
INFORMATICA, 2013, Vol. 24, No. 3, 381–394 381
 2013 Vilnius University

Intelligent Reconfigurable Method of Cloud
Computing Resources for Multimedia Data
Delivery

Junho CHOI1, Chang CHOI1, Kangbin YIM2, Jeongnyeo KIM3,
Pankoo KIM1 ∗

1Department of Computer Engineering, Chosun University

309 Pilmun-daero, Dong-gu, Gwangju, Republic of Korea
2Department of Information Security Engineering, Soonchunhyang University

Asan, Chungnam, Republic of Korea
3Mobile Security Research Team, Electronics and Telecommunications Research Institute

218 Gajeong-ro, Yuseong-gu, Daejeon, Republic of Korea

e-mail: xdman@paran.com, endurancearua@gmail.com, yim@sch.ac.kr, jnkim@etri.re.kr,

pkkim@chosun.ac.kr

Received: February 2012; accepted: February 2013

Abstract. While users increasingly use such large multimedia data, more people use the cloud com-
puting technology. It is necessary to manage large data in an efficient way, and to consider trans-
mission efficiency for multimedia data of different quality. To this end, an important thing is to
ensure efficient distribution of important resources (CPU, network and storage) which constitute
cloud computing, and variable distribution algorithms are required therefor. This study proposes a
method of designing a scheme for applying MapReduce of the FP-Growth algorithm which is one
of data mining methods based on the Hadoop platform at the stage of IaaS (Infrastructure As a Ser-
vice) including CPU, networking and storages. The method is then for allocating resources with the
scheme.
Key words: cloud computing, mapreduce, fp-growth algorithm, resource provisioning.

1. Introduction

Cloud computing is actively used for reducing computing environment costs and efficient
use of IT infrastructure as many people use the Internet environment and user’s request
of multimedia data thus increases. Cloud computing is a more advanced technology for
distributed processing, e.g., a thin client and grid computing, which is implemented by
means of virtualization technology for servers and storages, and advanced network func-
tionality. Cloud computing is expected to be a new paradigm to lead the next generation
computing environment.

The tendency of contents services provided by global IT vendors is showing large
scale multimedia data, e.g., movies, games, and music. Cloud computing is emerging as a

*Corresponding author.

382 J. Choi et al.

key alternative for next generation digital contents services in terms of connection speed,
service quality, and pricing which is a challenge for large scale multimedia services.

Issues involved in providing the multimedia data services include variable usage of
CPU, management of storage usage, the long process of installation, high costs for facility
investment, and continuous post-installation maintenance (Mladen, 2008). For address-
ing the issues, multimedia data service providers integrate physical resources by means
of virtualization technology, and then provide services required by users. A cloud system
should provide a user-friendly flexible execution environment to allow all users’ appli-
cations to operate because resource request from users’ applications changes over time.
A mechanism is needed which ensures the performance of applications used by users.
Therefore, it is important to balance resource usage with request thereof so as to flexibly
support resource request changing over a given time.

In this study, we propose an intelligent cloud system model for analyzing user’s re-
source usage to predict the amount of user’s resource request in advance. The proposed
method is a scheme for allocating resources for large scale multimedia data services on
the basis of the Hadoop platform at the stage of infrastructure service (Infrastructure As
a Service), e.g., CPU, network and storages. The proposed method is implemented by de-
signing a scheme for applying MapReduce of the FP-Growth algorithm which is one of
data mining methods, and predicting requested services and the amount of resources over
time.

2. Related Studies

2.1. Computing Technology for Large Multimedia Processing

A distributed computing platform for large multimedia services is supported by the cluster
management system which provides monitoring and scheduling for a distributed environ-
ment. The distributed computing platform is implemented by integrating distributed file
system technology for storing large data, distributed data storage management technology
for supporting searching and modification of large data, distributed parallel processing and
analysis technology for supporting large data analysis (Chaiken, 2008). The distributed
computing platform technology is a key technology of cloud computing together with the
virtualization technology.

