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ABSTRACT Intelligent signal processing for wireless communications is a vital task in modern wireless

systems, but it faces new challenges because of network heterogeneity, diverse service requirements,

amassive number of connections, and various radio characteristics. Owing to recent advancements in big data

and computing technologies, artificial intelligence (AI) has become a useful tool for radio signal processing

and has enabled the realization of intelligent radio signal processing. This survey covers four intelligent

signal processing topics for the wireless physical layer, including modulation classification, signal detection,

beamforming, and channel estimation. In particular, each theme is presented in a dedicated section, starting

with the most fundamental principles, followed by a review of up-to-date studies and a summary. To provide

the necessary background, we first present a brief overview of AI techniques such as machine learning, deep

learning, and federated learning. Finally, we highlight a number of research challenges and future directions

in the area of intelligent radio signal processing. We expect this survey to be a good source of information

for anyone interested in intelligent radio signal processing, and the perspectives we provide therein will

stimulate many more novel ideas and contributions in the future.

INDEX TERMS Artificial intelligence, beamforming, channel estimation, deep learning, federated learning,

machine learning, modulation classification, radio frequency, signal processing.

I. INTRODUCTION

Radio signal processing plays a vital role in the engineering

of all generations of wireless networks. With the emer-

gence of many advanced wireless technologies and mas-

sive connectivity, processing radio signals in an efficient

and intelligent way presents both challenges and oppor-

tunities. Additionally, next-generation wireless systems are

likely to rely not only on the sub-6 GHz, but also on the

mmWave and THz frequency bands, and non-radio frequen-

cies (RFs) such as the visible and optical bands [1], [2].

The associate editor coordinating the review of this manuscript and

approving it for publication was Baoping Cai .

Furthermore, the use of massive multiple input and multiple

output (massiveMIMO) in fifth generation (5G) wireless sys-

tems and beyond demands sophisticated radio signal process-

ing schemes. Radio signals were conventionally processed

by mathematical model-based algorithms. Despite promising

results, these conventional methods have various shortcom-

ings including high complexity as well as poor scalability,

online implementation, and adaptivity to dynamic environ-

ments. Recent advancements in computing hardware and big

data processing have rendered AI a useful tool for radio

signal processing, thereby realizing the term intelligent signal

processing. Undoubtedly, AI is expected to play a key role

in solving many complex problems that are neither tractably

83818 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/
VOLUME 9, 2021

https://orcid.org/0000-0002-9485-9216
https://orcid.org/0000-0001-6961-0147
https://orcid.org/0000-0002-9172-2935
https://orcid.org/0000-0003-3577-6530
https://orcid.org/0000-0002-4070-549X
https://orcid.org/0000-0001-8398-564X
https://orcid.org/0000-0002-4499-492X


Q.-V. Pham et al.: Intelligent Radio Signal Processing: Survey

nor efficiently overcome by conventional model-based

approaches.

A. INTELLIGENT SIGNAL PROCESSING: AN OVERVIEW

The past three years have witnessed growing interest in the

application of AI to wireless signal processing. A good exam-

ple is the IEEE initiative (https://mlc.committees.comsoc.

org/) to promote the use of AI for physical layer signal

processing, e.g., modulation recognition (also known as mod-

ulation classification), channel estimation, signal detection,

channel encoding and decoding, localization, and beam-

forming. Various AI-based algorithms and deep learning

(DL)-based models have been proposed as alternatives to

the present model-based approaches. An unspoken consen-

sus is that model- and AI-based approaches have different

particularities but complementary capabilities, i.e., AI is not

a universal solution and should be used for tasks that can-

not be efficiently attempted by conventional approaches. For

instance, the globally optimal solution for signal processing

problems can be obtained via existing model-based mech-

anisms such as optimal signal detection [3] and optimal

beamforming [4]. In general, AI-based algorithms cannot

outperform optimal model-based schemes if they are used

to solve the same problem, but they have the potential for

real-time signal processing. Moreover, several scenarios exist

in which AI may significantly improve radio signal pro-

cessing over conventional model-based approaches. In the

following, we briefly discuss these scenarios along with rep-

resentative examples.

1) ALGORITHMIC APPROXIMATION

A common limitation preventing algorithms from finding

the optimal solution is the difficulty of real-time execu-

tions; therefore, they are impractical for real-time implemen-

tation. Several approaches, e.g., heuristics, metaheuristics,

and problem decomposition, have been proposed to optimize

the tradeoff between computational complexity and perfor-

mance. However, the real-time implementation of the under-

lying algorithms is quite challenging. For this case, the use of

AI techniques appears to be a promising solution. In partic-

ular, the data generation and training phases can be executed

offline while the system operates in real time by using the

trained model. For instance, Huynh-The et al. [5] proposed

a DL architecture for automatic modulation classification

(AMC), namely MCNet, which was 93.59% accurate at a

signal-to-noise ratio (SNR) of 20 dB with an inference time

of only 0.095 ms.

2) UNKNOWN MODEL AND NONLINEARITIES

Many physical phenomena cannot be accurately modeled.

Therefore, conventional model-based algorithms usually fail

to obtain efficient solutions. For instance, fiber nonlinear-

ities (e.g., signal distortion and self-phase modulation) in

optical systems together with the adoption of coherent com-

munication render model-based methods ineffective for net-

work optimization [6]. To mitigate the nonlinearities and

perform signal detection, AI techniques (e.g., an end-to-end

learning approach [7]) can be utilized with very low bit

error rates (BER). The end-to-end learning approach [8] has

found many applications in scenarios in which the channel

model is unknown or well-established mathematical models

are unavailable. Another application that involves the use

of DL to address hardware nonlinearities in MIMO sys-

tems (e.g., hardware impairments) was presented [9]. These

researchers proposed two DL-based estimators to exploit

the nonlinear characteristics with the aim of improving the

estimation performance. Nonlinearity was also observed in

MIMO systems with low-bit analog-to-digital converters.

In an attempt to mitigate this nonlinear effect, Nguyen [10]

proposed a DNN model to jointly optimize the channel esti-

mation and training signal. The model outperformed the lin-

ear channel estimator in various practical settings.

3) ALGORITHM ACCELERATION

Another direction intelligent signal processing has been

taking is to use AI to facilitate and accelerate existing algo-

rithms. This approach differs markedly from the two scenar-

ios discussed above in that an existing model-based algorithm

is completely replaced by an AI-based algorithm, i.e., an

end-to-end learning paradigm. For instance, many DL-based

algorithms have been proposed to improve and acceler-

ate near-optimal detection schemes. Nguyen and Lee [11]

employed a DLmodel, namely FS-Net, to initialize the highly

reliable solution for the tabu search (TS) detection scheme,

and also proposed an early termination scheme to further

accelerate the optimization process. Compared with the orig-

inal TS scheme, the DL-aided TS detector can reduce the

computational complexity by approximately 90% at an SNR

of 20 dB with similar performance. DL was also employed

to generate the initial radius for the sphere decoding (SD)

detector [12].

B. STATE-OF-THE-ART

Owing to the importance of AI for physical layer signal pro-

cessing, a number of surveys and magazine articles have been

published on this topic over the past few years. DL techniques

for solving physical layer signal processing problems such

as modulation, channel coding, detection, and end-to-end

learning were reviewed [13]. However, this survey mainly

focused on reviewing DL techniques and did not include

many up-to-date studies as it was published quite a long

time ago. The concept of end-to-end DL was first introduced

in 2017 [8] to model the entire physical communication as

an autoencoder DNN. This discovery constituted a major

breakthrough in the design of communication systems and

has beenwidely employed inmany research efforts. A chapter

in a recent book [14] described the benefits and the use of

end-to-end learning for channel estimation, signal identifi-

cation, and wireless security. Qin et al. [15] demonstrated

the applications of DL to the optimization of individual

signal processing blocks in the physical layer (e.g., sig-

nal compression and detection) and also end-to-end design.
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TABLE 1. Summary of existing surveys and tutorials on AI techniques for wireless networking and signal processing.

He et al. [16] discussed the significance of model-driven DL

techniques in physical layer design and illustrated use cases

for receiver design, signal detection, and channel estimation.

A brief on model-driven deep unfolding for MIMO sig-

nal detection and beamforming was presented [17]. Further-

more, Zappone et al. [18] discussed model-based, AI-based,

or hybrid methods and presented examples for designs of

the wireless physical layer. A brief with demonstration of

modulation and classification was carried out [19].

Another line of work included various surveys and tuto-

rials on the applications of AI to wireless networking.

In particular, the use of AI for Internet of Things (IoT)

applications and massive connectivity, privacy, and secu-

rity was reviewed [20], [21]. Gu et al. [22] conducted a

survey on AI applications for optical communications and

networking. AI-based solutions for cybersecurity problems

(e.g., misuse detection and anomaly detection) were dis-

cussed [23], [24]. Fadlullah et al. [25] reviewed the adoption

of AI for network traffic control systems. The use of machine

learning (ML) techniques for designing traffic classification

strategies was studied [26]. ML techniques for applications

including computational offloading, mobile big data, and

mobile crowdsensing at the network edgewere reviewed [27].

Xie et al. [28] discussed opportunities and challenges arising

from the use of ML techniques for software-defined network-

ing (SDN). A tutorial on artificial neural networks (ANN)

for wireless networking was presented [29]. Mao et al. [30]

conducted a survey of mobile networking from the mobile

big data perspective for which a top–down approach was

used. Another survey on DL for 5G mobile and wire-

less networking was presented [31]. The use of deep rein-

forcement learning (DRL) for wireless communications and

networking was reviewed [32]. Federated learning (FL) in

mobile edge networks was surveyed [33]. Four main types of

ML (i.e., supervised learning, unsupervised learning, DL, and

reinforcement learning) and their application to wireless net-

works were considered [34]. The use of swarm intelligence

for next-generation wireless networks was recently reviewed

in [35]. Table 1 summarizes existing surveys and tutorials on

AI for wireless networking and radio signal processing.

C. CONTRIBUTIONS AND ORGANIZATION OF THIS PAPER

Notwithstanding the plethora of surveys on AI applications

for research topics, we are still unaware of any compre-

hensive survey on the use of AI techniques for intelligent

radio signal processing. Existing surveys (e.g., [21], [22],

[25], [28]) are limited to the scope of mobile networking and

communications. Furthermore, most existing studies focus

on certain AI techniques and their applications to wireless

research such as channel encoding and decoding [8], [36],

unfolding DL for MIMO systems [17], DL for wireless

networks [13], [15], [16], and tracking and localization [37].

In contrast, our aim was to provide a comprehensive survey

of AI applications for various aspects of wireless physical

signal processing. In this vein, we first provide the funda-

mentals of AI techniques, including ML, DL, and FL and

discuss the need to apply AI approaches to design intelligent

methods to process radio signals. Then, we reviewAI applica-

tions pertaining to four different key signal processing areas,

namely modulation classification, signal detection, channel

estimation, and MIMO beamforming optimization. We also

highlight a number of challenges and future research direc-

tions in the area of intelligent radio signal processing. Our

contributions can be summarized as follows.
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• We present an overview of AI techniques with poten-

tial application to radio signal processing. Specifically,

in Section II we present the fundamentals of AI, ML,

DL, DRL, and FL. We also summarize the motivations

and advantages of using AI for radio signal processing.

• We survey the application of AI techniques to four signal

processing themes, namely, modulation classification,

signal detection, channel estimation, and MIMO beam-

forming optimization. We present these themes along

with basic information to aid readers to design intelligent

signal processing frameworks.

• We provide a set of research challenges and also high-

light a number of potential directions along which future

investigations would ideally need to follow to enable

performance improvement of intelligent radio signal

processing methods.

The remainder of this survey is organized as follows.

Section II presents the fundamentals of AI techniques with

application to the intelligent processing of radio signals in

wireless and communication networks. Section III discusses

the AI applications for AMC. In Section IV, state-of-the-art

AI applications for signal detection are reviewed. Section V

reviews the literature on AI techniques for channel estimation

and MIMO beamforming. In Section VI, we present the

challenges associated with and unresolved challenges arising

from existing research devoted to AI for radio signal process-

ing and further highlight potential research directions. The

survey is concluded in Section VII.

II. ARTIFICIAL INTELLIGENCE: BACKGROUND

INFORMATION

This section provides an overview of ML, DL, DRL, and FL.

A. MACHINE LEARNING: PRELIMINARIES

AI is one of the most pioneering sciences and has been in

development since 1956 when the name AI was adopted by

McCarthy and colleagues. The foundations of AI are based in

many long-standing disciplines, e.g., philosophy, mathemat-

ics, economics, neuroscience, psychology, computer engi-

neering, control theory, cybernetics, and linguistics [38].

Today, AI is a thriving field which has found many applica-

tions in the field of engineering. ML, which is the principal

AI discipline, allows patterns to be mined/learned from raw

data to gain knowledge. In general, ML can be classified into

three main types: supervised learning, unsupervised learning,

and reinforcement learning (RL).

Supervised learning is concerned with mapping known

inputs with known outputs given a training set including

both inputs and outputs. Basically, supervised learning can

be divided into two types: regression and classification,

the respective output values of which are continuous and

discrete. Examples of popular supervised learning tech-

niques are support vector machine (SVM), K-nearest neigh-

bor (KNN), Naïve Bayesian model, and decision trees [34].

On the other hand, in unsupervised learning, the labels of the

output are not included in the training data and the goal of

unsupervised learning is to learn useful representations and

properties from the input data. Increasing efforts have been

made to utilize unsupervised learning for designing wireless

and communication networks. In fact, massive amounts of

unstructured and unlabeled data are generated by wireless

devices and emerging applications. Moreover, annotating the

ground truth for a large number of examples has a huge

associated cost. The performance of unsupervised learning

models is typically inferior to that of models that use super-

vised learning. Lastly, RL learns from interactions with the

environment, i.e., the learning agent continuously interacts

with the environment and adopts good policies to make deci-

sions so as to maximize the reward. Two main features of RL

are trial-and-error learning (i.e., using error information and

evaluative feedback to update actions/policies) and delayed

reward (i.e., an action does not only affect the immediate

reward but also the future reward) [39].

