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In this paper, the wheel loader with electrohydraulic proportional control technology is used as the carrier. For the first time, the
dual-angle sensor is used for intelligent operation, which allows the wheel loader working device to be precisely controlled. First,
the theoretical analysis of the electrohydraulic proportional control technology on the wheel loader studied in this paper is carried
out. Next, according to the feedback of the boom and bucket angle sensor signals, the electrohydraulic proportional control
technology is used to initially realize the boom memory and bucket automatic levelling function of the wheel loader working
device. Finally, the data acquisition equipment is connected to provide experimental verification, although the test results did not
achieve precise control of the working device. After analysis, the detected problems were solved by constructing a neural network
algorithm model, which successfully realizes the intelligent and precise operation of the wheel loader, reducing unnecessary
energy loss.

1. Introduction

As the main type of groundwork construction equipment in
a project, the wheel loader has the advantages of fast op-
erational speed, high efficiency, good manoeuvrability, and
light operation [1]. ,e application of electrohydraulic
proportional control technology further enhances the in-
telligence of the wheel loader operation, reduces the driver’s
operational intensity, and provides an application platform
for other advanced technologies [2–4].
Electrohydraulic proportional control technology has

been successfully applied in wheel loader power, trans-
mission, hydraulic, cooling, and other systems. In recent
years, there have been many studies on electrohydraulic
proportional control [5–8]. Bing et al. used the electrohy-
draulic load sensitive method of variable pressure margin to
control the displacement of variable pump and realized the
energy-saving control of the combined control system of
pump and valve [9]. Yongling studied the defects of poor
stability and low control precision, in real operational
conditions, of the electromechanical liquid proportional
control system. ,e electrohydraulic proportional control

method, based on PWM technology, is proposed [10]. Based
on the working principle of electrohydraulic proportional
directional valve, Zhang et al. tested the electrohydraulic
proportional position control approach. ,ey then built a
valve control cylinder test bench, realizing precise control of
hydraulic cylinder position [11]. Fang et al. started with the
classic PID control method, along with fuzzy control ap-
proach, and adopted the intelligent fuzzy-PID collaborative
control strategy, achieving higher system control precision
[12]. Although the electrohydraulic proportional control
technology has been successfully applied to the wheel loader,
it has not been found that the angle sensor is used as a
feedback signal to realize the boom memory and the bucket
automatic levelling function of the wheel loader. ,e real-
ization of the above functions can assist the driver to
complete the operation of the wheel loader, that is, to realize
intelligent operation; this is also the innovation of this paper.
,e application of the above proportional control tech-
nology provides a platform for implementing the function in
this paper.
,e wheel loader, studied in this paper, successfully

applied the electrohydraulic proportional control
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technology to realize the control of the working hydraulic
system. However, when the boom memory and the bucket
automatic levelling function were realized, the control
precision proved to be poor and did not reach the expected
target. ,erefore, this paper successfully applied the
neural network algorithm to the intelligent operation of
the wheel loader and achieved the precise control of the
working device.

Neural networks have infinite approximation ability to
nonlinear models, while they have been widely used as
tools for building nonlinear models [13–15]. By adjusting
the weight of the connected network, any input can be
made to obtain the desired output [16–18]. Xu and Mai
designed and utilized the supervised neural network
learning algorithm to deal with the problem of low pre-
cision and system instability during the operation of
hydraulic material testing machine. ,e study results
show that the neural network control optimized elec-
trohydraulic position servo system demonstrates better
stability and robustness [19]. Ni et al. combined the BP
network with the traditional PID controller to monitor the
actual value and set and error values of the slider at
different times in real time while using the online self-
learning ability of the neural network to realize the op-
timal combination of PID parameters. Accurate slider
displacement control and simulation curves also prove
that BP neural network is very effective in improving
hydraulic servo control [20]. Gao and Han, in order to
solve the coupling problem of hydraulic four-legged robot
joints, established a single-legged mechanism for the
hydraulic four-legged robot. In this work, based on the
multivariable decoupling theory, the neural network (NN)
model reference decoupling controller is designed [21].
,e successful application of the neural network algo-
rithm described above in the hydraulic system provides a
prerequisite for the intelligent operation of the wheel
loader working device.