In the cloud computing environment, batch data processing for data processing and
analysis takes several days or tens of days as the volume of Internet data continues to in-
crease. For such large data processing, the MapReduce parallel processing model is com-
monly used as a standard. The MapReduce model is a parallel processing model proposed
for quickly operating batch jobs for Internet services, and is applied to Google’s various
services (earth, news, analytics, search, indexing, etc.; Lammel, 2008). MapReduce is a
model for processing 〈key, value〉-based data in parallel, and consists of two steps of car-
rying out the Map task on the basis of input data sources to create interim results, and
carrying out the Reduce task by using the interim results as input to obtain final results,
as shown in Fig. 1.

Intelligent Reconfigurable Method of Cloud Computing Resources 383

map

map

map

reduce

reduce

split 0

split 1

split 2

split 3

split 4

input
HDFS

copy

sort / merge

part 0

part 1

output
HDFS

Fig. 1. Map split input data and reduce partitioned intermediate data.

The input data are divided into a plurality of data, for some of which the Map task is
carried out in a plurality of nodes. Each of Map tasks stores the result of processing the
input data allocated thereto in the local file system of each node. The Reduce task receives
the interim results stored in the plurality of nodes for integrated processing to provide final
results. Task distribution is implemented so that data can be processed in the node where
they are placed if possible so as to minimize network traffic. To this end, data are divided
in consideration of the status and location of data storage.

2.2. FP-Growth Algorithm

The Apriori algorithm is a representative association rule extraction technique for data
mining, and finds frequent item sets for binary association rules. The Apriori algorithm
finds association rules, using the rule that all of the subsets, not empty sets of the frequent
item sets, are frequently found. However, since it is necessary to create candidate sets of
the items in a transaction to find frequent item sets each time, it is required to scan related
data a plurality of times. To address this issue, a technique to find complete frequent item
sets with the Divide-and-Conquer without creating candidates is called the FP-Growth
(Frequent Pattern Growth) algorithm (Li, 2008). For creating an FP-Tree in the FP-Growth
algorithm, a header table is created, which is a top-down list of frequent 1-item sets of
transaction data on the basis of frequent patterns. The header table is used to filter and
line up the transaction data with only the items which meet the minimum support.

A FP-Tree is created by creating a rootnode whose node name is null and inserting
the lined-up transaction data in the tree. In this case, each node saves the name and fre-
quency of items. If an item with the same name as the node created by means of a previous
transaction is added, the frequency of the existing node is increased instead of creating a
new node. The item in the head table is connected to the node with the same name in
the tree for the association rule extraction in the FP-Tree (Iko, 2003). For association rule
extraction in the FP-Tree, the tree is searched from the lowest item to the root node in the
header table, and a Conditional Pattern Base is created, which has a suffix of the node on
the lower layer. The Conditional Pattern Base is used to create a Conditional Pattern Tree
which meets the minimum support to extract an association rule.

384 J. Choi et al.

3. Intelligent Reconfigurable Method of Cloud Computing Resources

In the cloud computing environment, it is necessary to be able to manage a number of
nodes which consists a cluster for large multimedia data services and a key is efficient
distribution of distributed file system resources (Papadimitriou, 2008). The file system
which is proposed in this study and implements efficient resource distribution provides
configuration and automatic management of a large cluster system. The file system aims
to implement on-line efficiency and availability, and to improve the usage in a general data
center for efficient distribution of resources.

3.1. Data Collection and Pre-Processing Stage

A collection is made of information including system specification, usage of resources,
and task processing capacity so as to analyze the type of using nodes in the cloud comput-
ing environment at given time intervals to store the data in a log format. Nodes are selected
on the basis of the collected data to allocate resources when users request them, so that the
cloud system can provide appropriate resources to users. This study focuses on predicting
stability and performance of resources depending on the type of using resources in each
time zone. Such prediction contributes to dynamic configuration of services and enables
efficient distributed processing of tasks. For efficient resource allocation, use is made of
basic node information of log data, average use of resources by nodes, average processing
time of nodes and average success rates of nodes as shown in Table 1.