B. DEEP LEARNING

The appropriate presentation of handcrafted features

extracted from raw data is a prerequisite for conventional ML

algorithms, whereas DL is able to directly learn a complicated

model from raw data by using a neural network [40]. The

input and output are presented at the first layer (i.e., the visible

layer) and the last layer (i.e., the output layer), respectively.

Hidden layers are used to increase the level of feature abstrac-

tion, i.e., they calculate representational features at multiscale

resolutions. Specifically, the visible layer receives the input

data and then extracts simple features, which are further

abstracted by the subsequent hidden layers, and the output

layer uses additional functions to transform the features

received from the last hidden layer into the output. Owing

to developments in computing infrastructure, big data, and

data science, DL has been recognized as a crucial tech-

nology and found many practical applications, e.g., image

and speech recognition, natural language processing, drug

discovery, self-driving vehicles, and mobile communications

and networking.

Depending on the structure of the neural network, different

ANN architectures have been developed for various learning

tasks and data modalities. In the following, we briefly intro-

duce important ANNarchitectures that have beenwidely used

in the studies we reviewed.

1) FEEDFORWARD NEURAL NETWORKS (FNN)

An FNN is composed of a visible layer, an output layer, and

one or more hidden layers. The information traverses the

neural network and feedback connections from the outputs

are not used. Similar to a general neural network, the basic

components of an FNN are neurons (i.e., the nodes in the

network), weights (i.e., the numerical values representing

connections), and activation functions, which are used to

determine the output of neurons in the neural network. Cur-

rently, most ANNmodels use the rectified linear unit (ReLU)

f (z) = max{0, z}, the logistic sigmoid f (z) = 1/(1 +
exp(−z)), and the hyperbolic tangent (tanh) f (z) = tanh(z)
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for nonlinear transformation. Other activation functions that

have been investigated to improve ANNs include the adaptive

piecewise linear [41] and the Swish [42].

Previously [43], it was found that any continuous function

can be approximated by an FNN composed of one hidden

layer and a finite number of neurons. To optimize the neural

network, several approaches have been employed including

first-order gradient-descent algorithms (e.g., backpropaga-

tion and its variants such as Quickpro and resilient propaga-

tor), second-order minimization algorithms (e.g., conjugate

gradient, quasi-Newton, Gauss–Newton), and metaheuristics

(e.g., the whale optimization algorithm and Harris Hawks

optimization) [44]. We invite interested readers to refer

to [45] for a survey on metaheuristic optimization for FNNs

and [40, Section 6.5] for an overview of the backpropagation

method and derivative-based algorithms. An example of FNN

architecture with two hidden layers is shown in Fig. 1. In the

following, the two terms, FNN and DNN, are usually used

interchangeably.

FIGURE 1. Architecture of an FNN with two hidden layers.

2) CONVOLUTIONAL NEURAL NETWORKS (CNN)

In general, CNNs are suitable for processing high-

dimensional unstructured data such as images, where many

backbone CNNs are initially introduced for image classifica-

tion. The first advantage of a CNN is its sparse interactions

feature, which is enabled by setting the size of the kernel to

be smaller than that of the input, thus improving the stor-

age requirements and statistical efficiency [40]. The second

advantage originates from the parameter sharing concept

used in CNNs, i.e., the kernel is applied across the entire input

to create the feature map. In addition, the convolution and

pooling operations render CNNs invariant and equivariant

to translations of the input. Finally, CNNs are proficient in

automatically extracting high-level representational features

for mining intrinsic information. As shown in Fig. 2, the CNN

architecture has three basic components: convolution,

FIGURE 2. Architecture of a CNN.

a nonlinear activation function, and pooling (i.e., down-

sampling in the literature). To date, different efficient CNN

architectures have been proposed such asGoogleNet, ResNet,

Inception-ResNet-v2, SENet, and EfficientNet-B7 [46].

The convolution operation is the core feature of CNNs

and has two parts: input and kernel (i.e., filter). The kernel

in a convolutional layer is specified by a predefined kernel

spatial size, where its depth size is identical to the number

of input channels. The feature map generated by the convo-

lutional operation may have different spatial dimensionality

compared with the input. In particular, zero padding and valid

padding are used to maintain and change the dimensionality,

respectively. Notably, the size of the kernel (width and height)

indicates the number of neurons in the input used to infer a

neuron in the output feature map. For example, a kernel of

size 5 × 4 implies that 20 neurons are used to calculate an

output neuron via the dot product of kernel weights and input

elements. The next component of a CNN is the activation

function, which does not change the size of the input it

receives and processes. The pooling layer, the last principal

component of a CNN, usually has the function of reducing

the spatial dimension of feature maps. This family of layers,

including max and average pooling, has a similar operating

principal to that of the convolutional layer without learnable

parameters. For instance, the max-pooling layer returns the

maximum value of entries of the input with a receptive field,

the so-called pool size. Therefore, a pooling map can be

considered as a lower-resolution version of the feature map

when it is down-sampled along the vertical and/or horizontal

dimensions. As pooling operates over spatial regions, pooling

can help the features to become invariant to small translations

of the input. Common pooling methods are average pooling,

max pooling, and L2-pooling.

3) RECURRENT NEURAL NETWORKS (RNN)

While CNNs are suitable for processing high-dimensional

data, RNNs are usually used to process sequential data, i.e., in

situations in which the prediction depends on not only the

current sample but also on previous samples. Each neuron

in RNNs has the capability to memorize the output, which

is fed into the neuron as a subsequent input. An illustration

of an RNN with one hidden layer and a length sequence of
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FIGURE 3. Architecture of an RNN.

four inputs is shown in Fig. 3. In particular, the value h(t)

to be predicted at time t is a function g(t)(·) of the input

sequence
(

x(t), x(t−1), . . . , x(1), x(0)
)

. To apply a backprop-

agation algorithm to RNNs, the unfolding concept is used

to transform an RNN into a computational graph, which has

a repetitive structure and thus enables the sharing of learn-

ing parameters across the neural network. Mathematically,

the unfolding recurrence at the time t can be modeled as

h(t) = g(t)
(

x(t), x(t−1), . . . , x(1), x(0)
)

.

Echo state networks, liquid state machines, gated RNNs,

and long short-term memory are popular variants of RNNs.

RNNs have been used to solve many practical problems,

e.g., speech recognition, human activity recognition, and

bioinformatics [40]. In wireless and communication net-

works, RNNs have also found many applications, for exam-

ple, a bidirectional neural model was used [47] to learn the

proactive caching policy at the network edge, and a variant of

RNNs was employed [48] for Wi-Fi indoor localization.

The unfolding concept has been used to improve many

iterative algorithms. The key idea is that each iterative cycle

of an iterative algorithm is modeled as a layer of the neural

network, which is trained to enable the algorithm to converge

to the optimum. One such application [49] was based on

a DetNet model that was proposed for signal detection by

unfolding the projected gradient descent method. The main

advantage is that this model obviates the need to determine

the network configurations such as the number of hidden

layers. Specifically, the number of layers of the neural net-

work is equivalent to the number of iterative cycles of the

iterative algorithm, and the number of neurons is specified by

the sizes of the input, output, and optimizing variables. Fur-

thermore, deep unfolding incorporated in certain advanced

model-based algorithms and transfer learning can improve

the model efficiency e.g., faster convergence while requiring

a smaller dataset to deliver the same performance [18].

Apart from the three types of ANNs described above,

numerous other ANNs have been proposed with different

design philosophies, e.g., an autoencoder and deep generative

models such as the restricted Boltzmann machine and deep

belief network. An autoencoder, which is a specialized ANN

for learning useful properties of the data, is effective with

FIGURE 4. Illustration of the structure of a DRL algorithm.

unlabeled examples. A restricted Boltzmann machine is a

kind of deep generative model for learning the probability

distribution over a set of examples. We invite interested

readers to refer to a recent book [40] and surveys on ANNs

and their practical applications including speech recognition,

pattern recognition, computer vision, agriculture, arts, and

nanotechnology [50], [51].

4) DEEP REINFORCEMENT LEARNING

DRL leverages the strengths of DNNs to improve the perfor-

mance of RL algorithms [52]. Three main approaches exist

to solve RL problems: the value function-based approach,

policy-based approach, and hybrid actor–critic approach. The

value function-based method relies on the estimation of

the expected reward of each state, whereas the policy

search-based method directly finds the optimal policy. The

actor–critic method learns both the policy and value func-

tions, and effectively overcomes the imbalance between

variance and bias owing to the policy search and value func-

tion methods. For high-dimensional problems, DNNs can

be exploited to learn the optimal value function, the opti-

mal policy, or both in case of the actor–critic method [32].

An illustration of the structure of the DRL algorithm is pre-

sented in Fig. 4, where DNNs are used to approximate the

control policy. Inspired by a proposal [52], DRL has found

many successes in various domains and has been widely used

in signal processing studies. For further details, we invite

interested readers to refer to a recent survey [32].

C. FEDERATED LEARNING

To protect sensitive information as well as preserve individual

privacy, Google invented the concept of FL [53]. FL enables

an AI model to be trained without requiring all data to be

stored and processed at a centralized server, which is typically

referred to as the aggregation server in FL literature. In other

words, the data of individual users remain in local storage

in their end devices (i.e., the participant) and do not need to

be transmitted to the server [54]. In FL, the server receives
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FIGURE 5. Illustration of an FL system.

locally computed models from a number of devices, which

are then aggregated to update the global model. In this way,

FL can preserve data privacy and user security, although

FL still relies on the trust of the aggregation server. FL

has found many promising applications in various fields.

The notable success of FL in Google’s next word prediction

application has motivated the adoption of FL for many other

applications [53] including smart retail, multiparty database

querying, smart healthcare, and vehicular networks [55]. The

FL system is illustrated in Fig. 5.

Since the first FL paper from Google, a large number

of studies on FL have been conducted over the last few

years. For a communication perspective, interested readers

may refer to review articles [33], [56] and references therein.

Lim et al. [33] first discussed the challenges of FL implemen-

tations, including communication cost, resource allocation,

and privacy and security issues. In this paper, we further

review existing FL applications at the network edge such

as cyber-attack detection, edge caching and computational

offloading, user association, and vehicular networks. The

interplay between edge computing and DL has been reviewed

in terms of intelligent edge and edge intelligence [56].

III. MODULATION CLASSIFICATION

This section presents a review of applications of AI tech-

niques for automatic modulation classification.

A. FUNDAMENTALS OF MODULATION CLASSIFICATION

The last decades have seen tremendous advancement and

development of innovative communication standards and

technologies to satisfy the ever-increasing demand of many

wireless applications and services. Dense network deploy-

ment with aggressive spectrum reuse to meet the growing

mobile traffic demand has resulted in various undesirable

effects such as signal distortion and co-channel interference.

Signal recognition and modulation classification allow us to

more effectively monitor and manage spectrum usage and

sharing, which can potentially enhance the network perfor-

mance [57]. AMC, a fundamental process to analyze the char-

acteristics of radio signals in the physical layer, plays a vital

role in intelligent spectrum monitoring and management and

is typically deployed in AI-powered wireless communication

systems. This is because it enables the system to blindly

identify the modulation format of an incoming radio signal

at the receiver [58]. From the ML perspective, modulation

classification can be framed as a multiclass decision-making

problem, where the intrinsic radio characteristics are obtained

using conventional feature engineering algorithms for learn-

ing a trainable classification model. The ability to correctly

distinguish advanced modulations (e.g., high-order digital

modes) under harmful transmission environments, such as

a multipath fading channel with additive noise, remains a

challenging research topic [59] and has received consider-

able attention from the signal processing and communication

communities.

Modern communication systems employ different advan-

ced analog and digital modulation techniques to achieve

good tradeoff between spectrum efficiency and transmission

reliability. Fundamentally, an analog modulation technique

encodes an analog baseband signal onto a high-frequency

periodic waveform (i.e., carrier signal), whereas digital mod-

ulation techniques allow a digital low-frequency baseband

signal to be transmitted over a high-frequency carrier wave-

form. These two modulation families can modify different

waveform characteristics of the carrier signal, including the

amplitude, frequency, phase, and a combination of amplitude

and phase. At the receiver, the considered modulated signal

must be assigned to the most appropriate modulation class by

exploiting certain radio characteristics and a trained classifier.

The complex envelope of received radio signal y(n) can be

written as follows:

y(n) = x(n,Hk ) + g(n), (1)

where g(n) is the additivewhite Gaussian noise (AWGN). The

noiseless signal x (n,Hk) under transmission channel effects

can be expressed as follows:

x (n,Hk) = Ae2π fonκ+ζn
∞
∑

k=−∞
x (k) h (nκ−kκ+ξκκ), (2)

where A is the signal amplitude, fo is the carrier frequency

offset, κ is the symbol spacing (or interval), h (·) refers to the
synthetic effect of the residual baseband channel, ζn is the

varying phase offset, x (k) refers to the symbol sequence of

the original data over a specific modulation scheme, and ξκ
is the timing error (or timing offset between the transmitter
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and the receiver). In general, an AMC scheme is developed

to accurately predict the modulation format of x (n,Hk) that

is performed by a trained classifier that effectively learns

the informative features of y (n) by using some specific ML

algorithm. However, this classification task is challenging

because it is necessary to process many high-order modula-

tion schemes, considering synthetic channel deterioration.

B. STATE-OF-THE-ART AMC METHODS

Numerous methods have been proposed for modulation clas-

sification in communications, where AI methods have been

widely used to improve the performance in terms of classi-

fication accuracy and processing speed. Based on the pro-

gressive development of AI in the last decades, especially

the recent explosion of DL, AMC methods that have been

reported in the literature can be grouped into two major

categories as follows:
• Conventional approaches: Various methods in this

group have employed conventional AI techniques and

traditional ML algorithms, which can be further divided

into two sub-classes: likelihood-based and feature-based

approaches. For the likelihood-based approaches,

the output of modulation classification is determined

with the aim of maximizing the probability of a received

signal associated with a certain modulation scheme. The

underlying distribution parameters of the scheme are

estimated by using expectation/conditional maximiza-

tion (ECM) algorithms [60]. Formulated as a composite

problem for hypothesis testing, themaximum-likelihood

modulation classification draws the decision as follows:

Ĥ = argmax
Hij

ln p (y1, . . . , yT |Hi) , (3)

where Hij is the hypothesis model associated with the

modulation format Mi (i = 1, . . . ,K ), where K is the

number of modulation formats, deduced from the obser-

vation signal yj (j = 1, . . . ,T ), where T is the number of

observations, and ln p (y|Hi) refers to the log-likelihood

function [61]. In fact, the likelihood-based approaches

can achieve optimal performance with perfect knowl-

edge based on information of signal and channel mod-

els [3], but they are computationally expensive in terms

of parameter estimation [62].

