then, the demod-
ulated signal denoted by Ĥs→meta→mr can be easily 
obtained by making the simple normalized coherence 
computation with respect to signals collected by two 
coherent receiving antennas. In this way, the informa-
tion encoded into the metasurface can be transferred to 
the user with very high SNR and security; meanwhile, 
has nearly no effect on the background communica-
tions. As a proof-of-concept demonstration, we consid-
ered a three-channel AMMBC with phase shift keying 
(PSK) modulation and demodulation. The amplitude 
and phase distributions of Ĥs→meta→mr at the distance 
of z = 3  m away from the metasurface are reported in 
Fig.  3l. Note that the intensities of 
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focused around three intended users, and the phases of 
Ĥs→meta→mr are well controlled in the desired manner. 
Clearly, we can see that the three-channel MBWC-
BPSK modulation is easily achieved, and that the 
sequence of BPSK digital information can be indepen-
dently controlled for each channel. Based on these 8 
MBWC-BPSK coding patterns, we can realize the 
AMMBC transmission of a full-color image from Alice 
to Bob.

Now, we can observe that AMMBCs have interesting 
advantages in comparison with MMBCs and NMMBCs: 
they fundamentally remove the harsh requirements on 
allocating new frequency spectrum and deploying dedi-
cated RF sources, which can remarkably improve the 
spectrum resource utilization and reduce the hardware 
cost and power consumption. Of course, the current 
AMMBC scheme can be further improved in several 
aspects, for instance, to develop an optimal coding 
strategy of the intelligent metasurface for modulation 
and information-dependent beamforming [187], and to 
design more specialized meta-atoms for faster switch-
ing. In addition, the AMMBC strategy can be extended 
to other frequencies and other types of wave phenom-
ena for more applications.

4 � Computing and sensing
There is no doubt that computing is of fundamental 
importance to people’s daily lives, and that electronic 
digital processors are prevalent over other strategies 
nowadays. Over the past 60  years, the electronic digital 
computing has evolved from CPUs for scalar computa-
tions to GPUs for tensor computations. But, the further 
development of electronic digital processors will suffer 
from the curse of the Moore’s law. To overcome the limi-
tation, many computing platforms have been proposed 
over past decades, e.g., wave-based computing, quantum 
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computing, AI-based chips, and application-specific-inte-
grated circuits. Among these platforms, the wave-based 
analog computing is particularly attractive since it could 
be optimized to parallelly deal with high-dimensional 
data through the weak wave–matter interaction on the 
physical level [128–134, 186, 187, 192–195]. Compared 
with the electronic digital computing, the wave-based 
analog computing has two more advantages: the paral-
lelism with the utilization of plenty of wave-domain divi-
sion multiplexing techniques, and the negligible energy 
consumption due to the weak wave–matter interaction. 
The wave-based analog computing is not a new concept, 
which can be traced back to the pioneering work of Fou-
cault in 1859 [193], and thus has nearly 70-years of his-
tory. To date, many optical analog computing schemes 
have been explored, and here we would like to refer read-
ers of interest to the excellent review paper [192, 194–
196]. In this work, we are particularly interested in the 
scenario of the robot-human alliance: how the robot pro-
cesses and understands data? For instance, the robot is 
designed to understand human behaviors in the physical 
world and build a digital recognition map of the physi-
cal world in a contactless way, which can be achieved by 
remotely sensing where people in the physical world are, 
what they are doing, what they want to express, how their 
physiological states are, and so on. To examine these 
features, we consider the EM sensing as an illustrative 
example in this review.

The EM sensing has been widely demonstrated to be 
a powerful nondestructive examination tool under all-
weather and all-time operational conditions [197–212], 
severing as a fundamental asset in science, engineering 
and military. In the picture of the robot–human alliance, 
the robot forms the digital recognition map of the physi-
cal world (human plus the surrounding environment) 
via the sensing, implying that the sensing plays a crucial 
role in bridging the gap between the digital world and 
the physical world, as conceptually shown in Fig.  4a–c. 
Typically, an entire sensing chain has two major building 
parts: data acquisition and data postprocessing. To date, 
three kinds of popular sensing schemes have been pro-
posed: real-aperture imaging [141, 201], synthetic aper-
ture imaging [197, 199, 202], and coding aperture imaging 
[203–212]. The conventional sensing systems have to 
struggle with trading off the cost performance indexes of 
the data acquisition and data postprocessing, especially 
in dealing with the ‘data crisis’. For instance, the coding-
aperture and synthetic-aperture sensing strategies could 
produce high-quality images with one or a few sensors, 
but at the cost of computationally inefficient digital com-
putation algorithms. In contrast, the real-aperture strat-
egy can be optimized to have nearly negligible pressure 
on the digital data processing, but costly requires massive 