For collecting the above data, a collection is made of cluster information for each node
provided by the Hadoop file system, the use of resources by each node, and the use of
resources of each system by means of a system resource monitoring tool. Modeling for the
resources of each node is as follows: NodeRes = 〈R,T ,C,W,U〉, wherein T represents
time, R represents resource sets, C represents the number of resources, W represents the
task carried out by resources and U represents the usage of workable resources.

Table 2 shows details of log files collected for analysis, which include stored infor-
mation e.g., system specification, resource usage, and work capacity. The collected infor-
mation goes through the pre-processing process to be applied to the parallel FP-Growth
algorithm. The contents information of multimedia data is collected in the pre-processing
process to be referred to in the resource allocation process of the Hadoop file system in

Table 1
Name node log data of Hadoop file system.

2012-01-21 11:25:03,453 INFO org.apache.hadoop.hdfs.server.namenode.FSNamesystem: Number of transac-
tions: 0 Total time for transactions (ms): 0 Number of transactions batched in Syncs: 0 Number of syncs: 0 Sync-
Times (ms): 0
2012-01-21 11:25:03,968 INFO org.apache.hadoop.hdfs.server.namenode.FSNamesystem: Roll FSImage from
117.16.23.173
2012-01-21 11:25:03,968 INFO org.apache.hadoop.hdfs.server.namenode.FSNamesystem: Number of transac-
tions: 0 Total time for transactions (ms): 0 Number of transactions batched in Syncs: 0 Number of syncs: 1 Sync-
Times (ms): 47

Intelligent Reconfigurable Method of Cloud Computing Resources 385

Table 2
Extracted information from log data.

Item Properties

Node information Node ID, CPU Info., Memory Info., HDD Info., Network Info.
Use of resource Record Time, CPU Usage, Memory Usage, HDD Usage
Job information Record Time, Job Type, Response Time, Job Status

Table 3
Collected data set through pre-processing.

Node ID CPU Memory Network Block Memory File Ramining Contents
size size buffer (%)

Node 1 800 4 GB 100 MB 128 MB 100 131072 70.21 AVI
Node 2 800 2 GB 100 MB 64 MB 100 131072 80.34 AVI
Node 3 900 2 GB 100 MB 64 MB 100 131072 69.33 AVI
Node 4 800 2 GB 100 MB 128 MB 100 65536 81.21 MPEG
Node 5 900 2 GB 100 MB 128 MB 100 131072 71.98 MPEG
Node 6 900 2 GB 50 MB 128 MB 100 65536 54.67 MPEG
Node 7 800 2 GB 50 MB 128 MB 100 131072 89.12 AVI
Node 8 900 2 GB 50 MB 64 MB 100 65536 74.48 AVI
Node 9 900 2 GB 100 MB 64 MB 100 131072 61.32 AVI
Node 10 900 4 GB 100 MB 64 MB 150 65536 88.19 AVI

consideration of the type and format of the multimedia data, so that the contents informa-
tion can be included in the data set of each node shown in Table 3.

3.2. Designing and Applying Parallel FP-Growth Algorithm

In this section, the parallel FP-Growth algorithm is designed in the steps shown in Fig. 2
for interworking the FP-Growth algorithm with MapReduce calculation for the purpose
of distributed processing in the cloud computing environment.

Step 1: divides a log file or database to store it in each system in the cloud computing
environment.

Step 2: carries out MapReduce calculation to find the support of all items of each data.
This step searches for the item I and stores it in Frequent List. The item I is represented as
dGi, and Mapper is created as 〈key = d, value = 1〉. Finishing the Mapper processing, key
is created. The key set is represented as S(key), and the pair 〈key, S(key)〉 for the key and
the value thereof is transferred to the Reducer. Finishing the process, the Reducer outputs
〈key = null, value = key + sum(S(key))〉.

Step 3: divides the item |I | stored in the group list of group G. This step is carried out
by each slave system.