Compared with likelihood-based approaches, feature-

based methods have been widely deployed in prac-

tical systems thanks to their easy implementation,

lower complexity, and stronger robustness with various

transmission channel scenarios. A typical ML frame-

work requires feature engineering and classification

processes, where certain handcrafted feature extractors

(i.e., descriptors) are used to mine radio characteris-

tics and traditional classifiers can be employed to learn

the modulation patterns in the supervised manner. Cer-

tain methods in this subclass have achieved a good

trade-off between model accuracy and complexity by

using advanced feature selection schemes and sophisti-

cated ML algorithms [60].

• Innovative DL-based approaches: Inspired by great suc-

cess in the fields of image processing and computer

vision [63]–[65], the DL technique has been exploited

for modulation classification, wherein several deep

network architectures, such as RNN, long short-term

memory (LSTM), and CNN, have been considered.

Comparedwith traditionalML,DL has important advan-

tages because it can automatically learn high-level fea-

tures for more effective modulation discrimination and

it can effectively process wireless big data [66]. With

an appropriately built computing platform with graphics

processing units (GPUs), the execution speed of both

learning and inference (i.e., prediction) processes can

be accelerated significantly to satisfy the high reliabil-

ity and low latency requirements of emerging wireless

applications and services.

1) CONVENTIONAL AMC APPROACHES

In the last decades, many conventional AMC meth-

ods have been proposed to enable dynamic spectrum

access and intelligent spectrum management, where the

expectation-maximization (EM) algorithms were employed

to build maximum in likelihood-based classifiers [67]–[73].

Zhang et al. [67] took advantage of the EM algorithm to

estimate the maximum-likelihood of the unknown for mod-

ulation classification in a cooperative multiuser scenario. For

each hypothesis, the EM algorithm performs an expectation

step (E-step) and a maximization step (M-step) at each itera-

tive step to estimate the unknown channel amplitude at+1
c,km and

phase φt+1
c,km that are associated with the radio signal encoded

by themodulation format c and transmitted from them-th user

to the k-th receiver. The calculations in these two steps can be

expressed as follows:

E − step : J
(

θ |θ (t)c
)

= E
z|x,θ (t)c [ln p (z|θ)] , (4)

M − step : θ
(t+1)
c = argmax

θ

J
(

θ |θ (t)c
)

, (5)

where J
(

θ |θ (t)c
)

refers to the expected value of the log like-

lihood function of unknown parameters θ with respect to the

conditional distribution z given the received samples x and the

current estimates of parameters θ
(t). By decoupling the multi-

variate maximum-likelihood problem into multiple separated

optimization problems, the proposed method can estimate the

complete data and unknown parameters more effectively. The

Cramér-Rao lower bounds (CRLBs) for estimating unknown

multipath channels were applied to enable the EM algo-

rithm to reach the performance upper bound of modulation

classification [68]. To distinguish continuous phase modula-

tion signals, a maximum-likelihood-based classifier [69] was

introducedwith the Baum–Welch (BW) algorithm to estimate

the unknown fading channel coefficients. In the E-step of

the EM algorithm, the BW method was applied to iteratively
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maximize the auxiliary function as follows:

J
(

θ |θ (t)c
)

=
∑

v

pc

(

x, v|θ (t)c
)

log pc (x, v|θ) , (6)

where v refers to the hidden variables obtained by a hidden

Markov model (HMM).

For identification of the modulation parameters, includ-

ing the signal constellation and the number of subcarriers,

in orthogonal frequency division multiplexing (OFDM) with

index modulation, Zheng and Lv [70] recommended two

likelihood-based classifiers of an average likelihood ratio

test (ALRT) and a hybrid likelihood ratio test (HLRT). For the

known channel state information (CSI) scenario, the HLRT

classifier first determines the indices of active subcarriers

and estimates transmitted symbols subsequently, whereas the

ALRT classifier averages out the set of subcarrier indices

with higher complexity. On the contrary, a blind AMC

only employs the HLRT classifier to distinguish interest-

ing subcarriers corresponding to each hypothesis of modu-

lation parameter combination via an energy-based detector.

To accelerate the convergence process of the ECM algo-

rithm to blindly estimate the channel parameters in flat fad-

ing and nonGaussian noise impairments, Chen at el. [72]

upgraded the squared extrapolation method by adding a

parameter-checking scheme. The enhanced method also

derives a convergence point of log-likelihood function more

reliably compared with the original one.

The design of AMC strategies for MIMO systems is

more challenging than those for single-input single-output

systems because the incoming signal at the receiver is a

mixture of multiple signals transmitted by different anten-

nas. Therefore, the effects of channel impairment on the

modulation signals are dissimilar. As a result, it is difficult

to properly estimate channel characteristics via EM algo-

rithms. Another approach involved grouping the received

signals with the same observation interval outline and min-

ing the hidden relationship between uncorrelated modula-

tion classes. This enabled the modulation classification to

be studied as a multiple-clustering problem, where the final

modulation decision making is accomplished by evaluating

the maximum-likelihood of multiple clusters corresponding

tomodulations in a given dataset [71]. The learning efficiency

can be increased by recovering the centroids of all clusters

by a constellation-structure-based reconstruction algorithm

for parameter reduction with good convergence performance.

Adaptive CSI estimation for modulation classification in

MIMO systems was introduced by Abdul Salam et al. [73]

to jointly exploit the Kalman filter (KF) and an adap-

tive interacting multiple model (IMM). The IMM–KF out-

put was subsequently analyzed by a quasi-likelihood ratio

test (QLRT) algorithm for modulation identification. It is

worth noting that EM is derived for recursively comput-

ing estimates in IMM–KF and making decisions by the

QLRT-based classifier.

Apart from likelihood-based approaches, numerous AMC

methods that follow a typical ML framework with two

principal steps, feature extraction and model learning, have

been introduced. These feature-based methods mostly rely

on sophisticated handcrafted feature engineering techniques

for an improved description of radio characteristics, and

conventional classifiers are employed for learning modu-

lation patterns from extracted features. High-order cumu-

lants (HOCs) of the amplitude, phase, real, and imaginary

components of received signals were calculated for radio

characteristic representation [80]. To flexibly accommodate

different channel scenarios, linear SVM (LSVM) and the

approximate maximum-likelihood (AML) algorithms were

developed assuming that the channel condition is known,

whereas a backpropagation neural network (BPNN) was

considered for unknown channel conditions. Remarkably,

phase and frequency offsets were estimated from high-order

moments (HOMs) to enhance the performance of modulation

classification in the unknown channel scenario. In another

study, Huang et al. [81] performed independent component

analysis (ICA) to select highly effective HOCs of arbitrary

orders and lags. Furthermore, a maximum-likelihood-based

multicumulant classification (MLMC) algorithm was pro-

posed to identify the most appropriate modulation format

by maximizing the posterior probability of the multicumu-

lant vector. The elementary cumulant and cyclic cumulant

calculated at the second and fourth orders were fused in a

hierarchical hypothesis-based classification framework [82]

to improve the system performance in terms of the classi-

fication rate for a flat fading channel. Despite being faster

than conventional EM-based methods, this approach still

requires huge amounts of computing resources for macro-

and micro-classifiers in hierarchical association.

Hybrid approaches that combine the likelihood-based

and feature-based classifiers have been proposed to

achieve a good trade-off between accuracy and process-

ing speed. For example, Abu-Ramoh et al. [83] derived a

maximum-likelihood classifier capable of handling HOMs

as features. Compared with conventional algorithms that

manipulate the received sequence of modulation symbols,

this approach can exploit few statistical moments to evaluate

the likelihood function. As a result, the proposed AMC

method induces lower complexity if a large number of

modulations are considered for classification. This hybrid

strategy for modulation classification was also extended [84]

by leveraging a mixture of HOCs and HOMs at the sec-

ond and fourth orders to design the maximum-likelihood

classifier. Notably, a hierarchical classification framework

is considered to improve the accuracy; however, the overall

system complexity significantly increases in situations in

which three binary classifiers are required to process four

effortless modulations. Zhang et al. [85] built a dictionary

set of high-order statistics for learning modulation patterns

using block coordinate descent dictionary learning, where the

modulation format of a signal is given by referring the sparse

representation of statistical features to the dictionary.

Sophisticated feature extraction algorithms to more accu-

rately describe the radio signal characteristics have recently
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been proposed. To overcome the limitations of global

features, including HOCs and HOMs, Xiong et al. [86]

recommended two novel signal signatures: the first is

modulation-specific transition features in the time domain,

and the second is sequential features from the Fisher kernel.

With Gaussian mixture model dictionary learning, exploita-

tion of these local features results in an improvement of up to

30% in terms of classification accuracy compared to conven-

tional approaches. Another approach involved capturing the

normalized HOCs on the frequency domain by using discrete

Fourier transform (DFT) for modulation classification in an

OFDM system. Simulations were used to show that modula-

tion classification strategies based on HOCs of DFT are more

effective than those calculated in the time domain; however,

the computational complexity significantly increases as the

number of cumulant values increases [87].

2) INNOVATIVE DL-BASED AMC APPROACHES

Over the last few years, DL [88] has emerged as a vital ML

tool for many applications ranging from natural language pro-

cessing to vision recognition and bioinformatics. With many

advantages such as automatic learning of high-level features

and the effective exploitation of big data, DL has achieved

remarkable success in many applications where it has become

a core technique of model learning and pattern analysis.

For AI-powered communications, DL is being exploited to

address many challenging design tasks including network

traffic control [25] and intelligent resource allocation [89].

For AMC, DNN [90]–[92] has been recommended to replace

traditional classifiers for learning statistical features. For

example, two sparse autoencoder-based DNNs were devel-

oped [90], [91] to improve the accuracy of high-order and

intraclass digital modulations. Although their performance

is slightly higher than that of LSVM and approximately

maximum-likelihood classifiers, they are computationally

more complex because of the requirement to compute a large

number of neurons in hidden layers. Selection of the most

relevant HOC features for learning a sparse autoencoder

DNN [92]makes it possible to substantially reduce the overall

complexity of the classifier without performance loss. LSTM,

an advanced architecture of RNN that exploits the long-term

dependencies between temporal attributes in sequential data,

was further studied for modulation classification [93]. Three

stacked LSTM layers configured in the underlying archi-

tecture allows the network to capture the temporal relation

of in-phase and quadrature (IQ) samples while remaining

flexible by accepting variable length input.

Among several DL architectures, CNN [75], [78],

[79], [98] is more useful than DNN and RNN thanks to

its ability to learn multiscale representational features from

high-dimensional and unstructured data. In addition to releas-

ing RadioML 2018.01A, a rich modulation classification

dataset containing more than 2.5 million radio signals cover-

ing up to 24 analog and digital modulation formats in a wide

range SNR [−20 : 2 : 30] dB, O’Shea et al. [78] investigated
the classification performance of two CNNs inspired by

VGG [99] and ResNet [100] originally proposed for image

classification. Compared with the baseline approach, which

calculates high-order statistics for learning an ensemble

model of gradient boosted trees (XGBoost), the accuracy

of these CNNs is significantly superior at different SNR

levels under synthetic channel impairments, such as carrier

frequency offset, symbol rate offset, delay spread, and addi-

tive noise. Notably, by exploiting skip connection in residual

stacks, ResNet classifies modulations more precisely than

VGG at high SNRs. In addition, the accuracy of these two

CNNs is investigated under different parameter configura-

tions, in particular, the number of convolutional layers (in

VGG), the number of residual stacks (in ResNet), and the sig-

nal length (i.e., the number of IQ samples in a partitioned sig-

nal), to analyze the performance sensitivity. Meng et al. [79]

introduced an end-to-end CNN, namely, CNN-AMC, for

identifying the modulation of a long symbol-rate signal

sequence, in which supplementary information in the form

of the SNR is incorporated in fully connected layers via

a concatenation operation to improve the accuracy. Even

though CNN-AMC has the potential to obtain remarkable

accuracy, the training and prediction processes have very high

computational complexity because of the huge number of

connections between a flatten layer and a fully connected

layer. A compact-sized CNN, namely, VTCNN2 [75], was

developed for cost-efficient modulation classification in edge

devices, in which a pruning technique is applied to optimize

the processing speed. This method allows the network to

ignore the low-impact parameters (i.e., weight and bias) of

the convolutional layers. Despite achieving a good tradeoff

between accuracy and computing cost (measured by the

number of floating point operations), the network size is still

heavy because of the large number of trainable parameters

distributed across the two fully connected layers. The pruning

technique was further studied and led to the proposal of

LightAMC [98], a CNN-based AMCmethod, to significantly

accelerate the processing speed with negligible accuracy

loss in IoT applications and unmanned aerial vehicle (UAV)

systems.

Advanced CNN-based modulation classification meth-

ods have been recommended for performance enhance-

ment by using a specialized novel structure of convolu-

tional layers [5], [101] and using fusion mechanisms [74],

[94]. An efficient CNN, namely, MCNet [5], was intro-

duced for robust automatic modulation recognition under

various channel impairments, in which the network archi-

tecture is specialized by several processing blocks asso-

ciated via skip connection to prevent MCNet from expe-

riencing a vanishing gradient and preserve the informa-

tion identity by using many nonlinear operations. More-

over, to gain rich features and reduce the number of train-

able parameters, each block in MCNet is configured by

different one-dimensional asymmetric kernels (i.e., filter).