sensors for the data acquisition. To tackle with these for-
midable challenges, the intelligent metasurfaces, which 
synergize the ultrathin artificial materials (AM), for the 
wave-based analog computing on the physical level and 
the artificial intelligence (AI) for the very powerful digi-
tal data processing on the digital level [25, 156, 158, 159, 
185, 188, 189], emerge as the intelligent hybrid-comput-
ing-based sensing platforms in response to the proper 
time and conditions, and have attracted growing interests 
over the past decade. Here, we would like to highlight 
three representative progresses.

4.1 � Nearly digital‑computing‑free intelligent sensing
Nowadays, for most practical sensing systems, the most 
important yet challenging problem is to deal with the 
high-dimensional data or ‘data crisis’. Fortunately, the 
high-dimensional data have some structured representa-
tions in many practical scenarios; the well-known John-
son–Lindenstrauss lemma states that the structured 
high-dimensional data could be projected into a low-
dimensional feature space with nearly neglectable infor-
mation loss through a properly designed linear transform 
[213]. In other words, the essential information of the 
high-dimensional data can be retrieved from its remark-
ably reduced measurements in most of practical set-
tings. This is theoretically grounded and has been widely 
explored especially since the emergence of the com-
pressed sensing theory in the mid 2000s [203, 214–216]. 
By now, there are many popular linear embedding trans-
forms with the so-called restricted isometry property 
(RIP). Among them, some embedding transforms, for 
instance, the principle component analysis (PCA) [217], 
allows for the low-dimensional representations with the 
mathematically or physically meaningful features, imply-
ing that the target information can be well retrieved from 
these low-dimensional features in an almost digital-com-
putation-free way.

We consider the utilization of linear embedding tech-
niques in intelligent metasurface sensors [122]. As 
explored in Sect. 2.4, the intelligent metasurface is capa-
ble of generating nearly arbitrarily radiation patterns or 
the measurement modes desired by the machine learning 
techniques. Inspired by this, we proposed the concept of 
a machine-learning reprogrammable imager (see Fig. 4b), 
in which the intelligent metasurface is trained with a 
vast number of training data using the PCA such that 
the machine-learning-desired radiation patterns can be 
achieved on the physical level. Then, the intelligent meta-
surface serves as a physical computing device: which out-
puts the low-dimensional PCA features from the input of 
the high-dimensional raw data in an analog computing 
way. As such, the resultant sensing strategy is almost free 
of digital computation.
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Fig. 4  Three kinds of computation-enabled intelligent sensing using intelligent metasurface. a Conceptual illustration of nearly 
digital-computational-free intelligent sensing featuring its role in bridging the physical world and digital world. The range of the scene 
probed (marked in blue) is small in comparison to the whole scene in yellow, due to the use of metasurface-based linear data computation. 
b Programmable sensing system invented by Li et al. [122]. c The reprogrammable artificial intelligence machine (PAIM) based on an array of 
intelligent metasurfaces proposed by Liu et al. [219]. d All-optic reconstruction using diffractive networks proposed by Rahman and Ozcan [218]. 
e Conceptual illustration of hybrid-computing-based intelligent sensing, featuring its role in bridging the physical world and digital world. Here 
the hybrid computing consists of analog computing on the physical level and digital computing on the digital level. The analog computing for 
high-dimensional data reduction is achieved by the metasurface, while the digital computing for data postprocessing is done by using advanced 
signal processing techniques or artificial neural networks. f Computational metamaterial imager proposed by Hunt et al. [221]. g Intelligent EM 
metasurface imager and recognizer working at 2.4 GHz proposed by Li et al. [51] which has active and passive operational modes. For the passive 
mode, the intelligent metasurface is used to manipulate the ambient stray wireless signal already available in our daily lives. h The operational 
flowchart of intelligent metasurface sensor by Li et al. [51]. i Conceptual illustration of the hybrid-computing-based intelligent integrated sensing 
system, where the data acquisition on the physical level and data postprocessing on the digital level are integrated as a whole and are learned 
simultaneously. j–l Correspond to the schemes proposed by Li et al. [54], Hougne et al. [53] and Tseng et al. [232], respectively. Figures (b)–(d), (f)–(h) 
and (j)–(l) adapted with permission under a CC BY 4.0 license
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Figure 4b illustrates the principle behind the intelligent 
sensing scheme proposed by Li et al. [122], where a two-
bit reprogrammable coding metasurface is used, and each 
meta-atom is integrated with three PIN diodes. In Ref. 
[122], we considered two classical linear machine learn-
ing techniques: the random projection and PCA, which 
were utilized to train the machine-learning reprogram-
mable imager. Of course, other linear machine learning 
techniques can also be applicable. It is relatively trivial to 
realize the random projection by independently and ran-
domly controlling the PIN diodes of the reprogrammable 
coding metasurface. However, for the PCA measure-
ments, the PIN diodes need to be carefully manipulated 
in order to achieve the desired measurement modes, 
and the modified Gerchberg–Saxton (G–S) algorithm 
was used in our implementations. Li et al. demonstrated 
experimentally that not only the gestures of the test per-
son can be recovered by the machine-learning imager, 
but also the armed glass scissor can be clearly recon-
structed, even when the target is behind an opaque 
wall. It is clear that the PCA-guided sensing scheme, 
enabled by the meaningful low-dimensional measure-
ments, has considerably better imaging and recognition 
performance than the random scheme in the case of a 
small amount of measurements. In passing, such intelli-
gent imager can be utilized for multiple distinct sensing 
functions over a physical entity without any hardware 
modification, for instance, the high-quality imaging and 
recognition of digital-like targets and others [122]. Now, 