Step 4: inputs the data divided and created in step 1 to create processors independent
of the group. Substituting ai corresponding to the group ID to find each item dGi, the
data of 〈key = g, value = Gi[1]Gi[n]〉 is created. Calculating the Mapper, the value of
〈Key, S(key)〉 is transferred to the Reducer. The Reducer outputs the value of 〈Key =

null, value = key + sum(S(key))〉 and collects the results in step 4 to get final results.

386 J. Choi et al.

Input Data (Log Data)

Node 1 Node 2 Node 3 Node n......

Node 1 Node 2 Node 3 Node n......

Frequent List

Group List (G)

Integrated Data

Node 1 Node 2 Node 3 Node n......

Group 1 Group 2 Group 3 Group n......

Node 1 Node 2 Node 3 Node n

Final Result (Frequent Pattern)

......

Map

Reduce

Map

Reduce

Fig. 2. Steps of applying MapReduce calculation of FP-Growth algorithm.

Table 4
The generated frequent patterns by parallel FP-Growth algorithm.

100, 900 2 GB, 900, 64 MB
AVI, 900 100, 2 GB, 900, 64 MB
100, AVI, 900 100 MB, 900, 64 MB
2 GB, AVI, 900 100, 100 MB, 900, 64 MB
100, 2 GB, AVI, 900 2 GB, 100 MB, 900, 64 MB
100 MB, AVI, 900 100, 2 GB, 100 MB, 900, 64 MB
100, 100 MB, AVI, 900 131072, 64 MB
2 GB, 100 MB, AVI, 900 900, 131072, 64 MB
100, 2 GB, 100 MB, AVI, 900 100, 900, 131072, 64 MB
2 GB, 900 AVI, 900, 131072, 64 MB
100, 2 GB, 900 100, AVI, 900, 131072, 64 MB
100 MB, 900 2 GB, AVI, 900, 131072, 64 MB
100, 100 MB, 900 100, 2 GB, AVI, 900, 131072, 64 MB
2 GB, 100 MB, 900 100 MB, AVI, 900, 131072, 64 MB
100, 2 GB, 100 MB, 900 100, 100 MB, AVI, 900, 131072, 64 MB
MPEG 2 GB, 100 MB, AVI, 900, 131072, 64 MB
900, MPEG 100, 2 GB, 100 MB, AVI, 900, 131072, 64 MB
100, 900, MPEG 2 GB, 900, 131072, 64 MB
2 GB, 900, MPEG 100, 2 GB, 900, 131072, 64 MB
100, 2 GB, 900, MPEG 100 MB, 900, 131072, 64 MB

Apply the minimum support 2 and the minimum support 4 to the data sets for each node
created by means of the proposed algorithm to find frequent patterns shown in Table 4.

In Table 4, illustrated dominant frequent patterns are {100, 2 GB, 100 MB, 64 MB},
{100, 2 GB, 100 MB, 131 072}, {100, 100 MB, AVI, 131 072}, {100, 2 GB, 128 MB},

Intelligent Reconfigurable Method of Cloud Computing Resources 387

Storage 1

Storage 2

Storage 3

Storage 4

Storage 1

CPU 1

CPU 2

Storage 2

CPU 1

CPU 2

CPU 3

CPU 4

Resource 1 Resource 2 Resource 3 Resource n.........

Virtual Resource 1 Virtual Resource 2 Virtual Resource 3

Resource Index

The optimum resource by proposed method

Fig. 3. An optimized resource distribution by the parallel FP-Growth algorithm.

{100, 2 GB, 100 MB}, and {100, 100 MB, AVI}. This implies that the above resource usage
patterns are used in each slave system for processing large multimedia data by means of
the Hadoop file system. Therefore, efficient resource distribution is achieved in setting the
system in terms of system management as shown in Fig. 3 in consideration of resource
usage when carrying out a specific task.

4. Test and Evaluation

4.1. Test Environment

In this study, a system used is a Hadoop platform to implement a cloud computing-based
system. The Hadoop platform is developed by the Apache Project Group which is an open
software project. For the purpose of test, the cloud computing environment consisting of
10 PCs as a node of a different nature and different performance was constituted. The OS
of each node was constituted with Linux and Windows Server which supports the Hadoop
platform.