Skip connection was also studied to design several specific

blocks for feature learning in MBNet [102], Chain-Net [103],

SCGNet [104], and RefNet [105]. Feature-level fusion and
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decision-level fusion models, that is, early fusion and late

fusion, were cleverly exploited in recent CNN-based modula-

tion classification methods to counter channel deterioration.

For example, Wang et al. introduced a decision-level fusion

model for processing different incoming signals received by

multiple antennas in a MIMO system, where a five-layer

CNN performs the function of feature extraction in the pro-

posed cooperative modulation classification method, namely

Co-AMC [74]. The CNN induces the classification scores

of MIMO signals that are cooperated via a weighted aver-

aging decision rule to infer the final class of modula-

tion. Moreover, a multilevel fusion architecture [94] was

introduced with three fusion mechanisms (including feature-

based, confidence-based, and majority voting-based fusion)

to take advantage of meaningful information ranging from

coarse to fine. These fusion models concurrently handle mul-

tiple CNN streams, in which each stream takes into considera-

tion a fixed-length signal partitioned from a long sequence of

IQ samples. Although the overall classification performance

is improved, the computation is highly complex, including the

computational cost and memory utilization. This prevents the

potential application of this method for low-latency commu-

nication services.

Apart from processing IQ samples directly, several

modulation classification methods have used deep mod-

els for the graphical presentations of signals, such as a

constellation diagram [77], [95], [96], [106], [107] and

spectrogram [76], [97]. Huang et al. [95], [96] designed a

compressive CNN to learn the visual features of different

modulation patterns from constellation diagrams. To improve

the classification accuracy, both a regular constellation (RC)

image (i.e., plotting the real and imaginary parts of the

modulation signal as scattered points on a two-dimensional

diagram) and contrast enhanced grid (i.e., RC image with

probability distribution of scattered points) were jointly

exploited via a fusion module specified in a single CNN.

Furthermore, a synthetic loss function was formulated from

cross-entropy loss, L2 regularization, and contrastive loss

to maximize the difference between interclass features.

Zeng et al. [97] used short-time discrete Fourier transform

(STFT), a fundamental time-frequency analysis algorithm,

for visualizing the spectrum of frequencies of the modula-

tion signal. The set of transformed spectrogram images is

then processed by a conventional CNN by adopting archi-

tecture with four convolutional layers for learning high-level

features. Hybrid approaches [76], [77] were recommended

for simultaneously using IQ data and image data. A hier-

archical framework with two classifiers was proposed by

Wang et al. [77] who used a dataset consisting of IQ sam-

ples for the first CNN-based classifier for inter-group mod-

ulation discrimination. A dataset consisting of constellation

diagrams was leveraged for the second CNN-based clas-

sifier for intergroup modulation identification. In another

study [76], a compact-sized two-branch CNN with two pro-

cessing streams organized in parallel was proposed for iden-

tifying the modulation format of a signal. The meaningful

features that were independently extracted from the image

representations of the constellation diagram and cyclic spec-

tra were intensively fused at the end of the network for clas-

sification. Even though these methods based on constellation

images or spectrogram images are more accurate compared

with IQ-based approaches, they require more computational

resources for data transformation, visualization, and storage.

The CNNs of DL-basedmodulation classification approaches

are described in Fig. 6, wherein most of them, typically

designed to accept IQ data and image data as their input,

are based on a simple network architecture (a straightforward

connected structure of convolutional layers, activation layers,

and pooling layers).

C. SUMMARY AND TAKEAWAY POINTS

In this section, we reviewed state-of-the-art AMC meth-

ods, which are categorized as being either conventional

(including likelihood-based and feature-based approaches)

or innovative (including DL-based approaches), as summa-

rized in Table 2. Most of the likelihood-based approaches

are very computationally costly in terms of parameter esti-

mation under unknown channel conditions, whereas the

feature-based methods achieve moderate performance in

terms of their classification rate because of the sensitiv-

ity of handcrafted statistical features and limited learning

capacity of traditional classifiers. To overcome these limi-

tations in conventional methods, researchers have exploited

the excellent advantages of DL, such as automatic learning

of high-level features and effective handling of big com-

munication data to enhance the performance of modula-

tion classification. Additionally, CNN-based approaches are

applicable to numerous digital and analog modulations under

different channel impairments, such as a flat fading chan-

nel, multipath fading channel with attenuation, and additive

noise, as summarized in Table 3. Interestingly, a DNN not

only accepts a sequence of IQ samples (partitioned with a

fixed length) as its input, but also accepts other transformed

data (for instance, a constellation diagram in the form of a

scattered plot and a spectrogram image via time-frequency

analysis). Other than a few notable CNN models, such as

ResNet [78] and MCNet [5], which were introduced for

discriminating 24 challenging modulations, several other

neural networks do not effectively leverage the powerful

learning capability of CNN for effortless classification, for

example, Co-AMC [74] processes four low-order digital

modulations based on a huge dataset containing more than

1.3 million samples. Despite the superiority of deep learning

over conventional approaches, certain aspects deserve further

investigation when developing a DL model for modulation

classification:
• Deploying many fully connected layers without global

average pooling [79] can rapidly increase the net-

work size (usually measured by the number of trained

parameters), leading to extremely high computational

complexity.
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FIGURE 6. CNN architectures of several state-of-the-art modulation classification approaches: (a) Co-AMC [74], (b) VTCNN2 [75], (c) Two-branch
CNN [76], (d) CNN1 (for IQ data) and CNN2 (for CI data) in a hierarchical classifier [77], (e) VGG [78], (f) ResNet [78], (g) CNN-AMC [79] with a
supplementary input of SNR values, MCNet [5], and (i) the structures of m-block and res-stack in MCNet and ResNet. The input of these networks
can be the signal sequence of IQ samples, an image of the constellation diagram (CI), and an image of the spectrogram (SI). Notations presented
in figures: conv (convolutional layer), bn (batch normalization layer), pool (max-pooling layer), avg-pool (average pooling layer), concat (depthwise
concatenation layer), fc (fully connected layer or dense layer), add (elementwise addition layer). Customized layers are defined as follows: padding
layer for adding zero values to input borders, flattening layer for collapsing the spatial dimensions of input to the channel dimension (or the depth
dimension of feature maps), scaling layer for normalizing data values into a specific range. Each conv is followed by an activation layer such as
ReLU, leaky ReLU, and exponential linear unit (ELU).

• Configuring kernels of various sizes [5], such as unit

1×1, symmetric n×n, and asymmetric 1×n, potentially
enriches the representational feature maps.

• Sophisticated techniques such as skip connection and

dropping out can be leveraged to prevent the net-

work from experiencing vanishing gradient descent and

overfitting.

• Deep fusion frameworks with multiple processing

streams to process different types of input data [76] are

recommended to more effectively learn intrinsic radio

characteristics.

• Balancing the accuracy and computational cost should

be an important design objective to meet the require-

ments of modern communication services.

IV. SIGNAL DETECTION

In this section, we discuss applications of AI techniques for

intelligent signal detection.

A. FUNDAMENTALS OF SIGNAL DETECTION

In MIMO communication systems with N transmit and

M receive antennas, the received baseband signal can be

expressed as

y = Hs+ n, (7)

where s = [s1, s2, . . . , sN ]
T and y = [y1, y2, . . . , yM ]T repre-

sent the transmitted and received signal vectors, respectively,

with (·)T denoting the transpose of a vector. Further,H of size

M ×N represents the channel matrix between the transmitter

and receiver, and n is a Gaussian noise vector. The goal of

signal detection is to determine s from y. This can be achieved

via classical detection schemes such as the optimal maxi-

mum likelihood, near-optimal sphere decoding (SD) [108],

tabu search (TS) [109], [110], suboptimal linear zero-forcing

(ZF), minimum mean square error (MMSE), and succes-

sive interference cancellation (SIC) receivers. Furthermore,

interest in the development of ML-based detectors (MLDs)

has recently been growing. In the following subsections,

we review selected fundamental classical detection schemes

and discuss ML-based approaches for signal detection.

1) OPTIMAL MAXIMUM-LIKELIHOOD DETECTOR

The optimal maximum-likelihood solution is obtained by an

exhaustive search as follows:

ŝopt = argmin
s∈AN

‖y−Hs‖2 , (8)

where A is an alphabet containing all possible trans-

mitted signals sn, n = 1, . . . ,N . The computational

complexity of the maximum-likelihood detector increases

exponentially with N , which is prohibitive even for a

small value of N . To overcome this challenge, near-optimal

reduced-complexity detection schemes have been proposed,

such as SD [108] and TS [109], [110].
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TABLE 2. Summary of state-of-the-art AMC methods for communication systems.

2) LINEAR DETECTORS

In linear detectors, the discrete alphabet A is relaxed to a

continuous space, allowing closed-form solutions of (8) to

be found by solving the nonconstrained convex optimization

problem min ‖y−Hs‖2. The obtained solution is then quan-
tized to the nearest vector in AN [111]. The ZF and MMSE

receivers are two typical linear detectors, the solutions of

which are given by

ŝZF = Q
(

(HHH)−1HHy
)

, (9)

ŝMMSE = Q
(

(HHH + σ 2I)−1HHy
)

, (10)

respectively, where σ 2 is the variance of Gaussian noise,

and Q (·) is the element-wise quantization operator that
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TABLE 3. Summary of simulation configuration of DL-based modulation classification approaches.

quantizes elements in (·) to the nearest elements in A. The

ZF detector performs poorly in the case of ill-conditioned

channels due to noise enhancement. By contrast, the MMSE

detector reduces noise enhancement and attains improved

performance with respect to ZF. Both the ZF and MMSE

receivers have low computational complexity. However, their

performance is far from optimal, especially in square systems,

i.e., when N ≈ M .

3) MLD

The key idea of MLD is to model and train an ML algorithm

such that its output ŝML can approximate the transmitted

signal vector s with high accuracy. In general, an ML-based

solution for signal detection can be formulated as

ŝML = Q (5(x,P)) , (11)

which represents a nonlinear transformation with the input

vector x and the trainable parameter set P , followed by

quantization. It is observed from (11) that the performance

of an MLD depends on the input signal vector x, nonlinear

function 5, and the learnable parameter set P . In particular,

x contains information about the received signals and CSI if

available. Furthermore, the nonlinear transformation 5 and

trainable set P are determined by the underlying ML model

and training process, which are the deciding factor for the

learning ability and the accuracy of the ML model. These

configurations, which result in various MLDs with different

performance and computational complexity, are reviewed in

the next subsection.

B. STATE-OF-THE-ART MLDs

Various studies have considered the application of ML to

signal detection, leading to numerous MLDs. Using different

ML tools, a training process, and CSI models, existing MLDs

can be classified as follows:
• ML tools for signal detection: Various ML techniques

have been considered for signal detection. Among them,

DNN is the most widely used owing to its power-

ful learning capability [112]–[127]. However, its com-

putational cost and energy consumption are generally

high [115] owing to its large number of neurons and

layers, especially in the case of those developed for

large-scale systems. OtherML tools, such as CNN [116],

[122], [128]–[130], recurrent NN (RNN) [116], [122],

extreme learning machine (ELM) [131], [132], auto

encoder (AE) [131], [133], and ensemble learning [134],

were also leveraged for signal detection.

• CSI requirement: In classical signal detection schemes,

CSI is crucial for obtaining the estimate of the
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transmitted signal, as seen in (8)–(10). However,

it becomes optional in MLDs. Specifically, while both

the received signal y and CSI, i.e., H , are taken as the

input of ML algorithms in [112]–[115], [117]–[120],

[125], [126], [130], [135], only y is required for

the MLDs in [116], [121], [122], [124], [127], [129],

[131]–[133]. The omission of CSI can simplify the

communication system, in which the channel estima-

tion block is removed, or it can reduce the size of the

input signal vector. As a result, a considerable reduction

in overall computational complexity as well as power

consumption can be attained. However, this could result

in potential performance degradation in some scenar-

ios, especially in block-fading channels [116] and in

multiple-antenna systems, where the CSI is crucial for

removing the intersymbol interference.

• Training approaches: Unlike the classical methods in

which a hand-engineered detection scheme is applied

in an online method, an MLD needs to train an ML

model before it is used for signal detection. For example,

in a DNN-based detector, the weights and biases of

the DNN are trained to minimize the distance between

the ML-based solution and the labels, i.e., ŝML and

s [11], [49], [118], [120]. In particular, the training can

be carried out either offline [115]–[120], [122]–[130],

[133], [135] or online [114], [121], [132]. In offline

training, the computational complexity of the training

process can generally be ignored, and the parameters

of an ML model can be readily optimized by using

a sufficiently large amount of training data. However,

this training method is only suitable for certain chan-

nel models such as an independent and identically dis-

tributed (i.i.d.) Rayleigh fading channel. In contrast,

the method may become less impractical in real-world

communication systems, where the channel characteris-

tics change rapidly or the channel statistics are unavail-

able, e.g., in molecular communication [122]. In these

scenarios, a good solution would be to apply an online

training method (e.g., [114], [121], [132], at the cost of

increased latency and computational complexity.

The aspects listed above distinguish existing MLDs based

on their configurations. However, we found it to be more

beneficial to classify MLDs based on the way ML tech-

niques are leveraged for signal detection. This is useful not

only for analyzing and synthesizing existing MLDs, but also

for providing methodologies for further development in this

area. Our literature review shows that ML techniques can be

leveraged for signal detection in three ways, namely, black-

box, unfolding, and classical detector-based MLDs. First,

an ML tool can be modeled as a black-box MLD, i.e., it

outputs the estimate of the transmitted signal vector s as an

independent detector. Second, in unfolding MLDs, each layer

of the DNN is constructed based on the operations in each

iteration of the classical projected gradient descent (PGD)

algorithms. Finally, existing iterative or near-optimal detec-

tion algorithms can be further optimized by using ML,

resulting in so-called classical detector-based MLDs. These

three groups of MLDs are discussed in the following.