we can conclude that the machine-learning-guided sens-
ing strategy enables the real-time and high-quality imag-
ing with the nearly ignorable digital computation, and 
such a sensing strategy will provide us with a promis-
ing route for smart sensing in various frequencies and 
beyond.

It is worthy of mentioning that the data process-
ing, i.e., matrix–vector multiplicative operation, has 
been involved on the digital level by the above imager, 
although it was claimed to be not taken much. Recall the 
wave-based computing discussed earlier, we can envision 
that the above algebraic operation on the digital level 
could be accomplished by using the metamaterials- or 
metasurfaces-based computing devices on the physical 
level [130–132]. For instance, an optical platform (i.e., 
diffractive deep neural networks, D2NN [171]) has been 
recently designed to take advantage of the wave property 
of photons to realize parallel linear data processing at the 
speed of light. Recently, such physical networks has been 
utilized for the design of all-optical imaging system [218] 
(see Fig. 4d). However, the wave-based D2NN is a passive 
device, which has fixed network architecture once fab-
ricated. Hence, it cannot be re-trained for other targets, 
limiting its functions. To establish a re-trainable wave-
based D2NN, we proposed a reprogrammable artificial 
intelligence machine (PAIM) using an array of intelli-
gent metasurfaces [219], where the multi-layer metasur-
faces act as the programmable physical layers of D2NN. 
We designed the PAIM (see Fig.  4c) to be a real-time 

Fig. 4  continued
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re-trainable system, whose parameters could be set in 
digital to realize alive artificial neurons. On the physi-
cal layer, the PAIM could hierarchically manipulate the 
energy distribution of transmitted EM waves by a five-
layer array of intelligent metasurfaces, from which the 
amplitude of the transmitted wave through each meta-
atom could be enhanced or attenuated by controlling the 
value of the digital parameters. The PAIM is an on-site 
programmable D2NN platform running by real-time con-
trol of the EM waves in a digital way, which can perform 
computations based on the parallelism of EM wave prop-
agations at the speed of light. It could be optimized to 
be a general-purpose wave-based intelligence machine, 
which could not only deal with the traditional deep learn-
ing tasks such as image recognition and feature detec-
tion, but also provide an on-site and user-friendly way to 
manipulate the spatial EM waves such as multi-channel 
coding and decoding in the CDMA scheme and dynamic 
multi-beam focusing, thereby may find potential appli-
cations in wireless communications, image processing, 
remote control, IoT, and other intelligent applications.