4.2. Testing Proposed Architecture

Now, application of the proposed architecture is tested so as to evaluate the performance
of resource extension to which the parallel FP-Growth algorithm proposed in Section 3
is applied, and the parallel FP-Growth algorithm is carried out to analyze the result. The
proposed method of resource extension may be lowered in terms of performance depend-
ing on inefficient memories between the master node and the slave node, processes and
network status. The test is carried out by comparing the performance of the system to
which the proposed resource extension method is applied with the performance of the
single processing system with respect to processing time to get performance results. The
RandomWriter module was set to create input data of 70 GB, and to request processing
1 000 to 10 000 tasks to evaluate processing performance. The following equations (1) and

388 J. Choi et al.

Table 5
The reduction rate of processing time.

Number of Single node processing Processing time by applying Reduction of processing
processed tasks time (s) proposed resource (s) time (%)

1000 108.33 93.13 14.03
2000 290.23 200.67 30.86
3000 481.11 310.12 35.54
4000 589.78 425.87 27.79
5000 764.39 561.36 26.56
6000 1011.71 753.34 25.54
7000 1234.59 928.01 24.83
8000 1382.81 1082.45 21.72
9000 1571.32 1184.21 24.64

10000 1791.14 1303.12 27.25

(2) are for calculating the sum of processing (P) for the time (PT : Processing Time) taken
only for the processing in the node in the cloud environment used in this test. Here, the
time is related to the time in a single node (SNPT Single Node Processing Time) and the
processing time (CPT : Cloud Processing Time) in the cloud computing environment to
which the proposed algorithm was applied. Also, the average in Table 5 was obtained for
the reduction rate of processing time each time 1000 tasks increased.

SNPT =

p
∑

n=1

PSingleNodeTn. (1)

CPT =

p
∑

n=1

PCloudTn. (2)

In this test, the number of tasks were increased from 1000 to 10 000 for processing to
measure the average processing time and then to calculate the result on the basis of the
number of tasks.

Figure 4 illustrates the result of measurement in the test. As the number of tasks carried
out by applying the proposed method in the cloud computing environment increased, the
effect of application was greater. The ratio was calculated as a ratio (PTR: Processing
Time Ratio) of the single node processing time (SNPT : Single Node Processing Time) to
the processing time (CPT : Cloud Processing Time) in the cloud computing environment
to which the proposed algorithm was applied, so as to identify the relation with processing
time.

PTR(%) =
SNPT

CPT
. (3)

The processing time in the method of resource allocation to which the proposed al-
gorithm was applied in the cloud computing environment revealed the processing time
efficiency of approximately 25.88% as compared to the single node processing time. It
implies that it is possible to reflect the performance of each slave node to a maximum

Intelligent Reconfigurable Method of Cloud Computing Resources 389

Fig. 4. A comparison of processing time through resource extension.

in the context with issues of increasing single node processing tasks and network trans-
mission time. It is considered that the processing time by the resource allocation method
proposed in the cloud computing environment is more efficient for processing tasks than
a single node in that storage resources of cloud computing are used.

4.3. Testing Application of Parallel FP-Growth Algorithm

For this test, input data of 600 GB (files of 60 GB, respectively, 10 per node) were created
with the RandomWriter module provided in Hadoop. An example sorter was used to sort
the data. Test data Table 3 were obtained for 10 test nodes by changing resources of each
node, the buffer and block size of the Hadoop file system, and memory allocation values.

Application of the association rules for using resources in the cloud environment in
independent nodes aims at finding reliable items for options of each resource. Therefore,
it is possible to set best resources for a specific task by adjusting frequent items of each
resource frequently used by each node in cloud computing for Minimum Support. Perfor-
mance is measured by changing settings of resources of each node selected through this
process.

First, the test data in the node where the Hadoop file system running with the default
settings has been installed were created to measure the loading process, memory usage,
CPU usage and network usage with respect to resource usage of each node. Each node
had the data used for applying the parallel FP-Growth algorithm as Hadoop file system
information.