,e wheel loader, studied in this paper, uses elec-
trohydraulic proportional control technology as an ap-
plication platform. For the first time, the dual-angle
sensor is used, combined with the typical V-type working
cycle of the wheel loader, to realize the boom memory
and bucket automatic levelling function of the working
device. In addition, theoretical analysis of the electro-
hydraulic proportional control technology is used in the
wheel loader. Signals, such as cylinder pressure, sensor
angle, handle voltage, and engine speed are acquired and
recorded, through the connected data acquisition device.
,e data curve shows that the working device is not
accurately controlled, while the actual stopping angle
of the boom is always greater than the memory angle of
the hydraulic system controller. After analyzing the
reasons, the neural network algorithm is applied to
optimize, followed by a test verification of the results. ,e
experiment showed that the neural network algorithm
can be used for intelligent and precise control of the
wheel loader working device, reducing unnecessary
energy loss.

2. Electrohydraulic Proportional
Control Technology

Figure 1 shows the evolution of the control mode of the
wheel loader working device. Figure 1(a) shows the most
primitive form of control. ,e spool movement is controlled
by a flexible shaft. Figure 1(b) shows the movement of the
spool controlled by the pilot oil pressure. ,e handle is
equivalent to a pressure reducing valve, and the pilot
pressure corresponds to the displacement of the spool.
Figure 1(c) shows the control of spool movement through an
electromagnetic proportional pressure reducing valve, cur-
rently the most advanced type of control. ,e wheel loader
designed in this paper also adopts this control method.
,e principle of electrohydraulic proportional control

technology applied to this wheel loader is as follows: the
control handle is used as a signal generator to supply the
required controlled voltage to the controller. ,en, it per-
forms a corresponding operation and supplies output cur-
rent to the electromagnetic proportional pressure reducing
valve, according to the front-end signal and completes
control of the hydraulic cylinder of the working device after
the main reversing valve. Figure 2 shows the schematic
diagram of the electrohydraulic proportional control hy-
draulic system of the working device.
,e control handle is divided into a boom handle and a

bucket handle.,e handle is single axis and is equipped with
an electromagnetic stop function. ,e structure is a spring-
returned, dual-sensor device, providing an output voltage of
0.5∼4.5V. ,e electrical characteristics of the handle are
shown in Figure 3 [22, 23].

U � Kl · θ, (1)

where Klis the handle scale factor and θ is the handle action
angle, with a range of −20∘ ≤ θ ≤ 20∘.
After the analogy voltage signal output, by the handle,

the voltage signal is input to the hydraulic system controller,
and the controller outputs the corresponding current signal
to the electromagnetic proportional pressure reducing valve
according to the voltage signal, where the output is I [24]:

I � KaU, (2)

whereKa is the voltage-current gain of the controller, which
is set as 0.215.
,e main control valve uses electrohydraulic remote

control, while the proportional pressure reducing valve is
integrated with the main valve. After receiving the current
signal, the electromagnetic proportional pressure reducing
valve on the main valve realizes the control of the direction
and flow of the main control oil passage and then controls
the movement direction and speed of the wheel loader
working device.,e turn-on current is 300mA, and the final
current is 500mA. ,e main control valve uses an internal
oil circuit in parallel form, which can realize the joint op-
eration of the boom and the bucket.
Since the conventional wheel loader does not have a

hydraulic system controller, unable to accept the signal from
the angle sensor, the wheel loader operation needs to be
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manually controlled by the driver, so the boommemory and
the bucket automatic levelling function cannot be realized.
,e most used switch is the limit switch, but the limit switch
can only remember one position. Real-time monitoring of
the angle of the loader’s working device can be achieved by
installing an angle sensor in the appropriate position,
combined with a hydraulic system controller. ,e following
describes the intelligent working mechanism of the wheel
loader.