4.2 � Hybrid‑computing‑based intelligent sensing
The linear-machine-learning-driven metasurface imager 
relies on the assumption of linear mapping from the 
data to results, which to some extent limits itself to han-
dle relatively simple sensing tasks. It is believed that the 
deep networks have much more powerful representation 
capability than shallow networks do, let alone linear net-
works [96]. Recently, we have witnessed rapid progress in 
all-wave (specifically, all-optical) physical deep networks 
that are optimized to match the modern deep acritical 
networks in optics [194]. However, one of the remaining 
challenges is the difficulty of the physical implementa-
tion of the nonlinear activation functions, although non-
linear materials (e.g. crystals, polymers, semiconductor 
materials) are available. Thus, we considered the power-
ful capability of deep learning in the digital world, and 
proposed the intelligent sensing scheme by exploring the 
hybrid computing scheme [129, 220]: the analog high-
dimensional data preprocessing (e.g., data compression) 
with the intelligent metasurface on the physical level, and 
the digital postprocessing with the modern deep acritical 
neural networks on the digital level. Note that the com-
pressive-sensing-inspired computational metasurface 
sensors [207–211, 221] can be treated as hybrid-comput-
ing-based intelligent sensing, in the sense that the data 
compression is accomplished on the metasurface level, 
and the sparsity-aware data processing is implemented 
on the digital level.

Inspired by the above insights, Li et  al. proposed the 
concept of intelligent EM camera by integrating ANNs 
into the intelligent metasurfaces [51]. The EM camera 
proposed by Li et  al. has two operational modes (see 
Fig. 4g, h): active and passive. For the passive mode, the 
EM camera is passively excited by the ambient stray wire-
less signals (like Wi-Fi signals) that ubiquitously exist in 
daily lives. Recently, the utilization of wireless signals in 
the area of sensing, especially probing human behaviors 
has gained researchers intensive attractions [222–225], 
but these strategies suffer from the limited spatial–
temporal image resolution and recognition accuracy 
due to the limited size of field of review. In contrast to 
these techniques, we here highlight three-aspect critical 
roles of the intelligent metasurface. First, the intelligent 
metasurface is utilized to probe real-time people in a 
full-viewing scene with the high temporal–spatial reso-
lution. Second, the intelligent metasurface controls the 
EM wavefields (e.g. ambient wireless signals) towards the 
local spots of interest for efficiently recognizing the fine-
grained body signs, by which the undesired interferences 
from the ambient environment and other body parts can 
be remarkably suppressed, as shown in Fig. 4h. We found 
that the intelligent metasurface was capable of reallo-
cating the commodity Wi-Fi waves towards the desired 
spots (e.g. the left hand of the subject person) with the 
energy enhancement of more than 20 dB, similar to the 
aforementioned smart WPT. Finally, the body signs (e.g. 
hand signs) and vital signs of non-cooperative people can 
be clearly identified in a real-time way. As such, we can 
envision that the target person ‘wears’ virtually a moni-
toring device with safety radio explosion, which is capa-
ble of monitoring the body information, like the physical 
wearable devices [226].

Li et  al. demonstrated experimentally that the hand-
sign and respiration recognitions can be identified with 
very high accuracies, even when the targets are behind a 
5 cm-thickness wall and the EM camera works in the pas-
sive mode. Now, it is clear that the deep-learning-driven 
intelligent EM camera exhibits robust performance in 
remotely monitoring the notable human movements, 
subtle body gesture languages, and physiological states 
from multiple non-cooperative people in the real-world 
settings. Similarly, the EM camera can also work in the 
active mode, which is excited by the radiation source such 
as horn antenna. We expect that the intelligent metasur-
face, i.e., a synergizing exploration of artificial materials 
and artificial intelligence, could be utilized to achieve the 
goal that the conventional systems cannot achieve easily, 
and that such a methodology can be extended over the 
entire EM spectra, which will be helpful in the future 
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smart society like human-device interactive interfaces, 
and so on.

4.3 � Hybrid‑computing‑based intelligent integrated 
sensing

Here, we briefly discuss the intelligence in the aforemen-
tioned sensing schemes. The intelligence in Sect.  4.2 is 
referred to the capability of the intelligent metasurface in 
adaptively performing a series of successive sensing tasks 
without human supervision. However, as a large amount 
of deep learning based sensing strategies in the digital 
level [227–231], it remains not intelligent enough, in the 
sense that it indiscriminately acquires all information and 
ignores the available knowledge about Scenarios, and the 
sensing task and hardware have constraints. Yet, using 
the available a-priori knowledge is critical to limit the 
data acquisition to the relevant information—the cru-
cial conceptual improvement necessarily to reduce the 
latency and computational burden. On the other hand, 
the sensing strategy in Sect. 4.1 also lacks the intelligence 
since it considers the data acquisition and processing sep-
arately, and hence fails to highlight the salient features in 
the processing layer, although the scene illuminations to 
the knowledge of what scene is explored. To fully reap the 
benefits of intelligence in the whole sensing chain, three 
constituting components of the intelligent sensing—the 
scene in the physical world, the data in the digital world, 
and the measure connecting the two worlds—need to be 
jointly considered in a unique learnable pipeline. Actu-
ally, such an idea has been recently explored in optics 
[232] (see Fig. 4l) and ultrasound [233].