A comparison was made between the result of storage clustering with default settings
in one virtualization server environment and the result of storage clustering in a distributed
environment by applying a method of allocation to which the parallel FP-Growth algo-
rithm was applied. The minimum support of related settings of each system was set to 2%,

390 J. Choi et al.

Table 6
A comparison of transmission time after applying the parallel FP-Growth algorithm.

The number of times Node 1 Node 2 Node 3

Once 5.250 5.067 5.417
Twice 5.350 5.167 5.333
3 times 5.150 5.300 5.467
4 times 5.283 5.183 5.450
5 times 5.117 5.317 5.183
6 times 5.383 5.050 5.183
7 times 5.167 5.167 5.067
8 times 5.250 5.233 5.067
9 times 5.192 5.242 5.108
10 times 5.308 5.125 5.125
Average transmission time 5.245 5.185 5.240

Fig. 5. Average transmission time after changing settings.

and the number of data input once to the map function was set to 10 000. As the size of
data became greater, more time was taken for running the data in proportion to allow data
of any size to be executed. Table 6 shows the time for completing transmission measured
after applying the algorithm.

The average transmission time for the resource usage of Nodes 1, 2 and 3 is shown in
Fig. 5 when the same test was carried out after changing the Hadoop environment with
the settings by means of the parallel FP-Growth algorithm.

Figure 6 illustrates a graph about a comparison of results measured with default set-
tings and the result measured with settings by means of the parallel FP-Growth algorithm.
The usage of resources is calculated based on service performance (SP) including CPU
(Ci), Memory (Mi) and Storage (Si). It can be expressed in Eq. (4) as below.

QoS[SP] =
∑

n

SP

Ci

Mi

Si

 . (4)

The change in the resource usage is within the average standard deviation, which is not
significant.

Intelligent Reconfigurable Method of Cloud Computing Resources 391

Fig. 6. A comparison of transmission time.

The node 2 which is finally on the first place among the nodes had a high level of
information including CPU of 4 GHz, the memory of 4 GB, the hard disk of 300 GB, and
the network card of 100 Mbps. Finally, it is seen the resource usage of the optimization
selection node was stably kept the average approximately 23.2%. Change in the resource
usage was within the average standard deviation which implies insignificant change. As
a result, although Node 1 was rather on a low place when the recent data was used for
analysis, Node 1 was on the highest place because of low node loads on the average and
less changes.

5. Conclusion

This study proposed a method of providing large contents services by means of a method
of managing contents for constituting an efficient cloud environment for large contents
services in a cloud computing environment, and for implementing compatibility among
the cloud computing platforms, and by means of distributed parallel processing. To this
end, this study proposed a method of allocating resources for constituting an efficient
cloud computing environment so as to provide high performance services for large con-
tents on the basis of the Hadoop platform at IaaS (Infrastructure as a Service), e.g., CPU,
networking and storages. The proposed method uses MapReduce programming and as-
sociation rules used in detecting hidden patterns in data mining so as to implement high
performance contents processing. The proposed method was applied to the Hadoop file
system for cloud computing. As a result, the proposed method achieved improved per-
formance and speed by more than 23.2% by applying the resource allocation method to
which the parallel FP-Growth algorithm proposed in this study was applied, as compared
to the environment in which resources were allocated with existing settings. This study
demonstrated that the processing time can be reduced, which increases with continuously
increasing data processing processes for data processing and analysis which is a challenge
for high performance data processing in a cloud computing environment for large contents
services.

392 J. Choi et al.

Acknowledgements

This work was supported by the IT R&D program of MSIP/KCA [12-921-06-001, “Devel-
opment of MTM-based Security Core Technology for Prevention of Information Leakage
in Smart Devices”].