3. Intelligent Operation

,e V-type working mode of the wheel loader has the char-
acteristics of wide adaptability and short working cycle time
[25]. ,e working cycle of the V-type working mode is shown
in Figure 4 [26, 27]. ,e intelligent operation of the so-called

Boom and
bucket handle

Hydraulic system controller

Load sensitive variable pump

Main control valve

LS

Working device cylinder

Figure 2: Electrohydraulic proportional control hydraulic system.
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Figure 1: ,e evolution of control mode of the wheel loader. (a) Flexible shaft. (b) Hydraulic control. (c) Electrohydraulic proportional
control.
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Figure 3: Handle electrical characteristics.
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wheel loader working device is to assist the driver to complete
related operations through the hydraulic system controller,
thereby reducing the labour intensity of the driver. ,e fol-
lowing describes the intelligent operation of the working device
in detail with the V-shaped cycle of the wheel loader.
During the V3 and V4, the driver needs to operate the

boom handle to raise the working device to the discharge
height. When the discharge position is reached, the driver
operates the bucket handle to perform the unloading op-
eration. After unloading, the bucket needs to be recovered to
prevent it from colliding with the truck box and be ready for
the next shovel operation. During the V6 and V1, the driver
operates the boom handle to lower the boom. When the
boom is lowered, the bucket needs to be adjusted to a flat
position, which is beneficial for the shovel loading operation.
During a V-type cycle operation, since the type of the

truck does not have a large gap, the height reached by the
wheel loader is constant each time. In order to facilitate the
next shovel loading operation, the bucket should be levelled,
when it falls on the ground. ,erefore, in the entire
V-shaped cycle, the driver needs to frequently operate the
boom and the bucket handle to adjust the posture of the
working device [25]. In order to reduce the driver’s oper-
ation involvement, this research group and a company
worked together to develop a 5t wheel loader, as a prototype.
,e function diagram of the boom memory and the bucket
automatic levelling is shown in Figure 5. For the first time,
two angle sensors are used to measure the angle of the boom
and bucket in real time to realize the boom memory and
bucket automatic levelling function of the wheel loader
working device. ,e functional flowchart is shown in Fig-
ure 6. ,e handle outputs a voltage signal to the hydraulic
system controller, which ranges from 0.5 volts to 4.5 volts. In
the hydraulic system controller, the voltage signal is con-
verted to the percentage of handle opening. 0.5∼2.5 corre-
sponds to 0∼100%, and 2.5∼4.5 corresponds to −100∼0%.
,e control current of the proportional solenoid’s valve is
300∼730mA. It is one-to-one correspondence between the
percentage of signal and control current signal. ,erefore,
the handle opening signal is converted into current signal in
the hydraulic controller.
As the wheel loader performs the loading operation, after

the boom is lifted to the discharge height, the driver presses

the boom memory switch, so that the hydraulic system
controller saves the angle of the boom angle sensor. At this
boom angle, there is a unique bucket angle value, corre-
sponding to the automatic levelling function of the bucket.
,e automatic levelling angle of the bucket corresponding to
different boom heights is different, but the two angle values
are one-to-one correspondence. ,e aforementioned angle
is input to the hydraulic system controller, as data in a table,
derived from the ADAMS model of the working device.
Next, the driver operates the bucket handle to unload the
material, and the bucket is required to retract after
unloading. Currently, the bucket handle is in the suction
state under the action of electromagnet. When the angle
monitored by the bucket angle sensor corresponds to the
angle in the data table, the electromagnet of the bucket
handle is powered off. ,e handle is in the middle position.
,e bucket is levelled, when the working device is placed on
the ground. After the hydraulic system controller has
memorized the boom angle, next time the boom is lifted, the
electromagnet of the boom handle is in the suction state. As
the boom memory angle is reached, the electromagnet is
powered off and the handle is in the middle position. At this
time, the height of the working device is the same as the
height set by the driver. In the above operation, under the
action of the hydraulic system controller, the boommemory
of the wheel loader and the automatic levelling function of
the bucket are realized, which reduces the operation in-
tensity of the driver.
According to the above analysis, the combination of the

angle sensor and the electrohydraulic proportional control
technology can assist the driver to complete the boom
raising and the bucket levelling operation. ,e function
described above is the intelligent operation of the wheel
loader; the following is an experiment to verify the intelligent
operation of the wheel loader.