Hougne et al. proposed the idea of learned EM sensing 
with programmable metasurface hardware (see Fig.  4k) 
[53].We proposed two frameworks of intelligent inte-
grated sensing pipeline using the intelligent metasurface: 
variational autoencoder [54] and free-energy minimi-
zation [61], which enable us to jointly learn the optimal 
measurements on the physical level and digital process-
ing settings on the digital level for the given hardware, 
task and expected scene. For instance, a measurement 
network (called m-ANN) and a reconstruction network 
(called r-ANN) are introduced, and such two networks 
are jointly optimized to achieve the optimal compres-
sive measurements, and extract the desired information 
in a variational autoencoder framework [54], as shown in 
Fig. 4j. In this way, we made use of all available a-priori 
knowledge about the probed scene, the specific sensing 
task, and the constraints on the measurement setting and 
postprocessing pipeline. Thus, we can expect that such a 
learnable sensing strategy yields a superior performance 
compared to the conventional strategies that optimize 
the measurement and postprocessing separately. The per-
formance improvement is particularly significant when 

the number of measurements is limited. This strategy 
could drastically reduce the number of measurements, 
which enables us to remarkably improve many critical 
metrics, for instance, the speed, processing burden and 
energy consumption. Such strategies could raise impor-
tant impacts on showing how to merge the AMs-based 
analogy computing and AIs-empowered digital comput-
ing in designing the learnable sensing architectures, and 
pave the path to low-latency sensing (e.g. biological sys-
tems) in the human–robot alliance.

5 � Summary and outlook
Manipulation of waves and information is a long-stand-
ing topic, which is now urgently demanded with the 
advent of 6G wireless communications, green IoT, and 
digital twin. The intelligent metasurfaces, evolved from 
the composite materials and information metasurfaces, 
emerge in response to time under proper conditions, 
which could serve as the wave–information–critical 
smart platforms by synergizing AMs with AIs. In sharp 
contrast to the conventional metasurfaces, the intelli-
gent metasurface integrated with algorithms and active 
devices has three unique properties: digitization, pro-
grammability and intelligence. In this article, we review 
the recent progress of the intelligent metasurfaces in 
controlling the wave–information–matter interactions 
by providing the historical background and the physical 
mechanisms. Afterward, we explore the use of intelligent 
metasurfaces in novel wireless communication archi-
tectures and wave-based analog computing. From these 
results, we can envision that the intelligent metasurfaces, 
similar to the biological systems, are capable of learning 
environment, making the decision, self-programming 
and continuously learning throughout their ‘lifetime’. 
Although this paper predominantly focuses on the intelli-
gent metasurfaces in microwave frequencies, the thriving 
applications of the intelligent metasurface are spurred in 
other frequencies (e.g. terahertz, infrared, and optical) 
and other wave phenomena. The intelligent metasurface 
is an emerging research direction involving various dis-
ciplines, including physics, mathematics, materials, data 
science, computer, and information science, and there are 
a lot of open questions needed to be carefully addressed 
in the future. Below we present four important research 
lines.

•	 Designing more specialized intelligent metasurfaces

	 From the standpoint of hardware design, the intelli-
gent metasurface remains far from the mature level 
for practical applications, especially for the large-
scale intelligent metasurface. In this regard, the first 
issue is on the energy consumption. Taking the PIN-
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based metasurface in the microwave as an example, 
although each meta-atom alone takes the power 
consumption in the order of a few µ W, the energy 
consumption of the entire intelligent metasurface 
with N2 meta-atoms is much large than N2 µ W, since 
association modules (e.g. the driving circuits for 
PIN diodes and diagnostic circuits for PIN diodes) 
are needed. Therefore, it needs to design intelligent 
metasurfaces with low power consumption by intro-
ducing new approaches to control the states of meta-
atoms, such as using the energy harvest techniques 
[144], MEMS [72], and microfluid [234]. Second, the 
intelligent metasurface is designed to take the role 
of encoding and processing the digital information, 
and then, it is helpful to explore more controllable 
freedoms to represent the quantized physical infor-
mation of meta-atom, for instance, the anisotropic 
coding, polarization coding, frequency coding, and 
amplitude-phase coding, besides the mainly used 
space-domain phase coding and space–time-domain 
phase coding in the current stage. Third, the minia-
turization is a research goal for designing the intelli-
gent metasurface by exploring more advanced micro-
electronics techniques.