References

Azza, A., Kamil, B., Daniel J.A., Avi, S., Alex, R. (2009). HadoopDB: an architectural hybrid of mapreduce
and dbms technologies for analytical workloads. Proceedings of the VLDB Endowment: VLDB Endowment

Hompage Archive, 2(1), 922–933.
Chaiken, R., Jenkins, B., Larson, P.A., Ramsey, B., Shakib, D., Weaver, S., Zhou, J. (2008). Scope: easy and

efficient parallel processing of massive data sets. Proceedings of the VLDB Endowment: VLDB Endowment

Hompage Archive 1(2), 1265–1276.
Chu, C.T., Kim, S. K., Lin, Y.A., Yu, Y., Bradski, G., Ng, A. Y., Olukotun, K. (2007). Map-reduce for machine

learning on multicore. Neural Information Processing Systems, 19, 281–288.
Dean, J., Ghemawat, S. (2010). MapReduce: a flexible data processing tool. Communications of the ACM, 53(1),

72–77.
Grossman, R.L., Gu, Y. (2008). Data mining using high performance clouds: experimental studies using sec-

tor and sphere in KDD. In: KDD’08 Proceedings of the 14th ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining, pp. 920–927.
Hung, C.Y., Ali, D., Ruey-Lung, H., Stott, P.D. (2007). Map-reduce-merge: simplified relational data processing

on large clusters. In: SIGMOD’07 Proceedings of the 2007 ACM SIGMOD International Conference on

Management of Data, pp. 1029–1040.
Iko, P., Masaru, K. (2003). Parallel fp-growth on pc cluster. In: PAKDD’03 Proceedings of the 7th Pacific–Asia

Conference on Advances in Knowledge Discovery and Data Mining, vol. 2637, pp. 467–473.
Isard, M., Budiu, M., Yu, Y., Birrell, A., Fetterly, D. (2007). Dryad: distributed data-parallel programs from

sequential building blocks. In: EuroSys’07 Proceedings of the 2nd ACM SIGOPS/EuroSys European Con-

ference on Computer Systems 2007. ACM SIGOPS Operating Systems Review – EuroSys’07 Conference
Proceedings 41(3), pp. 59–72.

Jeanna, M., Tal, G., Christofer, H., Jeff, W. (2009). Virtual machine contracts for datacenter and cloud computing
environments. In: ACDC ’09 Proceedings of the 1st Workshop on Automated Control for Datacenters and

Clouds, pp. 25–30.
Jochen, L., Leidner, Gary, B. (2009). Building and Installing a Hadoop/MapReduce Cluster from Commodity

Components technical report, pp. 1–15,
http://arxiv.org/ftp/arxiv/papers/0911/0911.5438.pdf.

Kang, U., Tsourakakis, Faloutsos, C. (2009). PEGASUS: a peta-scale graph mining system implementation and
observations. In: Proceedings of the 9th IEEE International Conference on Data Mining. IEEE Computer
Society, Washington, pp. 229–238.

Karloff, H., Suri, S., Vassilvitskii, S. (2010). A model of computation for MapReduce. In: SODA ’10 Proceedings

of the Twenty-First Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 938–948.
Lamine, M.A., Nhien-An, L., Tahar, M.K. (2007). Distributed frequent itemsets mining in heterogeneous plat-

forms. Engineering, Computing and Archtecture, 1(2).
Lammel, R. (2008). Google’s MapReduce programming model – revisited. Science of Computer Programming,

70(1), pp. 1–30.
Li, H., Wang, Y., Zhang, D., Zhang, M., Chang, E.Y. (2008). PFP: parallel FP-growth for query recommenda-

tion. In: RecSys ’08 Proceedings of the 2008 ACM Conference on Recommender Systems. ACM, New York,
pp. 107–114.

Li, L., Eric L., Yimin, Z., Zhizhong, T. (2007). Optimization of frequent itemset mining on multiple-core proces-
sor. In: VLDB ’07 Proceedings of the 33rd International Conference on Very Large Data Bases, pp. 1275–
1285.

Luis, M.V., Luis, R., Juan, C., Maik, L. (2009). A break in the clouds: towards a cloud definition. ACM

SIGCOMM Computer Communication Review, 39(1), pp. 50–55.

