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Recently intelligent control systems using neural networks (NN) have been widely applied. NNs 

are used to approximate complicated mathematical functions of nonlinear systems. This paper 

considers the design of an intelligent NN controller for nonlinear systems where the neural 

network is trained with the simultaneous perturbation stochastic approximation (SPSA) algorithm 

instead of the classical training methods. The main contribution of the SPSA method that it 

requires only two objective function measurements per iteration regardless of the dimension of 

the optimization problem. The effectiveness of the proposed scheme is demonstrated by the 

adaptive control of the translational oscillator / rotational actuator (TORA) system. Results of 

numerical simulation substantiate that the suggested approach leads to a fast way of controller 

designs by providing acceptable performance. 

 

1. Introduction 

Neural Networks are widely applied in various fields of intelligent systems. For instance in 

nonlinear control tasks which contain strong non-linearities, characterized by high dimensionalities, 

etc., complicated mathematical functions can be well approximated with several types of neural 

networks. Their main capability lies in learning a nonlinear model without a priori knowledge of 

the parameters and structure of the model. These problems are usually computationally complex 

and often evolutionary programming techniques are required. It is known, that the Simultaneous 

Perturbation Stochastic Approximation (SPSA) techniques serve as an alternative solution for a 

variety of optimization problems [1] that ensure satisfying performance with less computation time 

even in the case of high-dimensional parameter tuning and also well suited to the NN’s learning 

problem. Further, these methods can be especially efficient tools for multi-agent based optimization 

problems (see, for e.g. [2]). However, in the literature there are few examples of the application of 

SPSA in nonlinear control [3][4]. For instance, recent studies address a wide range of possible 

application of NN-based controllers for robot manipulators highlighting its advantages in inverse 

kinematics problems [5]. It has been also shown that neural networks trained by the simultaneous 

perturbation stochastic approximation (SPSA) method guarantee closed-loop stability of the 

estimation in the control problem considered in [6]. 

This paper addresses the performance analysis of the SPSA-based neural networks in the adaptive 

control of the TORA (Translational Oscillator with a Rotational Proof Mass Actuator) system [7][8]. 

Simulation results demonstrate the potential of the proposed method. 
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2. SPSA Techniques for Training Neural Networks  

Large amount of work on the estimation of weights in neural networks has been carried out. The 

SPSA-based techniques are found to be efficient in the minimization of the error criterion 

regardless of the dimension of the optimization problem and require only the measurement of the 

objective function. In contrast to the standard training algorithms both the first-order stochastic 

approximation and the second-order SPSA is found to be satisfactory [1][3].  
 

2.1 The SPSA Algorithm 

In this section we give a brief outline on the mathematical background on the Simultaneous 

Perturbation Stochastic Approximation (SPSA) algorithm which was devised by Spall in [1]. 

Let’s consider the following mean square error minimizing problem 
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Where y is the target value and ŷ  is the actual output of the neural network according to 

parameters w. For the first-order simultaneous perturbation stochastic approximation (commonly 

denoted as 1SPSA) algorithm the parameter update law is given by [1] 
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Symbol j  is a scalar gain coefficient which should satisfy certain conditions [1] and )ˆ(ˆ 1jwg  

denotes the approximation of the gradient that can be calculated as follows 
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in which the elements of ( 1j
ˆ

w ) are varied simultaneously, j  is a random perturbation vector 

generated independently while cj is a positive scalar number. Based on this recursion, the stochastic 

gradient algorithm can be obtained by applying a smoothed gradient approximation as 
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The second-order or 2SPSA algorithm is based on two-measurements defined by the formulas 

below 
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in which 
jĤ  stands for the estimate of the Hessian matrix and jH  is a mean.  

The details of these techniques are discussed in [1][3]. Each algorithm outlined above requires only 
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the evaluation (or measurement) of the objective functions independent of the number of unknown 

parameters. Further variations of the core theory exist, such as the global (GSPSA) and the 

adaptive (ASPSA) techniques are also well established. 

 

2.2 Performance Evaluation 

In order to demonstrate the feasibility and performance of the application of the neural network 

trained by SPSAs in adaptive controllers a simulation study has been carried out. The Translational 

Oscillator with a Rotational Proof Mass Actuator (TORA) system has been investigated as a 

nonlinear benchmark problem [7] in its modified fully driven form. There have been a growing 

number of literature focusing on the control design of underactuated systems [8][9]. In [10] an 

adaptive backstepping control strategy with online approximation of uncertainties has been 

introduced for a class of underactuated systems with functional uncertainties. 