1) BLACK-BOX MLDs

Inspired by the learning capability of ML techniques, certain

detector designs attempted to replace the classical detec-

tors with black-box MLDs [115]–[117], [122], [124], [125],

[127], [132], [133]. We note that in this work, the term black-

box reflects the fact that an ML model can learn and output

the desired solution, which is ŝML for signal detection, with-

out any expert knowledge. The ingenuity of this application

lies in choosing an appropriate ML tool and optimizing the

model configurations, e.g., the number of layers, number of

nodes in each layer, and activation functions for the underly-

ing DNN.

DNNs were used for black-box MLDs in OFDM sys-

tems [125], [127]. Unlike the classical OFDM receivers

that first require conducting CSI estimation, the DNN-based

detectors proposed in [125] and [127] perform the signal

detection directly. In other words, the DNN is a black

box that takes y as input and outputs ŝML, without requir-

ing the estimated CSI. Notably, these black-box MLDs are

shown to outperform the conventional least-square (LS) and

MMSE receivers, which compute the estimates of trans-

mitted signals based on CSI, as shown in (10). An end-

to-end OFDM communication system was modeled as a

single AE [133], in which the DNN-based detector was

trained offline irrespective of the channel. The performance

of the black-box MLD was also investigated with the use

of ELM [132], RNNs, and CNNs [122]. In particular,

the ELM-based black-box MLD in [132] outperformed the

DNN-based MLDs proposed in [125], with less complexity

and excellent robustness under different multipath fading

channels. Furthermore, the CNN- and RNN-based black-box

MLDs in [122] were evaluated using experimental data col-

lected by a chemical communication platform, for which

the channel model was unknown and which was difficult to

model analytically.

A common observation from the studies discussed above

is that the developed black-box MLDs can perform well

without the CSI. This is advantageous compared with the

classical detectors when the CSI is either not available or the

wireless channel is fast fading. Furthermore, the black-box

MLDs achieve not only improved performance, as shown

in [122], [127], [132], but also reduced complexity with

respect to the simple linear receivers [115]. The reason for

this reduction in complexity is that these black-box MLDs

only perform matrix multiplications and additions, whereas

computationally expensivematrix inversions or factorizations

(such as singular-value decomposition or QR decomposi-

tion) are required for most conventional MIMO receivers

including linear ZF, MMSE, and SIC. However, it is worth

noting that most of these black-box MLDs are proposed for

general OFDM systems. By contrast, the signal detection in

multiple-antenna systems requires more sophisticatedMLDs,

which are discussed in the next subsections.
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2) UNFOLDING MLDs

While various ML tools are leveraged for black-box MLDs,

unfolding MLDs employ DNNs because they can learn

complicated nonlinear functions. However, the ingenuity of

detectors in this group is that, instead of directly using the

well-known fully connected DNN (FC-DNN), they employ

unfolding layer-by-layer architectures. In these architectures,

the layers have the same structure and are constructed fol-

lowing the classical PGD algorithm with different weights

because of their different input signals.

Intuitively, (8) can be solved by the iterative PGD opti-

mization method. Motivated by this, a series of unfolding

MLDs, including the detection network (DetNet) [49], [118],

sparsely-connected DNN (ScNet) [120], fast-convergence

sparsely connected DNN (FS-Net) [11], multilayer DNN

(Twin-DNN) [119], and Cascade DNN (Cascade-Net) [135]

were proposed for signal detection. In these schemes, ŝML is

updated over L layers of the DNN as follows:

ŝ
[l] = f

(

s− δ[l]
∂ ‖y−Hs‖2

∂s

)

s=ŝ[l−1]

= f
(

ŝ
[l] − δ[l]HT y+ δ[l]HTHŝ

[l−1]
)

, (12)

FIGURE 7. Illustration of layer l of the DetNet [11], [49], [118].

where f (·) denotes a nonlinear projection operator, δ[l] is the

step size, and l = 1, . . . ,L. Inspired by (12), DetNet was

introduced [49], [118]. The lth layer of DetNet is illustrated

in Fig. 7, and its operations are summarized as follows:

q[l] = ŝ
[l−1] − δ

[l]
1 HT y+ δ

[l]
2 HTHŝ

[l−1]
, (13)

x[l] =
[

v[l−1], q[l]
]T
, (14)

z[l] = σ
(

W
[l]
1 x

[l] + b
[l]
1

)

, (15)

ŝ
[l] = ψt

(

W
[l]
2 z

[l] + b
[l]
2

)

, (16)

v[l] = W
[l]
3 z

[l] + b
[l]
3 , (17)

where ŝ
[0] = v[0] = 0, with 0 being an all-zero vector

of an appropriate size, and {W [l]
1 ,W

[l]
2 ,W

[l]
3 , b

[l]
1 , b

[l]
2 , b

[l]
3 ,

δ
[l]
1 , δ

[l]
2 } are the training parameters, including the weights,

biases, and step size, in the lth layer of DetNet. Furthermore,

σ (·) represents the rectified linear unit (ReLU) activation

function, and ψt (·) guarantees that the amplitudes of the

elements of ŝ[l] are in an appropriate range of desired signals.

The final solution of DetNet is ŝML = Q
(

ŝ
[L]
)

. Although

DetNet achieves promising performance, it has several draw-

backs. Specifically, the significance of the intermediate signal

vector v[l] is not clear and considerably enlarges the size of the

input vector x[l], thereby complicating the network architec-

ture. Consequently, the computational complexity of DetNet

is extremely high. Furthermore, although the performance of

DetNet is shown to be good for the case N ≪ M , subsequent

work [11], [120] showed the network performance to be far

from optimal for square systems, i.e., N ≈ M .

ScNet [120] and FS-Net [11] were proposed to overcome

the drawbacks of DetNet. ScNet focuses on simplifying the

network architecture of DetNet by removing the interme-

diate vector v[l] and redundant connections in the network,

whereas FS-Net reduces the number of training parameters

and optimizes the loss function to accelerate the conver-

gence of DetNet and ScNet. Although the network archi-

tecture of DetNet was significantly simplified, ScNet and

FSNet improved the performance remarkably. Specifically,

an improvement of approximately 2-dB and 3-dB in SNR

was achieved by ScNet and FS-Net, respectively, with respect

to DetNet, with the computational complexity being approxi-

mately 40% of that of DetNet [11]. Unlike ScNet and FS-Net,

Twin-DNN [119] uses two parallel DetNets with different

input vectors ŝ[0]: the first is ŝZF and the other is randomly

generated. The solution of Twin-DNN is the more accurate

of the two output vectors of the two DetNets, motivated by

ensemble learning. As a result, Twin-DNN improves the per-

formance at the cost of approximately double the complexity

of DetNet. A detailed comparison of DetNet, ScNet, FSNet,

and Twin-DNN in terms of their network architecture, per-

formance, and computational complexity was reported [11].

Another variant of DetNet is Cascade-Net, which was pro-

posed for single-antenna systems [135]. In Cascade-Net,

a DNN is cascaded with a ZF preprocessor to prevent the

network from converging to a saddle point or local minimum

point. Simulation results in [135] show that Cascade-Net per-

forms much better than DetNet and the classical ZF detector.

3) CLASSICAL DETECTOR-BASED MLDs

Although the black-box and unfolding MLDs discussed

above outperform simple detectors, their performance is still

far from optimal, especially in challenging scenarios such

as square systems with high-order QAM signaling. To over-

come this limitation, we can incorporate ML algorithms

with classical hand-engineered detectors such as iterative or

near-optimal detection schemes. This incorporation is useful

to further optimize the classical detection schemes in terms

of their computational complexity and/or performance.

a: ITERATIVE ALGORITHM-BASED MLDs

He et al. [112] proposed an iterative orthogonal approx-

imate message passing (OAMP) algorithm-based network

(OAMP-Net). In the lth layer of OAMP-Net, the output ŝ[l] is
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updated as follows:

z[l] = ŝ
[l−1] + γ [l]A[l](y−Hz[l−1]), (18)

s[l] = E

{

s|z[l], τ [l]
}

, (19)

where (19) represents the MMSE denoiser, and

A[l] = Nv[l]
2
HH (v[l]

2
HHH + σ 2I)−1

trace(v[l]
2
HH (v[l]

2
HHH + σ 2I)−1H)

, (20)

v[l]
2 =

∥

∥

∥
y−Hŝ

[l]
∥

∥

∥

2
−Mσ 2

trace(HHH)
,

τ [l]
2 = 1

2N
trace((I − A[l])(I − A[l])H )v[l]

2

+ θ [l]σ 2

4N
trace(A[l]A[l]H ), (21)

with s[0] = 0 and τ [0] = 1. We note that in the classical

OAMP scheme, γ [l] and θ [l] in (18) and (21), respectively,

are both set to one. By contrast, they emerged as learnable

variables and were optimized by using training to provide

appropriate step sizes for updating the mean and variance

of the MMSE denoiser. Compared to DetNet, OAMP-Net

is easier and faster to train because only a few adjustable

parameters need to be optimized. Furthermore, OAMP-Net

achieves an SNR improvement of approximately 2-dB with

respect to the classical OAMP scheme.

More recently, OAMP-Net2 was proposed [113] as an

improved version of OAMP-Net. Specifically, two addi-

tional learnable parameters were added to the denoiser

(19) in OAMP-Net2 to construct the nonlinear estima-

tor of s[l] to satisfy the divergence-free requirement. This

update improves the SNR of OAMP-Net2 with approxi-

mately 3-dB with respect to OAMP-Net [113]. Furthermore,

OAMP-Net2 was demonstrated to outperform prior detection

schemes such as DetNet and MMSE-based SIC. Although

OAMP-Nets perform impressively for i.i.d. Gaussian chan-

nels, it is shown in [112] and [114] that they may not

perform very well for realistic channels with spatial cor-

relations [114]. Moreover, OAMP-Nets require performing

matrix inversion in each iteration, making them even more

computationally expensive than DetNet [113]. To overcome

these limitations of OAMP-Nets, Khani et al. proposed the

MMNet [114]. Similar to OAMP-Nets, MMNet follows an

iterative approach. However, instead of being computed as

in (20), A[l] is considered as an N × M trainable weight

matrix. This is more advantageous than OAMP-Nets in the

following respects. First, it allows z[l] to be obtained with

flexible trainable parameters optimized for each channel real-

ization, thereby facilitating online training to adapt to channel

variation. Second, A[l] can be obtained without performing

computationally expensive matrix inversion as in (20) for

OAMP-Nets. The simulation results in [114] showed that,

in practical 3GPP channels, MMNet achieves an improve-

ment of 3-dB in SNR compared to OAMP-Nets with less

computational complexity by a factor of 10 − 15.

b: NEAR-OPTIMAL DETECTOR-BASED MLDs

The two well-known near-optimal detection schemes are TS

and SD. The DL-aided TS algorithm was introduced in [11].

Specifically, Nguyen et al. proposed employing FS-Net to

generate the highly reliable initial solution of the TS scheme.

Furthermore, in this algorithm, an adaptive early termination

and a modified searching process are performed based on the

predicted approximation error, which is determined from the

FS-Net-based initial solution, to enable the final solution to be

reached earlier. The simulation results in [11] demonstrated

that the proposed DL-aided TS algorithm reduces the com-

plexity by approximately 90% with respect to the existing

classical TS algorithms, while maintaining almost the same

performance.

DL-aided SD schemes were recently proposed [12].

[136]–[138]. Specifically, a DNNwas used to learn the initial

radius for SD [12], [136], [137]. While a single radius is used

in [12], multiple radii are employed in [136]. Furthermore,

as an improvement of existing schemes [12], [136], Weon

and Lee [137] proposed a learning-aided deep path prediction

scheme for sphere decoding in large multiple-antenna sys-

tems. In particular, the minimum radius for each sub-tree is

learned by a DNN, resulting in a more significant complexity

reduction with respect to the prior DL-aided SD schemes

in [12] and [136]. In all three DL-aided SD schemes men-

tioned above, the common idea is to predict radii for the

sequential SD. This approach has certain limitations in the

offline learning phase, as well as during online application

to SD. First, in the DNN training phase [12], [136], [137],

conventional SD needs to be performed first to generate

training labels, i.e., the radii. Consequently, these DNNs are

time-consuming and computationally complex to train, espe-

cially in the case of large MIMO systems. Second, although

the radius plays an important role in the search efficiency of

conventional Fincke–Pohst SD, it becomes less significant in

the Schnorr–Euchner SD, especially for high SNRs, for which

a relatively reliable radius can be computed using the conven-

tional formula [108]. To overcome these limitations, the fast

DL-aided SD (FDL-SD) and fast DL-aidedK -best SD (KSD)

(FDL-KSD) algorithms were proposed [138]. The idea of

FDL-SD and FDL-KSD is to use FS-Net [11] to generate a

highly reliable initial candidate for the search in SD/KSD,

which facilitates a candidate/layer-ordering scheme and an

early rejection scheme to significantly reduce the complex-

ity of the conventional SD schemes. The simulation results

in [138] showed that, for moderate SNRs, FDL-SD reduces

the complexity by more than 90% with respect to the clas-

sical Fincke–Pohst SD scheme, compared with those of the

DL-aided SD schemes [12], [136], [137], which achieve a

reduction of approximately 60%.

C. SUMMARY AND TAKEAWAY POINTS

In this section, we reviewed the typical existing MLDs

in the literature. Based on the application of ML mod-

els to the detection process, they are divided into three

groups: black-box MLDs, unfolding MLDs, and classical
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TABLE 4. Summary of existing MLDs.

detector-based MLDs, as summarized in Table 4. In the first

group, ML tools are used to design independent detectors,

and they are trained to learn the transmitted signal vector s

without requiring any expert knowledge. Various ML mod-

els, including DNN, CNN, RNN, ELM, AE, and ensemble

learning are used for black-box MLDs. DNNs are the most

widely used for the other two groups of MLDs. In unfolding

MLDs, the FC-DNN is unfolded to construct an unfolding

layer architecture following the PGD algorithm. By contrast,

the last group of MLDs leverages the learning capability

of DNNs to further optimize well-known classical detectors

such as OAMP, TS, and SD. While black-box and unfolding

MLDs are shown to outperform linear receivers with lower

complexity, the OAMP-, TS-, and SD-basedMLDs guarantee

near-optimal performance with reduced complexity owing to

the aid of DL.