4. Test Verification

,is section describes the verification of the loading boom
memory and the bucket automatic levelling functions, by
connecting the data acquisition device. ,e test data to be
collected include the boom and bucket handle voltage
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V4
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V5

Figure 4: Wheel loader V-type work cycle.
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Figure 5: Function diagram.
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signals; the boom and bucket pilot pressure signals; the
boom and bucket angle sensor signal; and engine speed
signal. ,e test equipment is shown in Figure 7.
After the memory boom angle is 45°, the wheel loader is

started, and the boom height memory function is realized by
the hydraulic system controller. ,e engine speed ranges
from 800 r/min to 2200 r/min, while the angle value, during
the stop position of the boom, is recorded every 200 r/min, as
shown in Table 1. ,e actual stop angle curve of the boom,
during the verification, is shown in Figure 8.
Figure 8 shows that the actual stop angle of the afore-

mentioned boom becomes larger, as the engine speed in-
creases, while at the maximum speed, it reaches 51.58°,
which far exceeds the value (45°) memorized by the hy-
draulic system controller. ,e same is true for the bucket
angle sensor feedback signal. ,e above phenomenon causes
the actual stop angle of the boom to be higher than the
memory angle.,e bucket recovery angle is also greater than
the memory angle of the hydraulic system controller. Real-
life boom memory and bucket automatic levelling cannot be
realized. Since the actual stop angle is always greater than the
memory angle, this will result in loss of certain amount of
power. ,is angle difference is also meaningless because the
memory angle has reached the driver’s needs.
During the test, it was also found that as the memory

angle in the hydraulic system controller increases, the actual
stop angle of the boom also increases. ,e reciprocating
boommemory function is performed at different angles, and
the actual stopping angle of the boom at different speeds is
measured as shown in Table 2.
,e above tests were carried out under no-load condi-

tions, and it was impossible to carry out the no-load op-
eration when the wheel loader was working. ,erefore, the
load factor must also be considered. ,e boom memory
function tests with loads of 3t and 5t were also performed,
while the actual stop angle of the boom was obtained, as
shown in Table 3.
As can be seen from Tables 1–3, the data in the table are

the actual stopping angle of the boom obtained according to
different engine speeds and different memory angles.

Comparing Tables 1–3, the actual stop angle of the boom
when there is load is not much different from the actual stop
angle of the boom when there is no load, so the influence of
the load on the memory function of the boom can be
ignored.
,e reasons for the above phenomena are analyzed

below.,e boom handle voltage signal, pilot pressure signal,
and boom angle signal are recorded, as shown in Figure 9.
,e illustrated graph shows that when the hydraulic system
controller cuts off the voltage signal of the boom handle, its
value fluctuates, due to the spring inside the handle. As the
voltage oscillates, the pilot pressure is not cut off in time, so
the main control valve is not closed in time. ,is is the main
reason that causes the boom stop angle to be greater than the
hydraulic system controller angle value. As the rotational
speed increases, the flow rate, provided by the variable
pump, continues to rise, causing the flow, through the main
valve, to increase per time unit, leading to the difference
increase, as the engine speed rises.
In theory, the dead zone area of the boom handle and the

bucket handle should be increased in the hydraulic system
controller. However, if the value is too large, the driver’s
operating experience will be affected, which is not con-
ductive to microaction. ,erefore, an optimization algo-
rithm should be considered to realize the function of the
boom memory and the bucket automatic levelling.

5. Algorithm Optimization

Neural network algorithms have successfully solved many
practical problems that are difficult to solve in an intelligent
way, in the fields of pattern recognition, automatic control,
predictive evaluation, etc [28–31]. In this case, a large
amount of data has been obtained from the actual test and
input into the neural network algorithm model, while data
other than the test data can be predicted, thereby realizing
intelligent and precise control of the wheel loader working
device. ,rough experiments on different engine speeds and
memory angles, the actual stopping angle of the boom can be
obtained. Speed and memory angle are used as the input of

Hydraulic system controller 
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Figure 6: Function flowchart.
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the neural network model, and the difference between the
actual stop angle and the memory angle is used as the output
of the neural network model. ,e combination of speed and
memory angle is used as input vector.,ere are 56 groups, of
which 48 groups are used as the training set and the
remaining 8 groups are used as the test set. ,e number of
hidden layer is 16, and the learning rate is 0.12.,e following
steps will analyze the selection of the above parameters. ,e
neural network model prediction data are input to the
hydraulic system controller as shown in Figure 10.

Table 1: Actual stop angle at memory boom angle of 45°.

Engine speed 800 r/min 1000 r/min 1200 r/min 1400 r/min 1600 r/min 1800 r/min 2000 r/min 2200 r/min

Memory angle 45° 47.42 48.15 48.66 49.17 49.73 50.11 50.56 51.38

Pilot pressure monitoring point
Handle voltage

Data acquisition instrument

Angle sensor voltage

Figure 7: Test equipment.
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Figure 8: Actual stop angle of the boom.