The model contains a cart restricted to horizontal movement (translational displacement q3[m]) 

with Q3 force. A pendulum is attached to the device with a rotary joint with angular position q1[rad] 

є [-π/3;π/3]) Q1[Nm] torque, and at the end of it a rotatable dial can be found (q2 [rad]) with the 

driving torque Q2[Nm]. In the underactuated model Q3=0 is assumed. For q3 and q2 a reference 

signal is defined with the Q1 and Q2 control variables. According to [7], the equation of motion is 

given by  
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For adaptive control strategy the SGFPT (Sigmoid Generated Fixed Point Transformation) has been 

applied, that is found to be highly efficient in the control of the underactuated TORA system 

discussed in a previous work of the authors [11]. The applied method is based on a special fixed 

point transformation (see, for e.g. [12]) and assumes the existence of the approximate model of the 

system. Detailed discussion of this alternative method which has been originally introduced as an 

alternative of Lyapunov’s method in adaptive control of nonlinear systems can be found in, for e.g. 

[12][13][14]. When failures or critical events occur in the system it can become difficult to 

compute or access the necessary values thus an application of a NN can be useful for predicting the 

data in order to ensure continuous operation. In the present sequel we investigate the applicability 

of a neural network trained with SPSA technique in this task. For approximating the nonlinear 

functions in the control algorithm a feedforward time-delayed neural network has been applied 

using the model expressed as follows 
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Here ),( 1111 qqM  , ),( 1121 qqM  , ),( 111 qqh   are the measured or known values for the training 

database for the NN approximation. The training set consists of three input sequence of 2000 data 

and also the Q1 and Q2 appropriate torque data of 1000 values for target class obtained by 

numerical simulations [11]. The network has been trained off-line with 1SPSA as well as 2SPSA 

and for comparison a conventional Levenberg-Marquardt (LM) algorithm. Twenty percent of the 

database has been reserved for validation while 15 % for test set. For a comparative assessment, the 

applicability of NNs with different configurations in the controller has been tested. The simulations 

have been implemented in Matlab7.  
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3. Simulation Results 

The exact model parameters were set in m=20[kg] (mass of the dial), M=30 kg (mass of the body 

of the cart), L=2[m] (length of the beam) and Θ=20[kg m2] (momentum of inertia of the dial). The 

approximate model parameters were set in m’=25[kg], M’=22 kg, L’=2[m] and Θ’=18’[kg m2]. 
 

Table I.  Simulation Results 

  

1SPSA 2SPSA LM 

nh: number of hidden 

neurons 

nh:number of hidden 

neurons 

nh:number of hidden 

neurons 

20 35 20 35 20 35 

Tracking RMSE for q3 0.0066 0.0039 4.8057e-04 3.1234e-04 0.01639 0.00539 

Convergence (Number 

of iterations) 
257 361 487 675 356 565 

 

 

 
 

 
 

 

 

 

 

 

Fig. 1.  Trajectory Tracking. Upper chart: nominal and simulated results. green line – 

reference signal for q3[m]; black dotted line – reference signal for q2. violet: q3[m](LM, 

nh:=20), blue: q3[m](1spsa, nh:=35), red: q3[m](2spsa, nh:=20); grey: q2[rad] (LM, nh:=35), 

black: q2[rad] (1spsa, nh:=20) , yellow: q2[rad](2spsa, nh:=20);Lower chart: zoomed part of the 

upper chart. 
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Results collected in Table 1. exemplify that SPSAs can provide improved training performance 

over the standard methods. The tracking performance of some configuration is illustrated in Fig.1. 

while the tracking error is depicted in Fig. 2. It can be observed that in the here considered task the 

application of NN trained with 2SPSA and with 20 hidden neurons serves the best trade-off 

between computational expense and performance. 

 

 
 

 
 
 

4. Conclusions 

This paper has given an account of intelligent neural network design using SPSA techniques for 

nonlinear control. It has been shown by the comparative analysis, that the proposed approach leads 

to a fast and simpler design methodology in case of different NN configurations. The proposed 

scheme is applied in the adaptive control of the TORA system. Results of numerical simulations 

validate that the application of the neural network trained with SPSA technique in adaptive control 

ensures satisfactory performance with less computation time need and appropriately suites to the 

RFPT-based control strategy. The results also highlight that the 2SPSA provides the best trade-off 

between performance and computation need in contrast to the other training methods. With the 

spacious examination of different analyze our results prove to be promising.  
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