Depending on the system configurations such as the size

and modulation scheme, an appropriate MLD can be cho-

sen for signal detection. For example, black-box MLDs

and unfolding MLDs perform relatively well for a MIMO

system with N ≪ M and low-order modulation such as

BPSK and QPSK. By contrast, in the case of N ≈ M

and higher-order QAM signaling, the black-box and unfold-

ing MLDs experience substantial performance loss. In this

case, the incorporation of ML with classical iterative or

near-optimal detection schemes can be a more appropriate

choice to guarantee good performance for those challenging

systems. Furthermore, we note that different groups of MLDs

have different computational complexities. Therefore, for an

optimal performance-complexity tradeoff, the performance

and complexity of both the ML model and hand-engineered

algorithm would have to be considered for the design of

nonblack-box MLDs.

V. BEAMFORMING AND CHANNEL ESTIMATION

In this section, we review applications of AI techniques for

MIMO beamforming and channel estimation.

A. FUNDAMENTALS OF BEAMFORMING

Beamforming is an effective means of improving the quality

of the received signals in wireless communication systems.

It can be realized via precoding at the transmitter and/or
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combining at the receiver. In this subsection, without loss of

generality, we provide the fundamentals of precoding design.

Specifically, we consider the problem of beamforming design

for a single-cell downlink system, where the base station (BS)

is equipped with N antennas and serves K single-antenna

users. The received signal at user k can be given by

yk = hHk

K
∑

k=1

f ksk + nk , (22)

where sk is the transmitted signal with E
{

|sk |2
}

= 1,

hk ∈ C
N×1 is the channel vector, and nk ∼ CN (0, σ 2) is

an AWGN noise sample at user k . Furthermore, f k ∈ C
N×1

represents the beamforming vector for user k . The received

SINR at user k is given as

SINRk =
∣

∣hHk f k
∣

∣

2

∑K
i=1,i 6=k

∣

∣hHi f i
∣

∣

2 + σ 2
. (23)

Beamforming can be implemented by analog, digital,

or hybrid analog/digital beamforming (HBF) architectures,

leading to different optimization problems for the beamform-

ing design. In particular, sum-rate maximization (SRM) is the

most widely considered problem. Therefore, in the following,

SRM is used for stating the beamforming design problem,

without loss of generality. The optimization of beamformers

based on other objective metrics such as SINR and BER

performance are also discussed in the subsection on state-of-

the-art beamforming designs.

c: DIGITAL BEAMFORMING

For digital beamforming (DBF), the SRM problem can be

expressed as:

(PDBF) : max
F

K
∑

k=1

log2 (1+SINRk) , s.t. ‖F‖2F ≤P, (24)

where P is the total power budget at the transmitter, and

F =
[

f 1, . . . , f K
]

is the beamforming matrix.

d: ANALOG BEAMFORMING

In analog beamforming (ABF), analog circuitry with phase

shifters and/or switches is used for signal processing. There-

fore, the entries of the ABF matrix are required to have a

constant modulus of 1√
N
, and their phases are adjustable in a

given space depending on the resolution of the phase shifters.

Therefore, ABF vectors belong to a feasible codebook F ,

leading to the following SRM problem:

(PABF) : max
F

K
∑

k=1

log2 (1 + SINRk) , s.t. F ∈ F . (25)

e: HYBRID ANALOG/DIGITAL BEAMFORMING

For HBF, we have f k = FRF f BBk , where FRF ∈ C
N×NRF

denotes the analog precoding matrix with NRF being the

number of RF chains, and f BBk ∈ C
NRF×1 denotes the dig-

ital precoding vector for the kth user. Therefore, the SRM

problem can be rewritten as

(PHBF) : max
FBB,FRF

K
∑

k=1

log2 (1 + SINRk) (26a)

s.t.

∥

∥

∥
FRFFBB

∥

∥

∥

2

F
≤ P, FRF ∈ F . (26b)

The SRMproblems (PABF), (PDBF), and (PHBF) for beam-

forming design are challenging because of their noncon-

vexity. Existing classical hand-engineered algorithms for the

SRM problems only achieve suboptimal solutions but remain

computationally complex because of their complex matrix

operations, such as matrix inversions and factorization and

iterations. To overcome this challenge, various ML-aided

beamformers (MLBs) that were introduced recently are dis-

cussed in the following subsection.

B. STATE-OF-THE-ART MLBs

The objective of MLBs is to leverage the learning capabil-

ity of ML models, such as SVM, CNN, DNN, DRL, and

FDL, to directly generate the beamformer [139]–[143], [161]

or to suggest its design by learning its important features

[144]–[148], [151]. In the former application, an ML tool is

modeled as a black box that outputs either the precoding/

combining vector, their index in a codebook, or the pre-

coded/combined signals. We refer to MLBs with this appli-

cation of ML as black-box MLBs. The term black box refers

to the learning capability of ML to output the desired solu-

tion, which is the beamforming vector/matrix or its indicator,

without expert knowledge. By contrast, the latter application

leverages both expert knowledge and the learning capability

of ML models. Details of these MLB groups are discussed in

the following.

1) BLACK-BOX MLB

Black-box MLB has found widespread use [139]–[144],

[161], and has been used in combination with various ML

models, such as DNNs [139]–[142], [161], SVM [143],

KNNs [142], and the support vector classifier (SVC) [142].

In this group, the task of the ML model is to generate the

precoder directly [139], [140], [143] or to output an indicator

of the precoder [141]–[144]. An important observation is

that, for black-box MLBs that output the beamforming vec-

tor/matrix directly, unsupervised learning is generally used.

In contrast, supervised learning is more widely used for

black-box MLBs that generate beamformer indicators. In the

following, we discuss these two subgroups, which reveal

interesting observations on the use of learning methods.

a: BLACK-BOX MLBs BASED ON UNSUPERVISED LEARNING

The black-box MLBs in this subgroup employ DNNs that

are trained using unsupervised learning [139], [140] owing

to the unavailability of training labels. Specifically, unlike

MLDs, where the label is set exactly to the transmitted signal,
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it is difficult to find an appropriate label for MLB design.

It is possible to use classical beamforming algorithms to

generate the label. However, in this case, the performance of

the resulting MLB is limited by that of the classical beam-

forming scheme. Therefore, a DNN was trained to enable

it to learn to optimize the analog beamformer thus maxi-

mizing the sum rate, or equivalently, to solve (PABF) [139].

A similar method was proposed [140] to generate the digital

precoder, i.e., to solve (PDBF). The proposed black-boxMLB

was demonstrated to improve the computational efficiency

significantly with performance close to that of the classical

weighted MMSE (WMMSE) algorithm [140].

b: BLACK-BOX MLBs BASED ON SUPERVISED LEARNING

Typical black-box MLBs in this subgroup were reported

by several studies [141]–[144]. Specifically, by model-

ing the beamforming selection as a classification problem,

the optimal beamformer in the codebook F can be pre-

dicted by DNN, KNN, and SVC models [142], and an SVM

model [143], [144]. In particular, simulation results con-

firmed that DNN-assisted black-box MLB performs almost

optimally and outperforms both KNN- and SVC-aided

methods [142]. Furthermore, as long as sufficient training

data are used, the derived classification model can select

the optimal analog precoder with low complexity [144].

Unlike [142]–[144], in which the classification problem is

considered, the DNN in [141] is trained to predict the achiev-

able rates corresponding to multiple precoders in the code-

book F , allowing the one with the highest predicted rate to

be chosen for application. Furthermore, Huang et al. [161]

developed a DNN-based black-box MLB to realize end-

to-end hybrid precoding in mmWave massive MIMO sys-

tems. In other words, the DNN is trained to output the

precoded signals, which are ready for transmission. This

method is capable of minimizing the BER and enhancing the

spectrum efficiency of the mmWave massive MIMO, which

achieves superior performance in hybrid precoding compared

with conventional schemes while substantially reducing the

computational complexity.

2) FEATURE-BASED MLB

The common objective of MLB schemes in this group is to

leverage expert knowledge to transform the task of predicting

the beamformer to predicting their key features, which are

sufficient to construct the beamformer. This method is ben-

eficial for both the training and application phases. Specifi-

cally, instead of learning a beamforming vector/matrix [139],

[140], [143], the ML model only needs to learn certain key

features, which are usually scalars. The considerably reduced

number of learning variables enables the ML model to be

trained more effectively to increase the accuracy. Further-

more, the smaller-sized output and reduced number of learn-

ing variables also simplify the network architecture, leading

to a reduction in the overall computational complexity in the

online application phase.

Typical work in this group entailed equipping the trans-

mitter with a uniform planar antenna array with NR rows

and NC columns of antenna elements [145]. Based on this

structure, the beamforming vector can be factorized as f k =
(Fh)r⊗(Fv)c. Here,F

h andFv are the discrete Fourier trans-

form (DFT)-based codebooks for the horizontal and vertical

dimensions, respectively, and the subscript (·)i indicates the
codeword index in the codebook. Because the DFT code-

books are available, only the codeword indexes r and c are

required to obtain f k . To this end, a DNN can be trained

to predict r and c [145]. Another application of DNN to

beamforming was reported by [146], which solved the SRM

problem by proposing the use of a DNN to approximate the

conventional beam management and interference coordina-

tion (BM-IC) algorithm. The performance of this proposed

DNN-based BM-IC scheme was shown to be comparable to

the conventional BM-IC algorithm, but requiring less compu-

tational time.

CNN has strong feature extraction as well as approx-

imation abilities. In addition, compared to DNN, CNN

has reduced the number of learning parameters by sharing

weights and biases. Therefore, it is employed in [147], [148]

to obtain key features of the beamformer. This approach is

illustrated in Fig. 8. Three CNN-based MLB schemes were

proposed for three typical optimization problems, i.e., SINR

balancing, power minimization, and SRM problems [147].

The common procedure in [147] to solve these problems was

to relax them to virtual equivalent problems such that the

solution, i.e., the beamforming matrix, can be expressed as

a function of unknown scalars, which are easier to predict.

Then, CNNswere employed to predict these scalars, followed

by a beamforming recovery module to construct the required

beamforming matrix. A similar method to solve the SRM

problem was used by proposing a CNN-based beamforming

prediction network (BPNet) [148]. Specifically, the SRM

problem is first separated into power allocation and virtual

uplink beamforming design modules, which can be jointly

optimized by the BPNet. The simulation results [147], [148]

show that the performance of the MLB scheme proposed by

Xia et al. [147] closely approximates that of the WMMSE,

whereas the performance of BPNet [148] improves with

respect to that of the WMMSE, both with much lower com-

putational complexity.

Recently, reconfigurable intelligent surface (RIS) has

emerged as a spectral- and cost-efficient approach for wire-

less communications systems. RISs provide passive beam-

forming gains to enhance the connection between the BS and

MS, especially when the direct link between them are blocked

or considerably attenuated by obstacles such as trees and

buildings. The passive beamforming design of RISs is usually

formulated in the rate/capacity maximization problem, which

are non-convex and intractable. Existing hand-engineered

schemes for passive beamforming design, such as the alter-

nating optimization or projected gradient approaches, require

a high computational complexity. To overcome this prob-

lem, various ML-based passive beamforming schemes have
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FIGURE 8. Feature-based DLB framework [147] with two main modules: NN and beamforming recovery. The NN module consists of
input, convolutional (conv), batch normalization (BN), activation (activ.), flatten, fully connected (FC), and output layers. The NN
module outputs the key features, which allow the beamforming matrix to be constructed by leveraging the expert knowledge in
the beamforming recovery module.

been proposed [149], [150], [156], [160], [162]. In particular,

in [149], [150], DNNs are leveraged for the passive beam-

forming design. Specifically, while a supervised learning

strategy is employed for the DNN to predict the achievable

rates associated with RIS interaction vectors in [149], unsu-

pervised learning is used to generate the phase shifts of the

RIS in [150].

3) RL-BASED BEAMFORMING

Several studies applied RL to beamforming design

[151]–[155]. Unlike ML-based beamforming schemes,

the common motivation for using RL for beamforming is

to formulate the beamforming design problem based on the

RL concepts, i.e., the agent, actions, and rewards, and find

the solution from interaction with the defined environment.

For example, Wang et al. [153] proposed a novel DRL-based

HBF design method named PrecoderNet to design the hybrid

precoding matrix and improve the spectral efficiency and

BERperformance ofmmWave point-to-pointmassiveMIMO

systems. This proposal is based on the finding that the HBF

problem can bemodeled as aMarkov decision process (MDP)

that can be effectively solved based on DRL by defining

the system sum rate, i.e., the objective function, as reward,

and the beamformer, i.e., the desired solution, as state. Pre-

coderNet was numerically shown to significantly outperform

classical HBF schemes, such as orthogonal matching pur-

suit (OMP) and MMSE. Mismar et al. [152] questioned the

existence of a method that could jointly solve the nonconvex

optimization problem of beamforming, power control, and

interference coordination design to achieve the SINR upper

bound without performing an exhaustive search over the

entire solution space. Therefore, they utilized the ability

of DRL to explore the solution space by learning from

interaction. In particular, the proposed DRL algorithm does

not require CSI, and hence, channel estimation becomes

unnecessary. Furthermore, DRL is also exploited for passive

beamforming problem for RIS-assisted wireless communica-

tions in [156], [157], [162].

Furthermore, DRL was also leveraged for beamforming

in Fog radio access networks (RAN) (F-RAN). Specifically,

DRL-based mode selection and resource management for

F-RAN was proposed [154]. Using DRL, the controller can

quickly control the communication modes of user equipment

(UE), i.e., cloud RAN (C-RAN) and device-to-device (D2D)

modes, and the on–off states of processors in the cloud. After

the controller makes the decision, precoding vectors for UE in

the C-RANmode are subsequently optimized in terms of their

QoS, power, and computing capability constraints. A similar

application of DRL to mode selection and precoding design

in F-RANwas investigated in [155]. Specifically, DRL-based

adaptive selection of backhaul and fronthaul transfer modes

was proposed with the aim of optimizing the performance of

content delivery. Numerical results showed that the proposed

DRL-based schemes in [154] and [155] outperformed base-

line schemes.