•	 Making AIs and AMs understand each other
	 The intelligent metasurface relies on the synergetic 

exploration of the artificial intelligence (i.e., deep 
learning strategies) in the digital world and active 
artificial materials (i.e., metamaterials) in the physi-
cal world. Though the heuristic use of AI-empowered 
or computation-enabled metasurface is increasing 
at an incredible rate, and this trend is expected to 
continuously accelerate, the most fundamental but 
unresolved problem is why and when such integra-
tion works? When the intelligent metasurface trained 
over a vast amount of training data can generalize 
quite well for unseen data? Actually, for the deep 
learning itself, the most hither-to-mysterious thing is 
also about its learning and generalization. Recently, 
researchers have begun to explore this noble ques-
tion. For instance, Jacot et al. introduced the concept 
of neural tangent kernel (NTK) [116], and demon-
strated that, in the infinite-wide limit, a deep ANN 
trained by gradient descent with mean-squared-error 
loss can be well approximated with the first-order 
Taylor expansion w.s.t. ANN’s learnable parameters, 
and the ANN’s evolving behavior can be described 
with the classical kernel regression methods. Simon 
et al. extended the results of Jacot et al. by examining 
the NTK’s eigensystem, and proved a new no-free-
lunch theorem [119]: improving a network’s gener-
alization for a given target function must worsen its 
generalization for orthogonal functions. Interestingly, 

although the results by Jacot et  al. and Simon et  al. 
are rigorously derived in the infinite-width limit of 
fully-connected networks, they are empirically dem-
onstrated to be applicable to many modest-width 
networks including the deep convolutional neural 
networks, transformers, and beyond [90, 93]. In addi-
tion, the interpretability is another critical but open 
challenging problem for deep ANNs, since ANNs are 
typically treated as the ‘black boxes’ and the govern-
ing equations are uncovered. The deep learning con-
sidered here will inevitably involve the physics-data 
interactions instead of data alone. Intuitively, the 
physics-informed deep learning scheme may be help-
ful in dealing with the interpretability. Meanwhile, 
the physics-informed deep learning could favor the 
training from scarce data [206, 235, 236], if additional 
important knowledge from the physical constraints 
is considered. Finally, the intelligent metasurface 
deployed in physical environments has very strong 
EM coupling with the ambient surroundings and tar-
gets. However, by now, the surrounding environment 
is largely treated as the free space, for instance, in the 
area of wireless communications, which is obviously 
not realistic and has important negative impacts 
on the performance of information acquisition and 
processing. Therefore, it is demanded to model the 
realistic interaction between the intelligent metasur-
faces and the ambient environment. We expect that, 
through the above efforts, the intelligent metasurface 
can be designed to understand the mathematical and 
physical mechanism behind deep learning in the near 
future.

•	 Approaching all-wave information systems
	 As pointed out in Sect. 4, the current silicon-based 

Von Neumann digital computing architectures is 
suffering from the curse of the Moore’s law, and 
the wave-based analog computing is uniquely posi-
tioned among the options of tackling the challenge. 
Although various wave-based computing schemes 
have been suggested by now, they are either under 
the control of conventional electronic digital com-
puting, or are limited to some simply pre-specified 
functionalities. It is appealing to develop all-wave 
general-purpose computing systems. For instance, 
the aforementioned D2NNs [130] and PMIM [219] 
are essentially limited to dealing with the linear 
problems since no nonlinear activation function 
is involved. A simple way may be to introduce the 
nonlinear materials or devices into the D2NNs 
and PMIM, but at the cost of energy efficacy and 
the computation speed. When nonlinear materials 
or devices are unavailable, one possible way could 
be conceived in the context of reservoir comput-
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ing [237]. Specifically, the controllable meta-atoms 
of the intelligent metasurface are divided into two 
groups: one is for encoding the input information 
to be processed, and the other is for forming the 
adjustable ANN’s weights. In light of the funda-
mental EM principles [238], the relation between 
the matter (i.e., data-carrying meta-atoms) and its 
EM response is nonlinear. Then, the general non-
linear operations can be reached through the weak 
interaction of the intelligent metasurface with the 
illumination waves. We could envision that the all-
wave information systems will enjoy many elegant 
‘green’ properties in terms of cost, power consump-
tion, complexity, and efficiency.
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