Table 2: Verifying different boom memory angles.

30° 35° 40° 50° 60° 75°

800 r/min 32.94 38.02 42.92 53.17 63.4525 79.2525
1000 r/min 33.32 39.04 43.42 54.13 64.085 80.3725
1200 r/min 34.08 39.65 43.92 54.91 65.015 81.4425
1400 r/min 34.74 40.31 44.76 55.13 65.7425 82.4125
1600 r/min 35.42 40.87 45.31 55.92 66.4075 83.275
1800 r/min 35.88 41.03 46.04 56.34 67.175 84.17
2000 r/min 36.21 41.65 46.58 57.21 68.06 85.09
2200 r/min 36.54 42.15 46.76 57.87 68.94 85.09
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,e error (different speed and memory value) can
be predicted by the neural network prediction model,
and the above error data are input into the hydraulic
system controller in the form of a table. When the driver
presses the memory switch, the engine speed can be

monitored via the CAN line. According to the above
setting conditions, the hydraulic system controller can
accurately control the actual stopping angle of the boom
by subtracting the error value from the stored angle
value.

Table 3: Verification of the boom memory function at different loads.

3t∼45° 5t∼45° 3t∼60° 5t∼60° 3t∼75° 5t∼75°

800 r/min 47.67 47.42 63.27 63.08 79.01 79.64
1000 r/min 48.33 48.13 63.5 63.79 79.45 80.92
1200 r/min 49.16 48.63 65.02 64.61 81.12 81.42
1400 r/min 49.73 49.74 65.63 65.6 82.12 82.52
1600 r/min 50.26 50.56 66.23 66.19 82.95 83.14
1800 r/min 51 51.36 67.16 66.85 83.51 84.08
2000 r/min 51.5 51.58 68.63 67.61 84.62 85.09
2200 r/min 51.79 51.8 69.89 68.11 85.09 85.12
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Figure 9: Verification curve.
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A detailed description of the neural network algorithm
model is as follows:

Step 1: importing training data [32]. By loading the
boommemory test function, the difference between the
actual stop angle of the boom and the memory angle of
the hydraulic controller can be obtained, as shown in
Table 4. Table 4 shows the difference between the boom
actual stop angle and the memory angle with different
speeds and different memory angles, which is used as
the output of the neural network model. ,e engine
speed and the memory values are taken as inputs, while
the difference between the memory value and the boom
actual value is taken as output.

Step 2: initialization processing. After creating the
training set and test set, the data are normalized by
using the mapminmax function (normalization func-
tion in MATLAB, preprocessing the data) [33].

Step 3: selection of number of hidden nodes and
learning rate [34]. ,e above parameters are deter-
mined by calculating the influence of different hidden
nodes and learning rates on the training error. Fig-
ure 11 shows the effect of different hidden nodes on the
training error, while Figure 12 shows the effect of
learning rate on the training error. ,e number of
hidden nodes selected is 16 and the selected learning
rate is 0.12.

Step 4: building a neural network [35]. ,e number of
trainings is 1000, and the accuracy is 0.000000001; the
prediction is performed after training, while the anti-
normalization process is also realized. ,e curve of the
training error vs the number of training times is shown
in Figure 13.

As can be seen from Figure 13, after the neural network
model was trained 25 times, the error value was minimized.
,e above operation concludes the construction of the

neural network model, while the prediction of data, other
than the test, follows, along with the required test and
verification. ,e verification curve is shown in Figure 14,
when the memory angle is 45°, while Figure 15 illustrates the
same curve, when the memory angle is 60°.
,e above test curves show specifically that at memory

angle of 45°, the actual stop angle of the boom is 45.29°, at
800 r/min, and 44.90°, at 1100 r/min, while at memory angle
of 60°, the actual stop angle of the boom is 60.54°, at
1100 r/min, and 59.32°, at 1900 r/min.
,e engine speed is changed during the loader operation.

,e engine speed test is used to verify the correctness of the
neural network model. ,e obtained test curve is shown in
Figure 16.
As can be seen from the Figure 16, the actual boom angle is

59.03° (the biggest difference from the memory angle) and the
maximum error rate is ((60 − 59.03)/60) × 100% � 1.61%,
which meets the requirements of the boom memory function.
Considering the measurement error of the sensor, the neural
network model can meet the requirements of the boom
memory function.