4) FL-BASED BEAMFORMING

Because of the special characteristics of FL, its application to

beamforming is discussed separately from the above groups.

Particularly, FL is more related to distributed learning across

the users to preserve data privacy and save network band-

width [158] rather than to beamforming design. With respect

to the beamforming problem, FL is useful for reducing the

overhead for the transmission of CSI from the users to the

BS, and it can also be combined with an ML technique

to achieve the benefits of both ML and FL. For example,

Elbir and Coleri [159] designed a CNN to generate analog

beamformers at the output. Especially, in this work, instead

of using global training as is usually the case in ML schemes,

an FL-based framework, in which the model is trained at

the BS by collecting only the gradients from users, was

employed. The simulation results showed that, compared

with ML, FL is more tolerant to the imperfections and cor-

ruptions of the CSI, and at the same time, it also has lower

computational complexity. By contrast, beamforming was

used to improve the performance and the convergence rate
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for FL via over-the-air computation in [158] or to enhance

the passive beamforming performance and user privacy in

RIS-aided wireless communications [160]. This approach

resulted in a significant reduction in training loss and an

improvement in the training accuracy.

C. CHANNEL ESTIMATION

Channel estimation is an important task in signal processing

and significantly affects the performance of the signal detec-

tion and beamforming schemes. In this subsection, for com-

pleteness, we review ML-based channel estimation schemes

that were recently reported in the literature.

Consider a block-fading MIMO system with the

input–output relationship given in (7). To estimate the chan-

nel matrix H , P pilot signal vectors {s1, . . . , sP}, which are

known at both the transmitter and receiver, are transmitted.

Let yp and np be the received signal and let the AWGN

noise vectors correspond to sp. Furthermore, by denoting

S = [s1, . . . , sP], Y =
[

y1, . . . , yP
]

, and N = [n1, . . . ,nP],

we can write

Y = HS+ N .

The task of channel estimation is to recover the channel

matrixH based on knowledge of S andY . The LS andMMSE

schemes are two typical classical channel estimators. In the

LS scheme, the estimated channel is given as [163]

ĤLS = YSH
(

SSH
)−1

. (27)

This indicates that the LS estimator only requires the obser-

vations Y without requiring the channel statistics. However,

its mean-square error (MSE) is inversely proportional to the

SNR, implying that it may be subject to noise enhancement.

By contrast, the MMSE estimator improves the performance

with respect to the LS scheme, but requires knowledge of

the channel covariance matrix R = E
{

HHH
}

. In particular,

in the MMSEmethod, the estimated channel is given as [163]

ĤMMSE = Y
(

SHRS+ σ 2MI
)−1

SHR. (28)

The assumption of knowledge of R can be unrealistic

in practical scenarios, especially in fast fading channels.

Furthermore, the matrix multiplications, additions, and inver-

sion performed by the MMSE estimator in (28) are com-

putationally intensive. In addition, the common limitation

of the aforementioned classical estimators is the significant

performance degradationwhen the pilot length is smaller than

the number of transmit antennas, i.e., P < N . We note that the

assumption of P ≥ N can be impractical for large-sized sys-

tems such as the downlink of massive MIMO systems, where

N is very large. Furthermore, the use of a long pilot sequence

generates substantial training overhead, thereby reducing the

overall spectral efficiency of the system as well as increasing

the computational load.

The application of ML to channel estimation to over-

come the limitation of classical hand-engineered channel

estimation schemes, especially for massive MIMO systems,

has recently attracted research interest. Numerous ML-based

channel estimators (MLCEs), which exploit variousMLmod-

els, learning methods, and algorithms, have been reported

in the literature. Generally, because of the heavy learning

task associated with channel estimation, DNN and CNN are

commonly used. Furthermore, for channel estimation, super-

vised learning is more widely used than unsupervised learn-

ing. In this subsection, in which we review state-of-the-art

MLCEs, we focus on their design methodology, i.e., the

motivation and how ML is leveraged for channel estimation.

Our literature review revealed that ML can be leveraged

in two different ways. First, an ML tool can be modeled

as an independent channel estimator to directly output the

channel matrix/vector. We refer to this group of MLCEs as

black-boxMLCEs. Second, ML can be used to either estimate

key features, which are then used to reconstruct the channel

matrix, or to support classical well-known channel estimation

algorithms. Therefore, we refer to the MLCEs in this group

as feature-basedMLCEs. These typical groups of MLCEs are

discussed in the following.

1) BLACK-BOX MLCEs

The task of ML in black-box MLCEs is to learn and output

the channel matrix H without expert knowledge. Because

this is a computationally intensive task, complicated NN

architectures such as DNN [164]–[166], CNN [167]–[169],

and RNN [167] are typically used. However, to focus on the

design of MLCEs rather than on the ML tools and learning

techniques, we classify the black-box MLCEs based on their

design architectures.

a: SINGLE-STAGE MLCEs

A very straightforward black-box MLCE, which fully

exploits the learning ability of a DNN, is the direct-input

DNN (DI-DNN) proposed by Gao et al. [164]. In the

DI-DNN, the pilot signals are all set to 1, and the DNN

can learn the channel matrix H based only on the received

signal Y . In particular, to reflect practical systems in

which the resolution patterns of analog-to-digital convert-

ers (ADCs) differ, Gao et al. considered mixed-resolution

ADCs, i.e., ADCs with both high and low resolution com-

ponents. Therefore, the input of the DNN can be the exact

received signal Y or its quantized versionQ(Y ). The simula-

tion results showed that the proposed scheme is less affected

by the error floor. As a result, it outperforms the classical

linear MMSE channel estimation method across the entire

SNR regimes. Other than the aforementioned approach [164],

an MLCE that uses a transformed version of the received

signals as the input of the DNN was proposed [165]. Specif-

ically, to minimize user operations and reduce the feedback

overhead, the signal received by the user is compressed to a

scalar value and provided as feedback to the BS for channel

estimation. This scheme requires only limited feedback and is

proposed for channel estimation in frequency division duplex

massive MIMO systems.
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b: TWO-STAGE MLCEs

A two-stage channel estimation process was proposed

in [166]. In the first stage, the pilot and received signals

are input into a DNN, which learns and outputs the first

estimate of the channel matrix. Then, the estimated channel

is further improved by another DNN, which, at this time,

exploits the data and received signals in the transmission

phase. The advantage of this two-stageMLCE compared with

the conventional single-stage channel estimator is that the

quality of the estimator can be improved, not only in the

training phase but also in the transmission phase. Therefore,

a larger portion of the coherent time can be allocated for

the transmission phase to achieve higher spectral efficiency,

as shown by the simulation results in [166]. Liao et al. [167]

proposed architecture named ChanEstNet, which uses two

networks: a CNN to extract channel response feature vectors,

which are then processed by an RNN to obtain the final

estimate of the channel.

The two-stage MLCE [166], [167] fully exploits the ML

models in both stages. In contrast, other researchers pro-

posed to perform the first-stage estimation based on conven-

tional schemes [168], [169]. Specifically, in the first stage,

a coarse estimate of the channel matrix was obtained by

removing the effects of the beamformers [168] or by using

an LS filter [169]. The coarse channel estimate is then

processed by a CNN to generate an estimate of the chan-

nel matrix with higher performance. Both of the proposed

MLCEs [168], [169] outperform the classical MMSE estima-

tor and its variants. The application of two-stage MLCE for

wireless energy transfer was also considered [170]. Specif-

ically, the use of a shallow FNN to obtain the energy feed-

back information harvested at the output was proposed [170].

Then, a DNN is used to learn and output the channel from the

energy feedback information.

2) FEATURE-BASED MLCE

Instead of using a single ormultiple NNs to generate the chan-

nel matrix, as in black-box MLCEs, feature-based MLCEs

leverage expert knowledge such as the known channel char-

acteristics and structure. In this way, the ML model only

needs to estimate an intermediate parameter, which is then

used to reconstruct an estimate of the channel matrix. For

example, given the channel model, channel parameters such

as the gains or angles can be learned, which can be readily

exploited to build the channel matrix. Another approach is

to leverage ML-aided image processing schemes for channel

estimation based on the similarity between sparse channels

and the natural image. These approaches are reviewed in the

following paragraphs.

a: PARAMETER ESTIMATION

The parameters of mmWave channels model were esti-

mated [171], [172]. Specifically, in a typical uplink chan-

nel of a massive MIMO system, the channel between

the BS, equipped with N antennas, and the kth user

can be expressed as

hk =
Np
∑

i=1

gk,ia(θk,i) = Akgk , (29)

where Np is the number of paths, gk,i is the complex gain

of the ith path between user k and the BS, and Ak =
[

a(θk,1), a(θk,2), . . . , a(θk,Np )
]

. Here, θk,i denotes the phys-

ical angle of arrival (AoA) of the ith path, and a(θk,i) is a

steering vector given as

a(θk,i) = 1√
N

[

1, ejπθk,i , . . . , ej(N−1)πθk,i
]T
.

From (29), it is observed that the information of the com-

plex gains and AoAs, i.e., {gk,i, θk,i, i = 1, . . . ,P}, are key

characteristics that model the channel vector hk . Motivated

by this, Huang et al. [171] proposed using DNNs to estimate

the complex gains and AoDs. This scheme outperforms many

existing classical channel estimation schemes such as com-

pressed sensing (CS). Anothermethod of leveraging the chan-

nel structure in (29) was proposed [172]. In particular, instead

of estimating the parameters of hk , a DNN was employed

to estimate the amplitudes of the elements of the beamspace

channel vector h̃k = AHk hk [172]. Based on the estimated

amplitudes of h̃k , the indices of dominant entries in hk are

determined. This allows hk to be approximately reconstructed

based on the sparsity of hk and the fact that AHk Ak = I . The

simulation results [172] verify the performance improvement

of the proposed scheme compared to the classical OMP and

distributed grid matching pursuit (DGMP) schemes.

b: IMAGE PROCESSING-BASED MLCEs

Unlike the abovementioned studies [171], [172], in which the

channel parameters were estimated byMLmodels, the sparse

channel matrix was considered as a natural image, and this

motivated the application of DL-aided image processing

techniques for channel estimation [173]–[176]. For example,

He et al. [174] found that the correlation among the elements

of the channel matrix is very similar to that of a 2D nat-

ural image: the channel is sparse and the changes between

adjacent elements are subtle. Therefore, the authors pro-

posed to leverage the learned denoising-based approximate

message passing (LDAMP) network, originated from image

recovery, for channel estimation. In the LDAMP network,

the CNN-based denoiser (DnCNN), illustrated in Fig. 9,

can handle Gaussian denoising problems. In this scheme,

a noisy channel h + βz is processed by the DnCNN to

estimate the residual noise ẑ, which is then subtracted from

the input to obtain the estimate of the channel ĥ. Interestingly,

the LDAMP network outperforms many CS-based channel

estimation algorithms. However, a drawback of the LDAMP

scheme is that the DnCNN denoiser is tailored to a specific

noise level, and it only performs well for this trained noise

level [173]. This motivated the proposal of the fast and flex-

ible denoising CNN (FFDNet) [173]. In contrast to LDAMP,

83840 VOLUME 9, 2021



Q.-V. Pham et al.: Intelligent Radio Signal Processing: Survey

FIGURE 9. Network architecture of the DnCNN denoiser [174], consisting
of 20 convolutional layers. The first layer employs 64 filters sized
3 × 3 × 1, followed by a ReLU. Each of the next 18 successive layers
contains 64 filters sized 3 × 3 × 64, each followed by a BN and ReLU.
The last layer uses a 3 × 3 × 64 filter to reconstruct the signal.

FFDNet, with a flexible noise level map at the input, is suit-

able for a wide range of SNRs. As a result, it outperforms the

LDAMP scheme across a large range of noise levels.

Another MLCE [175] is also based on the image recov-

ery problem. However, it focuses on the optimization of

CSI feedback. In particular, to avoid excessive feedback

overhead of the CSI, the authors proposed the CsiNet,

which encodes the original channel matrix to compress code-

words at the receiver before feeding back to the transmitter

for beamforming. At the transmitter, the compressed CSI

is decoded by the CsiNet to the original channel. Here,

the CsiNet is constructed based on CNNs. The aforemen-

tioned schemes [173]–[175] are based on supervised learning,

which requires a large number of parameters to be trained

before online application becomes possible. To overcome this

limitation, Balevi et al. [176] proposed an untrained DNN

based on the deep image prior network for channel estima-

tion. The idea of this scheme is that, instead of denoising

the channel matrix, the received signal is first denoised by

a DNN, followed by the classical LS channel estimation

scheme.

c: CLASSICAL LS/MMSE-BASED MLCEs

The incorporation of ML in a classical channel estimator

was proposed [177], [178]. Specifically, CNNs were used

to approximate the MMSE channel estimator [177]. Alter-

natively, the LS estimate of the channel was exploited as an

input of the DNN-based estimator [178]. These combinations

of a classical estimator and ML models result in signifi-

cant performance improvement with respect to conventional

hand-engineered estimators. In particular, the MLCE can

compensate for the performance loss resulting from insuf-

ficient pilot signals [178]; hence, it outperforms the linear

MMSE estimator. On the other hand, a hierarchical learning

algorithm was proposed to avoid convergence to local optima

during the training of the NN [177]. As a result, the trained

NN can be optimized for a general channel model using

stochastic gradient methods. The simulation results [177]

indicated that, for a simple channel model, the performance

of the proposed learning-based methods is less promising but

is significantly improved for a more realistic channel model

such as the 3GPPmodel withmultiple paths and different path

gains.

D. SUMMARY AND TAKEAWAY POINTS

In this section, typical MLBs and MLCEs were dis-

cussed on the basis of their designs, which are summa-

rized in Tables 5 and 6, respectively. Whereas black-box

MLBs/MLCEs focuses on the learning ability of ML mod-

els to learn and output beamforming/channel matrices,

feature-based MLBs/MLCEs utilizes both expert knowl-

edge and machine intelligence to construct the beam-

former and channel estimator. For the beamforming problem,

the exploited expert knowledge can either be the known

optimal solution or well-developed hand-engineered iterative

algorithms to solve SRM problems. For channel estimation,

channel characteristics such as the path gains, angles, or spar-

sity are leveraged. In particular, DL-aided image processing

techniques can be utilized for channel estimation owing to

the similarity between a 2D natural image and a sparse chan-

nel matrix. The proposed MLBs and MLCEs are shown to

have advantages in terms of performance improvement and/or

complexity reduction with respect to classical schemes.