Intelligent Reconfigurable Method of Cloud Computing Resources 393

Mladen, A.V. (2008). Cloud computing – issues, research and implementations. Journal of Computing and

Information Technology, 16(4) pp. 235–246.
Papadimitriou, S., Sun, J. (2008). DisCo: distributed co-clustering with map-reduce: a case study towards peta

byte-scale end-to-end mining. In: Proceedings of the 8th IEEE International Conference on Data Mining,
IEEE Computer Society, Washington, pp. 512–521.

Pavlo, A., Rasin, A., Madden, S., Stonebraker, M., DeWitt, D., Paulson, E., Shrinivas, L., Abadi, D.J. (2009).
A comparison of approaches to large scale data analysis. In: SIGMOD ’09: Proceedings of the 35th SIGMOD

International Conference on Management of Data, pp. 165–178.
Thusoo, A., Sarma, J.S., Jain, N., Shao, Z., Chakka, P., Anthony, S., Liu, H., Wyckoff, P., Murthy, R. (2009).

Hive: a warehousing solution over a map-reduce framework. Proceedings of the VLDB Endowment, 2(2),
1626–1629.

J. Choi received a doctoral degree in the Department of Computer Engineering at Chosun
University of Korea in 2004. Currently, he is working as a lecturer at the same university.
His research interests include multimedia processing, semantic information processing,
system security, ontology and semantic web.

C. Choi received a doctoral degree in the Department of Computer Engineering at Chosun
University of Korea in 2012. Currently, He is working as a lecturer at the same university.
His research interests include semantic information processing, semantic web, multimedia
and system security.

K. Yim received his Ph.D. degree in the Department of Electronics Engineering from
Ajou University, Suwon, Korea in 2001. He is an associate professor in the Department of
Information Security Engineering, Soonchunhyang University and he is currently a vis-
iting professor at Purdue University in 2011. His research interests include vulnerabil-
ity assessment, malware analysis, access control mechanism, systems security and video
surveillance system.

J. Kim received her MS degree and PhD in Computer Engineering from Chungnam
National University, Republic of Korea, in 2000 and 2004, respectively. She studied at
computer science from the University of California, Irvine, USA in 2005. Since 1988, she
has been a principal member of engineering staff at the Electronics and Telecommunica-
tions Research Institute (ETRI), where she is currently working as a team leader of the
Mobile Security Research Team. Her research interests include mobile security, secure
operating system, network security and system security.

P. Kim received the BS degree in computer engineering from Chosun University of Ko-
rea and the MS and PhD degrees in computer engineering from Seoul National University
of Korea in 1994. He is a full professor in the Department of Computer Engineering at
Chosun University. His specific research interests include semantic web techniques, se-
mantic information processing and retrieval, multimedia processing, semantic web and
system security.

394 J. Choi et al.

Skaičiuojamųjų išteklių debesų kompiuterijoje perkonfigūravimo me-
todas daugialypių duomenų tiekimui

Junho CHOI, Chang CHOI, Kangbin YIM, Jeongnyeo KIM, Pankoo KIM

Vis dažniau naudojami dideli daugialypiai duomenys ir vis daugiau žmonių naudoja debesų
kompiuterijos technologijas. Būtina veiksmingai valdyti didelius duomenis ir turėti omenyje dau-
gialypių duomenų perdavimo efektyvumą esant skirtingai kokybei. Yra svarbu užtikrinti veiksmingą
debesų kompiuterijos išteklių (procesorių, tinklo ir saugyklų) paskirstymą, dėl to įvairūs paskirsty-
mo algoritmai yra reikalingi. Šis tyrimas siūlo MapReduce taikymo schemos projektavimo meto-
dą dažnų sekų paieškos augimo algoritmui, kuris yra vienas iš duomenų tyrybos metodų Hadoop
platformoje infrastruktūros kaip paslaugos etape, įskaitant procesoriams, tinklams ir saugykloms.
Pasiūlytas metodas skirtas ištekliams paskirstyti naudojant šią schemą.