Taking the engine speed of 800 r/min and the memory
angle of 45° as an example, when the accurate control is not
achieved, the actual stopping angle of the boom can reach
47.42°. However, after the error is predicted by the neural
network algorithm, the actual stopping angle of the boom is
45.29°. ,e angle is reduced by 2.13°, which means that the
boomwill move less for a distance each time, which saves the
energy.
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Table 4: Input and output data.

30° 35° 40° 45° 50° 60° 75°

800 r/min 2.94 3.02 2.92 2.625 3.17 3.4525 4.2525
1000 r/min 3.32 4.04 3.42 3.425 4.13 4.085 5.3725
1200 r/min 4.08 4.65 3.92 4.095 4.91 5.015 6.4425
1400 r/min 4.74 5.31 4.76 4.87 5.13 5.7425 7.4125
1600 r/min 5.42 5.87 5.31 5.4825 5.92 6.4075 8.275
1800 r/min 5.88 6.03 6.04 6.2125 6.34 7.175 9.17
2000 r/min 6.21 6.65 6.58 6.7025 7.21 8.06 10.09
2200 r/min 6.54 7.15 6.76 7.1 7.87 8.94 10.09
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Figure 11: Effect of different hidden nodes on training error.

8 Mathematical Problems in Engineering



Angle Voltage V

800r/min~45.29°

124 6 8 102 140

Time t (s)

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

H
an

d
le

 v
o

lt
ag

e

10

15

20

25

30

35

40

45

50

S
en

so
r 

an
gl

e

(a)

Angle Voltage V

1100r/min~44.90°

1 2 3 4 5 6 7 8 90

Time t (s)

0.0

0.5

1.0

1.5

2.0

H
an

d
le

 v
o

lt
ag

e

2.5

3.0

3.5

4.0

4.5

0

10

20

30

40

50

S
en

so
r 

an
gl

e

(b)

Figure 14: Verification curve at memory angle of 45°.
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Figure 15: Verification curve at memory angle of 60°.
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Figure 13: Training error vs number of training times.
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6. Conclusions

As an innovative point of this paper, the paper firstly proposes
the combination of angle sensor and electrohydraulic pro-
portional control technology and initially realizes the boom
memory and bucket automatic levelling function of the wheel
loader working device. However, subsequent tests have found
that the actual stopping angle of the working device is always
greater than the working angle of the hydraulic system con-
troller. ,en, the neural network algorithm is introduced, and
the error value is predicted and input to the hydraulic system
controller to achieve precise control of the above functions.
,e research content of this paper can be summarized as

follows:

(i) A typical V-type operating cycle of the wheel loader is
introduced. In order to reduce the driver’s operation
intensity, the dual-angle sensor is used for real-time
monitoring of the boom and bucket angle. ,e
electrohydraulic proportional control technology is
used as the carrier to feed the angle sensor signal to the
hydraulic system controller. ,e electro-hydraulic
proportional control technology is used as the carrier
to feed the angle sensor signal to the hydraulic system
controller to realize the boom memory and bucket
levelling functions of the wheel loader working device.

(ii) After connecting the data acquisition equipment,
the handle voltage, pilot pressure, cylinder pressure,
angle sensor, and engine speed signal were collected.
,e curve analysis showed that the boom memory
and the bucket level were not accurately controlled.
According to the analysis of the test data, the actual
stop angle of the boom increases, as the engine
speed rises, while it increases with the memory
value, but it is independent of the load.

(iii) ,e data acquisition instrument records real test
data, which is used as the raw data of the neural
network. After constructing the neural network al-
gorithm model, the load manoeuvring arm memory
and the bucket levelling function can be optimized to
predict data beyond the test. ,e above data were
imported into the hydraulic system controller, as the
boom memory function was again verified. ,e
maximum error rate was 1.61%. ,e result proves
that the optimized model can achieve precise control
of the wheel loader intelligent operation.

In the subsequent intelligent operation of the wheel
loader, it may be considered to add a radar to measure the
height of the truck. ,e height of the truck is sent to the
hydraulic system controller as an input signal and becomes
the memory angle of the boom. ,is eliminates the need to
manually store the boom height through thememory switch,
which further improves the intelligent operation level of the
wheel loader.
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