Various MLmodels were deployed for MLBs andMLCEs,

ranging from simple SVM, SVC, and KNN models to more

sophisticated DNN, CNN, FL, and RL models. Especially,

DNNs and CNNs are widely used owing to their pow-

erful feature extraction capabilities as well as their wide

application to image processing. Most of the MLBs and

MLCEs outperform classical hand-engineered schemes such

as WMMSE for beamforming and LS, linear MMSE, OMP,

and CS-based methods for channel estimation. MLBs and

MLCEs have developed along two major well-exploited

directions: designs based on black-box and feature-based

beamformers/estimators. The former are generally more

computationally complex than the latter because ML mod-

els need to learn and output a solution, which is a vector/

matrix. However, it is independent from the solution struc-

ture. By contrast, feature-based MLBs/MLCEs generally

have reduced complexity because of the simpler learning

task. However, they depend on the structure and characteris-

tics of the solution. For example, the beamformers in analog,

digital, and hybrid beamforming have different constraints

on the phases and amplitudes of the entries, or, for channel

estimation, the channel models and sparsity vary depend-

ing on the communication scenario. These practical aspects
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TABLE 5. Summary of existing MLBs.

TABLE 6. Summary of MLCEs and selected properties.

challenge the design of MLBs/MLCEs and create room for

further studies in these fields.

VI. RESEARCH CHALLENGES AND FUTURE DIRECTIONS

This section discusses the challenges presented by intelli-

gent radio signal processing and highlights several promising

directions.

A. END-TO-END LEARNING

Most studies on intelligent radio signal processing focused

on modular design; that is, the entire system is com-

posed of blocks such as transmitters, amplifiers, channels,

and receivers, each of which has its individual process.

However, the number of services and applications that

require an end-to-end performance guarantee is expected

to increase [179], [180]. Wireless channels are becoming

increasingly complex and are affected bymany factors, adver-

saries, channel nonlinearities, and hardware impairments.

Additionally, the performance metrics (e.g., rate 0.1-1 Tbps,

and end-to-end delay 1 ms), frequency bands (sub-6 GHz,

mmWave, THz bands), waveforms, and modulation tech-

niques (e.g., index and spatial modulation) are expected to

increase in next-generation networks [1]. Generally, AI has

great potential to provide effective end-to-end solutions.
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Motivated by recent seminal work [8], many studies have

been dedicated to improving wireless systems, e.g., modu-

lation identification and channel estimation for spectrum sit-

uation awareness and wireless security [36]. However, many

challenges remain for end-to-end learning when various fea-

tures and new requirements are taken into consideration.

B. DISTRIBUTED, CENTRALIZED, OR HYBRID LEARNING

Most AI-enabled techniques for signal processing focus on

achieving the best performance (e.g., accuracy and spec-

tral/energy efficiency), but the implementation complexity is

often neglected. Indeed, when the training server has suffi-

cient computing and storage capabilities, centralized learning

is preferred over distributed learning. This is a reasonable

choice because large amounts and various types of data can be

collected and trained centrally. Meanwhile, problems arising

from synchronization, data distribution, and communication

dynamics can be safely ignored. The preference for central-

ized and distributed learning is similar to, for example, cen-

tralized optimization vs. distributed game approaches, cloud

vs. edge computing, and RAN vs. C-RAN, which has been

developed for wireless communications for decades. Central-

ized learning has three main drawbacks: high computational

complexity, security and data privacy (owing to the high

concentration of data), and poor scalability. This approach

also fails to exploit the large number of computing resources

distributed over the network and is not applicable to scenarios

in which a centralized entity is not available, e.g., ad hoc

and wireless sensor networks. An example of distributed

learning for online medium access control in a spectrum

sharing network has been discussed [181]. On the other hand,

hybrid learning is a promising solution to these drawbacks

as it potentially maintains a balance between complexity and

performance. In particular, a learning model can be divided

into smaller tasks and then trained hierarchically, e.g., cloud,

edge, and end devices. However, selecting the learning mode

largely depends on problems and design objectives, and it

should be carefully considered for practical implementation.

Transfer learning is also a good AI technique to be consid-

ered for radio signal processing since learning model can be

improved by utilizing retrained AI models using a similar

task.

C. MODEL COMPRESSION AND ACCELERATION

AI-enabled approaches have been shown to have many

advantages over conventional approaches, but they are usu-

ally computationally and memory intensive. Compared with

datasets in computer vision and natural language process-

ing, the datasets used to train signal processing models are

typically smaller. However, IoT/edge devices are limited

in terms of computing capability and memory and stor-

age capacity. Additionally, because many AI-based services

will be available at the network edge, being able to deploy

intelligent signal processing algorithms in resource-limited

devices (e.g., sensors, industrial IoT and wearable devices,

and drones) with comparable performance plays a vital role.

For instance, training the MCNet architecture [5] to classify

24 modulations takes approximately 24 h on a computer with

16 GB memory and a NVIDIA GeForce GTX 1080Ti GPU,

and the number of trainable parameters can reach 220,000.

The training time would increase markedly and the classifica-

tion accuracy decreases if the model is trained on a personal

computer with less processing power. A promising solution

to overcome these challenges is model compression and

acceleration. Compressing and accelerating DL techniques

can be classified into four main groups [182]: 1) parameter

pruning and quantization, 2) low-rank factorization, 3) trans-

ferred/compact convolutional filters, and 4) knowledge distil-

lation. Over the last few years, DL has employed a large num-

ber of techniques and interested readers are invited to refer to

a recent survey [183] for more details. Our observation is that

most existing solutions focus on achieving high performance

while ignoring the suitability of the proposed DL models for

resource-constrained devices. Another promising direction is

to offload the training and inference processes to the edge

(i.e., edge intelligence in the literature), i.e., AI techniques

are employed at the network edge to intelligently process

radio signals. For example [184], the joint task allocation and

downlink beamforming problem was optimized to minimize

the total energy consumption. Applications of a 6G tech-

nology, namely reconfigurable intelligent surface, for edge

inference, was reported [185].

D. DATASET GENERATION AND UNIFICATION

The quality of training data greatly affects the performance

and prediction accuracy of AI-enabled techniques. Compared

with other fields such as computer vision and healthcare,

the communication and signal processing communities were

not ready to standardize data generation methods and unify

the datasets for performance evaluation. The reason for this

is that previous network generations can operate effectively

with conventional approaches, such as queuing models, con-

vex optimization, and game theory. However, some initiatives

and competitions have been launched to resolve this issue,

for example, IEEE ICC 2020 for vision-aided wireless sys-

tems [186] and IEEE CTW 2020 for user localization [187].

The Machine Learning for Communications ETI led by the

IEEE is one of the best initiatives as it maintains a collection

of datasets, papers, reproducible codes, etc., about the use of

ML for wireless communications. However, the number of

datasets is quite small and completely inadequate for a sub-

stantial number of network scenarios and problems in wire-

less systems and radio signal processing. Moreover, the size

and quality of these datasets remain questionable as only

a few are ready for practical implementation. Additionally,

datasets would need to be continuously updated as the net-

work will become highly dynamic, dense, and heterogeneous.

E. UNIVERSALITY AND PRACTICALITY

Despite a few years of development and usage, the number of

published papers and preprints are increasing daily, and many

studies are devoted to solving the same problem. Moreover,

VOLUME 9, 2021 83843



Q.-V. Pham et al.: Intelligent Radio Signal Processing: Survey

some researchers prefer to use simulated and private datasets,

whereas others use public ones. This makes it difficult to

compare the proposed algorithms when they are implemented

in the same network setting and design objective. For exam-

ple, the RadioML dataset [78] was created for the classifica-

tion of 11 modulation types (8 digital and 3 analog), which

have since become 24 modulations.1 Utilizing the same

RadioML dataset, Huynh-The et al. [5] applied their DLmod-

els to all themodulation types, whereas other researchers only

considered a set of selected modulation formats, e.g., 5 types

(BPSK, QPSK, 8PSK, 16QAM, 64QAM) [96], and 11 types

(the RadioML2016.10a dataset) [188]. Additionally, other

researchers tested their classification approaches using sim-

ulated datasets, wherein emulating realistic channel impair-

ments is difficult [73], [79]. The fact is that, the higher the

modulation order, the lower the classification accuracy [5].

Therefore, certain studies only experimented with low-order

modulation formats and the applicability to high-order mod-

ulations is, therefore, questionable. All the aforementioned

considerations encourage research communities to follow a

standard methodology to enhance the practicality. Addition-

ally, existing approaches need to be examined to make sure

that they and/or their modifications can support new services

and scenarios in the future.

F. DEEP SEMISUPERVISED AND ACTIVE LEARNING

In our summary of recent studies on intelligent signal pro-

cessing, we observed that they mostly focus on (deep) super-

vised learning. Themainmotivations for the use of supervised

learning in wireless communications are its high performance

(e.g., classification accuracy) and exploitation of available

labeled datasets. The use of supervised learning in wireless

communications would also be highly desirable; however,

labeled datasets for a learning task are not always available

and would even be time consuming and costly to construct in

many cases. Most recent AI research is based on simulated

datasets that were created using communication tools, and

wherein channel characteristics and design features are emu-

lated. In many cases, optimization problems are formulated

and solved to obtain the locally optimal solutions, which

are then considered as labeled instances of the supervised

learning model. Therefore, the performance of an unsuper-

vised learning method could possibly be higher than that of

its supervised counterpart. An example is the optimization

of the weighted sum rate problem, which was achieved by

optimizing the transmit beamforming for a downlink MIMO

system [140]. The unsupervised learning approach outper-

forms the supervised learning method for various settings

such as the SNR and number of transmit antennas. This

interesting observation shows that (deep) unsupervised learn-

ing has the potential to deliver high performance, especially

when truly labeled datasets are not available. The availability

of domain knowledge and truly labeled examples (i.e., real

data or data generated by global optimization algorithms)

1The dataset is available at https://www.deepsig.ai/datasets

would render semisupervised learning a promising solution

for this problem as it combines both the supervised and unsu-

pervised approaches to exploit their respective advantages.

Active learning provides other ways to solve the challenge

of creating labeled instances. In particular, the central server

(e.g., eNBs equipped with computing capabilities) may query

end devices to provide labeled instances, thereby improving

the learning performance using the collected labeled data.

Applications of active learning for signal processing can be

found in a few recent studies of the initial access problem in

mmWave systems (for example, [189]) and of joint power and

resource block allocation in vehicular networks [190].

G. STANDARDIZATION AND OPEN-SOURCE ACTIVITIES

Although AI for radio signal processing has been a hot topic

and has received much interest in the last few years, the suc-

cessful integration of AI for practical applications and stan-

dardization activities is still in its infancy. This could be due

to several reasons, including the lack of cooperation between

academia and industry, competition among high-tech coun-

tries, the impact of the coronavirus pandemic, etc. However,

certain bodies have already made initial efforts to integrate

AI techniques into both existing and future networks. The

Telecommunication Standardization Sector of the Interna-

tional Telecommunication Union (ITU) proposed a unified

architecture for ML in future networks [191]. The unified

architecture is composed of three main blocks, including 1) a

management subsystem, which allows operators to deploy

on-top services without affecting the underlying infrastruc-

ture, 2) an ML pipeline, which defines a set of logical entities

to perform specific functions, and 3) a closed-loop subsys-

tem, which helps the ML pipeline adapt to network dynam-

ics. In particular, the ITU architecture needs to satisfy four

high-level requirements: use of multisource and correlated

data; support for multiple technologies and network layers;

support for multilevel, multidomain, and distributed services;

and negligible effect on the underlying infrastructure. Very

recently, the 3GPP started a study item focusing on traffic

characteristics and performance requirements of AI models

in 5G.Methods of overcoming particular challenges are spec-

ified [192]; for example, achieving AI inference on devices

with limited computing and battery capacities, and designing

on-board AI inference according to network dynamics.

In addition to standardization, open-source activities play

an important role in accelerating the adoption of AI-based

signal processing schemes in real wireless communications.

However, it is worth noting that the availability of many

open-source platforms would limit industrial collaboration

and reduce the verification of intelligent signal processing

solutions [27].

H. SUPPORT FOR NEW SERVICES

Although few metrics are used in most AI-enabled schemes

to evaluate their performance, emerging applications and

new services are expected to have more stringent require-

ments [1]. For example, smart railway station services could
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be considered as a type of mission-critical services, but they

have additional considerations, which may include massive

devices with different characteristics, heterogeneous environ-

ments, and use cases (e.g., energy charging, emergency, and

public safety) [193]. Current AI-enabled signal processing

frameworks are often unable to meet the requirements of

these services. Embedding AI techniques in signal processing

and signaling protocols is a challenging task as the speci-

fication is still under development. As a result, partners in

academia and industry need to cooperate more closely to

accelerate the standardization and specification phase. More-

over, more performance metrics and factors would have to

be considered in the design of AI solutions, for example,

the training and inference time, reliability, explainability,

scalability, simplicity, and security.

VII. CONCLUSION

In this paper, we presented a survey of state-of-the-art AI

solutions for the intelligent processing of radio signals.

We first presented a brief overview of AI, ML, FL, and

well-known DL architectures such as DNN, CNN, RNN,

and DRL. Then, we reviewed applications of AI techniques

for three main themes of radio signal processing: modula-

tion classification, signal detection, and channel estimation

and beamforming. We discussed these themes according to

various classifications and provided necessary background

knowledge to enable readers with different types of related

expertise to obtain a good understanding of the correspond-

ing topic. We also emphasized a number of challenges that

remain unsolved and also offered several suggestions and

directions for future research. We hope that this paper can

serve as an important reference for both academic and indus-

trial audiences and drive further research and innovation in

the domain.
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